More stories

  • in

    J-WAFS welcomes Daniela Giardina as new executive director

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced that Daniela Giardina has been named the new J-WAFS executive director. Giardina stepped into the role at the start of the fall semester, replacing founding executive director Renee J. Robins ’83, who is retiring after leading the program since its launch in 2014.“Daniela brings a deep background in water and food security, along with excellent management and leadership skills,” says Robins. “Since I first met her nearly 10 years ago, I have been impressed with her commitment to working on global water and food challenges through research and innovation. I am so happy to know that I will be leaving J-WAFS in her experienced and capable hands.”A decade of impactJ-WAFS fuels research, innovation, and collaboration to solve global water and food systems challenges. The mission of J-WAFS is to ensure safe and resilient supplies of water and food to meet the local and global needs of a dramatically growing population on a rapidly changing planet. J-WAFS funding opportunities are open to researchers in every MIT department, lab, and center, spanning all disciplines. Supported research projects include those involving engineering, science, technology, business, social science, economics, architecture, urban planning, and more. J-WAFS research and related activities include early-stage projects, sponsored research, commercialization efforts, student activities and mentorship, events that convene local and global experts, and international-scale collaborations.The global water, food, and climate emergency makes J-WAFS’ work both timely and urgent. J-WAFS-funded researchers are achieving tangible, real-time solutions and results. Since its inception, J-WAFS has distributed nearly $26 million in grants, fellowships, and awards to the MIT community, supporting roughly 10 percent of MIT’s faculty and 300 students, postdocs, and research staff from 40 MIT departments, labs, and centers. J-WAFS grants have also helped researchers launch 13 startups and receive over $25 million in follow-on funding.Giardina joins J-WAFS at an exciting time in the program’s history; in the spring, J-WAFS celebrated 10 years of supporting water and food research at MIT. The milestone was commemorated at a special event attended by MIT leadership, researchers, students, staff, donors, and others in the J-WAFS community. As J-WAFS enters its second decade, interest and opportunities for water and food research continue to grow. “I am truly honored to join J-WAFS at such a pivotal moment,” Giardina says.Putting research into real-world practiceGiardina has nearly two decades of experience working with nongovernmental organizations and research institutions on humanitarian and development projects. Her work has taken her to Africa, Latin America, the Caribbean, and Central and Southeast Asia, where she has focused on water and food security projects. She has conducted technical trainings and assessments, and managed projects from design to implementation, including monitoring and evaluation.Giardina comes to MIT from Oxfam America, where she directed disaster risk reduction and climate resilience initiatives, working on approaches to strengthen local leadership, community-based disaster risk reduction, and anticipatory action. Her role at Oxfam required her to oversee multimillion-dollar initiatives, supervising international teams, managing complex donor portfolios, and ensuring rigorous monitoring across programs. She connected hands-on research with community-oriented implementation, for example, by partnering with MIT’s D-Lab to launch an innovation lab in rural El Salvador. Her experience will help guide J-WAFS as it pursues impactful research that will make a difference on the ground.Beyond program delivery, Giardina has played a strategic leadership role in shaping Oxfam’s global disaster risk reduction strategy and representing the organization at high-level U.N. and academic forums. She is multilingual and adept at building partnerships across cultures, having worked with governments, funders, and community-based organizations to strengthen resilience and advance equitable access to water and food.Giardina holds a PhD in sustainable development from the University of Brescia in Italy. She also holds a master’s degree in environmental engineering from the Politecnico of Milan in Italy and is a chartered engineer since 2005 (equivalent to a professional engineering license in the United States). She also serves as vice chair of the Boston Network for International Development, a nonprofit that connects and strengthens Boston’s global development community.“I have seen first-hand how climate change, misuse of resources, and inequality are undermining water and food security around the globe,” says Giardina. “What particularly excites me about J-WAFS is its interdisciplinary approach in facilitating meaningful partnerships to solve many of these problems through research and innovation. I am eager to help expand J-WAFS’ impact by strengthening existing programs, developing new initiatives, and building strategic partnerships that translate MIT’s groundbreaking research into real-world solutions,” she adds.A legacy of leadershipRenee Robins will retire with over 23 years of service to MIT. Years before joining the staff, she graduated from MIT with dual bachelor’s degrees in both biology and humanities/anthropology. She then went on to earn a master’s degree in public policy from Carnegie Mellon University. In 1998, she came back to MIT to serve in various roles across campus, including with the Cambridge MIT Institute, the MIT Portugal Program, the Mexico City Program, the Program on Emerging Technologies, and the Technology and Policy Program. She also worked at the Harvard Graduate School of Education, where she managed a $15 million research program as it scaled from implementation in one public school district to 59 schools in seven districts across North Carolina.In late 2014, Robins joined J-WAFS as its founding executive director, playing a pivotal role in building it from the ground up and expanding the team to six full-time professionals. She worked closely with J-WAFS founding director Professor John H. Lienhard V to develop and implement funding initiatives, develop, and shepherd corporate-sponsored research partnerships, and mentor students in the Water Club and Food and Agriculture Club, as well as numerous other students. Throughout the years, Robins has inspired a diverse range of researchers to consider how their capabilities and expertise can be applied to water and food challenges. Perhaps most importantly, her leadership has helped cultivate a vibrant community, bringing together faculty, students, and research staff to be exposed to unfamiliar problems and new methodologies, to explore how their expertise might be applied, to learn from one another, and to collaborate.At the J-WAFS 10th anniversary event in May, Robins noted, “it has been a true privilege to work alongside John Lienhard, our dedicated staff, and so many others. It’s been particularly rewarding to see the growth of an MIT network of water and food researchers that J-WAFS has nurtured, which grew out of those few individuals who saw themselves to be working in solitude on these critical challenges.”Lienhard also spoke, thanking Robins by saying she “was my primary partner in building J-WAFS and [she is] a strong leader and strategic thinker.”Not only is Robins a respected leader, she is also a dear friend to so many at MIT and beyond. In 2021, she was recognized for her outstanding leadership and commitment to J-WAFS and the Institute with an MIT Infinite Mile Award in the area of the Offices of the Provost and Vice President for Research.Outside of MIT, Robins has served on the Board of Trustees for the International Honors Program — a comparative multi-site study abroad program, where she previously studied comparative culture and anthropology in seven countries around the world. Robins has also acted as an independent consultant, including work on program design and strategy around the launch of the Université Mohammed VI Polytechnique in Morocco.Continuing the tradition of excellenceGiardina will report to J-WAFS director Rohit Karnik, the Abdul Latif Jameel Professor of Water and Food in the MIT Department of Mechanical Engineering. Karnik was named the director of J-WAFS in January, succeeding John Lienhard, who retired earlier this year.As executive director, Giardina will be instrumental in driving J-WAFS’ mission and impact. She will work with Karnik to help shape J-WAFS’ programs, long-term strategy, and goals. She will also be responsible for supervising J-WAFS staff, managing grant administration, and overseeing and advising on financial decisions.“I am very grateful to John and Renee, who have helped to establish J-WAFS as the Institute’s preeminent program for water and food research and significantly expanded MIT’s research efforts and impact in the water and food space,” says Karnik. “I am confident that with Daniela as executive director, J-WAFS will continue in the tradition of excellence that Renee and John put into place, as we move into the program’s second decade,” he notes.Giardina adds, “I am inspired by the lab’s legacy of Renee Robins and Professor Lienhard, and I look forward to working with Professor Karnik and the J-WAFS staff.” More

