More stories

  • in

    To gel or not to gel: differential expression of carrageenan-related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus

    1.
    Butterfield, N. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).
    Article  Google Scholar 
    2.
    Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138. https://doi.org/10.1130/G39829.1 (2018).
    ADS  CAS  Article  Google Scholar 

    3.
    Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, 2000735. https://doi.org/10.1371/journal.pbio.2000735 (2017).
    CAS  Article  Google Scholar 

    4.
    Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).
    CAS  Article  Google Scholar 

    5.
    Potin, P., Bouarab, K., Kupper, F. & Kloareg, B. Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr. Opin. Microbiol. 2, 276–283. https://doi.org/10.1016/S1369-5274(99)80048-4 (1999).
    CAS  Article  PubMed  Google Scholar 

    6.
    Bouarab, K., Potin, P., Correa, J. & Kloareg, B. Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11, 1635–1650 (1999).
    CAS  Article  Google Scholar 

    7.
    Genicot-Joncour, S. et al. The cyclization of the 3,6-anhydro-galactose ring of iota-carrageenan is catalyzed by two D-galactose-2,6-sulfurylases in the red alga Chondrus crispus. Plant Physiol. 151, 1609–1616 (2009).
    Article  Google Scholar 

    8.
    Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912. https://doi.org/10.1038/nature08937 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Ciancia, M., Matulewicz, M. C. & Cerezo, A. S. A L-galactose-containing carrageenan from cystocarpic Gigartina skottsbergii. Phytochemistry 45, 1009–1013. https://doi.org/10.1016/S0031-9422(97)00060-5 (1997).
    CAS  Article  Google Scholar 

    10.
    Stortz, C. A., Cases, M. R. & Cerezo, A. S. The system of agaroids and carrageenans from the soluble fraction of the tetrasporic stage of the red seaweed Iridaea undulosa. Carbohyd. Polym. 34, 61–65. https://doi.org/10.1016/S0144-8617(97)00097-0 (1997).
    CAS  Article  Google Scholar 

    11.
    Takano, R., Shiomoto, K., Kamei, K., Hara, S., & Hirase, S (2003) Occurrence of carrageenan structure in an agar from the red seaweed Digenea simplex (Wulfen) C. agardh (Rhodomelaceae, Ceramiales) with a short review of carrageenan-agarocolloid hybrid in the florideophycidae. Bot. Mar. 46, 142–150. https://doi.org/10.1515/Bot.2003.015.

    12.
    Navarro, D. A. & Stortz, C. A. Determination of the configuration of 3,6-anhydrogalactose and cyclizable alpha-galactose 6-sulfate units in red seaweed galactans. Carbohydr. Res. 338, 2111–2118. https://doi.org/10.1016/S0008-6215(03)00345-8 (2003).
    CAS  Article  PubMed  Google Scholar 

    13.
    Chen, L.C.-M. & Mclachla, J. Life history of Chondrus crispus in culture. Can. J. Bot. 50, 1055–2000. https://doi.org/10.1139/b72-129 (1972).
    Article  Google Scholar 

    14.
    Krueger-Hadfield, S. A., Collen, J., Daguin-Thiebaut, C. & Valero, M. Genetic population structure and mating system in Chondrus crispus (Rhodophyta). J. Phycol. 47, 440–450. https://doi.org/10.1111/j.1529-8817.2011.00995.x (2011).
    Article  PubMed  Google Scholar 

    15.
    Fournet, I., Deslandes, E. & Floch, J. Y. Iridescence – a useful criterion to sort gametophytes from sporophytes in the red alga Chondrus crispus. J. Appl. Phycol. 5, 535–537. https://doi.org/10.1007/Bf02182512 (1993).
    Article  Google Scholar 

    16.
    Chen, L. C. M., Mclachla, J., Neish, A. C. & Shacklock, P. F. Ratio of kappa-carrageenan to lambda-carrageenan in nuclear phases of Rhodophycean algae, Chondrus crispus and Gigartina stellata. J. Mar. Biol. Assoc. UK 53, 11–16. https://doi.org/10.1017/S0025315400056599 (1973).
    CAS  Article  Google Scholar 

    17.
    McCandless, E., Craigie, J. & Walter, J. Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus. Planta 112, 201–212 (1973).
    CAS  Article  Google Scholar 

    18.
    Pereira, L. Population studies and carrageenan properties in eight Gigartinales (Rhodophyta) from Western Coast of Portugal. Sci. World J https://doi.org/10.1155/2013/939830 (2013).
    Article  Google Scholar 

    19.
    Chopin, T. & Floc’h, J.-Y. Eco-physiological and biochemical study of two of the most contrasting forms of Chondrus crispus (Rhodophyta, Gigartinales). Mar. Ecol. Prog. Ser. 81, 185–195 (1992).
    ADS  Article  Google Scholar 

    20.
    Tasende, M. G., Cid, M. & Fraga, M. I. Spatial and temporal variations of Chondrus crispus (Gigartinaceae, Rhodophyta) carrageenan content in natural populations from Galicia (NW Spain). J. Appl. Phycol. 24, 941–951. https://doi.org/10.1007/s10811-011-9715-y (2012).
    Article  Google Scholar 

    21.
    Collen, J. et al. Chondrus crispus – A present and historical model organism for red seaweeds. Adv. Bot. Res. 71, 53–89. https://doi.org/10.1016/B978-0-12-408062-1.00003-2 (2014).
    Article  Google Scholar 

    22.
    Correa, J. A. & Mclachlan, J. L. Endophytic algae of Chondrus crispus (Rhodophyta). 3. Host specificity. J. Phycol. 27, 448–459. https://doi.org/10.1111/j.0022-3646.1991.00448.x (1991).
    Article  Google Scholar 

    23.
    Krueger-Hadfield, S. A. Population structure in the haploid-diploid red alga Chondrus crispus: mating system, genetic differentiation and epidemiology. Doctoral thesis, UPMC Paris 6 with l’Universidad católica de Chile (2011).

    24.
    Destombe, C., Valero, M., Vernet, P. & Couvet, D. What controls haploid–diploid ratio in the red alga Gracilaria verrucosa. . J. Evol. Biol. 2, 317–338. https://doi.org/10.1046/j.1420-9101.1989.2050317.x (1989).
    Article  Google Scholar 

    25.
    Thornber, C. S. & Gaines, S. D. Population demographics in species with biphasic life cycles. Ecology 85, 1661–1674. https://doi.org/10.1890/02-4101 (2004).
    Article  Google Scholar 

    26.
    Craigie, J. & Wong, H. Carrageenan biosynthesis. Proceedings of the International Seaweed Symposium, 369–377 (1979).

    27.
    Ficko-Blean, E., Hervé, C. & Michel, G. Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. PiP 2, 51–64 (2015).
    Article  Google Scholar 

    28.
    Wong, K. F. & Craigie, J. S. Sulfohydrolase activity and carrageenan biosynthesis in Chondrus crispus (Rhodophyceae). Plant Physiol. 61, 663–666 (1978).
    CAS  Article  Google Scholar 

    29.
    van de Velde, F., Knutsen, S. H., Usov, A. I., Rollema, H. S. & Cerezo, A. S. H-1 and C-13 high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci. Tech. 13, 73. https://doi.org/10.1016/S0924-2244(02)00066-3 (2002).
    Article  Google Scholar 

    30.
    Campo, V. L., Kawano, D. F., Silva, D. B. J. & Carvalho, I. Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohyd. Polym. 77, 167–180 (2009).
    CAS  Article  Google Scholar 

    31.
    Carrington, E., Grace, S. P. & Chopin, T. Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J. Phycol. 37, 699–704. https://doi.org/10.1046/j.1529-8817.2001.00169.x (2001).
    Article  Google Scholar 

    32.
    Hughes, J. S. & Otto, S. P. Ecology and the evolution of biphasic life cycles. Am. Nat. 154, 306–320. https://doi.org/10.1086/303241 (1999).
    Article  PubMed  Google Scholar 

    33.
    Krueger-Hadfield, S. A. What’s ploidy got to do with it? Understanding the evolutionary ecology of macroalgal invasions necessitates incorporating life cycle complexity. Evol. Appl. https://doi.org/10.1111/eva.12843 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Garbary, D. J., Tompkins, E., White, K., Corey, P. & Kim, J. K. Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta). Algae 26, 61–71. https://doi.org/10.4490/algae.2011.26.1.061 (2011).
    Article  Google Scholar 

    35.
    Tveter-Gallagher, E., Mathieson, A. C. & Cheney, D. P. Ecology and developmental morphology of male plants of Chondrus crispus (Gigartinales, Rhodophyta). J. Phycol. 16, 257–264 (1980).
    Article  Google Scholar 

    36.
    Krueger-Hadfield, S. A., Roze, D., Mauger, S. & Valero, M. Intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed Chondrus crispus. Mol. Ecol. 22, 3242–3260. https://doi.org/10.1111/mec.12191 (2013).
    CAS  Article  PubMed  Google Scholar 

    37.
    Yaphe, W. & Arsenault, G. P. Improved resorcinol reagent for determination of fructose and of 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 13, 143. https://doi.org/10.1016/0003-2697(65)90128-4 (1965).
    CAS  Article  Google Scholar 

    38.
    Dyck, L., De Wreede, R. E. & Garbary, D. Life history phases in Iridaea cordata (Gigartinaceae): relative abundance and distribution from British Columbia to California. Jap. J. Phycol. 33, 225–232 (1985).
    Google Scholar 

    39.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Collen, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. USA 110, 5247–5252 (2013).
    ADS  CAS  Article  Google Scholar 

    41.
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl. Acids Res. 31, 5654–5666. https://doi.org/10.1093/nar/gkg770 (2003).
    CAS  Article  PubMed  Google Scholar 

    42.
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. https://doi.org/10.1038/nbt.3519 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Madden, T. L., Tatusov, R. L. & Zhang, J. Applications of network BLAST server. Methods Enzymol. 266, 131–141 (1996).
    CAS  Article  Google Scholar 

    45.
    Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucl. Acids Res. 43, D213-221. https://doi.org/10.1093/nar/gku1243 (2015).
    Article  PubMed  Google Scholar 

    46.
    Punta, M. et al. The Pfam protein families database. Nucl. Acids Res. 40, D290-301. https://doi.org/10.1093/nar/gkr1065 (2012).
    CAS  Article  PubMed  Google Scholar 

    47.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  Article  Google Scholar 

    48.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98 (1998).
    Google Scholar 

    50.
    Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699. https://doi.org/10.1093/oxfordjournals.molbev.a003851 (2001).
    CAS  Article  PubMed  Google Scholar 

    51.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Kusche-Gullberg, M. & Kjellen, L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13, 605–611. https://doi.org/10.1016/j.sbi.2003.08.002 (2003).
    CAS  Article  PubMed  Google Scholar 

    53.
    Breton, C., Fournel-Gigleux, S. & Palcic, M. M. Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 22, 540–549. https://doi.org/10.1016/j.sbi.2012.06.007 (2012).
    CAS  Article  PubMed  Google Scholar 

    54.
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl. Acids Res. 42, D490-495 (2014).
    CAS  Article  Google Scholar 

    55.
    Brawley, S. H. et al. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc. Natl. Acad. Sci. U.S.A. 114, E6361–E6370. https://doi.org/10.1073/pnas.1703088114 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Madson, M. et al. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15, 1662–1670. https://doi.org/10.1105/tpc.009837 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Iwai, H., Masaoka, N., Ishii, T. & Satoh, S. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc. Natl. Acad. Sci. USA 99, 16319–16324. https://doi.org/10.1073/pnas.252530499 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    58.
    Jensen, J. K. et al. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20, 1289–1302. https://doi.org/10.1105/tpc.107.050906 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    59.
    Harholt, J. et al. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol. 140, 49–58. https://doi.org/10.1104/pp.105.072744 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Dilokpimol, A. & Geshi, N. Arabidopsis thaliana glucuronosyltransferase in family GT14. Plant Signal. Behav. https://doi.org/10.4161/psb.28891 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Knoch, E. et al. A beta-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. Plant J. 76, 1016–1029. https://doi.org/10.1111/tpj.12353 (2013).
    CAS  Article  PubMed  Google Scholar 

    62.
    Pak, J. E. et al. X-ray crystal structure of leukocyte type core 2 beta 1,6-N-acetylglucosaminyltransferase—evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J. Biol. Chem. 281, 26693–26701. https://doi.org/10.1074/jbc.M603534200 (2006).
    CAS  Article  PubMed  Google Scholar 

    63.
    Bierhuizen, M. F. A., Mattei, M. G. & Fukuda, M. Expression of the developmental-I antigen by a cloned human cDNA-encoding a member of a beta-1,6-N-acetylglucosaminyltransferase gene family. Gene Dev. 7, 468–478. https://doi.org/10.1101/gad.7.3.468 (1993).
    CAS  Article  PubMed  Google Scholar 

    64.
    Wilson, I. B. H. The never-ending story of peptide O-xylosyltransferase. Cell. Mol. Life Sci. 61, 794–809. https://doi.org/10.1007/s00018-003-3278-2 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    Bowman, K. G. & Bertozzi, C. R. Carbohydrate sulfotransferases: mediators of extracellular communication. Chem. Biol. 6, R9–R22. https://doi.org/10.1016/S1074-5521(99)80014-3 (1999).
    CAS  Article  PubMed  Google Scholar 

    66.
    Michel, G., Tonon, T., Scornet, D., Cock, J. M. & Kloareg, B. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol. 188, 82–97 (2010).
    CAS  Article  Google Scholar 

    67.
    Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335. https://doi.org/10.1038/nature16548 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    68.
    Kloareg, B. & Quatrano, R. S. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 26, 259–315 (1988).
    Google Scholar 

    69.
    Hayes, A. et al. Biodiversity of CS-proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem. J. 475, 587–620. https://doi.org/10.1042/Bcj20170820 (2018).
    CAS  Article  PubMed  Google Scholar 

    70.
    Esko, J. D. & Selleck, S. B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471. https://doi.org/10.1146/annurev.biochem.71.110601.135458 (2002).
    CAS  Article  PubMed  Google Scholar 

    71.
    Ficko-Blean, E. et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat. Commun. 8, 1685. https://doi.org/10.1038/s41467-017-01832-6 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Prechoux, A., Genicot, S., Rogniaux, H. & Helbert, W. Controlling carrageenan structure using a novel formylglycine-dependent sulfatase, an endo-4S-iota-carrageenan sulfatase. Mar. Biotechnol. (NY) 15, 265–274. https://doi.org/10.1007/s10126-012-9483-y (2013).
    CAS  Article  Google Scholar 

    73.
    Hettle, A. G. et al. Insights into the kappa/iota-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Commun. Biol. 2, 474. https://doi.org/10.1038/s42003-019-0721-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    74.
    Genicot, S. et al. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front. Chem. 2, 67. https://doi.org/10.3389/fchem.2014.00067 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies

    1.
    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature540, 104–108 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nature Rev. Microbiol.14, 434–447 (2016).
    CAS  Google Scholar 

    3.
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature528, 69–76 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science346, 1256688 (2014).
    PubMed  PubMed Central  Google Scholar 

    5.
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature560, 233–237 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Commun.10, 2369 (2019).
    ADS  Google Scholar 

    7.
    Nilsson, R. H. et al. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Rev. Microbiol.17, 95–109 (2019).
    CAS  Google Scholar 

    8.
    Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Commun.10, 5142 (2019).
    ADS  Google Scholar 

    9.
    Vlk, L. et al. Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytol., https://doi.org/10.1111/nph.16557 (2020).

    10.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature551, 457–463 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    11.
    Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA.109, 6241–6246 (2012).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res.47, D259–D264 (2019).
    CAS  PubMed  Google Scholar 

    13.
    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Meth. Ecol. Evol.4, 914–919 (2013).
    Google Scholar 

    14.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990).
    CAS  Google Scholar 

    15.
    Karger, D. N. et al. Data Descriptor: Climatologies at high resolution for the earth’s land surface areas. Scientific Data4, 170122 (2017).
    PubMed  PubMed Central  Google Scholar 

    16.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.37, 4302–4315 (2017).
    Google Scholar 

    17.
    Baldrian, P. et al. GlobalFungi: Global database of fungal records from high-throughput-sequencing metabarcoding studies. figshare https://doi.org/10.6084/m9.figshare.c.4915392 (2020).

    18.
    Anslan, S. et al. Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. Mycokeys39, 29–40 (2018).
    Google Scholar 

    19.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP001058 (2010).

    20.
    Jumpponen, A. & Jones, K. L. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol.186, 496–513 (2010).
    CAS  PubMed  Google Scholar 

    21.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP001175 (2010).

