More stories

  • in

    Detailed morphological structure and phylogenetic relationships of Degeeriella punctifer (Phthiraptera: Philopteridae), a parasite of the bearded vulture Gypaetus barbatus (Accipitriformes: Accipitridae)

    Durden, L. Lice (Phthiraptera). In Medical and Veterinary Entomology 3rd edn (eds Mullen, G. & Durden, L.) 79–106 (Academic Press, 2019).Chapter 

    Google Scholar 
    Stork, N. E. & Lyal, C. H. C. Extinction or ‘co-extinction’ rates?. Nature 366, 307. https://doi.org/10.1038/366307a0 (1993).Article 
    ADS 

    Google Scholar 
    Koh, L. P. et al. Species coextinctions and the biodiversity crisis. Science 305, 1632–1634. https://doi.org/10.1126/science.1101101 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Gerlach J (2014) Haematopinus oliveri. The IUCN Red List of Threatened Species 2014: e.T9621A21423551. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T9621A21423551.en.Mingozzi, T. & Stève, R. Analysis of a historical extirpation of the bearded vulture Gypaetus barbatus (L.) in the Western Alps (France-Italy): former distribution and causes of extirpation. Biol. Conserv. 79, 155–171. https://doi.org/10.1016/S0006-3207(96)00110-3 (1997).Article 

    Google Scholar 
    Schaub, M., Zink, R., Beissmann, H., Sarrazin, F. & Arlettaz, R. When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J. Appl. Ecol. 46, 92–100. https://doi.org/10.1111/j.1365-2664.2008.01585.x (2009).Article 

    Google Scholar 
    BirdLife International. Gypaetus barbatus (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2017: e.T22695174A118590506. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22695174A118590506.en, accessed 07 Apr 2021 (2017).Price, R. D., Hellenthal, R. A., Palma, R. L., Johnson, K. P., & Clayton, D. H. The chewing lice: World checklist and biological overview. Illinois Natural History Survey Special Publication 24. Illinois (2003).Clay, T. Revisions of mallophaga genera. Degeeriella from the Falconiformes. Bull. Br. Mus. (Nat. Hist.) 7, 123–207 (1958).
    Google Scholar 
    Martín Mateo, M. P. Fauna Ibérica, Vol. 32. Phthiraptera, Ischnocera. Museo Nacional de Ciencias Naturales (CSIC), Madrid (2009).Hoberg, E. P., Brooks, D. R. & Siegel-Causey, D. Host-parasite co-speciation: history, principles, and prospects. In Host-Parasite Evolution: General Principles and Avian Models (eds Clayton, D. H. & Moore, J.) 212–235 (Oxford University Press, 1997).
    Google Scholar 
    Johnson, K. P., Weckstein, J. D., Witt, C. C., Faucett, R. C. & Moyle, R. G. The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex. Mol. Phylogenet. Evol. 23, 150–157. https://doi.org/10.1016/S1055-7903(02)00014-3 (2002).Article 
    CAS 

    Google Scholar 
    Catanach, T. A. & Johnson, K. P. Independent origins of the feather lice (Insecta: Degeeriella) of raptors. Biol. J. Linn. Soc. 114, 837–847. https://doi.org/10.1111/bij.12453 (2015).Article 

    Google Scholar 
    Pérez, J. M., Ruiz-Martínez, I. & Cooper, J. E. Occurrence of chewing lice on Spanish raptors. Ardeola 43, 129–138 (1996).
    Google Scholar 
    Ash, J. S. A study of the mallophagan of birds with particular reference to their ecology. Ibis 102, 93–110. https://doi.org/10.1111/j.1474-919X.1960.tb05095.x (1960).Article 

    Google Scholar 
    Askew, R. R. Parasitic Insects (Heinemann Educational, 1971).
    Google Scholar 
    Marshall, A. G. The Ecology of Parasitic Insects (Academic Press, 1981).
    Google Scholar 
    Bartlow, A. W., Villa, S. M., Thompson, M. W. & Bush, S. E. Walk or ride? Phoretic behaviour of amblyceran and ischnoceran lice. Int. J. Parasitol. 46, 221–227. https://doi.org/10.1016/j.ijpara.2016.01.003 (2016).Article 

    Google Scholar 
    Leonardi, M. S., Crespo, E. A., Raga, J. A. & Fernández, M. Scanning electron microscopy of Antarctophthirus microchir (Phthiraptera: Anoplura: Echinophthiriidae): Studying morphological adaptations to aquatic life. Micron 43, 929–936. https://doi.org/10.1016/j.micron.2012.03.009 (2012).Article 

    Google Scholar 
    Ortega Insaurralde, I., Minoli, S., Toloza, A. C., Picollo, M. I. & Barrozo, R. B. The sensory machinery of the head louse Pediculus humanus capitis: from the antennae to the brain. Front. Physiol. 10, 434. https://doi.org/10.3389/fphys.2019.00434 (2019).Article 

    Google Scholar 
    Ortega Insaurralde, I., Picollo, M. I. & Barrozo, R. B. Sensory features of the human louse antenna: New contributions and comparisons between ecotypes. Med. Vet. Entomol. 35, 219–224. https://doi.org/10.1111/mve.12485 (2021).Article 
    CAS 

    Google Scholar 
    Page, R. D. M., Lee, P. L. M., Becher, S. A., Griffiths, R. & Clayton, D. H. A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. Mol. Phylogenet. Evol. 9, 276–293. https://doi.org/10.1006/mpev.1997.0458 (1998).Article 
    CAS 

    Google Scholar 
    Cruickshank, R. H. et al. Phylogenetic analysis of partial sequences of elongation factor 1α identifies major groups of lice (Insecta: Phthiraptera). Mol. Phylogenet. Evol. 19, 202–215. https://doi.org/10.1006/mpev.2001.0928 (2001).Article 
    CAS 

    Google Scholar 
    Murrell, A. & Barker, S. C. Multiple origins of parasitism in lice: phylogenetic analysis of SSU rDNA indicates that the Phthiraptera and Psocoptera are not monophyletic. Parasitol. Res. 97, 274–280. https://doi.org/10.1007/s00436-005-1413-8 (2005).Article 

    Google Scholar 
    Whiteman, N. K., Kimball, R. T. & Parker, P. G. Co-phylogeography and comparative population genetics of the threatened Galápagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol. Ecol. 16, 4759–4773. https://doi.org/10.1111/j.1365-294X.2007.03512.x (2007).Article 
    CAS 

    Google Scholar 
    Palma, R. L. Slide-mounting of Lice: a detailed description of the Canada Balsam technique. N. Z. Entomol. 6, 432–436. https://doi.org/10.1080/00779962.1978.9722313 (1978).Article 

    Google Scholar 
    Soler-Cruz, M. D. & Martín-Mateo, M. P. Scanning electron microscopy of legs of two species of sucking lice (Anoplura: Phthiraptera). Micron 40, 401–408. https://doi.org/10.1016/j.micron.2008.10.001 (2009).Article 
    CAS 

    Google Scholar 
    Hafner, M. S. et al. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090. https://doi.org/10.1126/science.8066445 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Simon, C. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).Article 
    CAS 

    Google Scholar 
    Danforth, B. N. & Ji, S. Elongation factor-1α occurs as two copies in bees: Implications for phylogenetic analysis of EF-1α sequences in insects. Mol. Biol. Evol. 15, 225–235. https://doi.org/10.1093/oxfordjournals.molbev.a025920 (1998).Article 
    CAS 

    Google Scholar 
    Smith, V. S., Page, R. D. M. & Johnson, K. P. Data incongruence and the problem of avian louse phylogeny. Zool. Scr. 33, 239–259. https://doi.org/10.1111/j.0300-3256.2004.00149.x (2004).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).Article 
    CAS 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    CAS 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).Article 
    CAS 

    Google Scholar 
    Zwickl, D. J. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Thesis Dissertation, The University of Texas at Austin, Texas (2006).Rambaut, A. FigTree v1.4.2. Institute of Evolutionary Biology (University of Edinburgh, 2014).
    Google Scholar 
    Brown, C. J. Plumages and measurements of the Bearded Vulture in Southern Africa. Ostrich 60, 165–171 (1989).Article 

    Google Scholar 
    Chatterjee, P., Payra, A. & Sen, S. Insecta: Phthiraptera. In Faunal Diversity of Indian Himalaya (eds Chandra, K. et al.) 297–304 (Zoological Survey of India, 2018).
    Google Scholar 
    Liébanas, G. et al. The morphology of Colpocephalum pectinatum (Phthiraptera: Amblycera: Menoponidae) under scanning electron microscopy. Arthropod Struct. Dev. 64, 101085. https://doi.org/10.1016/j.asd.2021.101085 (2021).Article 

