More stories

  • in

    Global patterns of tree density are contingent upon local determinants in the world’s natural forests

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).Article 
    CAS 

    Google Scholar 
    Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).Article 

    Google Scholar 
    Walker, A. P. et al. Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Glob. Biogeochem. Cy. 29, 476–495 (2015).Article 
    CAS 

    Google Scholar 
    Madrigal-González, J. et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 11, 1–7 (2020).Article 

    Google Scholar 
    Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).Article 

    Google Scholar 
    Weiskittel, A. R., Maguire, D. A., Monserud, R. A. Development of a hybrid model for intensively managed Douglas-fir in the Pacific Northwest. In Forest Growth and Timber Quality, 49 (USDA, Portland, 2009).Paoli, G. D., Curran, L. M. & Slik, J. W. F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155, 287–299 (2008).Article 

    Google Scholar 
    Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).
    Google Scholar 
    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).Article 

    Google Scholar 
    Weiner, J. & Freckleton, R. P. Constant final yield. Annu. Rev. Ecol. Evol. S. 41, 173–192 (2010).Article 

    Google Scholar 
    Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).Article 

    Google Scholar 
    Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).Article 
    CAS 

    Google Scholar 
    Pacala, S.W. & Levin, S.A. Biologically generated spatial pattern and the coexistence of competing species. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. (Princeton University Press, Princeton, NJ, p. 204-232, 1997).Asefa, M., Cao, M., Zhang, G., Ci, X. & Li, J. Yang Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages. Sci. Rep. 7, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Pretzsch, H. & Biber, P. Tree species mixing can increase maximum stand density. Can. J. For. Res. 46, 1179–1193 (2016).Article 

    Google Scholar 
    Escudero, A. et al. Every bit helps: The functional role of individuals in assembling any plant community, from the richest to monospecific ones. J. Veg. Sci. 32, e13059 (2021).Article 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Chang. Biol. 23, 3742–3757 (2017).Article 

    Google Scholar 
    M. Takyu, Y. Kubota, S.I. Aiba, T. Seino, T. Nishimura. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. In Forest Ecosystems and Environments (Springer, Tokyo, 2005), pp. 49–58.Rivoire, M. & Le, G. A. Moguedec, generalized self-thinning relationship for multi-species and mixed-size forests. Ann. Sci. 69, 207–219 (2012).Article 

    Google Scholar 
    Salas‐Eljatib, C. & Weiskittel, A. R. Evaluation of modelling strategies for assessing self‐thinning behaviour and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).Article 

    Google Scholar 
    Schietti, J. et al. Forest structure along a 600 km transect of natural disturbances and seasonality gradients in central‐southern Amazonia. J. Ecol. 104, 1335–1346 (2016).Article 

    Google Scholar 
    Vanclay, J. K. & Sands, P. J. Calibrating the self-thinning frontier. For. Ecol. Manag. 259, 81–85 (2009).Article 

    Google Scholar 
    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).Article 

    Google Scholar 
    Lieth, H. Modeling the primary productivity of the world. In H. Lieth & R. H. Whittaker, eds. Primary Productivity of the Biosphere (Springer-Verlag, New York, New York, USA, 1975), pp. 237–264.Grieser, J., Gommes, R., Cofield, S., Bernardi, M. World Maps of Climatological net Primary Production of Biomass, NPP. Food and Agriculture Organization of the United Nations. (GEONETWORK. FAO, Rome, Italy, 2006).Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).Article 

    Google Scholar 
    J.B. Grace. Structural Equation Modeling and Natural Systems. (Cambridge University Press, Cambridge, 2006).Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).Article 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/).Wood, S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. Am. Stat. 45, 339 (2017).
    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. R. Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148 (2020).Latham J, Cumani R, Rosati I, Bloise M. FAO Global Land Cover (GLC-SHARE) Database Beta-Release 1.0, Land and Water Division. 2014. http://www.fao.org/uploads/media/glc-share-doc.pdf. More

  • in

    Investigating metropolitan change through mathematical morphology and a dynamic factor analysis of structural and functional land-use indicators

    Alphan, H. Land use change and urbanisation of Adana, Turkey. Land Degrad. Dev. 14, 575–586 (2003).Article 

    Google Scholar 
    Catalàn, B., Sauri, D. & Serra, P. Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc. Urban Plan. 85(3–4), 174–184 (2008).
    Google Scholar 
    Chen, K., Long, H., Liao, L., Tu, S. & Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 92, 104465 (2020).Article 

    Google Scholar 
    Bianchini, L. et al. Forest transition and metropolitan transformations in developed countries: Interpreting apparent and latent dynamics with local regression models. Land 11(1), 12 (2021).Article 

    Google Scholar 
    Angel, S., Parent, J., Civco, D. L., Blei, A. & Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 75(2), 53–107 (2011).Article 

    Google Scholar 
    Fischer, A. P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 177, 138–147 (2018).Article 

    Google Scholar 
    Darvishi, A., Yousefi, M. & Marull, J. Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy 99, 105098 (2020).Article 

    Google Scholar 
    Cheng, L. L., Tian, C. & Yin, T. T. Identifying driving factors of urban land expansion using Google earth engine and machine-learning approaches in Mentougou District, China. Sci. Rep. 12(1), 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Kasanko, M. et al. Are European Cities becoming dispersed? A comparative analysis of fifteen European urban areas. Landsc. Urban Plan. 77(1–2), 111–130 (2006).Article 

    Google Scholar 
    Terzi, F. & Bolen, F. Urban sprawl measurement of Istanbul. Eur. Plan. Stud. 17(10), 1559–1570 (2009).Article 

    Google Scholar 
    Angel, S., Parent, J. & Civco, D. L. Ten compactness properties of circles: measuring shape in geography. Can. Geogr. 54, 441–461 (2010).Article 

    Google Scholar 
    Salvati, L., Gemmiti, R. & Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning?. Area 44(3), 317–325 (2012).Article 

    Google Scholar 
    Attorre, F., Bruno, M., Francesconi, F., Valenti, R. & Bruno, F. Landscape changes of Rome through tree-lined roads. Landsc. Urban Plan. 49, 115–128 (2000).Article 

