More stories

  • in

    MIT gears up to transform manufacturing

    “Manufacturing is the engine of society, and it is the backbone of robust, resilient economies,” says John Hart, head of MIT’s Department of Mechanical Engineering (MechE) and faculty co-director of the MIT Initiative for New Manufacturing (INM). “With manufacturing a lively topic in today’s news, there’s a renewed appreciation and understanding of the importance of manufacturing to innovation, to economic and national security, and to daily lives.”Launched this May, INM will “help create a transformation of manufacturing through new technology, through development of talent, and through an understanding of how to scale manufacturing in a way that enables imparts higher productivity and resilience, drives adoption of new technologies, and creates good jobs,” Hart says.INM is one of MIT’s strategic initiatives and builds on the successful three-year-old Manufacturing@MIT program. “It’s a recognition by MIT that manufacturing is an Institute-wide theme and an Institute-wide priority, and that manufacturing connects faculty and students across campus,” says Hart. Alongside Hart, INM’s faculty co-directors are Institute Professor Suzanne Berger and Chris Love, professor of chemical engineering.The initiative is pursuing four main themes: reimagining manufacturing technologies and systems, elevating the productivity and human experience of manufacturing, scaling up new manufacturing, and transforming the manufacturing base.Breaking manufacturing barriers for corporationsAmgen, Autodesk, Flex, GE Vernova, PTC, Sanofi, and Siemens are founding members of INM’s industry consortium. These industry partners will work closely with MIT faculty, researchers, and students across many aspects of manufacturing-related research, both in broad-scale initiatives and in particular areas of shared interests. Membership requires a minimum three-year commitment of $500,000 a year to manufacturing-related activities at MIT, including the INM membership fee of $275,000 per year, which supports several core activities that engage the industry members.One major thrust for INM industry collaboration is the deployment and adoption of AI and automation in manufacturing. This effort will include seed research projects at MIT, collaborative case studies, and shared strategy development.INM also offers companies participation in the MIT-wide New Manufacturing Research effort, which is studying the trajectories of specific manufacturing industries and examining cross-cutting themes such as technology and financing.Additionally, INM will concentrate on education for all professions in manufacturing, with alliances bringing together corporations, community colleges, government agencies, and other partners. “We’ll scale our curriculum to broader audiences, from aspiring manufacturing workers and aspiring production line supervisors all the way up to engineers and executives,” says Hart.In workforce training, INM will collaborate with companies broadly to help understand the challenges and frame its overall workforce agenda, and with individual firms on specific challenges, such as acquiring suitably prepared employees for a new factory.Importantly, industry partners will also engage directly with students. Founding member Flex, for instance, hosted MIT researchers and students at the Flex Institute of Technology in Sorocaba, Brazil, developing new solutions for electronics manufacturing.“History shows that you need to innovate in manufacturing alongside the innovation in products,” Hart comments. “At MIT, as more students take classes in manufacturing, they’ll think more about key manufacturing issues as they decide what research problems they want to solve, or what choices they make as they prototype their devices. The same is true for industry — companies that operate at the frontier of manufacturing, whether through internal capabilities or their supply chains, are positioned to be on the frontier of product innovation and overall growth.”“We’ll have an opportunity to bring manufacturing upstream to the early stage of research, designing new processes and new devices with scalability in mind,” he says.Additionally, MIT expects to open new manufacturing-related labs and to further broaden cooperation with industry at existing shared facilities, such as MIT.nano. Hart says that facilities will also invite tighter collaborations with corporations — not just providing advanced equipment, but working jointly on, say, new technologies for weaving textiles, or speeding up battery manufacturing.Homing in on the United StatesINM is a global project that brings a particular focus on the United States, which remains the world’s second-largest manufacturing economy, but has suffered a significant decline in manufacturing employment and innovation.One key to reversing this trend and reinvigorating the U.S. manufacturing base is advocacy for manufacturing’s critical role in society and the career opportunities it offers.“No one really disputes the importance of manufacturing,” Hart says. “But we need to elevate interest in manufacturing as a rewarding career, from the production workers to manufacturing engineers and leaders, through advocacy, education programs, and buy-in from industry, government, and academia.”MIT is in a unique position to convene industry, academic, and government stakeholders in manufacturing to work together on this vital issue, he points out.Moreover, in times of radical and rapid changes in manufacturing, “we need to focus on deploying new technologies into factories and supply chains,” Hart says. “Technology is not all of the solution, but for the U.S. to expand our manufacturing base, we need to do it with technology as a key enabler, embracing companies of all sizes, including small and medium enterprises.”“As AI becomes more capable, and automation becomes more flexible and more available, these are key building blocks upon which you can address manufacturing challenges,” he says. “AI and automation offer new accelerated ways to develop, deploy, and monitor production processes, which present a huge opportunity and, in some cases, a necessity.”“While manufacturing is always a combination of old technology, new technology, established practice, and new ways of thinking, digital technology gives manufacturers an opportunity to leapfrog competitors,” Hart says. “That’s very, very powerful for the U.S. and any company, or country, that aims to create differentiated capabilities.”Fortunately, in recent years, investors have increasingly bought into new manufacturing in the United States. “They see the opportunity to re-industrialize, to build the factories and production systems of the future,” Hart says.“That said, building new manufacturing is capital-intensive, and takes time,” he adds. “So that’s another area where it’s important to convene stakeholders and to think about how startups and growth-stage companies build their capital portfolios, how large industry can support an ecosystem of small businesses and young companies, and how to develop talent to support those growing companies.”All these concerns and opportunities in the manufacturing ecosystem play to MIT’s strengths. “MIT’s DNA of cross-disciplinary collaboration and working with industry can let us create a lot of impact,” Hart emphasizes. “We can understand the practical challenges. We can also explore breakthrough ideas in research and cultivate successful outcomes, all the way to new companies and partnerships. Sometimes those are seen as disparate approaches, but we like to bring them together.” More

