Trahey, L. et al. Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. Proc. Natl Acad. Sci. USA 117, 12550–12557 (2020).Article
Google Scholar
Koohi-Fayegh, S. & Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020).Article
Google Scholar
Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B. & Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 104, 192–208 (2019).Article
Google Scholar
Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).Article
Google Scholar
Global EV Outlook (IEA, 2021); https://www.iea.org/reports/global-ev-outlook-2021.Tabelin, C. B. et al. Towards a low-carbon society: a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 163, 106743 (2021).Article
Google Scholar
The role of Critical World Energy Outlook Special Report Minerals in Clean Energy Transitions (IEA, 2022); https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf.Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).Article
Google Scholar
Mineral Commodity Summaries. LITHIUM (USGS, 2021); https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-lithium.pdf.Kesler, S. E. et al. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55–69 (2012).Article
Google Scholar
Alessia, A., Alessandro, B., Maria, V. G., Carlos, V. A. & Francesca, B. Challenges for sustainable lithium supply: a critical review. J. Clean. Prod. 300, 126954 (2021).Article
Google Scholar
Tadesse, B., Makuei, F., Albijanic, B. & Dyer, L. The beneficiation of lithium minerals from hard rock ores: a review. Miner. Eng. 131, 170–184 (2019).Article
Google Scholar
Vikström, H., Davidsson, S. & Höök, M. Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013).Article
Google Scholar
Sanjuan, B. et al. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chem. Geol. 428, 27–47 (2016).Article
Google Scholar
Sanjuan, B. et al. Lithium-rich geothermal brines in Europe: an up-date about geochemical characteristics and implications for potential Li resources. Geothermics 101, 102385 (2022).Article
Google Scholar
Stringfellow, W. T. & Dobson, P. F. Technology for the recovery of lithium from geothermal brines. Energies 14, 6805 (2021).Article
Google Scholar
Dugamin, E. J. M. et al. Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Sci. Rep. 11, 21091 (2021).Article
Google Scholar
Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639,, 1188–1204 (2018).Article
Google Scholar
Garrett, D. E. Handbook of Lithium and Natural Calcium Chloride https://doi.org/10.1016/B978-0-12-276152-2.X5035-X (2004).Article
Google Scholar
Mudd, G. M. Sustainable/responsible mining and ethical issues related to the Sustainable Development Goals. Geol. Soc. London, Spec. Publ. 508, 187 LP–199 (2021).Article
Google Scholar
Jerez, B., Garcés, I. & Torres, R. Lithium extractivism and water injustices in the Salar de Atacama, Chile: the colonial shadow of green electromobility. Polit. Geogr. 87, 102382 (2021).Article
Google Scholar
Alam, M. A. & Sepúlveda, R. Environmental degradation through mining for energy resources: the case of the shrinking Laguna Santa Rosa wetland in the Atacama Region of Chile. Energy Geosci. 3, 182–190 (2022).Article
Google Scholar
Hailes, O. Lithium in international law: trade, investment, and the pursuit of supply chain justice. J. Int. Econ. Law 25, 148–170 (2022).Article
Google Scholar
Bustos-Gallardo, B., Bridge, G. & Prieto, M. Harvesting lithium: water, brine and the industrial dynamics of production in the Salar de Atacama. Geoforum 119, 177–189 (2021).Article
Google Scholar
Agusdinata, D. B., Liu, W., Eakin, H. & Romero, H. Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13, 123001 (2018).Article
