More stories

  • in

    USACE Coastal and Hydraulics Laboratory Quality Controlled, Consistent Measurement Archive

    As NDBC publish their historical and real time in situ wave and meteorological data in multiple online locations, USACE developed a methodology to combine these data sources and develop a unique USACE QCC Measurement Archive that is fully self-describing. This required merging the manually quality controlled data that is stored on the NDBC website with the lower quality netCDF data with metadata files for the same stations that are stored at NCEI. The NOAA DODS source was not included as those data are exact copies of what is found within the NDBC historical station pages.As mentioned, the NDBC website historical station pages contain the cleanest data that has been subjected to manual QA/QC by NDBC Mission Control data analysts. Data collected during service periods (when the buoys were physically on board ships for maintenance) were removed during the manual QA/QC, and are typically not present within the NDBC website data. However this data source contains no metadata other than date and time. This lack of metadata allows for the erroneous inclusion of unidentifiable data from historical time periods where the moored buoys were adrift (inaccurate wave readings, wind, temperature etc.). Additionally, although NDBC switched to a redundant meteorological sensor paradigm during the last decade, only single variable values are available per time stamp per station on the NDBC website. This is because NDBC toggles the release of primary and secondary sensor data to ensure that the highest quality data are published. However, the NDBC website contains no associated metadata indicating when these data release switches occur and hence instrumentation usage is indeterminable. Users often need these sensor details, for example wind sensor height above sea level to extrapolate wind speed at additional heights above the moored buoy. The NDBC website also does not store uncorrected non-directional spectral energy estimates (({c}_{11}^{m})).Conversely, the NDBC netCDF data stored at NCEI includes metadata such as time-stamped GPS positions, instrumentation metadata, data quality flags1, and data release flags (indicating which data were released to the real time stream). These GPS positions allow for the identification of data that was collected while NDBC moored buoys were adrift. For ease of data source identification, these NDBC netCDF files stored at NCEI will be referred to as NCEI netCDF data below. However, readers should remember that these are all NDBC data, with time-paired values that are collected from the same, unique sensor.This NCEI netCDF data source also includes both the primary and secondary redundant meteorological sensor outputs, with metadata, as well as uncorrected non-directional spectral energy estimates (({c}_{11}^{m})). These primary and secondary sensor variables are only found within these NCEI netCDF datasets. However, since 2011, these netCDF data are pulled from the NDBC real-time data stream, which is only subjected to automated QA/QC protocols that flag but do not remove suspect data1. Prior to 2011, the NDBC data were stored in an encoded Trusted Data Format (TDF), but these data were converted into netCDF format in early 2020.Of note is that the NCEI netCDF structures differ for data stored before and after the 2011 switch to netCDF file usage. Throughout the historical netCDF dataset, the netCDF file structures contain non-uniform netCDF formats that are dependent on the data collected during file-specific time periods. Additionally, the pre-2011 netCDF files contain a nominal, fixed deployment position that is repeated for each date/time stamp within the datasets. Furthermore, these pre-2011 netCDF files contain erroneous spectral wave frequency bands that are not included in the NDBC website datasets (and do not match any wave instrumentation frequencies that NDBC has historically deployed). Both formats include instrumentation metadata that are not only inconsistent throughout the years, but within individual netCDF file’s group attributes.Therefore, to mitigate these identified data source issues10, the USACE QCC Measurement Archive process utilized a methodology (Fig. 1) that combines each dataset’s advantages to develop a best available historical NDBC measurement dataset. For example, the GPS data included within the post-2011 NCEI netCDF files were used to detect data that fell outside a reasonable radius of the moored buoy. Conversely, the NDBC website data were used to isolate which primary or secondary sensor data were released to the public – achieved by matching the individual NDBC variable values to the equivalent primary or secondary NCEI netCDF values, therefore identifying the correct netCDF metadata. Additional outlier QA/QC variable checks, station and metadata verification (provided by literature reviews and historical NDBC buoy deployment log books) allowed for the development of a best available, self-described USACE QCC Measurement Archive.Fig. 1Flowchart of the USACE QCC Measurement Archive methodology. This flowchart outlines input data sources, station and metadata verification, selected ‘best’ data sets and output netCDF files.Full size imageThe USACE QCC Measurement Archive methodology process consists of two phases. The first phase of the project processes the historical data, while a second phase annually appends newly available data to the historical database. The data archive routine involves a six step process (Fig. 1) for each buoy station: (1) download, (2) concatenation, (3) metadata verification, (4) comparison, geographical QA/QC and metadata attachment, (5) best dataset selection, and (6) netCDF data file creation. Finally these netCDF files are uploaded to the buoy section of the USACE CHL Data server.These steps were automated using scripts developed in R software11. Where necessary, each script was subset to handle the particular idiosyncrasies10 of the NDBC and NCEI netCDF data archives. To process all of the historical NDBC data (1970–2021), steps two to five in phase one required ~ 400k cpu hours at the Department of Defense (DOD) Supercomputing Resource Center.The following steps outline the methodologies utilized within this USACE QCC Measurement Archive development. For more detailed information, please see the USACE QCC Measurement Archive Standard Operating Procedure (SOP) document that is stored in the Archive GitHub (https://github.com/CandiceH-CHL/USACE_QCC_measurement_archive.git).

    1.