  • in

    Would you like that coffee with iron?

    Around the world, about 2 billion people suffer from iron deficiency, which can lead to anemia, impaired brain development in children, and increased infant mortality.To combat that problem, MIT researchers have come up with a new way to fortify foods and beverages with iron, using small crystalline particles. These particles, known as metal-organic frameworks, could be sprinkled on food, added to staple foods such as bread, or incorporated into drinks like coffee and tea.“We’re creating a solution that can be seamlessly added to staple foods across different regions,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. “What’s considered a staple in Senegal isn’t the same as in India or the U.S., so our goal was to develop something that doesn’t react with the food itself. That way, we don’t have to reformulate for every context — it can be incorporated into a wide range of foods and beverages without compromise.”The particles designed in this study can also carry iodine, another critical nutrient. The particles could also be adapted to carry important minerals such as zinc, calcium, or magnesium.“We are very excited about this new approach and what we believe is a novel application of metal-organic frameworks to potentially advance nutrition, particularly in the developing world,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute.Jaklenec and Langer are the senior authors of the study, which appears today in the journal Matter. MIT postdoc Xin Yang and Linzixuan (Rhoda) Zhang PhD ’24 are the lead authors of the paper.Iron stabilizationFood fortification can be a successful way to combat nutrient deficiencies, but this approach is often challenging because many nutrients are fragile and break down during storage or cooking. When iron is added to foods, it can react with other molecules in the food, giving the food a metallic taste.In previous work, Jaklenec’s lab has shown that encapsulating nutrients in polymers can protect them from breaking down or reacting with other molecules. In a small clinical trial, the researchers found that women who ate bread fortified with encapsulated iron were able to absorb the iron from the food.However, one drawback to this approach is that the polymer adds a lot of bulk to the material, limiting the amount of iron or other nutrients that end up in the food.“Encapsulating iron in polymers significantly improves its stability and reactivity, making it easier to add to food,” Jaklenec says. “But to be effective, it requires a substantial amount of polymer. That limits how much iron you can deliver in a typical serving, making it difficult to meet daily nutritional targets through fortified foods alone.”To overcome that challenge, Yang came up with a new idea: Instead of encapsulating iron in a polymer, they could use iron itself as a building block for a crystalline particle known as a metal-organic framework, or MOF (pronounced “moff”).MOFs consist of metal atoms joined by organic molecules called ligands to create a rigid, cage-like structure. Depending on the combination of metals and ligands chosen, they can be used for a wide variety of applications.“We thought maybe we could synthesize a metal-organic framework with food-grade ligands and food-grade micronutrients,” Yang says. “Metal-organic frameworks have very high porosity, so they can load a lot of cargo. That’s why we thought we could leverage this platform to make a new metal-organic framework that could be used in the food industry.”In this case, the researchers designed a MOF consisting of iron bound to a ligand called fumaric acid, which is often used as a food additive to enhance flavor or help preserve food.This structure prevents iron from reacting with polyphenols — compounds commonly found in foods such as whole grains and nuts, as well as coffee and tea. When iron does react with those compounds, it forms a metal polyphenol complex that cannot be absorbed by the body.The MOFs’ structure also allows them to remain stable until they reach an acidic environment, such as the stomach, where they break down and release their iron payload.Double-fortified saltsThe researchers also decided to include iodine in their MOF particle, which they call NuMOF. Iodized salt has been very successful at preventing iodine deficiency, and many efforts are now underway to create “double-fortified salts” that would also contain iron.Delivering these nutrients together has proven difficult because iron and iodine can react with each other, making each one less likely to be absorbed by the body. In this study, the MIT team showed that once they formed their iron-containing MOF particles, they could load them with iodine, in a way that the iron and iodine do not react with each other.In tests of the particles’ stability, the researchers found that the NuMOFs could withstand long-term storage, high heat and humidity, and boiling water.Throughout these tests, the particles maintained their structure. When the researchers then fed the particles to mice, they found that both iron and iodine became available in the bloodstream within several hours of the NuMOF consumption.The researchers are now working on launching a company that is developing coffee and other beverages fortified with iron and iodine. They also hope to continue working toward a double-fortified salt that could be consumed on its own or incorporated into staple food products.The research was partially supported by J-WAFS Fellowships for Water and Food Solutions.Other authors of the paper include Fangzheng Chen, Wenhao Gao, Zhiling Zheng, Tian Wang, Erika Yan Wang, Behnaz Eshaghi, and Sydney MacDonald. More