  • in

    Simpler models can outperform deep learning at climate prediction

    Environmental scientists are increasingly using enormous artificial intelligence models to make predictions about changes in weather and climate, but a new study by MIT researchers shows that bigger models are not always better.The team demonstrates that, in certain climate scenarios, much simpler, physics-based models can generate more accurate predictions than state-of-the-art deep-learning models.Their analysis also reveals that a benchmarking technique commonly used to evaluate machine-learning techniques for climate predictions can be distorted by natural variations in the data, like fluctuations in weather patterns. This could lead someone to believe a deep-learning model makes more accurate predictions when that is not the case.The researchers developed a more robust way of evaluating these techniques, which shows that, while simple models are more accurate when estimating regional surface temperatures, deep-learning approaches can be the best choice for estimating local rainfall.They used these results to enhance a simulation tool known as a climate emulator, which can rapidly simulate the effect of human activities onto a future climate.The researchers see their work as a “cautionary tale” about the risk of deploying large AI models for climate science. While deep-learning models have shown incredible success in domains such as natural language, climate science contains a proven set of physical laws and approximations, and the challenge becomes how to incorporate those into AI models.“We are trying to develop models that are going to be useful and relevant for the kinds of things that decision-makers need going forward when making climate policy choices. While it might be attractive to use the latest, big-picture machine-learning model on a climate problem, what this study shows is that stepping back and really thinking about the problem fundamentals is important and useful,” says study senior author Noelle Selin, a professor in the MIT Institute for Data, Systems, and Society (IDSS) and the Department of Earth, Atmospheric and Planetary Sciences (EAPS).Selin’s co-authors are lead author Björn Lütjens, a former EAPS postdoc who is now a research scientist at IBM Research; senior author Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in EAPS and co-director of the Lorenz Center; and Duncan Watson-Parris, assistant professor at the University of California at San Diego. Selin and Ferrari are also co-principal investigators of the Bringing Computation to the Climate Challenge project, out of which this research emerged. The paper appears today in the Journal of Advances in Modeling Earth Systems.Comparing emulatorsBecause the Earth’s climate is so complex, running a state-of-the-art climate model to predict how pollution levels will impact environmental factors like temperature can take weeks on the world’s most powerful supercomputers.Scientists often create climate emulators, simpler approximations of a state-of-the art climate model, which are faster and more accessible. A policymaker could use a climate emulator to see how alternative assumptions on greenhouse gas emissions would affect future temperatures, helping them develop regulations.But an emulator isn’t very useful if it makes inaccurate predictions about the local impacts of climate change. While deep learning has become increasingly popular for emulation, few studies have explored whether these models perform better than tried-and-true approaches.The MIT researchers performed such a study. They compared a traditional technique called linear pattern scaling (LPS) with a deep-learning model using a common benchmark dataset for evaluating climate emulators.Their results showed that LPS outperformed deep-learning models on predicting nearly all parameters they tested, including temperature and precipitation.“Large AI methods are very appealing to scientists, but they rarely solve a completely new problem, so implementing an existing solution first is necessary to find out whether the complex machine-learning approach actually improves upon it,” says Lütjens.Some initial results seemed to fly in the face of the researchers’ domain knowledge. The powerful deep-learning model should have been more accurate when making predictions about precipitation, since those data don’t follow a linear pattern.They found that the high amount of natural variability in climate model runs can cause the deep learning model to perform poorly on unpredictable long-term oscillations, like El Niño/La Niña. This skews the benchmarking scores in favor of LPS, which averages out those oscillations.Constructing a new evaluationFrom there, the researchers constructed a new evaluation with more data that address natural climate variability. With this new evaluation, the deep-learning model performed slightly better than LPS for local precipitation, but LPS was still more accurate for temperature predictions.“It is important to use the modeling tool that is right for the problem, but in order to do that you also have to set up the problem the right way in the first place,” Selin says.Based on these results, the researchers incorporated LPS into a climate emulation platform to predict local temperature changes in different emission scenarios.“We are not advocating that LPS should always be the goal. It still has limitations. For instance, LPS doesn’t predict variability or extreme weather events,” Ferrari adds.Rather, they hope their results emphasize the need to develop better benchmarking techniques, which could provide a fuller picture of which climate emulation technique is best suited for a particular situation.“With an improved climate emulation benchmark, we could use more complex machine-learning methods to explore problems that are currently very hard to address, like the impacts of aerosols or estimations of extreme precipitation,” Lütjens says.Ultimately, more accurate benchmarking techniques will help ensure policymakers are making decisions based on the best available information.The researchers hope others build on their analysis, perhaps by studying additional improvements to climate emulation methods and benchmarks. Such research could explore impact-oriented metrics like drought indicators and wildfire risks, or new variables like regional wind speeds.This research is funded, in part, by Schmidt Sciences, LLC, and is part of the MIT Climate Grand Challenges team for “Bringing Computation to the Climate Challenge.” More

