IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Wigley, T. M. L. & Raper, S. C. B. Natural variability of the climate system and detection of the greenhouse effect. Nature 344, 324–327 (1990).Article
Google Scholar
Crowley, J. T. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000).Article
CAS
Google Scholar
Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T. A. & Hansen, J. E. Greenhouse effects due to man-made perturbations of trace gases. Science 194, 685–690 (1976).Article
CAS
Google Scholar
Paris Agreement (United Nations Framework Convention on Climate Change, 2015).Rio+20 United Nations Conference on Sustainable Development The Future We Want: Outcome Document of the United Nations Conference on Sustainable Development (United Nations, 2012).Basheer, M. et al. Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience. Nat. Commun. 12, 5622 (2021).Article
CAS
Google Scholar
Agreement between the Republic of the Sudan and the United Arab Republic for the Full Utilization of the Nile Waters (International Water Law Project, 1959); http://internationalwaterlaw.org/documents/regionaldocs/uar_sudan.htmlCascão, A. E. & Nicol, A. GERD: new norms of cooperation in the Nile Basin? Water Int. 41, 550–573 (2016).Article
Google Scholar
Salman, S. The Grand Ethiopian Renaissance Dam: the road to the declaration of principles and the Khartoum document. Water Int. 41, 512–527 (2016).Article
Google Scholar
Tawfik, R. The Grand Ethiopian Renaissance Dam: a benefit-sharing project in the Eastern Nile? Water Int. 41, 574–592 (2016).Article
Google Scholar
Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E. & Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).Wheeler, K. et al. Exploring cooperative transboundary river management strategies for the Eastern Nile Basin. Water Resour. Res. https://doi.org/10.1029/2017WR022149 (2018).Wheeler, K. G. et al. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water Int. 41, 611–634 (2016).Article
Google Scholar
Basheer, M. et al. Quantifying and evaluating the impacts of cooperation in transboundary river basins on the water–energy–food nexus: the Blue Nile Basin. Sci. Total Environ. 630, 1309–1323 (2018).Article
CAS
Google Scholar
Basheer, M. Cooperative operation of the Grand Ethiopian Renaissance Dam reduces Nile riverine floods. River Res. Appl. 47, 805–814 (2021).Article
Google Scholar
Elagib, N. A. & Basheer, M. Would Africa’s largest hydropower dam have profound environmental impacts? Environ. Sci. Pollut. Res. 28, 8936–8944 (2021).Article
CAS
Google Scholar
Joint Statement of Egypt, Ethiopia, Sudan, the United States and the World Bank (United States Department of the Treasury, 2020); https://home.treasury.gov/news/press-releases/sm891Edrees, M. Letter dated 11 June 2021 from the Permanent Representative of Egypt to the United Nations addressed to the Secretary-Genera (United Nations, 2021); https://digitallibrary.un.org/record/3931750?ln=enAmde, T. A. Letter dated 14 May 2020 from the Permanent Representative of Ethiopia to the United Nations addressed to the President of the Security Council (United Nations, 2020); https://digitallibrary.un.org/record/3862715?ln=enTaye, M. T., Willems, P. & Block, P. Implications of climate change on hydrological extremes in the Blue Nile Basin: a review. J. Hydrol. Reg. Stud. 4, 280–293 (2015).Article
Google Scholar
Di Baldassarre, G. et al. Future hydrology and climate in the River Nile Basin: a review. Hydrol. Sci. J. 56, 199–211 (2011).Article
Google Scholar
Bhattacharjee, P. S. & Zaitchik, B. F. Perspectives on CMIP5 model performance in the Nile River headwaters regions. Int. J. Climatol. 35, 4262–4275 (2015).Article
Google Scholar
Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).Article
Google Scholar
Hui, R., Herman, J., Lund, J. & Madani, K. Adaptive water infrastructure planning for nonstationary hydrology. Adv. Water Resour. 118, 83–94 (2018).Article
Google Scholar
Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M. & Popper, S. W. (eds) Decision Making under Deep Uncertainty: From Theory to Practice (Springer, 2019).Smith, M. et al. Adaptation’s Thirst: Accelerating the Convergence of Water and Climate Action (Global Commission on Adaptation, 2019).Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).Article
Google Scholar
