Developing and enforcing fracking regulations to protect groundwater resources
1.Tan, H., Xu, J. & Wong-Parodi, G. The politics of Asian fracking: public risk perceptions towards shale gas development in China. Energy Res. Soc. Sci. 54, 46–55 (2019).
Google Scholar
2.Mayer, A. Risk and benefits in a fracking boom: Evidence from Colorado. Extr. Ind. Soc. 3, 744–753 (2016).
Google Scholar
3.Aczel, M. R. & Makuch, K. E. The lay of the land: the public, participation and policy in China’s fracking frenzy. Extr. Ind. Soc. 5, 508–514 (2018).
Google Scholar
4.Connor, C. D. O. & Fredericks, K. Citizen perceptions of fracking: the risks and opportunities of natural gas development in Canada. Energy Res. Soc. Sci. 42, 61–69 (2018).
Google Scholar
5.Davies, R. J. et al. Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. Mar. Pet. Geol. 56, 239–254 (2014).
Google Scholar
6.Jackson, R. B. et al. The environmental costs and benefits of fracking. Annu. Rev. Environ. Resour. 39, 327–362 (2014).
Google Scholar
7.Brantley, S. L. et al. Engaging over data on fracking and water quality: Data alone aren’t the solution, but they bring people together. Science 359, 395–397 (2018).CAS
Google Scholar
8.Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H. & Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334–8348 (2014).CAS
Google Scholar
9.Kondash, A. J., Lauer, N. E. & Vengosh, A. The intensification of the water footprint of hydraulic fracturing. Sci. Adv. 4, eaar5982 (2018).CAS
Google Scholar
10.Rosa, A. L., Rulli, M. C., Davis, K. F. & Odorico, P. D. The water-energy nexus of hydraulic fracturing: a global hydrologic analysis for shale oil and gas extraction. 1–12. https://doi.org/10.1002/2018EF000809 (2018).11.Callies, D. L. & Stone, C. Regulation of Hydraulic Fracturing. J. Int. Comp. Law 1, 1–38 (2014).
Google Scholar
12.Esterhuyse, S., Vermeulen, D. & Glazewski, J. Regulations to protect groundwater resources during unconventional oil and gas extraction using fracking. Wires Water 6, e1382 (2019).
Google Scholar
13.Bohlmann, H. R., Horridge, J. M., Inglesi-Lotz, R., Roos, E. L. & Stander, L. Regional economic effects of changes in South Africa’s electricity generation mix. Economic Research Southern Africa (ERSA). ERSA working paper 756, 1–20. (2018).14.Nkosi, N. P. & Dikgang, J. Pricing electricity blackouts among South African households. J. Commod. Mark. 11, 37–47 (2018).
Google Scholar
15.IPCC. Summary for Policymakers: Climate Change 2021 The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report_smaller.pdf (2021).16.IRENA. Global Energy Transformation: A roadmap to 2050. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf (2018).17.EC. Energy roadmap 2050. https://doi.org/10.2833/10759 (2012).18.Olivier, D. W., Xu, Y. & Olivier, D. W. Making effective use of groundwater to avoid another water supply crisis in Cape Town, South Africa. Hydrogeol. J. 27, 823–826 (2019).
Google Scholar
19.Hobbs, P. et al. Chapter 5 – Water Resources. In Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks. (eds. Scholes, R., Lochner, P., Schreiner, G., Snyman-Van der Walt, L. & de Jager, M.) 97–111 https://doi.org/10.1016/B978-0-12-799954-8.00005-8 (Council for Scientific and Industrial Research, 2016).20.McGranahan, D. A., Kirkman, K. P. & McGranahan, D. A. Local perceptions of hydraulic fracturing ahead of exploratory drilling in eastern South Africa. Environ. Manag. 63, 338–351 (2019).
Google Scholar
21.Finkeldey, J. Unconventionally contentious: Frack Free South Africa’s challenge to the oil and gas industry. Extr. Ind. Soc. 5, 461–468 (2018).
Google Scholar
22.Atkinson, D. Fracking in a fractured environment: Shale gas mining and institutional dynamics in South Africa’s young democracy. Extr. Ind. Soc. 5, 441–452 (2018).