  • in

    Eco-driving measures could significantly reduce vehicle emissions

    Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.Even if only 10 percent of vehicles on the road employ eco-driving, it would result in 25 to 50 percent of the total reduction in CO2 emissions, the researchers found.In addition, dynamically optimizing speed limits at about 20 percent of intersections provides 70 percent of the total emission benefits. This indicates that eco-driving measures could be implemented gradually while still having measurable, positive impacts on mitigating climate change and improving public health.

    An animated GIF compares what 20% eco-driving adoption looks like to 100% eco-driving adoption.Image: Courtesy of the researchers

    “Vehicle-based control strategies like eco-driving can move the needle on climate change reduction. We’ve shown here that modern machine-learning tools, like deep reinforcement learning, can accelerate the kinds of analysis that support sociotechnical decision making. This is just the tip of the iceberg,” says senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of the Laboratory for Information and Decision Systems (LIDS).She is joined on the paper by lead author Vindula Jayawardana, an MIT graduate student; as well as MIT graduate students Ao Qu, Cameron Hickert, and Edgar Sanchez; MIT undergraduate Catherine Tang; Baptiste Freydt, a graduate student at ETH Zurich; and Mark Taylor and Blaine Leonard of the Utah Department of Transportation. The research appears in Transportation Research Part C: Emerging Technologies.A multi-part modeling studyTraffic control measures typically call to mind fixed infrastructure, like stop signs and traffic signals. But as vehicles become more technologically advanced, it presents an opportunity for eco-driving, which is a catch-all term for vehicle-based traffic control measures like the use of dynamic speeds to reduce energy consumption.In the near term, eco-driving could involve speed guidance in the form of vehicle dashboards or smartphone apps. In the longer term, eco-driving could involve intelligent speed commands that directly control the acceleration of semi-autonomous and fully autonomous vehicles through vehicle-to-infrastructure communication systems.“Most prior work has focused on how to implement eco-driving. We shifted the frame to consider the question of should we implement eco-driving. If we were to deploy this technology at scale, would it make a difference?” Wu says.To answer that question, the researchers embarked on a multifaceted modeling study that would take the better part of four years to complete.They began by identifying 33 factors that influence vehicle emissions, including temperature, road grade, intersection topology, age of the vehicle, traffic demand, vehicle types, driver behavior, traffic signal timing, road geometry, etc.“One of the biggest challenges was making sure we were diligent and didn’t leave out any major factors,” Wu says.Then they used data from OpenStreetMap, U.S. geological surveys, and other sources to create digital replicas of more than 6,000 signalized intersections in three cities — Atlanta, San Francisco, and Los Angeles — and simulated more than a million traffic scenarios.The researchers used deep reinforcement learning to optimize each scenario for eco-driving to achieve the maximum emissions benefits.Reinforcement learning optimizes the vehicles’ driving behavior through trial-and-error interactions with a high-fidelity traffic simulator, rewarding vehicle behaviors that are more energy-efficient while penalizing those that are not.The researchers cast the problem as a decentralized cooperative multi-agent control problem, where the vehicles cooperate to achieve overall energy efficiency, even among non-participating vehicles, and they act in a decentralized manner, avoiding the need for costly communication between vehicles.However, training vehicle behaviors that generalize across diverse intersection traffic scenarios was a major challenge. The researchers observed that some scenarios are more similar to one another than others, such as scenarios with the same number of lanes or the same number of traffic signal phases.As such, the researchers trained separate reinforcement learning models for different clusters of traffic scenarios, yielding better emission benefits overall.But even with the help of AI, analyzing citywide traffic at the network level would be so computationally intensive it could take another decade to unravel, Wu says.Instead, they broke the problem down and solved each eco-driving scenario at the individual intersection level.“We carefully constrained the impact of eco-driving control at each intersection on neighboring intersections. In this way, we dramatically simplified the problem, which enabled us to perform this analysis at scale, without introducing unknown network effects,” she says.Significant emissions benefitsWhen they analyzed the results, the researchers found that full adoption of eco-driving could result in intersection emissions reductions of between 11 and 22 percent.These benefits differ depending on the layout of a city’s streets. A denser city like San Francisco has less room to implement eco-driving between intersections, offering a possible explanation for reduced emission savings, while Atlanta could see greater benefits given its higher speed limits.Even if only 10 percent of vehicles employ eco-driving, a city could still realize 25 to 50 percent of the total emissions benefit because of car-following dynamics: Non-eco-driving vehicles would follow controlled eco-driving vehicles as they optimize speed to pass smoothly through intersections, reducing their carbon emissions as well.In some cases, eco-driving could also increase vehicle throughput by minimizing emissions. However, Wu cautions that increasing throughput could result in more drivers taking to the roads, reducing emissions benefits.And while their analysis of widely used safety metrics known as surrogate safety measures, such as time to collision, suggest that eco-driving is as safe as human driving, it could cause unexpected behavior in human drivers. More research is needed to fully understand potential safety impacts, Wu says.Their results also show that eco-driving could provide even greater benefits when combined with alternative transportation decarbonization solutions. For instance, 20 percent eco-driving adoption in San Francisco would cut emission levels by 7 percent, but when combined with the projected adoption of hybrid and electric vehicles, it would cut emissions by 17 percent.“This is a first attempt to systematically quantify network-wide environmental benefits of eco-driving. This is a great research effort that will serve as a key reference for others to build on in the assessment of eco-driving systems,” says Hesham Rakha, the Samuel L. Pritchard Professor of Engineering at Virginia Tech, who was not involved with this research.And while the researchers focus on carbon emissions, the benefits are highly correlated with improvements in fuel consumption, energy use, and air quality.“This is almost a free intervention. We already have smartphones in our cars, and we are rapidly adopting cars with more advanced automation features. For something to scale quickly in practice, it must be relatively simple to implement and shovel-ready. Eco-driving fits that bill,” Wu says.This work is funded, in part, by Amazon and the Utah Department of Transportation. More