    22.
    Jumpponen, A., Jones, K. L., Mattox, J. D. & Yaege, C. Massively parallel 454-sequencing of fungal communities in Quercus spp ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol. Ecol.19, 41–53 (2010).
    PubMed  Google Scholar 

    23.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP006078 (2011).

    24.
    Mello, A. et al. ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia103, 1184–1193 (2011).
    CAS  PubMed  Google Scholar 

    25.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP012868 (2012).

    26.
    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol.82, 666–677 (2012).
    CAS  PubMed  Google Scholar 

    27.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP013695 (2012).

    28.
    Zimmerman, N. B. & Vitousek, P. M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc. Natl. Acad. Sci. USA109, 13022–13027 (2012).
    ADS  CAS  PubMed  Google Scholar 

    29.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP013944 (2016).

    30.
    Uroz, S. et al. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep.6, 27756 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    31.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP015735 (2015).

    32.
    Gao, C. et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol.205, 771–785 (2015).
    PubMed  Google Scholar 

    33.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP016090 (2015).

    34.
    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol.205, 1525–1536 (2015).
    CAS  PubMed  Google Scholar 

    35.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP026207 (2014).

    36.
    De Beeck, M. O. et al. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One9, e97629 (2014).
    ADS  Google Scholar 

    37.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP028404 (2015).

    38.
    De Beeck, M. O. et al. Impact of metal pollution on fungal diversity and community structures. Environ. Microbiol.17, 2035–2047 (2015).
    Google Scholar 

    39.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP033719 (2015).

    40.
    Chaput, D. L., Hansel, C. M., Burgos, W. D. & Santelli, C. M. Profiling microbial communities in manganese remediation systems treating coal mine drainage. Appl. Environ. Microbiol.81, 2189–2198 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP035356 (2015).

    42.
    Sterkenburg, E., Bahr, A., Brandström Durling, M., Clemmensen, K. E. & Lindahl, B. D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol.207, 1145–1158 (2015).
    PubMed  Google Scholar 

    43.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP040314 (2014).

    44.
    Talbot, J. M. et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl. Acad. Sci. USA.111, 6341–6346 (2014).
    ADS  CAS  PubMed  Google Scholar 

    45.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP040786 (2015).

    46.
    Saravesi, K. et al. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb. Ecol.69, 788–797 (2015).
    CAS  PubMed  Google Scholar 

    47.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP041347 (2015).

    48.
    Liu, J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem.83, 29–39 (2015).
    CAS  Google Scholar 

    49.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP043106 (2015).

    50.
    Hoppe, B. et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers.77, 367–379 (2015).
    Google Scholar 

    51.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP043706 (2017).

    52.
    Hiiesalu, I., Bahram, M. & Tedersoo, L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol.26, 4846–4858 (2017).
    PubMed  Google Scholar 

    53.
    Tedersoo, L. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J.10, 346–362 (2016).
    CAS  PubMed  Google Scholar 

    54.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP043982 (2015).

    55.
    Jarvis, S. G., Woodward, S. & Taylor, A. F. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol.206, 1145–1155 (2015).
    CAS  PubMed  Google Scholar 

    56.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP044665 (2016).

    57.
    Nacke, H. et al. Fine spatial scale variation of soil microbial communities under European Beech and Norway Spruce. Front. Microbiol.7, 2067 (2016).
    PubMed  PubMed Central  Google Scholar 

    58.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045166 (2015).

    59.
    Rincón, A. et al. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ. Microbiol.17, 3009–3024 (2015).
    PubMed  Google Scholar 

    60.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045587 (2016).

    61.
    Bahram, M. et al. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J.10, 885–896 (2016).
    PubMed  Google Scholar 

    62.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045746 (2014).

    63.
    Walker, D. M. et al. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest. Ecol. Evol.4, 4106–4116 (2014).
    PubMed  PubMed Central  Google Scholar 

    64.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045933 (2015).

    65.
    Zhang, T., Wei, X. L., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity and distribution of lichen-associated fungi in the Ny-Alesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci. Rep.5, 14850 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    66.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP046049 (2016).

    67.
    Oh, S. Y., Fong, J. J., Park, M. S. & Lim, Y. W. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS One11, e0168573 (2016).
    PubMed  PubMed Central  Google Scholar 

    68.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP048036 (2016).

    69.
    Yang, T. et al. Carbon constrains fungal endophyte assemblages along the timberline. Environ. Microbiol.18, 2455–2469 (2016).
    CAS  PubMed  Google Scholar 

    70.
    Yang, T., Sun, H., Shen, C. & Chu, H. Fungal assemblages in different habitats in an Erman’s Birch forest. Front. Microbiol.7, 1368 (2016).
    PubMed  PubMed Central  Google Scholar 

    71.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP048856 (2015).

    72.
    Elliott, D. R., Caporn, S. J., Nwaishi, F., Nilsson, R. H. & Sen, R. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. PLoS One10, e0124726 (2015).
    PubMed  PubMed Central  Google Scholar 

    73.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP049544 (2015).

    74.
    Goldmann, K., Schöning, I., Buscot, F. & Wubet, T. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front. Microbiol.6, 1300 (2015).
    PubMed  PubMed Central  Google Scholar 

    75.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP051033 (2016).

    76.
    Roy-Bolduc, A., Laliberté, E., Boudreau, S. & Hijri, M. Strong linkage between plant and soil fungal communities along a successional coastal dune system. FEMS Microbiol. Ecol.92, fiw156 (2016).
    PubMed  Google Scholar 

    77.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP052222 (2017).

    78.
    Fernández-Martínez, M. A. et al. Microbial succession dynamics along glacier forefield chronosequences in Tierra del Fuego (Chile). Polar Biol.40, 1939–1957 (2017).
    Google Scholar 

    79.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP052716 (2015).

    80.
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA112, 10967–10972 (2015).
    ADS  CAS  PubMed  Google Scholar 

    81.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP055957 (2015).

    82.
    Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Mycokeys10, 1–43 (2015).
    Google Scholar 

    83.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP057433 (2016).

    84.
    Wang, W., Zhai, Y., Cao, L., Tan, H. & Zhang, R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol. Res.188, 1–8 (2016).
    PubMed  Google Scholar 

    85.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP057541 (2016).

    86.
    Waring, B. G., Adams, R., Branco, S. & Powers, J. S. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytol.209, 845–854 (2016).
    CAS  PubMed  Google Scholar 

    87.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP058508 (2016).

    88.
    Glassman, S. I., Levine, C. R., DiRocco, A. M., Battles, J. J. & Bruns, T. D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J.10, 1228–1239 (2016).
    PubMed  Google Scholar 

    89.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP058555 (2016).

    90.
    De Gannes, V. et al. Microbial community structure and function of soil following ecosystem conversion from native forests to Teak plantation forests. Front. Microbiol.7, 1976 (2016).
    PubMed  PubMed Central  Google Scholar 

    91.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP058851 (2018).

    92.
    Bach, E. M., Williams, R. J., Hargreaves, S. K., Yang, F. & Hofmockel, K. S. Greatest soil microbial diversity found in micro-habitats. Soil Biol. Biochem.118, 217–226 (2018).
    CAS  Google Scholar 

    93.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP059280 (2016).

    94.
    Roy‐Bolduc, A., Laliberté, E. & Hijri, M. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecol. Evol.6, 349–362 (2016).
    PubMed  Google Scholar 

    95.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP060838 (2016).

    96.
    He, F. et al. Changes in composition and diversity of fungal communities along Quercus mongolica forests developments in Northeast China. Appl. Soil Ecol.100, 162–171 (2016).
    ADS  Google Scholar 

    97.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP061179 (2016).

    98.
    Valverde, A. et al. Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS One11, e0153353 (2016).
    PubMed  PubMed Central  Google Scholar 

    99.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP061305 (2017).

    100.
    Yao, F. et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. Front. Microbiol.8, 2071 (2017).
    PubMed  PubMed Central  Google Scholar 

    101.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP061904 (2015).

    102.
    Veach, A. M., Dodds, W. K. & Jumpponen, A. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiol. Ecol.91, fiv109 (2015).
    PubMed  Google Scholar 

    103.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP062647 (2016).

    104.
    Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Change6, 182 (2016).
    ADS  Google Scholar 

    105.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP063711 (2017).

    106.
    Poosakkannu, A., Nissinen, R., Männistö, M. & Kytöviita, M. M. Microbial community composition but not diversity changes along succession in arctic sand dunes. Environ. Microbiol.19, 698–709 (2017).
    CAS  PubMed  Google Scholar 

    107.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP064158 (2017).

    108.
    Tian, J. et al. Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China. J. Soil. Sediment.17, 2856–2865 (2017).
    Google Scholar 

    109.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP065817 (2017).

    110.
    Zhang, W., Lu, Z., Yang, K. & Zhu, J. Impacts of conversion from secondary forests to larch plantations on the structure and function of microbial communities. Appl. Soil Ecol.111, 73–83 (2017).
    Google Scholar 

    111.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP066030 (2016).

    112.
    Porter, T. M., Shokralla, S., Baird, D., Golding, G. B. & Hajibabaei, M. Ribosomal DNA and plastid markers used to sample fungal and plant communities from wetland soils reveals complementary biotas. PLoS One11, e0142759 (2016).
    PubMed  PubMed Central  Google Scholar 

    113.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP066284 (2017).

    114.
    Wang, M. et al. Influence of Peanut cultivars and environmental conditions on the diversity and community composition of Pod Rot soil fungi in China. Mycobiology45, 392–400 (2017).
    PubMed  PubMed Central  Google Scholar 

    115.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP066331 (2017).

    116.
    Delgado‐Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett.20, 1295–1305 (2017).
    PubMed  Google Scholar 

    117.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP067301 (2017).

    118.
    Cross, H. et al. Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus. New Phytol.213, 1405–1417 (2017).
    CAS  PubMed  Google Scholar 

    119.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP067367 (2016).

    120.
    Zhang, T., Wang, N. F., Liu, H. Y., Zhang, Y. Q. & Yu, L. Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Alesund region, Svalbard (High Arctic). Front. Microbiol.7, 227 (2016).
    PubMed  PubMed Central  Google Scholar 

    121.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068514 (2016).

    122.
    Gehring, C. A. et al. Cheatgrass invasion alters the abundance and composition of dark septate fungal communities in sagebrush steppe. Botany94, 481–491 (2016).
    Google Scholar 

    123.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068608 (2016).

    124.
    Li, Y. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ.222, 213–222 (2016).
    Google Scholar 

    125.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068620 (2016).

    126.
    Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun.7, 12083 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    127.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068654 (2016).

    128.
    Cox, F., Newsham, K. K., Bol, R., Dungait, J. A. & Robinson, C. H. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol. Lett.19, 528–536 (2016).
    PubMed  Google Scholar 

    129.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP069065 (2017).

    130.
    Bergottini, V. M. et al. Exploring the diversity of the root-associated microbiome of Ilex paraguariensis St. Hil. (Yerba Mate). Appl. Soil Ecol.109, 23–31 (2017).
    Google Scholar 

    131.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP069742 (2017).

    132.
    Moussa, T. A., Al-Zahrani, H. S., Almaghrabi, O. A., Abdelmoneim, T. S. & Fuller, M. P. Comparative metagenomics approaches to characterize the soil fungal communities of western coastal region, Saudi Arabia. PLoS One12, e0185096 (2017).
    PubMed  PubMed Central  Google Scholar 

    133.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP070568 (2016).

    134.
    Goldmann, K. et al. Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci. Rep.11, 31439 (2016).
    ADS  Google Scholar 

    135.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP073070 (2016).

    136.
    Liu, C. et al. The influence of soil properties on the size and structure of bacterial and fungal communities along a paddy soil chronosequence. Eur. J. Soil Biol.76, 9–18 (2016).
    Google Scholar 

    137.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP073265 (2017).

    138.
    Smith, M. E. et al. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytol.215, 443–453 (2017).
    CAS  PubMed  Google Scholar 

    139.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP074055 (2016).

    140.
    Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience5, 21 (2016).
    PubMed  PubMed Central  Google Scholar 

    141.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP074496 (2016).

    142.
    Vannette, R. L., Leopold, D. R. & Fukami, T. Forest area and connectivity influence root-associated fungal communities in a fragmented landscape. Ecology97, 2374–2383 (2016).
    PubMed  Google Scholar 

    143.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP075989 (2017).

    144.
    Zhou, X. et al. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L. J. Basic Microbiol.57, 1055–1064 (2017).
    CAS  PubMed  Google Scholar 

    145.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP079403 (2017).

    146.
    Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol.26, 6960–6973 (2017).
    CAS  PubMed  Google Scholar 

    147.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP079521 (2018).

    148.
    Cline, L. C., Schilling, J. S., Menke, J., Groenhof, E. & Kennedy, P. G. Ecological and functional effects of fungal endophytes on wood decomposition. Funct. Ecol.32, 181–191 (2018).
    Google Scholar 

    149.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP080210 (2016).

    150.
    Johansen, R. B. et al. A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities. Fungal Ecol.23, 141–155 (2016).
    Google Scholar 

    151.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP080428 (2017).

    152.
    Zhang, S., Chen, X., Zhong, Q., Huang, Z. & Bai, Z. Relations among epiphytic microbial communities from soil, leaves and grapes of the grapevine. Front. Life Sci.10, 73–83 (2017).
    CAS  Google Scholar 

    153.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP080680 (2017).

    154.
    Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Change Biol.23, 1598–1609 (2017).
    ADS  Google Scholar 

    155.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP082472 (2017).

    156.
    Zhang, Z. et al. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China. PLoS One12, e0187575 (2017).
    PubMed  PubMed Central  Google Scholar 

    157.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP082976 (2017).

    158.
    Gomes, S. I., Merckx, V. S. & Saavedra, S. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap. Ecol. Evol.7, 3623–3630 (2017).
    PubMed  PubMed Central  Google Scholar 

    159.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP083394 (2017).

    160.
    Zhou, X. et al. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities. Sci. Rep.7, 41502 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    161.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP083434 (2017).

    162.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP083901 (2017).

    163.
    Gomes, S. I., Aguirre‐Gutiérrez, J., Bidartondo, M. I. & Merckx, V. S. Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. New Phytol.213, 1418–1427 (2017).
    CAS  PubMed  Google Scholar 

    164.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP087715 (2017).

    165.
    Tian, H. et al. Changes in soil microbial communities after 10 years of winter wheat cultivation versus fallow in an organic-poor soil in the Loess Plateau of China. PLoS One12, e0184223 (2017).
    PubMed  PubMed Central  Google Scholar 

    166.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090261 (2016).

    167.
    Gourmelon, V. et al. Environmental and geographical factors structure soil microbial diversity in New Caledonian ultramafic substrates: a metagenomic approach. PLoS One11, e0167405 (2016).
    PubMed  PubMed Central  Google Scholar 

    168.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090335 (2017).

    169.
    Younginger, B. S. & Ballhorn, D. J. Fungal endophyte communities in the temperate fern Polystichum munitum show early colonization and extensive temporal turnover. Am. J. Bot.104, 1188–1194 (2017).
    CAS  PubMed  Google Scholar 

    170.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090490 (2017).

    171.
    Kamutando, C. N. et al. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci. Rep.7, 6472 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    172.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090651 (2017).

    173.
    Anthony, M. A., Frey, S. D. & Stinson, K. A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere8, e01951 (2017).
    Google Scholar 

    174.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP091741 (2017).

    175.
    Ge, Z. W., Brenneman, T., Bonito, G. & Smith, M. E. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil418, 493–505 (2017).
    CAS  Google Scholar 

    176.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP091855 (2018).

    177.
    Mirmajlessi, S. M. et al. Survey of soil fungal communities in Strawberry fields by Illumina amplicon sequencing. Eurasian Soil Sci.51, 682–691 (2018).
    ADS  CAS  Google Scholar 

    178.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP091867 (2016).

    179.
    Harrison, J. G., Forister, M. L., Parchman, T. L. & Koch, G. W. Vertical stratification of the foliar fungal community in the world’s tallest trees. Am. J. Bot.103, 2087–2095 (2016).
    PubMed  Google Scholar 

    180.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP092609 (2019).

    181.
    Semenova‐Nelsen, T. A., Platt, W. J., Patterson, T. R., Huffman, J. & Sikes, B. A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol.224, 916–927 (2019).
    PubMed  Google Scholar 

    182.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP092777 (2017).

    183.
    Dean, S. L. et al. A study of Glycine max (soybean) fungal communities under different agricultural practices. Plant Gene11, 8–16 (2017).
    ADS  Google Scholar 

    184.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP093592 (2017).

