Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article
Google Scholar
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015). Revises and updates the planetary boundaries framework, including a regional-scale planetary boundary for freshwater use based on environmental flow requirements.Article
Google Scholar
Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).Article
Google Scholar
Gerten, D. et al. Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr. Opin. Environ. Sustain. 5, 551–558 (2013).Article
Google Scholar
Gleeson, T. et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 56, e2019WR024957 (2020). Provides an overview of the many roles of the water cycle for Earth system functioning and evidence-based justification for a water planetary boundary that represents more than blue water.Article
Google Scholar
Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).Article
Google Scholar
Karlberg, L., Rockström, J., Falkenmark, M. & Others. in Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P., Rockström, J. & Oweis, T.) 44–57 (CABI, 2009).Levy, M. C., Lopes, A. V., Cohn, A., Larsen, L. G. & Thompson, S. E. Land use change increases streamflow across the arc of deforestation in Brazil. Geophys. Res. Lett. 45, 3520–3530 (2018).Article
Google Scholar
Falkenmark, M., Wang-Erlandsson, L. & Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2, 100009 (2019).Article
Google Scholar
Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).Article
Google Scholar
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).Article
Google Scholar
Gordon, L. J., Peterson, G. D. & Bennett, E. M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23, 211–219 (2008).Article
Google Scholar
Liu, J., Wang, B., Cane, M. A., Yim, S.-Y. & Lee, J.-Y. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493, 656–659 (2013).Article
Google Scholar
Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term ‘evapotranspiration’. Water Resour. Res. 56, e2020WR028055 (2020).Article
Google Scholar
Berg, A., Lintner, B. R., Findell, K. & Giannini, A. Uncertain soil moisture feedbacks in model projections of Sahel precipitation. Geophys. Res. Lett. 44, 6124–6133 (2017).Article
Google Scholar
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).Article
Google Scholar
Tuinenburg, O. A. Atmospheric Effects of Irrigation in Monsoon Climate: The Indian Subcontinent. PhD thesis, Wageningen Univ. (2013).Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).Article
Google Scholar
Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).Article
Google Scholar
Shi, P. et al. Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China. Landsc. Ecol. 32, 1723–1738 (2017).Article
Google Scholar
Runyan, C. W., D’Odorico, P. & Lawrence, D. Physical and biological feedbacks of deforestation. Rev. Geophys. 50, RG4006 (2012).Article
Google Scholar
Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 22, 4311–4328 (2018).Article
Google Scholar
Lo, M.-H. & Famiglietti, J. S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 40, 301–306 (2013).Article
Google Scholar
Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).Article
Google Scholar
Pitman, A. J. et al. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth Syst. Dyn. 3, 213–231 (2012).Article
Google Scholar
Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. NPJ Clim. Atmos. Sci. 2, 24 (2019).Article
Google Scholar
Pascale, S., Lucarini, V., Feng, X., Porporato, A. & ul Hasson, S. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim. Dyn. 46, 1331–1350 (2016).Article
Google Scholar
Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).Article
Google Scholar
Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).Article
Google Scholar
Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021 (2021).Article
Google Scholar
Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).Article
Google Scholar
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).Article
Google Scholar
Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).Article
Google Scholar
Staver, C. A., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article
Google Scholar
Vico, G., Dralle, D., Feng, X., Thompson, S. & Manzoni, S. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach. Environ. Res. Lett. 12, 065006 (2017).Article
Google Scholar
Duke, N. C., Field, C., Mackenzie, J. R., Meynecke, J.-O. & Wood, A. L. Rainfall and its possible hysteresis effect on the proportional cover of tropical tidal-wetland mangroves and saltmarsh–saltpans. Mar. Freshw. Res. 70, 1047–1055 (2019).Article
Google Scholar
Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).Article
Google Scholar
Liu, Z. et al. Precipitation thresholds regulate net carbon exchange at the continental scale. Nat. Commun. 9, 3596 (2018).Article
Google Scholar
Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).Article
Google Scholar
Souza, R. et al. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests. Hydrol. Process. 30, 3583–3595 (2016).Article
Google Scholar
Rohr, T., Manzoni, S., Feng, X., Menezes, R. S. C. & Porporato, A. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J. Geophys. Res. Biogeosci. 118, 1156–1167 (2013).Article
Google Scholar
Vezzoli, R., De Michele, C., Pavlopoulos, H. & Scholes, R. J. Dryland ecosystems: The coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality. Phys. Rev. E 77, 051908 (2008).Article
Google Scholar
Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).Article
Google Scholar
Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).Article
Google Scholar
Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170411 (2018).Article
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). Extensive observation-based analyses show that net carbon uptake has peaked in the Amazon, and, more recently, also in African rainforests.Article
Google Scholar
Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).Article
Google Scholar
Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).Article
Google Scholar
Eekhout, J. P. C., Hunink, J. E., Terink, W. & de Vente, J. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci. 22, 5935–5946 (2018).Article
Google Scholar
Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).Article
Google Scholar
Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).Article
Google Scholar
Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).Article
Google Scholar
Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005).Article
Google Scholar
Rost, S., Gerten, D. & Heyder, U. Human alterations of the terrestrial water cycle through land management. Adv. Geosci. 18, 43–50 (2008).Article
Google Scholar
Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956 (2015).Article
Google Scholar
Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).Article
Google Scholar
Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270 (2007).Article
Google Scholar
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).Article
Google Scholar
Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS One 11, e0151993 (2016).Article
Google Scholar
Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).Article
Google Scholar
Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).Article
Google Scholar
Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).Article
Google Scholar
Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).Article
Google Scholar
Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).Article
Google Scholar
Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).Article
Google Scholar
Lee, J.-E., Lintner, B. R., Kevin Boyce, C. & Lawrence, P. J. Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophys. Res. Lett. 38, L19706 (2011).