Google Scholar
Liu, W. & Agusdinata, D. B. Interdependencies of lithium mining and communities sustainability in Salar de Atacama, Chile. J. Clean. Prod. 260, 120838 (2020).Article
Google Scholar
Ellingsen, L. A. W., Singh, B. & Strømman, A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).Article
Google Scholar
Ambrose, H. & Kendall, A. Understanding the future of lithium: part 2, temporally and spatially resolved life-cycle assessment modeling. J. Ind. Ecol. 24, 90–100 (2020).Article
Google Scholar
Porzio, J. & Scown, C. D. Life-cycle assessment considerations for batteries and battery materials. Adv. Energy Mater. 11, 2100771 (2021).Article
Google Scholar
Pell, R. et al. Towards sustainable extraction of technology materials through integrated approaches. Nat. Rev. Earth Environ. 2, 665–679 (2021).Article
Google Scholar
Stamp, A., Lang, D. J. & Wäger, P. A. Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production. J. Clean. Prod. 23, 104–112 (2012).Article
Google Scholar
Ejeian, M., Grant, A., Shon, H. K. & Razmjou, A. Is lithium brine water? Desalination 518, 115169 (2021). Discussion of why brine water should be considered in environmental assessments.Article
Google Scholar
Marazuela, M. A., Vázquez-Suñé, E., Ayora, C. & García-Gil, A. Towards more sustainable brine extraction in salt flats: learning from the Salar de Atacama. Sci. Total. Environ. 703, 135605 (2020). Conceptual hydrogeological modelling, calibrated with field data, proposing clever strategies to minimize water impacts during brine pumping.Article
Google Scholar
Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: the Salar de Atacama example. Sci. Total. Environ. 651, 668–683 (2019).Article
Google Scholar
Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: the damping capacity of salt flats. Sci. Total. Environ. 654, 1118–1131 (2019).Article
Google Scholar
Houston, J., Butcher, A., Ehren, P., Evans, K. & Godfrey, L. The evaluation of brine prospects and the requirement for modifications to filing standards. Econ. Geol. 106, 1125–1239 (2011). Conceptual hydrogeological modelling about brine pumping and freshwater recharge.Article
Google Scholar
Liu, W., Agusdinata, D. B. & Myint, S. W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Obs. Geoinf. 80, 145–156 (2019). Pioneering publication with solid data highlighting the environmental impacts related to lithium mining from continental brines.
Google Scholar
Gutierrez, J. S. et al. Climate change and lithium mining influence flamingo abundance in the Lithium Triangle. Proc. R. Soc. B Biol. Sci. 289, 20212388 (2022).Article
Google Scholar
Marazuela, M. A. et al. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile). J. Hydrol. 561, 223–235 (2018).Article
Google Scholar
Rosen, M. R. The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas. in Paleoclimate and Basin Evolution of Playa Systems Vol. 289 (ed. Rosen, M. R.) (Geological Society of America, 1994).Currey, D. R. & Sack, D. Hemiarid Lake Basins: Hydrographic Patterns BT — Geomorphology of Desert Environments (eds Parsons, A. J. & Abrahams, A. D.) 471–487 (Springer Netherlands, 2009). https://doi.org/10.1007/978-1-4020-5719-9_15.Marconi, P., Arengo, F. & Clark, A. The arid Andean plateau waterscapes and the Lithium Triangle: flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development. Wetl. Ecol. Manag. https://doi.org/10.1007/s11273-022-09872-6 (2022).Article
Google Scholar
Gajardo, G. & Redón, S. Andean hypersaline lakes in the Atacama Desert, northern Chile: between lithium exploitation and unique biodiversity conservation. Conserv. Sci. Pract. 1, e94 (2019).