  • in

    School of Architecture and Planning welcomes new faculty for 2025

    Four new faculty members join the School of Architecture and Planning (SA+P) this fall, offering the MIT community creativity, knowledge, and scholarship in multidisciplinary roles.“These individuals add considerable strength and depth to our faculty,” says Hashim Sarkis, dean of the School of Architecture and Planning. “We are excited for the academic vigor they bring to research and teaching.”Karrie G. Karahalios ’94, MEng ’95, SM ’97, PhD ’04 joins the MIT Media Lab as a full professor of media arts and sciences. Karahalios is a pioneer in the exploration of social media and of how people communicate in environments that are increasingly mediated by algorithms that, as she has written, “shape the world around us.” Her work combines computing, systems, artificial intelligence, anthropology, sociology, psychology, game theory, design, and infrastructure studies. Karahalios’ work has received numerous honors including the National Science Foundation CAREER Award, Alfred P. Sloan Research Fellowship, SIGMOD Best Paper Award, and recognition as an ACM Distinguished Member.Pat Pataranutaporn SM ’18, PhD ’20 joins the MIT Media Lab as an assistant professor of media arts and sciences. A visionary technologist, scientist, and designer, Pataranutaporn explores the frontier of human-AI interaction, inventing and investigating AI systems that support human thriving. His research focuses on how personalized AI systems can amplify human cognition, from learning and decision-making to self-development, reflection, and well-being. Pataranutaporn will co-direct the Advancing Humans with AI Program.Mariana Popescu joins the Department of Architecture as an assistant professor. Popescu is a computational architect and structural designer with a strong interest and experience in innovative ways of approaching the fabrication process and use of materials in construction. Her area of expertise is computational and parametric design, with a focus on digital fabrication and sustainable design. Her extensive involvement in projects related to promoting sustainability has led to a multilateral development of skills, which combine the fields of architecture, engineering, computational design, and digital fabrication. Popescu earned her doctorate at ETH Zurich. She was named a “Pioneer” on the MIT Technology Review global list of “35 innovators under 35” in 2019.Holly Samuelson joins the Department of Architecture as an associate professor in the Building Technology Program at MIT, teaching architectural technology courses. Her teaching and research focus on issues of building design that impact human and environmental health. Her current projects harness advanced building simulation to investigate issues of greenhouse gas emissions, heat vulnerability, and indoor environmental quality while considering the future of buildings in a changing electricity grid. Samuelson has co-authored over 40 peer-reviewed papers, winning a best paper award from the journal Energy and Building. As a recognized expert in architectural technology, she has been featured in news outlets including The Washington Post, The Boston Globe, the BBC, and The Wall Street Journal. Samuelson earned her doctor of design from Harvard University Graduate School of Design. More