    Google Scholar 
    Turok, I. & Mykhnenko, V. The trajectories of European cities, 1960–2005. Cities 24(3), 165–182 (2007).Article 

    Google Scholar 
    Ioannidis, C., Psaltis, C. & Potsiou, C. Towards a strategy for control of suburban informal buildings through automatic change detection. Comput. Environ. Urban Syst. 33, 64–74 (2009).Article 

    Google Scholar 
    Grekousis, G., Manetos, P. & Photis, Y. N. Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the athens metropolitan area. Cities 30, 193–203 (2013).Article 

    Google Scholar 
    Salvati, L. Towards a polycentric region? The socioeconomic trajectory of Rome, an ‘Eternally Mediterranean’ city. Tijdschr. Econ. Soc. Geogr. 105(3), 268–284 (2014).Article 

    Google Scholar 
    Chorianopoulos, I., Pagonis, T., Koukoulas, S. & Drymoniti, S. Planning, competitiveness and sprawl in the Mediterranean city: The case of Athens. Cities 27, 249–259 (2010).Article 

    Google Scholar 
    Munafò, M., Salvati, L. & Zitti, M. Estimating soil sealing rate at national level—Italy as a case study. Ecol. Ind. 26, 137–140 (2013).Article 

    Google Scholar 
    Morelli, V. G., Rontos, K. & Salvati, L. Between suburbanisation and re-urbanisation: Revisiting the urban life cycle in a Mediterranean compact city. Urban Res. Pract. 7(1), 74–88 (2014).Article 

    Google Scholar 
    Basem Ajjur, S. & Al-Ghamdi, S. G. Exploring urban growth–climate change–flood risk nexus in fast growing cities. Sci. Rep. 12, 12265 (2022).Article 
    ADS 

    Google Scholar 
    Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).Article 

    Google Scholar 
    Salvati, L. Agro-forest landscape and the ‘fringe’city: A multivariate assessment of land-use changes in a sprawling region and implications for planning. Sci. Total Environ. 490, 715–723 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Sang, X. et al. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep. 9(1), 1–12 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ettehadi Osgouei, P., Sertel, E. & Kabadayı, M. E. Integrated usage of historical geospatial data and modern satellite images reveal long-term land use/cover changes in Bursa/Turkey, 1858–2020. Sci. Rep. 12(1), 1–17 (2022).Article 

    Google Scholar 
    He, S., Yu, S., Li, G. & Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 95, 104576 (2020).Article 

    Google Scholar 
    Bockarjova, M., Wouter Botzen, W. J., Bulkeley, H. A. & Toxopeus, H. Estimating the social value of nature-based solutions in European cities. Sci. Rep. 12, 19833 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, J. & Niyogi, D. Meta-analysis of urbanisation impact on rainfall modification. Sci. Rep. 9(1), 1–14 (2019).ADS 

    Google Scholar 
    Holland, J. H. Studying complex adaptive systems. J. Syst. Sci. Complex. 19(1), 1–8 (2006).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Salvati, L. & Serra, P. Estimating rapidity of change in complex urban systems: A multidimensional, local-scale approach. Geogr. Anal. 48(2), 132–156 (2016).Article 

    Google Scholar 
    Bura, S., Guerin-Pace, F., Mathian, H., Pumain, D. & Sanders, L. Multi-agents systems and the dynamics of a settlement system. Geogr. Anal. 28(2), 161–178 (1996).Article 

    Google Scholar 
    Hasse, J. E. & Lathrop, R. G. Land resource impact indicators of urban sprawl. Appl. Geogr. 23, 159–175 (2003).Article 

    Google Scholar 
    Grafius, D. R., Corstanje, R. & Harris, J. A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 33(4), 557–573 (2018).Article 

    Google Scholar 
    Pumain, D. Hierarchy in Natural and Social Sciences (Kluwer-Springer, 2005).
    Google Scholar 
    Cabral, P., Augusto, G., Tewolde, M. & Araya, Y. Entropy in urban systems. Entropy 15(12), 5223–5236 (2013).Article 
    ADS 

    Google Scholar 
    Salvati, L. & Carlucci, M. In-between stability and subtle changes: Urban growth, population structure, and the city life cycle in Rome. Popul. Space Place 22(3), 216–227 (2016).Article 

    Google Scholar 
    Batty, M. & Longley, P. Fractal Cities (Academic Press, 1994).MATH 

    Google Scholar 
    Berry, B. J. L. Cities as systems within systems of cities. Pap. Reg. Sci. 13, 147–163 (2005).Article 

    Google Scholar 
    Petrosillo, I. et al. The resilient recurrent behavior of mediterranean semi-arid complex adaptive landscapes. Land 10(3), 296 (2021).Article 

    Google Scholar 
    Portugali, J. Complexity, Cognition and the City, Understanding Complex Systems (Springer, 2011).Book 

    Google Scholar 
    Wu, J., Jenerette, G. D., Buyantuyev, A. & Redman, C. L. Quantifying spatiotemporal patterns of urbanisation: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 8(1), 1–8 (2011).Article 

    Google Scholar 
    Sun, Y., Gao, C., Li, J., Li, W. & Ma, R. Examining urban thermal environment dynamics and relations to biophysical composition and configuration and socioeconomic factors: A case study of the Shanghai metropolitan region. Sustain. Cities Soc. 40, 284–295 (2018).Article 

    Google Scholar 
    Phillips, M. A. & Ritala, P. A complex adaptive systems agenda for ecosystem research methodology. Technol. Forecast. Soc. Change 148, 119739 (2019).Article 

    Google Scholar 
    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9(2), 5 (2004).Article 

    Google Scholar 
    Kelly, C. et al. Community resilience and land degradation in forest and shrublandsocio-ecological systems: A case study in Gorgoglione, Basilicata regionn, Italy. Land Use Policy 46, 11–20 (2015).Article 

    Google Scholar 
    Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23(4), 46 (2018).Article 

    Google Scholar 
    Ferrara, A. et al. Shaping the role of ‘fast’ and ‘slow’ drivers of change in forest-shrubland socio-ecological systems. J. Environ. Manag. 169, 155–166 (2016).Article 

