Individual US diets show wide variation in water scarcity footprints
1.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).PubMed
Google Scholar
2.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).ADS
CAS
PubMed
Google Scholar
3.Hallstrom, E., Carlsson-Kanyama, A. & Borjesson, P. Environmental impact of dietary change: a systematic review. J. Clean. Prod. 91, 1–11 (2015).
Google Scholar
4.Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2019).5.Azevedo, L. B., Henderson, A. D., van Zelm, R., Jolliet, O. & Huijbregts, M. A. J. Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in europe. Environ. Sci. Technol. 47, 13565–13570 (2013).ADS
CAS
PubMed
Google Scholar
6.Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).7.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS
CAS
PubMed
Google Scholar
8.Dieter, C. A. et al. Estimated Use of Water in the United States in 2015. Report No 1441 (US Geological Survey, 2018).9.Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet commission on planetary health. Lancet 386, 1973–2028 (2015).PubMed
Google Scholar
10.Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).
Google Scholar
11.Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).
Google Scholar
12.Boulay, A.-M. et al. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int. J. Life Cycle Assess. 20, 577–583 (2015).CAS
Google Scholar
13.Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).
Google Scholar
14.Blackstone, N. T., El-Abbadi, N. H., McCabe, M. S., Griffin, T. S. & Nelson, M. E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: a modelling study. Lancet Planet. Health 2, e344–e352 (2018).PubMed
Google Scholar
15.Birney, C. I., Franklin, K. F., Davidson, F. T. & Webber, M. E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 12, 105008 (2017).ADS
Google Scholar
16.Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).ADS
CAS
PubMed
Google Scholar
17.Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).
Google Scholar
18.Blas, A., Garrido, A. & Willaarts, B. A. Evaluating the water footprint of the Mediterranean and American diets. Water 8, 448 (2016).19.Rehkamp, S. & Canning, P. Measuring embodied blue water in American diets: an EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018).
Google Scholar
20.Harris, F. et al. The water footprint of diets: a global systematic review and meta-analysis. Adv. Nutr. 11, 375–386 (2019).PubMed Central
Google Scholar
21.Vanham, D., Comero, S., Gawlik, B. M. & Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 1, 518 (2018).
Google Scholar
22.Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indicators 32, 1–8 (2013).
Google Scholar
23.Environmental Management—Water Footprint—Principles, Requirements and Guidelines ISO 14046:2014 (International Organization for Standardization, 2014).24.Ridoutt, B. G., Hendrie, G. A. & Noakes, M. Dietary strategies to reduce environmental impact: a critical review of the evidence base. Adv. Nutr. 8, 933–946 (2017).PubMed
PubMed Central
Google Scholar
25.Quinteiro, P., Ridoutt, B. G., Arroja, L. & Dias, A. C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. Int. J. Life Cycle Assess. 23, 164–180 (2018).
Google Scholar
26.Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).27.2015–2020 Dietary Guidelines for Americans (US Department of Health and Human Services & US Department of Agriculture, 2015).28.Willits-Smith, A., Aranda, R., Heller, M. C. & Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet. Health 4, e98–e106 (2020).PubMed
PubMed Central
Google Scholar
29.Hess, T., Andersson, U., Mena, C. & Williams, A. The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 50, 1–10 (2015).
Google Scholar
30.Goldstein, B., Hansen, S. F., Gjerris, M., Laurent, A. & Birkved, M. Ethical aspects of life cycle assessments of diets. Food Policy 59, 139–151 (2016).
Google Scholar
31.Hess, T., Chatterton, J., Daccache, A. & Williams, A. The impact of changing food choices on the blue water scarcity footprint and greenhouse gas emissions of the British diet: the example of potato, pasta and rice. J. Clean. Prod. 112, 4558–4568 (2016).
Google Scholar
32.Notarnicola, B., Tassielli, G., Renzulli, P. A., Castellani, V. & Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 140, 753–765 (2017).
Google Scholar
33.Heller, M. C. et al. Environmental analyses to inform transitions to sustainable diets in developing countries: case studies for Vietnam and Kenya. Int. J. Life Cycle Assess. 25, 1183–1196 (2020).
