in

Tracking late Pleistocene Neandertals on the Iberian coast

  • 1.

    Bennett, M. R. & Morse, S. A. Human Footprints: Fossilised Locomotion? (Springer International Publishing, Berlin, 2014).

    Google Scholar 

  • 2.

    Leakey, M. D. & Hay, R. L. Pliocene footprints in the Laetolil Beds at Laetoli, northern Tanzania. Nature 278, 317–323 (1979).

    ADS  Article  Google Scholar 

  • 3.

    Mietto, P., Avanzini, M. & Rolandi, G. Palaeontology: Human footprints in Pleistocene volcanic ash. Nature 422, 133 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Ashton, N. et al. Hominin footprints from early Pleistocene deposits at Happisburgh, UK. PLoS ONE 9, e88329 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Duveau, J. et al. The composition of a Neandertal social group revealed by the hominin footprints at Le Rozel (Normandy, France). PNAS 116, 19409–19414 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Masao, F. T. et al. New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins. eLife 5, e19568 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Altamura, F. et al. Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: Everyday life of a mixed-age hominin group 700,000 years ago. Sci. Rep. 8, 2815 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Bustos, D. et al. Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America. Sci. Adv. 4, eaar7621 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Stewart, M. et al. Human footprints provide snapshot of last interglacial ecology in the Arabian interior. Sci. Adv. 6, eaba8940 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Barton, C. M. Stone tools and paleolithic settlement in the Iberian Peninsula. Proc. Prehist. Soc. 56, 15–32 (1990).

    Article  Google Scholar 

  • 11.

    Garralda, M. D. The Neandertals from the Iberian Peninsula. MUNIBE 57, 289–314 (2005).

    Google Scholar 

  • 12.

    Ruiz, M. N. et al. Last Neandertal occupations at Central Iberia: The lithic industry of Jarama VI rock shelter (Valdesotos, Guadalajara, Spain). Archaeol. Anthropol. Sci. 12, 45 (2020).

    Article  Google Scholar 

  • 13.

    Muñiz, F. et al. Following the last Neandertals: Mammal tracks in Late Pleistocene coastal dunes of Gibraltar (S Iberian Peninsula). Quat. Sci. Rev. 217, 297–309 (2019).

    ADS  Article  Google Scholar 

  • 14.

    Neto de Carvalho, C. et al. First vertebrate tracks and palaeoenvironment in a MIS-5 context in the Doñana National Park (Huelva, SW Spain). Quat. Sci. Rev. 243, 106508 (2020).

    Article  Google Scholar 

  • 15.

    Neto de Carvalho, C. et al. Paleoecological implications of large-sized wild boar tracks recorded during the last interglacial (Mis 5) at Huelva (Sw Spain). Palaios 35, 512–523 (2020).

    ADS  Article  Google Scholar 

  • 16.

    Rodríguez-Ramírez, A. et al. The role of neo-tectonics in the sedimentary infilling and geomorphological evolution of the Guadalquivir estuary (Gulf of Cadiz, SW Spain) during the Holocene. Geomorphology 219, 126–140 (2014).

    ADS  Article  Google Scholar 

  • 17.

    Rodríguez-Rámirez, A. Geomorfología del Parque Nacional de Doñana y su Entorno. (ed Organismo Autónomo Parques Nacionales) (Ministerio de Medio Ambiente, Madrid, 1998).

  • 18.

    Pérez Muñoz, A. B. et al. Parque Nacional de Doñana. Guía Geológica. (ed Rodríguez Fernández, R.) (Instituto Geológico y Minero de España & Organismo Autónomo Parques Nacionales, Madrid, 2020).

  • 19.

    Instituto Hidrográfico de la Marina. Derrotero N° 2-Tomo 2 (Costas de Portugal y SO de España, Cádiz, 1992).

    Google Scholar 

  • 20.

    Rodríguez-Ramírez, A. et al. Analysis of the recent storm record in the southwestern spanish coast: Implications for littoral management. Sci. Total Environ. 303, 189–201 (2003).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 21.