    Google Scholar 
    Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11(12), 124017 (2016).Article 
    ADS 

    Google Scholar 
    Riitters, K. H., Vogt, P., Soille, P., Kozak, J. & Estreguil, C. Neutral model analysis of landscape patterns from mathematical morphology. Landsc. Ecol. 22(7), 1033–1043 (2007).Article 

    Google Scholar 
    Riitters, K., Vogt, P., Soille, P. & Estreguil, C. Landscape patterns from mathematical morphology on maps with contagion. Landsc. Ecol. 24(5), 699–709 (2009).Article 

    Google Scholar 
    Anas, A., Arnott, R. & Small, K. Urban spatial structure. J. Econ. Lit. 36(3), 1426–1464 (1998).
    Google Scholar 
    Arroyo-Mora, J. P., Sánchez-Azofeifa, G. A., Rivard, B., Calvo, J. C. & Janzen, D. H. Dynamics in landscape structure and composition for the Chorotega region, Costa Rica from 1960 to 2000. Agr. Ecosyst. Environ. 106(1), 27–39 (2005).Article 

    Google Scholar 
    Siles, G., Charland, A., Voirin, Y. & Bénié, G. B. Integration of landscape and structure indicators into a web-based geoinformation system for assessing wetlands status. Eco. Inform. 52, 166–176 (2019).Article 

    Google Scholar 
    Soille, P. Morphological Image Analysis: Principles and Applications (Springer, 2003).MATH 

    Google Scholar 
    Soille, P. & Vogt, P. Morphological segmentation of binary patterns. Pattern Recogn. Lett. 30, 456–459 (2009).Article 
    ADS 

    Google Scholar 
    Vogt, P. et al. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22(2), 171–177 (2007).Article 

    Google Scholar 
    Bajocco, S., Ceccarelli, T., Smiraglia, D., Salvati, L. & Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Ind. 60, 231–236 (2016).Article 

    Google Scholar 
    Yin, Y., Zhou, K. & Chen, Y. Deconstructing the driving factors of land development intensity from multi-scale in differentiated functional zones. Sci. Rep. 12(1), 1–13 (2022).Article 

    Google Scholar 
    Duvernoy, I., Zambon, I., Sateriano, A. & Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 57, 25–35 (2018).Article 

    Google Scholar 
    Smiraglia, D., Ceccarelli, T., Bajocco, S., Salvati, L. & Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 147, 590–600 (2016).Article 
    CAS 

    Google Scholar 
    Shaker, R. R. Examining sustainable landscape function across the Republic of Moldova. Habitat Int. 72, 77–91 (2018).Article 
    ADS 

    Google Scholar 
    Zheng, H. & Li, H. Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China. Sci. Rep. 12(1), 1–12 (2022).Article 

    Google Scholar 
    Tombolini, I., Munafò, M. & Salvati, L. Soil sealing footprint as an indicator of dispersed urban growth: A multivariate statistics approach. Urban Res. Pract. 9(1), 1–15 (2016).Article 

    Google Scholar 
    Salvati, L., Sateriano, A., Grigoriadis, E. & Carlucci, M. New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation. Ecol. Econ. 131, 361–372 (2017).Article 

    Google Scholar 
    Zambon, I., Benedetti, A., Ferrara, C. & Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 146, 173–183 (2018).Article 

    Google Scholar 
    Paul, V. & Tonts, M. Containing urban sprawl: Trends in land use and spatial planning in the Metropolitan Region of Barcelona. J. Environ. Plann. Manag. 48(1), 7–35 (2005).Article 

    Google Scholar 
    Serra, P., Vera, A., Tulla, A. F. & Salvati, L. Beyond urban–rural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 55, 71–81 (2014).Article 

    Google Scholar 
    Seifollahi-Aghmiuni, S., Kalantari, Z., Egidi, G., Gaburova, L. & Salvati, L. Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights from Southern Europe. Ambio 51(6), 1446–1458 (2022).Article 

    Google Scholar 
    Pili, S., Grigoriadis, E., Carlucci, M., Clemente, M. & Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Ind. 76, 71–80 (2017).Article 

    Google Scholar 
    Salvati, L., Sateriano, A. & Grigoriadis, E. Crisis and the city: Profiling urban growth under economic expansion and stagnation. Lett. Spat. Resour. Sci. 9(3), 329–342 (2016).Article 

    Google Scholar 
    Champion, T. & Hugo, G. New Forms of Urbanisation: Beyond the Urban-Rural Dichotomy (Ashgate, 2004).
    Google Scholar 
    Frondoni, R., Mollo, B. & Capotorti, G. A landscape analysis of land cover change in the municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 100(1–2), 117–128 (2011).Article 

    Google Scholar 
    Perrin, C., Nougarèdes, B., Sini, L., Branduini, P. & Salvati, L. Governance changes in peri-urban farmland protection following decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 70, 535–546 (2018).Article 

    Google Scholar 
    Salvati, L. Monitoring high-quality soil consumption driven by urban pressure in a growing city (Rome, Italy). Cities 31, 349–356 (2013).Article 

    Google Scholar 
    Salvati, L., Ciommi, M. T., Serra, P. & Chelli, F. M. Exploring the spatial structure of housing prices under economic expansion and stagnation: The role of socio-demographic factors in metropolitan Rome, Italy. Land Use Policy 81, 143–152 (2019).Article 

    Google Scholar 
    Ferrara, C., Salvati, L. & Tombolini, I. An integrated evaluation of soil resource depletion from diachronic settlement maps and soil cartography in peri-urban Rome, Italy. Geoderma 232, 394–405 (2014).Article 
    ADS 

    Google Scholar 
    Egidi, G. & Salvati, L. Beyond the suburban-urban divide: Convergence in age structures in metropolitan Rome, Italy. J. Popul. Soc. Stud. 28(2), 130–142 (2020).Article 

    Google Scholar 
    Pili, S., Serra, P. & Salvati, L. Landscape and the city: Agro-forest systems, land fragmentation and the ecological network in Rome, Italy. Urban For. Urban Green. 41, 230–237 (2019).Article 