Google Scholar
Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).Article
Google Scholar
Bruijnzeel, L. A. Hydrological functions of tropical forests: not seeing the soil for the trees? Agric. Ecosyst. Environ. 104, 185–228 (2004).Article
Google Scholar
van Luijk, G., Cowling, R. M., Riksen, M. J. P. M. & Glenday, J. Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. J. Arid Environ. 91, 14–21 (2013).Article
Google Scholar
Robinson, D. A. et al. Experimental evidence for drought induced alternative stable states of soil moisture. Sci. Rep. 6, 20018 (2016). Manipulation experiments demonstrate the presence of drought-driven irreversible tipping points of soil moisture states, in support of previous modelling and observation-based studies.Article
Google Scholar
Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).Article
Google Scholar
Panagos, P. et al. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54, 438–447 (2015).Article
Google Scholar
Bonfils, C. J. W. et al. Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Clim. Change 10, 726–731 (2020).Article
Google Scholar
Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).Article
Google Scholar
Budyko, M. I. Climate and Life (Academic Press, 1974).Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).Article
Google Scholar
Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. USA 110, 565–570 (2013).Article
Google Scholar
Murray-Tortarolo, G. et al. The dry season intensity as a key driver of NPP trends. Geophys. Res. Lett. 43, 2632–2639 (2016).Article
Google Scholar
Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).Article
Google Scholar
Meir, P. et al. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. Bioscience 65, 882–892 (2015).Article
Google Scholar
Brookshire, E. N. J. & Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 6, 7148 (2015).Article
Google Scholar
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).Article
Google Scholar
Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).Article
Google Scholar
Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). Shows that soil moisture variability substantially reduces the carbon land uptake due to non-linear ecological responses to water availability and land–atmosphere interactions.Article
Google Scholar
Quan, Q. et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (2019).Article
Google Scholar
Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).Article
Google Scholar
Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).Article
Google Scholar
Kerr, D. D. & Ochsner, T. E. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil Sci. Soc. Am. J. 84, 587–596 (2020).Article
Google Scholar
Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).Article
Google Scholar
Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).Article
Google Scholar
Zhang, W. et al. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ. Res. Lett. 8, 034023 (2013).Article
Google Scholar
Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).Article
Google Scholar
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).Article
Google Scholar
Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).Article
Google Scholar
Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016). Shows that a bimodal pattern in global soil pH distribution is regulated by annual water balance and suggests that human-driven changes in aridity can result in transitions from alkaline to acid soils, with unknown implications for soil nutrients supply and biomass production.Article
Google Scholar
Moreno-Jiménez, E. et al. Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2, 371–377 (2019).Article
Google Scholar
Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).Article
Google Scholar
Rabbi, S. M. F. et al. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci. Rep. 5, 17866 (2015).Article
Google Scholar
Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).Article
Google Scholar
Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).Article
Google Scholar
Whan, K. et al. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extremes 9, 57–67 (2015).Article
Google Scholar
Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2011).Article
Google Scholar
Hauser, M., Orth, R. & Seneviratne, S. I. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 43, 2819–2826 (2016).Article
Google Scholar
Yang, L., Sun, G., Zhi, L. & Zhao, J. Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep. 8, 4026 (2018).Article
Google Scholar
Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).Article
Google Scholar
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & de Arellano, J. V.-G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).Article
Google Scholar
Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020). Analyses based on tree-ring data over the past 260 years show an abrupt shift that could potentially be explained by self-amplifying feedbacks of soil moisture deficit and surface warming, which points towards risk for an irreversible tipping point in the East Asian climate system under climate change.Article
Google Scholar
Wang, Y. et al. Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Sci. Rep. 8, 12171 (2018).Article
Google Scholar
Feng, M. et al. Understanding the resilience of soil moisture regimes. Water Resour. Res. 55, 7541–7563 (2019).Article
Google Scholar
Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883–1888 (2017).Article
Google Scholar
D’Odorico, P. & Porporato, A. Preferential states in soil moisture and climate dynamics. Proc. Natl Acad. Sci. USA 101, 8848–8851 (2004).Article
Google Scholar
