More stories

  • in

    Engineers develop a vibrating, ingestible capsule that might help treat obesity

    When you eat a large meal, your stomach sends signals to your brain that create a feeling of fullness, which helps you realize it’s time to stop eating. A stomach full of liquid can also send these messages, which is why dieters are often advised to drink a glass of water before eating.

    MIT engineers have now come up with a new way to take advantage of that phenomenon, using an ingestible capsule that vibrates within the stomach. These vibrations activate the same stretch receptors that sense when the stomach is distended, creating an illusory sense of fullness.

    In animals who were given this pill 20 minutes before eating, the researchers found that this treatment not only stimulated the release of hormones that signal satiety, but also reduced the animals’ food intake by about 40 percent. Scientists have much more to learn about the mechanisms that influence human body weight, but if further research suggests this technology could be safely used in humans, such a pill might offer a minimally invasive way to treat obesity, the researchers say.

    “For somebody who wants to lose weight or control their appetite, it could be taken before each meal,” says Shriya Srinivasan PhD ’20, a former MIT graduate student and postdoc who is now an assistant professor of bioengineering at Harvard University. “This could be really interesting in that it would provide an option that could minimize the side effects that we see with the other pharmacological treatments out there.”

    Srinivasan is the lead author of the new study, which appears today in Science Advances. Giovanni Traverso, an associate professor of mechanical engineering at MIT and a gastroenterologist at Brigham and Women’s Hospital, is the senior author of the paper.

    A sense of fullness

    When the stomach becomes distended, specialized cells called mechanoreceptors sense that stretching and send signals to the brain via the vagus nerve. As a result, the brain stimulates production of insulin, as well as hormones such as C-peptide, Pyy, and GLP-1. All of these hormones work together to help people digest their food, feel full, and stop eating. At the same time, levels of ghrelin, a hunger-promoting hormone, go down.

    While a graduate student at MIT, Srinivasan became interested in the idea of controlling this process by artificially stretching the mechanoreceptors that line the stomach, through vibration. Previous research had shown that vibration applied to a muscle can induce a sense that the muscle has stretched farther than it actually has.

    “I wondered if we could activate stretch receptors in the stomach by vibrating them and having them perceive that the entire stomach has been expanded, to create an illusory sense of distension that could modulate hormones and eating patterns,” Srinivasan says.

    As a postdoc in MIT’s Koch Institute for Integrative Cancer Research, Srinivasan worked closely with Traverso’s lab, which has developed many novel approaches to oral delivery of drugs and electronic devices. For this study, Srinivasan, Traverso, and a team of researchers designed a capsule about the size of a multivitamin, that includes a vibrating element. When the pill, which is powered by a small silver oxide battery, reaches the stomach, acidic gastric fluids dissolve a gelatinous membrane that covers the capsule, completing the electronic circuit that activates the vibrating motor.

    In a study in animals, the researchers showed that once the pill begins vibrating, it activates mechanoreceptors, which send signals to the brain through stimulation of the vagus nerve. The researchers tracked hormone levels during the periods when the device was vibrating and found that they mirrored the hormone release patterns seen following a meal, even when the animals had fasted.

    The researchers then tested the effects of this stimulation on the animals’ appetite. They found that when the pill was activated for about 20 minutes, before the animals were offered food, they consumed 40 percent less, on average, than they did when the pill was not activated. The animals also gained weight more slowly during periods when they were treated with the vibrating pill.

    “The behavioral change is profound, and that’s using the endogenous system rather than any exogenous therapeutic. We have the potential to overcome some of the challenges and costs associated with delivery of biologic drugs by modulating the enteric nervous system,” Traverso says.

    The current version of the pill is designed to vibrate for about 30 minutes after arriving in the stomach, but the researchers plan to explore the possibility of adapting it to remain in the stomach for longer periods of time, where it could be turned on and off wirelessly as needed. In the animal studies, the pills passed through the digestive tract within four or five days.

    The study also found that the animals did not show any signs of obstruction, perforation, or other negative impacts while the pill was in their digestive tract.

    An alternative approach

    This type of pill could offer an alternative to the current approaches to treating obesity, the researchers say. Nonmedical interventions such as diet exercise don’t always work, and many of the existing medical interventions are fairly invasive. These include gastric bypass surgery, as well as gastric balloons, which are no longer used widely in the United States due to safety concerns.

    Drugs such as GLP-1 agonists can also aid weight loss, but most of them have to be injected, and they are unaffordable for many people. According to Srinivasan, the MIT capsules could be manufactured at a cost that would make them available to people who don’t have access to more expensive treatment options.

    “For a lot of populations, some of the more effective therapies for obesity are very costly. At scale, our device could be manufactured at a pretty cost-effective price point,” she says. “I’d love to see how this would transform care and therapy for people in global health settings who may not have access to some of the more sophisticated or expensive options that are available today.”

    The researchers now plan to explore ways to scale up the manufacturing of the capsules, which could enable clinical trials in humans. Such studies would be important to learn more about the devices’ safety, as well as determine the best time to swallow the capsule before to a meal and how often it would need to be administered.

    Other authors of the paper include Amro Alshareef, Alexandria Hwang, Ceara Byrne, Johannes Kuosmann, Keiko Ishida, Joshua Jenkins, Sabrina Liu, Wiam Abdalla Mohammed Madani, Alison Hayward, and Niora Fabian.

    The research was funded by the National Institutes of Health, Novo Nordisk, the Department of Mechanical Engineering at MIT, a Schmidt Science Fellowship, and the National Science Foundation. More

  • in

    MIT in the media: 2023 in review

    It was an eventful trip around the sun for MIT this year, from President Sally Kornbluth’s inauguration and Mark Rober’s Commencement address to Professor Moungi Bawendi winning the Nobel Prize in Chemistry. In 2023 MIT researchers made key advances, detecting a dying star swallowing a planet, exploring the frontiers of artificial intelligence, creating clean energy solutions, inventing tools aimed at earlier detection and diagnosis of cancer, and even exploring the science of spreading kindness. Below are highlights of some of the uplifting people, breakthroughs, and ideas from MIT that made headlines in 2023.