  • in

    Creeping crystals: Scientists observe “salt creep” at the single-crystal scale

    Salt creeping, a phenomenon that occurs in both natural and industrial processes, describes the collection and migration of salt crystals from evaporating solutions onto surfaces. Once they start collecting, the crystals climb, spreading away from the solution. This creeping behavior, according to researchers, can cause damage or be harnessed for good, depending on the context. New research published June 30 in the journal Langmuir is the first to show salt creeping at a single-crystal scale and beneath a liquid’s meniscus.“The work not only explains how salt creeping begins, but why it begins and when it does,” says Joseph Phelim Mooney, a postdoc in the MIT Device Research Laboratory and one of the authors of the new study. “We hope this level of insight helps others, whether they’re tackling water scarcity, preserving ancient murals, or designing longer-lasting infrastructure.”The work is the first to directly visualize how salt crystals grow and interact with surfaces underneath a liquid meniscus, something that’s been theorized for decades but never actually imaged or confirmed at this level, and it offers fundamental insights that could impact a wide range of fields — from mineral extraction and desalination to anti-fouling coatings, membrane design for separation science, and even art conservation, where salt damage is a major threat to heritage materials.In civil engineering applications, for example, the research can help explain why and when salt crystals start growing across surfaces like concrete, stone, or building materials. “These crystals can exert pressure and cause cracking or flaking, reducing the long-term durability of structures,” says Mooney. “By pinpointing the moment when salt begins to creep, engineers can better design protective coatings or drainage systems to prevent this form of degradation.”For a field like art conservation, where salt can be devastating to murals, frescoes, and ancient artifacts, often forming beneath the surface before visible damage appears, the work can help identify the exact conditions that cause salt to start moving and spreading, allowing conservators to act earlier and more precisely to protect heritage objects.The work began during Mooney’s Marie Curie Fellowship at MIT. “I was focused on improving desalination systems and quickly ran into [salt buildup as] a major roadblock,” he says. “[Salt] was everywhere, coating surfaces, clogging flow paths, and undermining the efficiency of our designs. I realized we didn’t fully understand how or why salt starts creeping across surfaces in the first place.”That experience led Mooney to team up with colleagues to dig into the fundamentals of salt crystallization at the air–liquid–solid interface. “We wanted to zoom in, to really see the moment salt begins to move, so we turned to in situ X-ray microscopy,” he says. “What we found gave us a whole new way to think about surface fouling, material degradation, and controlled crystallization.”The new research may, in fact, allow better control of a crystallization processes required to remove salt from water in zero-liquid discharge systems. It can also be used to explain how and when scaling happens on equipment surfaces, and may support emerging climate technologies that depend on smart control of evaporation and crystallization.The work also supports mineral and salt extraction applications, where salt creeping can be both a bottleneck and an opportunity. In these applications, Mooney says, “by understanding the precise physics of salt formation at surfaces, operators can optimize crystal growth, improving recovery rates and reducing material losses.”Mooney’s co-authors on the paper include fellow MIT Device Lab researchers Omer Refet Caylan, Bachir El Fil (now an associate professor at Georgia Tech), and Lenan Zhang (now an associate professor at Cornell University); Jeff Punch and Vanessa Egan of the University of Limerick; and Jintong Gao of Cornell.The research was conducted using in situ X-ray microscopy. Mooney says the team’s big realization moment occurred when they were able to observe a single salt crystal pinning itself to the surface, which kicked off a cascading chain reaction of growth.“People had speculated about this, but we captured it on X-ray for the first time. It felt like watching the microscopic moment where everything tips, the ignition points of a self-propagating process,” says Mooney. “Even more surprising was what followed: The salt crystal didn’t just grow passively to fill the available space. It pierced through the liquid-air interface and reshaped the meniscus itself, setting up the perfect conditions for the next crystal. That subtle, recursive mechanism had never been visually documented before — and seeing it play out in real time completely changed how we thought about salt crystallization.”The paper, “In Situ X-ray Microscopy Unraveling the Onset of Salt Creeping at a Single-Crystal Level,” is available now in the journal Langmuir. Research was conducted in MIT.nano.  More