    185.
    Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E. & Lindahl, B. D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J.11, 863–874 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    186.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP093928 (2017).

    187.
    Tian, J. et al. Ecological succession pattern of fungal community in soil along a retreating glacier. Front. Microbiol.8, 1028 (2017).
    PubMed  PubMed Central  Google Scholar 

    188.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP094708 (2017).

    189.
    Oono, R., Rasmussen, A. & Lefèvre, E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environ. Microbiol.19, 2794–2805 (2017).
    CAS  PubMed  Google Scholar 

    190.
    Oono, R. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing. PLoS One12, e0189796 (2017).
    PubMed  PubMed Central  Google Scholar 

    191.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP097883 (2017).

    192.
    Marín, C. et al. Functional land-use change effects on soil fungal communities in Chilean temperate rainforests. J. Soil Sci. Plant Nut.17, 985–1002 (2017).
    Google Scholar 

    193.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP101553 (2017).

    194.
    Siles, J. A. & Margesin, R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci. Rep.7, 2204 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    195.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP101605 (2018).

    196.
    Kazartsev, I., Shorohova, E., Kapitsa, E. & Kushnevskaya, H. Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecol.33, 1–12 (2018).
    Google Scholar 

    197.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP102378 (2017).

    198.
    Peay, K. G. et al. Convergence and contrast in the community structure of bacteria, fungi and archaea along a tropical elevation-climate gradient. FEMS Microbiol. Ecol.93, fix045 (2017).
    Google Scholar 

    199.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP102417 (2018).

    200.
    Coleine, C. et al. Antarctic cryptoendolithic fungal communities are highly adapted and dominated by Lecanoromycetes and Dothideomycetes. Front. Microbiol.9, 1392 (2018).
    PubMed  PubMed Central  Google Scholar 

    201.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP102775 (2018).

    202.
    Park, M. S. et al. Diversity of fungi associated with roots of Calanthe orchid species in Korea. J. Microbiol.56, 49–55 (2018).
    PubMed  Google Scholar 

    203.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP106137 (2018).

    204.
    Glynou, K., Nam, B., Thines, M. & Maciá‐Vicente, J. G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol.217, 1190–1202 (2018).
    PubMed  Google Scholar 

    205.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP106774 (2018).

    206.
    Saitta, A., Anslan, S., Bahram, M., Brocca, L. & Tedersoo, L. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza28, 39–47 (2018).
    PubMed  Google Scholar 

    207.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP107174 (2017).

    208.
    Almario, J. et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl. Acad. Sci. USA.114, E9403–E9412 (2017).
    CAS  PubMed  Google Scholar 

    209.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP107743 (2017).

    210.
    Fernández‐Mendoza, F., Fleischhacker, A., Kopun, T., Grube, M. & Muggia, L. ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Mol. Ecol.26, 4811–4830 (2017).
    PubMed  Google Scholar 

    211.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP109164 (2017).

    212.
    Varenius, K., Lindahl, B. D. & Dahlberg, A. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests. FEMS Microbiol. Ecol.93, fix105 (2017).
    Google Scholar 

    213.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP109773 (2017).

    214.
    He, D. et al. Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biol. Biochem.115, 499–510 (2017).
    CAS  Google Scholar 

    215.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP110522 (2017).

    216.
    Mendoza, J. R., Kok, C. R., Stratton, J., Bianchini, A. & Hallen-Adams, H. E. Understanding the mycobiota of maize from the highlands of Guatemala, and implications for maize quality and safety. Crop Prot.101, 5–11 (2017).
    Google Scholar 

    217.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP110810 (2017).

    218.
    Miura, T., Sánchez, R., Castañeda, L. E., Godoy, K. & Barbosa, O. Is microbial terroir related to geographic distance between vineyards? Environ. Microbiol. Rep.9, 742–749 (2017).
    CAS  PubMed  Google Scholar 

    219.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP113348 (2018).

    220.
    Zhang, J. et al. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ.644, 791–800 (2018).
    ADS  CAS  PubMed  Google Scholar 

    221.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP114697 (2017).

    222.
    Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S. & Paulitz, T. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems. PLoS One12, e0184611 (2017).
    PubMed  PubMed Central  Google Scholar 

    223.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP114821 (2018).

    224.
    Ren, C. et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci. Total Environ.610, 750–758 (2018).
    ADS  PubMed  Google Scholar 

    225.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP115350 (2018).

    226.
    Schneider-Maunoury, L. et al. Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol.31, 59–68 (2018).
    Google Scholar 

    227.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP115464 (2018).

    228.
    Sapkota, R. & Nicolaisen, M. Cropping history shapes fungal, oomycete and nematode communities in arable soils and affects cavity spot in carrot. Agric. Ecosyst. Environ.257, 120–131 (2018).
    Google Scholar 

    229.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP115599 (2018).

    230.
    Schroeder, J. W. et al. Community composition and diversity of Neotropical root‐associated fungi in common and rare trees. Biotropica50, 694–703 (2018).
    Google Scholar 

    231.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP117302 (2018).

    232.
    Fan, K., Weisenhorn, P., Gilbert, J. A. & Chu, H. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem.125, 251–260 (2018).
    CAS  Google Scholar 

    233.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP118875 (2018).

    234.
    Montagna, M. et al. Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Mol. Ecol.27, 3671–3685 (2018).
    PubMed  Google Scholar 

    235.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP118960 (2018).

    236.
    Schön, M. E., Nieselt, K. & Garnica, S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS One13, e0208493 (2018).
    PubMed  PubMed Central  Google Scholar 

    237.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP119174 (2017).

    238.
    Thiem, D., Piernik, A. & Hrynkiewicz, K. Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland. Symbiosis75, 17–28 (2017).
    PubMed  PubMed Central  Google Scholar 

    239.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP125864 (2016).

    240.
    Barnes, C. J., Maldonado, C., Frøslev, T. G., Antonelli, A. & Rønsted, N. Unexpectedly high beta-diversity of root-associated fungal communities in the Bolivian Andes. Front. Microbiol.7, 1377 (2016).
    PubMed  PubMed Central  Google Scholar 

    241.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP132277 (2018).

    242.
    Schlatter, D. C., Kahl, K., Carlson, B., Huggins, D. R. & Paulitz, T. Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system. FEMS Microbiol. Ecol.94, fiy098 (2018).
    CAS  Google Scholar 

    243.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP132591 (2018).

    244.
    Rasmussen, P. U. et al. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytol.220, 1248–1261 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    245.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP132598 (2018).

    246.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP136886 (2012).

    247.
    Guo, J. et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytol.226, 232–243 (2019).
    PubMed  Google Scholar 

    248.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP139483 (2019).

    249.
    Song, H. et al. Tropical forest conversion to rubber plantation in southwest China results in lower fungal beta diversity and reduced network complexity. FEMS Microbiol. Ecol.95, fiz092 (2019).
    CAS  PubMed  Google Scholar 

    250.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP142723 (2018).

    251.
    Rogers, T. J. et al. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere9, e02524 (2018).
    Google Scholar 

    252.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP148813 (2018).

    253.
    Schlegel, M., Queloz, V. & Sieber, T. N. The endophytic mycobiome of European Ash and Sycamore Maple leaves – geographic patterns, host specificity and influence of Ash Dieback. Front. Microbiol.9, 2345 (2018).
    PubMed  PubMed Central  Google Scholar 

    254.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP150527 (2019).

    255.
    Truong, C. et al. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. New Phytol.222, 1936–1950 (2019).
    CAS  PubMed  Google Scholar 

    256.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP151262 (2018).

    257.
    Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome6, 146 (2018).
    PubMed  PubMed Central  Google Scholar 

    258.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP153934 (2018).

    259.
    Marasco, R. et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome6, 215 (2018).
    PubMed  PubMed Central  Google Scholar 

    260.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP160913 (2018).

    261.
    Bickford, W. A., Goldberg, D. E., Kowalski, K. P. & Zak, D. R. Root endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes region. Ecosphere9, e02526 (2018).
    Google Scholar 

    262.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP161632 (2018).

    263.
    Si, P. et al. Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in Northern China. Front. Microbiol.9, 3147 (2018).
    PubMed  PubMed Central  Google Scholar 

    264.
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP195764 (2019).

    265.
    Purahong, W., Wu, Y. T., Chen, C. T. & Mapook, A. Characterization of the Castanopsis carlesii deadwood mycobiome by Pacbio sequencing of the full-length fungal nuclear ribosomal internal transcribed spacer (ITS). Front. Microbiol.10, 983 (2019).
    PubMed  PubMed Central  Google Scholar 

    266.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP001713 (2014).

    267.
    Geml, J. et al. The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS One9, e99852 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    268.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP003251 (2013).

    269.
    Schmidt, P. A. et al. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem.65, 128–132 (2013).
    CAS  Google Scholar 

    270.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP003790 (2015).

    271.
    van der Wal, A., Ottosson, E. & De Boer, W. Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology96, 124–133 (2015).
    PubMed  Google Scholar 

    272.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP005177 (2015).

    273.
    Muller, L. A. & Hilger, H. H. Insights into the effects of serpentine soil conditions on the community composition of fungal symbionts in the roots of Onosma echioides. Soil Biol. Biochem.81, 1–8 (2015).
    CAS  Google Scholar 

    274.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP005905 (2015).

    275.
    Sun, H. et al. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microbiol.81, 7869–7880 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    276.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP009341 (2015).

    277.
    Rajala, T., Tuomivirta, T., Pennanen, T. & Mäkipää, R. Habitat models of wood-inhabiting fungi along a decay gradient of Norway spruce logs. Fungal Ecol.18, 48–55 (2015).
    Google Scholar 

    278.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP010027 (2017).

    279.
    Purahong, W. et al. Characterization of unexplored deadwood mycobiome in highly diverse subtropical forests using culture-independent molecular technique. Front. Microbiol.8, 574 (2017).
    PubMed  PubMed Central  Google Scholar 

    280.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP010084 (2016).

    281.
    van der Wal, A., Gunnewiek, P. J. K., Cornelissen, J. H. C., Crowther, T. W. & de Boer, W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere7, e01393 (2016).
    Google Scholar 

    282.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP010743 (2016).

    283.
    Reese, A. T. et al. Urban stress is associated with variation in microbial species composition-but not richness-in Manhattan. ISME J.10, 751–760 (2016).
    PubMed  Google Scholar 

    284.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP011924 (2016).

    285.
    Kielak, A. M., Scheublin, T. R., Mendes, L. W., Van Veen, J. A. & Kuramae, E. E. Bacterial community succession in Pine-wood decomposition. Front. Microbiol.7, 231 (2016).
    PubMed  PubMed Central  Google Scholar 

    286.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP012017 (2016).

    287.
    Santalahti, M., Sun, H., Jumpponen, A., Pennanen, T. & Heinonsalo, J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 92, fiw170 (2016).

    288.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP013208 (2016).

    289.
    Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol.92, fiw018 (2016).
    PubMed  Google Scholar 

    290.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP013987 (2017).

    291.
    Wilhelm, R. C. et al. A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting. Sci. Data4, 170092 (2017).
    PubMed  PubMed Central  Google Scholar 

    292.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP014227 (2016).

    293.
    Lanzén, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep.6, 28257 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    294.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP017480 (2018).

    295.
    Purahong, W. et al. Increasing N deposition impacts neither diversity nor functions of deadwood‐inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function. Environ. Microbiol.20, 1693–1710 (2018).
    CAS  PubMed  Google Scholar 

    296.
    European Nucleotide Archive, https://identifiers.org/ena.embl:ERP017851 (2017).

    297.
    Yang, T. et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol.215, 756–765 (2017).
    CAS  PubMed  Google Scholar 

    298.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP017915 (2017).

    299.
    Nguyen, D. et al. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods. Sci. Rep.7, 41801 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    300.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP019580 (2017).

    301.
    Tu, B. et al. Microbial diversity in chinese temperate steppe: unveiling the most influential environmental drivers. FEMS Microbiol. Ecol.93, fix031 (2017).
    Google Scholar 

    302.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP019924 (2017).

    303.
    Yang, T. et al. Fungal community assemblages in a high elevation desert environment: absence of dispersal limitation and edaphic effects in surface soil. Soil Biol. Biochem.115, 393–402 (2017).
    CAS  Google Scholar 

    304.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP020657 (2017).

    305.
    van der Wal, A., Gunnewiek, P. K., de Hollander, M. & de Boer, W. Fungal diversity and potential tree pathogens in decaying logs and stumps. Forest Ecol. Manag.406, 266–273 (2017).
    Google Scholar 

    306.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP022511 (2019).

    307.
    Alzarhani, A. K. et al. Are drivers of root-associated fungal community structure context specific? ISME J.13, 1330–1344 (2019).
    PubMed  PubMed Central  Google Scholar 

    308.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP022742 (2017).

    309.
    van der Wal, A., Gunnewiek, P. K. & de Boer, W. Soil-wood interactions: Influence of decaying coniferous and broadleaf logs on composition of soil fungal communities. Fungal Ecol.30, 132–134 (2017).
    Google Scholar 

    310.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP023275 (2018).

    311.
    Purahong, W. et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: molecular evidence from a large scale deadwood decomposition experiment. Front. Microbiol.9, 2120 (2018).
    PubMed  PubMed Central  Google Scholar 

    312.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP023718 (2018).

    313.
    Sun, R. et al. Tillage changes vertical distribution of soil bacterial and fungal communities. Front. Microbiol.9, 699 (2018).
    PubMed  PubMed Central  Google Scholar 

    314.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP023855 (2018).

    315.
    Santalahti, M. et al. Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in finnish lapland. Appl. Soil Ecol.132, 74–82 (2018).
    Google Scholar 

    316.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP106131 (2018).

    317.
    Gałązka, A. & Grządziel, J. Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of Maize using different cultivation techniques. Front. Microbiol.9, 76 (2018).
    PubMed  PubMed Central  Google Scholar 

    318.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP107634 (2019).

    319.
    Ramirez, K. S. et al. Range-expansion effects on the belowground plant microbiome. Nat. Ecol. Evol.3, 604 (2019).
    PubMed  PubMed Central  Google Scholar 

    320.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP107636 (2019).

    321.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP110188 (2019).

    322.
    George, P. B. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun.10, 1107 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    323.
    European Nucleotide Archive https://identifiers.org/ena.embl:ERP112007 (2019).

    324.
    Álvarez-Garrido, L., Viñegla, B., Hortal, S., Powell, J. R. & Carreira, J. A. Distributional shifts in ectomycorrizhal fungal communities lag behind climate-driven tree upward migration in a conifer forest-high elevation shrubland ecotone. Soil Biol. Biochem.137, 107545 (2019).
    Google Scholar 

    325.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA000926 (2014).

    326.
    Yamamoto, S. et al. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species. PLoS One9, e96363 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    327.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA000937 (2014).

    328.
    Kadowaki, K. et al. Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Popul. Ecol.56, 301–310 (2014).
    Google Scholar 

    329.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA001737 (2016).

    330.
    Izuno, A. et al. Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel next-generation sequencing analysis. Mycoscience57, 171–180 (2016).
    CAS  Google Scholar 

    331.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA002424 (2016).

    332.
    Matsuoka, S., Kawaguchi, E. & Osono, T. Temporal distance decay of similarity of ectomycorrhizal fungal community composition in a subtropical evergreen forest in Japan. FEMS Microbiol. Ecol.92, fiw061 (2016).
    PubMed  Google Scholar 

    333.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA002469 (2016).

    334.
    Izuno, A., Kanzaki, M., Artchawakom, T., Wachrinrat, C. & Isagi, Y. Vertical structure of phyllosphere fungal communities in a tropical forest in Thailand uncovered by high-throughput sequencing. PLoS One11, e0166669 (2016).
    PubMed  PubMed Central  Google Scholar 

    335.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA003024 (2016).

    336.
    Matsuoka, S., Mori, A. S., Kawaguchi, E., Hobara, S. & Osono, T. Disentangling the relative importance of host tree community, abiotic environment and spatial factors on ectomycorrhizal fungal assemblages along an elevation gradient. FEMS Microbiol. Ecol.92, fiw044 (2016).
    PubMed  Google Scholar 

    337.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA003730 (2016).

    338.
    Toju, H., Yamamoto, S., Tanabe, A. S., Hayakawa, T. & Ishii, H. S. Network modules and hubs in plant-root fungal biomes. J. R. Soc. Interface13, 20151097 (2016).
    PubMed  PubMed Central  Google Scholar 

    339.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA004913 (2017).