    The gift: Kindness goes viral with Steve HartmanSteve Hartman visited Professor Anette “Peko” Hosoi to explore the science behind whether a single act of kindness can change the world.Full story via CBS News

    Trio wins Nobel Prize in chemistry for work on quantum dots, used in electronics and medical imaging“The motivation really is the basic science. A basic understanding, the curiosity of ‘how does the world work?’” said Professor Moungi Bawendi of the inspiration for his research on quantum dots, for which he was co-awarded the 2023 Nobel Prize in Chemistry.Full story via the Associated Press

    How MIT’s all-women leadership team plans to change science for the betterPresident Sally Kornbluth, Provost Cynthia Barnhart, and Chancellor Melissa Nobles emphasized the importance of representation for women and underrepresented groups in STEM.Full story via Radio Boston

    MIT via community college? Transfer students find a new path to a degreeUndergraduate Subin Kim shared his experience transferring from community college to MIT through the Transfer Scholars Network, which is aimed at helping community college students find a path to four-year universities.Full story via the Christian Science Monitor

    MIT president Sally Kornbluth doesn’t think we can hit the pause button on AIPresident Kornbluth discussed the future of AI, ethics in science, and climate change with columnist Shirley Leung on her new “Say More” podcast. “I view [the climate crisis] as an existential issue to the extent that if we don’t take action there, all of the many, many other things that we’re working on, not that they’ll be irrelevant, but they’ll pale in comparison,” Kornbluth said.Full story via The Boston Globe 

    It’s the end of a world as we know itAstronomers from MIT, Harvard University, Caltech and elsewhere spotted a dying star swallowing a large planet. Postdoc Kishalay De explained that: “Finding an event like this really puts all of the theories that have been out there to the most stringent tests possible. It really opens up this entire new field of research.”Full story via The New York Times

    Frontiers of AI

    Hey, Alexa, what should students learn about AI?The Day of AI is a program developed by the MIT RAISE initiative aimed at introducing and teaching K-12 students about AI. “We want students to be informed, responsible users and informed, responsible designers of these technologies,” said Professor Cynthia Breazeal, dean of digital learning at MIT.Full story via The New York Times

    AI tipping pointFour faculty members from across MIT — Professors Song Han, Simon Johnson, Yoon Kim and Rosalind Picard — described the opportunities and risks posed by the rapid advancements in the field of AI.Full story via Curiosity Stream 

    A look into the future of AI at MIT’s robotics laboratoryProfessor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory, discussed the future of artificial intelligence, robotics, and machine learning, emphasizing the importance of balancing the development of new technologies with the need to ensure they are deployed in a way that benefits humanity.Full story via Mashable

    Health care providers say artificial intelligence could transform medicineProfessor Regina Barzilay spoke about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.Full story via Chronicle

    Is AI coming for your job? Tech experts weigh in: “They don’t replace human labor”Professor David Autor discussed how the rise of artificial intelligence could change the quality of jobs available.Full story via CBS News

    Big tech is bad. Big AI will be worse.Institute Professor Daron Acemoglu and Professor Simon Johnson made the case that “rather than machine intelligence, what we need is ‘machine usefulness,’ which emphasizes the ability of computers to augment human capabilities.”Full story via The New York Times

    Engineering excitement

    MIT’s 3D-printed hearts could pump new life into customized treatments MIT engineers developed a technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart.Full story via WBUR

    Mystery of why Roman buildings have survived so long has been unraveled, scientists sayScientists from MIT and other institutions discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties.Full story via CNN

    The most interesting startup in America is in Massachusetts. You’ve probably never heard of it.VulcanForms, an MIT startup, is at the “leading edge of a push to transform 3D printing from a niche technology — best known for new-product prototyping and art-class experimentation — into an industrial force.”Full story via The Boston Globe

    Catalyzing climate innovations

    Can Boston’s energy innovators save the world?Boston Magazine reporter Rowan Jacobsen spotlighted how MIT faculty, students, and alumni are leading the charge in clean energy startups. “When it comes to game-changing breakthroughs in energy, three letters keep surfacing again and again: MIT,” writes Jacobsen.Full story via Boston Magazine

    MIT research could be game changer in combating water shortagesMIT researchers discovered that a common hydrogel used in cosmetic creams, industrial coatings, and pharmaceutical capsules can absorb moisture from the atmosphere even as the temperature rises. “For a planet that’s getting hotter, this could be a game-changing discovery.”Full story via NBC Boston

    Energy-storing concrete could form foundations for solar-powered homesMIT engineers uncovered a new way of creating an energy supercapacitor by combining cement, carbon black, and water that could one day be used to power homes or electric vehicles.Full story via New Scientist

    MIT researchers tackle key question of EV adoption: When to charge?MIT scientists found that delayed charging and strategic placement of EV charging stations could help reduce additional energy demands caused by more widespread EV adoption.Full story via Fast Company

    Building better buildingsProfessor John Fernández examined how to reduce the climate footprints of homes and office buildings, recommending creating airtight structures, switching to cleaner heating sources, using more environmentally friendly building materials, and retrofitting existing homes and offices.Full story via The New York Times

    They’re building an “ice penetrator” on a hillside in WestfordResearchers from MIT’s Haystack Observatory built an “ice penetrator,” a device designed to monitor the changing conditions of sea ice.Full story via The Boston Globe

    Healing health solutions

    How Boston is beating cancerMIT researchers are developing drug-delivery nanoparticles aimed at targeting cancer cells without disturbing healthy cells. Essentially, the nanoparticles are “engineered for selectivity,” explained Professor Paula Hammond, head of MIT’s Department of Chemical Engineering.Full story via Boston Magazine

    A new antibiotic, discovered with artificial intelligence, may defeat a dangerous superbugUsing a machine-learning algorithm, researchers from MIT discovered a type of antibiotic that’s effective against a particular strain of drug-resistant bacteria.Full story via CNN

    To detect breast cancer sooner, an MIT professor designs an ultrasound braMIT researchers designed a wearable ultrasound device that attaches to a bra and could be used to detect early-stage breast tumors.Full story via STAT

    The quest for a switch to turn on hungerAn ingestible pill developed by MIT scientists can raise levels of hormones to help increase appetite and decrease nausea in patients with gastroparesis.Full story via Wired

    Here’s how to use dreams for creative inspirationMIT scientists found that the earlier stages of sleep are key to sparking creativity and that people can be guided to dream about specific topics, further boosting creativity.Full story via Scientific American

    Astounding art

    An AI opera from 1987 reboots for a new generationProfessor Tod Machover discussed the restaging of his opera “VALIS” at MIT, which featured an artificial intelligence-assisted musical instrument developed by Nina Masuelli ’23.Full story via The Boston Globe

