1.Muir, D. C. G. & Howard, P. H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40, 7157–7166 (2006).CAS
Article
Google Scholar
2.Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).CAS
Article
Google Scholar
3.Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).CAS
Article
Google Scholar
4.National Academy of Sciences Science and Decisions: Advancing Risk Assessment (National Academies, 2009); https://doi.org/10.17226/122095.Paustenbach, D. J., Panko, J. M., Scott, P. K. & Unice, K. M. A methodology for estimating human exposure to perfluorooctanoic acid (PFOA): a retrospective exposure assessment of a community (1951-2003). J. Toxicol. Environ. Health Pt A 70, 28–57 (2007).CAS
Article
Google Scholar
6.Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).CAS
Article
Google Scholar
7.Hopkins, Z. R., Sun, M., DeWitt, J. C. & Knappe, D. R. U. Recently detected drinking water contaminants: GenX and other per- and polyfluoroalkyl ether acids. J. Am. Water Works Assoc. 110, 13–28 (2018).CAS
Article
Google Scholar
8.Jarema, K. A., Hunter, D. L., Shaffer, R. M., Behl, M. & Padilla, S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol. Teratol. 52, 194–209 (2015).CAS
Article
Google Scholar
9.Weis, C. P. The value of alternatives assessment. Environ. Health Perspect. 124, A40 (2016).Article
Google Scholar
10.Jacobs, M. M., Malloy, T. F., Tickner, J. A. & Edwards, S. Alternatives assessment frameworks: research needs for the informed substitution of hazardous chemicals. Environ. Health Perspect. 124, 265–280 (2016).Article
Google Scholar
11.Sarigiannis, D. A. & Hansen, U. Considering the cumulative risk of mixtures of chemicals – a challenge for policy makers. Environ. Health 11(Suppl 1), S18 (2012).Article
Google Scholar
12.Von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018).CAS
Article
Google Scholar
13.Krasner, S. W. et al. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185 (2006).CAS
Article
Google Scholar
14.Richardson, S. D. & Plewa, M. J. To regulate or not to regulate? What to do with more toxic disinfection by-products? J. Environ. Chem. Eng. 8, 103939 (2020).CAS
Article
Google Scholar
15.Altenburger, R. et al. Mixture effects in samples of multiple contaminants—an inter-laboratory study with manifold bioassays. Environ. Int. 114, 95–106 (2018).CAS
Article
Google Scholar
16.Legler, J. et al. A novel in vivo bioassay for (xeno-)estrogens using transgenic zebrafish. Environ. Sci. Technol. 34, 4439–4444 (2000).CAS
Article
Google Scholar
17.Nelson, J., Bishay, F., van Roodselaar, A., Ikonomou, M. & Law, F. C. P. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Sci. Total Environ. 374, 80–90 (2007).CAS
Article
Google Scholar
18.Stalter, D., Magdeburg, A. & Oehlmann, J. Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water Res. 44, 2610–2620 (2010).CAS
Article
Google Scholar
19.Cao, N. et al. Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci. Total Environ. 407, 1588–1597 (2009).CAS
Article
Google Scholar
20.Neale, P. A. et al. Application of in vitro bioassays for water quality monitoring in three drinking water treatment plants using different treatment processes including biological treatment, nanofiltration and ozonation coupled with disinfection. Environ. Sci. Water Res. Technol. 6, 2444–2453 (2020).CAS
Article
Google Scholar
21.Escher, B. I. et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ. Sci. Technol. 48, 1940–1956 (2014).CAS
Article
Google Scholar
22.Conley, J. M. et al. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants. Sci. Total Environ. 579, 1610–1617 (2017).CAS
Article
Google Scholar
23.Medlock Kakaley, E. et al. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Sci. Total Environ. 768, 144750 (2021).CAS
Article
Google Scholar
24.Neale, P. A. & Escher, B. I. In vitro bioassays to assess drinking water quality. Curr. Opin. Environ. Sci. Health 7, 1–7 (2019).Article
Google Scholar
25.Alygizakis, N. A. et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ. Sci. Technol. 52, 5135–5144 (2018).CAS
Article
Google Scholar
26.Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures in our changing environment. Science 367, 388–392 (2020).CAS
Article
Google Scholar
27.Peter, K. T., Wu, C., Tian, Z. & Kolodziej, E. P. Application of nontarget high resolution mass spectrometry data to quantitative source apportionment. Environ. Sci. Technol. 53, 12257–12268 (2019).CAS
Article
Google Scholar
28.Schymanski, E. L. et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 407, 6237–6255 (2015).CAS
Article
Google Scholar
29.Williams, A. J. et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J. Cheminform. 9, 61 (2017).Article
CAS
Google Scholar
30.CompTox Chemicals Dashboard (US EPA, 2017); https://www.epa.gov/chemical-research/comptox-chemicals-dashboard31.Dong, H., Cuthbertson, A. A. & Richardson, S. D. Effect-directed analysis (eda): a promising tool for nontarget identification of unknown disinfection byproducts in drinking water. Environ. Sci. Technol. 54, 1290–1292 (2020).CAS
Article
Google Scholar
32.Vughs, D., Baken, K. A., Kolkman, A., Martijn, A. J. & de Voogt, P. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment. Environ. Sci. Pollut. Res. 25, 3951–3964 (2018).CAS
Article
Google Scholar