Google Scholar
Boualleg, M. & Burdet, F. A. P. Method of preparing an adsorbent material shaped in the absence of binder and method of extracting lithium from saline solutions using said material. US patent WO/097202 Al. (2015).Chen, S., Zhang, Q., Andrews-Speed, P. & Mclellan, B. Quantitative assessment of the environmental risks of geothermal energy: a review. J. Environ. Manage. 276, 111287 (2020).Article
Google Scholar
Megalooikonomou, K. G., Parolai, S. & Pittore, M. Toward performance-driven seismic risk monitoring for geothermal platforms: development of ad hoc fragility curves. Geotherm. Energy 6, 8 (2018).Article
Google Scholar
Bosia, C., Mouchot, J., Ravier, G., Seibel, O. & Genter, A. Evolution of brine geochemical composition during operation of EGS geothermal plants (Alsace, France). In Proc. 46th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 15–17, 2021 SGP-TR-218 (2021).Tyszer, M., Tomaszewska, B. & Kabay, N. Desalination of geothermal wastewaters by membrane processes: strategies for environmentally friendly use of retentate streams. Desalination 520, 115330 (2021).Article
Google Scholar
Chagnes, A. & Światowska, J. Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling (Elsevier, 2015).Khalil, A., Mohammed, S., Hashaikeh, R. & Hilal, N. Lithium recovery from brine: recent developments and challenges. Desalination 528, 115611 (2022).Article
Google Scholar
Meng, Z. et al. Highly flexible interconnected Li+ ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022).Article
Google Scholar
Marthi, R. & Smith, Y. R. Application and limitations of a H2TiO3 — diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent. Sep. Purif. Technol. 254, 117580 (2021).Article
Google Scholar
Li, X. et al. Amorphous TiO2-derived large-capacity lithium ion sieve for lithium recovery. Chem. Eng. Technol. 43, 1784–1791 (2020).Article
Google Scholar
Zhou, Z. et al. Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. Hydrometallurgy 191, 105244 (2020).Article
Google Scholar
Song, J., Huang, T., Qiu, H., Li, X. M. & He, T. Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4 ∗ 2TBP] as extractant: thermodynamics, kinetics and processes. Hydrometallurgy 173, 63–70 (2017).Article
Google Scholar
Li, R. et al. Novel ionic liquid as co-extractant for selective extraction of lithium ions from salt lake brines with high Mg/Li ratio. Sep. Purif. Technol. 277, 119471 (2021).Article
Google Scholar
Shi, C. et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep. Purif. Technol. 172, 473–479 (2017).Article
Google Scholar
Gmar, S. & Chagnes, A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy 189, 105124 (2019).Article
Google Scholar
Li, X. et al. Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Memb. Sci. 591, 117317 (2019).Article
Google Scholar
Zhao, Z., Liu, G., Jia, H. & He, L. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio. J. Memb. Sci. 596, 117685 (2020).Article
Google Scholar
Li, Q. et al. Efficiently rejecting and concentrating Li+ by nanofiltration membrane under a reversed electric field. Desalination 535, 115825 (2022).Article
Google Scholar
Li, Y., Zhao, Y. J., Wang, H. & Wang, M. The application of nanofiltration membrane for recovering lithium from salt lake brine. Desalination 468, 114081 (2019).Article
Google Scholar
He, R. et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination 525, 115492 (2022).Article
Google Scholar
Calvo, E. J. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr. Opin. Electrochem. 15, 102–108 (2019).Article
Google Scholar
Battistel, A., Palagonia, M. S., Brogioli, D., La Mantia, F. & Trócoli, R. Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32, 1905440 (2020). Critical review about electrochemical ion pumping technologies, with suggestions about which experimental parameters need to be assessed. Not all electrochemical technologies are reviewed.Article
Google Scholar
Calvo, E. J. Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation. ACS Omega 6, 35213–35220 (2021).Article
Google Scholar
He, L. et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Glob. Chall. 2, 1700079 (2018).Article
Google Scholar
Liu, D., Xu, W., Xiong, J., He, L. & Zhao, Z. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics. Sep. Purif. Technol. 270, 118809 (2021).Article
Google Scholar
Liu, D., Zhao, Z., Xu, W., Xiong, J. & He, L. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. Desalination 519, 115302 (2021).Article
Google Scholar
Liu, D., Li, Z., He, L. & Zhao, Z. Facet engineered Li3PO4 for lithium recovery from brines. Desalination 514, 115186 (2021).Article
Google Scholar
Lai, X., Xiong, P. & Zhong, H. Extraction of lithium from brines with high Mg/Li ratio by the crystallization–precipitation method. Hydrometallurgy 192, 105252 (2020).Article