    Gibbard, P. L., Head, M. J., Walker, M. J. C. & The Subcommission on Quaternary Stratigraphy. Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. J. Quat. Sci. 25, 96–102 (2010).

    Article  Google Scholar 

  • 22.

    Zazo, C. et al. Landscape evolution and geodynamic controls in the Gulf of Cadiz (Huelva coast, SW Spain) during the Late Quaternary. Geomorphology 68, 269–290 (2005).

    ADS  Article  Google Scholar 

  • 23.

    Duveau, J. Les empreintes de pieds du Rozel (Manche). Instantanés de groupes humains au Pléistocène supérieur. Approche combinée morphométrique et expérimentale. (Ph. D. dissertation. Muséum national d’Histoire naturelle, Paris, 2020).

  • 24.

    Manolis, S., Aiello, L., Henessy, R., Kyparissi-Apostolika, N. Middle Palaeolithic Footprints from Theopetra Cave (Thessaly, Greece) (ed Kyparissi-Apostolika, N.) 87–93 (Greek Ministry of Culture and Institute for Aegean Prehistory, Athens, 2000).

  • 25.

    Onac, B. P. et al. U-Th ages constraining the Neanderthal footprint at Vârtop Cave, Romania. Quat. Sci. Rev. 24, 1151–1157 (2005).

    ADS  Article  Google Scholar 

  • 26.

    Duveau, J., Berillon, G., Verna, C. 11-On the tracks of Neandertals: The ichnological assemblage from Le Rozel (Normandy, France). (eds Pastoors, A. & Lenssen-Erz, T.) (Springer Nature, in Press).

  • 27.

    Citton, P., Romano, M., Salvador, I. & Avanzini, M. Reviewing the upper Pleistocene human footprints from the ‘Sala dei Misteri’in the Grotta della Basura (Toirano, northern Italy) cave: An integrated morphometric and morpho-classificatory approach. Quat. Sci. Rev. 169, 50–64 (2017).

    ADS  Article  Google Scholar 

  • 28.

    Helm, C. W. et al. A New Pleistocene Hominin Tracksite from the Cape South Coast, South Africa. Sci. Rep. 8, 3772 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Dingwall, H. L., Hatala, K. G., Wunderlich, R. E. & Richmond, B. G. Hominin stature, body mass, and walking speed estimates based on 1.5 million-year-old fossil footprints at Ileret, Kenya. J. Hum. Evol. 64, 556–568 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Krishan, K. Estimation of stature from footprint and foot outline dimensions in Gujjars of North India. Forensic Sci. Int. 175, 93–101 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Fawzy, I. A. & Kamal, N. N. Stature and body weight estimation from various footprint measurements among Egyptian population. J. Forensic Sci. 55, 884–888 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Reel, S., Rouse, S., Obe, W. V. & Doherty, P. Estimation of stature from static and dynamic footprints. Forensic Sci. Int. 219, 283-e1 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Hemy, N., Flavel, A., Ishak, N. I. & Franklin, D. Sex estimation using anthropometry of feet and footprints in a Western Australian population. Forensic Sci. Int. 231, 402-e1 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Aiello, L. & Dean, C. An Introduction to Human Evolutionary Anatomy (Academic Press Inc., London, 1990).

    Google Scholar 

  • 35.

    Klenerman, L. & Wood, B. The Human Foot: A Companion to Clinical Studies (Springer, London, 2006).

    Google Scholar 

  • 36.

    Elftman, H. & Manter, J. Chimpanzee and human feet in bipedal walking. Am. J. Phys. Anthropol. 20, 69–79 (1935).

    Article  Google Scholar 

  • 37.

    Alexander, R. M. Principles of Animal Locomotion (Princeton University Press, Princeton, 2003).

    Google Scholar 

  • 38.