    Step 1: Download. Historical NDBC data for all NDBC stations are downloaded from the NDBC website and the NCEI archives. Source-specific archive download links are listed in the USACE QCC Measurement Archive SOP. Data from the storage specific files types (detailed below) are extracted for concatenation in step 2.
    The NDBC website stores data in zipped yearly and monthly files as standard meteorological (stdmet), spectral wave density (swden), spectral wave (alpha1) direction (swdir), spectral wave (alpha2) direction (swdir2), spectral wave (r1) direction (swr1), and spectral wave (r2) direction data (swr2). These files require unzipping. Included within the NDBC stdmet datasets are collected meteorological and bulk wave data in the following structure: wind direction (°), wind speed (m/s), wind gusts (m/s), significant wave height (m), dominant wave period (seconds), average wave period (seconds), mean wave direction (°), air pressure at sea level (hPa), air temperature (°C), water temperature (°C), dew point temperature (°C), visibility (miles) and tide (ft). Visibility and tide are no longer collected by NDBC, and are disregarded.
    The NCEI website stores monthly NDBC files per year in netCDF format. All available data and metadata are extracted from these netCDF files. These files contain the same NDBC data as listed above, but also include additional wave spectral parameters such as uncorrected spectral energy wave data (({c}_{11}^{m})), spectral wave co- and quad-spectra, and four wave data quality assurance parameters that are produced by the NDBC wave processing procedure12.
    The NCEI netCDF file formats differ significantly before and after January 2011. After January 2011, these netCDF structures varied throughout the years as NDBC buoy structures and netCDF creation procedures changed. Each format requires format-specific code to extract the data from the variable fields.
    For example, the pre-2011 netCDF files consistently contain all variables directly within the main file directory. However, the post-2011 netCDF files are structured by ‘payload’, with subset sensor fields (e.g. ‘anemomenter_1’), which in turn have their own subset variable fields (e.g. wind_speed, ‘wind_direction’) with associated quality control and release flags. Therefore users have to navigate through the payload and sensor subfields to discover the variable data with their associated metadata.
    Importantly, these ‘payload’ fields do not always refer to the on-board computer system that serves the sensor suites, e.g. NDBC’s Automated Reporting Environmental System13 (ARES), but also delineate between sensor suites with available primary and secondary sensor data (e.g. ‘payload_1’, ‘payload_2’). Conversely these primary and secondary sensor data (e.g. ‘air_temperature_1’ and ‘air_temperature_2’) may be subset within a single ‘payload’. Of note is that these multiple payloads often contain duplicated data.
    These ‘payload’ fields are also important when extracting data captured by NDBC Self-Contained Ocean Observations Payloads (SCOOP), as these netCDF files resemble the physical structure of the buoy stations with their modular sensor assembly. For example, the NCEI netCDF July 2020 data file for station 41009 includes 5 payload subsections. ‘payload_1’ contains an ‘anemometer_1’ sensor suite, which contains subset wind variables and data flags; ‘barometer_1’, with subset air pressure variables and flags; and a ‘gps_1’ sensor suites, with subset lat, lon variables, etc. ‘payload_2’ contains a second ‘anemometer_1’, ‘barometer_1’, ‘gps_1’, ‘air_temperature_sensor_1’, and ‘humidity_sensor_1’ suites. Payload 3 contains a single ‘gps_1’ fields (lat and lon variables with flags), while payloads 4 and 5 house ‘wave_sensor_1’ and ‘ocean_temperature_sensor_1’ sensor suites respectively, both with their own ‘gps_1’ data. In this example, ‘payload_1’ represents an R.M. Young sensor, while ‘payload_2’ is listed as a MetPak Weather Station instrument in the netCDF sensor suite attributes.
    NDBC is in the process of redesigning these netCDF file formats to be more user friendly. However, they do not plan to reformat their archive datasets. For more details on the NDBC and NCEI netCDF file formats and code extraction descriptions, please see the USACE QCC Measurement Archive SOP within the Archive GitHub.

    2.

    Step 2: Concatenation. This step merges each yearly and monthly data files to produce a single time series of concatenated stdmet data, and time series files for each individual spectral wave variable. The concatenated stdmet data format mirrors the NDBC website data formats. To handle the NDBC data, this step allows for the management of differing yearly file formats and spectral frequencies; the concatenation of multiple date and time columns into one field; and the removal of redundant date, time and tide columns in stdmet data. This step allocates the spectral data into the standard NDBC 38 frequencies (old wave sensors), and 47 frequencies (new wave sensors). Finally, this step converts the NDBC r1 and r2 values to their correct units (NDBC r1 and r2 data are scaled by 100 to reduce storage requirements, so these data should be multiplied by 0.01).
    To handle the NCEI data, this step allows for the concatenation of stdmet data to create a dataset that matches the NDBC website data nomenclature. This step also removes data that were flagged as erroneous by automated NDBC QA/QC protocols. As unit standards vary between the NCEI and NDBC website archives, this step converts the NCEI netCDF pressure units to match the NDBC units (Pa to hPa), and converts the air, water and dew point temperatures from Kelvin to degree Celsius to match NDBC data. This step also performs outlier QA/QC, where it removes zero (‘0‘) wind gust values when no wind speed values are present; direction values greater than 360 °; obvious variable outliers; and duplicated netCDF data points that are ~5–10 seconds apart. To handle the erroneous netCDF spectral frequency data, the code advances through the spectral data and matches the available spectral frequency data to the appropriate 38 frequencies (old wave sensors) or 47 frequencies (new wave sensors).

    3.

    Step 3: Verify metadata. This step is applied solely to the NCEI netCDF data files to validate the netCDF metadata with NDBC-sourced, buoy specific metadata spreadsheets. These metadata spreadsheets were constructed from the NDBC database and original NDBC service technician log books, and provide accurate station and sensor information. Scripts verify or insert missing hull type, payload and mooring type; and verify or insert missing instrument processing systems (for wave data only), instrumentation names and sensor deployment heights. If none are available, metadata fields are augmented with pre-set hull-specific instrumentation specifications that were sourced from online references (for hull-specific instrumentation specifications, please see the USACE QCC Measurement Archive SOP).

    4.

    Step 4: Compare, geographically QA/QC and attach metadata. Compare: Although these data originate from the same sensor, storage protocols resulted in different time stamps for each within their various archives. This step compares the NDBC and NCEI sourced data by matching the datasets by nearest date and time (to the minute), after which geographical data are appended to the NDBC datasets.
    As the NDBC data is manually QA/QC’d and does not contain data collected during buoy maintenance operations, these data were considered as a date/time reference to quality control the fixed positions of the pre-2011 netCDF datasets. In other words, if data were present within the NCEI dataset, but not within the NDBC dataset, those NCEI data records were removed.
    Of interest are the datasets within the NCEI netCDF files that pre-date any data published on the NDBC website. These data are likely from sensor and processing tests conducted during deployments that were intentionally not released to the public. These early data are included in the USACE QCC Measurement Archive but have quality control (QC) flags that rate them as unreliable. For more information on these earlier datasets, please reference the technical note on utilizing NDBC data, ERDC/CHL CHETN-I-10010.
    Geographically QA/QC: Each dataset is filtered to remove GPS positions and associated data that are not within a one (1) degree radius (~60 nautical miles) of the NDBC station watch circles (the surface area through which a buoy can travel while tethered to specific location by a mooring). This radius allows for fluctuations in NDBC deployment locations over the decades, as tests showed that radii of less than one degree significantly removed viable data (see Fig. 2 in the Technical Validation section). Users may wish to further filter their specific datasets to remove additional data points that are outside their target deployment locations; a task now easily achievable with the fully-described, verified metadata included within this USACE QCC Measurement Archive13.
    Two methods are used to geographically QA/QC these data: 1) a sorted table of value occurrences to find the most common latitude and longitude positions (using the assumption that the buoy held its correct station for the majority of its life cycle); 2) a manual confirmation and insertion of the primary station locations that were sourced from NDBC buoy specific metadata spreadsheets. This manual step was relevant for buoys that did not consistently hold their stations due to high vandalism rates or strong currents.
    Assign metadata: Once the data are geographically QA/QC’d, this step assigns verified metadata (from step 3) to the NDBC stdmet datasets as follows. Station-specific hull type, water depth, payload and mooring type are appended to the NDBC stdmet datasets from the NDBC-sourced, buoy specific metadata spreadsheets. These NDBC Buoy Metadata Spreadsheets and the verified NCEI netCDF metadata are then used to assign the correct primary or secondary sensor designation, which includes metadata such as instrument processing systems (for waves) and instrumentation information (names, deployment heights etc.), to the NDBC stdmet datasets by matching the time paired NDBC variable values with the exact NCEI values.