Google Scholar
Mendieta–George, D., Pérez–Garibay, R., Solís–Rodríguez, R., Fuentes–Aceituno, J. C. & Alvarado–Gómez, A. Study of the direct production of lithium phosphate with pure synthetic solutions and membrane electrolysis. Miner. Eng. 185, 107713 (2022).Article
Google Scholar
Cerda, A. et al. Recovering water from lithium-rich brines by a fractionation process based on membrane distillation–crystallization. J. Water Process. Eng 41, 102063 (2021). Membrane distillation-based DLE proposal to recover freshwater during brine concentration from high-salinity brines.Article
Google Scholar
Quist-Jensen, C. A., Ali, A., Mondal, S., Macedonio, F. & Drioli, E. A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J. Memb. Sci. 505, 167–173 (2016).Article
Google Scholar
Zhou, G. et al. Progress in electrochemical lithium ion pumping for lithium recovery. J. Energy Chem. 59, 431–445 (2021).Article
Google Scholar
Xu, P. et al. Materials for lithium recovery from salt lake brine. J. Mater. Sci. 56, 16–63 (2021).Article
Google Scholar
Wang, J. et al. Electrochemical technologies for lithium recovery from liquid resources: a review. Renew. Sustain. Energy Rev. 154, 111813 (2022).Article
Google Scholar
Sun, Y., Wang, Q., Wang, Y., Yun, R. & Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 256, 117807 (2021).Article
Google Scholar
Nie, X.-Y., Sun, S.-Y., Sun, Z., Song, X. & Yu, J.-G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 403, 128–135 (2017).Article
Google Scholar
Ding, D., Yaroshchuk, A. & Bruening, M. L. Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. J. Memb. Sci. 647, 120294 (2022).Article
Google Scholar
Li, Q. et al. Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electric field. J. Memb. Sci. 641, 119880 (2022).Article
Google Scholar
Qiu, Y. et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide. Desalination 465, 1–12 (2019).Article
Google Scholar
Palagonia, M. S., Brogioli, D. & La Mantia, F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. Desalination 475, 114192 (2020).Article
Google Scholar
Palagonia, M. S., Brogioli, D. & Mantia, F. L. Effect of current density and mass loading on the performance of a flow-through electrodes cell for lithium recovery. J. Electrochem. Soc. 166, E286–E292 (2019).Article
Google Scholar
Guo, Z.-Y. et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. J. Clean. Prod. 193, 338–350 (2018).Article
Google Scholar
Zhao, L.-M. et al. Separating and recovering lithium from brines using selective-electrodialysis: sensitivity to temperature. Chem. Eng. Res. Des. 140, 116–127 (2018).Article
Google Scholar
Sharma, P. P. et al. Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination 496, 114755 (2020).Article
Google Scholar
Chen, Q.-B. et al. Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium. J. Memb. Sci. 548, 408–420 (2018).Article
Google Scholar
Díaz Nieto, C. H. & Flexer, V. Is it possible to recover lithium compounds from complex brines employing electromembrane processes exclusively? Curr. Opin. Electrochem. 35, 101087 (2022).Article
Google Scholar
Li, X. et al. Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination 537, 115847 (2022).Article
Google Scholar
Parker SS, et al. Potential lithium extraction in the United States: environmental, economic, and policy implications (The Nature Conservancy, 2022); https://www.scienceforconservation.org/assets/downloads/Lithium_Report_FINAL.pdf.Arkansas Smackover Project. Standard Lithium https://www.standardlithium.com/projects/arkansas-smackover (2022).Grant, A. Re-injection enhanced production for direct lithium extraction (DLE) projects. https://www.jadecove.com/research/brinereinjection.Horne, R. N. Geothermal reinjection experience in Japan. J. Pet. Technol. 34, 495–503 (1982).Article
Google Scholar
Boo, C., Billinge, I. H., Chen, X., Shah, K. M. & Yin Yip, N. Zero liquid discharge of ultrahigh-salinity brines with temperature swing solvent extraction. Environ. Sci. Technol. 54, 9124–9131 (2020).Article
Google Scholar
Deshmukh, A. et al. Thermodynamics of solvent-driven water extraction from hypersaline brines using dimethyl ether. Chem. Eng. J. 434, 134391 (2022).Article
Google Scholar
Panagopoulos, A. Brine management (saline water & wastewater effluents): sustainable utilization and resource recovery strategy through minimal and zero liquid discharge (MLD & ZLD) desalination systems. Chem. Eng. Process. Process Intensif. 176, 108944 (2022).Article
Google Scholar
Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A. Produced water characteristics, treatment and reuse: a review. J. Water Process Eng. 28, 222–239 (2019).Article
Google Scholar
Samuel, O. et al. Oilfield-produced water treatment using conventional and membrane-based technologies for beneficial reuse: a critical review. J. Environ. Manag. 308, 114556 (2022).Article