    Google Scholar 
    European Environment Agency. Urban Sprawl in Europe – The Ignored Challenge. Copenhagen: EEA Report no. 10 (2006).Park, S., Hepcan, Ç. C., Hepcan, Ş & Cook, E. A. Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey. Environ. Monit. Assess. 186(10), 6301–6318 (2014).Article 

    Google Scholar 
    Luo, F., Liu, Y., Peng, J. & Wu, J. Assessing urban landscape ecological risk through an adaptive cycle framework. Landsc. Urban Plan. 180, 125–134 (2018).Article 

    Google Scholar 
    Ortega, M., Pascual, S., Elena-Rosselló, R. & Rescia, A. J. Land-use and spatial resilience changes in the Spanish olive socio-ecological landscape. Appl. Geogr. 117, 102171 (2020).Article 

    Google Scholar 
    Parcerisas, L. et al. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 23, 120–132 (2012).Article 

    Google Scholar 
    Masini, E. et al. Urban growth, land-use efficiency and local socioeconomic context: A comparative analysis of 417 metropolitan regions in Europe. Environ. Manag. 63(3), 322–337 (2019).Article 
    ADS 

    Google Scholar 
    Luck, M. & Wu, J. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 17(4), 327–339 (2002).Article 

    Google Scholar 
    Pesaresi, M. & Bianchin, A. Recognising settlement structure using mathematical morphology and image texture. Remote Sensing Urban Anal. GISDATA 9, 46–60 (2003).
    Google Scholar 
    Schneider, A. & Woodcock, C. E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 45(3), 659–692 (2008).Article 

    Google Scholar 
    Mubareka, S., Koomen, E., Estreguil, C. & Lavalle, C. Development of a composite index of urban compactness for land use modelling applications. Landsc. Urban Plan. 103(3–4), 303–317 (2011).Article 

    Google Scholar 
    Vogt, P. et al. Mapping landscape corridors. Ecol. Ind. 7(2), 481–488 (2007).Article 

    Google Scholar 
    Daya Sagar, B. S. & Murthy, K. S. R. Generation of a fractal landscape using nonlinear mathematical morphological transformations. Fractals 8(03), 267–272 (2000).Article 

    Google Scholar 
    Scott, A. J., Carter, C., Reed, M. R., Stonyer, B. & Coles, R. Disintegrated development at the rural-urban fringe: Re-connecting spatial planning theory and practice. Prog. Plan. 83, 1–52 (2013).Article 

    Google Scholar 
    Zhao, Q., Wen, Z., Chen, S., Ding, S. & Zhang, M. Quantifying land use/land cover and landscape pattern changes and impacts on ecosystem services. Int. J. Environ. Res. Public Health 17(1), 126 (2020).Article 

    Google Scholar 
    Parr, J. The regional economy, spatial structure and regional urban systems. Reg. Stud. 48(12), 1926–1938 (2014).Article 

    Google Scholar 
    Salvati, L., Zambon, I., Chelli, F. M. & Serra, P. Do spatial patterns of urbanisation and land consumption reflect different socioeconomic contexts in Europe?. Sci. Total Environ. 625, 722–730 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Coppi, R. & Bolasco, S. Multiway Data Analysis (Elsevier, 1988).MATH 

    Google Scholar 
    Kroonenberg, P. M. Applied Multiway Data Analysis (Wiley, 2008).Book 
    MATH 

    Google Scholar 
    Escofier, B. & Pages, J. Multiple factor analysis (AFMULT Package). Comput. Stat. Data Anal. 18, 121–140 (1994).Article 
    MATH 

    Google Scholar 
    De Rosa, S. & Salvati, L. Beyond a ‘side street story’? Naples from spontaneous centrality to entropic polycentricism, towards a ‘crisis city’. Cities 51, 74–83 (2016).Article 

    Google Scholar 
    Favaro, J.-M. & Pumain, D. Gibrat revisited: An urban growth model incorporating spatial interaction and innovation cycles. Geogr. Anal. 43(3), 261–286 (2011).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crepin, A.-S. & Peterson, G. D. “Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17(3), 30 (2012).Article 

    Google Scholar 
    Zhang, Z., Su, S., Xiao, R., Jiang, D. & Wu, J. Identifying determinants of urban growth from a multi-scale perspective: A case study of the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 45, 193–202 (2013).Article 

    Google Scholar 
    Fratarcangeli, C., Fanelli, G., Franceschini, S., De Sanctis, M. & Travaglini, A. Beyond the urban-rural gradient: Self-organising map detects the nine landscape types of the city of Rome. Urban For. Urban Green. 38, 354–370 (2019).Article 

    Google Scholar 
    Crisci, M., Benassi, F., Rabiei-Dastjerdi, H., McArdle, G. Spatio-temporal variations and contextual factors of the supply of Airbnb in Rome. An initial investigation. Lett. Spat. Resour. Sci. 1–17 (2022).Lelo, K., Monni, S. & Tomassi, F. Socio-spatial inequalities and urban transformation. The case of Rome districts. Socio-Econ. Plann. Sci. 68, 100696 (2019).Article 

    Google Scholar 
    Crisci, M. The impact of the real estate crisis on a south european metropolis: From urban diffusion to Reurbanisation. Appl. Spat. Anal. Policy 15(3), 797–820 (2022).Article 

    Google Scholar 
    Wang, Y. & Zhang, X. A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecol. Model. 140(1–2), 141–162 (2001).Article 

    Google Scholar 
    Voghera, A. The River agreement in Italy. Resilient planning for the co-evolution of communities and landscapes. Land Use Policy 91, 104377 (2020).Article 

    Google Scholar 
    Chen, A. & Partridge, M. D. When are cities engines of growth in China? Spread and backwash effects across the urban hierarchy. Reg. Stud. 47(8), 1313–1331 (2013).Article 

    Google Scholar 
    Ciommi, M., Chelli, F. M., Carlucci, M. & Salvati, L. Urban growth and demographic dynamics in southern Europe: Toward a new statistical approach to regional science. Sustainability 10(8), 2765 (2018).Article 