  • in

    Study links rising temperatures and declining moods

    Rising global temperatures affect human activity in many ways. Now, a new study illuminates an important dimension of the problem: Very hot days are associated with more negative moods, as shown by a large-scale look at social media postings.Overall, the study examines 1.2 billion social media posts from 157 countries over the span of a year. The research finds that when the temperature rises above 95 degrees Fahrenheit, or 35 degrees Celsius, expressed sentiments become about 25 percent more negative in lower-income countries and about 8 percent more negative in better-off countries. Extreme heat affects people emotionally, not just physically.“Our study reveals that rising temperatures don’t just threaten physical health or economic productivity — they also affect how people feel, every day, all over the world,” says Siqi Zheng, a professor in MIT’s Department of Urban Studies and Planning (DUSP) and Center for Real Estate (CRE), and co-author of a new paper detailing the results. “This work opens up a new frontier in understanding how climate stress is shaping human well-being at a planetary scale.”The paper, “Unequal Impacts of Rising Temperatures on Global Human Sentiment,” is published today in the journal One Earth. The authors are Jianghao Wang, of the Chinese Academy of Sciences; Nicolas Guetta-Jeanrenaud SM ’22, a graduate of MIT’s Technology and Policy Program (TPP) and Institute for Data, Systems, and Society; Juan Palacios, a visiting assistant professor at MIT’s Sustainable Urbanization Lab (SUL) and an assistant professor Maastricht University; Yichun Fan, of SUL and Duke University; Devika Kakkar, of Harvard University; Nick Obradovich, of SUL and the Laureate Institute for Brain Research in Tulsa; and Zheng, who is the STL Champion Professor of Urban and Real Estate Sustainability at CRE and DUSP. Zheng is also the faculty director of CRE and founded the Sustainable Urbanization Lab in 2019.Social media as a windowTo conduct the study, the researchers evaluated 1.2 billion posts from the social media platforms Twitter and Weibo, all of which appeared in 2019. They used a natural language processing technique called Bidirectional Encoder Representations from Transformers (BERT), to analyze 65 languages across the 157 countries in the study.Each social media post was given a sentiment rating from 0.0 (for very negative posts) to 1.0 (for very positive posts). The posts were then aggregated geographically to 2,988 locations and evaluated in correlation with area weather. From this method, the researchers could then deduce the connection between extreme temperatures and expressed sentiment.“Social media data provides us with an unprecedented window into human emotions across cultures and continents,” Wang says. “This approach allows us to measure emotional impacts of climate change at a scale that traditional surveys simply cannot achieve, giving us real-time insights into how temperature affects human sentiment worldwide.”To assess the effects of temperatures on sentiment in higher-income and middle-to-lower-income settings, the scholars also used a World Bank cutoff level of gross national income per-capita annual income of $13,845, finding that in places with incomes below that, the effects of heat on mood were triple those found in economically more robust settings.“Thanks to the global coverage of our data, we find that people in low- and middle-income countries experience sentiment declines from extreme heat that are three times greater than those in high-income countries,” Fan says. “This underscores the importance of incorporating adaptation into future climate impact projections.”In the long runUsing long-term global climate models, and expecting some adaptation to heat, the researchers also produced a long-range estimate of the effects of extreme temperatures on sentiment by the year 2100. Extending the current findings to that time frame, they project a 2.3 percent worsening of people’s emotional well-being based on high temperatures alone by then — although that is a far-range projection.“It’s clear now, with our present study adding to findings from prior studies, that weather alters sentiment on a global scale,” Obradovich says. “And as weather and climates change, helping individuals become more resilient to shocks to their emotional states will be an important component of overall societal adaptation.”The researchers note that there are many nuances to the subject, and room for continued research in this area. For one thing, social media users are not likely to be a perfectly representative portion of the population, with young children and the elderly almost certainly using social media less than other people. However, as the researchers observe in the paper, the very young and elderly are probably particularly vulnerable to heat shocks, making the response to hot weather possible even larger than their study can capture.The research is part of the Global Sentiment project led by the MIT Sustainable Urbanization Lab, and the study’s dataset is publicly available. Zheng and other co-authors have previously investigated these dynamics using social media, although never before at this scale.“We hope this resource helps researchers, policymakers, and communities better prepare for a warming world,” Zheng says.The research was supported, in part, by Zheng’s chaired professorship research fund, and grants Wang received from the National Natural Science Foundation of China and the Chinese Academy of Sciences.  More