    5.

    Step 5: Create best dataset. This step selects a combination of the geographically QA/QC datasets that were created in step 4 above. These best available, self-describing datasets (Fig. 1) include:

    NDBC website wind direction, wind speed, wind gust, air pressure at sea level, air temperature, sea surface temperature, significant wave height, dominant and peak periods, mean wave direction, spectral c11, alpha1, alpha2, r1, r2, with their now fully-described, verified metadata.

    NCEI netCDF spectral ({c}_{11}^{m}). These data are retained within the USACE QCC Measurement Archive to allow for bulk wave parameter re-calculations without the influences of NDBC shore-side processing protocols.

    Verified station metadata obtained from the NDBC Buoy Metadata Spreadsheets.

    NCEI netCDF data for the above variables that pre-date the NDBC datasets (where applicable).

    6.

    Step 6: Create netCDF data files. This step creates monthly netCDF NDBC data files that collate all of the best available data variables that were selected in step 5 above. For easy access by the USACE and user community, these month-long netCDF data files are stored on the USACE CHL Data Server and are updated annually. A static copy of the historical data (1970–2021) is located within the USACE Knowledge Core Library Datasets13. More

  • in

    South Asian agriculture increasingly dependent on meltwater and groundwater

    Wester, P., Mishra, A., Mukherji, A. & Bhakta Shrestha, A. (eds) The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (Springer, 2019).Jain, S. K., Agarwal, P. K. & Singh, V. P. in Hydrology and Water Resources of India (eds Jain, S.K. et al.) 473–511 (Springer, 2007).Biemans, H., Siderius, C., Mishra, A. & Ahmad, B. Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrol. Earth Syst. Sci. 20, 1971–1982 (2016).Article 

    Google Scholar 
    Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).CAS 
    Article 

    Google Scholar 
    Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).Article 

    Google Scholar 
    Khanal, S. et al. Variable 21st century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales. Water Resour. Res. https://doi.org/10.1029/2020WR029266 (2021).Immerzeel, W. W. et al. Importance and vulnerability of the world’ s water towers. Nature 577, 364–369 (2019).Article 
    CAS 

    Google Scholar 
    Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).Article 

    Google Scholar 
    Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-00124-w (2021).Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).Article 

    Google Scholar 
    Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).CAS 
    Article 

    Google Scholar 
    Döll, P., Schmied, H. M., Shuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).Article 

    Google Scholar 
    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).CAS 
    Article 

    Google Scholar 
    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 

    Google Scholar 
    Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).Article 

    Google Scholar 
    Kirby, M., Mainuddin, M., Khaliq, T. & Cheema, M. Agricultural production, water use and food availability in Pakistan: historical trends, and projections to 2050. Agric. Water 179, 34–46 (2016).Article 

    Google Scholar 
    De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).Article 

    Google Scholar 
    Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature https://doi.org/10.1038/nature23878 (2017).Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. https://doi.org/10.3389/feart.2019.00331 (2020).Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).CAS 
    Article 

    Google Scholar 
    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change https://doi.org/10.1038/s41558-017-0049-x (2018).Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01074-x (2021).Lutz, A. F. et al. South Asian river basins in a 1.5 °C warmer world. Reg. Environ. Change 19, 833–847 (2019).Article 

    Google Scholar 
    Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).CAS 
    Article 

    Google Scholar 
    Wijngaard, R. R. et al. Future changes in hydro-climatogical extremes in the upper Indus, Ganges, and Brahmaputra river basins. PLoS ONE 12, e0190224 (2017).Article 
    CAS 

    Google Scholar 
    Van Tiel, M., Van Loon, A., Seibert, J. & Stahl, K. Hydrological response to warm and dry weather: do glaciers compensate? Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2021-44 (2021).Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    KC, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).Article 

    Google Scholar 
    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).Article 

    Google Scholar 
    Munia, H. A. et al. Future transboundary water stress and its drivers under climate change: a global study. Earth’s Future 8, e2019EF001321 (2020).Article 

    Google Scholar 
    Lutz, A. F., Maat, W., Biemans, H. & Shrestha, A. B. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol. https://doi.org/10.1002/joc.4608 (2016).Wijngaard, R. R. et al. Climate change vs. socio-economic development: understanding the South-Asian water gap. Hydrol. Earth Syst. Sci. 22, 6297–6321 (2018).Article 

    Google Scholar 
    Wen, S. et al. Population exposed to drought under the 1.5 °C and 2.0 °C warming in the Indus River basin. Atmos. Res. 218, 296–305 (2019).Article 

    Google Scholar 
    Cheema, M. J. M., Immerzeel, W. W. & Bastiaanssen, W. G. M. Spatial quantification of groundwater abstraction in the irrigated indus basin. Groundwater 52, 25–36 (2014).CAS 
    Article 

    Google Scholar 
    Siderius, C. et al. Financial feasibility of water conservation in agriculture. Earth’s Future 9, e2020EF001726 (2021).Article 

    Google Scholar 
    Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).CAS 
    Article 

    Google Scholar 
    Shah, H., Siderius, C. & Hellegers, P. Limitations to adjusting growing periods in different agroecological zones of Pakistan. Agric. Syst. 192, 103184 (2021).Article 

    Google Scholar 
    Gernaat, D. E. H. J., Bogaart, P. W., van Vuuren, D. P., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy https://doi.org/10.1038/s41560-017-0006-y (2017).Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).CAS 
    Article 

    Google Scholar 
    Molden, D. J., Vaidya, R. A., Shrestha, A. B., Rasul, G. & Shrestha, M. S. Water infrastructure for the Hindu Kush Himalayas. Int. J. Water Resour. Dev. 30, 60–77 (2014).Article 

    Google Scholar 
    Vinca, A. et al. Transboundary cooperation a potential route to sustainable development in the Indus basin. Nat. Sustain. 4, 331–339 (2021).Article 

    Google Scholar 
    Rasul, G., Neupane, N., Hussain, A. & Pasakhala, B. Beyond hydropower: towards an integrated solution for water, energy and food security in South Asia. Int. J. Water Resour. Dev. 37, 466–490 (2021).Article 

    Google Scholar 
    Wu, X., Jeuland, M., Sadoff, C. & Whittington, D. Interdependence in water resource development in the Ganges: an economic analysis. Water Policy 15, 89–108 (2013).Article 

    Google Scholar 
    Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos Trans. AGU 80, 69–70 (2019).Article 

    Google Scholar 
    Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).Article 

    Google Scholar 
    Terink, W., Lutz, A. F., Simons, G. W. H., Immerzeel, W. W. & Droogers, P. SPHY v2.0: Spatial processes in HYdrology. Geosci. Model Dev. 8, 2009–2034 (2015).Article 

    Google Scholar 
    Paul, F., Huggel, C. & Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 89, 510–518 (2004).Article 

    Google Scholar 
    Frey, H. et al. Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere 8, 2313–2333 (2014).Article 

    Google Scholar 
    Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003).Article 