  • in

    Why animals are a critical part of forest carbon absorption

    A lot of attention has been paid to how climate change can drive biodiversity loss. Now, MIT researchers have shown the reverse is also true: Reductions in biodiversity can jeopardize one of Earth’s most powerful levers for mitigating climate change.In a paper published in PNAS, the researchers showed that following deforestation, naturally-regrowing tropical forests, with healthy populations of seed-dispersing animals, can absorb up to four times more carbon than similar forests with fewer seed-dispersing animals.Because tropical forests are currently Earth’s largest land-based carbon sink, the findings improve our understanding of a potent tool to fight climate change.“The results underscore the importance of animals in maintaining healthy, carbon-rich tropical forests,” says Evan Fricke, a research scientist in the MIT Department of Civil and Environmental Engineering and the lead author of the new study. “When seed-dispersing animals decline, we risk weakening the climate-mitigating power of tropical forests.”Fricke’s co-authors on the paper include César Terrer, the Tianfu Career Development Associate Professor at MIT; Charles Harvey, an MIT professor of civil and environmental engineering; and Susan Cook-Patton of The Nature Conservancy.The study combines a wide array of data on animal biodiversity, movement, and seed dispersal across thousands of animal species, along with carbon accumulation data from thousands of tropical forest sites.The researchers say the results are the clearest evidence yet that seed-dispersing animals play an important role in forests’ ability to absorb carbon, and that the findings underscore the need to address biodiversity loss and climate change as connected parts of a delicate ecosystem rather as separate problems in isolation.“It’s been clear that climate change threatens biodiversity, and now this study shows how biodiversity losses can exacerbate climate change,” Fricke says. “Understanding that two-way street helps us understand the connections between these challenges, and how we can address them. These are challenges we need to tackle in tandem, and the contribution of animals to tropical forest carbon shows that there are win-wins possible when supporting biodiversity and fighting climate change at the same time.”Putting the pieces togetherThe next time you see a video of a monkey or bird enjoying a piece of fruit, consider that the animals are actually playing an important role in their ecosystems. Research has shown that by digesting the seeds and defecating somewhere else, animals can help with the germination, growth, and long-term survival of the plant.Fricke has been studying animals that disperse seeds for nearly 15 years. His previous research has shown that without animal seed dispersal, trees have lower survival rates and a harder time keeping up with environmental changes.“We’re now thinking more about the roles that animals might play in affecting the climate through seed dispersal,” Fricke says. “We know that in tropical forests, where more than three-quarters of trees rely on animals for seed dispersal, the decline of seed dispersal could affect not just the biodiversity of forests, but how they bounce back from deforestation. We also know that all around the world, animal populations are declining.”Regrowing forests is an often-cited way to mitigate the effects of climate change, but the influence of biodiversity on forests’ ability to absorb carbon has not been fully quantified, especially at larger scales.For their study, the researchers combined data from thousands of separate studies and used new tools for quantifying disparate but interconnected ecological processes. After analyzing data from more than 17,000 vegetation plots, the researchers decided to focus on tropical regions, looking at data on where seed-dispersing animals live, how many seeds each animal disperses, and how they affect germination.The researchers then incorporated data showing how human activity impacts different seed-dispersing animals’ presence and movement. They found, for example, that animals move less when they consume seeds in areas with a bigger human footprint.Combining all that data, the researchers created an index of seed-dispersal disruption that revealed a link between human activities and declines in animal seed dispersal. They then analyzed the relationship between that index and records of carbon accumulation in naturally regrowing tropical forests over time, controlling for factors like drought conditions, the prevalence of fires, and the presence of grazing livestock.“It was a big task to bring data from thousands of field studies together into a map of the disruption of seed dispersal,” Fricke says. “But it lets us go beyond just asking what animals are there to actually quantifying the ecological roles those animals are playing and understanding how human pressures affect them.”The researchers acknowledged that the quality of animal biodiversity data could be improved and introduces uncertainty into their findings. They also note that other processes, such as pollination, seed predation, and competition influence seed dispersal and can constrain forest regrowth. Still, the findings were in line with recent estimates.“What’s particularly new about this study is we’re actually getting the numbers around these effects,” Fricke says. “Finding that seed dispersal disruption explains a fourfold difference in carbon absorption across the thousands of tropical regrowth sites included in the study points to seed dispersers as a major lever on tropical forest carbon.”Quantifying lost carbonIn forests identified as potential regrowth sites, the researchers found seed-dispersal declines were linked to reductions in carbon absorption each year averaging 1.8 metric tons per hectare, equal to a reduction in regrowth of 57 percent.The researchers say the results show natural regrowth projects will be more impactful in landscapes where seed-dispersing animals have been less disrupted, including areas that were recently deforested, are near high-integrity forests, or have higher tree cover.“In the discussion around planting trees versus allowing trees to regrow naturally, regrowth is basically free, whereas planting trees costs money, and it also leads to less diverse forests,” Terrer says. “With these results, now we can understand where natural regrowth can happen effectively because there are animals planting the seeds for free, and we also can identify areas where, because animals are affected, natural regrowth is not going to happen, and therefore planting trees actively is necessary.”To support seed-dispersing animals, the researchers encourage interventions that protect or improve their habitats and that reduce pressures on species, ranging from wildlife corridors to restrictions on wildlife trade. Restoring the ecological roles of seed dispersers is also possible by reintroducing seed-dispersing species where they’ve been lost or planting certain trees that attract those animals.The findings could also make modeling the climate impact of naturally regrowing forests more accurate.“Overlooking the impact of seed-dispersal disruption may overestimate natural regrowth potential in many areas and underestimate it in others,” the authors write.The researchers believe the findings open up new avenues of inquiry for the field.“Forests provide a huge climate subsidy by sequestering about a third of all human carbon emissions,” Terrer says. “Tropical forests are by far the most important carbon sink globally, but in the last few decades, their ability to sequester carbon has been declining. We will next explore how much of that decline is due to an increase in extreme droughts or fires versus declines in animal seed dispersal.”Overall, the researchers hope the study helps improves our understanding of the planet’s complex ecological processes.“When we lose our animals, we’re losing the ecological infrastructure that keeps our tropical forests healthy and resilient,” Fricke says.The research was supported by the MIT Climate and Sustainability Consortium, the Government of Portugal, and the Bezos Earth Fund. More