    340.
    Shen, Z. et al. Banana Fusarium Wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microb. Ecol.75, 739–750 (2017).
    PubMed  Google Scholar 

    341.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA006519 (2018).

    342.
    Matsuoka, S., Ogisu, Y., Sakoh, S., Hobara, S. & Osono, T. Taxonomic, functional, and phylogenetic diversity of fungi along primary successional and elevational gradients near Mount Robson, British Columbia. Polar Sci.21, 165–171 (2018).
    ADS  Google Scholar 

    343.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRP002783 (2015).

    344.
    Fukasawa, Y. & Matsuoka, S. Communities of wood-inhabiting fungi in dead pine logs along a geographical gradient in Japan. Fungal Ecol.18, 75–82 (2015).
    Google Scholar 

    345.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRP003138 (2016).

    346.
    Toju, H., Tanabe, A. S. & Ishii, H. S. Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol. Ecol.25, 3242–3257 (2016).
    CAS  PubMed  Google Scholar 

    347.
    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRP005365 (2019).

    348.
    Shigyo, N., Umeki, K. & Hirao, T. Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front. Microbiol.10, 1944 (2019).
    PubMed  PubMed Central  Google Scholar 

    349.
    Semenova, T. A. et al. Data from: Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra. Dryad https://doi.org/10.5061/dryad.2fc32 (2014).

    350.
    Geml, J. et al. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol. Ecol.91, fiv095 (2015).
    PubMed  Google Scholar 

    351.
    Oriol, G. et al. Data from: Abrupt changes in the composition and function of fungal communities along an environmental gradient in the High. Arctic. Dryad https://doi.org/10.5061/dryad.n82g9 (2017).

    352.
    Grau, O. et al. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol. Ecol.26, 4798–4810 (2017).
    PubMed  Google Scholar 

    353.
    Mundra, S. et al. Data from: Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the above-ground vegetation. Dryad https://doi.org/10.5061/dryad.2343k (2015).

    354.
    Mundra, S. et al. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation. New Phytol.205, 1587–1597 (2015).
    CAS  PubMed  Google Scholar 

    355.
    Rime, T. et al. Data from: Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Dryad https://doi.org/10.5061/dryad.gp302 (2014).

    356.
    Rime, T. et al. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol. Ecol.24, 1091–1108 (2015).
    CAS  PubMed  Google Scholar 

    357.
    Semenova, T. A. et al. Data from: Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth. Dryad https://doi.org/10.5061/dryad.cq2rb (2017).

    358.
    Semenova, T. A. et al. Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth. Soil Biol. Biochem.100, 201–209 (2016).
    CAS  Google Scholar 

    359.
    Geml, J. et al. Data from: Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Dryad https://doi.org/10.5061/dryad.8fn8j (2014).

    360.
    Wicaksono, C. Y. et al. Contracting montane cloud forests: a case study of the Andean alder (Alnusacuminata) and associated fungi in the Yungas. Biotropica49, 141–152 (2017).
    Google Scholar 

    361.
    Yao, F. et al. Data from: Substantial compositional turnover of fungal communities in an alpine ridge-to-snowbed gradient. Dryad https://doi.org/10.5061/dryad.216tp (2013).

    362.
    Yao, F. et al. Substantial compositional turnover of fungal communities in an alpine ridge-to-snowbed gradient. Mol. Ecol.22, 5040–5052 (2013).
    CAS  PubMed  Google Scholar 

    363.
    Schappe, T. et al. Uncultured fungus internal transcribed spacer 1, targeted locus study. GenBank https://identifiers.org/ncbi/insdc:KAYV00000000.1 (2017).

    364.
    Schappe, T. et al. The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. J. Ecol.105, 569–579 (2017).
    Google Scholar 

    365.
    Schappe, T. et al. Uncultured fungus internal transcribed spacer 1, targeted locus study. GenBank https://identifiers.org/ncbi/insdc:KAYU00000000.1 (2017).

    366.
    Schappe, T. et al. Uncultured fungus internal transcribed spacer 1, targeted locus study. GenBank https://identifiers.org/ncbi/insdc:KAYT00000000.1 (2017).

    367.
    Vaz, A. B. et al. MIMS Environmental/Metagenome sample from biofilm metagenome. BioSample https://identifiers.org/biosample:SAMN02934078 (2017).

    368.
    Vaz, A. B. et al. Using Next-Generation Sequencing (NGS) to uncover diversity of wood-decaying fungi in neotropical atlantic forests. Phytotaxa295, 1–21 (2017).
    Google Scholar 

    369.
    Vaz, A. B. et al. MIMS Environmental/Metagenome sample from biofilm metagenome. BioSample https://identifiers.org/biosample:SAMN02934079 (2017).

    370.
    Siciliano, S. et al. Polar soil bacterial and fungal biodiversity survey. Australian Antarctic Data Centre https://doi.org/10.4225/15/526f42ada05b1 (2014).

    371.
    Ji, M. et al. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Polar Biol.39, 237–249 (2016).
    Google Scholar 

    372.
    Hartmann, M. et al. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J.6, 2199–2218 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    373.
    Rime, T., Hartmann, M. & Frey, B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J.10, 1625–1641 (2016).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Rapid winter warming could disrupt coastal marine fish community structure

    1.
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
    CAS  Google Scholar 
    2.
    Albouy, C. et al. Projected climate change and the changing biogeography of coastal Mediterranean fishes. J. Biogeogr. 40, 534–547 (2013).
    Google Scholar 

    3.
    Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 212–251 (WMO, 2018).

    4.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  Google Scholar 

    5.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
    Google Scholar 

    6.
    EUROSTAT EU Fishery Economic Report 2010. European Union Mediterranean and Black Sea Fishing Fleet (FIRMS, 2010).

    7.
    Abulafia, D. The Great Sea: a Human History of the Mediterranean (Oxford Univ. Press, 2011).

    8.
    Giakoumi, S. et al. Ecoregion-based conservation planning in the Mediterranean: dealing with large-scale heterogeneity. PLoS ONE 8, e76449 (2013).
    CAS  Google Scholar 

    9.
    Katsanevakis, S. et al. Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Front. Mar. Sci. 1, 32 (2014).
    Google Scholar 

    10.
    Pinardi, N., Arneri, E., Crise, A., Ravaioli, M. & Zavatarelli, M. in The Sea Vol. 14 (eds Robinson, A. & Brink, K.) 1243–1330 (Harvard Univ. Press, 2006).

    11.
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Perez, T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).
    Google Scholar 

    12.
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).
    Google Scholar 

    13.
    Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1556 (2013).
    CAS  Google Scholar 

    14.
    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).
    Google Scholar 

    15.
    Thibeault, J. M. & Seth, A. Changing climate extremes in the Northeast United States: observations and projections from CMIP5. Clim. Change 127, 273–287 (2014).
    Google Scholar 

    16.
    Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. Lond. B Biol. Sci. 2010, 1259–1266 (1685).
    Google Scholar 

    17.
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
    Google Scholar 

    18.
    Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).
    Google Scholar 

    19.
    Hiddink, J. G. & Ter Hofstede, R. Climate induced increases in species richness of marine fishes. Glob. Change Biol. 14, 453–460 (2008).
    Google Scholar 

    20.
    Rutterford, L. A. et al. Future fish distributions constrained by depth in warming seas. Nat. Clim. Change 5, 569–573 (2015).
    Google Scholar 

    21.
    Colloca, F., Scarcella, G. & Libralato, S. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 4, 244 (2017).
    Google Scholar 

    22.
    Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. FAO Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).

    23.
    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

    24.
    Rice, J. C. & Garcia, S. M. Fisheries, food security, climate change, and biodiversity: characteristics of the sector and perspectives on emerging issues. ICES J. Mar. Sci. 68, 1343–1353 (2011).
    Google Scholar 

    25.
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).
    CAS  Google Scholar 

    26.
    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul‐de‐sac’ for endemic fishes facing climate change. Glob. Change Biol. 16, 3233–3245 (2010).
    Google Scholar 

    27.
    Yeager, L. A., Deith, M. C., McPherson, J. M., Williams, I. D. & Baum, J. K. Scale dependence of environmental controls on the functional diversity of coral reef fish communities. Glob. Ecol. Biogeogr. 26, 1177–1189 (2017).
    Google Scholar 

    28.
    Zenetos, A. et al. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6, 63–118 (2005).
    Google Scholar 

    29.
    The State of Mediterranean and Black Sea Fisheries: 2018 (FAO & General Fisheries Commission for the Mediterranean, 2018).

    30.
    Scientific Technical and Economic Committee for Fisheries (STECF) The 2015 Annual Economic Report on the EU Fishing Fleet (STECF-15-07) (Publications Office of the European Union, 2015).

    31.
    Albouy, C. et al. FishMed: traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data. Ecology 96, 2312–2313 (2015).
    Google Scholar 

    32.
    Beuvier, J. et al. Modeling the Mediterranean Sea interannual variability during 1961–2000: focus on the Eastern Mediterranean Transient. J. Geophys. Res. Oceans 115, C08017 (2010).
    Google Scholar 

    33.
    Arnell, N. W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Change 14, 31–52 (2004).
    Google Scholar 

    34.
    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dynam. 45, 2775–2802 (2015).
    Google Scholar 

    35.
    Whitehead, P. J. P., Bauchot, M., Hureau, J., Nielsen, J. & Tortonese, E. Fishes of the North-Eastern Atlantic and the Mediterranean Vol. 1 (UNESCO, 1984).

    36.
    Gonçalves, A. R., Von Zuben, F. J. & Banerjee, A. Multi-label structure learning with Ising model selection. In Proc. Twenty-Fourth International Joint Conference on Artificial Intelligence 3525–3531 (AAAI Press, 2015).

    37.
    Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. & Herrera, F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man. Cybern. C Appl. Rev. 42, 463–484 (2012).
    Google Scholar 

    38.
    Gravel, D. et al. Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography 42, 401–415 (2019).
    Google Scholar 

    39.
    Dayton, P. K. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).
    Google Scholar 

    40.
    Dormann, C. F. et al. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob. Ecol. Biogeogr. 27, 1004–1016 (2018).
    Google Scholar 

    41.
    Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584 (2017).
    Google Scholar 

    42.
    Golding, N., Nunn, M. A. & Purse, B. V. Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites Vectors 8, 367 (2015).
    Google Scholar 

    43.
    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
    Google Scholar 

    44.
    Thorson, J. T. et al. Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Glob. Ecol. Biog. 25, 1144–1158 (2016).
    Google Scholar 

    45.
    Azaele, S., Muneepeerakul, R., Rinaldo, A. & Rodriguez-Iturbe, I. Inferring plant ecosystem organization from species occurrences. J. Theor. Biol. 262, 323–329 (2010).
    CAS  Google Scholar 

    46.
    Harris, D. J. Inferring species interactions from co‐occurrence data with Markov networks. Ecology 97, 3308–3314 (2016).
    Google Scholar 

    47.
    Cheng, J., Levina, E., Wang, P. & Zhu, J. A sparse Ising model with covariates. Biometrics 70, 943–953 (2014).
    Google Scholar 

    48.
    Lindberg, O. Markov Random Fields in Cancer Mutation Dependencies. MSc Thesis, Univ. Turku (2016).

    49.
    Clark, N. J., Wells, K. & Lindberg, O. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99, 1277–1283 (2018).
    Google Scholar 

    50.
    Lee, J. D. & Hastie, T. J. Learning the structure of mixed graphical models. J. Comput. Graph. Stat. 24, 230–253 (2015).
    Google Scholar 

    51.
    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B Stat. Methodol. 65, 95–114 (2003).
    Google Scholar 

    52.
    Kammann, E. & Wand, M. P. Geoadditive models. J. R. Stat. Soc. C Appl. Stat. 52, 1–18 (2003).
    Google Scholar 

    53.
    McInerny, G. J. & Purves, D. W. Fine‐scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods Ecol. Evol. 2, 248–257 (2011).
    Google Scholar 

    54.
    Givan, O., Parravicini, V., Kulbicki, M. & Belmaker, J. Trait structure reveals the processes underlying fish establishment in the Mediterranean. Glob. Ecol. Biogeogr. 26, 142–153 (2017).
    Google Scholar 

    55.
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).
    CAS  Google Scholar 

    56.
    Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2015).
    Google Scholar 

    57.
    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).
    CAS  Google Scholar 

    58.
    Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).
    CAS  Google Scholar 

    59.
    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1965, 1–9 (2006).
    Google Scholar 

    60.
    Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2017).
    Google Scholar 

    61.
    Miller, P. J., Lubke, G. H., McArtor, D. B. & Bergeman, C. S. Finding structure in data using multivariate tree boosting. Psychol. Methods 21, 583–602 (2016).
    Google Scholar 

    62.
    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    63.
    Clark, N. J., Wells, K. & Lindberg, O. MRFcov: Markov random fields with additional covariates. R package version 1.0 https://github.com/nicholasjclark/MRFcov (2018).

    64.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73, 3–36 (2011).
    Google Scholar 

    65.
    Wickham, H. & Francois, R. dplyr: A grammar of data manipulation. R package version 0.7.2 https://CRAN.R-project.org/package=dplyr (2017).

    66.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    67.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Google Scholar  More

  • in

    A global dataset of surface water and groundwater salinity measurements from 1980–2019

    Selection criteria
    Salinity is the measure of the concentration of dissolved (soluble) salts in water from all sources, and it can be measured by a range of parameters (including dissolved solids fractions, total dissolved solids, chloride, electrical conductivity, salinity) and units (including ppm, mg L−1, µS cm−1, dS m−1). A primary data collection focus here was given to EC measurements, since this is the most widely reported salinity parameter, and a main aim of this database is to provide comparable data across various scales. However, total dissolved solids (TDS) is also a common salinity parameter, particularly for groundwater quality measurements. The relationship of TDS and EC is correlated and can be determined using a conversion factor19. Regional conversion factors have been shown to produce better correlations than global factors, since the relationship between EC and TDS depends on a range of factors that may vary spatially, e.g. with climate, temperature, dissolved ion concentrations and ionic strength20. Thus, for optimizing data inclusion, a dataset containing TDS measurements was included, but only if a regional conversion factor could be found in the literature (see Methods and Technical Validation for further description on conversion and correlation analyses).
    Multiple selection criteria were applied for each monitoring location and water type sampled. Surface waters were divided into the following categories: (i) river; and (ii) lake/reservoir. A sampling location was included if there were at least 30 measurements within the selected time period (1980–2019). For groundwater, we included all measurements at each location, if reported sampling depth information was available. The reason for this less stringent sampling frequency criterion for each groundwater location was due to the general limitation of high frequency groundwater monitoring compared to surface water monitoring21,22. Additionally, low temporal resolution groundwater data could provide valuable input for first order salinity assessments, model calibration and/or hypothesis testing23. An important variable for interpreting groundwater EC is however sample depth, since this has large implications on, for example, withdrawal depths for different sectoral water use, as well as for estimation of the freshwater/saltwater lens24. This thus motivates the depth availability criterion over sampling frequency for groundwaters. In addition to these criteria, all samples also had to have date and coordinate (latitude, longitude) information for qualifying inclusion in the database (see Fig. 2 for a schematic flowchart of the data selection and processing steps).
    Fig. 2

    Data selection and harmonisation flowchart. The figure illustrates the processing and harmonizing steps of each dataset (divided into surface and groundwater parts) after initial data collection.