    Google Scholar 
    Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B. & Bierkens, M. F. P. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).CAS 
    Article 

    Google Scholar 
    Droogers, P. & Allen, R. G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 16, 33–45 (2002).Article 

    Google Scholar 
    Gerten, D. et al. Global water availability and requirements for future food production. J. Hydrometeorol. 12, 885–899 (2011).Article 

    Google Scholar 
    Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013).CAS 
    Article 

    Google Scholar 
    Rost, S. et al. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 (2008).Article 

    Google Scholar 
    Lehner, B. et al. Global Reservoir and Dam Database, v.1 (GRanDv1): Reservoirs, Revision 01 (NASA Socioeconomic Data and Applications Center, 2011); https://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01Biemans, H. et al. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 47, W03509 (2011).Article 

    Google Scholar 
    Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073–3091 (2015).Article 

    Google Scholar 
    Simons, G. W. H., Droogers, P., Contreras, S., Sieber, J. & Bastiaanssen, W. G. M. A novel method to quantify consumed fractions and non-consumptive use of irrigation water: application to the Indus Basin Irrigation System of Pakistan. Agric. Water Manag. 236, 106174 (2020).Article 

    Google Scholar 
    Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600, 253–258 (2021).CAS 
    Article 

    Google Scholar 
    Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).CAS 
    Article 

    Google Scholar 
    Bijl, D. L. et al. A global analysis of future water deficit based on different allocation mechanisms. Water Resour. Res. 54, 5803–5824 (2018).Article 

    Google Scholar 
    de Vos, L., Biemans, H., Doelman, J. C., Stehfest, E. & Van Vuuren, D. P. Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environ. Res. Lett. 16, 115003 (2021).Article 

    Google Scholar 
    Alcamo, J. et al. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 48, 317–337 (2003).Article 

    Google Scholar 
    Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).Article 

    Google Scholar 
    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. https://doi.org/10.1002/2014WR015638 (2014).Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M. & Bierkens, M. F. P. Reconciling high altitude precipitation with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 12, 4755–4784 (2015).
    Google Scholar 
    Harmonized World Soil Database (v.1.2) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012); https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/ru/Boer, F. D. HiHydroSoil: A High Resolution Soil Map of Hydraulic Properties v.1.2 (FutureWater, 2016).Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).Article 
    CAS 

    Google Scholar 
    Defourny, P. et al. GLOBCOVER: A 300 m global land cover product for 2005 using ENVISAT MERIS time series. In Proc. ISPRS Commission VII Mid-Term Symposium: Remote Sensing: From Pixels to Processes (eds Kerle, N. & Skidmore, A.) (International Society of Photogrammetry and Remote Sensing, 2007).Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).Article 

    Google Scholar 
    Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).Article 

    Google Scholar 
    AQUASTAT database (FAO, 2016); https://www.fao.org/aquastat/en/Arendt, A. et al. Randolph Glacier Inventory [5.0]: A Dataset of Global Glacier Outlines, v.5.0 (Global Land Ice Measurements from Space (GLIMS), 2015); https://www.glims.org/RGI/van Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).Article 

    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).Article 

    Google Scholar 
    Stehfest, E., et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0.—Model Description and Policy Applications (Netherlands Environmental Assessment Agency, 2014).Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M. & van Vuuren, D. P. Long-term water demand for electricity, industry and households. Environ. Sci. Policy 55, 75–86 (2016).Article 

    Google Scholar 
    Doelman, J. C. et al. Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change 48, 119–135 (2018).Article 

    Google Scholar 
    Hall, D. K. & Riggs, G. A. MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, v.6. National Snow and Ice Data Center https://doi.org/10.5067/MODIS/MOD10CM.006 (2015).Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).Article 
    CAS 

    Google Scholar 
    Pellicciotti, F., Buergi, C., Immerzeel, W. W., Konz, M. & Shrestha, A. B. Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: suggestions for calibration strategies. Mt. Res. Dev. 32, 39–50 (2012).Article 

    Google Scholar 
    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—a discussion of principles. J. Hydrol. 10, 282–290 (1970).Article 

    Google Scholar 
    Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).Article 

    Google Scholar 
    Food Balance Sheets. A Handbook (FAO, 2001). More

  • in

    A clearer view of Earth’s water cycle via neural networks and satellite data

    To manage and protect water resources, it is necessary to understand the water cycle. Passive microwave radiometers onboard satellites are used to monitor water resources, like soil moisture. However, microwave sensors, such as radiometers, are too coarse to see small-scale meteorological features, which can affect large-scale phenomena occurring within the water cycle. Other spaceborne instruments produce finer-resolution images, but these instruments are much more sensitive to cloud contamination, limiting their useful coverage. More

  • in

    A planetary boundary for green water

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 

    Google Scholar 
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015). Revises and updates the planetary boundaries framework, including a regional-scale planetary boundary for freshwater use based on environmental flow requirements.Article 

    Google Scholar 
    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).Article 

    Google Scholar 
    Gerten, D. et al. Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr. Opin. Environ. Sustain. 5, 551–558 (2013).Article 

    Google Scholar 
    Gleeson, T. et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 56, e2019WR024957 (2020). Provides an overview of the many roles of the water cycle for Earth system functioning and evidence-based justification for a water planetary boundary that represents more than blue water.Article 

    Google Scholar 
    Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).Article 

    Google Scholar 
    Karlberg, L., Rockström, J., Falkenmark, M. & Others. in Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P., Rockström, J. & Oweis, T.) 44–57 (CABI, 2009).Levy, M. C., Lopes, A. V., Cohn, A., Larsen, L. G. & Thompson, S. E. Land use change increases streamflow across the arc of deforestation in Brazil. Geophys. Res. Lett. 45, 3520–3530 (2018).Article 

    Google Scholar 
    Falkenmark, M., Wang-Erlandsson, L. & Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2, 100009 (2019).Article 

    Google Scholar 
    Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).Article 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).Article 

    Google Scholar 
    Gordon, L. J., Peterson, G. D. & Bennett, E. M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23, 211–219 (2008).Article 

    Google Scholar 
    Liu, J., Wang, B., Cane, M. A., Yim, S.-Y. & Lee, J.-Y. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493, 656–659 (2013).Article 

    Google Scholar 
    Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term ‘evapotranspiration’. Water Resour. Res. 56, e2020WR028055 (2020).Article 

    Google Scholar 
    Berg, A., Lintner, B. R., Findell, K. & Giannini, A. Uncertain soil moisture feedbacks in model projections of Sahel precipitation. Geophys. Res. Lett. 44, 6124–6133 (2017).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Tuinenburg, O. A. Atmospheric Effects of Irrigation in Monsoon Climate: The Indian Subcontinent. PhD thesis, Wageningen Univ. (2013).Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).Article 

    Google Scholar 
    Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).Article 

    Google Scholar 
    Shi, P. et al. Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China. Landsc. Ecol. 32, 1723–1738 (2017).Article 

    Google Scholar 
    Runyan, C. W., D’Odorico, P. & Lawrence, D. Physical and biological feedbacks of deforestation. Rev. Geophys. 50, RG4006 (2012).Article 