    Google Scholar 
    Jacobs-Crisioni, C., Rietveld, P. & Koomen, E. The impact of spatial aggregation on urban development analyses. Appl. Geogr. 47, 46–56 (2014).Article 

    Google Scholar 
    Kourtit, K., Nijkamp, P. & Reid, N. The new urban world: Challenges and policy. Appl. Geogr. 49, 1–3 (2014).Article 

    Google Scholar 
    Bruegmann, R. Sprawl: A Compact History (University of Chicago Press, 2005).Book 

    Google Scholar 
    Neuman, M. & Hull, A. The Futures of the City Region. Reg. Stud. 43(6), 777–787 (2009).Article 

    Google Scholar 
    Couch, C., Petschel-held, G. & Leontidou, L. Urban Sprawl In Europe: Landscapes, Land-use Change and Policy (Blackwell, 2007).Book 

    Google Scholar 
    Longhi, C. & Musolesi, A. European cities in the process of economic integration: towards structural convergence. Ann. Reg. Sci. 41, 333–351 (2007).Article 

    Google Scholar 
    Tian, G., Ouyang, Y., Quan, Q. & Wu, J. Simulating spatiotemporal dynamics of urbanisation with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecol. Model. 222(5), 1129–1138 (2011).Article 

    Google Scholar 
    Tian, L., Chen, J. & Yu, S. X. Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landsc. Ecol. 29(4), 715–727 (2014).Article 

    Google Scholar 
    Fielding, A. J. Counterurbanization in Western Europe. Prog. Plan. 17, 1–52 (1982).Article 

    Google Scholar 
    Oueslati, W., Alvanides, S. & Garrod, G. Determinants of urban sprawl in European cities. Urban Stud. 52(9), 1594–1614 (2015).Article 

    Google Scholar 
    Tress, B., Tress, G., Décamps, H. & d’Hauteserre, A. M. Bridging human and natural sciences in landscape research. Landsc. Urban Plan. 57(3–4), 137–141 (2001).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J., Sun, H. & Sheng, Z. A Novel perspective on travel demand prediction considering natural environmental and socioeconomic factors. IEEE Intell. Transp. Syst. Mag. https://doi.org/10.1109/MITS.2022.3162901 (2022).Article 

    Google Scholar 
    Xu, Z., Lv, Z., Li, J. & Shi, A. A novel approach for predicting water demand with complex patterns based on ensemble learning. Water Resour. Manag. 36(11), 4293–4312 (2022).Article 

    Google Scholar 
    Lv, Z., Li, J., Dong, C., Li, H. & Xu, Z. Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalisation index. Data Knowl. Eng. 135, 101912 (2021).Article 

    Google Scholar  More

  • in

    Potential for mercury methylation by Asgard archaea in mangrove sediments

    Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ Sci Technol. 2013;47:2441–56.Article 
    CAS 

    Google Scholar 
    Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv. 2015;1:e1500675.Article 

    Google Scholar 
    Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.Article 
    CAS 

    Google Scholar 
    Lee C-S, Fisher NS. Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem. 2017;36:1287–93.Article 
    CAS 

    Google Scholar 
    Parks JM, Johs A, Podar M, Bridou R, Hurt RAJ, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.Article 
    CAS 

    Google Scholar 
    McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.Article 
    CAS 

    Google Scholar 
    Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, et al. Structure determination of the HgcAB complex using metagenome sequence data: Insights into microbial mercury methylation. Commun Biol. 2020;3:320.Article 
    CAS 

    Google Scholar 
    Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol. 2006;72:7919–21.Article 
    CAS 

    Google Scholar 
    Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.Article 
    CAS 

    Google Scholar 
    Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.Article 

    Google Scholar 
    Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, et al. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol. 2016;1:16127.Article 
    CAS 

    Google Scholar 
    Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME J. 2019;13:1659–75.Article 
    CAS 

    Google Scholar 
    Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations. Environ Sci Technol. 2019;53:8649–63.Article 
    CAS 

    Google Scholar 
    Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep. 2020;12:277–87.Article 
    CAS 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.Article 
    CAS 

    Google Scholar 
    King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol. 2001;35:2491–6.Article 
    CAS 

    Google Scholar 
    Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.Article 
    CAS 

    Google Scholar 
    Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.Article 
    CAS 

    Google Scholar 
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.Article 

    Google Scholar 
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541:353–8.Article 
    CAS 

    Google Scholar 
    Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553–7.Article 
    CAS 

    Google Scholar 
    Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 2021;15:1826–43.Article 
    CAS 

    Google Scholar 
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.Article 
    CAS 

    Google Scholar 
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.Article 
    CAS 

    Google Scholar 
    Farag Ibrahim F, Zhao R, Biddle Jennifer F, Atomi H. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Micro. 2021;87:e02584–20.
    Google Scholar 
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.Article 

    Google Scholar 
    Cai M, Richter-Heitmann T, Yin X, Huang W-C, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.Article 
    CAS 

    Google Scholar 
    Zhang C-J, Chen Y-L, Sun Y-H, Pan J, Cai M-W, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar Life Sci Tech. 2020;3:252–62.Article 

    Google Scholar 
    Dai SS, Yang Z, Tong Y, Chen L, Liu SY, Pan R, et al. Global distribution and environmental drivers of methylmercury production in sediments. J Hazard Mater. 2021;407:124700.Article 
    CAS 

    Google Scholar 
    Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ. 2020;714:136827.Article 
    CAS 

    Google Scholar 
    Tsui MTK, Finlay JC, Balogh SJ, Nollet YH. In situ production of methylmercury within a stream channel in northern California. Environ Sci Technol. 2010;44:6998–7004.Article 
    CAS 

    Google Scholar 
    Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.Article 
    CAS 

    Google Scholar 
    Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.Article 
    CAS 

    Google Scholar 
    Beckers F, Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec. 2017;47:693–794.Article 
    CAS 

    Google Scholar 
    de Oliveira DC, Correia RR, Marinho CC, Guimaraes JR. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 2015;127:214–21.Article 