    Full size image

    Data collection and sources
    Data was collected from both surface water and groundwater monitoring locations using a combination of data sources, including: (i) global datasets, (ii) regional datasets, and (iii) individual river basins and groundwater aquifers datasets. The regional data includes datasets spanning multiple river basins and/or groundwater aquifers, both within the same region, but also cross-regionally. Most of these data are provided by governmental organizations or cross-regional data portal platforms under environmental protection agencies or National water quality monitoring programs. The local/individual basins datasets consist of monitoring data for individual basins and were usually found through governmental agencies, river basin management commissions, research organizations, as well as provided by individual researchers. Each data source is listed and described shortly below (the data source abbreviations were defined by us, for easy reference to the database terminology). A full list of the corresponding data (including their spatial and temporal resolution) for each of these sources (including their URL), divided by water type, is given in online-only Table 1.
    For the here presented database, we focused on combining and harmonizing EC datasets from already available, open data sources. The reason for this is that EC is often included in broader environmental monitoring websites and/or water quality datasets, which are not identifiable as salinity datasets, but rather in general water quality terms. We thus wanted to extract the salinity data component, and facilitate the reuse of harmonized EC data for salinity-specific applications. Most of the dataset included in our database have original licenses that permit unrestricted reuse. Where this was not the case, or if information was lacking, we requested and were granted permission from the data owners to release the data under the CC-BY license.
    Although we acknowledge the potential of valuable datasets in the scientific literature, this was not a data focus type, since this requires a different data search and extraction approach. We only incorporated pre-extracted datasets from literature reviews and synthesis when shared from individual researchers (reached through communication within our research community, e.g. during workshops and conferences and within own networks and communication channels). The following subsections provide an overview of the global, regional and local salinity datasets included in our developed database.
    Global salinity dataset
    The Global River Chemistry Dataset (GLORICH) includes multiple water quality parameters for river locations around the world, assembled by researchers from Hamburg University25,26. This data is publicly available and was downloaded as a zip file from PANGEA. The dataset includes 1.27 million samples of major compounds, nutrients, carbon species and physical properties. We extracted Specific Conductivity data (another terminology for EC) from the “hydrochemistry” csv file and paired it with station information (“Sampling_locations” file), for all stations that fulfilled our selection criteria.
    Regional salinity datasets:
    (1)
    Data for Europe was collected from the European Environment Agency’s water quality database; Waterbase. Waterbase contains multiple water quality parameters for rivers, lakes and groundwater bodies throughout Europe. We extracted relevant EC and station information data using the raw disaggregated water quality data file: “Waterbase_v2018_1_T_WISE4_DisaggregatedData” and the parameter code for EC (“EEA_3142-01-6”, specified as Specific Conductance). The water types were identified and distinguished from the column parameterWaterBodyCategory, where “RW” is river, “LW” is lake and “GW” is groundwater location. Site information was extracted from the file: “Waterbase_v2018_1_WISE4_MonitoringSite_DerivedData”. The groundwater EC data was matched with depth information, using the parameterSampleDepth parameter.

    (2)
    The Water Quality Portal (WQP) for surface and groundwaters across the United States contains a range of water quality data for surface and groundwaters across the US. The data portal is established by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA), and the National Water Quality Monitoring Council (NWQMC). The data originated from state, federal, tribal, and local agencies. Data was downloaded in bulk, for Specific conductance, for all available sites included under the search criteria (i) streams, (ii) lake, reservoir, impoundment and (iii) subsurface. Station information was additionally downloaded and paired with the salinity data.

    (3)
    Groundwater data for the US was also gathered from the Dissolved-Solids Dataset (Qi & Harris 2017)27, by downloading the “Dissolved solids” csv file and combining it with depth information from the “AquiferDepthSources” excel file. This data is published by the ScienceBase Catalog, provided by the USGS and contains EC (and other geochemical) data that was collected with the purpose of assessing brackish groundwaters across the United States. The original dataset contains a compilation of water-quality samples from 33 sources for almost 384,000 groundwater wells across the continental U.S., Alaska, Hawaii, Puerto Rico, the U.S. Virgin Islands, Guam, and American Samoa, dating back to the early 18th century.

    (4)
    Groundwater data from Colorado was collected from the Department of Agriculture and Agricultural Chemicals & Groundwater Protection section (Co Gov). Data was downloaded directly from the site using a search query of statewide inorganic quality monitoring data, and selecting the parameter Specific Conductance (Lab), for all available years. Site coordinate (latitude, longitude) information was not available online, but when requested via email, it was submitted to us, by their groundwater monitoring specialists (Karl Mauch, personal email communication). In addition, data on well sampling depth estimations were also provided via email, and the perforated interval measure (the interval between top and bottom of perforated section where the pump is installed) was recommended and used as depth information.

    (5)
    Groundwater data from California was downloaded from the GeoTracker Groundwater Ambient Monitoring and Assessment Program (GAMA), provided by the California state open data portal. The dataset includes multiple groundwater quality data from the GAMA Domestic Well (DW) and Priority Basin (PB) programs, covering locations throughout the state. The column “well_depth” was the only depth information available, and was included (and converted from feet to meters) as the Depth parameter.

    (6)
    Groundwater monitoring data from the Ohio Environmental Protection Agency (Ohio EPA) was downloaded from their ambient groundwater monitoring program. Monitoring of groundwater wells was established in the late 1960s and today covers more than 300 wells. Also here, the “well_depth” parameter was the only depth information available, and was included (and converted from feet to meters) as the Depth parameter.

    (7)
    The groundwater database from the Texas Water Development Board (TWDB) was also utilized to download water quality data. EC data was downloaded in bulk by groundwater aquifer (in total nine datasets). Well depths were converted from feet to meters and where multiple measurements for the same day and well was reported, daily averages were calculated. A total of 404 wells fulfilled the selection criteria and were included in the main groundwater database.

    (8)
    Data for South Africa was collected from the Department of Water and Sanitation (DWS), Republic of South Africa28. Both surface- and groundwaters are monitored, as a part of their National Chemical Monitoring Program. Monitoring stations and their data can be viewed and downloaded through the Water quality data exploration tool. However, due to the large amount of data for surface waters, we requested and recieved raw water quality data from the Resource Quality Information Services national monitoring programs for specific rivers and dams, through E-mail.

    (9)
    Surface water monitoring data for a large part of Australia is provided by the Australian Government, Bureau of Meteorology (AU Gov). Data can be queried at the Water Data Online portal, and search criteria can be specified. Conducted search criteria of all stations with EC data resulted in 1,333 stations. However, since data can only be downloaded as one by one station, we sent an email through the help desk system requesting a bulk download of all available data. The data was then provided as daily means recorded at midnight and as csv files (one file per station), with a metadata summary file included (with station information). From this, all files were combined and stations that fulfilled the selection criteria were then included in the main database. The separation between river and lake/reservoir locations were determined from the datafile “long_name” column, which always included the water type as well as the actual name of the monitoring location.

    (10)
    Surface water data for Australia was also synthesized from the Queensland Government Open Data Portal (QLD AU Gov). Data from QLD AU Gov was collected from the ambient estuary water quality monitoring program, which includes tidal rivers, streams and inshore waters of Central Queensland, monitored from 1993–2013. Data is available for 12 different drainage basins, reported as Specific Conductance at 25 °C. Data was downloaded as individual csv-files for each drainage basin (containing multiple sampling locations), and then combined and extracted according to the selection criteria.

    (11)
    Groundwater data for Australia was gathered from the Australian Government Bioregional Assessment Program (BAP). The data is provided through a collaboration between the Department of the Environment and Energy, the Bureau of Meteorology, CSIRO and Geoscience Australia. The dataset contains EC measurements of groundwater bores in the Namoi sub-region. The data is collected from groundwater bores that fell within the data management acquisition area as provided by the Bioregional Assessment to the Namoi NSW Office of Water. All data were downloaded in one csv-file.

    (12)
    Another groundwater dataset from Australia was collected, using the groundwater data portal from WaterConnect, which provides data from the Department for Environment and Water, for South Australia. Data was here queried by region, and then one file containing EC data for all sampled wells and one file containing site information were downloaded, for each region (in total 12 regions). The “Latest_Depth (m)” was used for depth information and all stations with both depth and EC measurements for a given data were included.

    (13)
    Additional groundwater data from Australia was downloaded using the Australian Groundwater Explorer tool (AU GwEX). Data was here search for by parameters Water level and Salinity and downloaded by region (in total 8 regions) and combined. Water levels and EC data was linked to the NGIS bore data to get the location and attributes of the measurement wells.

    (14)
    Data for New Zealand was gathered from New Zealand’s Hydro Web Portal for Hydrometric and Water Quality data (NIWA). This platform provides river water quality data under the National Institute of Water and Atmospheric Research. Data was queried by searching for all available data under the parameter conductivity and time-series, in their map interphase (resulting in 77 locations of timeseries data). Each dataset was then added for bulk export, using the export tab and a download link, via the map-interface platform.

    (15)
    Surface water quality data from the Government of Canada (Ca Gov) was downloaded from the National Long-term Water Quality Monitoring Data portal. The data include both rivers and lakes monitored for a set of physio-chemical variables, including specific conductance. Data was downloaded as csv-files.

    (16)
    River data was also synthesized from the Government of Ontario for multiple rivers, monitored between 2000–2016. The data is collected by the Provincial (Stream) Water Quality Monitoring Network (PWQMN), who measures water quality in rivers and streams across Ontario. Data was downloaded as individual excel files for each year, and then combined with site information.

    (17)
    Groundwater data from Argentina was downloaded from the repository of open public data of the Argentinian Republic (Dat.ar). The data is provided by the Federal Groundwater Information System SIFAS-SISAG and contains groundwater well measurements from April 2015. The data was downloaded as a main csv-file and translated from Spanish.

    (18)
    Groundwater data was also collected from Cambodia, using the online well database of Cambodia (WellMap). WellMap is an initiative of the Ministry of Rural Development of Cambodia, supported by the Water and Sanitation Program of the World Bank (WSP). The database is provided as a Microsoft Access Database and consists of water quality data collected from rural wells throughout the Country. Data was queried and extracted using the RODBC R package, that allows R interfacing to database systems. UTM coordinates were re-projected and converted to latitude and longitude, as decimal degrees, using the functions “proj4string” and “spTransform” in R.

    (19)
    Data from Mexico Government (MX Gov), was downloaded and translated (from Spanish) from one main csv-file, containing both water quality and site information data. The data included both surface water locations (original classification was rivers, streams, dams, which were reclassified to the here used terminology) and groundwater locations, monitored since 2012.

    (20)
    Groundwater data from Bangladesh was provided by M.M. Rahman (TH Cologne, University of Applied Sciences, Institute for Technology and Resources Management in the Tropics and Subtropics). The data was collected and shared by M.M. Rahman, and include electrical conductivity and depth data synthesized from both literature and governmental sources (see specifications and references in online-only Table 1).

    (21)
    Groundwater EC and level data from the Swedish geological Survey (SGU) was downloaded, on a county basis, for all 21 counties in Sweden, from environmental monitoring data. EC data was extracted from environmental monitoring files, with one file per county (queried using county specific codes and a URL link to each dataset) and combined with well water level data (downloaded in the same way as the salinity data) using matching coordinates. All stations with water level information were translated to English and were included in the main groundwater database.

    Salinity datasets from individual river basins and groundwater aquifers:
    (1)
    Data for river locations within the Danoube river basin was collected from the Danube River Basin Water Quality Database. This database is provided by the International Commission for Protection of the Danube River (ICPDR) Information System Danubis (ICPDR). The database provides geochemical data for the major rivers in the Danube River Basin and waters are sampled at a minimum frequency of 12 times per year. The data was accessed through creating an account, and then performing a data search, for all available years and stations for the conductivity parameter, and exporting the resulting data as a csv file.

    (2)
    Data for the lower Murray Darling river basin was accessed through the Water Connect data portal (Waterconnect). All stations within the river basin that fulfilled the data selection criteria (six stations) were included and downloaded, one by one (using a combination of the historical EC daily readings and the Site summary files).

    (3)
    Groundwater TDS data for the Nile Delta aquifer (van Engelen et al.)29 was provided by Joeri van Engelen. These data include three datasets consisting of TDS measurements, synthesized from literature, collected with the selection criteria of including measurement data from less than 250 m depth. Two of these datasets had unspecific dates, and samples were thus assumed to be from the 1st of each reported month (see further specification of the data in van Engelen et al.29). The TDS data was then converted to EC, using a regional specific conversion factor, from literature sources (see section Conversions of TDS to EC for specifics on how this was done).

    Data processing and harmonization
    The overall objective with this database is to facilitate data reuse and research efforts within different fields of salinity research. For this purpose, the harmonization of data was a main part of the database construction. The flowchart (Fig. 2) illustrates the data selection criteria, data processing and harmonization of each sampling location and its associated dataset before it was added to the main database. All processing was done in R, version 3.6.0, using mainly the data.table and dplyr R packages. First, harmonization and fixing of data with regards to missing values and other uninterpretable field values and/or symbols preventing the appropriate reading of data files (i.e., special symbols like “***” or erroneous changes in field separators, e.g. from “,” to “;”) were done, e.g. by setting it to the standard missing data value (i.e., NA values) and by fixing or excluding rows which could not be read properly. Additionally, assumed erroneous data values for reported salinity values and depth (such as negative values, 999 and 9999, as well as depth values of zero) were removed.
    Since information on sampling water type and parameter nomenclature and reported units differs between regions and organizations, we re-classified water types into the three mentioned categories (river, lake/reservoir, groundwater). Where needed, we also re-named and converted other parameters and their associated units, according to the database variables listed in Table 1.
    Table 1 Variable names and descriptions, including reported units, of the salinity database.
    Full size table

    Different spatial and temporal conversions were also made (see Fig. 2). For instance, where multiple measurements per day were available, these were averaged into daily values, using the data.table package, and grouping by Station_ID and Date (see Table 1 for parameter definitions). Depth conversions were also common and included conversions from feet or centimeter to meters. Regarding spatial harmonization, each sample coordinates were converted to decimal degrees and re-projected to WGS 1984, if needed, using the “SpatialPoints”, “proj4string“ and the “spTransform” function of the rgdal R-package. If country information was missing, this was assigned from coordinates of each station using the package map.where, or extracted from country codes (if available) using the function “countrycode”. Continent information was then assigned from country names, also using the “countrycode” function, by matching country name with continent.
    For assisting studies that might be interested specifically in coastal regions and applications, we also quantified if a sampling location was coastal or not. This analysis was done in ArcMap, using the “Near Table” analysis tool. The distance from all sampling locations to the coastline was computed, (using vector data from Natural Earth: https://www.naturalearthdata.com/downloads/10m-physical-vectors/). All locations within 10 km from the coastline were classified as being coastal. The identification of coastal stations was then included in each database summary file, under the column “Coastal_location” (see Table 1).
    Conversions of TDS to EC
    We considered the inclusion of additional groundwater data, where TDS measurements could be converted to EC. The relationship between EC and other measured salinity parameters (e.g. TDS) is depending on a range of conditions, such as temperature, climate and concentrations of ionic and undissociated species18. This relationship is commonly estimated according to Eq. (1).

    $$EC=frac{TDS}{f}$$
    (1)

    where EC is in µS cm−1, TDS in mg L−1 and f is a conversion factor19,30. Commonly, predefined conversion factors without proper site-specific validation are used, but such estimation may be highly uncertain, due to the conditions mentioned above20. Instead, it has been shown that the use of region-specific conversion factors may be more representative, since these have been developed from measured relationships between EC and TDS under more local-reginal conditions19,20.
    Due to reported improved predictability of EC-TDS relationships when using region-specific conversion factors (f), we included additional groundwater TDS measurements only for regions with available reported region-specific f values. This resulted in the inclusion of three additional groundwater datasets to the final database; one from Idaho31, one from California32 and one from Egypt29. Together these datasets added 3,477 sampling locations and a total of 9,654 measurements to the groundwater database. Both the original TDS data, as well as the converted EC values are included in the database.
    For the two TDS groundwater datasets from the United States, TDS was converted to EC using the region-specific conversion factor f of 0.65. This conversion factor has been developed for the continental United States, by the US Geological Survey and is widely used cross-regionally within the US20,33. For the TDS groundwater data from Egypt (from the Nile delta)29, we converted TDS to EC using the region-specific conversion factor f of 0.64. This factor value has been derived from local measurement data in the Nile delta itself34.
    For validation of our approach of predicting EC from TDS, we used regional-conversion factor f values on other groundwater datasets that had both TDS and EC measurements reported. These datasets, including data from both the US and from Australia, showed strong correlations between predicted and measured EC (Fig. 3; R2 of 0.91–0.99), supporting the approach of using TDS and region-specific conversion factors to estimate EC (see Technical validation section).
    Fig. 3

    Validation of converted TDS to EC for groundwaters. Time-series plot and scatter correlations of measured vs. predicted electrical conductivity (EC), using regional conversion factors. Panel (a) shows an example time-series from the groundwater station with the highest number of measurements (estimated from the “max” function in R) in Australia (data source: Water connect, n = 538) and panel (b) shows its corresponding scatter correlation (R2 = 0.99). Panel (c) shows the correlation between measured and converted EC for the full dataset of all groundwater stations from Water connect (n= 37,819, R2 = 0.98). Panel (d) and (e) shows correlations between measured and predicted EC data, for groundwaters in Texas (data source: TWDB, n = 59,985, R2 = 0.91) respectively California (data source: GAMA, n = 4,706, R2 = 0.98). All scatterplots were done in R, using the “ggscatter” function from the ggpubr package and estimating correlation coefficients using the “pearson” function.