Google Scholar
23.Schreiner, G. et al. Evidence-based and participatory processes in support of shale gas policy development in South Africa. In Governing Shale Gas: Development, Citizen Participation and Decision Making in the US, Canada, Australia and Europe (eds. Whitton, J., Cotton, M., Charnley-Parry, I. & Brasier, K.) 149–167 (Routledge, 2018).24.Republic of South Africa. Supreme court of appeal judgment—Minister of Mineral Resources v Stern and Others; Treasure the Karoo Action Group and Another v Department of Mineral Resources and Others (1369/2017; 790/2018) [2019] ZASCA 99; [2019] 3 All SA 684 (SCA) (4 July 2019). (2019).25.Gorski, J. & Trenorden, C. The EU and regulation of the shale industry: where do we stand now? Oil gas. law N. 5, 20–25 (2017).
Google Scholar
26.Gorski, J. & Trenorden, C. Maximizing the EU shale gas potential by minimizing its environmental footprint. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3070722 (2018).27.Williamson, R. & Esterhuyse, S. Expected wastewater volumes associated with unconventional oil and gas exploitation in South Africa and the management thereof. Bull. Eng. Geol. Environ. 79, 711–728 (2020).28.Webb, R. M. Changing Tides in Water Management: Policy Options to Encourage Greater Recycling of Fracking Wastewater. William Mary Environ. Law Policy Rev. 42, 85–143 (2017).
Google Scholar
29.Brady, W. J. & Crannell, J. P. Hydraulic Fracturing Regulation in the United States: The Laissez-Faire Approach of the Federal Government and Varying State Regulations. Vt. J. Environ. Law 14, 40–68 (2015).
Google Scholar
30.Tan, P.-L., George, D. & Comino, M. Cumulative risk management, coal seam gas, sustainable water, and agriculture in Australia. Int. J. Water Resour. Dev. 31, 682–700 (2015).
Google Scholar
31.Esterhuyse, S. Developing a groundwater vulnerability map for unconventional oil and gas extraction: a case study from South Africa. Environ. Earth Sci. 76, 626 (2017).
Google Scholar
32.Esterhuyse, S. et al. Development of an interactive vulnerability map and monitoring framework to assess the potential environmental impact of unconventional oil and gas extraction by means of hydraulic fracturing. (Water Research Commission, 2014).33.Buono, R. M., Mayor, B. & López-Gunn, E. A comparative study of water-related issues in the context of hydraulic fracturing in Texas and Spain. Environ. Sci. Policy 0–1 https://doi.org/10.1016/j.envsci.2017.12.006 (2017).34.Fink, E. Dirty little secrets: fracking fluids, dubious trade secrets, confidential contamination, and the public health information vacuum. Fordham Intellect. Prop. Media Entertain. Law J. 29, 971–1023 (2019).
Google Scholar
35.Becklumb, P., Chong, J. & Williams, T. Shale Gas in Canada: Environmental Risks and Regulation. https://lop.parl.ca/Content/LOP/ResearchPublications/2015-18-e.pdf (2015).36.Ingelson, A. & Hunter, T. A Regulatory Comparison of Hydraulic Fracturing Fluid Disclosure Regimes in the United States, Canada, and Australia. Nat. Resour. J. 54, 217–253 (2014).
Google Scholar
37.EPA. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing. EPA’s Study of Hydraulic Fracturing and Its Potential Impact on Drinking Water Resources (2016).38.National Acadamies Press. Onshore Unconventional Hydrocarbon Development: Legacy Issues and Innovations in Managing Risk Day 1: Proceedings of a Workshop. https://doi.org/10.17226/25083 (2018).39.Centre for Environmental Rights. Minimum requirements for the regulation of the environmental impacts of hydraulic fracturing—A position statement. https://cer.org.za/wp-content/uploads/2014/04/CER-Minimum-Requirements-for-the-Regulation-of-the-Environmental-Impacts-of-Fracking-Web.pdf (2014).40.Jackson, R. B. The integrity of oil and gas wells. PNAS 10–11 https://doi.org/10.1073/pnas.1410786111 (2014).41.Esterhuyse, S., Kemp, M. & Redelinghuys, N. Assessing the existing knowledge base and opinions of decision makers on the regulation and monitoring of unconventional gas mining in South Africa. Water Int. 38, 687–700 (2013).