    Google Scholar 
    Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 22, 4311–4328 (2018).Article 

    Google Scholar 
    Lo, M.-H. & Famiglietti, J. S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 40, 301–306 (2013).Article 

    Google Scholar 
    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).Article 

    Google Scholar 
    Pitman, A. J. et al. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth Syst. Dyn. 3, 213–231 (2012).Article 

    Google Scholar 
    Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. NPJ Clim. Atmos. Sci. 2, 24 (2019).Article 

    Google Scholar 
    Pascale, S., Lucarini, V., Feng, X., Porporato, A. & ul Hasson, S. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim. Dyn. 46, 1331–1350 (2016).Article 

    Google Scholar 
    Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).Article 

    Google Scholar 
    Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).Article 

    Google Scholar 
    Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021 (2021).Article 

    Google Scholar 
    Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).Article 

    Google Scholar 
    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).Article 

    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).Article 

    Google Scholar 
    Staver, C. A., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article 

    Google Scholar 
    Vico, G., Dralle, D., Feng, X., Thompson, S. & Manzoni, S. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach. Environ. Res. Lett. 12, 065006 (2017).Article 

    Google Scholar 
    Duke, N. C., Field, C., Mackenzie, J. R., Meynecke, J.-O. & Wood, A. L. Rainfall and its possible hysteresis effect on the proportional cover of tropical tidal-wetland mangroves and saltmarsh–saltpans. Mar. Freshw. Res. 70, 1047–1055 (2019).Article 

    Google Scholar 
    Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).Article 

    Google Scholar 
    Liu, Z. et al. Precipitation thresholds regulate net carbon exchange at the continental scale. Nat. Commun. 9, 3596 (2018).Article 

    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).Article 

    Google Scholar 
    Souza, R. et al. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests. Hydrol. Process. 30, 3583–3595 (2016).Article 

    Google Scholar 
    Rohr, T., Manzoni, S., Feng, X., Menezes, R. S. C. & Porporato, A. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J. Geophys. Res. Biogeosci. 118, 1156–1167 (2013).Article 

    Google Scholar 
    Vezzoli, R., De Michele, C., Pavlopoulos, H. & Scholes, R. J. Dryland ecosystems: The coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality. Phys. Rev. E 77, 051908 (2008).Article 

    Google Scholar 
    Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).Article 

    Google Scholar 
    Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).Article 

    Google Scholar 
    Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170411 (2018).Article 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). Extensive observation-based analyses show that net carbon uptake has peaked in the Amazon, and, more recently, also in African rainforests.Article 

    Google Scholar 
    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).Article 

    Google Scholar 
    Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).Article 

    Google Scholar 
    Eekhout, J. P. C., Hunink, J. E., Terink, W. & de Vente, J. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci. 22, 5935–5946 (2018).Article 

    Google Scholar 
    Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).Article 

    Google Scholar 
    Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).Article 

    Google Scholar 
    Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).Article 

    Google Scholar 
    Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005).Article 

    Google Scholar 
    Rost, S., Gerten, D. & Heyder, U. Human alterations of the terrestrial water cycle through land management. Adv. Geosci. 18, 43–50 (2008).Article 

    Google Scholar 
    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956 (2015).Article 

    Google Scholar 
    Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).Article 

    Google Scholar 
    Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270 (2007).Article 

    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).Article 

    Google Scholar 
    Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS One 11, e0151993 (2016).Article 

    Google Scholar 
    Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).Article 

    Google Scholar 
    Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).Article 

    Google Scholar 
    Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).Article 

    Google Scholar 
    Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).Article 

    Google Scholar 
    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).Article 

    Google Scholar 
    Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).Article 

    Google Scholar 
    Lee, J.-E., Lintner, B. R., Kevin Boyce, C. & Lawrence, P. J. Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophys. Res. Lett. 38, L19706 (2011).
    Google Scholar 
    Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).Article 

    Google Scholar 
    Bruijnzeel, L. A. Hydrological functions of tropical forests: not seeing the soil for the trees? Agric. Ecosyst. Environ. 104, 185–228 (2004).Article 

    Google Scholar 
    van Luijk, G., Cowling, R. M., Riksen, M. J. P. M. & Glenday, J. Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. J. Arid Environ. 91, 14–21 (2013).Article 

    Google Scholar 
    Robinson, D. A. et al. Experimental evidence for drought induced alternative stable states of soil moisture. Sci. Rep. 6, 20018 (2016). Manipulation experiments demonstrate the presence of drought-driven irreversible tipping points of soil moisture states, in support of previous modelling and observation-based studies.Article 

    Google Scholar 
    Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).Article 

    Google Scholar 
    Panagos, P. et al. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54, 438–447 (2015).Article 

    Google Scholar 
    Bonfils, C. J. W. et al. Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Clim. Change 10, 726–731 (2020).Article 

    Google Scholar 
    Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).Article 

    Google Scholar 
    Budyko, M. I. Climate and Life (Academic Press, 1974).Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).Article 

    Google Scholar 
    Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. USA 110, 565–570 (2013).Article 

    Google Scholar 
    Murray-Tortarolo, G. et al. The dry season intensity as a key driver of NPP trends. Geophys. Res. Lett. 43, 2632–2639 (2016).Article 

    Google Scholar 
    Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).Article 

    Google Scholar 
    Meir, P. et al. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. Bioscience 65, 882–892 (2015).Article 

    Google Scholar 
    Brookshire, E. N. J. & Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 6, 7148 (2015).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).Article 

    Google Scholar 
    Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).Article 

    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). Shows that soil moisture variability substantially reduces the carbon land uptake due to non-linear ecological responses to water availability and land–atmosphere interactions.Article 

    Google Scholar 
    Quan, Q. et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (2019).Article 

    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).Article 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).Article 

    Google Scholar 
    Kerr, D. D. & Ochsner, T. E. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil Sci. Soc. Am. J. 84, 587–596 (2020).Article 

    Google Scholar 
    Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).Article 

    Google Scholar 
    Zhang, W. et al. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ. Res. Lett. 8, 034023 (2013).Article 

    Google Scholar 
    Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).Article 

    Google Scholar 
    Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).Article 

    Google Scholar 
    Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).Article 

    Google Scholar 
    Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016). Shows that a bimodal pattern in global soil pH distribution is regulated by annual water balance and suggests that human-driven changes in aridity can result in transitions from alkaline to acid soils, with unknown implications for soil nutrients supply and biomass production.Article 

    Google Scholar 
    Moreno-Jiménez, E. et al. Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2, 371–377 (2019).Article 

    Google Scholar 
    Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).Article 

    Google Scholar 
    Rabbi, S. M. F. et al. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci. Rep. 5, 17866 (2015).Article 

    Google Scholar 
    Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).Article 

    Google Scholar 
    Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).Article 

    Google Scholar 
    Whan, K. et al. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extremes 9, 57–67 (2015).Article 

    Google Scholar 
    Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2011).Article 

    Google Scholar 
    Hauser, M., Orth, R. & Seneviratne, S. I. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 43, 2819–2826 (2016).Article 

