in

Urbanization can benefit agricultural production with large-scale farming in China

  • 1.

    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Bren D Amour, C. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).

    Article  Google Scholar 

  • 4.

    Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C. & De Brogniez, D. Land take and food security: assessment of land take on the agricultural production in Europe. J. Environ Plann. Manag. 58, 898–912 (2015).

    Article  Google Scholar 

  • 5.

    Shi, K. et al. Urban expansion and agricultural land loss in China: a multiscale perspective. Sustainability 8, 790 (2016).

    Article  Google Scholar 

  • 6.

    Bai, X., Shi, P. & Liu, Y. Society: realizing China’s urban dream. Nature 509, 158–160 (2014).

    Article  Google Scholar 

  • 7.

    World Urbanization Prospects 2018 (United Nations, 2018); https://population.un.org/wup/Download/

  • 8.

    Zhai, Z., Chen, J. & Li, L. Future trends of China’s population and aging from 2015 to 2100 [in Chinese]. Popul. Res. 41, 60–71 (2017).

    Google Scholar 

  • 9.

    Van Vliet, J., Eitelberg, D. A. & Verburg, P. H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Change 43, 107–115 (2017).

    Article  Google Scholar 

  • 10.

    Chen, J. Rapid urbanization in China: a real challenge to soil protection and food security. Catena 69, 1–15 (2007).

    Article  Google Scholar 

  • 11.

    Martellozzo, F. et al. Urbanization and the loss of prime farmland: a case study in the Calgary–Edmonton corridor of Alberta. Reg. Environ. Change 15, 881–893 (2015).

    Article  Google Scholar 

  • 12.

    Yan, H., Liu, J., He, Q. H., Bo, T. & Cao, M. Assessing the consequence of land use change on agricultural productivity in China. Glob. Planet. Change 67, 13–19 (2009).

    ADS  Article  Google Scholar 

  • 13.

    Bai, X., Chen, J. & Shi, P. Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 46, 132–139 (2012).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Statistical yearbooks of prefecture-level cities in 2015 [in Chinese]. National Bureau of Statistics http://www.stats.gov.cn/tjsj/ (2016).

  • 15.

    Zuo, L. et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 1, 304–313 (2018).

    Article  Google Scholar 

  • 16.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Zhang, X. et al. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat–maize cropping systems in China. Sci. Total Environ. 562, 247–259 (2016).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Zou, B., Mishra, A. K. & Luo, B. Aging population, farm succession, and farmland usage: evidence from rural China. Land Use Policy 77, 437–445 (2018).

    Article  Google Scholar 

  • 20.

    Guidance on Accelerating the Development of Agricultural Productive Services (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017).

  • 21.

    Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Change 41, 26–32 (2016).

    Article  Google Scholar 

  • 22.

    Ren, C. et al. The impact of farm size on agricultural sustainability. J. Clean Prod. 220, 357–367 (2019).

    Article  Google Scholar 

  • 23.

    Adamopoulos, T. & Restuccia, D. The size distribution of farms and international productivity differences. Am. Econ. Rev. 104, 1667–1697 (2014).

    Article  Google Scholar 

  • 24.

    Wang, J., Chen, K. Z., Gupta, S. D. & Huang, Z. Is small still beautiful? A comparative study of rice farm size and productivity in China and India. China Agr. Econ. Rev. 7, 484–509 (2015).

    Article  Google Scholar 

  • 25.

    Lu, H., Xie, H., He, Y., Wu, Z. & Zhang, X. Assessing the impacts of land fragmentation and plot size on yields and costs: a translog production model and cost function approach. Agr. Syst. 161, 81–88 (2018).

    Article  Google Scholar 

  • 26.

    Syp, A., Faber, A., Borzecka-Walker, M. & Osuch, D. Assessment of greenhouse gas emissions in winter wheat farms using data envelopment analysis approach. Pol. J. Environ. Stud. 24, 2197–2203 (2015).

    CAS  Article  Google Scholar 

  • 27.

    Li, G., Feng, Z., You, L. & Fan, L. Re-examining the inverse relationship between farm size and efficiency. China Agr. Econ. Rev. 5, 473–488 (2013).

    Article  Google Scholar 

  • 28.

    Fan, L. et al. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 26, 464–472 (2019).

    Article  Google Scholar 

  • 29.

    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Env. Resour. 28, 315–358 (2003).

    Article  Google Scholar 

  • 30.

    Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 2335–2340 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Resource and Environment Data Cloud Platform (Resource and Environment Science and Data Center, 2018); http://www.resdc.cn/Default.aspx

  • 32.

    Laborde, D., Martin, W., Swinnen, J. & Vos, R. COVID-19 risks to global food security. Science 369, 500–502 (2020).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Shi, Q., Jin, H. & Zhuo, J. Does land expropriation definitely reduce farmers’ income: a survey of 7 villages in Shanghai: the defects and reforms of the current land expropriation system [in Chinese]. Manage. World 3, 77–82 (2011).

    Google Scholar 

  • 34.

    Liu, Y. & Li, Y. Revitalize the world’s countryside. Nature 548, 275–277 (2017).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Liu, Y., Fang, F. & Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 40, 6–12 (2014).

    CAS  Article  Google Scholar 

  • 36.

    Measures for Land Acquisition Compensation and Social Security for Land-Expropriated Farmers in Jiangsu Province Provincial Government Order No. 93 (Jiangsu Provincial People’s Government, 2013).

  • 37.

    Wu, Y., Chen, Y., Deng, X. & Hui, E. C. M. Development of characteristic towns in China. Habitat Int. 77, 21–31 (2018).

    Article  Google Scholar 

  • 38.

    Yu, Y., Huang, Y. & Zhang, W. Modeling soil organic carbon change in croplands of China, 1980–2009. Glob. Planet Change 82–83, 115–128 (2012).

    ADS  Article  Google Scholar 

  • 39.

    No. 1 Central Document (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020); http://www.moa.gov.cn/ztzl/jj2020zyyhwj/

  • 40.

    Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Growing support for valuing ecosystems will help conserve the planet

    Visualizing a climate-resilient MIT