    Surfacing the stories hidden in migration dataAssociate Professor Sarah Williams discussed the Civic Data Design Lab’s “Motivational Tapestry,” a large woven art piece that uses data from the United Nations World Food Program to visually represent the individual motivations of 1,624 Central Americans who have migrated to the U.S.Full story via Metropolis

    Augmented reality-infused production of Wagner’s “Parsifal” opens Bayreuth FestivalProfessor Jay Scheib’s augmented reality-infused production of Richard Wagner’s “Parsifal” brought “fantastical images” to audience members.Full story via the Associated Press

    Understanding our universe

    New image reveals violent events near a supermassive black holeScientists captured a new image of M87*, the black hole at the center of the Messier 87 galaxy, showing the “launching point of a colossal jet of high-energy particles shooting outward into space.”Full story via Reuters

    Gravitational waves: A new universeMIT researchers Lisa Barsotti, Deep Chatterjee, and Victoria Xu explored how advances in gravitational wave detection are enabling a better understanding of the universe.Full story via Curiosity Stream 

    Nergis Mavalvala helped detect the first gravitational wave. Her work doesn’t stop thereProfessor Nergis Mavalvala, dean of the School of Science, discussed her work searching for gravitational waves, the importance of skepticism in scientific research, and why she enjoys working with young people.Full story via Wired

    Hitting the books

    “The Transcendent Brain” review: Beyond ones and zeroesIn his book “The Transcendent Brain: Spirituality in the Age of Science,” Alan Lightman, a professor of the practice of humanities, displayed his gift for “distilling complex ideas and emotions to their bright essence.”Full story via The Wall Street Journal

    What happens when CEOs treat workers better? Companies (and workers) win.Professor of the practice Zeynep Ton published a book, “The Case for Good Jobs,” and is “on a mission to change how company leaders think, and how they treat their employees.”Full story via The Boston Globe

    How to wage war on conspiracy theoriesProfessor Adam Berinsky’s book, “Political Rumors: Why We Accept Misinformation and How to Fight it,” examined “attitudes toward both politics and health, both of which are undermined by distrust and misinformation in ways that cause harm to both individuals and society.”Full story via Politico

    What it takes for Mexican coders to cross the cultural border with Silicon ValleyAssistant Professor Héctor Beltrán discussed his new book, “Code Work: Hacking across the U.S./México Techno-Borderlands,” which explores the culture of hackathons and entrepreneurship in Mexico.Full story via Marketplace

    Cultivating community

    The Indigenous rocketeerNicole McGaa, a fourth-year student at MIT, discussed her work leading MIT’s all-Indigenous rocket team at the 2023 First Nations Launch National Rocket Competition.Full story via Nature

    “You totally got this,” YouTube star and former NASA engineer Mark Rober tells MIT graduatesDuring his Commencement address at MIT, Mark Rober urged graduates to embrace their accomplishments and boldly face any challenges they encounter.Full story via The Boston Globe

    MIT Juggling Club going strong after half centuryAfter almost 50 years, the MIT Juggling Club, which was founded in 1975 and then merged with a unicycle club, is the oldest drop-in juggling club in continuous operation and still welcomes any aspiring jugglers to come toss a ball (or three) into the air.Full story via Cambridge Day

    Volpe Transportation Center opens as part of $750 million deal between MIT and fedsThe John A. Volpe National Transportation Systems Center in Kendall Square was the first building to open in MIT’s redevelopment of the 14-acre Volpe site that will ultimately include “research labs, retail, affordable housing, and open space, with the goal of not only encouraging innovation, but also enhancing the surrounding community.”Full story via The Boston Globe

    Sparking conversation

    The future of AI innovation and the role of academics in shaping itProfessor Daniela Rus emphasized the central role universities play in fostering innovation and the importance of ensuring universities have the computing resources necessary to help tackle major global challenges.Full story via The Boston Globe

    Moving the needle on supply chain sustainabilityProfessor Yossi Sheffi examined several strategies companies could use to help improve supply chain sustainability, including redesigning last-mile deliveries, influencing consumer choices and incentivizing returnable containers.Full story via The Hill

    Expelled from the mountain top?Sylvester James Gates Jr. ’73, PhD ’77 made the case that “diverse learning environments expose students to a broader range of perspectives, enhance education, and inculcate creativity and innovative habits of mind.”Full story via Science

    Marketing magic of “Barbie” movie has lessons for women’s sportsMIT Sloan Lecturer Shira Springer explored how the success of the “Barbie” movie could be applied to women’s sports.Full story via Sports Business Journal

    We’re already paying for universal health care. Why don’t we have it?Professor Amy Finkelstein asserted that the solution to health insurance reform in the U.S. is “universal coverage that is automatic, free and basic.”Full story via The New York Times 

    The internet could be so good. Really.Professor Deb Roy described how “new kinds of social networks can be designed for constructive communication — for listening, dialogue, deliberation, and mediation — and they can actually work.”Full story via The Atlantic

    Fostering educational excellence

    MIT students give legendary linear algebra professor standing ovation in last lectureAfter 63 years of teaching and over 10 million views of his online lectures, Professor Gilbert Strang received a standing ovation after his last lecture on linear algebra. “I am so grateful to everyone who likes linear algebra and sees its importance. So many universities (and even high schools) now appreciate how beautiful it is and how valuable it is,” said Strang.Full story via USA Today

    “Brave Behind Bars”: Reshaping the lives of inmates through coding classesGraduate students Martin Nisser and Marisa Gaetz co-founded Brave Behind Bars, a program designed to provide incarcerated individuals with coding and digital literacy skills to better prepare them for life after prison.Full story via MSNBC

    Melrose TikTok user “Ms. Nuclear Energy” teaching about nuclear power through social mediaGraduate student Kaylee Cunningham discussed her work using social media to help educate and inform the public about nuclear energy.Full story via CBS Boston  More

  • in

    The science and art of complex systems

    As a high school student, Gosha Geogdzhayev attended Saturday science classes at Columbia University, including one called The Physics of Climate Change. “They showed us a satellite image of the Earth’s atmosphere, and I thought, ‘Wow, this is so beautiful,’” he recalls. Since then, climate science has been one of his driving interests.