    Google Scholar 
    Li R, Xu H, Chai M, Qiu GY. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city. Environ Moni Assess. 2016;188:87.Article 

    Google Scholar 
    O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int. 2019;126:747–61.Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018;47:116–40.Article 

    Google Scholar 
    Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, et al. A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour. 2022; https://doi.org/10.1111/1755-0998.13687.Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, et al. An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature. Front Microbiol. 2020;11:541554.Article 

    Google Scholar 
    Yu R-Q, Barkay T. Chapter two – microbial mercury transformations: Molecules, functions and organisms. Adv Appl Microbiol. 2022;118:31–90.Article 

    Google Scholar 
    Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to arctic lakes. Environ Sci Technol. 2018;52:79–88.Article 

    Google Scholar 
    Liu Y-R, Dong J-X, Han L-L, Zheng Y-M, He J-Z. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ Pollut. 2016;209:53–9.Article 
    CAS 

    Google Scholar 
    Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol. 2015;6:1389.Article 

    Google Scholar 
    Chen C-F, Ju Y-R, Chen C-W, Dong C-D. The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ. 2019;691:55–63.Article 
    CAS 

    Google Scholar 
    Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Res. 2015;80:245–55.Article 
    CAS 

    Google Scholar 
    Wang H, Su J, Zheng T, Yang X. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soil Sediment. 2015;15:1212–23.Article 
    CAS 

    Google Scholar 
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020;577:519–25.Article 
    CAS 

    Google Scholar 
    Zhou J, Riccardi D, Beste A, Smith JC, Parks JM. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II). Inorg Chem. 2014;53:772–7.Article 
    CAS 

    Google Scholar 
    Smith Steven D, Bridou R, Johs A, Parks Jerry M, Elias Dwayne A, Hurt Richard A, et al. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Micro. 2015;81:3205–17.Article 
    CAS 

    Google Scholar 
    Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034.Article 
    CAS 

    Google Scholar 
    Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 2011;108:8714.Article 
    CAS 

    Google Scholar 
    Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–36.Article 

    Google Scholar 
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62:1902–7.Article 
    CAS 

    Google Scholar 
    Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, et al. What are the toxicological effects of mercury in arctic biota? Sci Total Environ. 2013;443:775–90.Article 
    CAS 

    Google Scholar 
    Gilmour Cynthia C, Bullock Allyson L, McBurney A, Podar M, Elias Dwayne A, Lovley Derek R. Robust mercury methylation across diverse methanogenic archaea. mBio 2018;9:e02403–17.
    Google Scholar 
    Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Micro Ecol. 2019;77:417–28.Article 

    Google Scholar 
    Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, et al. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 2019;4:e00442–19.Article 
    CAS 

    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.Article 
    CAS 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 

    Google Scholar 
    Zhang C-J, Pan J, Liu Y, Duan C-H, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome. 2020;8:94.Article 
    CAS 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.Article 
    CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos ONE. 2010;5:e9490.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.CAS 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.Article 
    CAS 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.Article 
    CAS 

    Google Scholar  More

  • in

    Spatial genetic structure of European wild boar, with inferences on late-Pleistocene and Holocene demographic history

    Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L et al. (2015) Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 47:217–225Article 
    CAS 

    Google Scholar 
    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664Article 
    CAS 

    Google Scholar 
    Alexandri P, Megens HJ, Crooijmans RPMA, Groenen MAM, Goedbloed DJ, Herrero-Medrano JM et al. (2017) Distinguishing migration events of different timing for wild boar in the Balkans. J Biogeogr 44:259–270Article 

    Google Scholar 
    Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N et al. (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39:713–723Article 

    Google Scholar 
    Alves PC, Pinheiro I, Godinho R, Vicente JJ, Gortázar C, Scandura M et al. (2010) Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biol J Linn Soc 101:797–822Article 

    Google Scholar 
    Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century (M Apollonio, R Andersen, and R Putman, Eds.) Cambridge University Press: Cambridge, UKAzzaroli A, De Giuli C, Ficcarelli G, Torre D (1988) Late pliocene to early mid-pleistocene mammals in Eurasia: Faunal succession and dispersal events. Palaeogeogr Palaeoclimatol Palaeoecol 66:77–100Article 

    Google Scholar 
    Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2016) Genomic analysis reveals depression due to both individual and maternal inbreeding in a free‐living mammal population. Mol Ecol 25:3152–3168Article 

    Google Scholar 
    Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF (2019) Genetic population structure and allele surfing during range expansion in dynamic habitats. An da Academia Brasileira de Ciências 91:e20180179Article 

    Google Scholar 
    Bragina EV, Ives AR, Pidgeon AM, Kuemmerle T, Baskin LM, Gubar YP, Piquer-Rodríguez M, Keuler NS, Petrosyan VG, Radeloff VC (2015) Rapid Declines of Large Mammal Populations after the Collapse of the Soviet Union. Cons Biol 29:844–853Article 

    Google Scholar 
    Brewer S, Cheddadi R, de Beaulieu JL, Reille M, Allen J, Almqvist-Jacobson H et al. (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manag 156:27–48Article 

    Google Scholar 
    Cahill S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim Biodivers Conserv 35:221–233Article 

    Google Scholar 
    Canu A, Costa S, Iacolina L, Piatti P, Apollonio M, Scandura M (2014) Are captive wild boar more introgressed than free-ranging wild boar? Two case studies in Italy. Eur J Wildl Res 60:459–467Article 

    Google Scholar 
    Canu A, Vilaça STT, Iacolina L, Apollonio M, Bertorelle G, Scandura M (2016) Lack of polymorphism at the MC1R wild-type allele and evidence of domestic allele introgression across European wild boar populations. Mamm Biol 81:477–479Article 

    Google Scholar 
    Carranza J, Salinas M, de Andrés D, Pérez-González J (2016) Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol 6:905–922Article 

    Google Scholar 
    Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4:1–16Article 

    Google Scholar 
    Cheddadi R, Bar-Hen A (2009) Spatial gradient of temperature and potential vegetation feedback across Europe during the late Quaternary. Clim Dyn 32:371–379Article 

