1.
Margat, J. F. & Gun, Jvd. Groundwater Around the World: A Geographic Synopsis (CRC Press, Boca Raton, 2013).
Google Scholar
2.
Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).
ADS Google Scholar
3.
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 109, 9320–9325 (2012).
ADS CAS PubMed Google Scholar
4.
Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).
ADS CAS PubMed Google Scholar
5.
Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
ADS CAS PubMed Google Scholar
6.
Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5, 853–861 (2012).
ADS CAS Google Scholar
7.
Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res. 51, 5198–5216 (2015).
ADS PubMed PubMed Central Google Scholar
8.
Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).
ADS PubMed PubMed Central Google Scholar
9.
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651 (2018).
ADS CAS PubMed PubMed Central Google Scholar
10.
Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 192, 198–216 (2017).
ADS Google Scholar
11.
Ashraf, B. et al. Quantifying anthropogenic stress on groundwater resources. Sci. Rep. 7, 12910 (2017).
ADS PubMed PubMed Central Google Scholar
12.
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
ADS CAS PubMed Google Scholar
13.
Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).
ADS Google Scholar
14.
Longuevergne, L., Scanlon, B. R. & Wilson, C. R. GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 46, 11517 (2010).
ADS Google Scholar
15.
Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 49, 904–914 (2013).
ADS PubMed PubMed Central Google Scholar
16.
Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).
ADS Google Scholar
17.
Huang, Z. Y. et al. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 42, 1791–1799 (2015).
ADS Google Scholar
18.
Liu, C. M., Yu, J. J. & Kendy, E. Groundwater exploitation and its impact on the environment in the North China Plain. Water Int. 26, 265–272 (2001).
Google Scholar
19.
Chaussard, E., Wdowinski, S., Cabral-Cano, E. & Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 140, 94–106 (2014).
ADS Google Scholar
20.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).
ADS Google Scholar
21.
Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).
ADS Google Scholar
22.
Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 5, 15–40 (2014).
ADS Google Scholar
23.
Chen, M. et al. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sens. 8, 468 (2016).
ADS Google Scholar
24.
Gleeson, T. et al. Groundwater sustainability strategies. Nat. Geosci. 3, 378–379 (2010).
ADS CAS Google Scholar
25.
Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019).
ADS PubMed PubMed Central Google Scholar
26.
Beijing Water Authority. Beijing Water Resources Bulletin 2003–2016 (Beijing Water Authority, 2016).
27.
Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).
ADS CAS Google Scholar
28.
Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).
ADS CAS PubMed Google Scholar
29.
Hartmann, A., Gleeson, T., Wada, Y. & Wagener, T. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc. Natl. Acad. Sci. USA 114, 2842–2847 (2017).
ADS CAS PubMed Google Scholar
30.
Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
ADS Google Scholar
31.
Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
Google Scholar
32.
Su, B. D. et al. Drought losses in China might double between the 1.5 degrees C and 2.0 degrees C warming. Proc. Natl. Acad. Sci. USA 115, 10600–10605 (2018).
ADS CAS PubMed Google Scholar
33.
Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).
ADS PubMed PubMed Central Google Scholar
34.
Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11, 035013 (2016).
ADS Google Scholar
35.
Schiermeier, Q. Purification with a pinch of salt. Nature 452, 260–261 (2008).
ADS CAS PubMed Google Scholar
36.
Muller, M. Lessons from Cape Town’s drought. Nature 559, 174–176 (2018).
ADS CAS PubMed Google Scholar
37.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).
ADS CAS PubMed Google Scholar
38.
Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang 9, 358–369 (2019).
ADS Google Scholar
39.
Xia, J., Wang, Q., Zhang, X., Wang, R. & She, D. X. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach. Hydrogeol. J. 26, 1455–1473. (2018).
ADS Google Scholar
40.
Li, X., Ye, S. Y., Wei, A. H., Zhou, P. P. & Wang, L. H. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China. Hydrogeol. J. 25, 1733–1744 (2017).
ADS Google Scholar
41.
Zhang, M. L., Hu, L. T., Yao, L. L. & Yin, W. J. Numerical studies on the influences of the South-to-North Water Transfer Project on groundwater level changes in the Beijing Plain, China. Hydrol. Process. 32, 1858–1873 (2018).
ADS Google Scholar
42.
Vorosmarty, C. J., Douglas, E. M., Green, P. A. & Revenga, C. Geospatial indicators of emerging water stress: an application to Africa. Ambio 34, 230–236 (2005).
PubMed Google Scholar
43.
Beijing Government. in 13th Five-Year Development Plan of Water Resources in Beijing (ed. People’s Government of Beijing Municipality) (Beijing Government, Beijing, 2016).