    Google Scholar 
    Pérez, J. M. Sobre algunos aspectos de la parasitación por malógafos en aves de presa. Ph.D. thesis Dissertation, Granada University (1990).Arya, G., Ahmad, A., Bansal, N., Saxena, R. & Saxena, A. K. Nature of placodean sensilla of four ischnoceran Phthiraptera. Entomon 35, 199–202 (2010).
    Google Scholar 
    Khan, V., Bansal, N., Arya, G., Ahmad, A. & Saxena, A. K. Contribution to the morphology of Degeeriella regalis (Insecta, Phthiraptera, Ischnocera). J. Entomol. Res. 35, 93–96 (2011).
    Google Scholar 
    Agarwal, G. P. et al. Bio-ecology of the louse, Upupicola upupae, infesting the Common Hoopoe, Upupa epops. J. Insect. Sci. 11, 46. https://doi.org/10.1673/031.011.4601 (2011).Article 
    CAS 

    Google Scholar 
    Singh, P., Gupta, N., Khan, G., Kumar, S. & Ahmad, A. Diagnostic characters of three nymphal instars and morphological features of adult Collard-dove louse Columbicola bacillus (Phthiraptera: Insecta). J. Appl. Nat. Sci. 11, 7–11. https://doi.org/10.31018/jans.v11i1.1855 (2019).Article 

    Google Scholar 
    Clayton, D. H. & Johnson, K. P. Linking coevolutionary history to ecological process: Doves and lice. Evolution 57, 2335–2341. https://doi.org/10.1111/j.0014-3820.2003.tb00245.x (2003).Article 

    Google Scholar 
    Barker, S. C. Lice, cospeciation and parasitism. Int J Parasitol 26, 219–222 (1996).Article 
    CAS 

    Google Scholar 
    Page, R. D. M., Clayton, D. H. & Paterson, A. A. Lice and cospeciation: A response to Barker. Int. J. Parasitol. 26, 213–218. https://doi.org/10.1016/0020-7519(95)00115-8 (1996).Article 
    CAS 

    Google Scholar 
    Paterson, A. M. & Gray, R. D. Host-parasite cospeciation, host-switching and missing the boat. In Host-Parasite Evolution: General Principles and Avian Models (eds Clayton, D. H. & Moore, J.) 236–250 (Oxford University Press, 1997).
    Google Scholar 
    Paterson, A. M., Palma, R. L. & Gray, R. D. How frequently do avian lice miss the boat? Implications for coevolutionary studies. Syst. Biol. 48, 214–223. https://doi.org/10.1080/106351599260544 (1999).Article 

    Google Scholar 
    Frey, H. & Walter, W. The reintroduction of the bearded vulture Gypaetus barbatus into the Alps. In Raptors in the Modern World (eds Meyburg, B. U. & Chancellor, R. D.) 341–344 (WWGBP, 1989).
    Google Scholar 
    Pérez, J. M., Sánchez, I. & Palma, R. L. The dilemma of conserving parasites: the case of Felicola (Lorisicola) isidoroi (Phthiraptera: Trichodectidae) and its host, the endangered Iberian lynx (Lynx pardinus). Insect. Conserv. Divers. 6, 680–686. https://doi.org/10.1111/icad.12021 (2013).Article 

    Google Scholar  More

  • in

    Author Correction: Predicting the potential for zoonotic transmission and host associations for novel viruses

    One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USAPranav S. Pandit, Tracey Goldstein, Megan M. Doyle, Nicole R. Gardner, Brian Bird, Woutrina Smith, David Wolking, Kirsten Gilardi, Corina Monagin, Terra Kelly, Marcela M. Uhart, Lucy Keatts, Jonna A. K. Mazet & Christine K. JohnsonCenter for Infection and Immunity, Columbia University, New York, NY, 10032, USASimon J. AnthonyEcoHealth Alliance, 520 Eighth Avenue, New York, NY, 10018, USAKevin J. Olival, Jonathan H. Epstein, Catherine Machalaba, Melinda K. Rostal, Patrick Dawson, Emily Hagan, Ava Sullivan, Hongying Li, Aleksei A. Chmura, Alice Latinne, Ariful Islam, James Desmond, Tom Hughes, William B. Karesh & Peter DaszakLabyrinth Global Health, Inc., 546 15th Ave NE, St Petersburg, FL, 33704, USAChristian Lange, Tammie O’Rourke & Karen SaylorsWildlife Conservation Society, Health Program, Bronx, NY, USASarah Olson, A. Patricia Mendoza, Cátia Dejuste de Paula, Amanda Fine & Cátia Dejuste de PaulaWildlife Conservation Society (WCS), Peru Program, Lima, PeruA. Patricia Mendoza & Alberto PerezGlobal Health Program, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC, USADawn Zimmerman, Marc Valitutto & Ohnmar AungMosaic/Global Viral Cameroon, Yaoundé, CameroonMatthew LeBreton, Moctar Mouiche & Suzan MurrayMetabiota Inc, Nanaimo, VC, CanadaDavid McIver & Soubanh SilithammavongInstitut Pasteur du Cambodge, 5 Monivong Blvd, PO Box 983, Phnom Penh, 12201, CambodiaVeasna DuongWuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, ChinaZhengli ShiKinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the CongoPrime MulembakaniMetabiota Inc., Kinshasa, Democratic Republic of the CongoCharles KumakambaEgypt National Research Centre, 12311, Dokki, Giza, EgyptMohamed AliAklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, EthiopiaNigatu KebedeMetabiota Cameroon Ltd, Yaoundé, Centre Region Avenue Mvog-Fouda Ada, Av 1.085, Carrefour Intendance, Yaoundé, BP 15939, CameroonUbald TamoufeMilitary Veterinarian (Rtd.), P.O. Box CT2585, Accra, GhanaSamuel Bel-NonoCentre de Recherche en Virologie (VRV) Projet Fievres Hemoraquiques en Guinée, BP 5680, Nongo/Contéya-Commune de Ratoma, GuineaAlpha CamaraPrimate Research Center, Bogor Agricultural University, Bogor, 16151, IndonesiaJoko PamungkasFaculty of Veterinary Medicine, Bogor Agricultural University, Darmaga Campus, Bogor, 16680, IndonesiaJoko PamungkasDepartment Environment and Health, Institut Pasteur de Côte d’Ivoire, PO BOX 490, Abidjan 01, Ivory CoastKalpy J. CoulibalyDepartment of Basic Medical Veterinary Sciences, College of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, JordanEhab Abu-BashaMolecular Biology Laboratory, Institute of Primate Research, Nairobi, KenyaJoseph KamauDepartment of Biochemistry, University of Nairobi, Nairobi, KenyaJoseph KamauConservation Medicine, Sungai Buloh, Selangor, MalaysiaTom HughesWildlife Conservation Society (WCS), Mongolia Program, Ulaanbaatar, MongoliaEnkhtuvshin ShiilegdambaCenter for Molecular Dynamics Nepal (CMDN), Thapathali -11, Kathmandu, NepalDibesh KarmacharyaRegional Headquarters, Mountain Gorilla Veterinary Project, Musanze, RwandaJulius Nziza & Benard SsebideUniversité Cheikh Anta Diop, BP 5005, Dakar, SénégalDaouda NdiayeMetabiota, Inc. Sierra Leone, Freetown, Sierra LeoneAiah GbakimaDepartment of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, TanzaniaZikankuba sajaliThai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, ThailandSupaporn WacharapluesadeeWildlife Conservation Society (WCS), Bolivia Program, La Paz, BoliviaErika Alandia RoblesFacultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, 04510, MexicoGerardo SuzánCentro de Biodiversidad y Genética, Universidad Mayor de San Simón, Cochabamba, BoliviaLuis F. AguirreLaboratório de Epidemiologia e Geoprocessamento (EpiGeo), Instituto de Medicina Veterinária (IMV) Universidade Federal do Pará (UFPA), BR-316 Km 31, Castanhal, Pará, 69746-360, BrazilMonica R. SolorioDepartment of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, IndiaTapan N. DholeWildlife Conservation Society (WCS), Vietnam Program, Hanoi, VietnamNguyen T. T. NgaMelbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, 3030, AustraliaPeta L. HitchensNyati Health Consulting, 2175 Dodds Road, Nanaimo, BC, V9X0A4, CanadaDamien O. Joly More

  • in

    Extreme local recycling of moisture via wetlands and forests in North-East Indian subcontinent: a Mini-Amazon

    van der Ent, R. J. & Tuinenburg, O. A. The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci. 21, 779–790 (2017).Article 
    ADS 