Reed, P. M. et al. Multisector dynamics: advancing the science of complex adaptive human–Earth systems. Earth’s Future 10, e2021EF002621 (2022).Article
Google Scholar
Walker, W. E., Haasnoot, M. & Kwakkel, J. H. Adapt or perish: a review of planning approaches for adaptation under deep uncertainty. Sustainability 5, 955–979 (2013).Article
Google Scholar
Kwadijk, J. C. J. et al. Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. WIREs Clim. Change 1, 729–740 (2010).Article
Google Scholar
Kwakkel, J. H., Walker, W. E. & Marchau, V. Adaptive airport strategic planning. Eur. J. Transp. Infrastruct. Res. 10, 249–273 (2010).Kwakkel, J. H., Haasnoot, M. & Walker, W. E. Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Climatic Change 132, 373–386 (2015).Article
Google Scholar
Zeff, H. B., Herman, J. D., Reed, P. M. & Characklis, G. W. Cooperative drought adaptation: integrating infrastructure development, conservation, and water transfers into adaptive policy pathways. Water Resour. Res. https://doi.org/10.1002/2016WR018771 (2016).Fletcher, S., Lickley, M. & Strzepek, K. Learning about climate change uncertainty enables flexible water infrastructure planning. Nat. Commun. 10, 1782 (2019).Article
Google Scholar
Cohen, J. S. & Herman, J. D. Dynamic adaptation of water resources systems under uncertainty by learning policy structure and indicators. Water Resour. Res. 57, e2021WR030433 (2021).Article
Google Scholar
Ricalde, I. et al. Assessing tradeoffs in the design of climate change adaptation strategies for water utilities in Chile. J. Environ. Manage. 302, 114035 (2022).Article
Google Scholar
Pachos, K., Huskova, I., Matrosov, E., Erfani, T. & Harou, J. J. Trade-off informed adaptive and robust real options water resources planning. Adv. Water Resour. 161, 104117 (2022).Article
Google Scholar
Gold, D. F., Reed, P. M., Gorelick, D. E. & Characklis, G. W. Power and pathways: exploring robustness, cooperative stability, and power relationships in regional infrastructure investment and water supply management portfolio pathways. Earth’s Future 10, e2021EF002472 (2022).Beh, E. H. Y., Maier, H. & Dandy, G. C. Adaptive, multiobjective optimal sequencing approach for urban water supply augmentation under deep uncertainty. Water Resour. Res. https://doi.org/10.1002/2014WR016254 (2015).O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).Article
Google Scholar
Wainwright, C. M. et al. ‘Eastern African Paradox’ rainfall decline due to shorter not less intense Long Rains. NPJ Clim. Atmos. Sci. 2, 34 (2019).Article
Google Scholar
Rowell, D. P., Booth, B. B. B., Nicholson, S. E. & Good, P. Reconciling past and future rainfall trends over East Africa. J. Clim. 28, 9768–9788 (2015).Article
Google Scholar
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article
Google Scholar
KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).Article
Google Scholar
Crespo Cuaresma, J. Income projections for climate change research: a framework based on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).Article
Google Scholar
Water Level (Copernicus Global Land Service, 2022); https://land.copernicus.eu/global/products/wlInselberg, A. in Trends in Interactive Visualization: State-of-the-Art Survey (eds Liere, R. et al.) 49–78 (Springer, 2009).Goulden, M., Conway, D. & Persechino, A. Adaptation to climate change in international river basins in Africa: a review. Hydrol. Sci. J. 54, 805–828 (2009).Article
Google Scholar
Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).François, B., Vrac, M., Cannon, A. J., Robin, Y. & Allard, D. Multivariate bias corrections of climate simulations: which benefits for which losses? Earth Syst. Dyn. 11, 537–562 (2020).Article
Google Scholar
Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).Article
Google Scholar
Mehrotra, R. & Sharma, A. A resampling approach for correcting systematic spatiotemporal biases for multiple variables in a changing climate. Water Resour. Res. 55, 754–770 (2019).Article
Google Scholar
Vrac, M. & Friederichs, P. Multivariate-intervariable, spatial, and temporal-bias correction. J. Clim. 28, 218–237 (2015).Article
Google Scholar
Beck, H. E. et al. MSWEP v2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).Article
Google Scholar
Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article
Google Scholar