  • in

    MIT gears up to transform manufacturing

    “Manufacturing is the engine of society, and it is the backbone of robust, resilient economies,” says John Hart, head of MIT’s Department of Mechanical Engineering (MechE) and faculty co-director of the MIT Initiative for New Manufacturing (INM). “With manufacturing a lively topic in today’s news, there’s a renewed appreciation and understanding of the importance of manufacturing to innovation, to economic and national security, and to daily lives.”Launched this May, INM will “help create a transformation of manufacturing through new technology, through development of talent, and through an understanding of how to scale manufacturing in a way that enables imparts higher productivity and resilience, drives adoption of new technologies, and creates good jobs,” Hart says.INM is one of MIT’s strategic initiatives and builds on the successful three-year-old Manufacturing@MIT program. “It’s a recognition by MIT that manufacturing is an Institute-wide theme and an Institute-wide priority, and that manufacturing connects faculty and students across campus,” says Hart. Alongside Hart, INM’s faculty co-directors are Institute Professor Suzanne Berger and Chris Love, professor of chemical engineering.The initiative is pursuing four main themes: reimagining manufacturing technologies and systems, elevating the productivity and human experience of manufacturing, scaling up new manufacturing, and transforming the manufacturing base.Breaking manufacturing barriers for corporationsAmgen, Autodesk, Flex, GE Vernova, PTC, Sanofi, and Siemens are founding members of INM’s industry consortium. These industry partners will work closely with MIT faculty, researchers, and students across many aspects of manufacturing-related research, both in broad-scale initiatives and in particular areas of shared interests. Membership requires a minimum three-year commitment of $500,000 a year to manufacturing-related activities at MIT, including the INM membership fee of $275,000 per year, which supports several core activities that engage the industry members.One major thrust for INM industry collaboration is the deployment and adoption of AI and automation in manufacturing. This effort will include seed research projects at MIT, collaborative case studies, and shared strategy development.INM also offers companies participation in the MIT-wide New Manufacturing Research effort, which is studying the trajectories of specific manufacturing industries and examining cross-cutting themes such as technology and financing.Additionally, INM will concentrate on education for all professions in manufacturing, with alliances bringing together corporations, community colleges, government agencies, and other partners. “We’ll scale our curriculum to broader audiences, from aspiring manufacturing workers and aspiring production line supervisors all the way up to engineers and executives,” says Hart.In workforce training, INM will collaborate with companies broadly to help understand the challenges and frame its overall workforce agenda, and with individual firms on specific challenges, such as acquiring suitably prepared employees for a new factory.Importantly, industry partners will also engage directly with students. Founding member Flex, for instance, hosted MIT researchers and students at the Flex Institute of Technology in Sorocaba, Brazil, developing new solutions for electronics manufacturing.“History shows that you need to innovate in manufacturing alongside the innovation in products,” Hart comments. “At MIT, as more students take classes in manufacturing, they’ll think more about key manufacturing issues as they decide what research problems they want to solve, or what choices they make as they prototype their devices. The same is true for industry — companies that operate at the frontier of manufacturing, whether through internal capabilities or their supply chains, are positioned to be on the frontier of product innovation and overall growth.”“We’ll have an opportunity to bring manufacturing upstream to the early stage of research, designing new processes and new devices with scalability in mind,” he says.Additionally, MIT expects to open new manufacturing-related labs and to further broaden cooperation with industry at existing shared facilities, such as MIT.nano. Hart says that facilities will also invite tighter collaborations with corporations — not just providing advanced equipment, but working jointly on, say, new technologies for weaving textiles, or speeding up battery manufacturing.Homing in on the United StatesINM is a global project that brings a particular focus on the United States, which remains the world’s second-largest manufacturing economy, but has suffered a significant decline in manufacturing employment and innovation.One key to reversing this trend and reinvigorating the U.S. manufacturing base is advocacy for manufacturing’s critical role in society and the career opportunities it offers.“No one really disputes the importance of manufacturing,” Hart says. “But we need to elevate interest in manufacturing as a rewarding career, from the production workers to manufacturing engineers and leaders, through advocacy, education programs, and buy-in from industry, government, and academia.”MIT is in a unique position to convene industry, academic, and government stakeholders in manufacturing to work together on this vital issue, he points out.Moreover, in times of radical and rapid changes in manufacturing, “we need to focus on deploying new technologies into factories and supply chains,” Hart says. “Technology is not all of the solution, but for the U.S. to expand our manufacturing base, we need to do it with technology as a key enabler, embracing companies of all sizes, including small and medium enterprises.”“As AI becomes more capable, and automation becomes more flexible and more available, these are key building blocks upon which you can address manufacturing challenges,” he says. “AI and automation offer new accelerated ways to develop, deploy, and monitor production processes, which present a huge opportunity and, in some cases, a necessity.”“While manufacturing is always a combination of old technology, new technology, established practice, and new ways of thinking, digital technology gives manufacturers an opportunity to leapfrog competitors,” Hart says. “That’s very, very powerful for the U.S. and any company, or country, that aims to create differentiated capabilities.”Fortunately, in recent years, investors have increasingly bought into new manufacturing in the United States. “They see the opportunity to re-industrialize, to build the factories and production systems of the future,” Hart says.“That said, building new manufacturing is capital-intensive, and takes time,” he adds. “So that’s another area where it’s important to convene stakeholders and to think about how startups and growth-stage companies build their capital portfolios, how large industry can support an ecosystem of small businesses and young companies, and how to develop talent to support those growing companies.”All these concerns and opportunities in the manufacturing ecosystem play to MIT’s strengths. “MIT’s DNA of cross-disciplinary collaboration and working with industry can let us create a lot of impact,” Hart emphasizes. “We can understand the practical challenges. We can also explore breakthrough ideas in research and cultivate successful outcomes, all the way to new companies and partnerships. Sometimes those are seen as disparate approaches, but we like to bring them together.” More