    Full size image More

  • in

    Women’s socioeconomic position in ontogeny is associated with improved immune function and lower stress, but not with height

    1.
    Stearns, S. C. The evolution of life histories. (Oxford, 1992).
    2.
    Ellison, P. T. Endocrinology, energetics, and human life history: a synthetic model. Horm. Behav. 91, 97–106 (2017).
    PubMed  Google Scholar 

    3.
    Stoehr, A. M. & Kokko, H. Sexual dimorphism in immunocompetence: what does life-history theory predict?. Behav. Ecol. 17, 751–756 (2006).
    Google Scholar 

    4.
    Subramanian, S. V., Özaltin, E. & Finlay, J. E. Height of nations: a sioeconomic analysis of cohort differences and patterns among women in 54 low- to middle-income countries. PLoS ONE 6, e18962 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Stulp, G. & Barrett, L. Evolutionary perspectives on human height variation. Biol. Rev. 91, 206–234 (2016).
    PubMed  Google Scholar 

    6.
    Georgiev, A. V., Kuzawa, C. W. & McDade, T. W. Early developmental exposures shape trade-offs between acquired and innate immunity in humans. Evol. Med. Public Health 2016, 256–269 (2016).
    PubMed  PubMed Central  Google Scholar 

    7.
    Krams, I. et al. Reproduction compromises adaptive immunity in a cyprinid fish. Ecol. Res. 32, 559–566 (2017).
    CAS  Google Scholar 

    8.
    Baumard, N. Psychological origins of the industrial revolution. Behav. Brain Sci. 1, 1–47 (2018).
    Google Scholar 

    9.
    Krams, I. et al. A head start for life history development? Family income mediates associations between height and immune response in men. Am. J. Phys. Anthropol. 168, 421–427 (2019).
    PubMed  Google Scholar 

    10.
    Luoto, S. An updated theoretical framework for human sexual selection: from ecology, genetics, and life history to extended phenotypes. Adapt. Hum. Behav. Physiol. 5, 48–102 (2019).
    Google Scholar 

    11.
    Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nature Neurosci. 18, 773–778 (2015).
    CAS  PubMed  Google Scholar 

    12.
    Zeki, A. et al. Sustained economic hardship and cognitive function: The coronary artery risk development in young adults study. Am. J. Prev. Med. 52, 1–9 (2017).
    Google Scholar 

    13.
    Stotz, K. Why developmental niche construction is not selective niche construction: and why it matters. Interface Focus 7, 20160157 (2017).
    PubMed  PubMed Central  Google Scholar 

    14.
    Said-Mohamed, R., Pettifor, J. M. & Norris, S. A. Life history theory hypotheses on child growth: potential implications for short and long-term child growth, development and health. Am. J. Phys. Anthropol. 165, 4–19 (2018).
    PubMed  Google Scholar 

    15.
    Worthman, C. M. & Trang, K. Dynamics of body time, social time and life history at adolescence. Nature 554(7693), 451–457 (2018).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Cabeza de Baca, T., Wahl, R. A., Barnett, M. A., Figueredo, A. J. & Ellis, B. J. Adversity, adaptive calibration, and health: the case of disadvantaged families. Adapt. Hum. Behav. Physiol. 2(2), 93–115 (2016).
    Google Scholar 

    17.
    Bateson, P. & Gluckman, P. Plasticity, robustness, development and evolution (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    18.
    Morisaki, N. et al. Ecological analysis of secular trends in low birth weight births and adult height in Japan. J. Epidemiol. Comm. Health 71, 1014–1018 (2017).
    Google Scholar 

    19.
    Puts, D. A. Beauty and the beast: mechanisms of sexual selection in humans. Evol. Hum. Behav. 31, 157–175 (2010).
    Google Scholar 

    20.
    Tarka, M., Guenther, A., Niemelä, P. T., Nakagawa, S. & Noble, D. W. Sex differences in life history, behavior, and physiology along a slow-fast continuum: a meta-analysis. Behav. Ecol. Sociobiol. 72(8), 132 (2018).
    PubMed  PubMed Central  Google Scholar 

    21.
    Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nature Rev. Genet. 20, 173–190 (2019).
    CAS  PubMed  Google Scholar 

    22.
    Luoto, S., Krams, I. & Rantala, M. J. A life history approach to the female sexual orientation spectrum: evolution, development, causal mechanisms, and health. Arch. Sex. Behav. 48(5), 1273–1308. https://doi.org/10.1007/s10508-018-1261-0 (2019).
    Article  PubMed  Google Scholar 

    23.
    Wells, J. C. K. Sexual dimorphism in body composition across human populations: associations with climate and proxies for short- and long-term energy supply. Am. J. Hum. Biol. 24, 411–419 (2012).
    PubMed  Google Scholar 

    24.
    García-Martínez, D., Torres-Tamayo, N., Torres-Sanchez, I., García-Río, F. & Bastir, M. Morphological and functional implications of sexual dimorphism in the human skeletal thorax. Am. J. Phys. Anthropol. 161(3), 467–477. https://doi.org/10.1002/ajpa.23051 (2016).
    Article  PubMed  Google Scholar 

    25.
    Fischer, B. & Mitteroecker, P. Allometry and sexual dimorphism in the human pelvis. Anatomic. Record 300(4), 698–705 (2017).
    Google Scholar 

    26.
    Lassek, W. D. & Gaulin, S. J. Costs and benefits of fat-free muscle mass in men: relationship to mating success, dietary requirements, and native immunity. Evol. Hum. Behav. 30(5), 322–328 (2009).
    Google Scholar 

    27.
    Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W. & Hill, C. L. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res. Notes 4(1), 127 (2011).
    PubMed  PubMed Central  Google Scholar 

    28.
    Samal, A., Subramani, V. & Marx, D. B. An analysis of sexual dimorphism in the human face. J Vis. Comm Image Represent 18, 453–463 (2007).
    Google Scholar 

    29.
    McDade, T. W. Life history theory and the immune system: Steps toward a human ecological immunology. Am. J. Phys. Anthropol. 122, 100–125 (2003).
    Google Scholar 

    30.
    Rigby, N. & Kulathinal, R. J. Genetic architecture of sexual dimorphism in humans. J. Cell. Physiol. 230(10), 2304–2310 (2015).
    CAS  PubMed  Google Scholar 

    31.
    Stringer, S., Polderman, T. & Posthuma, D. Majority of human traits do not show evidence for sex-specific genetic and environmental effects. Sci. Rep. 7(1), 8688 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    32.
    Grasgruber, P., Sebera, M., Hrazdíra, E., Cacek, J. & Kalina, T. Major correlates of male height: a study of 105 countries. Econom. Hum. Biol. 21, 172–195 (2016).
    CAS  Google Scholar 

    33.
    Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Özaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).
    PubMed  PubMed Central  Google Scholar 

    34.
    Hämäläinen, A., Immonen, E., Tarka, M. & Schuett, W. Evolution of sex-specific pace-of-life syndromes: causes and consequences. Behav. Ecol. Sociobiol. 72(3), 50 (2018).
    Google Scholar 

    35.
    Immonen, E., Hämäläinen, A., Schuett, W. & Tarka, M. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav. Ecol. Sociobiol. 72(3), 60. https://doi.org/10.1007/s00265-018-2462-1 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Phalane, K. G., Tribe, C., Steel, H. C., Cholo, M. C. & Coetzee, V. Facial appearance reveals immunity in African men. Sci. Rep. 7(1), 7443 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    37.
    Luoto, S., Rantala, M. J. & Krams, I. England first, America second: the ecological predictors of life history and innovation [Commentary]. Behav. Brain Sci. 42, 1. https://doi.org/10.1017/S0140525X19000165 (2019).
    Article  Google Scholar 

    38.
    Lourenço, A. M., Levy, A. M., Caetano, L. C., Carraro Abrahão, A. A. & Prado, J. C. Influence sexual dimorphism on the persistence of blood parasites in infected Calomys callosus. Res. Vet. Sci. 85, 515–521. https://doi.org/10.1016/j.rvsc.2008.01.008 (2008).
    Article  PubMed  Google Scholar 

    39.
    Klein, S. L. & Roberts, C. W. (Eds.) Sex Hormones and Immunity to Infection. (Springer Verlag, 2010).

    40.
    Klein, S. L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. BioEssays 34, 1050–1059 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14(3), 309–321 (2015).
    PubMed  PubMed Central  Google Scholar 

    42.
    Xirocostas, Z. A., Everingham, S. E. & Moles, A. T. The sex with the reduced sex chromosome dies earlier: a comparison across the tree of life. Bio. Lett. 16, 20190867. https://doi.org/10.1098/rsbl.2019.0867 (2020).
    Article  Google Scholar 

    43.
    Krams, I. A. et al. Body height affects the strength of immune response in young men, but not young women. Sci. Rep. 4, 6223 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Skrinda, I. et al. Body height, immunity, facial and vocal attractiveness in young men. Naturwissenschaften 101, 1017 (2014).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Rantala, M. J. et al. Adiposity, compared with masculinity, serves as a more valid cue to immunocompetence in human mate choice. Proc. R. Soc. B. 280, 20122495 (2013).
    PubMed  Google Scholar 

    46.
    Pļaviņa, L. & Kārkliņa, H. Sieviešu galveno antropometrisko parametru izvērtējums dažādos postnatālās ontoģenēzes periodos. Rīgas Stradiņa universitāte 2014. gada zinātniskā konference: Tēzes, Rīgā, 2014. gada 10. un 11. aprīlī. Rīga: RSU. 31. lpp. (2014).

    47.
    Rantala, M., J., Coetzee, V., Moore, F. R., Skrinda, I., Kecko, S., Krama, T., Kivleniece, I. & Krams, I. Facial attractiveness is related to women’s cortisol and body fat, but not with immune responsiveness. Biol. Lett. 9, 20130255 (2013).

    48.
    Pawłowski, B., Nowak, J., Borkowska, B., Augustyniak, D. & Drulis-Kawa, Z. Body height and immune efficacy: testing body stature as a signal of biological quality. Proc. R. Soc. B. 284, 20171372 (2017).
    PubMed  Google Scholar 

    49.
    Petry, L. J., Weems, L. B. & Livingstone, J. N. Relationship of stress, distress, and the immunological response to a recombinant hepatitis-B vaccine. J Family Pract. 32, 481–486 (1991).
    CAS  Google Scholar 

    50.
    Jabaaij, L. et al. Influence of perceived psychological stress and distress on antibody response to low dose rDNA hepatitis B vaccine. J. Psychosomat. Res. 37(4), 361–369 (1993).
    CAS  Google Scholar 

    51.
    Jabaaij, L. et al. Modulation of immune response to rDNA hepatitis B vaccination by psychological stress. J. Psychosomat. Res. 41, 129–137 (1996).
    CAS  Google Scholar 

    52.
    Ellis, B. J. & Del Giudice, M. Developmental adaptation to stress: an evolutionary perspective. Ann. Rev. Psychol. 70(1), 111–139 (2019).
    Google Scholar 

    53.
    LaBeaud, A. D., Malhotra, I., King, M. J., King, C. L. & King, C. H. Do antenatal parasite infections devalue childhood vaccination?. PLoS Negl. Trop. Diseases 3(5), e442 (2009).
    Google Scholar 

    54.
    Cooper, P. J. et al. Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect. Immun. 69, 1574–1580 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Elias, D., Britton, S., Aseffa, A., Engers, H. & Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26, 3897–3902 (2008).
    CAS  PubMed  Google Scholar 

    56.
    Djuardi, Y., Wammes, L. J., Supali, T., Sartono, E. & Yazdanbakhsh, M. Immunological footprint: the development of a child’s immune system in environments rich in microorganisms and parasites. Parasitology 138(12), 1508–1518 (2011).
    PubMed  Google Scholar 

    57.
    Blackwell, A. D., Snodgrass, J. J., Madimenos, F. C. & Sugiyama, L. S. Life history, immune function, and intestinal helminths: trade-offs among immunoglobulin E, C-reactive protein, and growth in an Amazonian population. Am. J. Hum. Biol. 22(6), 836–848 (2010).
    PubMed  PubMed Central  Google Scholar 

    58.
    Cao, J. et al. Early-life exposure to widespread environmental toxicants and health risk: a focus on the immune and respiratory systems. Ann. Glob. Health 82(1), 119–131 (2016).
    PubMed  Google Scholar 

    59.
    Lander, R. L. et al. Factors influencing growth and intestinal parasitic infections in preschoolers attending philanthropic daycare centers in Salvador, Northeast Region of Brazil. Cadernos Saúde Pública, Rio de Janeiro 28(11), 2177–2188 (2012).
    Google Scholar 

    60.
    Anuar, T. S., Salleh, F. M. & Moktar, N. Soil-transmitted helminth infections and associated risk factors in three Orang Asli tribes in Peninsular Malaysia. Sci. Rep. 4, 4101 (2014).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Hotez, P. J. & Gurwith, M. Europe’s neglected infections of poverty. Int. J. Infect. Diseas. 15, e611–e619 (2011).
    Google Scholar 

    62.
    McDade, T. W. et al. Genome-wide analysis of DNA methylation in relation to socioeconomic status during development and early adulthood. Am. J. Phys. Anthropol. 1, 1–9 (2019).
    Google Scholar 

    63.
    Needham, B. L. et al. Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics 10(10), 958–969 (2015).
    PubMed  PubMed Central  Google Scholar 

    64.
    Kubzansky, L., Seeman, T. E. & Glymour, M. M. Biological pathways linking social conditions and health: plausible mechanisms and emerging puzzles. In Social epidemiology (eds Berkman, L. F. et al.) 512–561 (Oxford University Press, Oxford, 2014).
    Google Scholar 

    65.
    Gaulin, S. J. & Boster, J. S. Human marriage systems and sexual dimorphism in stature. Am. J. Phys. Anthropol. 89(4), 467–475 (1992).
    CAS  PubMed  Google Scholar 

    66.
    Polo, P., Fernandez, A., Muñoz-Reyes, J. A., Dufey, M. & Buunk, A. P. Intrasexual competition and height in adolescents and adults. Evol. Psychol. 16(1), 1474704917749172 (2018).
    CAS  PubMed  Google Scholar 

    67.
    Cornwallis, C. K. & Uller, T. Towards an evolutionary ecology of sexual traits. Trends Ecol. Evol. 25(3), 145–152 (2010).
    PubMed  Google Scholar 

    68.
    Jewell, S. L., Luecken, L. J., Gress-Smith, J., Crnic, K. A. & Gonzales, N. A. Economic stress and cortisol among postpartum low-income Mexican American women: buffering influence of family support. Behav. Med. 41(3), 138–144 (2015).
    PubMed  PubMed Central  Google Scholar 

    69.
    Serwinski, B., Salavecz, G., Kirschbaum, C. & Steptoe, A. Associations between hair cortisol concentration, income, income dynamics and status incongruity in healthy middle-aged women. Psychoneuroendocrinol. 67, 182–188 (2016).
    CAS  Google Scholar 

    70.
    Ursache, A., Merz, E. C., Melvin, S., Meyer, J. & Noble, K. G. Socioeconomic status, hair cortisol and internalizing symptoms in parents and children. Psychoneuroendocrinol. 78, 142–150 (2017).
    CAS  Google Scholar 

    71.
    Pepper, G. V. & Nettle, D. The behavioural constellation of deprivation: causes and consequences. Behav. Brain Sci. 40, e314 (2017).
    PubMed  Google Scholar 

    72.
    Burns, V. E., Carroll, D., Ring, C., Harrison, L. K. & Drayson, M. Stress, coping, and hepatitis B antibody status. Psychosom. Med. 64(2), 287–293 (2002).
    PubMed  Google Scholar 

    73.
    Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 5(3), 243–251 (2005).
    CAS  PubMed  Google Scholar 

    74.
    O’Connor, T. G. et al. Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain Behav. Immun. 32, 21–28 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Hayward, S. E. et al. A systematic review of the impact of psychosocial factors on immunity: implications for enhancing BCG response against tuberculosis. Soc. Sci. Med. Popul. Health. 10, 100522 (2020).
    Google Scholar 

    76.
    Cohen, B. E., Edmondson, D. & Kronish, I. M. State of the art review: depression, stress, anxiety, and cardiovascular disease. Am. J. Hypertens. 28(11), 1295–1302 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Golbidi, S., Frisbee, J. C. & Laher, I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am. J. Physiol. Heart Circ. Physiol. 308(12), 1476–1498 (2015).
    Google Scholar 

    78.
    Cozma, S. et al. Salivary cortisol and α-amylase: subclinical indicators of stress as cardiometabolic risk. Braz. J. Med. Biol. Res. 50(2), e5577 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Steptoe, A. & Kiwimäki, M. Stress and cardiovascular disease. Nature Rev. Cardiol. 9, 360–370 (2012).
    CAS  Google Scholar 