    Google Scholar 
    Risi, C., Noone, D., Frankenberg, C. & Worden, J. Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resour. Res. 49, 4136–4156 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Gupta, S. K. & Deshpande, R. D. Water for India in 2050: First-order assessment of available options. Curr. Sci. 86, 9 (2004).
    Google Scholar 
    Kuttippurath, J. et al. Observed rainfall changes in the past century (1901–2019) over the wettest place on Earth. Environ. Res. Lett. 16, 024018 (2021).Article 
    ADS 

    Google Scholar 
    Rao, M. P. et al. Seven centuries of reconstructed Brahmaputra River discharge demonstrate underestimated high discharge and flood hazard frequency. Nat. Commun. 11, 6017 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Bassi, N., Kumar, M. D., Sharma, A. & Pardha-Saradhi, P. Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. J. Hydrol. Regional Stud. 2, 1–19 (2014).Article 

    Google Scholar 
    Dikshit, K. R. & Dikshit, J. K. Natural vegetation: Forests and grasslands of North-East India. in North-East India: Land, People and Economy (eds. Dikshit, K. R. & Dikshit, J. K.) 213–255 (Springer, 2014). https://doi.org/10.1007/978-94-007-7055-3_9.Chakraborty, S. et al. Linkage between precipitation isotopes and biosphere-atmosphere interaction observed in northeast India. Npj Clim. Atmos. Sci. 5, 1–11 (2022).Article 

    Google Scholar 
    Pathak, A., Ghosh, S. & Kumar, P. Precipitation recycling in the Indian subcontinent during summer monsoon. J. Hydrometeorol. 15, 2050–2066 (2014).Article 
    ADS 

    Google Scholar 
    Mahanta, R., Sarma, D. & Choudhury, A. Heavy rainfall occurrences in northeast India. Int. J. Climatol. 33, 1456–1469 (2013).Article 

    Google Scholar 
    Murata, F. et al. dominant synoptic disturbance in the extreme rainfall at cherrapunji, northeast India, based on 104 years of rainfall data (1902–2005). J. Clim. 30, 8237–8251 (2017).Article 
    ADS 

    Google Scholar 
    Roy, S. C. & Chatterji, G. Origin of nor’westers. Nature 124, 481–481 (1929).Article 
    ADS 

    Google Scholar 
    Dhar, O. N. & Nandargi, S. A study of floods in the Brahmaputra basin in India. Int. J. Climatol. 20, 771–781 (2000).Article 

    Google Scholar 
    Reager, J. T., Thomas, B. F. & Famiglietti, J. S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 7, 588–592 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Gat, J. R. Isotope Hydrology: A Study of the Water Cycle (World Scientific, 2010).Book 

    Google Scholar 
    Salati, E., DallOlio, A., Matsui, E. & Gat, J. R. Recycling of water in the Amazon basin: An isotopic study. Water Resourc. Res. 15, 1250–1258 (1979).Article 
    ADS 
    CAS 

    Google Scholar 
    Victoria, R. L., Martinelli, L. A., Mortatti, J. & Richey, J. Mechanisms of water recycling in the Amazon basin: Isotopic insights. Ambio 20, 384–387 (1991).
    Google Scholar 
    Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. PNAS 114, 8481–8486 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).Article 
    ADS 

    Google Scholar 
    Lele, N. & Joshi, P. K. Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environ. Monit. Assess. 156, 159 (2008).Article 

    Google Scholar 
    Sudhakar Reddy, C. et al. Quantification and monitoring of deforestation in India over eight decades (1930–2013). Biodivers. Conserv. 25, 93–116 (2016).Article 

    Google Scholar 
    Kathayat, G. et al. Interannual oxygen isotope variability in Indian summer monsoon precipitation reflects changes in moisture sources. Commun. Earth Environ. 2, 1–10 (2021).Article 

    Google Scholar 
    Kathayat, G. et al. Protracted Indian monsoon droughts of the past millennium and their societal impacts. Proc. Natl. Acad. Sci. 119, e2207487119 (2022).Article 
    CAS 

    Google Scholar 
    Breitenbach, S. F. M. et al. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet. Sci. Lett. 292, 212–220 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Pradhan, R., Singh, N. & Singh, R. P. Onset of summer monsoon in Northeast India is preceded by enhanced transpiration. Sci. Rep. 9, 18646 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Das, S., Sarkar, A., Das, M. K., Rahman, Md. M. & Islam, Md. N. Composite characteristics of Nor’westers based on observations and simulations. Atmos. Res. 158–159, 158–178 (2015).Article 

    Google Scholar 
    Vinay Kumar, P. & Venkateswara Naidu, C. Is pre-monsoon rainfall activity over India increasing in the recent era of global warming?. Pure Appl. Geophys. 177, 4423–4442 (2020).Article 
    ADS 

    Google Scholar 
    Narayanan, P., Sarkar, S., Basistha, A. & Sachdeva, K. Trend analysis and forecast of pre-monsoon rainfall over India. Weather 71, 94–99 (2016).Article 
    ADS 

    Google Scholar 
    Stevens, B. Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33, 605–643 (2005).Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Bershaw, J. Controls on deuterium excess across Asia. Geosciences 8, 257 (2018).Article 
    ADS 

    Google Scholar 
    Clark, I. D. & Fritz, P. Environmental Isotopes in Hydrogeology (CRC Press, 1997). https://doi.org/10.1201/9781482242911.Book 

    Google Scholar 
    Cui, J., Tian, L., Biggs, T. W. & Wen, R. Deuterium-excess determination of evaporation to inflow ratios of an alpine lake: Implications for water balance and modeling. Hydrol. Process. 31, 1034–1046 (2017).Article 
    ADS 

    Google Scholar 
    Laskar, A. H. et al. Stable isotopic characterization of Nor’westers of southern Assam, NE India. J. Clim. Chang. 1, 75–87 (2015).Article 

    Google Scholar 
    Tanoue, M. et al. Seasonal variation in isotopic composition and the origin of precipitation over Bangladesh. Prog. Earth Planet Sci. 5, 77 (2018).Article 
    ADS 

    Google Scholar 
    Oza, H., Ganguly, A., Padhya, V. & Deshpande, R. D. Hydrometeorological processes and evaporation from falling rain in Indian sub-continent: Insights from stable isotopes and meteorological parameters. J. Hydrol. 591, 125601 (2020).Article 
    CAS 

    Google Scholar 
    Chen, F. et al. Relationship between sub-cloud secondary evaporation and stable isotopes in precipitation of Lanzhou and surrounding area. Quatern. Int. 380–381, 68–74 (2015).Article 

    Google Scholar 
    Sinha, N. et al. Isotopic investigation of the moisture transport processes over the Bay of Bengal. J. Hydrol. X 2, 100021 (2019).Article 
    CAS 

    Google Scholar 
    Rawson, H. M., Begg, J. E. & Woodward, R. G. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 134, 5–10 (1977).Article 
    CAS 

    Google Scholar 
    Chakraborty, S., Belekar, A. R., Datye, A. & Sinha, N. Isotopic study of intraseasonal variations of plant transpiration: An alternative means to characterise the dry phases of monsoon. Sci. Rep. 8, 8647 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Sinha, N., Chakraborty, S. & Mohan, P. M. Modern rain-isotope data from Indian island and the mainland on the daily scale for the summer monsoon season. Data Brief 23, 103793 (2019).Article 

    Google Scholar 
    Grujic, D. et al. Formation of a Rain Shadow: O and H stable isotope records in authigenic clays from the Siwalik group in eastern Bhutan. Geochem. Geophys. Geosyst. 19, 3430–3447 (2018).Article 
    CAS 

    Google Scholar 
    Lambs, L., Balakrishna, K., Brunet, F. & Probst, J. L. Oxygen and hydrogen isotopic composition of major Indian rivers: A first global assessment. Hydrol. Process. 19, 3345–3355 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ek, M. B. & Holtslag, A. A. M. Influence of soil moisture on boundary layer cloud development. J. Hydrometeorol. 5, 86–99 (2004).Article 
    ADS 

    Google Scholar 
    Findell, K. L. & Eltahir, E. A. B. Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeorol. 4, 552–569 (2003).Article 
    ADS 

    Google Scholar 
    Syroka, J. & Toumi, R. On the withdrawal of the Indian summer monsoon. Q. J. R. Meteorol. Soc. 130, 989–1008 (2004).Article 
    ADS 

    Google Scholar 
    Bhatta, L. D. et al. Ecosystem service changes and livelihood impacts in the maguri-motapung wetlands of Assam. India. Land 5, 15 (2016).Article 

    Google Scholar 
    Choudhury, B. A., Saha, S. K., Konwar, M., Sujith, K. & Deshamukhya, A. Rapid drying of northeast India in the last three decades: Climate change or natural variability?. J. Geophys. Res. Atmos. 124, 227–237 (2019).Article 
    ADS 

    Google Scholar 
    Das, D. Changing climate and its impacts on Assam, Northeast India. Bandung J. Glob. South 2, 26 (2016).Article 