    Google Scholar 
    Yang, L., Sun, G., Zhi, L. & Zhao, J. Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep. 8, 4026 (2018).Article 

    Google Scholar 
    Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).Article 

    Google Scholar 
    Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & de Arellano, J. V.-G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).Article 

    Google Scholar 
    Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020). Analyses based on tree-ring data over the past 260 years show an abrupt shift that could potentially be explained by self-amplifying feedbacks of soil moisture deficit and surface warming, which points towards risk for an irreversible tipping point in the East Asian climate system under climate change.Article 

    Google Scholar 
    Wang, Y. et al. Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Sci. Rep. 8, 12171 (2018).Article 

    Google Scholar 
    Feng, M. et al. Understanding the resilience of soil moisture regimes. Water Resour. Res. 55, 7541–7563 (2019).Article 

    Google Scholar 
    Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883–1888 (2017).Article 

    Google Scholar 
    D’Odorico, P. & Porporato, A. Preferential states in soil moisture and climate dynamics. Proc. Natl Acad. Sci. USA 101, 8848–8851 (2004).Article 

    Google Scholar 
    Rodriguez-Iturbe, I., Entekhabi, D., Lee, J.-S. & Bras, R. L. Nonlinear dynamics of soil moisture at climate scales: 2. Chaotic analysis. Water Resour. Res. 27, 1907–1915 (1991).Article 

    Google Scholar 
    Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).Article 

    Google Scholar 
    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).Article 

    Google Scholar 
    Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).Article 

    Google Scholar 
    Coenders-Gerrits, A. M. J. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).Article 

    Google Scholar 
    Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).Article 

    Google Scholar 
    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).Article 

    Google Scholar 
    Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).Article 

    Google Scholar 
    Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).Article 

    Google Scholar 
    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2018).Article 

    Google Scholar 
    Ghannam, K. et al. Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res. 52, 1427–1445 (2016).Article 

    Google Scholar 
    Entin, J. K. et al. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. 105, 11865–11877 (2000).Article 

    Google Scholar 
    Famiglietti, C. A., Michalak, A. M. & Konings, A. G. Extreme wet events as important as extreme dry events in controlling spatial patterns of vegetation greenness anomalies. Environ. Res. Lett. 16, 074014 (2021).Article 

    Google Scholar 
    Wieners, K.-H. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6595 (2019).Jungclaus, J. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 PMIP midHolocene. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6644 (2019).Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).Article 

    Google Scholar 
    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).Article 

    Google Scholar 
    Dallmeyer, A. et al. Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Clim. Past 17, 2481–2513 (2021).Article 

    Google Scholar 
    Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).Article 

    Google Scholar 
    Jaramillo, F. & Destouni, G. Comment on ‘Planetary boundaries: Guiding human development on a changing planet’. Science 348, 1217 (2015).Article 

    Google Scholar 
    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soci. 22, 8 (2017).Article 

    Google Scholar 
    Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).Article 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 

    Google Scholar 
    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).Article 

    Google Scholar 
    Zhu, Z. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg5673 (2021).Article 

    Google Scholar 
    Wang, S. et al. Response to Comments on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg7484 (2021).Article 

    Google Scholar 
    Sang, Y. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg4420 (2021).Article 

    Google Scholar 
    Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg2947 (2021).Article 

    Google Scholar 
    Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).Article 

    Google Scholar 
    Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).Article 

    Google Scholar 
    Adams, M. A., Buckley, T. N. & Turnbull, T. L. Diminishing CO2-driven gains in water-use efficiency of global forests. Nat. Clim. Change 10, 466–471 (2020).Article 

    Google Scholar 
    Ravi, S., Breshears, D. D., Huxman, T. E. & D’Odorico, P. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116, 236–245 (2010).Article 

    Google Scholar 
    Miralles, D. G. et al. Contribution of water-limited ecoregions to their own supply of rainfall. Environ. Res. Lett. 11, 124007 (2016).Article 

    Google Scholar 
    Keys, P. W. et al. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9, 733–746 (2012).Article 

    Google Scholar 
    Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 12, 2489 (2021).Article 

    Google Scholar 
    Zhou, S., Zhang, Y., Park Williams, A. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).Article 

    Google Scholar 
    Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).Article 

    Google Scholar 
    Ford, T. W. & Frauenfeld, O. W. Surface–atmosphere moisture interactions in the frozen ground regions of Eurasia. Sci. Rep. 6, 19163 (2016).Article 

    Google Scholar 
    Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).Article 

    Google Scholar 
    Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 

    Google Scholar 
    Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7, 4765 (2017).Article 

    Google Scholar 
    Jensen, L., Eicker, A., Dobslaw, H., Stacke, T. & Humphrey, V. Long-term wetting and drying trends in land water storage derived from GRACE and CMIP5 models. J. Geophys. Res. Atmos. 124, 9808–9823 (2019).Article 

    Google Scholar 
    Samset, B. H., Fuglestvedt, J. S. & Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 11, 3261 (2020).Article 

    Google Scholar 
    te Wierik, S. A., Gupta, J., Cammeraat, E. L. H. & Artzy-Randrup, Y. A. The need for green and atmospheric water governance. Wiley Interdiscip. Rev. Water 7, e1406 (2020). Provides rationales for the need for regulating and governing human interference with green water and atmospheric water.Article 

    Google Scholar 
    Young, O. R. Institutional Dynamics: Emergent Patterns in International Environmental Governance (MIT Press, 2010).Schmidt, F. in Transgovernance: Advancing Sustainability Governance (ed. Meuleman, L.) 215–234 (Springer, 2013).Lal, R. et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 25, e00398 (2021).Article 

    Google Scholar 
    Falkenmark, M. & Rockström, J. The new blue and green water paradigm: Breaking new ground for water pesources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).Article 

    Google Scholar 
    Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015-2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).
    Google Scholar 
    Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earths Future 8, e2019EF001377 (2020).Article 

    Google Scholar 
    Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From planetary boundaries to national fair shares of the global safe operating space — How can the scales be bridged? Glob. Environ. Change 40, 60–72 (2016).Article 

    Google Scholar 
    Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28, 227–238 (2014).Article 

    Google Scholar 
    Bjørn, A. et al. Challenges and opportunities towards improved application of the planetary boundary for land-system change in life cycle assessment of products. Sci. Total. Environ. 696, 133964 (2019).Article 

    Google Scholar 
    Bunsen, J., Berger, M. & Finkbeiner, M. Planetary boundaries for water–A review. Ecol. Indic. 121, 107022 (2021).Article 

    Google Scholar 
    Link, A., van der Ent, R., Berger, M., Eisner, S. & Finkbeiner, M. The fate of land evaporation–a global dataset. Earth Syst. Sci. Data 12, 1897–1912 (2020).Article 

    Google Scholar 
    van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).
    Google Scholar 
    Schyns, J. F., Hoekstra, A. Y. & Booij, M. J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 19, 4581–4608 (2015).Article 

    Google Scholar 
    Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).Article 