Google Scholar
42.Lin, A. China: Replacing coal with shale gas. Could reducing China’s regional air pollution lead to more local pollution in rural China? In The Shale Dilemma: A Global Perspective on Fracking and Shale Development (ed. Gamper-Rabindran, S.) 267–304 (University of Pittsburgh Press, 2018).43.Guo, M. et al. Prospects for shale gas production in China: Implications for water demand. Renew. Sustain. Energy Rev. 66, 742–750 (2016).
Google Scholar
44.Thomas, M., Partridge, T., Harthorn, B. H. & Pidgeon, N. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nat. Energy 2, 17054 (2017).
Google Scholar
45.Kinne, B. Regulating unconventional shale gas in the United States: Diverging priorities, overlapping jurisdictions, and asymmetrical data access. In Governing shale gas: Development, citizen participation and decision-making in the US, Canada, Australia and Europe (eds. Whitton, J., Cotton, M., Charnley-Parry, I. M. & Brasier, K.) 23–36 (Routledge, 2018).46.Mcintosh, J. et al. A critical review of state-of-the-art and emerging approaches to identify fracking-derived gases and associated contaminants in aquifers. Environ. Sci. Technol. 53, 1063–1077 (2019).CAS
Google Scholar
47.Worrall, F., Davies, J. & Hart, A. Dynamic baselines for the detection of water quality impacts – the case of shale gas development. Environ. Sci. Process. impacts Qual. impacts 23, 1116–1129 (2021).CAS
Google Scholar
48.King, R. We Need a Fracking Baseline. La. Law Rev. 77, 545–584 (2016).
Google Scholar
49.Daily, T. A. Rules Done Right: How Arkansas Brought Its Oil and Gas Law into a Horizontal World. Ark. Law Rev. 68, 259–294 (2015).
Google Scholar
50.Brownlow, J., Yelderman, J. C. & James, S. C. Spatial Risk Analysis of Hydraulic Fracturing near Abandoned and Converted Oil and Gas wells. Groundwater 55, 268–280 (2017).CAS
Google Scholar
51.Cobbing, J. E., Eales, K., Gibson, J., Lenkoe, K. & Cobbing, B. Operation and maintenance (O&M) and the perceived unreliability of domestic groundwater supplies in South Africa. South Afr. J. Geol. 118, 17–32 (2015).
Google Scholar
52.Gaye, C. B. & Tindimugaya, C. Review: challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol. J. 27, 1099–1110 (2019).
Google Scholar
53.Department of Water and Sanitation. National groundwater strategy draft. (Department of Water and Sanitation, 2016).54.Hohne, D., de Lange, F., Esterhuyse, S. & Sherwood-Lollar, B. Case study: methane gas in a groundwater system located in a dolerite ring structure in the Karoo Basin; South Africa. South Afr. J. Geol. 122, 357–368 (2019).CAS
Google Scholar
55.Eymold, W. K. et al. Hydrocarbon-Rich Groundwater above Shale-Gas Formations: A Karoo Basin Case Study. Groundwater 56, 1–21 (2018).
Google Scholar
56.Cramer, B. What the frack? How weak industrial disclosure rules prevent public understanding of chemical practices and toxic politics. South. Calif. Interdiscip. Law J. 25, 67–105 (2016).
Google Scholar
57.Centner, T. J. & Eberhart, N. S. The use of best management practices to respond to externalities from developing shale gas resources. J. Environ. Plan. Manag. 59, 746–768 (2016).
Google Scholar
58.Kinchy, A. & Schaffer, G. Disclosure Conflicts: Crude Oil Trains, Fracking Chemicals, and the Politics of Transparency. Sci. Technol. Hum. values 43, 1011–1038 (2018).
Google Scholar
59.Weible, C. M. et al. An Institutional and Opinion Analysis of Colorado’s Hydraulic Fracturing Disclosure Policy. J. Environ. Policy Plan. 19, 115–134 (2017).
Google Scholar
60.Rawlins, R. Planning for Fracking on the Barnett Shale: Soul and Water Contamination Concerns, and the Role of Local Government. Envtl. L 44, 135–199 (2014).