    With the MIT Department of Earth, Atmospheric and Planetary Sciences and the BC3 Climate Grand Challenges project, Geogdzhayev is creating climate model “emulators” in order to localize the large-scale data provided by global climate models (GCMs). As he explains, GCMs can make broad predictions about climate change, but they are not proficient at analyzing impacts in localized areas. However, simpler “emulator” models can learn from GCMs and other data sources to answer specialized questions. The model Geogdzhayev is currently working on will project the frequency of extreme heat events in Nigeria.

    A senior majoring in physics, Geogdzhayev hopes that his current and future research will help reshape the scientific approach to studying climate trends. More accurate predictions of climate conditions could have benefits far beyond scientific analysis, and affect the decisions of policymakers, businesspeople, and truly anyone concerned about climate change.

    “I have this fascination with complex systems, and reducing that complexity and picking it apart,” Geogdzhayev says.

    His pursuit of discovery has led him from Berlin, Germany, to Princeton, New Jersey, with stops in between. He has worked with Transsolar KlimaEngineering, NASA, NOAA, FU Berlin, and MIT, including through the MIT Climate Stability Consortium’s Climate Scholars Program, in research positions that explore climate science in different ways. His projects have involved applications such as severe weather alerts, predictions of late seasonal freezes, and eco-friendly building design. 

    The written word

    Originating even earlier than his passion for climate science is Geogdzhayev’s love of writing. He recently discovered original poetry dating back all the way to middle school. In this poetry he found a coincidental throughline to his current life: “There was one poem about climate, actually. It was so bad,” he says, laughing. “But it was cool to see.”

    As a scientist, Geogdzhayev finds that poetry helps quiet his often busy mind. Writing provides a vehicle to understand himself, and therefore to communicate more effectively with others, which he sees as necessary for success in his field.

    “A lot of good work comes from being able to communicate with other people. And poetry is a way for me to flex those muscles. If I can communicate with myself, and if I can communicate myself to others, that is transferable to science,” he says.

    Since last spring Geogdzhayev has attended poetry workshop classes at Harvard University, which he enjoys partly because it nudges him to explore spaces outside of MIT.

    He has contributed prolifically to platforms on campus as well. Since his first year, he has written as a staff blogger for MIT Admissions, creating posts about his life at MIT for prospective students. He has also written for the yearly fashion publication “Infinite Magazine.”

    Merging both science and writing, a peer-reviewed publication by Geogdzhayev will soon be published in the journal “Physica D: Nonlinear Phenomena.” The piece explores the validity of climate statistics under climate change through an abstract mathematical system.

    Leading with heart

    Geogdzhayev enjoys being a collaborator, but also excels in leadership positions. When he first arrived at MIT, his dorm, Burton Conner, was closed for renovation, and he could not access that living community directly. Once his sophomore year arrived however, he was quick to volunteer to streamline the process to get new students involved, and eventually became floor chair for his living community, Burton 1.

    Following the social stagnation caused by the Covid-19 pandemic and the dorm renovation, he helped rebuild a sense of community for his dorm by planning social events and governmental organization for the floor. He now regards the members of Burton 1 as his closest friends and partners in “general tomfoolery.”

    This sense of leadership is coupled with an affinity for teaching. Geogdzhayev is a peer mentor in the Physics Mentorship Program and taught climate modeling classes to local high school students as a part of SPLASH. He describes these experiences as “very fun” and can imagine himself as a university professor dedicated to both teaching and research.

    Following graduation, Geogdzhayev intends to pursue a PhD in climate science or applied math. “I can see myself working on research for the rest of my life,” he says. More

  • in

    Hearing Amazônia: MIT musicians in Manaus, Brazil

    On Dec. 13, the MIT community came together for the premiere of “We Are The Forest,” a documentary by MIT Video Productions that tells the story of the MIT musicians who traveled to the Brazilian Amazon seeking culture and scientific exchange.

    The film features performances by Djuena Tikuna, Luciana Souza, Anat Cohen, and Evan Ziporyn, with music by Antônio Carlos Jobim. Fred Harris conducts the MIT Festival Jazz Ensemble and MIT Wind Ensemble and Laura Grill Jaye conducts the MIT Vocal Jazz Ensemble.

    Play video

    “We Are The Forest”Video: MIT Video Productions

    The impact of ecological devastation in the Amazon reflects the climate crisis worldwide. During the Institute’s spring break in March 2023, nearly 80 student musicians became only the second student group from MIT to travel to the Brazilian Amazon. Inspired by the research and activism of Talia Khan ’20, who is currently a PhD candidate in MIT’s Department of Mechanical Engineering, the trip built upon experiences of the 2020-21 academic year when virtual visiting artists Luciana Souza and Anat Cohen lectured on Brazilian music and culture before joining the November 2021 launch of Hearing Amazônia — The Responsibility of Existence.

    This consciousness-raising project at MIT, sponsored by the Center for Art, Science and Technology (CAST), began with a concert featuring Brazilian and Amazonian music influenced by the natural world. The project was created and led by MIT director of wind and jazz ensembles and senior lecturer in music Frederick Harris Jr.

    The performance was part eulogy and part praise song: a way of bearing witness to loss, while celebrating the living and evolving cultural heritage of Amazonia. The event included short talks, one of which was by Khan. As the first MIT student to study in the Brazilian Amazonia (via MISTI-Brazil), she spoke of her research on natural botanical resins and traditional carimbó music in Santarém, Pará, Brazil. Soon after, as a Fulbright Scholar, Khan continued her research in Manaus, setting the stage for the most complex trip in the history of MIT Music and Theater Arts.“My experiences in the Brazilian Amazon changed my life,” enthuses Khan. “Getting to know Indigenous musicians and immersing myself in the culture of this part of the world helped me realize how we are all so connected.”

    “Talia’s experiences in Brazil convinced me that the Hearing Amazônia project needed to take a next essential step,” explains Harris. “I wanted to provide as many students as possible with a similar opportunity to bring their musical and scientific talents together in a deep and spiritual manner. She provided a blueprint for our trip to Manaus.”

    An experience of a lifetime

    A multitude of musicians from three MTA ensembles traveled to Manaus, located in the middle of the world’s largest rainforest and home to the National Institute of Amazonian Research (Instituto Nacional de Pesquisas da Amazônia, or INPA), the most important center for scientific studies in the Amazon region for international sustainability issues.