    Google Scholar 
    Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K. & Das, S. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theor. Appl. Climatol. 114, 61–71 (2013).Article 
    ADS 

    Google Scholar 
    Maurya, A. S., Shah, M., Deshpande, R. D. & Gupta, S. K. Protocol for δ18O and δD analyses of water sample using Delta V plus IRMS in CF Mode with Gas Bench II for IWIN National Programme at PRL, Ahmedabad. in 11th ISMAS Triennial Conference of Indian Society for Mass Spectrometry vol. 314, 314–317 (Indian Society for Mass Spectrometry Hyderabad, 2009).Deshpande, R. D. & Gupta, S. K. Oxygen and hydrogen isotopes in hydrological cycle: new data from IWIN national programme. Proc. Indian Natl. Sci. Acad. 78, 321–331 (2012).CAS 

    Google Scholar 
    Deshpande, R. D. & Gupta, S. K. National programme on isotope fingerprinting of waters of India (IWIN). Glimpses of Geosciences Research in India, the Indian Report to IUGS, Indian National Science Academy (eds Singhvi, AK, Bhattacharya, A. & Guha, S.), 10–16 (2008).Oza, H., Padhya, V., Ganguly, A. & Deshpande, R. D. Investigating hydrometeorology of the Western Himalayas: Insights from stable isotopes of water and meteorological parameters. Atmos. Res. 268, 105997 (2022).Article 
    CAS 

    Google Scholar 
    Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 96, 2059–2077 (2015).Article 
    ADS 

    Google Scholar 
    Sodemann, H., Schwierz, C. & Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos. 113, D3 (2008).
    Google Scholar 
    Oza, H. et al. Hydrometeorological processes in semi-arid western India: insights from long term isotope record of daily precipitation. Clim. Dyn. 54, 2745–2757 (2020).Article 

    Google Scholar 
    Su, L., Yuan, Z., Fung, J. C. H. & Lau, A. K. H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 506–507, 527–537 (2015).Article 
    ADS 

    Google Scholar 
    Ahmed, M., Seraj, R. & Islam, S. M. S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 9, 1295 (2020).Article 

    Google Scholar  More

  • in

    Grassland versus forest dwelling rodents as indicators of environmental contamination with the zoonotic nematode Toxocara spp.

    Magnaval, J.-F., Glickman, L. T., Dorchies, P. & Morassin, B. Highlights of human toxocariasis. Korean J. Parasitol. 39, 1 (2001).Article 

    Google Scholar 
    Parise, M. E., Hotez, P. J. & Slutsker, L. Neglected parasitic infections in the United States: Needs and opportunities. Am. J. Trop. Med. Hyg. 90, 783–785 (2014).Article 

    Google Scholar 
    Holland, C. V. Knowledge gaps in the epidemiology of Toxocara: The enigma remains. Parasitology 144, 81–94 (2017).Article 

    Google Scholar 
    Richards, D. T. & Lewis, J. W. Fecundity and egg output by Toxocara canis in the red fox Vulpes vulpes. J. Helminthol. 75, 157–164 (2001).
    Google Scholar 
    Glickman, L. T. & Schantz, P. M. Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiol. Rev. 3, 230–250 (1981).Article 

    Google Scholar 
    Keegan, J. D. & Holland, C. V. A comparison of Toxocara canis embryonation under controlled conditions in soil and hair. J. Helminthol. 87, 78–84 (2013).Article 

    Google Scholar 
    Overgaauw, P. A. M. & Nederland, V. Aspects of toxocara epidemiology: Toxocarosis in dogs and cats. Crit. Rev. Microbiol. 23, 233–251 (1997).Article 

    Google Scholar 
    Strube, C., Heuer, L. & Janecek, E. Toxocara spp. infections in paratenic hosts. Vet. Parasitol. 193, 375–89 (2013).Parsons, J. C. Ascarid infections of cats and dogs. Vet. Clin. N. Am. Small Anim. Pract. 17, 1307–1339 (1987).Article 

    Google Scholar 
    Brunaská, M., Dubinský, P. & Reiterová, K. Toxocara canis: Ultrastructural aspects of larval moulting in the maturing eggs. Int. J. Parasitol. 25, 683–690 (1995).Article 

    Google Scholar 
    Dubinsky, P., Havasiova-Reiterova, K., Petko, B., Hovorka, I. & Tomasovicova, O. Role of small mammals in the epidemiology of toxocariasis. Parasitology 110(Pt 2), 187–193 (1995).Ma, G. et al. Human toxocariasis. Lancet Infect. Dis. 18, e14–e24 (2018).Article 

    Google Scholar 
    Despommier, D. Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin. Microbiol. Rev. 16, 265–272 (2003).Article 

    Google Scholar 
    Hotez, P. J. & Wilkins, P. P. Toxocariasis: America’s Most Common Neglected Infection of Poverty and a Helminthiasis of Global Importance?. PLoS Negl. Trop. Dis. 3, e400 (2009).Article 

    Google Scholar 
    Fan, C.-K., Holland, C. V., Loxton, K. & Barghouth, U. Cerebral toxocariasis: Silent progression to neurodegenerative disorders?. Clin. Microbiol. Rev. 28, 663–686 (2015).Article 

    Google Scholar 
    Nathwani, D., Laing, R. B. S. & Currie, P. F. Covert toxocariasis—A cause of recurrent abdominal pain in childhood. Br. J. Clin. Pract. (1992).Rostami, A. et al. Seroprevalence estimates for toxocariasis in people worldwide: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 13, e0007809 (2019).Article 

    Google Scholar 
    Borecka, A. & Kłapeć, T. Epidemiology of human toxocariasis in Poland—A review of cases 1978–2009. Ann. Agric. Environ. Med. 22, 28–31 (2015).Article 

    Google Scholar 
    Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S. & Poulin, R. Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: The influence of phylogeny and local environmental conditions. Ecography 27, 787–797 (2004).Article 

    Google Scholar 
    Andreassen, H. P. et al. Population cycles and outbreaks of small rodents: Ten essential questions we still need to solve. Oecologia 195, 601–622 (2021).Article 
    ADS 

    Google Scholar 
    Ylönen, H. Vole cycles and antipredatory behaviour. Trends Ecol. Evol. https://doi.org/10.1016/0169-5347(94)90125-2 (1994).Article 

    Google Scholar 
    Hanski, I., Hansson, L. & Henttonen, H. Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim. Ecol. https://doi.org/10.2307/5465 (1991).Article 

    Google Scholar 
    Martinez-Bakker, M. & Helm, B. The influence of biological rhythms on host–parasite interactions. Trends Ecol. Evol. 30, 314–326 (2015).Article 

    Google Scholar 
    Bajer, A., Pawelczyk, A., Behnke, J. M., Gilbert, F. S. & Sinski, E. Factors affecting the component community structure of haemoparasites in bank voles (Clethrionomys glareolus) from the Mazury Lake District region of Poland. Parasitology 122(Pt 1), 43–54 (2001).Article 

    Google Scholar 
    Behnke, J. M., Lewis, J. W., Zain, S. N. & Gilbert, F. S. Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on the prevalence and abundance of infections. J. Helminthol. 73, 31–44 (1999).Article 

    Google Scholar 
    Ferrari, N., Cattadori, I. M., Nespereira, J., Rizzoli, A. & Hudson, P. J. The role of host sex in parasite dynamics: Field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol. Lett. 7, 88–94 (2003).Article 

    Google Scholar 
    Grzybek, M. et al. Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland. Parasitology 142, 1722–1743 (2015).Article 

    Google Scholar 
    Reiterová, K. et al. Small rodents—permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia 50, (2013).Habig, B., Doellman, M. M., Woods, K., Olansen, J. & Archie, E. A. Social status and parasitism in male and female vertebrates: A meta-analysis. Sci. Rep. 8, 3629 (2018).Article 
    ADS 

    Google Scholar 
    Izhar, R. & Ben-Ami, F. Host age modulates parasite infectivity, virulence and reproduction. J. Anim. Ecol. 84, 1018–1028 (2015).Article 

    Google Scholar 
    Migalska, M. et al. Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics. Mol. Ecol. 31, 3400–3415 (2022).Article 

    Google Scholar 
    Grzybek, M. et al. Zoonotic viruses in three species of voles from Poland. Animals 10, 1820 (2020).Article 

    Google Scholar 
    Bajer, A. et al. Rodents as intermediate hosts of cestode parasites of mammalian carnivores and birds of prey in Poland, with the first data on the life-cycle of Mesocestoides melesi. Parasit. Vectors 13, 95 (2020).Article 