    80.
    Kivimäki, M. & Kawachi, I. Work stress as a risk factor for cardiovascular disease. Curr. Cardiol. Rep. 17(9), 630 (2015).
    PubMed  Google Scholar 

    81.
    Sephton, S. E. et al. Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav. Immun. 30(Suppl), S163-170 (2012).
    PubMed  Google Scholar 

    82.
    Spiegel, D. Minding the body: psychotherapy and cancer survival. Br. J. Health Psychol. 19(3), 465–485 (2014).
    PubMed  Google Scholar 

    83.
    Garland, E. L., Beck, A. C., Lipschitz, D. L. & Nakamura, Y. Dispositional mindfulness predicts attenuated waking salivary cortisol levels in cancer survivors: a latent growth curve analysis. J. Cancer Survivorship 9, 215 (2015).
    Google Scholar 

    84.
    McEwen, B. S. & Gianaros, P. J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 1186, 190–222 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    85.
    Del Giudice, M., Ellis, B. J. & Shirtcliff, E. A. The adaptive calibration model of stress responsivity. Neurosci. Biobehav. Rev. 35(7), 1562–1592 (2011).
    PubMed  Google Scholar 

    86.
    Rantala, M. J., Luoto, S., Krams, I. & Karlsson, H. Depression subtyping based on evolutionary psychiatry: proximate mechanisms and ultimate functions. Brain Behav. Immun. 69, 603–617 (2018).
    PubMed  Google Scholar 

    87.
    Rantala, M. J., Luoto, S., Krama, T. & Krams, I. Eating disorders: an evolutionary psychoneuroimmunological approach. Front. Psychol. 10, 2200. https://doi.org/10.3389/fpsyg.2019.02200 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    88.
    Greff, M. J. et al. Hair cortisol analysis: an update on methodological considerations and clinical applications. Clin. Biochem. 63, 1–9 (2018).
    PubMed  Google Scholar 

    89.
    Khoury, J. E., Enlow, M. B., Plamondon, A. & Lyons-Ruth, K. The Association between adversity and hair cortisol levels in humans: a meta-analysis. Psychoneuroendocrinol. 103, 104–117 (2019).
    CAS  Google Scholar 

    90.
    Doyle, H. H. & Murphy, A. Z. Sex differences in innate immunity and its impact on opioid pharmacology. J. Neurosci. Res. 95(1–2), 487–489 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    91.
    Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nature Rev. Immunol. 8, 737–744 (2008).
    CAS  Google Scholar 

    92.
    Hao, S. et al. Modulation of 17b-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 7, 1765–1775 (2007).
    CAS  PubMed  Google Scholar 

    93.
    Ashcroft, G. S., Greenwell-Wild, T., Horan, M. A., Wahl, S. M. & Ferguson, M. W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155, 1137–1146 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    94.
    Krams, I. et al. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comp. Biochem. Physiol. A: Mol. Integrat. Physiol. 161, 422–428 (2012).
    CAS  Google Scholar 

    95.
    Stoll, M. L. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis. Clin. Exp. Rheumatol. 29, 322–330 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    96.
    Klasing, K. C. & Leshchinsky, T. V. Functions, costs, and bene- fits of the immune system during development and growth. Ostrich 69, 2817–2832 (1999).
    Google Scholar 

    97.
    McDade, T. W., Georgiev, A. V. & Kuzawa, C. V. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Publ. Health 2016(1), 1–16 (2016).
    Google Scholar 

    98.
    Elia, M. Organ and tissue contribution to metabolic rate. in Energy Metabolism: Tissue Determinants and Cellular Corollaries (eds. McKinney, J. M. & Tucker, H. N.) 61–80. (Raven, 1992).

    99.
    Muehlenbein, M. P., Hirschtick, J. L. & Bonner, J. Z. Toward quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. Am. J. Human Biol. 22, 546–556 (2010).
    Google Scholar 

    100.
    Taylor, S. E., Lehman, B. J., Kiefe, C. I. & Seeman, T. E. Relationship of early life stress and psychological functioning to adult C-reactive protein in the coronary artery risk development in young adults study. Biol. Psych. 60, 819–824 (2006).
    CAS  Google Scholar 

    101.
    Danese, A. et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch. Pediatr. Adolesc. Med. 163, 1135–1143 (2009).
    PubMed  PubMed Central  Google Scholar 

    102.
    Miller, G. E. et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl. Acad. Sci. USA 106, 14716–14721 (2009).
    ADS  CAS  PubMed  Google Scholar 

    103.
    Miller, G. E. & Chen, E. Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychol. Sci. 21, 848–856 (2010).
    PubMed  PubMed Central  Google Scholar 

    104.
    Archer, J. The reality and evolutionary significance of human psychological sex differences. Biol. Rev. 94(4), 1381–1415 (2019).
    PubMed  Google Scholar 

    105.
    Hartling, C. et al. Interaction of HPA axis genetics and early life stress shapes emotion recognition in healthy adults. Psychoneuroendocrinol. 99, 28–37 (2019).
    Google Scholar 

    106.
    Frankenhuis, W. E., Nettle, D. & Dall, S. R. A case for environmental statistics of early-life effects. Phil. Trans. R. Soc. B 374(1770), 20180110 (2019).
    PubMed  Google Scholar 

    107.
    Foo, Y. Z. et al. Immune function during early adolescence positively predicts adult facial sexual dimorphism in both men and women. Evol. Hum. Behav. 1, 1. https://doi.org/10.1016/j.evolhumbehav.2020.02.002 (2020).
    Article  Google Scholar 

    108.
    Cohen, S., Miller, G. E. & Rabin, B. S. Psychological stress and antibody response to immunization: a critical review of the human literature. Psychosom. Med. 63, 7–18 (2001).
    CAS  PubMed  Google Scholar 

    109.
    Rantala, M. J. et al. Evidence for the stress-linked immunocompetence handicap hypothesis in humans. Nature Comm. 3, 694 (2012).
    ADS  Google Scholar 

    110.
    Tyrrell, J. et al. Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank. Br. Med. J. 352, 582 (2016).
    Google Scholar 

    111.
    Lavrinoviča, I., Lavriņenko, O., & Teivāns-Treinovskis, J. Population income differentiation and its influence on the crime. in Proceedings of the XIII International Scientific Conference Sustainable Business under Changing Economic Conditions (Dotkus, W., Holger, B., Žilys, J., Rozīte, M., Rumpīte, D., & Vīksne, I., Eds.) Rīga, Latvia: School of Business Administration Turība, pp. 242–251. Retrieved from: https://aurora.turiba.lv/bti/Editor/Manuscript/Proceeding/ (2012).

    112.
    R Core Team. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2018).

    113.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    MathSciNet  MATH  Google Scholar  More

  • in

    Factors and costs associated with removal of a newly established population of invasive wild pigs in Northern U.S.

    1.
    Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewiski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. Bioscience 64, 291–299 (2014).
    Google Scholar 
    2.
    Corn, J. L. & Jordan, T. R. Development of the National feral swine map, 1982–2016. Wildl. Soc. B. 41, 758–763 (2017).
    Google Scholar 

    3.
    McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the Contiguous United States. PLoS ONE 10, e0133771 (2015).
    PubMed  PubMed Central  Google Scholar 

    4.
    Snow, N. P., Jarzyna, M. A. & VerCauteren, K. C. Interpreting and predicting the spread of invasive wild pigs. J. Appl. Ecol. 54, 2022–2032 (2017).
    Google Scholar 

    5.
    Anderson, A., Slootmaker, C., Harper, E., Holderieath, J. & Shwiff, S. A. Economic estimates of feral swine damage and control in 11 US states. Crop Prot. 89, 89–94 (2016).
    Google Scholar 

    6.
    Holderieath, J. J. et al. Valuing the absence of feral swine in the United States: a partial equilibrium approach. Crop Prot. 112, 63–66 (2018).
    Google Scholar 

    7.
    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).
    Google Scholar 

    8.
    Barrios-Garcia, N. M. & Balairi, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).
    Google Scholar 

    9.
    Seward, N. K., VerCauteren, K. C., Witmer, G. W. & Engeman, R. M. Feral swine impacts on agriculture and the environment. Sheep Goat Res. J. 19, 34–40 (2004).
    Google Scholar 

    10.
    Centner, T. J. & Shuman, R. M. Governmental provisions to manage and eradicate feral swine in areas of the United States. Ambio 44, 121–130 (2015).
    PubMed  Google Scholar 

    11.
    United States Department of Agriculture. Final Environmental Impact Statement Feral swine damage management: a national approach. https://www.aphis.usda.gov/aphis/resources/pests-diseases/feral-swine/feral-swine-eis (2015).

    12.
    Engeman, R. M. et al. Locating and eliminating feral swine from a large area of fragmented mixed forest and agriculture habitats in north-central USA. Environ. Sci. Pollut. R. 26, 1654–1660 (2019).
    Google Scholar 

    13.
    Graves, H. B. Behavior and ecology and wild and feral swine (Sus scrofa). J. Anim. Sci. 58, 482–492 (1984).
    Google Scholar 

    14.
    Comer, C. E. & Mayer, J. J. Wild pig reproductive biology. In: Mayer, J.J & Brisbin, I.L. (eds) Wild pigs: biology, damage, control techniques and management. Savannah River National Laboratory SRNL-RP-2009-00869, Aiken, South Carolina, USA, 51–75 (2009).

    15.
    West, B. C., Cooper, A. L. & Armstrong, J. B. Managing wild pigs: a technical guide. Human-Wildl. Integr. Monogr. 1, 1–55 (2009).
    Google Scholar 

    16.
    Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).
    PubMed  PubMed Central  Google Scholar 

    17.
    Geisser, H. & Reyer, H. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manag. 68, 939–946 (2004).
    Google Scholar 

    18.
    Wang, S. W., Curtis, P. D. & Lassoie, J. P. Farmer perceptions of crop damage by wildlife in Jigme Singye Wangchuck National Park, Bhutan. Wildlife Soc. B. 34, 389–395 (2006).
    CAS  Google Scholar 

    19.
    Morelle, K. & Lejeune, P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: a species distribution modelling approach. Eur. J. Wildlife Res. 61, 45–56 (2015).
    Google Scholar 

    20.
    Virgos, E. Factors affecting wild boar (Sus scrofa) occurrence in highly fragmented Mediterranean landscapes. Can. J. Zool. 80, 430–435 (2002).
    Google Scholar 

    21.
    Michel, N. L., LaForge, M. P., Van Beest, F. M. & Brook, R. K. Spatiotemporal trends in Canadian domestic wild boar production and habitat predict wild pig distribution. Landscape Urban Plan. 165, 30–38 (2017).
    Google Scholar 

    22.
    Keuling, O., Stier, N. & Roth, M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.?. Eur. J. Wildl. Res. 54, 729–737 (2008).
    Google Scholar 

    23.
    Campbell, T. A. & Long, D. B. Activity patterns of wild boars (Sus scrofa) in southern Texas. Southwest. Nat. 55, 564–600 (2010).
    Google Scholar 

    24.
    Fischer, J. W. et al. Effects of simulated removal activities on movements and space use of feral swine. Eur. J. Wildl. Res. 62, 285–292 (2016).
    Google Scholar 

    25.
    Hernandez, F. A. et al. Invasive ecology of wild pigs (Sus scrofa) in Florida, USA: the role of humans in the expansion and colonization of an invasive wild ungulate. Biol. Invasions 20, 1865–1880 (2018).
    Google Scholar 

    26.
    McCann, B. E. et al. Molecular population structure for feral swine in the United States. J. Wildl. Manag. 82, 821–832 (2018).
    Google Scholar 

    27.
    Pepin, K. M., Davis, A. J., Cunningham, F. L., VerCauteren, K. C. & Ekery, D. C. Potential effects of incorporating fertility control into typical culling regimes in wild pig populations. PLoS ONE 12, e0183441 (2017).
    PubMed  PubMed Central  Google Scholar 

    28.
    Wilcox, J. T., Aschehoug, E. T., Scott, C. A. & Van Vuren, D. H. A test of the judas technique as a method for eradicating feral pigs. Trans. West. Sect. Wildl. Soc. 40, 120–126 (2004).
    Google Scholar 

    29.
    McCann, B. E. & Garcelon, D. K. Eradication of feral pigs from Pinnacles National Monument. J. Wildl. Manag. 72, 1287–1295 (2008).
    Google Scholar 

    30.
    Parkes, J. P. et al. Rapid eradication of feral pigs (Sus scrofa) from Santa Cruz Island, California. Biol. Conserv. 143, 634–641 (2010).
    Google Scholar 

    31.
    Williams, B. L., Holtfreter, R. W., Ditchkoff, S. S. & Grand, J. B. Efficiency of time-lapse intervals and simple baits for camera surveys of wild pigs. J. Wildl. Manag. 75, 655–659 (2011).
    Google Scholar 

    32.
    Engeman, R. M., Massei, G., Sage, M. & Gentle, M. N. Monitoring wild pig populations: a review of methods. Environ. Sci. Pollut. R. 20, 8077–8091 (2013).
    CAS  Google Scholar 

    33.
    Davis, A. J. et al. Quantifying site-level usage and certainty of absence for an invasive species though occupancy analysis of camera-trap data. Biol. Invasions 20, 877–890 (2018).
    Google Scholar 

    34.
    Peine, J. D. & Farmer, J. A. Wild hog management program at Great Smoky Mountain National Park. Proceedings of the 14 thVertebrate Pest Management Conference 14, 221–227 (1990).

    35.
    Saunders, G., Kay, B. & Nicol, H. Factors affecting bait uptake and trapping success for feral pigs (Sus scrofa) in Kosciusko National Park. Wildl. Res. 20, 653–665 (1993).
    Google Scholar 

    36.
    Phillips, L. M., Smith, M. D. & Johnson, D. K. Effects of opportunistic shooting on trap visitation by wild pigs. Proceedings of the 15th Wildlife Damage Management Conference 15, 37–38 (2013).

    37.
    Bowman, B., Belant, J. L., Beyer, D. E. & Martel, D. Characterizing nontarget species use at bait sites for white-tailed deer. Hum.-Wildl. Interact. 9, 110–118 (2015).
    Google Scholar 

    38.
    Schley, L., Dufrene, M., Krier, A. & Frantz, A. C. Patterns of crop damage by wild boar (Sus scrofa) in Luxembourg over a 10-year period. Eur. J. Wildl. Res. 54, 589–599 (2008).
    Google Scholar 

    39.
    Engeman, R. M., Terry, J., Stephens, L. R. & Gruver, K. S. Prevalence and amount of feral swine damage to three row crops at planting. Crop Prot. 112, 252–256 (2018).
    Google Scholar 

    40.
    United States Department of Agriculture. Field Crops Usual Planting and Harvesting Dates (October 2010). https://usda.library.cornell.edu/concern/publications/vm40xr56k?locale=en (2010).

    41.
    R: A language and environment for statistical computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2017, https://www.R-project.org.

    42.
    Zhang, Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat. Comput. 23, 743–757 (2013).
    MathSciNet  CAS  MATH  Google Scholar 

    43.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 

    44.
    MuMIn. R package version 1.43.17 (2020)

    45.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    46.
    Lukacs, P. M., Burnham, K. P. & Anderson, D. R. Model selection bias and Freedman’s paradox. Ann. I. Stat. Math. 62, 117–125 (2010).
    MathSciNet  MATH  Google Scholar 

    47.
    Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2010).
    Google Scholar 

    48.
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. Evol. Biol. 24, 699–711 (2011).
    CAS  Google Scholar 

    49.
    Bodenchuk, M. Method-specific costs of feral swine removal in a large metapopulation: the Texas experience. Proceedings of the 26 thVertebrate Pest Conference 26, 269–271 (2014).