  • in

    Would you like that coffee with iron?

    Around the world, about 2 billion people suffer from iron deficiency, which can lead to anemia, impaired brain development in children, and increased infant mortality.To combat that problem, MIT researchers have come up with a new way to fortify foods and beverages with iron, using small crystalline particles. These particles, known as metal-organic frameworks, could be sprinkled on food, added to staple foods such as bread, or incorporated into drinks like coffee and tea.“We’re creating a solution that can be seamlessly added to staple foods across different regions,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. “What’s considered a staple in Senegal isn’t the same as in India or the U.S., so our goal was to develop something that doesn’t react with the food itself. That way, we don’t have to reformulate for every context — it can be incorporated into a wide range of foods and beverages without compromise.”The particles designed in this study can also carry iodine, another critical nutrient. The particles could also be adapted to carry important minerals such as zinc, calcium, or magnesium.“We are very excited about this new approach and what we believe is a novel application of metal-organic frameworks to potentially advance nutrition, particularly in the developing world,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute.Jaklenec and Langer are the senior authors of the study, which appears today in the journal Matter. MIT postdoc Xin Yang and Linzixuan (Rhoda) Zhang PhD ’24 are the lead authors of the paper.Iron stabilizationFood fortification can be a successful way to combat nutrient deficiencies, but this approach is often challenging because many nutrients are fragile and break down during storage or cooking. When iron is added to foods, it can react with other molecules in the food, giving the food a metallic taste.In previous work, Jaklenec’s lab has shown that encapsulating nutrients in polymers can protect them from breaking down or reacting with other molecules. In a small clinical trial, the researchers found that women who ate bread fortified with encapsulated iron were able to absorb the iron from the food.However, one drawback to this approach is that the polymer adds a lot of bulk to the material, limiting the amount of iron or other nutrients that end up in the food.“Encapsulating iron in polymers significantly improves its stability and reactivity, making it easier to add to food,” Jaklenec says. “But to be effective, it requires a substantial amount of polymer. That limits how much iron you can deliver in a typical serving, making it difficult to meet daily nutritional targets through fortified foods alone.”To overcome that challenge, Yang came up with a new idea: Instead of encapsulating iron in a polymer, they could use iron itself as a building block for a crystalline particle known as a metal-organic framework, or MOF (pronounced “moff”).MOFs consist of metal atoms joined by organic molecules called ligands to create a rigid, cage-like structure. Depending on the combination of metals and ligands chosen, they can be used for a wide variety of applications.“We thought maybe we could synthesize a metal-organic framework with food-grade ligands and food-grade micronutrients,” Yang says. “Metal-organic frameworks have very high porosity, so they can load a lot of cargo. That’s why we thought we could leverage this platform to make a new metal-organic framework that could be used in the food industry.”In this case, the researchers designed a MOF consisting of iron bound to a ligand called fumaric acid, which is often used as a food additive to enhance flavor or help preserve food.This structure prevents iron from reacting with polyphenols — compounds commonly found in foods such as whole grains and nuts, as well as coffee and tea. When iron does react with those compounds, it forms a metal polyphenol complex that cannot be absorbed by the body.The MOFs’ structure also allows them to remain stable until they reach an acidic environment, such as the stomach, where they break down and release their iron payload.Double-fortified saltsThe researchers also decided to include iodine in their MOF particle, which they call NuMOF. Iodized salt has been very successful at preventing iodine deficiency, and many efforts are now underway to create “double-fortified salts” that would also contain iron.Delivering these nutrients together has proven difficult because iron and iodine can react with each other, making each one less likely to be absorbed by the body. In this study, the MIT team showed that once they formed their iron-containing MOF particles, they could load them with iodine, in a way that the iron and iodine do not react with each other.In tests of the particles’ stability, the researchers found that the NuMOFs could withstand long-term storage, high heat and humidity, and boiling water.Throughout these tests, the particles maintained their structure. When the researchers then fed the particles to mice, they found that both iron and iodine became available in the bloodstream within several hours of the NuMOF consumption.The researchers are now working on launching a company that is developing coffee and other beverages fortified with iron and iodine. They also hope to continue working toward a double-fortified salt that could be consumed on its own or incorporated into staple food products.The research was partially supported by J-WAFS Fellowships for Water and Food Solutions.Other authors of the paper include Fangzheng Chen, Wenhao Gao, Zhiling Zheng, Tian Wang, Erika Yan Wang, Behnaz Eshaghi, and Sydney MacDonald. More

  • in

    Eco-driving measures could significantly reduce vehicle emissions

    Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.Even if only 10 percent of vehicles on the road employ eco-driving, it would result in 25 to 50 percent of the total reduction in CO2 emissions, the researchers found.In addition, dynamically optimizing speed limits at about 20 percent of intersections provides 70 percent of the total emission benefits. This indicates that eco-driving measures could be implemented gradually while still having measurable, positive impacts on mitigating climate change and improving public health.

    An animated GIF compares what 20% eco-driving adoption looks like to 100% eco-driving adoption.Image: Courtesy of the researchers