    Google Scholar 
    Rabalski, L. et al. Zoonotic spillover of SARS-CoV-2: Mink-adapted virus in humans. bioRxiv (2021). https://doi.org/10.1101/2021.03.05.433713.Rabalski, L. et al. Severe acute respiratory syndrome coronavirus 2 in Farmed Mink (Neovison vison) Poland. Emerg. Infect. Dis. 27, 2333–2339 (2021).Article 

    Google Scholar 
    Grzybek, M. et al. Seroprevalence of Trichinella spp. infection in bank voles (Myodes glareolus)—A long term study. Int. J. Parasitol. Parasites Wildl. 9, 144–148 (2019).Binder, F. et al. Heterogeneous Puumala orthohantavirus situation in endemic regions in Germany in summer 2019. Transbound Emerg. Dis. 67, 502–509 (2020).Article 

    Google Scholar 
    Tołkacz, K. et al. Prevalence, genetic identity and vertical transmission of Babesia microti in three naturally infected species of vole, Microtus spp. (Cricetidae). Parasit. Vectors 10, 1–12 (2017).Tołkacz, K. et al. Bartonella infections in three species of Microtus: Prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success. Parasit. Vectors 11, 491 (2018).Article 

    Google Scholar 
    Behnke, J. M. et al. Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the Mazury Lake District region of Poland. Parasitology 123, 401–414 (2001).Article 

    Google Scholar 
    Behnke, J. M. et al. Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 2. The infracommunity level. Parasitology 135, 999–1018 (2008).Behnke, J. M. et al. Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 1. Regional fauna and component community levels. Parasitology 135, 985–997 (2008).Tołkacz, K. et al. Prevalence, genetic identity and vertical transmission of Babesia microti in three naturally infected species of vole, Microtus spp. (Cricetidae). Parasit. Vectors 10, 66 (2017).Morris, P. A review of mammalian age determination methods. Mamm. Rev. 2, 69–104 (1972).Antolová, D. et al. Small mammals: Paratenic hosts for species of Toxocara in eastern Slovakia. J. Helminthol. 87, 52–58 (2013).Article 

    Google Scholar 
    Reiterová, K. et al. Small rodents—permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia 50, 20–26 (2013).Article 

    Google Scholar 
    Reperant, L. A., Hegglin, D., Tanner, I., Fischer, C. & Deplazes, P. Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136, 329–337 (2009).Article 

    Google Scholar 
    Savigny, D. H. In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. J. Parasitol. 61, 781–782 (1975).Article 

    Google Scholar 
    Cuéllar, C., Fenoy, S. & Guillén, J. L. Cross-reactions of sera from Toxascaris leonina and Ascaris suum infected mice with Toxocara canis, Toxascaris leonina and Ascaris suum antigens. Int. J. Parasitol. 25, 731–739 (1995).Article 

    Google Scholar 
    Naguleswaran, A., Hemphill, A., Rajapakse, R. P. V. J. & Sager, H. Elaboration of a crude antigen ELISA for serodiagnosis of caprine neosporosis: Validation of the test by detection of Neospora caninum-specific antibodies in goats from Sri Lanka. Vet. Parasitol. 126, 257–262 (2004).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Statistical Tables (Freeman, 1995).MATH 

    Google Scholar 
    Behnke, J. M. et al. Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the mazury lake istrict region of Poland. Parasitology 123, 401–414 (2001).Article 

    Google Scholar 
    Grzybek, M., Bajer, A., Behnke-Borowczyk, J., Al-Sarraf, M. & Behnke, J. M. Female host sex-biased parasitism with the rodent stomach nematode Mastophorus muris in wild bank voles (Myodes glareolus). Parasitol. Res. 114, 523–533 (2014).Article 

    Google Scholar 
    Grzybek, M. et al. Seroprevalence of TBEV in bank voles from Poland-a long-term approach. Emerg. Microbes Infect. 7, 145 (2018).Article 

    Google Scholar 
    Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 7, 37 (2014).Article 

    Google Scholar 
    GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1859–1922 (2018).Reperant, L. A., Hegglin, D., Tanner, I., Fisher, C. & Deplazes, P. Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136, 329–337 (2009).Article 

    Google Scholar 
    Antolová, D., Reiterová, K., Miterpáková, M., Stanko, M. & Dubinský, P. Circulation of Toxocara spp. in suburban and rural ecosystems in the Slovak Republic. Vet. Parasitol 126, 317–324 (2004).Reiterová, K. et al. Small rodents—permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia (Poland) 50, 20–26 (2013).Article 

    Google Scholar 
    Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z., Víchová, B. & Zub, K. Prevalence of zoonotic pathogens in wild rodents living in the Białowieża Primeval Forest, Poland. Ann. Parasitol. 62 (2016).Dubinský, P., Havasiova-Reiterova, K., Peťko, B., Hovorka, I. & Tomašovičová, O. Role of small mammals in the epidemiology of toxocariasis. Parasitology 110, 187–193 (1995).Article 

    Google Scholar 
    Antolová, D., Reiterová, K., Miterpáková, M., Stanko, M. & Dubinský, P. Circulation of Toxocara spp. in suburban and rural ecosystems in the Slovak Republic. Vet. Parasitol. 126, 317–24 (2004).Hildebrand, J., Zalesny, G., Okulewicz, A. & Baszkiewicz, K. Preliminary studies on the zoonotic importance of rodents as a reservoir of toxocariasis from recreation grounds in Wroclaw (Poland). Helminthologia 46, 80–84 (2009).Article 

    Google Scholar 
    Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z., Víchová, B. & Zub, K. Prevalence of zoonotic pathogens in wild rodents living in the Białowieża Primeval Forest Poland. Ann. Parasitol. 62, 183 (2016).
    Google Scholar 
    Azam, D., Ukpai, O. M., Said, A., Abd-Allah, G. A. & Morgan, E. R. Temperature and the development and survival of infective Toxocara canis larvae. Parasitol. Res. 110, 649–656 (2012).Article 

    Google Scholar 
    Kloch, A., Bednarska, M. & Bajer, A. Intestinal macro- and microparasites of wolves (Canis lupus L.) from north-eastern Poland recovered by coprological study. Ann. Agric. Environ. Med. 12, 237–45 (2005).Mierzejewska, E. J. et al. The efficiency of live-capture traps for the study of Red Fox (Vulpes vulpes) cubs: A three-year study in Poland. Animals 10, 374 (2020).Article 

    Google Scholar 
    Karamon, J. et al. Intestinal helminths of raccoon dogs (Nyctereutes procyonoides) and red foxes (Vulpes vulpes) from the Augustów Primeval Forest (north-eastern Poland). J. Vet. Res. (Poland) 60, 273–277 (2016).Article 

    Google Scholar 
    Cisek, A., Ramisz, A., Balicka-Ramisz, A., Pilarczyk, B. & Laurans, L. The prevalence of Toxocara canis (Werner, 1782) in dogs and red foxes in north-west Poland. Wiad Parazytol 50, 641–646 (2004).
    Google Scholar 
    Jarošová, J., Antolová, D., Lukáč, B. & Maďari, A. A Survey of Intestinal Helminths of dogs in Slovakia with an emphasis on zoonotic species. Animals 11, 3000 (2021).Article 

    Google Scholar 
    Kidawa, D. & Kowalczyk, R. The effects of sex, age, season and habitat on diet of the red fox Vulpes vulpes in northeastern Poland. Acta Theriol. (Warsz) 56, 209–218 (2011).Article 

    Google Scholar 
    Grzybek, M. et al. Seroprevalence of Trichinella spp. infection in bank voles (Myodes glareolus)—A long term study. Int. J. Parasitol. Parasites Wildl. (2019). https://doi.org/10.1016/j.ijppaw.2019.03.005.Grzybek, M. et al. Seroprevalence of Toxoplasma gondii among Sylvatic Rodents in Poland. Animals 11, 1048 (2021).Article 

    Google Scholar 
    Maciag, L., Morgan, E. R. & Holland, C. Toxocara: Time to let cati ‘out of the bag’. Trends Parasitol. 38, 280–289 (2022).Article 

    Google Scholar 
    Foreman-Worsley, R., Finka, L. R., Ward, S. J. & Farnworth, M. J. Indoors or outdoors? an international exploration of owner demographics and decision making associated with lifestyle of pet cats. Animals 11, 253 (2021).Article 

    Google Scholar 
    Liberg, O. Food habits and prey impact by feral and house-based domestic cats in a rural area in southern Sweden. J. Mammal. 65, 424–432 (1984).Article 

    Google Scholar 
    Krücken, J. et al. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin Germany. PLoS ONE 12, e0172829 (2017).Article 

    Google Scholar 
    Dunsmore, J. D., Thompson, R. C. A. & Bates, I. A. The accumulation of Toxocara canis larvae in the brains of mice. Int. J. Parasitol. 13, 517–521 (1983).Article 

