Identification of local water resource vulnerability to rapid deglaciation in Alberta
1.
Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).
CAS Article Google Scholar
2.
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Article Google Scholar
3.
Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).
CAS Article Google Scholar
4.
Kaser, G., Grosshauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA 107, 20223–20227 (2010).
CAS Article Google Scholar
5.
Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
CAS Article Google Scholar
6.
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).
7.
Marshall, S. J. et al. Glacier water resources on the eastern slopes of the Canadian Rocky Mountains. Can. Water Resour. J. 36, 109–134 (2011).
Article Google Scholar
8.
Clarke, G. K. C., Jarosch, A. H., Anslow, F. S., Radić, V. & Menounos, B. Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci. 8, 372–377 (2015).
CAS Article Google Scholar
9.
Ebrahimi, S. & Marshall, S. J. Parameterization of incoming longwave radiation at glacier sites in the Canadian Rocky Mountains. J. Geophys. Res. Atmos. 120, 12536–12556 (2015).
Article Google Scholar
10.
Fitzpatrick, N., Radić, V. & Menounos, B. Surface energy balance closure and turbulent flux parameterization on a mid-latitude mountain glacier, Purcell Mountains, Canada. Front. Earth Sci. 5, 67 (2017).
Article Google Scholar
11.
Gascoin, S. et al. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 5, 1099–1113 (2011).
Article Google Scholar
12.
Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 119, 717–730 (2014).
Article Google Scholar
13.
Comeau, L. E. L., Pietroniro, A. & Demuth, M. N. Glacier contribution to the North and South Saskatchewan Rivers. Hydrol. Process. 23, 2640–2653 (2009).
Article Google Scholar
14.
Jost, G., Moore, R. D., Menounos, B. & Wheate, R. Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada. Hydrol. Earth Syst. Sci. 16, 849–860 (2012).
Article Google Scholar
15.
Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P. & Lettenmaier, D. P. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrol. Earth Syst. Sci. 18, 787–802 (2014).
Article Google Scholar
16.
Soruco, A. et al. Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). Ann. Glaciol. 56, 147–154 (2015).
Article Google Scholar
17.
Greve, P. et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 1, 486–494 (2018).
Article Google Scholar
18.
Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).
Article Google Scholar
19.
Hoekstra, A. Y. Water scarcity challenges to business. Nat. Clim. Change 4, 318–320 (2014).
Article Google Scholar
20.
Farinotti, D., Usselmann, S., Huss, M., Bauder, A. & Funk, M. Runoff evolution in the Swiss Alps: projections for selected high-alpine catchments based on ENSEMBLES scenarios. Hydrol. Process. 26, 1909–1924 (2012).
Article Google Scholar
21.
Hagg, W., Hoelzle, M., Wagner, S., Mayr, E. & Klose, Z. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Glob. Planet. Change 110, 62–73 (2013).
Article Google Scholar
22.
Schindler, D. W. & Donahue, W. F. An impending water crisis in Canada’s western prairie provinces. Proc. Natl Acad. Sci. USA 103, 7210–7216 (2006).
CAS Article Google Scholar
23.
Downing, D. & Pettapiece, W. Natural Regions and Subregions of Alberta (Natural Regions Committee, 2006).
24.
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
Article Google Scholar
25.
Marshall, S. J. Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002–2013. Hydrol. Earth Syst. Sci. 18, 5181–5200 (2014).
Article Google Scholar
26.
Demuth, M. & Keller, R. in Peyto Glacier: One Century of Science (eds Demuth, M. et al.) 83–132 (Environment Canada, 2006).
27.
RGI Consortium Randolph Glacier Inventory (RGI)—A Dataset of Global Glacier Outlines (GLIMS, 2017); https://doi.org/10.7265/N5-RGI-60
28.
Bash, E. A. & Marshall, S. J. Estimation of glacial melt contributions to the Bow River, Alberta, Canada, using a radiation–temperature melt model. Ann. Glaciol. 55, 138–152 (2014).
Article Google Scholar
29.
Moore, R. D. et al. Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrol. Process. 23, 42–61 (2009).
CAS Article Google Scholar
30.
Human Activity and the Environment: Freshwater in Canada. Section 2: Freshwater Supply and Demand (Statistics Canada, 2017).
31.
Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).
Article Google Scholar
32.
Shen, C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 54, 8558–8593 (2018).
Article Google Scholar
33.
Fairfield, J. & Leymarie, P. Drainage networks from grid digital elevation models. Water Resour. Res. 27, 709–717 (1991).
Article Google Scholar
34.
Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004 (2007).
Article Google Scholar
35.
Hsieh, W. W. Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels (Cambridge Univ. Press, 2009).
36.
Unglert, K., Radić, V. & Jellinek, A. M. Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra. J. Volcanol. Geotherm. Res. 320, 58–74 (2016).
CAS Article Google Scholar
37.
Steiger, M. et al. Explorative analysis of 2D color maps. In Proc. WSCG 2015 Conference on Computer Graphic, Visualization, and Computer Vision (eds Gavrilova, M. & Skala, V.) 151–160 (Union Angency, 2015).
38.
Vesanto, J., Himberg, J., Alhoniemi, E. & Parhankangas, J. SOM Toolbox for Matlab 5 Report A57 (Helsinki Univ. Technol., 2000).
39.
Strahler, A. N. Quantitative analysis of watershed geomorphology. EOS 38, 913–920 (1957).
Google Scholar
40.
Jiskoot, H., Curran, C. J., Tessler, D. L. & Shenton, L. R. Changes in Clemenceau Icefield and Chaba Group glaciers, Canada, related to hypsometry, tributary detachment, length–slope and area–aspect relations. Ann. Glaciol. 50, 133–143 (2009).
Article Google Scholar
41.
Silverman, B. Density Estimation for Statistics and Data Analysis (Chapman & Hall, 1986).
42.
Water Survey of Canada HYDAT Data (Environment Canada, 2018); https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
43.
Anderson, S. Alberta municipal water supply overview. Zenodo https://doi.org/10.5281/zenodo.3266447 (2019).
44.
Anderson, S. andersonsam/pca_som_streamflow: first release. Zenodo https://doi.org/10.5281/zenodo.3742162 (2020). More