44.
Beijing Municipal Commission for City Planning and Land Resources Management. Beijing City Overall Planning (2016–2035) (Beijing Municipal Commission for City Planning and Land Resources Management, 2017).
45.
Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4, 035006 (2009).
ADS Google Scholar
46.
Barnett, J., Rogers, S., Webber, M., Finlayson, B. & Wang, M. Transfer project cannot meet China’s water needs. Nature 527, 295–297 (2015).
ADS CAS PubMed Google Scholar
47.
AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T. & Lund, J. Water and climate: recognize anthropogenic drought. Nature 524, 409–411 (2015).
ADS CAS PubMed Google Scholar
48.
Chen, D. et al. The impact of water transfers from the lower Yangtze River on water security in Shanghai. Appl. Geogr. 45, 303–310 (2013).
Google Scholar
49.
Webber, M. et al. Impact of the Three Gorges Dam, the South-North Water Transfer Project and water abstractions on the duration and intensity of salt intrusions in the Yangtze River estuary. Hydrol. Earth Syst. Sci. 19, 4411–4425 (2015).
ADS Google Scholar
50.
Wang, Y. G., Zhang, W. S., Zhao, Y. X., Peng, H. & Shi, Y. Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J. Hydrol. 541, 1348–1362 (2016).
ADS Google Scholar
51.
Niswonger, R. G., Panday S. & Ibaraki, M. MODFLOW-NWT: A Newton Formulation for MODFLOW-2005 (US Geological Survey, 2005).
52.
Cao, G., Zheng, C., Scanlon, B. R., Liu, J. & Li, W. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour. Res. 49, 159–175 (2013).
ADS Google Scholar
53.
Burek, P. et al. Development of the Community Water Model (CWatM v1.04): a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci Model Dev Discuss 2019, 1–49. (2019).
Google Scholar
54.
Kendy, E. et al. A soil−water−balance approach to quantify groundwater recharge from irrigated cropland in the north China plain. Hydrol. Process. 17, 2011–2031 (2003).
ADS Google Scholar
55.
Wei, M. et al. An efficient soil water balance model based on hybrid numerical and statistical methods. J. Hydrol. 559, 721–735 (2018).
Google Scholar
56.
Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M. & Gagné, C. DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012).
MathSciNet Google Scholar
57.
Beijing Water Authority. Beijing Water Resource Statistics Year Book 2005–2018 (Beijing Water Authority, 2018).
58.
Beijing Hydrology Bureau. Annual Beijing Water Monitoring Bulletins 2005–2019 (Beijing Hydrology Bureau, 2019).
59.
Dai, Y. et al. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 14, 869–887 (2013).
ADS Google Scholar
60.
Guo, Y. Q., Zhang, X., Yu, X. & Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agric. Water Manag. 203, 138–150 (2018).
Google Scholar
61.
Gong, P. et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).
ADS Google Scholar
62.
Wu, L. Digital Elevation Model (1 km Spatial Resolution) Dataset of China (National Basic Geographic Information Center. China 1km resolution digital elevation model dataset. National Tibetan Plateau Data Center, 2014).
63.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
ADS CAS PubMed PubMed Central Google Scholar
64.
Gleeson, T., Moosdorf, N., Hartmann, J. & Van Beek, L. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).
ADS Google Scholar
65.
Andreadis, K. M., Schumann, G. J. P. & Pavelsky, T. A simple global river bankfull width and depth database. Water Resour. Res. 49, 7164–7168 (2013).
ADS Google Scholar
66.
Shen, Y. & Xiong, A. Validation and comparison of a new gauge‐based precipitation analysis over mainland China. Int. J. Climatol. 36, 252–265 (2016).
CAS Google Scholar
67.
Meng, X., Wang, H., Shi, C., Wu, Y. & Ji, X. Establishment and evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS). Water 10, 1555 (2018).
Google Scholar
68.
Okamoto, K.i., Ushio, T., Iguchi, T., Takahashi, N. & Iwanami, K. The global satellite mapping of precipitation (GSMaP) project. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05. 2005, pp. 3414-3416 https://doi.org/10.1109/IGARSS.2005.1526575 (2004).
69.
Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).
ADS Google Scholar
70.
Berrisford, P. et al. ERA-Interim Arch., version 2, 0 (2011).
Google Scholar
71.
Lange, S. EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-Corrected for ISIMIP (EWEMBI), V.1.1 (GFZ Data Services, 2019).
72.
Department of Civil and Environmental Engineering at Princeton University. in Global Meteorological Forcing Dataset for Land Surface Modeling (ed. Princeton University) (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, 2006).
73.
Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).
ADS Google Scholar More