    Tour experiences included cultural/scientific exchanges with Indigenous Amazonians through Nobre Academia de Robótica and the São Sebastião community on the Tarumã Açu River, INPA, the Cultural Center of the Peoples of the Amazon, and the Museu da Amazônia. Musically, students connected with local Indigenous instrument builders and performed with the Amazonas State Jazz Orchestra and renowned vocalist and Indigenous activist Djuena Tikuna.

    “Hearing Amazônia: Arte ê Resistência,” a major concert in the famed 19th century opera house Teatro Amazonas, concluded the trip on March 31. The packed event featured the MIT Wind Ensemble, MIT Festival Jazz Ensemble, MIT Vocal Jazz Ensemble, vocalist Luciana Souza, clarinetist Anat Cohen, MIT professor and composer-clarinetist Evan Ziporyn, and local musicians from Manaus. The program ended with “Nós Somos A Floresta (We Are The Forest) — Eware (Sacred Land) — Reflections on Amazonia,” a large-scale collaborative performance with Djuena Tikuna. The two songs were composed by Tikuna, with Eware newly arranged by Israeli composer-bassist Nadav Erlich for the occasion. It concluded with all musicians and audience members coming together in song: a moving and beautiful moment of mediation on the sacredness of the earth.

    “It was humbling to see the grand display of beauty and diversity that nature developed in the Amazon rainforest,” reflects bass clarinetist and MIT sophomore Richard Chen. “By seeing the bird life, sloths, and other species and the flora, and eating the fruits of the region, I received lessons on my harmony and connection to the natural world around us. I developed a deeper awareness of the urgency of resolving conflicts and stopping the destruction of the Amazon rainforest, and to listening to and celebrating the stories and experiences of those around me.”

    Indigenous musicians embodying the natural world

    “The trip expanded the scope of what music means,” MIT Vocal Jazz Ensemble member and biomedical researcher Autumn Geil explains. “It’s living the music, and you can’t feel that unless you put yourself in new experiences and get yourself out of your comfort zone.”

    Over two Indigenous music immersion days, students spent time listening to, and playing and singing with, musicians who broadened their scope of music’s relationship to nature and cultural sustainability. Indigenous percussionist and instrument builder Eliberto Barroncas and music producer-arranger César Lima presented contrasting approaches with a shared objective — connecting people to the natural world through Indigenous instruments.

    Barroncas played instruments built from materials from the rainforest and from found objects in Manaus that others might consider trash, creating ethereal tones bespeaking his life as one with nature. Students had the opportunity to play his instruments and create a spontaneous composition playing their own instruments and singing with him in a kind of “Amazonia jam session.”

    “Eliberto expressed that making music is visceral; it’s best when it comes from the gut and is tangible and coming from one’s natural environment. When we cannot understand each other using language, using words, logic and thinking, we go back to the body,” notes oboist and ocean engineer Michelle Kornberg ’20. “There’s a difference between teaching music as a skill you learn and teaching music as something you feel, that you experience and give — as a gift.”

    Over the pandemic, César Lima developed an app, “The Roots VR,” as a vehicle for people to discover over 100 Amazonia instruments. Users choose settings to interact with instruments and create pieces using a variety of instrumental combinations; a novel melding of technology with nature to expand the reach of these Indigenous instruments and their cultural significance.

    At the Cultural Center of the Peoples of the Amazon, students gathered around a tree, hand-in-hand singing with Djuena Tikuna, accompanied by percussionist Diego Janatã. “She spoke about being one of the first Indigenous musicians ever to sing in the Teatro Amazonas, which was built on the labor and blood of Indigenous people,” recalls flutist and atmospheric engineer Phoebe Lin, an MIT junior. “And then to hold hands and close our eyes and step back and forth; a rare moment of connection in a tumultuous world — it felt like we were all one.”

    Bringing the forest back to MIT

    On April 29, Djuena Tikuna made her MIT debut at “We Are the Forest — Music of Resilience and Activism,” a special concert for MIT President Sally Kornbluth’s inauguration, presenting music from the Teatro Amazonas event. Led and curated by Harris, the performance included new assistant professor in jazz and saxophonist-composer Miguel Zenón, director of the MIT Vocal Jazz Ensemble; Laura Grill Jaye; and vocalist Sara Serpa, among others. 

    “Music unites people and through art we can draw the world’s attention to the most urgent global challenges such as climate change,” says Djuena Tikuna. “My songs bring the message that every seed will one day germinate to reforest hearts, because we are all from the same village.”

    Hearing Amazônia has set the stage for the blossoming of artistic and scientific collaborations in the Amazon and beyond.

    “The struggle of Indigenous peoples to keep their territories alive should concern us all, and it will take more than science and research to help find solutions for climate change,” notes President Kornbluth. “It will take artists, too, to unite us and raise awareness across all communities. The inclusivity and expressive power of music can help get us all rowing in the same direction — it’s a great way to encourage us all to care and act!” More

  • in

    Satellite-based method measures carbon in peat bogs

    Peat bogs in the tropics store vast amounts of carbon, but logging, plantations, road building, and other activities have destroyed large swaths of these ecosystems in places like Indonesia and Malaysia. Peat formations are essentially permanently flooded forestland, where dead leaves and branches accumulate because the water table prevents their decomposition.

    The pileup of organic material gives these formations a distinctive domed shape, somewhat raised in the center and tapering toward the edges. Determining how much carbon is contained in each formation has required laborious on-the-ground sampling, and so has been limited in its coverage.

    Now, researchers from MIT and Singapore have developed a mathematical analysis of how peat formations build and develop, that makes it possible to evaluate their carbon content and dynamics mostly from simple elevation measurements. These can be carried out by satellites, without requiring ground-based sampling. This analysis, the team says, should make it possible to make more precise and accurate assessments of the amount of carbon that would be released by any proposed draining of peatlands — and, inversely, how much carbon emissions could be avoided by protecting them.

    The research is being reported today in the journal Nature, in a paper by Alexander Cobb, a postdoc with the Singapore-MIT Alliance for Research and Technology (SMART); Charles Harvey, an MIT professor of civil and environmental engineering; and six others.