    Google Scholar 
    Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al. (2009) The Last Glacial Maximum. Science 325:710–714Article 
    CAS 

    Google Scholar 
    DeGiorgio M, Rosenberg NA (2013) Geographic sampling scheme as a determinant of the major axis of genetic variation in principal components analysis. Mol Biol Evol 30:480–488Article 
    CAS 

    Google Scholar 
    Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, et al. (2013) Wildlife comeback in Europe. The recovery of selected mammal and bird species. London, UKEckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188Article 
    CAS 

    Google Scholar 
    Fang M, Berg F, Ducos A, Andersson L (2006) Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Anim Genet 37:459–464Article 
    CAS 

    Google Scholar 
    Ferenčaković M, Sölkner J, Curik I (2013) Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet Sel Evol 45:42Article 

    Google Scholar 
    Ferreira E, Souto L, Soares AMVM, Fonseca C (2009) Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mamm Biol 74:274–285Article 

    Google Scholar 
    Franois O, Currat M, Ray N, Han E, Excoffier L, Novembre J (2010) Principal component analysis under population genetic models of range expansion and admixture. Mol Biol Evol 27:1257–1268Article 

    Google Scholar 
    Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457Article 
    CAS 

    Google Scholar 
    Fulgione D, Rippa D, Buglione M, Trapanese M, Petrelli S, Maselli V (2016) Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol Appl 9:769–776Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, Megens HJ, van Hooft P, Herrero-Medrano JM, Lutz W, Alexandri P et al. (2013a) Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol 22:856–866Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, van Hooft P, Megens HJ, Langenbeck K, Lutz W, Crooijmans RPMA et al. (2013b) Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genet 14:2–10Article 

    Google Scholar 
    Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF et al. (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398Article 
    CAS 

    Google Scholar 
    Herrero-Medrano JM, Megens H-J, Groenen MAM, Ramis G, Bosse M, Pérez-Enciso M et al. (2013) Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet 14:1–13Article 

    Google Scholar 
    Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112Article 

    Google Scholar 
    Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195Article 
    CAS 

    Google Scholar 
    Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM (2009) Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput Geosci 35:1711–1721Article 
    CAS 

    Google Scholar 
    Howrigan DP, Simonson MA, Keller MC (2011) Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics 12:460Article 
    CAS 

    Google Scholar 
    Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM (2016) Inbreeding depression across the lifespan in a wild mammal population. Proc Natl Acad Sci 113:3585–3590Article 
    CAS 

    Google Scholar 
    Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N (2019) Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev 49:45–59Article 

    Google Scholar 
    Iacolina L, Pertoldi C, Amills M, Kusza S, Megens H-J, Bâlteanu VA et al. (2018) Hotspots of recent hybridization between pigs and wild boars in Europe. Sci Rep. 8:17372Article 
    CAS 

    Google Scholar 
    Iacolina L, Scandura M, Goedbloed DJ, Alexandri P, Crooijmans RPMA, Larson G et al. (2016) Genomic diversity and differentiation of a managed island wild boar population. Heredity 116:60–67Article 
    CAS 

    Google Scholar 
    Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:1–2Article 

    Google Scholar 
    de Jong JF, Hooft van P, Megens HJ, Crooijmans RPMA, Groot de GA, Pemberton JM, Huisman J et al. (2020) Fragmentation and translocation distort the genetic landscape of ungulates: red deer in the Netherlands. Front Ecol Evol 8:535715Article 

    Google Scholar 
    Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281Article 

    Google Scholar 
    Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P et al. (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131Article 

    Google Scholar 
    Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028Koemle D, Zinngrebe Y, Yu X (2018) Highway construction and wildlife populations: Evidence from Austria. Land use policy 73:447–457Article 

    Google Scholar 
    Krže B (1982) Divji prašič: biologija, gojitev, ekologija. Lovska zveza Slovenije, Ljubljana
    Google Scholar 
    Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE et al. (2014) Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in central and eastern Europe. PLoS One 9:e91401Article 

    Google Scholar 
    Lorenzini R, Lovari S, Masseti M (2002) The rediscovery of the Italian roe deer: Genetic differentiation and management implications. Ital J Zool 69(4):367–379Article 

    Google Scholar 
    Lorenzini R, San José C, Braza F, Aragón S (2003) Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microsatellite analysis. Ital J Zool 70(1):89–99Article 
    CAS 

    Google Scholar 
    Magri D (2013) Early to Middle Pleistocene dynamics of plant and mammal communities in South West Europe. Quat Int 288:63–72Article 

    Google Scholar 
    Manunza A, Zidi A, Yeghoyan S, Balteanu VA, Carsai TC, Scherbakov O et al. (2013) A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS One 8:e55891Article 
    CAS 

    Google Scholar 
    Maselli V, Rippa D, De Luca A, Larson G, Wilkens B, Linderholm A et al. (2016) Southern Italian wild boar population, hotspot of genetic diversity. Hystrix 27:137–144
    Google Scholar 
    McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5:e1000686Article 

    Google Scholar 
    Megens H-J, Crooijmans RP, Cristobal M, Hui X, Li N, Groenen MA (2008) Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet Sel Evol 40:103
    Google Scholar 
    Melis C, Szafrańska PA, Jȩdrzejewska B, Bartoń K (2006) Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J Biogeogr 33:803–811Article 

    Google Scholar 
    Mihalik B, Stéger V, Frank K, Szendrei L, Kusza S (2018) Barrier effect of the M3 highway in Hungary on the genetic diversity of wild boar (Sus scrofa) population. Res J Biotechnol 13:32–38
    Google Scholar 
    NCBI (2018) Genome Organism Overview: Sus scrofa (pig). https://www.ncbi.nlm.nih.gov/genome?term=sus%20scrofa%20%5BOrganism%5D&cmd=DetailsSearch&report=OverviewNikolov IS, Gum B, Markov G, Kuehn R (2009) Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol (Warsz) 54:193–205Article 

    Google Scholar 
    Nykänen M, Rogan E, Foote AD, Kaschner K, Dabin W, Louis M et al. (2019) Postglacial colonization of northern coastal habitat by bottlenose dolphins: a marine leading-edge expansion? J Hered 110:662–674Article 

