Moist heat stress extremes in India enhanced by irrigation
1.
Im, E. S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).
Article Google Scholar
2.
Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3, 1–6 (2017).
Article Google Scholar
3.
Mishra, V., Mukherjee, S., Kumar, R. & Stone, D. A. Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa9388 (2017).
4.
Coffel, E. D., Horton, R. M. & de Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2017).
Article Google Scholar
5.
King, A. D. et al. Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett. 43, 3438–3443 (2016).
Article Google Scholar
6.
Knutson, T. R. & Ploshay, J. J. Detection of anthropogenic influence on a summertime heat stress index. Clim. Change 138, 25–39 (2016).
Article Google Scholar
7.
Matthews, T. K. R., Wilby, R. L. & Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl Acad. Sci. USA 114, 3861–3866 (2017).
Article Google Scholar
8.
Kjellstrom, T. et al. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 37, 97–112 (2016).
Article Google Scholar
9.
Sherwood, S. C. How important is humidity in heat stress? J. Geophys. Res. Atmos. 123, 11808–11810 (2018).
Article Google Scholar
10.
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).
Article Google Scholar
11.
Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).
Article Google Scholar
12.
Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).
Article Google Scholar
13.
Shankar, P. V., Kulkarni, H. & Krishnan, S. India’s groundwater challenge and the way forward. Econ. Political Wkly 46, 37–45 (2011).
Google Scholar
14.
Amarasinghe, U. A., Shah, T. & Anand, B. K. India’s water supply and demand from 2025-2050: business-as-usual scenario and issues. In Proc. Workshop on Analyses of Hydrological, Social and Ecological Issues of the National River Linking Project (eds Amarasinghe, U. A. & Sharma, B. R.) 23–61 (IWMI, 2007).
15.
Ambika, A. K., Wardlow, B. & Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 3, 160118 (2016).
Article Google Scholar
16.
Cook, B. I., Puma, M. J. & Krakauer, N. Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn. 37, 1587–1600 (2011).
Article Google Scholar
17.
Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).
Article Google Scholar
18.
Boucher, O., Myhre, G. & Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 22, 597–603 (2004).
Article Google Scholar
19.
Lobell, D. et al. Regional differences in the influence of irrigation on climate. J. Clim. 22, 2248–2255 (2009).
Article Google Scholar
20.
Kumar, R. et al. Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep. 7, 14054 (2017).
Article Google Scholar
21.
Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2015).
Article Google Scholar
22.
Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).
Article Google Scholar
23.
Azhar, G. S. et al. Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS ONE 9, e91831 (2014).
Article Google Scholar
24.
Marcella, M. P. & Eltahir, E. A. B. Introducing an irrigation scheme to a regional climate model: a case study over West Africa. J. Clim. 27, 5708–5723 (2014).
Article Google Scholar
25.
Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).
Article Google Scholar
26.
Willett, K. M. & Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. https://doi.org/10.1002/joc.2257 (2012).
27.
Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).
Article Google Scholar
28.
Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).
Article Google Scholar
29.
Willett, K. M., Gillett, N. P., Jones, P. D. & Thorne, P. W. Attribution of observed surface humidity changes to human influence. Nature 449, 710–712 (2007).
Article Google Scholar
30.
Bollasina, M. & Nigam, S. The summertime ‘heat’ low over Pakistan/northwestern India: evolution and origin. Clim. Dyn. 37, 957–970 (2011).
Article Google Scholar
31.
Gentine, P., Holtslag, A. A. M., D’Andrea, F. & Ek, M. Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeorol. 14, 1443–1462 (2013).
Article Google Scholar
32.
Kang, S. & Eltahir, E. A. B. Impact of irrigation on regional climate over eastern China. Geophys. Res. Lett. 46, 5499–5505 (2019).
Article Google Scholar
33.
Kueppers, L. M., Snyder, M. A. & Sloan, L. C. Irrigation cooling effect: regional climate forcing by land-use change. Geophys. Res. Lett. 34, L03703 (2007).
Article Google Scholar
34.
Alter, R. E., Im, E. S. & Eltahir, E. A. B. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. 8, 763–767 (2015).
Article Google Scholar
35.
Im, E. S. & Kang, S. & Eltahir, E. A. B. Projections of rising heat stress over the western Maritime Continent from dynamically downscaled climate simulations. Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2018.02.01 (2018).
36.
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S. & Helkowski, J. H. Effects of global irrigation on the near-surface climate. Clim. Dyn. 33, 159–175 (2009).
Article Google Scholar
37.
Dileepkumar, R., Achutarao, K. & Arulalan, T. Human influence on sub-regional surface air temperature change over India. Sci. Rep. 8, 8967 (2018).
Article Google Scholar
38.
Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).
Article Google Scholar
39.
Sharma, A. et al. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ. Res. Lett. 11, 064004 (2016).
Article Google Scholar
40.
Georgescu, M., Moustaoui, M., Mahalov, A. & Dudhia, J. An alternative explanation of the semiarid urban area ‘oasis effect’. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016720 (2011).
41.
Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. https://doi.org/10.1002/2016GL072190 (2017).
42.
Siebert, S., Henrich, V., Frenken, K. & Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5 (FAO, 2013); https://doi.org/10.13140/2.1.2660.6728
43.
Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
Article Google Scholar
44.
Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
Article Google Scholar
45.
Srivastava, A. K., Rajeevan, M. & Kshirsagar, S. R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett. 10, 249–254.
46.
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
Article Google Scholar
47.
Haldane, J. S. The influence of high air temperatures No. I. J. Hyg. (Lond.) 5, 494–513 (1905).
Google Scholar
48.
Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).
Article Google Scholar
49.
Steadman, R. G. The assessment of sultriness. Part I. A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteorol. 18, 861–873 (1979).
Article Google Scholar
50.
Brooke Anderson, G., Bell, M. L. & Peng, R. D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 121, 1111–1119 (2013).
Article Google Scholar
51.
Skamarock, C. et al. A Description of the Advanced Research WRF Model Version 4 (NCAR, 2019); https://doi.org/10.5065/1DFH-6P97
52.
Mitchell, K. et al. Noah Land Surface Model (LSM) User’s Guide (NCAR, 2005).
53.
Iacono, M. J. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD009944 (2008).
54.
Janzic, Z. I. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945 (1994).
Article Google Scholar
55.
Kain, J. S. & Kain, J. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004).
Article Google Scholar
56.
Qian, Y., Huang, M., Yang, B. & Berg, L. K. A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the Southern Great Plains. J. Hydrometeorol. 14, 700–721 (2013).
Article Google Scholar
57.
Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).
Article Google Scholar
58.
Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).
Article Google Scholar
59.
Durre, I. & Yin, X. Enhanced radiosonde data for studies of vertical structure. Bull. Am. Meteorol. Soc. 89, 1257–1262 (2008).
Article Google Scholar
60.
Seidel, D. J., Ao, C. O. & Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 115, D16113 (2010).
Article Google Scholar
61.
Basha, G. & Ratnam, M. V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: comparison with GPS radio occupation measurements. J. Geophys. Res. Atmos. 114, D161010 (2009).
Article Google Scholar More