Google Scholar
61.Holding, S., Allen, D. M., Notte, C. & Olewiler, N. Enhancing water security in a rapidly developing shale gas region. J. Hydrol. Reg. Stud. 11, 266–277 (2017).
Google Scholar
62.Schreurs, M. A. Germany: The German Energiewende and the decision to ban unconventional hydraulic fracturing. In The shale dilemma: A global perspective on fracking and shale development (ed. Gamper-Rabindran, S.) 231–266 (University of Pittsburgh Press, 2018).63.Farah, P. D. & Tremolada, R. A Comparison between Shale Gas in China and Unconventional Fuel Development in the United States: Health, Water and Environmental Risks. Brooklyn J. Int. Law 41, 1–46 (2016).64.Notte, C., Allen, D. M., Gehman, J., Alessi, D. S. & Goss, G. G. Comparative analysis of hydraulic fracturing wastewater practices in unconventional shale developments: Regulatory regimes. Can. Water Resour. J. 42, 122–137 (2017).
Google Scholar
65.Wiseman, H. J. State Enforcement of Shale Gas Development Regulations, Including Hydraulic Fracturing. Ssrn https://doi.org/10.2139/ssrn.1992064 (2012).66.Eaton, T. T. Science-based decision-making on complex issues: Marcellus shale gas hydrofracking and New York City water supply. Sci. Total Environ. 461–462, 158–169 (2013).
Google Scholar
67.Gagnon, G. A. et al. Impacts of hydraulic fracturing on water quality: a review of literature, regulatory frameworks and an analysis of information gaps. Environ. Rev. 24, 122–131 (2016).
Google Scholar
68.Centner, T. J. & Connell, L. K. O. Unfinished business in the regulation of shale gas production in the United States. Sci. Total Environ. 476, 359–367 (2014).
Google Scholar
69.Lenhard, L. G., Andersen, S. M. & Coimbra-Araújo, C. H. Energy-Environmental Implications Of Shale Gas Exploration In Paraná Hydrological Basin, Brazil. Renew. Sustain. Energy Rev. 90, 56–69 (2018).CAS
Google Scholar
70.Saulino, M. F. Argentina: Energy extraction in communities. Can shale development proceed without causing pollution and conflicts? In The shale dilemma: A global perspective on fracking and shale development (ed. Gamper-Rabindran, S.) 305–341 (University of Pittsburgh Press, 2018).71.Wiseman, H. J. The Capacity of States to Govern Shale Gas Development Risks. Environ. Sci. Technol. 48, 8376–8387 (2014).CAS
Google Scholar
72.Hull, E. & Evensen, D. Just environmental governance for shale gas? Transitioning towards sustainable local regulation of fracking in Spain. Energy Res. Soc. Sci. 59, 101307 (2020).
Google Scholar
73.DiGiulio, D. C., Shonkoff, S. B. C. & Jackson, R. B. The need to protect fresh and brackish groundwater resources during unconventional oil and gas development. Curr. Opin. Environ. Sci. Heal. 3, 1–7 (2018).
Google Scholar
74.Angeles, A. Reforming Natural Gas Fracking Regulations in 2017–2018: How Should States Enforce Regulations? Environ. Claims J. 30, 251–272 (2018).
Google Scholar
75.Mukherjee, N. et al. Comparison of techniques for eliciting views and judgements in decision-making. Methods Ecol. Evol. 9, 54–63 (2018).
Google Scholar
76.Baker, E., Bosetti, V., Jenni, K. E. & Ricci, E. C. Facing the experts: Survey mode and expert elicitation. https://doi.org/10.2139/ssrn.2384487 (2014).77.Redelinghuys, N. Effects on communities: The social frabric, local livelihoods and the social psyche. In Hydraulic Fracturing in the Karoo: Critical Legal and Environmental Perspectives (eds. Glazewski, J. & Esterhuyse, S.) 345–365 (JUTA, 2016).78.Young, J. C. et al. A methodological guide to using and reporting on interviews in conservation science research. Methods Ecol. Evol. 9, 10–19 (2018).
Google Scholar
79.Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. PNAS 111, 7177–7184 (2014).
Google Scholar
80.DWA (Department of Water Affairs). Groundwater strategy 2010. (DWA (Department of Water Affairs), 2010). More