  • in

    Study shows a link between obesity and what’s on local restaurant menus

    For many years, health experts have been concerned about “food deserts,” places where residents lack good nutritional options. Now, an MIT-led study of three major global cities uses a new, granular method to examine the issue, and concludes that having fewer and less nutritional eating options nearby correlates with obesity and other health outcomes.Rather than just mapping geographic areas, the researchers examined the dietary value of millions of food items on roughly 30,000 restaurant menus and derived a more precise assessment of the connection between neighborhoods and nutrition.“We show that what is sold in a restaurant has a direct correlation to people’s health,” says MIT researcher Fabio Duarte, co-author of a newly published paper outlining the study’s results. “The food landscape matters.”The open-access paper, “Data-driven nutritional assessment of urban food landscapes: insights from Boston, London, Dubai,” was published this week in Nature: Scientific Reports.The co-authors are Michael Tufano, a PhD student at Wageningen University, in the Netherlands; Duarte, associate director of MIT’s Senseable City Lab, which uses data to study cities as dynamic systems; Martina Mazzarello, a postdoc at the Senseable City Lab; Javad Eshtiyagh, a research fellow at the Senseable City Lab; Carlo Ratti, professor of the practice and director of the Senseable City Lab; and Guido Camps, a senior researcher at Wageningen University.Scanning the menuTo conduct the study, the researchers examined menus from Boston, Dubai, and London, in the summer of 2023, compiling a database of millions of items available through popular food-delivery platforms. The team then evaluated the food items as rated by the USDA’s FoodData Central database, an information bank with 375,000 kinds of food products listed. The study deployed two main metrics, the Meal Balance Index, and the Nutrient-Rich Foods Index.The researchers examined about 222,000 menu items from over 2,000 restaurants in Boston, about 1.6 million menu items from roughly 9,000 restaurants in Dubai, and about 3.1 million menu items from about 18,000 restaurants in London. In Boston, about 71 percent of the items were in the USDA database; in Dubai and London, that figure was 42 percent and 56 percent, respectively.The team then rated the nutritional value of the items appearing on menus, and correlated the food data with health-outcome data from Boston and London. In London, they found a clear correlation between neighborhood menu offerings and obesity, or the lack thereof; with a slightly less firm correlation in Boston. Areas with food options that include a lot of dietary fibers, sometimes along with fruits and vegetables, tend to have better health data.In Dubai, the researchers did not have the same types of health data available but did observe a strong correlation between rental prices and the nutritional value of neighborhood-level food, suggesting that wealthier residents have better nourishment options.“At the item level, when we have less nutritional food, we see more cases of obsesity,” Tufano says. “It’s true that not only do we have more fast food in poor neighborhoods, but the nutritional value is not the same.”Re-mapping the food landscapeBy conducting the study in this fashion, the scholars added a layer of analysis to past studies of food deserts. While past work has broken ground by identifying neighborhoods and areas lacking good food access, this research makes a more comprehensive assessment of what people consume. The research moves toward evaluating the complex mix of food available in any given area, which can be true even of areas with more limited options.“We were not satisfied with this idea that if you only have fast food, it’s a food desert, but if you have a Whole Foods, it’s not,” Duarte says. “It’s not necessarily like that.”For the Senseable City Lab researchers, the study is a new technique further enabling them to understand city dynamics and the effects of the urban environment on health. Past lab studies have often focused on issues such as urban mobility, while extending to matters such as mobility and air pollution, among other topics.Being able to study food and health at the neighborhood level, though, is still another example of the ways that data-rich spheres of life can be studied in close detail.“When we started working on cities and data, the data resolution was so low,” Ratti says. “Today the amount of data is so immense we see this great opportunity to look at cities and see the influence of the urban environment as a big determinant of health. We see this as one of the new frontiers of our lab. It’s amazing how we can now look at this very precisely in cities.” More