    50.
    Davis, A. J., Leland, B., Bodenchuk, M., VerCauteren, K. C. & Pepin, K. Costs and effectiveness of damage management of an overabundant species. Wildlife Res. 45, 696–705 (2018).
    Google Scholar 

    51.
    Massei, G., Genov, P. V., Staines, B. W. & Gorman, M. L. Mortality of wild boar, Sus scrofa, in a Mediterranean area in relation to sex and age. J. Zool. 242, 394–400 (1997).
    Google Scholar 

    52.
    Castillo-Contreras, R., Carvalho, J., Serrano, E., Mentaberre, G. & Fernandez-Aguilar, X. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Gonzalez-Crespo, C., Serrano, E., Cahill, S., Castillo-Contreras, R. & Cabaneros, L. Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS ONE 13, e0202289 (2018).
    PubMed  PubMed Central  Google Scholar 

    54.
    Van Vuren, D. Diurnal activity and habitat use by feral pigs on Santa Cruz Island, California. Calif. Fish Game 70, 140–144 (1984).
    Google Scholar 

    55.
    Baber, D. W. & Coblentz, B. E. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J. Mammal. 67, 512–525 (1984).
    Google Scholar 

    56.
    Dexter, N. The influence of pasture distribution and temperature on habitat selection by feral pigs in a semi-arid environment. Wildlife Res. 25, 547–559 (1998).
    Google Scholar 

    57.
    Choquenot, D. & Ruscoe, W. S. Landscape complementation and food limitation of large herbivores: habitat-related constraints on the foraging efficiency of wild pigs. J. Anim. Ecol. 72, 14–26 (2003).
    Google Scholar 

    58.
    Dardaillon, M. Seasonal variations in habitat selection and spatial distribution of wild boar (Sus scrofa) in the Camargue, southern France. Behav. Process. 13, 251–268 (1986).
    CAS  Google Scholar 

    59.
    Waithman, J. Guide to Hunting Wild Pigs in California (California Department of Fish and Game, Sacramento, 2001).
    Google Scholar 

    60.
    Snow, N. P. et al. Bait preference of free-ranging feral swine for delivery of a novel toxicant. PLoS ONE 11, e0146712 (2016).
    PubMed  PubMed Central  Google Scholar 

    61.
    Brivio, F. et al. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm. Biol. 84, 73–81 (2017).
    Google Scholar 

    62.
    Choquenot, D., Hone, J. & Saunders, G. Using aspects of predator-prey theory to evaluate helicopter shooting for feral pig control. Wildl. Res. 26, 251–261 (1999).
    Google Scholar 

    63.
    Pepin, K. M., Snow, N. P. & VerCauteren, K. C. Optimal bait density for delivery of acute toxicants to vertebrate pests. J. Pest Sci. 93, 723–735 (2020).
    Google Scholar 

    64.
    Lancia, R. A., Bishir, J. W., Conner, M. C. & Rosenberry, C. S. Use of catch-effort to estimate population size. Wildl. Soc. B. 24, 731–737 (1996).
    Google Scholar 

    65.
    McIlroy, J. C. & Gifford, E. J. The ‘Judas’ pig technique for controlling feral pigs. Wildl. Res. 24, 483–491 (1997).
    Google Scholar 

    66.
    Ditchkoff, S. S., Jolley, D. B., Sparklin, B. D., Hanson, L. B. & Mitchell, M. S. Reproduction in a population of wild pigs (Sus scrofa) subjected to lethal control. J. Wildl. Manag. 76, 1235–1240 (2012).
    Google Scholar 

    67.
    Brook, R. K. & Van Beest, F. M. Feral wild boar distribution and perceptions of risk on central Canadian Prairies. Wildl. Soc. B. 38, 486–494 (2014).
    Google Scholar 

    68.
    Stolle, K., Van Beest, F. M., Wal, E. D. & Brook, R. K. Diurnal and nocturnal activity patterns of invasive wild boar (Sus scrofa) in Saskatchewan, Canada. Can. Field Nat. 129, 76–79 (2015).
    Google Scholar  More

  • in

    Meta-analysis of multidecadal biodiversity trends in Europe

    1.
    WWF. Living Planet Report 2016. Risk and Resilience in a New Era. (Gland, Switzerland: WWW International, 2016).
    2.
    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  Google Scholar 

    4.
    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019).

    5.
    Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).
    Google Scholar 

    6.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    ADS  CAS  PubMed  Google Scholar 

    7.
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).
    Google Scholar 

    8.
    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).
    CAS  PubMed  Google Scholar 

    9.
    Thomas, J. A. Butterfly communities under threat. Science 353, 216–218 (2016).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
    PubMed  PubMed Central  Google Scholar 

    11.
    Chamberlain, D. E. & Fuller, R. J. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use. Agric. Ecosyst. Environ. 78, 1–17 (2000).
    Google Scholar 

    12.
    Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).
    PubMed  Google Scholar 

    13.
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Haase, P. et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 658, 1531–1538 (2019).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. https://doi.org/10.1111/cobi.13477 (2020).

    16.
    Martinho, F. et al. Does the flatfish community of the Mondego estuary (Portugal) reflect environmental changes? J. Appl. Ichthyol. 26, 843–852 (2010).
    Google Scholar 

    17.
    Knapp, S., Kühn, I., Stolle, J. & Klotz, S. Changes in the functional composition of a Central European urban flora over three centuries. Perspect. Plant Ecol. Evol. Syst. 12, 235–244 (2010).
    Google Scholar 

    18.
    Förster, A., Becker, T., Gerlach, A., Meesenburg, H. & Leuschner, C. Long-term change in understorey plant communities of conventionally managed temperate deciduous forests: effects of nitrogen deposition and forest management. J. Veg. Sci. 28, 747–761 (2017).
    Google Scholar 

    19.
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
    ADS  CAS  PubMed  Google Scholar 

    20.
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Primack, R. B. et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 219, A1–A3 (2018).
    Google Scholar 

    22.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    ADS  CAS  PubMed  Google Scholar 

    23.
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, s41559–016 (2017). 0067–016.
    Google Scholar 

    24.
    Gibson-Reinemer, D. K., Sheldon, K. S. & Rahel, F. J. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 5, 2340–2347 (2015).
    PubMed  PubMed Central  Google Scholar 

    25.
    Domisch, S. et al. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 19, 752–762 (2013).
    ADS  Google Scholar 

    26.
    Mirtl, M. et al. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: a critical review of ILTER and future directions. Sci. Total Environ. 626, 1439–1462 (2018).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).
    ADS  CAS  Google Scholar 

    28.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    ADS  CAS  Article  Google Scholar 

    30.
    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).
    ADS  Google Scholar 

    31.
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Google Scholar 

    33.
    Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
    PubMed  PubMed Central  Google Scholar 

    34.
    Valtonen, A. et al. Long‐term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).
    PubMed  Google Scholar 

    35.
    Thomas, C. D. Local diversity stays about the same, regional diversity increases, and global diversity declines. Proc. Natl Acad. Sci. USA 110, 19187–19188 (2013).
    ADS  CAS  PubMed  Google Scholar 

    36.
    Larsen, S., Chase, J. M., Durance, I. & Ormerod, S. J. Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology 99, 1316–1326 (2018).
    PubMed  Google Scholar 

    37.
    Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 162, 442–460 (2003).
    PubMed  Google Scholar 

    38.
    Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).
    ADS  CAS  PubMed  Google Scholar 

    39.
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).
    Google Scholar 

    40.
    Antão, L. H., Pöyry, J., Leinonen, R. & Roslin, T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29, 896–907 (2020).
    Google Scholar 

    41.
    Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412 (2018).
    PubMed  Google Scholar 

    42.
    Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical predictability of community responses to climate change. Front. Ecol. Evol. 6, 186 (2018).

    43.
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).
    ADS  CAS  PubMed  Google Scholar 

    44.
    Monteith, D. T. et al. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environ. Pollut. 137, 83–101 (2005).
    CAS  PubMed  Google Scholar 

    45.
    Rose, R. et al. Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns. Ecol. Indic. 68, 52–62 (2016).
    CAS  Google Scholar 

    46.
    Kuemmerle, T. et al. Hotspots of land use change in Europe. Environ. Res. Lett. 11, 064020 (2016).
    ADS  Google Scholar 

    47.
    Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20, 470–474 (2005).
    PubMed  Google Scholar 

    48.
    Martínez‐Abraín, A., Jiménez, J. & Oro, D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 22, 3–13 (2019).
    Google Scholar 

    49.
    Kröel-Dulay, G. et al. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 6, 1–7 (2015).
    Google Scholar 

    50.
    Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
    PubMed  PubMed Central  Google Scholar 

    51.
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).
    Google Scholar 

    52.
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).
    PubMed  Google Scholar 

    53.
    Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).
    PubMed  Google Scholar 

    54.
    Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).
    Google Scholar 

    55.
    Silliman, B. R. et al. Are the ghosts of nature’s past haunting ecology today? Curr. Biol. 28, R532–R537 (2018).
    CAS  PubMed  Google Scholar 

    56.
    Battarbee, R. W. et al. Recovery of UK lakes from acidification: An assessment using combined palaeoecological and contemporary diatom assemblage data. Ecol. Indic. 37, 365–380 (2014).
    CAS  Google Scholar 

    57.
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

    58.
    Albrecht, J. et al. Logging and forest edges reduce redundancy in plant-frugivore networks in an old-growth European forest. J. Ecol. 101, 990–999 (2013).
    Google Scholar 

    59.
    Kareiva, P., Marvier, M. & Silliman, B. Effective Conservation Science: Data Not Dogma. (Oxford University Press, 2017).

    60.
    Haase, P. et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).
    ADS  PubMed  Google Scholar 

    61.
    Heffernan, J. B. et al. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front. Ecol. Environ. 12, 5–14 (2014).
    Google Scholar 

    62.
    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).
    PubMed  Google Scholar 

    63.
    Hallett, L. et al. codyn: Community Dynamics Metrics. R package version 2.0.0. (2018).

    64.
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres 113, (2008).

    65.
    Kendall, M. G. Rank correlation methods. (1948).

    66.
    Mann, H. B. Nonparametric Tests Against Trend. Econometrica 13, 245–259 (1945).
    MathSciNet  MATH  Google Scholar 

    67.
    Venerables, W. N. & Ripley, B. D. Modern applied statistics with S. (new york: Springer, 2002).

    68.
    Hamed, K. H. & Rao, A. R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204, 182–196 (1998).
    ADS  Google Scholar 

    69.
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
    ADS  CAS  PubMed  Google Scholar 

    70.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 

    71.
    Everaert, G., Deschutter, Y., De Troch, M., Janssen, C. R. & De Schamphelaere, K. Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton. J. Mar. Syst. 181, 91–98 (2018).
    Google Scholar 

    72.
    Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).
    Google Scholar 

    73.
    Calcagno, V. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. (2013).

    74.
    EEA. Biogeographical regions and Marine regions and subregions under the Marine Strategy Framework Directive. https://www.eea.europa.eu/data-and-maps (2016). More

  • in

    Long term survey of the fish community and associated benthic fauna of the Seine estuary nursery grounds

    Data collection takes place in the Seine estuary sector extending from Ouistreham (Coordinates in projection world geodesic system 1984 or WGS84, 49°17′N 0°16′W) to Antifer (49°40′20″N 0°11′21″E) and from the Pont de Normandie (49°26′09″N 0°16′28″E) to roughly 20 meter-depth offshore to the west (Fig. 1). This 20 meter-depth limit delimitates the area considered as part of the nursery grounds23. The survey follows a fixed stratified sampling design. The stratification is based on bathymetry and distance to the mouth estuary. In total, 47 hauls are distributed across 12 sectors. Haul positions are randomly drawn in each sector. Due to rocky outcrop and the presence of many shipwrecks in the area, hauls’ locations are later assessed based on recommendations from professional fishers operating in the area and adjusted where needed. Morin and Schlaich23 provided a standardized sampling protocol for nursery zones from 1995 to 2017. In 2018, the protocol was updated in order to obtain a standardized sampling protocol on a national scale and to comply with the French Marine Strategy Framework Directive (MSFD) survey plan19. Differences in the two protocols for this particular survey are highlighted where needed. Sampling occurred once a year from 1995 to 2002, then from 2008 to 2010 and from 2017 to 2019. The two first periods strictly follow the first protocol. Only the last years are susceptible to changes due to protocol updates.
    Fig. 1

    Geographical extent and sectors of the NOURSEINE survey displaying the position of hauls performed across all years. Sectors are originally established from the distance to the estuary and the bathymetry.

    Full size image

    Sampling is carried out with a 20 mm mesh size beam trawl of 2 or 3 m wide depending on the sectors, with a 0.50 m vertical opening. The beam trawl is equipped with ground chains. Each haul lasts 15 minutes and is done against the tide at speed between 2.5 to 2.8 knots. From 2018 onward, a length of 7 minutes for the 2 m beam trawl was applied, in line with the updated national protocol. Shooting and hauling coordinates, times and depths of each haul are systematically noted. Using two different fishing gear may cause differences in the catchability of individuals, leading to differences in population characteristics estimates. An intercalibration exercise was implemented and results are presented in Riou’s work24. Data on flounder and sole captures were used to draw the comparison. Briefly, they showed that there were no differences in the mean density nor in the size structure for these two species. Therefore, the density values are considered comparable no matter the gear used in this protocol.
    The period of reference for sampling is at the end of summer or beginning of autumn. Sampling dates scope from August 25 to September 30 over the time series. The juvenile stages here regroup individuals of age 1 and age 0. The latter corresponds to individuals who settled in the estuary on the year of the survey. Fish from age 0 group had their first period of growth over the summer. Sampling in late summer or early autumn ensures good catchability by the 20 mm mesh size beam trawl providing an accurate image of the fish distribution and abundance. Each survey day, 12 to 15 trawl stations are performed. In total, 40 to 47 stations are sampled each year. In 1996, 63 stations were surveyed as replicates were done. Hauls of a given station locate themselves relatively close to each other throughout the surveys.
    After each haul, the content of the trawl is emptied on deck, and a total or partial sorting is carried out depending on the volume and homogeneity of the capture. All taxa, both fish and benthos, are sorted, identified, counted and weighted. Fishes of commercial value and all others flatfish are measured. Otoliths are collected on the main commercial fish species (sole, plaice, flounder, dab, pouting, large whiting and European bass) for later age group determination in the laboratory. In 1999, the sampling was incomplete and only commercial fish and invertebrates (King scallop and lobster) were sampled. The year was kept in the dataset to ensure continuity for these taxa.
    Sorting the capture can be separated into three different steps (Fig. 2):
    1.
    Total capture weighting: when the hauls are emptied on the deck, the whole capture is distributed in several baskets/box in order to weight it.

    2.
    Fish and large taxa sorting: All fish and large taxa of invertebrates easily identified (edible crab, common spider crab, large cephalopods) are sorted, identified, numbered, measured (for fish) and weighted (total weight per taxa). Depending on the size of the capture, subsampling might be necessary. Operations are performed on the subsample in such a case. If visual identification is too difficult (for instance due to a large mud proportion), the capture is washed using a 5 mm sieve. The weight ratio between the total capture and the subsample form a “division” variable that allows the calculation of density. Another subsampling may be needed if a taxon has a high abundance. In that case, for practical reasons, only a subsample of the individuals are numbered, measured and weighted.

    3.
    Benthic fauna sorting: What is left from the second step is weighted before the sorting operation. All taxa constituting benthic fauna are sorted, identified, numbered and weighted (total weight per taxa). Some taxa may be measured (whelk, scallop). As for step 2, a subsample might be necessary before sorting according to the quantity of benthic fauna.

    Fig. 2

    Sketch of the capture sorting process used during the NOURSEINE surveys (adapted from19).

    Full size image

    All observations are manually recorded on fieldwork paper books before being checked and registered in the NOURSEINE database.
    The NOURSEINE database consists of all information on fish and benthic taxa collected in a given haul, together with haul and survey information. Throughout the survey period, some changes on the level of identification are observed: while all fish taxa were normally considered and processed, sampling was reduced to commercial taxa solely during the 1999 survey. Changes in human operators may lead to mis-identifications and irregular records of a same taxa through the dataset. To provide a readily exploitable dataset, taxa clustering was applied to keep a homogenous record in the time series. Changes were mostly applied to benthic taxa (Table 1). In hauls where several taxa were clustered, abundance and weight were summed to calculate taxa density accordingly. Out of the 161 taxa initially recorded in the database, 138 remained after clustering.
    Table 1 Outcome of the clustering process applied to homogenize the dataset.
    Full size table

    As only raw abundance is available first-hand, taxa densities are calculated based on trawled surface but also takes into account if the haul has been partially sorted or not. The formula to calculate the density of individuals per surface unit is:

    $$Density=frac{(Raw,abundanceast Divisionast Coefficient)}{Trawled,surface}$$

    where Division is a factor used to elevate the abundance if the whole haul was not sorted. The same formula with abundance replaced by the capture’s weight gives the captured weight per surface unit.
    The database is reworked and corrected in an R script before being provided here. The coordinates of each haul are given at the beginning and the end of the fishing operation in degrees, minutes and seconds. They are converted in decimal degrees. It is in this R script that the taxa density is calculated, along with the mean weight of the capture, and that taxa clustering happens.
    Efforts have been made to detect and correct any typos that potentially slipped through the first correction when data are entered in the database. More