Blue water footprint linked to national consumption and international trade is unsustainable
1.
Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).
ADS CAS PubMed Google Scholar
2.
WWAP The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).
3.
Shiklomanov, I. A. Appraisal and assessment of world water resources. Water Int. 25, 11–32 (2000).
Google Scholar
4.
Srinivasan, V., Lambin, E. F., Gorelick, S. M., Thompson, B. H. & Rozelle, S. The nature and causes of the global water crisis: syndromes from a meta-analysis of coupled human–water studies. Water Resour. Res. 48, W10516 (2012).
ADS Google Scholar
5.
Coe, M. T. & Foley, J. A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. 106, 3349–3356 (2001).
ADS Google Scholar
6.
Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
ADS CAS PubMed Google Scholar
7.
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).
Google Scholar
8.
Richter, B. Chasing Water: A Guide for Moving from Scarcity to Sustainability (Island, 2014).
9.
Richter, B. D. et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 3, 319–328 (2020).
Google Scholar
10.
Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 2, 422–430 (2010).
Google Scholar
11.
Hanasaki, N. et al. An integrated model for the assessment of global water resources – Part 2: applications and assessments. Hydrol. Earth Syst. Sci. 12, 1027–1037 (2008).
ADS Google Scholar
12.
Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).
ADS Google Scholar
13.
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).
ADS CAS PubMed PubMed Central Google Scholar
14.
Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa https://doi.org/10.12952/journal.elementa.000083 (2016).
15.
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
ADS PubMed PubMed Central Google Scholar
16.
Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).
ADS PubMed Google Scholar
17.
Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).
ADS CAS PubMed Google Scholar
18.
Burek, P. et al. Water Futures and Solution – Fast Track Initiative (Final Report) (IIASA, 2016).
19.
Alcamo, J. et al. Global estimates of water withdrawals and availability under current and future ‘business-as-usual’ conditions. Hydrol. Sci. J. 48, 339–348 (2003).
Google Scholar
20.
WWAP The United Nations World Water Development Report 2019: Leaving No One Behind (UNESCO, 2019).
21.
Vörösmarty, C. J., Hoekstra, A. Y., Bunn, S. E., Conway, D. & Gupta, J. Fresh water goes global. Science 349, 478–479 (2015).
ADS PubMed Google Scholar
22.
Hoekstra, A. Y. & Chapagain, A. K. Globalization of Water: Sharing the Planet’s Freshwater Resources (Blackwell, 2008).
23.
Hoekstra, A. Y. The global dimension of water governance: why the river basin approach is no longer sufficient and why cooperative action at global level is needed. Water 3, 21–46 (2011).
Google Scholar
24.
Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).
CAS PubMed Google Scholar
25.
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
ADS CAS PubMed Google Scholar
26.
Allan, J. A. Virtual water: a strategic resource: global solutions to regional deficits. Groundwater 36, 545–546 (1998).
CAS Google Scholar
27.
Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).
Google Scholar
28.
Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manag. 31, 3061–3081 (2017).
Google Scholar
29.
Boulay, A. M., Hoekstra, A. Y. & Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 47, 11926–11927 (2013).
ADS CAS PubMed Google Scholar
30.
Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).
Google Scholar
31.
Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).
PubMed PubMed Central Google Scholar
32.
Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).
ADS Google Scholar
33.
Dolganova, I. et al. The water footprint of European agricultural imports: hotspots in the context of water scarcity. Resources 8, 141 (2019).
Google Scholar
34.
Finogenova, N. et al. Water footprint of German agricultural imports: local impacts due to global trade flows in a fifteen-year perspective. Sci. Total Environ. 662, 521–529 (2019).
ADS CAS PubMed Google Scholar
35.
Feng, K., Hubacek, K., Pfister, S., Yu, Y. & Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 48, 7704–7713 (2014).
ADS CAS PubMed Google Scholar
36.
Yano, S., Hanasaki, N., Itsubo, N. & Oki, T. Water scarcity footprints by considering the differences in water sources. Sustainability 7, 9753 (2015).
Google Scholar
37.
Hoekstra, A. Y. & Chapagain, A. K. Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour. Manag. 21, 35–48 (2007).
Google Scholar
38.
Fader, M. et al. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 15, 1641–1660 (2011).
ADS Google Scholar
39.
Chen, Z.-M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).
Google Scholar
40.
Wang, R. & Zimmerman, J. Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environ. Sci. Technol. 50, 5143–5153 (2016).
ADS CAS PubMed Google Scholar
41.
Vanham, D. The water footprint of the EU: quantification, sustainability and relevance. Water Int. 43, 731–745 (2018).