Google Scholar
Arena, J. T. et al. Management and dewatering of brines extracted from geologic carbon storage sites. Int. J. Greenh. Gas Control 63, 194–214 (2017).Article
Google Scholar
Ogden, D. D. & Trembly, J. P. Desalination of hypersaline brines via Joule-heating: experimental investigations and comparison of results to existing models. Desalination 424, 149–158 (2017).Article
Google Scholar
Kaplan, R., Mamrosh, D., Salih, H. H. & Dastgheib, S. A. Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site. Desalination 404, 87–101 (2017).Article
Google Scholar
Baspineiro, C. F., Franco, J. & Flexer, V. Potential water recovery during lithium mining from high salinity brines. Sci. Total Environ. 720, 137523 (2020).Article
Google Scholar
Sustainable production. SQM https://www.sqmlithium.com/en/nosotros/produccion-sustentable/ (2022).Sustainability Report (Orocobre, 2021); https://www.orocobre.com/wp/?mdocs-file=7259.Grant, A. From Catamarca to Qinghai: the Commercial Scale Direct Lithium Extraction Operations. Jadecove https://www.jadecove.com/research/fromcatamarcatoqinghai (2020).Sustainability report (Livent, 2021); https://livent.com/wp-content/uploads/2022/07/Livent_2021SustainabilityReport-English.pdf.Park, S. H. et al. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Memb. Sci. 598, 117683 (2020). Pioneering DLE proposal to recover freshwater during brine concentration via nanofiltration followed by membrane distillation.Article
Google Scholar
Pramanik, B. K., Asif, M. B., Kentish, S., Nghiem, L. D. & Hai, F. I. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process. J. Environ. Chem. Eng. 7, 103395 (2019).Article
Google Scholar
Ko, C.-C. et al. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination 440, 48–58 (2018).Article
Google Scholar
Baspineiro, C. F., Franco, J. & Flexer, V. Performance of a double-slope solar still for the concentration of lithium rich brines with concomitant fresh water recovery. Sci. Total. Environ. 791, 148192 (2021).Article
Google Scholar
Ling, Z. et al. Desalination and Li+ enrichment via formation of cyclopentane hydrate. Sep. Purif. Technol. 231, 115921 (2020).Article
Google Scholar
Niu, J. et al. An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes. Sep. Purif. Technol. 274, 118995 (2021).Article
Google Scholar
Nie, X.-Y., Sun, S.-Y., Song, X. & Yu, J.-G. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. J. Memb. Sci. 530, 185–191 (2017).Article
Google Scholar
Jiang, C., Wang, Y., Wang, Q., Feng, H. & Xu, T. Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM). Ind. Eng. Chem. Res. 53, 6103–6112 (2014).Article
Google Scholar
Díaz Nieto, C. H., Rabaey, K. & Flexer, V. Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts. Sep. Purif. Technol. 252, 117410 (2020).Article
Google Scholar
Díaz Nieto, C. H. et al. Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res. 154, 117–124 (2019).Article
Google Scholar
Ji, P.-Y. et al. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep. Purif. Technol. 207, 1–11 (2018).Article
Google Scholar
Lee, D.-H. et al. Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy 173, 283–288 (2017).Article
Google Scholar
Díaz Nieto, C. H., Kortsarz, J. A., Vera, M. L. & Flexer, V. Effect of temperature, current density and mass transport during the electrolytic removal of magnesium ions from lithium rich brines. Desalination 529, 115652 (2022).Article
Google Scholar
Li, X. et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chem. Eng. J. 392, 123731 (2020).Article
Google Scholar
Sun, J. et al. Preparation of high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources. Chem. Eng. J. 453, 139485 (2023).Article
Google Scholar
Qian, F. et al. Trace doping by fluoride and sulfur to enhance adsorption capacity of manganese oxides for lithium recovery. Mater. Des. 194, 108867 (2020).Article
Google Scholar
Taghvaei, N., Taghvaei, E. & Askari, M. Synthesis of anodized TiO2 nanotube arrays as ion sieve for lithium extraction. ChemistrySelect 5, 10339–10345 (2020).Article
Google Scholar
Qian, F. et al. Highly lithium adsorption capacities of H1.6Mn1.6O4 ion-sieve by ordered array structure. ChemistrySelect 4, 10157–10163 (2019).Article
Google Scholar
Sarmiento, N. et al. A solar irradiation GIS as decision support tool for the Province of Salta, Argentina. Renew. Energy 132, 68–80 (2019).Article
Google Scholar
Dellicompagni, P., Franco, J. & Flexer, V. CO2 emission reduction by integrating concentrating solar power into lithium mining. Energy Fuels 35, 15879–15893 (2021).Article
Google Scholar
Zavahir, S. et al. A review on lithium recovery using electrochemical capturing systems. Desalination 500, 114883 (2021).Article