33.Altenburger, R. et al. Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total Environ. 512–513, 540–551 (2015).Article
CAS
Google Scholar
34.Zwart, N. et al. High-throughput effect-directed analysis using downscaled in vitro reporter gene assays to identify endocrine disruptors in surface water. Environ. Sci. Technol. 52, 4367–4377 (2018).CAS
Article
Google Scholar
35.Brunner, A. M. et al. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci. Total Environ. 705, 135779 (2020).CAS
Article
Google Scholar
36.Raies, A. B. & Bajic, V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. WIREs Comput. Mol. Sci. 6, 147–172 (2016).CAS
Article
Google Scholar
37.New Approach Methods Work Plan (US EPA, 2020).38.Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).CAS
Article
Google Scholar
39.Altenburger, R., Nendza, M. & Schüürmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 22, 1900–1915 (2003).CAS
Article
Google Scholar
40.Rider, C. V. & Ellen, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors (Springer, 2018); https://doi.org/10.1007/978-3-319-56234-641.Rabinowitz, J. R., Goldsmith, M. R., Little, S. B. & Pasquinelli, M. A. Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environ. Health Perspect. 116, 573–576 (2008).CAS
Article
Google Scholar
42.Kwiatkowski, C. F. et al. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 7, 532–543 (2020).CAS
Article
Google Scholar
43.Rosario-Ortiz, F. et al. How do you like your tap water? Science 351, 912–914 (2006).Article
Google Scholar
44.Kar, S. & Leszczynski, J. Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 7, 15 (2019).CAS
Article
Google Scholar
45.Crittenden, J. C. et al. Predicting GAC performance with rapid small-scale column tests. J. Am. Water Works Assoc. 83, 77–87 (1991).CAS
Article
Google Scholar
46.Topol, E. J. Individualized medicine from prewomb to tomb. Cell 157, 241–253 (2014).CAS
Article
Google Scholar
47.Ternes, T. A. et al. Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens. Environ. Sci. Technol. 51, 308–319 (2017).CAS
Article
Google Scholar
48.Leusch, F. D. L. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).CAS
Article
Google Scholar
49.Drewes, J. E., Hemming, J., Ladenburger, S. J., Schauer, J. & Sonzogni, W. An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ. Res. 77, 12–23 (2005).CAS
Article
Google Scholar
50.Dingemans, M. M. L., Baken, K. A., van der Oost, R., Schriks, M. & van Wezel, A. P. Risk-based approach in the revised European Union drinking water legislation: opportunities for bioanalytical tools. Integr. Environ. Assess. Manag. 15, 126–134 (2019).Article
Google Scholar
51.Escher, B. I. & Neale, P. A. Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays. Environ. Toxicol. Chem. 40, 487–499 (2021).CAS
Article
Google Scholar
52.Reemtsma, T. et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ. Sci. Technol. 50, 10308–10315 (2016).CAS
Article
Google Scholar
53.Brack, W. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal. Bioanal. Chem. 377, 397–407 (2003).CAS
Article
Google Scholar
54.Campos, B. & Colbourne, J. K. How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry. Environ. Toxicol. Chem. 37, 1252–1259 (2018).CAS
Article
Google Scholar
55.Zhen, H. et al. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio Rerio) liver cell-based metabolomics approach. Water Res. 145, 198–209 (2018).CAS
Article
Google Scholar
56.Xia, P. et al. Benchmarking water quality from wastewater to drinking waters using reduced transcriptome of human cells. Environ. Sci. Technol. 51, 9318–9326 (2017).CAS
Article
Google Scholar
57.Prasse, C. Reactivity-directed analysis-a novel approach for the identification of toxic organic electrophiles in drinking water. Environ. Sci. Process. Impacts 23, 48–65 (2021).CAS
Article
Google Scholar
58.Dodd, B. AB-1755 The Open and Transparent Water Data Act: Assembly Bill No. 1755 (California Legislative Information, 2016); https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160AB175559.Mons, B., Schultes, E., Liu, F. & Jacobsen, A. The FAIR principles: first generation implementation choices and challenges. Data Intell. 2, 1–9 (2020).Article
Google Scholar
60.National Research Council Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies, 2011).61.Drinking Water and Public Health in the United States (American Public Health Association, 2019).62.Allman, A., Daoutiis, P., Arnol, W. A. & Cussler, E. L. Efficient water pollution abatement. Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.9b03241 (2019).63.A Working Approach for Identifying Potential Candidate Chemicals for Prioritization (US EPA, 2018).64.Janesick, A. S. et al. On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens. Environ. Health Perspect. https://doi.org/10.1289/ehp.1510352 (2016).65.Janesick, A. S., Dimastrogiovanni, G., Chamorro-Garcia, R. & Blumberg, B. Reply to “comment on ‘On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens’”. Environ. Health Perspect. https://doi.org/10.1289/EHP1122 (2017).66.Houck, K. A. et al. Comment on “On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens”. Environ. Health Perspect. https://doi.org/10.1289/EHP881 (2017).67.Molnar, C. et al. Pitfalls to avoid when interpreting machine learning models. Preprint at https://arxiv.org/abs/2007.04131 (2020). More