    Although it is the tropical peatlands that are at greatest risk — because they are the ones most often drained for timber harvesting or the creation of plantations for palm oil, acacia, and other crops — the new formulas the team derived apply to peatlands all over the globe, from Siberia to New Zealand. The formula requires just two inputs. The first is elevation data from a single transect of a given peat dome — that is, a series of elevation measurements along an arbitrary straight line cutting across from one edge of the formation to the other. The second input is a site-specific factor the team devised that relates to the type of peat bog involved and the internal structure of the formation, which together determine how much of the carbon within remains safely submerged in water, where it can’t be oxidized.

    “The saturation by water prevents oxygen from getting in, and if oxygen gets in, microbes breathe it and eat the peat and turn it into carbon dioxide,” Harvey explains.

    “There is an internal surface inside the peat dome below which the carbon is safe because it can’t be drained, because the bounding rivers and water bodies are such that it will keep saturated up to that level even if you cut canals and try to drain it,” he adds. In between the visible surface of the bog and this internal layer is the “vulnerable zone” of peat that can rapidly decompose and release its carbon compounds or become dry enough to promote fires that also release the carbon and pollute the air.

    Through years of on-the-ground sampling and testing, and detailed analysis comparing the ground data with satellite lidar data on surface elevations, the team was able to figure out a kind of universal mathematical formula that describes the structure of peat domes of all kinds and in all locations. They tested it by comparing their predicted results with field measurements from several widely distributed locations, including Alaska, Maine, Quebec, Estonia, Finland, Brunei, and New Zealand.

    These bogs contain carbon that has in many cases accumulated over thousands of years but can be released in just a few years when the bogs are drained. “If we could have policies to preserve these, it is a tremendous opportunity to reduce carbon fluxes to the atmosphere. This framework or model gives us the understanding, the intellectual framework, to figure out how to do that,” Harvey says.

    Many people assume that the biggest greenhouse gas emissions from cutting down these forested lands is from the decomposition of the trees themselves. “The misconception is that that’s the carbon that goes to the atmosphere,” Harvey says. “It’s actually a small amount, because the real fluxes to the atmosphere come from draining” the peat bogs. “Then, the much larger pool of carbon, which is underground beneath the forest, oxidizes and goes to the air, or catches fire and burns.”

    But there is hope, he says, that much of this drained peatland can still be restored before the stored carbon all gets released. First of all, he says, “you’ve got to stop draining it.” That can be accomplished by damming up the drainage canals. “That’s what’s good about this mathematical framework: You need to figure out how to do that, where to put your dams. There’s all sorts of interesting complexities. If you just dam up the canal, the water may flow around it. So, it’s a neat geometric and engineering project to figure out how to do this.”

    While much of the peatland in southeast Asia has already been drained, the new analysis should make it possible to make much more accurate assessments of less-well-studied peatlands in places like the Amazon basin, New Guinea and the Congo basin, which are also threatened by development.

    The new formulation should also help to make some carbon offset programs more reliable, because it is now possible to calculate accurately the carbon content of a given peatland. “It’s quantifiable, because the peat is 100 percent organic carbon. So, if you just measure the change in the surface going up or down, you can say with pretty good certainty how much carbon has been accumulated or lost, whereas if you go to a rainforest, it’s virtually impossible to calculate the amount of underground carbon, and it’s pretty hard to calculate what’s above ground too,” Harvey says. “But this is relatively easy to calculate with satellite measurements of elevation.”

    “We can turn the knob,” he says, “because we have this mathematical framework for how the hydrology, the water table position, affects the growth and loss of peat. We can design a scheme that will change emissions by X amount, for Y dollars.”

    The research team included Rene Dommain, Kimberly Yeap, and Cao Hannan at Nanyang Technical University in Singapore, Nathan Dadap at Stanford University, Bodo Bookhagen at the University of Potsdam, Germany, and Paul Glaser at the University of Minnesota. The work was supported by the National Research Foundation Singapore through the SMART program, by the U.S. National Science Foundation, and Singapore’s Office for Space Technology and Industry. More

  • in

    MIT campus goals in food, water, waste support decarbonization efforts

    With the launch of Fast Forward: MIT’s Climate Action Plan for the Decade, the Institute committed to decarbonize campus operations by 2050 — an effort that touches on every corner of MIT, from building energy use to procurement and waste. At the operational level, the plan called for establishing a set of quantitative climate impact goals in the areas of food, water, and waste to inform the campus decarbonization roadmap. After an 18-month process that engaged staff, faculty, and researchers, the goals — as well as high-level strategies to reach them — were finalized in spring 2023.

    The goal development process was managed by a team representing the areas of campus food, water, and waste, respectively, and includes Director of Campus Dining Mark Hayes and Senior Sustainability Project Manager Susy Jones (food), Director of Utilities Janine Helwig (water), Assistant Director of Campus Services Marty O’Brien, and Assistant Director of Sustainability Brain Goldberg (waste) to co-lead the efforts. The group worked together to set goals that leverage ongoing campus sustainability efforts. “It was important for us to collaborate in order to identify the strategies and goals,” explains Goldberg. “It allowed us to set goals that not only align, but build off of one another, enabling us to work more strategically.”

    In setting the goals, each team relied on data, community insight, and best practices. The co-leads are sharing their process to help others at the Institute understand the roles they can play in supporting these objectives.  

    Sustainable food systems

    The primary food impact goal aims for a 25 percent overall reduction in the greenhouse gas footprint of food purchases starting with academic year 2021-22 as a baseline, acknowledging that beef purchases make up a significant share of those emissions. Additionally, the co-leads established a goal to recover all edible food waste in dining hall and retail operations where feasible, as that reduces MIT’s waste impact and acknowledges that redistributing surplus food to feed people is critically important.

    The work to develop the food goal was uniquely challenging, as MIT works with nine different vendors — including main vendor Bon Appetit — to provide food on campus, with many vendors having their own sustainability targets. The goal-setting process began by understanding vendor strategies and leveraging their climate commitments. “A lot of this work is not about reinventing the wheel, but about gathering data,” says Hayes. “We are trying to connect the dots of what is currently happening on campus and to better understand food consumption and waste, ensuring that we area reaching these targets.”

    In identifying ways to reach and exceed these targets, Jones conducted listening sessions around campus, balancing input with industry trends, best-available science, and institutional insight from Hayes. “Before we set these goals and possible strategies, we wanted to get a grounding from the community and understand what would work on our campus,” says Jones, who recently began a joint role that bridges the Office of Sustainability and MIT Dining in part to support the goal work.