  • in

    Designing across cultural and geographic divides

    In addition to the typical rigors of MIT classes, Terrascope Subject 2.00C/1.016/EC.746 (Design for Complex Environmental Issues) poses some unusual hurdles for students to navigate: collaborating across time zones, bridging different cultural and institutional experiences, and trying to do hands-on work over Zoom. That’s because the class includes students from not only MIT, but also Diné College in Tsaile, Arizona, within the Navajo Nation, and the University of Puerto Rico-Ponce (UPRP).Despite being thousands of miles apart, students work in teams to tackle a real-world problem for a client, based on the Terrascope theme for the year. “Understanding how to collaborate over long distances with people who are not like themselves will be an important item in many of these students’ toolbelts going forward, in some cases just as much as — or more than — any particular design technique,” says Ari Epstein, Terrascope associate director and senior lecturer. Over the past several years, Epstein has taught the class along with Joel Grimm of MIT Beaver Works and Libby Hsu of MIT D-Lab, as well instructors from the two collaborating institutions. Undergraduate teaching fellows from all three schools are also key members of the instructional staff.Since the partnership began three years ago (initially with Diné College, with the addition of UPRP two years ago), the class themes have included food security and sustainable agriculture in Navajo Nation; access to reliable electrical power in Puerto Rico; and this year, increasing museum visitors’ engagement with artworks depicting mining and landscape alteration in Nevada.Each team — which includes students from all three colleges — meets with clients online early in the term to understand their needs; then, through an iterative process, teams work on designing prototypes. During MIT’s spring break, teams travel to meet with the clients onsite to get feedback and continue to refine their prototypes. At the end of the term, students present their final products to the clients, an expert panel, and their communities at a hybrid showcase event held simultaneously on all three campuses.Free-range design engineering“I really loved the class,” says Graciela Leon, a second-year mechanical engineering major who took the subject in 2024. “It was not at all what I was expecting,” she adds. While the learning objectives on the syllabus are fairly traditional — using an iterative engineering design process, developing teamwork skills, and deepening communication skills, to name a few — the approach is not. “Terrascope is just kind of like throwing you into a real-world problem … it feels a lot more like you are being trusted with this actual challenge,” Leon says.The 2024 challenge was to find a way to help the clients, Puerto Rican senior citizens, turn on gasoline-powered generators when the electrical power grid fails; some of them struggle with the pull cords necessary to start the generators. The students were tasked with designing solutions to make starting the generators easier.Terrascope instructors teach fundamental skills such as iterative design spirals and scrum workflow frameworks, but they also give students ample freedom to follow their ideas. Leon admits she was a bit frustrated at first, because she wasn’t sure what she was supposed to be doing. “I wanted to be building things and thought, ‘Wow, I have to do all these other things, I have to write some kind of client profile and understand my client’s needs.’ I was just like, ‘Hand me a drill! I want to design something!’”When he took the class last year, Uziel Rodriguez-Andujar was also thrown off initially by the independence teams had. Now a second-year UPRP student in mechanical engineering, he’s accustomed to lecture-based classes. “What I found so interesting is the way [they] teach the class, which is, ‘You make your own project, and we need you to find a solution to this. How it will look, and when you have it — that’s up to you,’” he says.Clearing hurdlesTeaching the course on three different campuses introduces a number of challenges for students and instructors to overcome — among them, operating in three different time zones, overcoming language barriers, navigating different cultural and institutional norms, communicating effectively, and designing and building prototypes over Zoom.“The culture span is huge,” explains Epstein. “There are different ways of speaking, different ways of listening, and each organization has different resources.”First-year MIT student EJ Rodriguez found that one of the biggest obstacles was trying to convey ideas to teammates clearly. He took the class this year, when the theme revolved around the environmental impacts of lithium mining. The client, the Nevada Museum of Art, wanted to find ways to engage visitors with its artwork collection related to mining-related landscape changes.Rodriguez and his team designed a pendulum with a light affixed to it that illuminates a painting by a Native American artist. When the pendulum swings, it changes how the visitor experiences the artwork. The team built parts for the pendulum on different campuses, and they reached a point where they realized their pieces were incompatible. “We had different visions of what we wanted for the project, and different vocabulary we were using to describe our ideas. Sometimes there would be a misunderstanding … It required a lot of honesty from each campus to be like, ‘OK, I thought we were doing exactly this,’ and obviously in a really respectful way.”It’s not uncommon for students at Diné College and UPRP to experience an initial hurdle that their MIT peers do not. Epstein notes, “There’s a tendency for some folks outside MIT to see MIT students as these brilliant people that they don’t belong in the same room with.” But the other students soon realize not only that they can hold their own intellectually, but also that their backgrounds and experiences are incredibly valuable. “Their life experiences actually put them way ahead of many MIT students in some ways, when you think about design and fabrication, like repairing farm equipment or rebuilding transmissions,” he adds.That’s how Cauy Bia felt when he took the class in 2024. Currently a first-year graduate student in biology at Diné College, Bia questioned whether he’d be on par with the MIT students. “I’ve grown up on a farm, and we do a lot of building, a lot of calculations, a lot of hands-on stuff. But going into this, I was sweating it so hard [wondering], ‘Am I smart enough to work with these students?’ And then, at the end of the day, that was never an issue,” he says.The value of reflectionEvery two weeks, Terrascope students write personal reflections about their experiences in the class, which helps them appreciate their academic and personal development. “I really felt that I had undergone a process that made me grow as an engineer,” says Leon. “I understood the importance of people and engineering more, including teamwork, working with clients, and de-centering the project away from what I wanted to build and design.”When Bia began the semester, he says, he was more of a “make-or-break-type person” and tended to see things in black and white. “But working with all three campuses, it kind of opened up my thought process so I can assess more ideas, more voices and opinions. And I can get broader perspectives and get bigger ideas from that point,” he says. It was also a powerful experience culturally for him, particularly “drawing parallels between Navajo history, Navajo culture, and seeing the similarities between that and Puerto Rican culture, seeing how close we are as two nations.”Rodriguez-Andujar gained an appreciation for the “constant struggle between simplicity and complexity” in engineering. “You have all these engineers trying to over-engineer everything,” he says. “And after you get your client feedback [halfway through the semester], it turns out, ‘Oh, that doesn’t work for me. I’m sorry — you have to scale it down like a hundred times and make it a lot simpler.’”For instructors, the students’ reflections are invaluable as they strive to make improvements every year. In many ways, you might say the class is an iterative design spiral, too. “The past three years have themselves been prototypes,” Epstein says, “and all of the instructional staff are looking forward to continuing these exciting partnerships.” More