Walker, D. P., Marsham, J. H., Birch, C. E., Scaife, A. A. & Finney, D. L. Common mechanism for interannual and decadal variability in the East African Long Rains. Geophys. Res. Lett. 47, e2020GL089182 (2020).King, J. A. & Washington, R. Future changes in the Indian Ocean Walker Circulation and links to Kenyan rainfall. J. Geophys. Res. Atmos. 126, e2021JD034585 (2021).Article
Google Scholar
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper: Crop Evapotranspiration (FAO, 1998).Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415–14428 (1994).David, C. H. et al. River network routing on the NHDPlus dataset. J. Hydrometeorol. 12, 913–934 (2011).Article
Google Scholar
Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).Article
Google Scholar
Development of the Eastern Nile Water Simulation Model (Deltares, 2013).Gill, M. A. Flood routing by the Muskingum method. J. Hydrol. 36, 353–363 (1978).Article
Google Scholar
Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).Article
Google Scholar
Tomlinson, J. E., Arnott, J. H. & Harou, J. J. A water resource simulator in Python. Environ. Model. Softw. 126, 104635 (2020).Article
Google Scholar
Wurbs, R. A. Generalized Models of River System Development and Management (IntechOpen, 2011).Basheer, M., Sulieman, R. & Ribbe, L. Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty. Int. J. Water Resour. Dev. 37, 182–207 (2021).Article
Google Scholar
Basheer, M. & Elagib, N. A. Sensitivity of water–energy nexus to dam operation: a water–energy productivity concept. Sci. Total Environ. 616–617, 918–926 (2018).Article
Google Scholar
Basheer, M. et al. Filling Africa’s largest hydropower dam should consider engineering realities. One Earth 3, 277–281 (2020).Article
Google Scholar
Jeuland, M., Wu, X. & Whittington, D. Infrastructure development and the economics of cooperation in the Eastern Nile. Water Int. https://doi.org/10.1080/02508060.2017.1278577 (2017).Lofgren, H., Lee, R., Robinson, S., Thomas, M. & El-Said, M. A Standard Computable General Equilibrium (CGE) Model in GAMS (International Food Policy Research Institute, 2002).Armington, P. S. A theory of demand for products distinguished by place of production. Staff Pap. 16, 159–178 (1969).Article
Google Scholar
Siddig, K., Elagra, S., Grethe, H. & Mubarak, A. A Post-separation Social Accounting Matrix for the Sudan (International Food Policy Research Institute, 2018); https://doi.org/10.2499/1024320695Al-Riffai, P. et al. A Disaggregated Social Accounting Matrix: 2010/11 for Policy Analysis in Egypt (International Food Policy Research Institute, 2016); http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/130736Ahmed, H. A., Tebekew, T. & Thurlow, J. 2010/11 Social Accounting Matrix for Ethiopia: A Nexus Project SAM (International Food Policy Research Institute, 2017); http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/131505/filename/131720.pdfChepeliev, M. Gtap-Power data base: version 10. J. Glob. Econ. Anal. 5, 110–137 (2020).Article
Google Scholar
Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017).Article
Google Scholar
Fouré, J., Bénassy-Quéré, A. & Fontagné, L. Modelling the world economy at the 2050 horizon. Econ. Transit. Inst. Change 21, 617–654 (2013).
Google Scholar
Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).Article
CAS
Google Scholar
Knox, S., Meier, P., Yoon, J. & Harou, J. J. A Python framework for multi-agent simulation of networked resource systems. Environ. Model. Softw. 103, 16–28 (2018).Article
Google Scholar
Deb, K. & Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014).Article
Google Scholar
Hadka, D. Platypus. GitHub https://github.com/Project-Platypus/Platypus (2016).Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. & Da Fonseca, V. G. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003).Article
Google Scholar
Basheer, M. et al. Balancing national economic policy outcomes for sustainable development. Nat. Commun. 13, 5041 (2022).Article
CAS
Google Scholar
Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).Article
Google Scholar
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
Basheer, M., Nechifor, V., Calzadilla, A., Harou, J. J., Data related to a study on adaptive management of Nile infrastructure. Zenodo https://doi.org/10.5281/zenodo.5914757 (2022). More