    Google Scholar 
    Nijsse, R., Mughini-Gras, L., Wagenaar, J. A., Franssen, F. & Ploeger, H. W. Environmental contamination with Toxocara eggs: a quantitative approach to estimate the relative contributions of dogs, cats and foxes, and to assess the efficacy of advised interventions in dogs. Parasit. Vectors 8, 397 (2015).Article 

    Google Scholar 
    Dunsmore, J. D., Thompson, R. C. A. & Bates, I. A. Prevalence and survival of Toxocara canis eggs in the urban environment of Perth Australia. Vet. Parasitol. 16, 303–311 (1984).Article 

    Google Scholar 
    Duscher, G. G., Leschnik, M., Fuehrer, H.-P. & Joachim, A. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria. Int. J. Parasitol. Parasites Wildl. 4, 88–96 (2015).Article 

    Google Scholar 
    Ghai, R. R. et al. A generalizable one health framework for the control of zoonotic diseases. Sci. Rep. 12, 8588 (2022).Article 
    ADS 

    Google Scholar 
    Grzybek, M. et al. Zoonotic virus seroprevalence among bank voles, Poland, 2002–2010. Emerg. Infect. Dis. 25, 1607–1609 (2019).Article 

    Google Scholar  More

  • in

    Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils

    Doran JW. Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ. 2002;88:119–27.Article 

    Google Scholar 
    Wander MM, Cihacek LJ, Coyne M, Drijber RA, Grossman JM, Gutknecht JLM, et al. Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management. Front Environ Sci. 2019;7:1–9.Article 

    Google Scholar 
    Stewart RD, Jian J, Gyawali AJ, Thomason WE, Badgley BD, Reiter MS, et al. What we talk about when we talk about soil health. Agric Environ Lett. 2018;3:5–9.Article 

    Google Scholar 
    Rinot O, Levy GJ, Steinberger Y, Svoray T, Eshel G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci Total Environ. 2019;648:1484–91.Article 
    CAS 

    Google Scholar 
    Hurisso TT, Culman SW, Zhao K. Repeatability and spatiotemporal variability of emerging soil health indicators relative to routine soil nutrient tests. Soil Sci Soc Am J. 2018;82:939–48.Article 
    CAS 

    Google Scholar 
    Lilburne L, Sparling G, Schipper L. Soil quality monitoring in New Zealand: Development of an interpretative framework. Agric Ecosyst Environ. 2004;104:535–44.Article 

    Google Scholar 
    Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ, et al. Comprehensive assessment of soil health – the Cornell framework manual, 3rd ed. Ithaca, NY:Cornell University; 2017.Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem. 2021;153:108111.Article 
    CAS 

    Google Scholar 
    Amsili JP, van Es HM, Schindelbeck RR. Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Secur. 2021;4:100012.Article 

    Google Scholar 
    Wade J, Culman SW, Gasch CK, Lazcano C, Maltais-Landry G, Margenot AJ, et al. Rigorous, empirical, and quantitative: a proposed pipeline for soil health assessments. Soil Biol Biochem. 2022;170:108710.Article 
    CAS 

    Google Scholar 
    Simonin M, Voss KA, Hassett BA, Rocca JD, Wang SY, Bier RL, et al. In search of microbial indicator taxa: shifts in stream bacterial communities along an urbanization gradient. Environ Microbiol. 2019;21:3653–68.Article 

    Google Scholar 
    Bissett A, Brown MV, Siciliano SD, Thrall PH. Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecol Lett. 2013;16:128–39.Article 

    Google Scholar 
    Wilhelm RC, Cardenas E, Maas KR, Leung H, McNeil L, Berch S, et al. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J. 2017;11:2552–68.Article 

    Google Scholar 
    Gibbons SM, Scholz M, Hutchison AL, Dinner AR, Gilbert JA, Colemana ML, et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. MBio. 2016;7:1–10.Article 

    Google Scholar 
    Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front Plant Sci. 2016;7:1–13.Article 

    Google Scholar 
    Jiao S, Xu Y, Zhang J, Hao X. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems. 2019;4:1–16.Article 

    Google Scholar 
    Chang HX, Haudenshield JS, Bowen CR, Allen R, Iii W, Parnell JJ, et al. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front Microbiol. 2017;8:519.Article 

    Google Scholar 
    Trivedi P, Delgado-Baquerizo M, Jeffries TC, Trivedi C, Anderson IC, Lai K, et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ Microbiol. 2017;19:3070–86.Article 
    CAS 

    Google Scholar 
    Armbruster M, Goodall T, Hirsch PR, Ostle N, Puissant J, Fagan KC, et al. Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. Eur J Soil Sci. 2021;72:2430–44.Rieke EL, Cappellazzi SB, Cope M, Liptzin D, Mac Bean G, Greub KLH, et al. Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biol Biochem. 2022;168:108618.Article 
    CAS 

    Google Scholar 
    Wilhelm RC, Van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol Biochem. 2022;164:108472.Article 
    CAS 

    Google Scholar 
    Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2: An improved and customizable approach for metagenome inference 2. bioRxiv. 2020. https://doi.org/10.1101/672295.Gravuer K, Eskelinen A. Nutrient and rainfall additions shift phylogenetically estimated traits of soil microbial communities. Front Microbiol. 2017;8:1–16.Article 

    Google Scholar 
    Chen Y, Maier RM, Barberán A, Neilson JW, Kushwaha P, Maier RM, et al. Life-history strategies of soil microbial communities in an arid ecosystem. ISME J. 2021;15:649–57.Article 
    CAS 

    Google Scholar 
    Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.Article 
    CAS 

    Google Scholar 
    Malik AA, Martiny JBHH, Brodie EL, Martiny AC, Treseder KK, Allison SD, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.Article 
    CAS 

    Google Scholar 
    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.Nunan N, Schmidt H, Raynaud X, Schmidt H. The ecology of heterogeneity: Soil bacterial communities and C dynamics. Philos Trans R Soc B Biol Sci. 2020;375:20190249.Article 
    CAS 

    Google Scholar 
    Grime JP. Evidence for the existence of three primary strategies in plants and its relevance for ecological and evolutionary theory. Am Nat. 1977;111:1169–94.Article 

    Google Scholar 
    Barnett S, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. PNAS. 2021;118:e2115292118.Wilhelm RC, Pepe-Ranney C, Weisenhorn P, Lipton M, Buckley DH. Competitive exclusion and metabolic dependency among microorganisms structure the cellulose economy of an agricultural soil. MBio. 2021;12:1–19.Article 

    Google Scholar 
    Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE. 2018;13:1–19.Article 

    Google Scholar 
    Neal AL, Hughes D, Clark IM, Jansson JK, Hirsch PR. Microbiome Aggregated Traits and Assembly Are More Sensitive to Soil Management than Diversity. mSystems 2021;6:e0105620.Lupatini M, Korthals GW, de Hollander M, Janssens TKS, Kuramae EE. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol. 2017;7:1–13.Article 

    Google Scholar 
    Koechli C, Campbell AN, Pepe-ranney C, Buckley DH. Assessing fungal contributions to cellulose degradation in soil by using high- throughput stable isotope probing. Soil Biol Biochem. 2019;130:150–8.Article 
    CAS 

    Google Scholar 
    Furtak K, Grządziel J, Gałązka A, Niedźwiecki J. Prevalence of unclassified bacteria in the soil bacterial community from floodplain meadows (fluvisols) under simulated flood conditions revealed by a metataxonomic approachss. Catena. 2020;188:104448.Article 
    CAS 

    Google Scholar 
    Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities. Soil Biol Biochem. 2019;129:99–109.Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    Levy R, Borenstein E. Reverse Ecology: From systems to environments and back. Adv Exp Med Biol. 2012;751:329–45.Article 
    CAS 

    Google Scholar 
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.Article 

    Google Scholar 
    Hamilton JP, Neeno-Eckwall EC, Adhikari BN, Perna NT, Tisserat N, Leach JE, et al. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes. Database. 2011;2011:bar053.Detheridge AP, Brand G, Fychan R, Crotty FV, Sanderson R, Griffith GW, et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agric Ecosyst Environ. 2016;228:49–61.Article 

    Google Scholar 
    McKenna TP, Crews TE, Kemp L, Sikes BA. Community structure of soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction. PLoS ONE. 2020;15:1–15.Article 

    Google Scholar 
    Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, et al. The Microbiome Stress Project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front Microbiol. 2019;9:3272.Article 

    Google Scholar 
    Ramirez KS, Knight CG, De Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.Article 
    CAS 

    Google Scholar 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.Article 
    CAS 

    Google Scholar 
    Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep. 2016;6:1–9.Article 