    Ruff, C. B., Trinkaus, E. & Holliday, T. W. Body mass and encephalization in Pleistocene Homo. Nature 387, 173 (1997).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Carretero, J. M. et al. Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). J. Hum. Evol. 62, 242–255 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neandertal behaviour. Nature 479, 525–528 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Hublin, J. J. The modern human colonization of western Eurasia: When and where?. Quat. Sci. Rev. 118, 194–210 (2015).

    ADS  Article  Google Scholar 

  • 42.

    Karavanić, I. et al. Paleolithic hominins and settlement in Croatia from MIS 6 to MIS 3: Research history and current interpretations. Quat. Int. 494, 152–166 (2018).

    Article  Google Scholar 

  • 43.

    Vallespi, E., Alvarez, G., Perez Sindreu, F. & Rufete, P. Nuevas atribuciones onubenses al Paleolitico Inferior y Medio. Huelva en su Historia I, 43–56 (1986).

  • 44.

    Viehmann, I. Prehistoric Human Footprints in Romania’s Caves. Theor. Appl. Karstol. 3, 229–234 (1987).

    Google Scholar 

  • 45.

    Harvati, K. The human fossil record from Romania: Early Upper Paleolithic European Mandibles and Neanderthal. (eds Harvati, K. & Roksandic, M.) 51–68 (Springer Netherlands, 2016).

  • 46.

    Zazo, C. et al. Pleistocene and Holocene Aeolian facies along the Huelva coast (southern Spain): Climatic and neotectonic implications. Geol. Mijn. 77, 209–224 (1999).

    Article  Google Scholar 

  • 47.

    Zazo, C. et al. El complejo eólico de El Abalario (Huelva) (eds Sanjaume, E., Gracia, F. J.) 407–425 (Sociedad Española de Geomorfología, Madrid, 2011)

  • 48.

    Paerl, H. W. & Yanarell, A. C. Environmental dynamics, community structure and function in a hypersaline microbial mat (eds Seckbach, J. & Oren, A.) 421–442, (Springer Netherlands, 2010).

  • 49.

    Porada, H. & Bouougri, E. Wrinkle structures—a critical review (eds Schieber, J. et al.) 135–144 (Elsevier, 2007).

  • 50.

    Gerdes, G. What Are Microbial Mats? (eds Seckbach, J. & Oren, A.) 3–25, (Springer Netherlands, 2010).

  • 51.

    Eriksson, P. G. et al. Paleoenvironmental Context Of Microbial Mat-Related Structures In Siliciclastic Rocks. (eds Seckbach, J. & Oren, A.) 71–108 (Springer Netherlands, 2010).

  • 52.

    Zilhão, J. et al. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, 1443 (2020).

    ADS  Article  CAS  Google Scholar 

  • 53.

    Hardy, B. L. & Moncel, M.-H. Neanderthal use of fish, mammals, birds, starchy plants and wood 125–250,000 years ago. PLoS ONE 6, e23768 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Wall-Scheffler, C. M., Wagnild, J. & Wagler, E. Human footprint variation while performing load bearing tasks. PLoS ONE 10, e0118619 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Romagnoli, F., Martini, F. & Sarti, L. Neanderthal use of Callista chione shells as raw material for retouched tools in South-East Italy: Analysis of Grotta del Cavallo layer l assemblage with a new methodology. J. Archaeol. Method Theory 22, 1007–1037 (2015).

    Article  Google Scholar 

  • 56.

    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).

    Article  Google Scholar 

  • 57.

    Villa, P. et al. Neandertals on the beach: Use of marine resources at Grotta dei Moscerini (Latium, Italy). PLoS ONE 15, e0226690 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Cortés-Sánchez, M. et al. Shellfish collection on the westernmost Mediterranean, Bajondillo cave (~ 160–35 cal kyr BP): A case of behavioral convergence?. Quat. Sci. Rev. 217, 284–196 (2019).

    ADS  Article  Google Scholar 

  • 59.

    Stringer, C. B. et al. Neandertal exploitation of marine mammals in Gibraltar. PNAS 105, 14319–14324 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Growing support for valuing ecosystems will help conserve the planet

    Visualizing a climate-resilient MIT