Google Scholar
Joo, H. et al. Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate. Environ. Sci. Water Res. Technol. 6, 290–295 (2020). Pilot-scale demonstration of processing 6 tonnes of brine daily using electrochemical ion pumping.Article
Google Scholar
Song, J. F., Nghiem, L. D., Li, X.-M. & He, T. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environ. Sci. Water Res. Technol. 3, 593–597 (2017). Thorough review of pilot-scale projects for lithium mining from brines in China.Article
Google Scholar
Yu, C. et al. Bio-inspired fabrication of ester-functionalized imprinted composite membrane for rapid and high-efficient recovery of lithium ion from seawater. J. Colloid Interf. Sci. 572, 340–353 (2020).Article
Google Scholar
Lu, J. et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Appl. Surf. Sci. 427, 931–941 (2018).Article
Google Scholar
Ryu, T. et al. Lithium recovery system using electrostatic field assistance. Hydrometallurgy 151, 78–83 (2015).Article
Google Scholar
Sun, Y., Wang, Y., Liu, Y. & Xiang, X. Highly efficient lithium extraction from brine with a high sodium content by adsorption-coupled electrochemical technology. ACS Sustain. Chem. Eng. 9, 11022–11031 (2021).Article
Google Scholar
Torres, W. R., Díaz Nieto, C. H., Prévoteau, A., Rabaey, K. & Flexer, V. Lithium carbonate recovery from brines using membrane electrolysis. J. Memb. Sci. 615, 118416 (2020). A DLE methodology with three consecutive electromembrane processes for the sequential recovery of magnesium, calcium and sodium by-products, together with lithium carbonate and concomitant fresh-water production in a circular economy framework.Article
Google Scholar
Du, X. et al. A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration. J. Mater. Chem. A 4, 13989–13996 (2016).Article
Google Scholar
Luo, G. et al. Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode. J. Energy Chem. 69, 244–252 (2022).Article
Google Scholar
Oyarce, E., Roa, K., Boulett, A., Salazar-Marconi, P. & Sánchez, J. Removal of lithium ions from aqueous solutions by an ultrafiltration membrane coupled to soluble functional polymer. Sep. Purif. Technol. 288, 120715 (2022).Article
Google Scholar
Han, H. J., Qu, W., Zhang, Y. L., Lu, H. D. & Zhang, C. L. Enhanced performance of Li+ adsorption for H1.6Mn1.6O4 ion-sieves modified by Co doping and micro array morphology. Ceram. Int. 47, 21777–21784 (2021).Article
Google Scholar
Zhu, X. et al. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Sep. Purif. Technol. 274, 119099 (2021).Article
Google Scholar
Meng, Z. et al. Highly flexible interconnected Li+ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022).Article
Google Scholar
Xiong, J., Zhao, Z., Liu, D. & He, L. Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials. Sep. Purif. Technol. 290, 120789 (2022).Article
Google Scholar
Vera, M. L. et al. A strategy to avoid solid formation within the reactor during magnesium and calcium electrolytic removal from lithium-rich brines. J. Solid State Electrochem. https://doi.org/10.1007/s10008-022-05219-6 (2022).Article
Google Scholar
Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press. Boca Raton, 2005).Neumann, J. et al. Recycling of lithium-ion batteries — current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 12, 2102917 (2022).Article
Google Scholar
Amici, J. et al. A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+. Adv. Energy Mater. 12, 2102785 (2022).Article
Google Scholar
Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).Article
Google Scholar
Kinnunen, P. H.-M. & Kaksonen, A. H. Towards circular economy in mining: opportunities and bottlenecks for tailings valorization. J. Clean. Prod. 228, 153–160 (2019).Article
Google Scholar
Falagán, C., Grail, B. M. & Johnson, D. B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 106, 71–78 (2017).Article
Google Scholar
Nwaila, G. T. et al. Valorisation of mine waste — part I: characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. J. Environ. Manage. 295, 113013 (2021).Article
Google Scholar
Singh, S., Sukla, L. B. & Goyal, S. K. Mine waste & circular economy. Mater. Today Proc. 30, 332–339 (2020).Article
Google Scholar
Purnell, P., Velenturf, A. P. M. & Marshall, R. New Governance for Circular Economy: Policy, Regulation and Market Contexts for Resource Recovery from Waste. (eds. Macaskie, L. E. et al.) Ch. 16 (Royal Society of Chemistry, 2019).Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).Article
Google Scholar
Yang, Y. et al. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloy. 9, 705–747 (2021).Article
Google Scholar
Løvik, A. N., Hagelüken, C. & Wäger, P. Improving supply security of critical metals: current developments and research in the EU. Sustain. Mater. Technol. 15, 9–18 (2018).