    “Vehicle-based control strategies like eco-driving can move the needle on climate change reduction. We’ve shown here that modern machine-learning tools, like deep reinforcement learning, can accelerate the kinds of analysis that support sociotechnical decision making. This is just the tip of the iceberg,” says senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of the Laboratory for Information and Decision Systems (LIDS).She is joined on the paper by lead author Vindula Jayawardana, an MIT graduate student; as well as MIT graduate students Ao Qu, Cameron Hickert, and Edgar Sanchez; MIT undergraduate Catherine Tang; Baptiste Freydt, a graduate student at ETH Zurich; and Mark Taylor and Blaine Leonard of the Utah Department of Transportation. The research appears in Transportation Research Part C: Emerging Technologies.A multi-part modeling studyTraffic control measures typically call to mind fixed infrastructure, like stop signs and traffic signals. But as vehicles become more technologically advanced, it presents an opportunity for eco-driving, which is a catch-all term for vehicle-based traffic control measures like the use of dynamic speeds to reduce energy consumption.In the near term, eco-driving could involve speed guidance in the form of vehicle dashboards or smartphone apps. In the longer term, eco-driving could involve intelligent speed commands that directly control the acceleration of semi-autonomous and fully autonomous vehicles through vehicle-to-infrastructure communication systems.“Most prior work has focused on how to implement eco-driving. We shifted the frame to consider the question of should we implement eco-driving. If we were to deploy this technology at scale, would it make a difference?” Wu says.To answer that question, the researchers embarked on a multifaceted modeling study that would take the better part of four years to complete.They began by identifying 33 factors that influence vehicle emissions, including temperature, road grade, intersection topology, age of the vehicle, traffic demand, vehicle types, driver behavior, traffic signal timing, road geometry, etc.“One of the biggest challenges was making sure we were diligent and didn’t leave out any major factors,” Wu says.Then they used data from OpenStreetMap, U.S. geological surveys, and other sources to create digital replicas of more than 6,000 signalized intersections in three cities — Atlanta, San Francisco, and Los Angeles — and simulated more than a million traffic scenarios.The researchers used deep reinforcement learning to optimize each scenario for eco-driving to achieve the maximum emissions benefits.Reinforcement learning optimizes the vehicles’ driving behavior through trial-and-error interactions with a high-fidelity traffic simulator, rewarding vehicle behaviors that are more energy-efficient while penalizing those that are not.The researchers cast the problem as a decentralized cooperative multi-agent control problem, where the vehicles cooperate to achieve overall energy efficiency, even among non-participating vehicles, and they act in a decentralized manner, avoiding the need for costly communication between vehicles.However, training vehicle behaviors that generalize across diverse intersection traffic scenarios was a major challenge. The researchers observed that some scenarios are more similar to one another than others, such as scenarios with the same number of lanes or the same number of traffic signal phases.As such, the researchers trained separate reinforcement learning models for different clusters of traffic scenarios, yielding better emission benefits overall.But even with the help of AI, analyzing citywide traffic at the network level would be so computationally intensive it could take another decade to unravel, Wu says.Instead, they broke the problem down and solved each eco-driving scenario at the individual intersection level.“We carefully constrained the impact of eco-driving control at each intersection on neighboring intersections. In this way, we dramatically simplified the problem, which enabled us to perform this analysis at scale, without introducing unknown network effects,” she says.Significant emissions benefitsWhen they analyzed the results, the researchers found that full adoption of eco-driving could result in intersection emissions reductions of between 11 and 22 percent.These benefits differ depending on the layout of a city’s streets. A denser city like San Francisco has less room to implement eco-driving between intersections, offering a possible explanation for reduced emission savings, while Atlanta could see greater benefits given its higher speed limits.Even if only 10 percent of vehicles employ eco-driving, a city could still realize 25 to 50 percent of the total emissions benefit because of car-following dynamics: Non-eco-driving vehicles would follow controlled eco-driving vehicles as they optimize speed to pass smoothly through intersections, reducing their carbon emissions as well.In some cases, eco-driving could also increase vehicle throughput