    By establishing the 25 percent reduction in the greenhouse gas footprint of food purchases across MIT residential dining menus, Jones and Hayes saw goal-setting as an opportunity to add more sustainable, local, and culturally diverse foods to the menu. “If beef is the most carbon-intensive food on the menu, this enables us to explore and expand so many recipes and menus from around the globe that incorporate alternatives,” Jones says.

    Strategies to reach the climate food goals focus on local suppliers, more plant-forward meals, food recovery, and food security. In 2019, MIT was a co-recipient of the New England Food Vision Prize provided by the Kendall Foundation to increase the amount of local food served on campus in partnership with CommonWealth Kitchen in Dorchester. While implementation of that program was put on pause due to the pandemic, work resumed this year. Currently, the prize is funding a collaborative effort to introduce falafel-like, locally manufactured fritters made from Maine-grown yellow field peas to dining halls at MIT and other university campuses, exemplifying the efforts to meet the climate impact goal, serve as a model for others, and provide demonstrable ways of strengthening the regional food system.

    “This sort of innovation is where we’re a leader,” says Hayes. “In addition to the Kendall Prize, we are looking to focus on food justice, growing our BIPOC [Black, Indigenous, and people of color] vendors, and exploring ideas such as local hydroponic and container vegetable growing companies, and how to scale these types of products into institutional settings.”

    Reduce and reuse for campus water

    The 2030 water impact goal aims to achieve a 10 percent reduction in water use compared to the 2019 baseline and to update the water reduction goal to align with the new metering program and proposed campus decarbonization plans as they evolve.

    When people think of campus water use, they may think of sprinklers, lab sinks, or personal use like drinking water and showers. And while those uses make up around 60 percent of campus water use, the Central Utilities Plant (CUP) accounts for the remaining 40 percent. “The CUP generates electricity and delivers heating and cooling to the campus through steam and chilled water — all using what amounts to a large percentage of water use on campus,” says Helwig. As such, the water goal focuses as much on reuse as reduction, with one approach being to expand water capture from campus cooling towers for reuse in CUP operations. “People often think of water use and energy separately, but they often go hand-in-hand,” Helwig explains.

    Data also play a central part in the water impact goal — that’s why a new metering program is called for in the implementation strategy. “We have access to a lot of data at MIT, but in reviewing the water data to inform the goal, we learned that it wasn’t quite where we needed it,” explains Helwig. “By ensuring we have the right meter and submeters set up, we can better set boundaries to understand where there is the potential to reduce water use.” Irrigation on campus is one such target with plans to soon release new campuswide landscaping standards that minimize water use.

    Reducing campus waste

    The waste impact goal aims to reduce campus trash by 30 percent compared to 2019 baseline totals. Additionally, the goal outlines efforts to improve the accuracy of indicators tracking campus waste; reduce the percentage of food scraps in trash and percent of recycling in trash in select locations; reduce the percentage of trash and recycling comprised of single use items; and increase the percentage of residence halls and other campus spaces where food is consumed at scale, implementing an MIT food scrap collection program.

    In setting the waste goals, Goldberg and O’Brien studied available campus waste data from past waste audits, pilot programs, and MIT’s waste haulers. They factored in state and city policies that regulate things like the type and amount of waste large institutions can transport. “Looking at all the data it became clear that a 30 percent trash reduction goal will make a tremendous impact on campus and help us drive toward the goal of completely designing out waste from campus,” Goldberg says. The strategies to reach the goals include reducing the amount of materials that come into campus, increasing recycling rates, and expanding food waste collection on campus.

    While reducing the waste created from material sources is outlined in the goals, food waste is a special focus on campus because it comprises approximately 40 percent of campus trash, it can be easily collected separately from trash and recycled locally, and decomposing food waste is one of the largest sources of greenhouse gas emissions found in landfills. “There is a lot of greenhouse gas emissions that result from production, distribution, transportation, packaging, processing, and disposal of food,” explains Goldberg. “When food travels to campus, is removed from campus as waste, and then breaks down in a landfill, there are emissions every step of the way.”

    To reduce food waste, Goldberg and O’Brien outlined strategies that include working with campus suppliers to identify ordering volumes and practices to limit waste. Once materials are on campus, another strategy kicks in, with a new third stream of waste collection that joins recycling and trash — food waste. By collecting the food waste separately — in bins that are currently rolling out across campus — the waste can be reprocessed into fertilizer, compost, and/or energy without the off-product of greenhouse gases. The waste impact goal also relies on behavioral changes to reduce waste, with education materials part of the process to reduce waste and decontaminate reprocessing streams.

    Tracking progress

    As work toward the goals advances, community members can monitor progress in the Sustainability DataPool Material Matters and Campus Water Use dashboards, or explore the Impact Goals in depth.

    “From food to water to waste, everyone on campus interacts with these systems and can grapple with their impact either from a material they need to dispose of, to water they’re using in a lab, or leftover food from an event,” says Goldberg. “By setting these goals we as an institution can lead the way and help our campus community understand how they can play a role, plug in, and make an impact.” More

  • in

    Building a better indoor herb garden

    Randall Briggs ’09, SM ’18 didn’t set out to build indoor gardens when he arrived at MIT. The winner of the 2010 2.007 robot competition class, he was excited to work on designing fighter planes one day.

    But in 2016, halfway through his studies for his master’s degree in mechanical engineering, Briggs’s father passed away unexpectedly. “It was a big blow to me. My motivation took a big hit, so it was hard for me to keep working on my research,” Briggs shares.

    Briggs ordered a home hydroponic garden in the hopes that growing herbs inside his apartment could bring him some positivity. “There is something healing about seeing something organic and beautiful grow and develop,” Briggs says.

    When the garden arrived, Briggs found that many aspects of the design fell short. The plants weren’t getting enough light because the LEDs were dispersing light throughout the room and not focusing it on the plants. “It’s just not very pleasing aesthetically when it’s, like, a fluorescent color of light, and it just fills your room,” Briggs says.

    He set forth to create a better indoor garden. Briggs turned his spare bedroom into a hydroponics lab, testing herbs growing under various lighting conditions and with different nutrient solutions. He read every book and article he could find on the subject. “The same seed pods that I had used in that cheap garden, when I moved them over to my garden, they grew way faster and way healthier and more fragrant and full of flavor,” he says.

    Working on this project became a daily source of joy for Briggs. “Every day when you come home, you want to see if it’s growing a little bit more or to see how they’re doing. I think that made me happy, too.”