    Google Scholar 
    Dalby, S. Framing the Anthropocene: The good, the bad and the ugly. Anthropocene Rev. 3, 33–51 (2016).Article 

    Google Scholar 
    Tainter, J. A. in The Way the Wind Blows: Climate, History, and Human Action (eds McIntosh, R. J., Tainter, J. A. & McIntosh, S. K.) 331 (Columbia University Press, 2000).Ripl, W. Water: the bloodstream of the biosphere. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1921–1934 (2003).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 

    Google Scholar 
    Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C. & Daliakopoulos, I. N. Regionalizing root-zone soil moisture estimates from ESA CCI soil water index using machine learning and information on soil, vegetation, and climate. Water Resour. Res. 57, e2020WR029249 (2021).Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018). Shows that the simplistic representations of soil moisture stress across global vegetation models cause major uncertainties in estimated land carbon sink under climate change.Article 

    Google Scholar 
    Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Sci. Data 7, 236 (2020).Article 

    Google Scholar 
    Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).Article 

    Google Scholar 
    Kageyama, M. et al. The PMIP4 contribution to CMIP6–Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).Article 

    Google Scholar 
    Dorigo, W. et al. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 25, 5749–5804 (2021).Article 

    Google Scholar 
    Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).Article 

    Google Scholar 
    Bouaziz, L. J. E. et al. Improved understanding of the link between catchment-scale vegetation accessible storage and satellite-derived Soil Water Index. Water Resour. Res. 56, e2019WR026365 (2020).Article 

    Google Scholar 
    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 

    Google Scholar 
    Tian, S., Renzullo, L. J., van Dijk, A. I. J. M., Tregoning, P. & Walker, J. P. Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrol. Earth Syst. Sci. 23, 1067–1081 (2019).Article 

    Google Scholar 
    Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017). Shows that rooting depths globally are highly adaptive to hydroclimate, topography and soil hydrology, with implications for improving the representation of plant–water interactions in Earth system models.Article 

    Google Scholar 
    Kleidon, A. Global datasets of rooting zone depth inferred from inverse methods. J. Clim. 17, 2714–2722 (2004).Article 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 

    Google Scholar 
    Vereecken, H. et al. Infiltration from the pedon to global grid scales: An overview and outlook for land surface modelling. Vadose Zone J. 18, 1–53 (2019).Article 

    Google Scholar 
    Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockström, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions. Environ. Res. Lett. 15, 124021 (2020).Article 

    Google Scholar 
    Sakschewski, B. et al. Variable tree rooting strategies improve tropical productivity and evapotranspiration in a dynamic global vegetation model. Biogeosciences 27, 1–35 (2020).
    Google Scholar 
    Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Article 

    Google Scholar 
    Biermann, F. & Kim, R. E. The boundaries of the Planetary Boundary framework: A critical appraisal of approaches to define a “safe operating space” for humanity. Annu. Rev. Environ. Resour. 45, 497–521 (2020).Article 

    Google Scholar 
    Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Tóth, F. L. & Hasselmann, K. The tolerable windows approach: theoretical and methodological foundations. Clim. Change 41, 303–331 (1999).Article 

    Google Scholar 
    Ziegler, R., Gerten, D. & Döll, P. in Global Water Ethics (eds Ziegler, R. & Groenfeldt, D.) 109–130 (Routledge, 2017).Sivapalan, M. & Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 51, 6988–7022 (2015).Article 

    Google Scholar 
    Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).Article 

    Google Scholar 
    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).Article 

    Google Scholar 
    von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 (2018).Article 

    Google Scholar  More

  • in

    Groundwater extraction poses extreme threat to Doñana World Heritage Site

    Gaget, E. et al. Conserv. Biol. 35, 834–845 (2021).Article 

    Google Scholar 
    Green, A. J. et al. in The Wetland Book II. Distribution, Description and Conservation (eds. Finlayson, C. M. et al.) 1123–1136 (Springer, 2018).Sergio, F. et al. Oecologia 166, 79–90 (2011).Article 

    Google Scholar 
    Scheffer, M. et al. Science 347, 1317–1319 (2015).CAS 
    Article 

    Google Scholar 
    Green, A. J. et al. Front. Ecol. Environ. 15, 99–107 (2017).Article 

    Google Scholar 
    Ruaro, R. & Laurance, W. F. Nat. Ecol. Evol. 6, 120–121 (2022).Article 

    Google Scholar 
    Paredes, I. et al. Wetlands Ecol. Manage. 29, 41–65 (2021).CAS 
    Article 

    Google Scholar 
    Rodríguez-Rodríguez, M. et al. Wetlands 41, 25 (2021).Article 

    Google Scholar 
    Campo-Celada, M. et al. Oikos https://doi.org/10.1111/oik.08387 (2022).Almaraz, P., Green, A. J., Aguilera, E., Rendón, M. A. & Bustamante, J. J. Anim. Ecol. 81, 1113–1125 (2012).Article 

    Google Scholar  More

  • in

    The ditches that accidentally boosted a thirsty region’s water supply

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    A century of groundwater accumulation in Pakistan and northwest India

    Siebert, S., Portmann, F. T. & Döll, P. Global patterns of cropland use intensity. Remote Sens. 2, 1625–1643 (2010).Article 

    Google Scholar 
    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).Article 

    Google Scholar 
    Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL039401 (2009).Chen, J., Li, J., Zhang, Z. & Ni, S. Long-term groundwater variations in northwest India from satellite gravity measurements. Glob. Planet. Change 116, 130–138 (2014).Article 

    Google Scholar 
    Bhanja, S. N. & Mukherjee, A. In situ and satellite-based estimates of usable groundwater storage across India: implications for drinking water supply and food security. Adv. Water Resour. 126, 15–23 (2019).Article 

    Google Scholar 
    Tang, Y. et al. Reconstructing annual groundwater storage changes in a large-scale irrigation region using GRACE data and Budyko model. J. Hydrol. 551, 397–406 (2017).Article 

    Google Scholar 
    Ahmed, K., Shahid, S., Demirel, M. C., Nawaz, N. & Khan, N. The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeol. J. 27, 2485–2496 (2019).Article 

    Google Scholar 
    Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).Article 

    Google Scholar 
    MacDonald, A. M. et al. Groundwater quality and depletion in the Indo-Gangetic basin mapped from in situ observations. Nat. Geosci. 9, 762–766 (2016).Article 

    Google Scholar 
    Basharat, M., Umair Ali, S. & Azhar, A. H. Spatial variation in irrigation demand and supply across canal commands in Punjab: a real integrated water resources management challenge. Water Policy 16, 397–421 (2013).Article 

    Google Scholar 
    Irfan, M., Qadir, A., Ali, H., Jamil, N. & Ahmad, S. R. Vulnerability of Environmental Resources in Indus Basin after the Development of Irrigation System (Intechopen, 2019).Shah, T. Taming the Anarchy: Groundwater Governance in South Asia (Routledge, 2010).Tahir, Z. & Habib, Z. Land and Water Productivity: Trends Across Punjab Canal Commands Vol. 14 (IWMI, 2001).Van Dijk, W. M. et al. Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133319871941 (2020).Lapworth, D. J. et al. Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India. Geophys. Res. Lett. 42, 7554–7562 (2015).Article 