Google Scholar
34.Ridoutt, B. G., Baird, D., Anastasiou, K. & Hendrie, G. A. Diet quality and water scarcity: evidence from a large Australian population health survey. Nutrients 11, 1846 (2019).CAS
PubMed Central
Google Scholar
35.Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2020).
Google Scholar
36.Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).CAS
Google Scholar
37.Meier, T. & Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 47, 877–888 (2013).ADS
CAS
PubMed
Google Scholar
38.Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).ADS
Google Scholar
39.Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 18, 2219–2234 (2014).ADS
Google Scholar
40.World Economic Forum Water Initiative Water Security: The Water–Food–Energy–Climate Nexus (Island Press, 2011).41.Bazilian, M. et al. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39, 7896–7906 (2011).
Google Scholar
42.Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).43.Jefferies, D. et al. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 33, 155–166 (2012).
Google Scholar
44.Lovarelli, D., Bacenetti, J. & Fiala, M. Water footprint of crop productions: a review. Sci. Total Environ. 548–549, 236–251 (2016).ADS
PubMed
Google Scholar
45.Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).ADS
Google Scholar
46.Ridoutt, B. G. & Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environ. Change 20, 113–120 (2010).
Google Scholar
47.Ridoutt, B. G. & Huang, J. Environmental relevance—the key to understanding water footprints. Proc. Natl Acad. Sci. USA 109, E1424–E1424 (2012).ADS
CAS
PubMed
Google Scholar
48.Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).PubMed
PubMed Central
Google Scholar
49.2018 Irrigation and Water Management Survey (USDA, 2019).50.Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).
Google Scholar
51.Pfister, S. & Bayer, P. Water Consumption of Crop on Watershed Level (Blue and Green Water, Uncertainty, incl. Shapefile) https://doi.org/10.17632/brn4xm47jk.1 (2017).52.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).53.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).54.Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products (UNESCO-IHE, 2010).
Google Scholar
55.Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).
Google Scholar
56.Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manage. 31, 3061–3081 (2017).
Google Scholar
57.Caldeira, C. et al. Water footprint profile of crop-based vegetable oils and waste cooking oil: comparing two water scarcity footprint methods. J. Cleaner Prod. 195, 1190–1202 (2018).
Google Scholar
58.Boulay, A.-M., Benini, L. & Sala, S. Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization model. The AWARE model example. Int. J. Life Cycle Assess. 25, 2380–2392 (2020).59.Forin, S., Berger, M. & Finkbeiner, M. Comment to ‘Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization factor. The AWARE model example’. Int. J. Life Cycle Assess. 25, 663–666 (2020).
Google Scholar
60.Boulay, A.-M. & Lenoir, L. Sub-national regionalisation of the AWARE indicator for water scarcity footprint calculations. Ecol. Indic. 111, 106017 (2020).
Google Scholar
61.Rotz, C. A., Asem-Hiablie, S., Place, S. & Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 169, 1–13 (2019).
Google Scholar
62.Peters, C. J., Picardy, J. A., Darrouzet-Nardi, A. & Griffin, T. S. Feed conversions, ration compositions, and land use efficiencies of major livestock products in US agricultural systems. Agric. Syst. 130, 35–43 (2014).
Google Scholar
63.Peters, C. J. et al. Carrying capacity of US agricultural land: ten diet scenarios. Elementa 4, 000116 (2016).64.Census of Agriculture Farm and Ranch Irrigation Survey (USDA NASS, 2013).65.Aquaculture Trade Tables (USDA Economic Research Service, 2018).66.Pahlow, M., Van Oel, P., Mekonnen, M. & Hoekstra, A. Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 536, 847–857 (2015).ADS
CAS
PubMed
Google Scholar
67.Rose, D., Heller, M. C., Willits-Smith, A. M. & Meyer, R. J. Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 108, 1–9 (2019).
Google Scholar
68.NHANES: 2005–2006 Data Documentation, Codebook and Frequencies (National Center for Health Statistics and Centers for Disease Control, 2008). More