Google Scholar
Potash. Albemarle https://www.albemarle.com/businesses/lithium/products/pot-ash (2023).Production processes. SQM https://www.sqm.com/en/acerca-de-sqm/recursos-naturales/proceso-de-produccion/ (2018).Thiel, G. P. & Lienhard V, J. H. Treating produced water from hydraulic fracturing: composition effects on scale formation and desalination system selection. Desalination 346, 54–69 (2014).Article
Google Scholar
Shaffer, D. L. et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47, 9569–9583 (2013).Article
Google Scholar
Ogunbiyi, O. et al. Sustainable brine management from the perspectives of water, energy and mineral recovery: a comprehensive review. Desalination 513, 115055 (2021).Article
Google Scholar
Kumar, A. et al. Metals recovery from seawater desalination brines: technologies, opportunities, and challenges. ACS Sustain. Chem. Eng. 9, 7704–7712 (2021).Article
Google Scholar
Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).Article
Google Scholar
Saccò, M. et al. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 96, 2828–2850 (2021).Article
Google Scholar
Chiappero, M. F., Vaieretti, M. V. & Izquierdo, A. E. A baseline soil survey of two peatlands associated with a lithium-rich salt flat in the argentine puna: physico-chemical characteristics, carbon storage and biota. Mires Peat 27, 16 (2021).
Google Scholar
Batanero, G. L. et al. Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake. Sci. Rep. 7, 12173 (2017).Article
Google Scholar
Avila-Arias, H., Nies, L. F., Gray, M. B. & Turco, R. F. Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure. Sci. Total. Environ. 652, 202–211 (2019).Article
Google Scholar
Robinson, B. H., Yalamanchali, R., Reiser, R. & Dickinson, N. M. Lithium as an emerging environmental contaminant: mobility in the soil–plant system. Chemosphere 197, 1–6 (2018).Article
Google Scholar
Bolan, N. et al. From mine to mind and mobiles — lithium contamination and its risk management. Environ. Pollut. 290, 118067 (2021).Article
Google Scholar
Shokri-Kuehni, S. M. S., Norouzi Rad, M., Webb, C. & Shokri, N. Impact of type of salt and ambient conditions on saline water evaporation from porous media. Adv. Water Resour. 105, 154–161 (2017).Article
Google Scholar
Obaya, M., López, A. & Pascuini, P. Curb your enthusiasm. Challenges to the development of lithium-based linkages in Argentina. Resour. Policy 70, 101912 (2021).Article
Google Scholar
Risacher, F., Alonso, H. & Salazar, C. The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci. Rev. 63, 249–293 (2003).Article
Google Scholar
Corenthal, L. G., Boutt, D. F., Hynek, S. A. & Munk, L. A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys. Res. Lett. 43, 8017–8025 (2016).Article
Google Scholar
Vásquez, C., Ortiz, C., Suárez, F. & Muñoz, J. F. Modeling flow and reactive transport to explain mineral zoning in the Atacama salt flat aquifer, Chile. J. Hydrol. 490, 114–125 (2013).Article
Google Scholar More