    Google Scholar 
    Jurburg SD, Konzack M, Eisenhauer N, Heintz-Buschart A. The archives are half-empty: a field-wide assessment of the availability of microbial community sequencing data. Commun Biol. 2020;3:474.Emerson JB, Everhart SE, Eversole K, Frost KE, Herr JR, Huerta AI, et al. Community-driven metadata standards for agricultural microbiome research. Phytobiomes J. 2020; 4:115-121.Anderson TH, Martens R. DNA determinations during growth of soil microbial biomasses. Soil Biol Biochem. 2013;57:487–95.Article 
    CAS 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.Article 
    CAS 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 

    Google Scholar 
    Harrell F, Dupont C. Hmisc: Harrell miscellaneous. R Package 2015.Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57:289–300.
    Google Scholar 
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.Article 
    CAS 

    Google Scholar 
    Mills RH, Dulai PS, Vázquez-Baeza Y, Sauceda C, Daniel N, Gerner RR, et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol. 2022;7:262–76.Article 
    CAS 

    Google Scholar 
    De Cáceres M, Legendre P, De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Res. 2008;36:534–8.Article 

    Google Scholar 
    Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43:593–8.R Core Team. R: a language and environment for statistical computing. R Foundation. 2020.Wickham H. Reshaping data with the reshape package. J Stat Soft. 2007;21:1–20.Article 

    Google Scholar 
    Wickham H. The split-apply-combine strategy for data analysis. J Stat Soft. 2009;40:1–29.
    Google Scholar 
    Wickham H. Elegant graphics for data analysis. Media. 2009;35:211.
    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013;8:e61217.Grömping U. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17:1–27.Article 

    Google Scholar 
    Bastian M, Heymann S. Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media. 2009:361–2.Hu Y. Efficient, high-quality force-directed graph drawing. Math J. 2006;10:37–71.
    Google Scholar 
    Ranea JAG, Grant A, Thornton JM, Orengo CA. Microeconomic principles explain an optimal genome size in bacteria. Trends Genet. 2005;21:21–5.Article 
    CAS 

    Google Scholar 
    Nielsen DA, Fierer N, Geoghegan JL, Gillings MR, Gumerov V, Madin JS, et al. Aerobic bacteria and archaea tend to have larger and more versatile genomes. Oikos. 2021;130:501–11.Article 
    CAS 

    Google Scholar 
    Chen Y, Leung PM, Wood JL, Bay SK, Kessler AJ, Shelley G, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004.Article 
    CAS 

    Google Scholar 
    Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat Microbiol. 2016;2:16198.Willms IM, Rudolph AY, Göschel I, Bolz SH, Schneider D, Penone C, et al. Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere. 2020;5:1–17.Article 

    Google Scholar 
    Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front Cell Infect Microbiol. 2020;10:1–19.Article 

    Google Scholar 
    Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.Article 
    CAS 

    Google Scholar 
    Zhalnina K, De Quadros PD, Gano KA, Davis-Richardson A, Fagen JR, Brown CT, et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front Microbiol. 2013;4:1–13.Article 

    Google Scholar 
    Land M, Hauser L, Jun S, Nookaew I, Leuze MR, Ahn T, et al. Insights from 20 years of bacterial genome sequencing. Funct Integr Genom. 2015;15:141–61.Article 
    CAS 

    Google Scholar 
    Gil R, Latorre A, Postal A. Factors behind junk DNA in bacteria. Genes (Basel). 2012;3:634–50.Article 

    Google Scholar 
    Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol. 2005;71:3119–25.Article 
    CAS 

    Google Scholar 
    Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils. 2013;49:857–69.Article 

    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287-19.Westra ER, Van Houte S, Gandon S, Whitaker R, Van Houte S, Gandon S, et al. The ecology and evolution of microbial CRISPR-Cas adaptive immune systems. Philos Trans R Soc B Biol Sci. 2019;374:20190101.Martinez-Gutierrez CA, Aylward FO. Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLoS Genet. 2022;18:1–17.Article 

    Google Scholar 
    Saifuddin M, Bhatnagar JM, Finzi AC, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.Article 
    CAS 

    Google Scholar  More

  • in

    Resolving the intricate role of climate in litter decomposition

    Swift, M. J., Heal, O. W. & Anderson, J. M. Decomposition in Terrestrial Ecosystems. Vol. 5.5 (Blackwell, 1979).Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79, 439 (1997).Article 

    Google Scholar 
    Makkonen, M. et al. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol. Lett. 15, 1033–1041 (2012).Article 

    Google Scholar 
    Coûteaux, M. M., Bottner, P. & Berg, B. Litter decomposition, climate and liter quality. Trends Ecol. Evol. 10, 63–66 (1995).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).Article 

    Google Scholar 
    Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).Article 
    CAS 

    Google Scholar 
    Joly, F.-X. et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol. 214, 1281–1293 (2017).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. A test of the hierarchical model of litter decomposition. Nat. Ecol. Evol. 1, 1836–1845 (2017).Article 

    Google Scholar 
    Berg, B. et al. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20, 127–159 (1993).Article 

    Google Scholar 
    Powers, J. S. et al. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).Article 
    CAS 

    Google Scholar 
    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).Article 

    Google Scholar 
    Cornelissen, J. H. C. & Thompson, K. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135, 109–114 (1997).Article 
    CAS 

    Google Scholar 
    Coq, S., Souquet, J.-M., Meudec, E., Cheynier, V. & Hättenschwiler, S. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 2080–2091 (2010).Article 

    Google Scholar 
    Sun, T. et al. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl Acad. Sci. USA 115, 10392–10397 (2018).Article 
    CAS 

    Google Scholar 
    Baeten, L. et al. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect. Plant Ecol. Evol. Syst. 15, 281–291 (2013).Article 

    Google Scholar 
    Hobbie, S. E. et al. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87, 2288–2297 (2006).Article 

    Google Scholar 
    von Arx, G., Graf Pannatier, E., Thimonier, A. & Rebetez, M. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol. 101, 1201–1213 (2013).Article 

    Google Scholar 
    Ayres, E. et al. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 41, 606–610 (2009).Article 
    CAS 

    Google Scholar 
    Freschet, G. T., Aerts, R. & Cornelissen, J. H. C. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J. Ecol. 100, 619–630 (2012).Article 

    Google Scholar 
    Meentemeyer, V. Macroclimate and lignin control of litter decomposition rates. Ecology 59, 465–472 (1978).Article 
    CAS 

    Google Scholar 
    Currie, W. S. et al. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob. Change Biol. 16, 1744–1761 (2010).Article 

    Google Scholar 
    Canessa, R. et al. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. J. Ecol. 109, 447–458 (2021).Article 

    Google Scholar 
    García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).Article 

    Google Scholar 
    Prescott, C. E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).Article 
    CAS 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manage. 498, 119522 (2021).Article 

    Google Scholar 
    Stadler, S. J. in Encyclopedia of World Climatology 89–94 (Springer, 2005).Moore, T. R., Bubier, J. L. & Bledzki, L. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10, 949–963 (2007).Article 

    Google Scholar 
    Austin, A. T. Has water limited our imagination for aridland biogeochemistry. Trends Ecol. Evol. 26, 229–235 (2011).Article 

    Google Scholar 
    Joly, F.-X., Kurupas, K. & Throop, H. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology 98, 2255–2260 (2017).Article 

    Google Scholar 
    Scherer-Lorenzen, M., Bonilla, J. L. & Potvin, C. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116, 2108–2124 (2007).Article 

    Google Scholar 
    Vivanco, L. & Austin, A. T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J. Ecol. 96, 727–736 (2008).Article 
    CAS 

    Google Scholar 
    Fanin, N. et al. Home‐field advantage of litter decomposition: from the phyllosphere to the soil. New Phytol. 231, 1353–1358 (2021).Article 

    Google Scholar 
    Hättenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M. & Hefting, M. M. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 4, 1070–1075 (2013).Article 

    Google Scholar 
    Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).Article 

    Google Scholar 
    Harrison, A. F., Latter, P. M. & Walton, D. W. H. (eds) Cotton Strip Assay: An Index of Decomposition in Soils (Institute of Terrestrial Ecology, 1988).García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).Article 

    Google Scholar 
    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article 

    Google Scholar 
    Dawud, S. M. et al. Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Funct. Ecol. 31, 1153–1162 (2017).Article 

    Google Scholar 
    Pollastrini, M. et al. Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests. New Phytol. 212, 51–65 (2016).Article 
    CAS 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar  More

  • in

    Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces

    Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).Article 
    CAS 

    Google Scholar 
    Charlop-Powers, Z. et al. Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc. Natl Acad. Sci. USA 113, 14811 (2016).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).Article 
    CAS 

    Google Scholar 
    Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).Article 

    Google Scholar 
    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).Article 
    CAS 

    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evolution 5, 111–124 (2014).Article 