    Google Scholar 
    Raza, A., Latif, M. & Shakir, A. S. Long-term effectiveness of lining tertiary canals in the Indus basin of Pakistan. Irrig. Drain. 62, 16–24 (2013).Article 

    Google Scholar 
    Mukherji, A. Sustainable groundwater management in India needs a water–energy–food nexus approach. Appl. Econ. Perspect. Policy 44, 394–410 (2020).Panda, D. K. & Wahr, J. Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Water Resour. Res. 52, 135–149 (2016).Article 

    Google Scholar 
    Tripathi, A., Mishra, A. K. & Verma, G. Impact of preservation of subsoil water act on groundwater depletion: the case of Punjab, India. Environ. Manage. 58, 48–59 (2016).Article 

    Google Scholar 
    Watto, M. A., Mugera, A. W., Kingwell, R. & Saqab, M. M. Re-thinking the unimpeded tube-well growth under the depleting groundwater resources in the Punjab, Pakistan. Hydrogeol. J. 26, 2411–2425 (2018).Article 

    Google Scholar 
    Greenman, D. W., Bennett, G. D. & Swarzenski, W. V. Ground-Water Hydrology of the Punjab, West Pakistan, with Emphasis on Problems Caused by Canal Irrigation (US Government Printing Office, 1967).Jeevandas, A., Singh, R. & Kumar, R. Concerns of groundwater depletion and irrigation efficiency in Punjab agriculture: a micro-level study. Agric. Econ. Res. Rev. 21, 191–199 (2008).
    Google Scholar 
    Shekhar, S. et al. Modelling water levels of northwestern India in response to improved irrigation use efficiency. Sci. Rep. 10, 13452 (2020).Article 

    Google Scholar 
    Ground-Water Studies in the Ghaggar River basin in Punjab, Haryana and Rajasthan Final Technical Report Vol. 1 (UNDP, 1985).Long, D., Chen, X. & Scanlon, B. et al. Have GRACE satellites overestimated groundwater depletion in the northwest India aquifer? Sci. Rep. 6, 24398 (2016).Article 

    Google Scholar 
    Joshi, S. K., Gupta, S., Sinha, R., Densmore, A. L., Rai, S. P., Shekhar, S. & van Dijk, W. M. Strongly heterogeneous patterns of groundwater depletion in northwestern India. J. Hydrol. 598, 126492 (2021).Article 

    Google Scholar 
    Joshi, S. K. et al. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (Δ18O, Δ2H and 3H). J. Hydrol. 559, 835–847 (2018).Article 

    Google Scholar 
    O’Keeffe, J. et al. Isolating the impacts of anthropogenic water use within the hydrological regime of north India. Earth Surf. Process. Landf. 45, 1217–1228 (2019).Erenstein, O. Comparing water management in rice–wheat production systems in Haryana, India and Punjab, Pakistan. Agric. Water Manage. 96, 1799–1806 (2009).Article 

    Google Scholar 
    Zaveri, E. et al. Invisible water, visible impact: groundwater use and Indian agriculture under climate change. Environ. Res. Lett. 11, 084005 (2016).Article 

    Google Scholar 
    Shah, T. Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res. Lett. 4, 035005 (2009).Article 

    Google Scholar 
    Mishra, V. Long-term (1870–2018) drought reconstruction in context of surface water security in India. J. Hydrol. 580, 124228 (2020).Article 

    Google Scholar 
    Devanand, A., Huang, M., Ashfaq, M., Barik, B. & Ghosh, S. Choice of irrigation water management practice affects Indian summer monsoon rainfall and its extremes. Geophys. Res. Lett. 46, 9126–9135 (2019).Article 

    Google Scholar 
    Laghari, A., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).Article 

    Google Scholar 
    Wijngaard, R. R. et al. Climate change vs. socio-economic development: understanding the future South Asian water gap. Hydrol. Earth Syst. Sci. 22, 6297–6321 (2018).Article 

    Google Scholar 
    Butler, J. J., Bohling, G. C., Whittemore, D. O. & Wilson, B. B. A roadblock on the path to aquifer sustainability: underestimating the impact of pumping reductions. Environ. Res. Lett. 15, 014003 (2020).Article 

    Google Scholar 
    Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty-first century. Earths Future 7, 123–135 (2019).Article 

    Google Scholar 
    Khan, S., Rana, T., Gabriel, H. & Ullah, M. K. Hydrogeologic assessment of escalating groundwater exploitation in the Indus basin, Pakistan. Hydrogeol. J. 16, 1635–1654 (2008).Article 

    Google Scholar 
    Mekonnen, D., Siddiqi, A. & Ringler, C. Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan’s Indus basin irrigation system. Int. J. Water Resour. Dev. 32, 459–476 (2016).Article 

    Google Scholar 
    Report of the 5th Census of Minor Irrigation Schemes (Ministry of Water Resources, 2017).Qureshi, A. S., Tushaar, S. & Mujeeb, A. The Groundwater Economy of Pakistan (IWMI, 2003).Bennett, G. D. Analysis of aquifer tests in the Punjab region of West Pakistan (US Government Printing Office, 1967).Bonsor, H. C. et al. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeol. J. 25, 1377–1406 (2017).Article 

    Google Scholar 
    Lapworth, D. J. et al. Groundwater quality in the alluvial aquifer system of northwest India: new evidence of the extent of anthropogenic and geogenic contamination. Sci. Total Environ. 599–600, 1433–1444 (2017).Article 

    Google Scholar 
    Krishan, G. et al. Isotopes (δ18O, δD and 3H) variations in groundwater with emphasis on salinization in the State of Punjab, India. Sci. Total Environ. 148051 (2021).Punjab Development Statistics 2003 (Bureau of Statistics, 2003).Punjab Development Statistics 2019 (Bureau of Statistics, 2019).Statistical Abstract of Punjab 2019 (Economic and Statistical Organisation, 2019).Statistical Abstract of Haryana 2018–19 (Department of Economic and Statistical Analysis, 2020).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982).Article 

    Google Scholar 
    McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology Vol. 17, 179–183 (1993). More

  • in

    Author Correction: Storing frozen water to adapt to climate change

    In the version of this article initially published, there was a misstatement in the third paragraph, fourth sentence, now reading in part, “Now hundreds of farmers and villagers in this cold, arid desert use the ice stupas to save the water that flows in autumn,” where “hundreds” has replaced “dozens.”. In the fifth from last paragraph, “University of Applied Sciences in Lucerne” has replaced “….Life Sciences.”After this article was published, a highly relevant paper followed, which is now referenced to enhance understanding. It is cited in the eighth paragraph, following the quote “‘Seventy-eight percent of the water used is lost during the ice stupa formation,’ said Balasubramanian6,” and provided below. The changes have been made to the HTML and PDF versions of the article. More