by minimizing emissions. However, Wu cautions that increasing throughput could result in more drivers taking to the roads, reducing emissions benefits.And while their analysis of widely used safety metrics known as surrogate safety measures, such as time to collision, suggest that eco-driving is as safe as human driving, it could cause unexpected behavior in human drivers. More research is needed to fully understand potential safety impacts, Wu says.Their results also show that eco-driving could provide even greater benefits when combined with alternative transportation decarbonization solutions. For instance, 20 percent eco-driving adoption in San Francisco would cut emission levels by 7 percent, but when combined with the projected adoption of hybrid and electric vehicles, it would cut emissions by 17 percent.“This is a first attempt to systematically quantify network-wide environmental benefits of eco-driving. This is a great research effort that will serve as a key reference for others to build on in the assessment of eco-driving systems,” says Hesham Rakha, the Samuel L. Pritchard Professor of Engineering at Virginia Tech, who was not involved with this research.And while the researchers focus on carbon emissions, the benefits are highly correlated with improvements in fuel consumption, energy use, and air quality.“This is almost a free intervention. We already have smartphones in our cars, and we are rapidly adopting cars with more advanced automation features. For something to scale quickly in practice, it must be relatively simple to implement and shovel-ready. Eco-driving fits that bill,” Wu says.This work is funded, in part, by Amazon and the Utah Department of Transportation. More

  • in

    School of Architecture and Planning welcomes new faculty for 2025

    Four new faculty members join the School of Architecture and Planning (SA+P) this fall, offering the MIT community creativity, knowledge, and scholarship in multidisciplinary roles.“These individuals add considerable strength and depth to our faculty,” says Hashim Sarkis, dean of the School of Architecture and Planning. “We are excited for the academic vigor they bring to research and teaching.”Karrie G. Karahalios ’94, MEng ’95, SM ’97, PhD ’04 joins the MIT Media Lab as a full professor of media arts and sciences. Karahalios is a pioneer in the exploration of social media and of how people communicate in environments that are increasingly mediated by algorithms that, as she has written, “shape the world around us.” Her work combines computing, systems, artificial intelligence, anthropology, sociology, psychology, game theory, design, and infrastructure studies. Karahalios’ work has received numerous honors including the National Science Foundation CAREER Award, Alfred P. Sloan Research Fellowship, SIGMOD Best Paper Award, and recognition as an ACM Distinguished Member.Pat Pataranutaporn SM ’18, PhD ’20 joins the MIT Media Lab as an assistant professor of media arts and sciences. A visionary technologist, scientist, and designer, Pataranutaporn explores the frontier of human-AI interaction, inventing and investigating AI systems that support human thriving. His research focuses on how personalized AI systems can amplify human cognition, from learning and decision-making to self-development, reflection, and well-being. Pataranutaporn will co-direct the Advancing Humans with AI Program.Mariana Popescu joins the Department of Architecture as an assistant professor. Popescu is a computational architect and structural designer with a strong interest and experience in innovative ways of approaching the fabrication process and use of materials in construction. Her area of expertise is computational and parametric design, with a focus on digital fabrication and sustainable design. Her extensive involvement in projects related to promoting sustainability has led to a multilateral development of skills, which combine the fields of architecture, engineering, computational design, and digital fabrication. Popescu earned her doctorate at ETH Zurich. She was named a “Pioneer” on the MIT Technology Review global list of “35 innovators under 35” in 2019.Holly Samuelson joins the Department of Architecture as an associate professor in the Building Technology Program at MIT, teaching architectural technology courses. Her teaching and research focus on issues of building design that impact human and environmental health. Her current projects harness advanced building simulation to investigate issues of greenhouse gas emissions, heat vulnerability, and indoor environmental quality while considering the future of buildings in a changing electricity grid. Samuelson has co-authored over 40 peer-reviewed papers, winning a best paper award from the journal Energy and Building. As a recognized expert in architectural technology, she has been featured in news outlets including The Washington Post, The Boston Globe, the BBC, and The Wall Street Journal. Samuelson earned her doctor of design from Harvard University Graduate School of Design. More