    Briggs saw the potential for his garden to improve the well-being of others. “I thought if people had fresh herbs at home, they might be more inspired to cook for themselves instead of always just eating out, as it’s normally a lot healthier to cook your own food at home.”

    After much research and experimentation, GardenByte was born in 2017: a tabletop indoor herb garden that is nearly 3 feet wide with almost 2 feet of height for the plants to grow, which is quite a bit larger than most models on the market. With Briggs’s hydroponics technology, the plants grow three times faster than they would grow outdoors. His garden allows anyone to grow fresh herbs in a wide range of settings. And since plants have a longer shelf life than cut herbs, they also cut down on food waste.

    Briggs was determined to make something that grows plants well and is attractive in a variety of settings. The outer case is handcrafted from solid hardwood from a local Massachusetts lumber yard, ensuring both durability and a visually pleasing aesthetic that seamlessly integrates into any kitchen or restaurant setting. The light bar, crafted from a single piece of crystal-clear acrylic, maintains an unobtrusive and ethereal appearance. This choice complements the overall design while allowing the LED lights to emit a powerful simulation of full sunshine. To ensure a smooth transition from daytime growth to evening, four different types of LEDs were incorporated. Polymer lenses focus the light directly onto the plants, preventing any wastage or unnecessary light spillage in the room. A light and color sensor on top detect the lighting conditions in the room and automatically adjust the lighting in the garden to match, enhancing plant growth. The grid tray is designed to accommodate up to 39 plants at once, offering ample space for an array of herbs. To simplify plant care, the garden is connected to a mobile app that will allow you to care for your plants while you’re away.

    The herb garden contains computer numerical control (CNC) machined-aluminum parts, in contrast with the flimsier plastic most products use. The heat flow capacity of aluminum disperses the heat from all the LEDs and the aluminum grid tray helps keep it compact and thin but rigid, so users can lift the plants up without it bending.

    Briggs received his foundation in machining as an undergrad at the MIT Edgerton Center, where he was on the MIT Motorsports team and MIT Electric Vehicle Team. He learned how to use the CNC machines in the student machine shop at the Area 51 garage under the tutelage of Instructor Pat McAtamney and Briggs’s teammates.

    Building an electric motorcycle on the Electric Vehicle Team for the Isle of Man TT Race in 2011 helped prepare Briggs for creating a robust product for production. The race took place on city streets, raising the potential for deadly crashes. “When we were building that motorcycle, the head of our team, Lennon Rodgers, kept reiterating to us, ‘you got to think aircraft quality, like aircraft quality. This is actually a life-or-death project.’ Seeing the way that he led, and the way that he really set the bar for quality and for execution and kind of kept things moving, was really helpful for me.”

    “My hope in the future is to make a more mass-market version that’s a little bit cheaper and more available to everybody,” Briggs shares.

    The feedback from his first customers has all been positive. After delivering the product to a chef in Boston, Briggs says, “He told me that the whole first evening he was sitting at home with his boyfriend and he just kept staring at it, and he’s like, ‘it is so beautiful. It is so beautiful.’”

    “I feel like something that my dad taught me was that sometimes to do hard things, it does take hard work, and that it’s not always going to be exciting, necessarily,” Briggs shares. “It’s good to be inspired, it’s good to be passionate, but it’s not always going to get you through. And sometimes it’s just hard work that you got to press through the tough parts.” More

  • in

    MIT students win Beth Israel Deaconess Medical Center sustainability award

    MIT senior Anna Kwon and sophomore Nicole Doering have been recognized by Beth Israel Deaconess Medical Center (BIDMC) for their work as interns last summer. Both students received Jane Matlaw Environmental Champion Awards, which honor leaders and innovators who have catalyzed changes that align with BIDMC’s sustainability goals and foster a healthier future for staff and patients.

    The awards, which were established 25 years ago, had previously only been given to individuals and teams within BIDMC. “This year, given the significant leadership and alignment with our public commitments that Nicole and Anna had over the summer, our Sustainability Award Review Committee determined that we would include a student category of our awards for both a high school student and undergraduates as well,” says Avery Palardy, the climate and sustainability director at BIDMC.

    Kwon and Doering worked at BIDMC through the Social Impact Internship Program, one of many experiential learning opportunities offered by MIT’s Priscilla King Gray Center for Public Service. The program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures.

    Both students conducted work that will help BIDMC meet two commitments to the Department of Health and Human Services Health Sector Climate Pledge: to develop a climate resilience plan for continuous operations by the end of 2023, and to conduct an inventory of its supply chain emissions by the end of 2024.

    “It was fun — a new challenge for me,” says Kwon, who is majoring in electrical engineering and computer science. “I have never done research in sustainability before. I was able to dive into the field of health care from a new angle, deepening my understanding of the complexities of environmental issues within health care.” Her internship involved performing data analysis related to carbon emissions. In addition, she developed actionable recommendations for conducting a comprehensive supply chain inventory.

    “Anna demonstrated unwavering diligence and attention to detail throughout her work to conduct a greenhouse gas inventory of our supply chain,” says Palardy. “She showcased exceptional skills in market research as she investigated best practices and emerging technologies to ensure that we stay at the forefront of sustainable practices. Her keen insights and forward-thinking approach have equipped us with valuable information for shaping our path forward on our sustainability goals.”

    Doering, a chemical engineering major, guided several departments in an internal assessment of best practices, vulnerabilities, and future directions to integrate climate resilience into the medical center’s operations. She has continued to work this fall to help finalize the climate resilience plan, and she has also been analyzing food procurement data to identify ways to reduce BIDMC’s Scope 3 emissions.

    Climate resilience isn’t an area of sustainability that Doering had considered before, but the internship experience has inspired her to continue pursuing other sustainability roles in the future. “I’m so thankful for all I’ve learned from BIDMC, so I’m really glad that my work was helpful to them. It is an honor that they trusted me to work with them on something that will have such a wonderful impact on our community,” she says.

    “The impact of Nicole’s contributions cannot be overstated,” notes Palardy. “From planning and organizing crucial focus groups to crafting our climate resilience plan, she played a pivotal role in shaping our climate resilience strategies for the better. I’m so grateful for the collaborative spirit, passion, and leadership that she brought to our team. She helped to drive innovation in health-care climate resilience that is necessary for us to ensure this continues to be a priority.” More