Rodriguez-Iturbe, I., Entekhabi, D., Lee, J.-S. & Bras, R. L. Nonlinear dynamics of soil moisture at climate scales: 2. Chaotic analysis. Water Resour. Res. 27, 1907–1915 (1991).Article
Google Scholar
Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).Article
Google Scholar
Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).Article
Google Scholar
Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).Article
Google Scholar
Coenders-Gerrits, A. M. J. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).Article
Google Scholar
Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).Article
Google Scholar
Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).Article
Google Scholar
Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).Article
Google Scholar
Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).Article
Google Scholar
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2018).Article
Google Scholar
Ghannam, K. et al. Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res. 52, 1427–1445 (2016).Article
Google Scholar
Entin, J. K. et al. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. 105, 11865–11877 (2000).Article
Google Scholar
Famiglietti, C. A., Michalak, A. M. & Konings, A. G. Extreme wet events as important as extreme dry events in controlling spatial patterns of vegetation greenness anomalies. Environ. Res. Lett. 16, 074014 (2021).Article
Google Scholar
Wieners, K.-H. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6595 (2019).Jungclaus, J. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 PMIP midHolocene. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6644 (2019).Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).Article
Google Scholar
Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).Article
Google Scholar
Dallmeyer, A. et al. Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Clim. Past 17, 2481–2513 (2021).Article
Google Scholar
Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).Article
Google Scholar
Jaramillo, F. & Destouni, G. Comment on ‘Planetary boundaries: Guiding human development on a changing planet’. Science 348, 1217 (2015).Article
Google Scholar
Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soci. 22, 8 (2017).Article
Google Scholar
Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).Article
Google Scholar
Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article
Google Scholar
Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).Article
Google Scholar
Zhu, Z. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg5673 (2021).Article
Google Scholar
Wang, S. et al. Response to Comments on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg7484 (2021).Article
Google Scholar
Sang, Y. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg4420 (2021).Article
Google Scholar
Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg2947 (2021).Article
Google Scholar
Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).Article
Google Scholar
Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).Article
Google Scholar
Adams, M. A., Buckley, T. N. & Turnbull, T. L. Diminishing CO2-driven gains in water-use efficiency of global forests. Nat. Clim. Change 10, 466–471 (2020).Article
Google Scholar
Ravi, S., Breshears, D. D., Huxman, T. E. & D’Odorico, P. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116, 236–245 (2010).Article
Google Scholar
Miralles, D. G. et al. Contribution of water-limited ecoregions to their own supply of rainfall. Environ. Res. Lett. 11, 124007 (2016).Article
Google Scholar
Keys, P. W. et al. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9, 733–746 (2012).Article
Google Scholar
Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 12, 2489 (2021).Article
Google Scholar
Zhou, S., Zhang, Y., Park Williams, A. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).Article
Google Scholar
Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).Article
Google Scholar
Ford, T. W. & Frauenfeld, O. W. Surface–atmosphere moisture interactions in the frozen ground regions of Eurasia. Sci. Rep. 6, 19163 (2016).Article
Google Scholar
Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).Article
Google Scholar
Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article
Google Scholar
Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7, 4765 (2017).Article
Google Scholar
Jensen, L., Eicker, A., Dobslaw, H., Stacke, T. & Humphrey, V. Long-term wetting and drying trends in land water storage derived from GRACE and CMIP5 models. J. Geophys. Res. Atmos. 124, 9808–9823 (2019).Article
Google Scholar
Samset, B. H., Fuglestvedt, J. S. & Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 11, 3261 (2020).Article
Google Scholar
te Wierik, S. A., Gupta, J., Cammeraat, E. L. H. & Artzy-Randrup, Y. A. The need for green and atmospheric water governance. Wiley Interdiscip. Rev. Water 7, e1406 (2020). Provides rationales for the need for regulating and governing human interference with green water and atmospheric water.Article
Google Scholar
Young, O. R. Institutional Dynamics: Emergent Patterns in International Environmental Governance (MIT Press, 2010).Schmidt, F. in Transgovernance: Advancing Sustainability Governance (ed. Meuleman, L.) 215–234 (Springer, 2013).Lal, R. et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 25, e00398 (2021).Article
Google Scholar
Falkenmark, M. & Rockström, J. The new blue and green water paradigm: Breaking new ground for water pesources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).Article
Google Scholar
Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015-2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).Article
Google Scholar
Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).