    Google Scholar 
    Gamfeldt, L. & Roger, F. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat. Ecol. Evolution 1, 0168 (2017).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).Article 
    CAS 

    Google Scholar 
    Zavaleta, E. S. et al. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443 (2010).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Article 
    CAS 

    Google Scholar 
    Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266 (2014).Article 
    CAS 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).Article 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B 281, 20141988 (2014).Article 

    Google Scholar 
    Schittko, C. et al. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. https://doi.org/10.1111/1365-2745.13852 (2022).Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).Article 
    CAS 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Kadowaki, K. et al. Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun. Biol. 1, 196 (2018).Article 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).Article 
    CAS 

    Google Scholar 
    Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 37–47 (Academic Press, 2012).Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 25–31 (Academic Press, 2012).Busse, H.-J. in Methods in Microbiology (eds Rainey, F. & Oren. A.) Vol. 38, 239–259 (Academic Press, 2011).van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    van Bergeijk, D. A. et al. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).Article 

    Google Scholar 
    Orellana, L. H. et al. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 16, 630–641 (2022).Article 
    CAS 

    Google Scholar 
    Fincker, M. et al. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ. Microbiol. 22, 3188–3204 (2020).Article 
    CAS 

    Google Scholar 
    Stralis-Pavese, N. et al. Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat. Protoc. 6, 609–624 (2011).Article 
    CAS 

    Google Scholar 
    Berube, P. M. et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 9, 1195–1207 (2015).Article 
    CAS 

    Google Scholar 
    Liang, J.-L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).Article 
    CAS 

    Google Scholar 
    Hättenschwiler, S. & Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl Acad. Sci. USA 102, 1519 (2005).Article 

    Google Scholar 
    Erktan, A. et al. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).Article 
    CAS 

    Google Scholar 
    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).Article 

    Google Scholar 
    Barberán, A. et al. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol. Lett. 17, 794–802 (2014).Article 

    Google Scholar 
    Chen, Q. L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).Article 
    CAS 

    Google Scholar 
    Zhang, Z. et al. Rare species-driven diversity-ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio. mBio. 13, e00449–22 (2022).Article 

    Google Scholar 
    Domínguez-García, V. et al. Unveiling dimensions of stability in complex ecological networks. Proc. Natl Acad. Sci. USA 116, 25714 (2019).Article 

    Google Scholar 
    Zhang, L. et al. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 12, 2339–2351 (2018).Article 
    CAS 

    Google Scholar 
    Couturier, M. et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat. Chem. Biol. 14, 306–310 (2018).Article 
    CAS 

    Google Scholar 
    Steinberg, G. et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat. Commun. 11, 1608 (2020).Article 
    CAS 

    Google Scholar 
    Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).Article 

    Google Scholar 
    Watson, C. J. et al. Ecological and economic benefits of low-intensity urban lawn management. J. Appl. Ecol. 57, 436–446 (2020).Article 

    Google Scholar 
    Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 (figshare, 2019); https://doi.org/10.6084/m9.figshare.7504448.v3Kettler, T. A. et al. Simplifed method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891 (2019).Article 
    CAS 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. Biol. Sci. 281, 22 (2014).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953 (2020).Article 

    Google Scholar 
    Bastida, F. et al. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 38, 3463–3473 (2006).Article 
    CAS 

    Google Scholar 
    Lugato, E. et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).Article 
    CAS 

    Google Scholar 
    Frostegård, Å. et al. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1621–1625 (2011).Article 

    Google Scholar 
    Olsson, P. A. et al. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).Article 
    CAS 

    Google Scholar 
    Campbell, C. D. et al. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).Article 
    CAS 

    Google Scholar 
    Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 15, e50961 (2013).
    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).Article 
    CAS 

    Google Scholar 
    Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).Article 
    CAS 

    Google Scholar 
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evolution 2, 427–436 (2018).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Interpretation of Ecological Structures Numerical Ecology 3rd English edn (Elsevier Science BV, 2012).Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417 (2014).Article 
    CAS 

    Google Scholar 
    Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. figshare https://doi.org/10.6084/m9.figshare.21175492.v3 (2022). More

  • in

    Coral reefs and coastal tourism in Hawaii

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    CAS 

    Google Scholar 
    Arkema, K. K., Fisher, D. M., Wyatt, K., Wood, S. A. & Payne, H. J. Advancing sustainable development and protected area mManagement with social media-based tourism data. Sustainability 13, 2427 (2021).Article 

    Google Scholar 
    Tourism in the 2030 Agenda (UNWTO, 2015); https://www.unwto.org/tourism-in-2030-agendaCowburn, B., Moritz, C., Birrell, C., Grimsditch, G. & Abdulla, A. Can luxury and environmental sustainability co-exist? Assessing the environmental impact of resort tourism on coral reefs in the Maldives. Ocean Coast. Manag. 158, 120–127 (2018).Article 

    Google Scholar 
    Lin, B. Close encounters of the worst kind: reforms needed to curb coral reef damage by recreational divers. Coral Reefs 40, 1429–1435 (2021).Article 

    Google Scholar 
    Asner, G. P. et al. Large-scale mapping of live corals to guide reef conservation. Proc. Natl Acad. Sci. USA 117, 33711–33718 (2020).Article 
    CAS 

    Google Scholar 
    Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 2976 (2013).Article 

    Google Scholar 
    Wood, S. A. et al. Next-generation visitation models using social media to estimate recreation on public lands. Sci. Rep. 10, 15419 (2020).Article 
    CAS 

    Google Scholar 
    Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343 (2018).Article 

    Google Scholar 
    Tenkanen, H. et al. Instagram, Flickr, or Twitter: assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 7, 17615 (2017).Article 

    Google Scholar 
    Sessions, C., Wood, S. A., Rabotyagov, S. & Fisher, D. M. Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. J. Environ. Manag. 183, 703–711 (2016).Article 

    Google Scholar 
    Mancini, F., Coghill, G. M. & Lusseau, D. Using social media to quantify spatial and temporal dynamics of nature-based recreational activities. PLoS One 13, e0200565 (2018).Article 

    Google Scholar 
    Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).Article 

    Google Scholar 
    van Zanten, B. T. et al. Continental-scale quantification of landscape values using social media data. Proc. Natl Acad. Sci. USA 113, 12974–12979 (2016).Article 

    Google Scholar 
    Department of Land and Natural Resources. Beach Access (Office of Conservation and Coastal Lands, 2013); https://dlnr.hawaii.gov/occl/beach-access/Mobile LTE Coverage Map (Federal Communications Commission, 2021).Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA 112, 7390–7395 (2015).Article 
    CAS 

    Google Scholar 
    Neuvonen, M., Pouta, E., Puustinen, J. & Sievänen, T. Visits to national parks: effects of park characteristics and spatial demand. J. Nat. Conserv. 18, 224–229 (2010).Article 

    Google Scholar 
    Rodgers, K., Cox, E. & Newtson, C. Effects of mechanical fracturing and experimental trampling on hawaiian corals. Environ. Manag. 31, 0377–0384 (2003).Article 

    Google Scholar 
    Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).Article 
    CAS 

    Google Scholar 
    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B. 283, 20152592 (2016).Article 

    Google Scholar 
    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).Article 
    CAS 

    Google Scholar 
    Johnson, J. V., Dick, J. T. A. & Pincheira-Donoso, D. Local anthropogenic stress does not exacerbate coral bleaching under global climate change. Glob. Ecol. Biogeogr. (2022).Darling, E. S., McClanahan, T. R. & Côté, I. M. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv. Lett. 3, 122–130 (2010).Article 

    Google Scholar 
    Severino, S. J. L., Rodgers, K. S., Stender, Y. & Stefanak, M. Hanauma Bay Biological Carrying Capacity Survey 2019–20 2nd Annual Report https://www.honolulu.gov/rep/site/dpr/hanaumabay_docs/Hanauma_Bay_Carrying_Capacity_Report_August_2020.pdf (City and County of Honolulu Parks and Recreation Department, 2020).Selenium WebDriver (Software Freedom Conservancy, 2022); https://www.selenium.dev/documentation/en/webdriver/Geospatial Data Portal. Hawaii Statewide GIS Program (Hawaii State Office of Planning, 2017); https://geoportal.hawaii.gov/Wedding, L. M. et al. Advancing the integration of spatial data to map human and natural drivers on coral reefs. PLoS One 13, e0189792 (2018).Article 

    Google Scholar 
    Nguyen, T., Liquet, B., Mengersen, K. & Sous, D. Mapping of coral reefs with multispectral satellites: a review of recent papers. Remote Sens. 13, 4470 (2021).Article 

    Google Scholar 
    Wicaksono, P., Aryaguna, P. A. & Lazuardi, W. Benthic habitat mapping model and cross validation using machine-learning classification algorithms. Remote Sens. 11, 1279 (2019).Article 

    Google Scholar  More