  • in

    Creeping crystals: Scientists observe “salt creep” at the single-crystal scale

    Salt creeping, a phenomenon that occurs in both natural and industrial processes, describes the collection and migration of salt crystals from evaporating solutions onto surfaces. Once they start collecting, the crystals climb, spreading away from the solution. This creeping behavior, according to researchers, can cause damage or be harnessed for good, depending on the context. New research published June 30 in the journal Langmuir is the first to show salt creeping at a single-crystal scale and beneath a liquid’s meniscus.“The work not only explains how salt creeping begins, but why it begins and when it does,” says Joseph Phelim Mooney, a postdoc in the MIT Device Research Laboratory and one of the authors of the new study. “We hope this level of insight helps others, whether they’re tackling water scarcity, preserving ancient murals, or designing longer-lasting infrastructure.”The work is the first to directly visualize how salt crystals grow and interact with surfaces underneath a liquid meniscus, something that’s been theorized for decades but never actually imaged or confirmed at this level, and it offers fundamental insights that could impact a wide range of fields — from mineral extraction and desalination to anti-fouling coatings, membrane design for separation science, and even art conservation, where salt damage is a major threat to heritage materials.In civil engineering applications, for example, the research can help explain why and when salt crystals start growing across surfaces like concrete, stone, or building materials. “These crystals can exert pressure and cause cracking or flaking, reducing the long-term durability of structures,” says Mooney. “By pinpointing the moment when salt begins to creep, engineers can better design protective coatings or drainage systems to prevent this form of degradation.”For a field like art conservation, where salt can be devastating to murals, frescoes, and ancient artifacts, often forming beneath the surface before visible damage appears, the work can help identify the exact conditions that cause salt to start moving and spreading, allowing conservators to act earlier and more precisely to protect heritage objects.The work began during Mooney’s Marie Curie Fellowship at MIT. “I was focused on improving desalination systems and quickly ran into [salt buildup as] a major roadblock,” he says. “[Salt] was everywhere, coating surfaces, clogging flow paths, and undermining the efficiency of our designs. I realized we didn’t fully understand how or why salt starts creeping across surfaces in the first place.”That experience led Mooney to team up with colleagues to dig into the fundamentals of salt crystallization at the air–liquid–solid interface. “We wanted to zoom in, to really see the moment salt begins to move, so we turned to in situ X-ray microscopy,” he says. “What we found gave us a whole new way to think about surface fouling, material degradation, and controlled crystallization.”The new research may, in fact, allow better control of a crystallization processes required to remove salt from water in zero-liquid discharge systems. It can also be used to explain how and when scaling happens on equipment surfaces, and may support emerging climate technologies that depend on smart control of evaporation and crystallization.The work also supports mineral and salt extraction applications, where salt creeping can be both a bottleneck and an opportunity. In these applications, Mooney says, “by understanding the precise physics of salt formation at surfaces, operators can optimize crystal growth, improving recovery rates and reducing material losses.”Mooney’s co-authors on the paper include fellow MIT Device Lab researchers Omer Refet Caylan, Bachir El Fil (now an associate professor at Georgia Tech), and Lenan Zhang (now an associate professor at Cornell University); Jeff Punch and Vanessa Egan of the University of Limerick; and Jintong Gao of Cornell.The research was conducted using in situ X-ray microscopy. Mooney says the team’s big realization moment occurred when they were able to observe a single salt crystal pinning itself to the surface, which kicked off a cascading chain reaction of growth.“People had speculated about this, but we captured it on X-ray for the first time. It felt like watching the microscopic moment where everything tips, the ignition points of a self-propagating process,” says Mooney. “Even more surprising was what followed: The salt crystal didn’t just grow passively to fill the available space. It pierced through the liquid-air interface and reshaped the meniscus itself, setting up the perfect conditions for the next crystal. That subtle, recursive mechanism had never been visually documented before — and seeing it play out in real time completely changed how we thought about salt crystallization.”The paper, “In Situ X-ray Microscopy Unraveling the Onset of Salt Creeping at a Single-Crystal Level,” is available now in the journal Langmuir. Research was conducted in MIT.nano.  More