Google Scholar
42.
Galli, A. et al. Integrating ecological, carbon and water footprint into a ‘Footprint Family’ of indicators: definition and role in tracking human pressure on the planet. Ecol. Indic. 16, 100–112 (2012).
Google Scholar
43.
Ercin, E., Chico, D. & Chapagain, A. K. Vulnerabilities of the European Union’s economy to hydrological extremes outside its borders. Atmosphere 10, 593 (2019).
ADS Google Scholar
44.
Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: a consumption based approach. Appl. Geogr. 32, 691–701 (2012).
Google Scholar
45.
Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: a study for China (1978–2008). Water Res. 94, 73–85 (2016).
CAS PubMed Google Scholar
46.
Rushforth, R. R. & Ruddell, B. L. A spatially detailed blue water footprint of the United States economy. Hydrol. Earth Syst. Sci. 22, 3007–3032 (2018).
ADS Google Scholar
47.
Hou, S. et al. Blue and green water footprint assessment for China—a multi-region input–output approach. Sustainability 10, 2822 (2018).
Google Scholar
48.
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
ADS CAS PubMed PubMed Central Google Scholar
49.
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).
ADS CAS PubMed Google Scholar
50.
Marston, L., Konar, M., Cai, X. & Troy, T. J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl Acad. Sci. USA 112, 8561–8566 (2015).
ADS CAS PubMed Google Scholar
51.
Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. Discuss. 7, 3977–4021 (2010).
ADS Google Scholar
52.
Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).
ADS CAS Google Scholar
53.
Qu, S. et al. Virtual water scarcity risk to the global trade system. Environ. Sci. Technol. 52, 673–683 (2018).
ADS CAS PubMed Google Scholar
54.
Liu, W. et al. Savings and losses of global water resources in food-related virtual water trade. WIREs Water 6, e1320 (2019).
Google Scholar
55.
Han, M. Y., Chen, G. Q. & Li, Y. L. Global water transfers embodied in international trade: tracking imbalanced and inefficient flows. J. Clean. Prod. 184, 50–64 (2018).
Google Scholar
56.
Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. Recent history and geography of virtual water trade. PLoS ONE 8, e55825 (2013).
ADS CAS PubMed PubMed Central Google Scholar
57.
Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. On the temporal variability of the virtual water network. Geophys. Res. Lett. 39, L06404 (2012).
ADS Google Scholar
58.
Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).
ADS Google Scholar
59.
Hoekstra, A. Y. & Mekonnen, M. M. Imported water risk: the case of the UK. Environ. Res. Lett. 11, 055002 (2016).
ADS Google Scholar
60.
Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).
Google Scholar
61.
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).
62.
Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).
ADS CAS PubMed Google Scholar
63.
Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170 (2010).
Google Scholar
64.
Tessmann, S. A. in Environmental Use Sector: Reconnaissance Elements of the Western Dakotas Region of South Dakota Study (Water Resources Institute, South Dakota State Univ., 1980).
65.
Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl Acad. Sci. USA 112, 6902–6907 (2015).
ADS CAS PubMed Google Scholar
66.
Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8, 024030 (2013).
ADS Google Scholar
67.
Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. 234, 106122 (2020).
Google Scholar
68.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
ADS CAS PubMed Google Scholar
69.
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
ADS CAS PubMed PubMed Central Google Scholar
70.
Hoekstra, A. Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett. 9, 091003 (2014).
ADS Google Scholar
71.
Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).
Google Scholar
72.
Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).
ADS CAS PubMed Google Scholar
73.
Rockström, J. et al. Managing water in rainfed agriculture—the need for a paradigm shift. Agric. Water Manag. 97, 543–550 (2010).
Google Scholar
74.
Chukalla, A. D., Krol, M. S. & Hoekstra, A. Y. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 19, 4877–4891 (2015).
ADS CAS Google Scholar
75.
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
ADS CAS PubMed Google Scholar
76.
Mekonnen, M. M. & Hoekstra, A. Y. Water footprint benchmarks for crop production: a first global assessment. Ecol. Indic. 46, 214–223 (2014).
Google Scholar
77.
Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indic. 32, 1–8 (2013).
Google Scholar
78.
West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).
ADS CAS PubMed Google Scholar
79.
Mekonnen, M. & Hoekstra, A. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).
CAS Google Scholar
80.
Mekonnen, M. M. et al. Water, energy, and carbon footprints of bioethanol from the U.S. and Brazil. Environ. Sci. Technol. 52, 14508–14518 (2018).
ADS CAS PubMed Google Scholar More