Google Scholar
Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earths Future 8, e2019EF001377 (2020).Article
Google Scholar
Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From planetary boundaries to national fair shares of the global safe operating space — How can the scales be bridged? Glob. Environ. Change 40, 60–72 (2016).Article
Google Scholar
Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28, 227–238 (2014).Article
Google Scholar
Bjørn, A. et al. Challenges and opportunities towards improved application of the planetary boundary for land-system change in life cycle assessment of products. Sci. Total. Environ. 696, 133964 (2019).Article
Google Scholar
Bunsen, J., Berger, M. & Finkbeiner, M. Planetary boundaries for water–A review. Ecol. Indic. 121, 107022 (2021).Article
Google Scholar
Link, A., van der Ent, R., Berger, M., Eisner, S. & Finkbeiner, M. The fate of land evaporation–a global dataset. Earth Syst. Sci. Data 12, 1897–1912 (2020).Article
Google Scholar
van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).
Google Scholar
Schyns, J. F., Hoekstra, A. Y. & Booij, M. J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 19, 4581–4608 (2015).Article
Google Scholar
Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).Article
Google Scholar
Dalby, S. Framing the Anthropocene: The good, the bad and the ugly. Anthropocene Rev. 3, 33–51 (2016).Article
Google Scholar
Tainter, J. A. in The Way the Wind Blows: Climate, History, and Human Action (eds McIntosh, R. J., Tainter, J. A. & McIntosh, S. K.) 331 (Columbia University Press, 2000).Ripl, W. Water: the bloodstream of the biosphere. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1921–1934 (2003).Article
Google Scholar
Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article
Google Scholar
Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C. & Daliakopoulos, I. N. Regionalizing root-zone soil moisture estimates from ESA CCI soil water index using machine learning and information on soil, vegetation, and climate. Water Resour. Res. 57, e2020WR029249 (2021).Article
Google Scholar
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article
Google Scholar
Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018). Shows that the simplistic representations of soil moisture stress across global vegetation models cause major uncertainties in estimated land carbon sink under climate change.Article
Google Scholar
Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Sci. Data 7, 236 (2020).Article
Google Scholar
Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).Article
Google Scholar
Kageyama, M. et al. The PMIP4 contribution to CMIP6–Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).Article
Google Scholar
Dorigo, W. et al. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 25, 5749–5804 (2021).Article
Google Scholar
Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).Article
Google Scholar
Bouaziz, L. J. E. et al. Improved understanding of the link between catchment-scale vegetation accessible storage and satellite-derived Soil Water Index. Water Resour. Res. 56, e2019WR026365 (2020).Article
Google Scholar
Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article
Google Scholar
Tian, S., Renzullo, L. J., van Dijk, A. I. J. M., Tregoning, P. & Walker, J. P. Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrol. Earth Syst. Sci. 23, 1067–1081 (2019).Article
Google Scholar
Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article
Google Scholar
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017). Shows that rooting depths globally are highly adaptive to hydroclimate, topography and soil hydrology, with implications for improving the representation of plant–water interactions in Earth system models.Article
Google Scholar
Kleidon, A. Global datasets of rooting zone depth inferred from inverse methods. J. Clim. 17, 2714–2722 (2004).Article
Google Scholar
McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article
Google Scholar
Vereecken, H. et al. Infiltration from the pedon to global grid scales: An overview and outlook for land surface modelling. Vadose Zone J. 18, 1–53 (2019).Article
Google Scholar
Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockström, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions. Environ. Res. Lett. 15, 124021 (2020).Article
Google Scholar
Sakschewski, B. et al. Variable tree rooting strategies improve tropical productivity and evapotranspiration in a dynamic global vegetation model. Biogeosciences 27, 1–35 (2020).
Google Scholar
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Article
Google Scholar
Biermann, F. & Kim, R. E. The boundaries of the Planetary Boundary framework: A critical appraisal of approaches to define a “safe operating space” for humanity. Annu. Rev. Environ. Resour. 45, 497–521 (2020).Article
Google Scholar
Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Tóth, F. L. & Hasselmann, K. The tolerable windows approach: theoretical and methodological foundations. Clim. Change 41, 303–331 (1999).Article
Google Scholar
Ziegler, R., Gerten, D. & Döll, P. in Global Water Ethics (eds Ziegler, R. & Groenfeldt, D.) 109–130 (Routledge, 2017).Sivapalan, M. & Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 51, 6988–7022 (2015).Article
Google Scholar
Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).Article
Google Scholar
Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).Article
Google Scholar
von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 (2018).Article
Google Scholar More