    Google Scholar 
    Palombo M, Romana AV-G (2003) Remarks on the biochronology of mammalian faunal complexes from the Pliocene to the Middle Pleistocene in France. Geol Rom: 145–163Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20:289–290Article 
    CAS 

    Google Scholar 
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: A tool Set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. www.cog-genomics.org/plink/1.9/Putman R, Apollonio M, Andersen R (2011) Ungulate management in Europe: problems and practices. Cambridge University Press, Cambridge, UKBook 

    Google Scholar 
    R Core Team (2018) R: A language and environment for statistical computing. Vienna, AustriaRejduch B, Sota E, Ró M, Ko M (2003) Chromosome number polymorphism in a litter of European wild boar (Sus scrofa scrofa L.). Anim Sci Pap Rep. 21:57–62
    Google Scholar 
    Scandura M, Iacolina L, Apollonio M (2011a) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization: Genetic variation in European wild boar. Mamm Rev 41:125–137Article 

    Google Scholar 
    Scandura M, Iacolina L, Cossu A, Apollonio M (2011b) Effects of human perturbation on the genetic make-up of an island population: The case of the Sardinian wild boar. Heredity 106:1012–1020Article 
    CAS 

    Google Scholar 
    Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V et al. (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: Are the effects of the last glaciation still detectable? Mol Ecol 17:1745–1762Article 
    CAS 

    Google Scholar 
    Scandura M, Fabbri G, Caniglia R, Iacolina L, Mattucci F, Mengoni C, Pante G, Apollonio M, Mucci N (2022) Resilience to Historical Human Manipulations in the Genomic Variation of Italian Wild Boar Populations. Front Ecol Evol 10:833081Article 

    Google Scholar 
    Schmitt T, Varga Z (2012) Extra-Mediterranean refugia: the rule and not the exception. Front Zool 9:22Article 

    Google Scholar 
    Sommer RS, Fahlke JM, Schmölcke U, Benecke N, Zachos FE (2009) Quaternary history of the European roe deer Capreolus capreolus. Mamm Rev 39:1–16Article 

    Google Scholar 
    Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev 36:251–265Article 

    Google Scholar 
    Sommer RS, Zachos FE (2009) Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post-glacial recolonization. J Biogeogr 36:2013–2020Article 

    Google Scholar 
    Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N (2008) Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev 27:714–733Article 

    Google Scholar 
    Stillfried M, Fickel J, Börner K, Wittstatt U, Heddergott M, Ortmann S et al. (2017) Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J Appl Ecol 54:272–281Article 

    Google Scholar 
    Taberlet P, Fumagalli L, Wust-Saucy AG, Cossons JF (1998) Comparative phylogeography and post-glacial colonization routes in Europe. Mol Ecol 7:453–461.Article 
    CAS 

    Google Scholar 
    Veličković N, Djan M, Ferreira E, Stergar M, Obreht D, Maletić V et al. (2015) From north to south and back: the role of the Balkans and other southern peninsulas in the recolonization of Europe by wild boar. J Biogeogr 42:716–728Article 

    Google Scholar 
    Veličković N, Ferreira E, Djan M, Ernst M, Obreht Vidaković D, Monaco A et al. (2016) Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe. Heredity 117:348–357Article 

    Google Scholar 
    Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H et al. (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol Ecol 12:585–595Article 
    CAS 

    Google Scholar 
    Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC et al. (2014) Mitochondrial phylogeography of the European wild boar: The effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr 41:987–998Article 

    Google Scholar 
    Zachos FE, Frantz AC, Kuehn R, Bertouille S, Colyn M, Niedziałkowska M et al. (2016) Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered 107:318–326 More

  • in

    Genetic basis of thiaminase I activity in a vertebrate, zebrafish Danio rerio

    Sequence analysisProtein sequence searches were conducted in the GenBank nr database with BLASTP42 using default parameters, including automatically adjusting parameters for short input sequences (Table S1). Conserved domain searches were run against the GenBank Conserved Domain Database (CDD)43. Sequence alignments were conducted in CLC Main Workbench 20.0.4 (Qiagen) with the fast alignment algorithm, gap open cost = 10, and gap extension cost = 1. Biochemical properties of the fish putative thiaminase I protein sequences were predicted with the Create Sequence Statistics function in CLC Main Workbench 20.0.4 (Qiagen, Hilden, Germany). The molecular weights were calculated from the sum of the amino acids in the sequence, and the isoelectric points (pIs) were calculated from the pKa values for the individual amino acids in the sequence.Bacteria culturePure cultures of P. thiaminolyticus strain 818822 were cultured at 37 °C in Terrific Broth (MO BIO Laboratories, Carlsbad, CA) in either a shaking incubator or in a beveled flask with a stir bar and were harvested after 48–80 h of culture. Upon harvest, cultures were processed immediately or frozen whole in 50 mL Falcon tubes at − 80 °C. Fresh or thawed cultures were spun at 14,000×g, and culture supernatant was concentrated using Amicon-ultra 10 kDa molecular weight cut-off (MWCO) filters (EMD Millipore, Billerica, MA).The zebrafish and alewife candidate thiaminase I genes were cloned and overexpressed in E. coli to determine whether they produced functional thiaminases. The recombinant thiaminase I gene from P. thiaminolyticus was overexpressed in E. coli as a positive control. Candidate and control genes were synthesized (Integrated DNA Technologies, Inc., Coralville, Iowa) and placed into the pET52b vector (EMD Millipore). Insert sequences are provided in Supplementary Figs. S10–S13. The empty pET52b vector was used as a negative control. The plasmid was transformed into E. coli (Rosetta 2(DE3)pLysS Singles Competent Cells, EMD Millipore) according to the manufacturer’s instructions, and expression of candidate genes was induced by the addition of IPTG. Cells were lysed in 1X BugBuster (Millipore) according to the manufacturer’s instructions in the presence of benzonase nuclease, and soluble and insoluble fractions were separated by centrifugation.Tissue collectionsAdult common carp were captured from Lake Erie using short-set gill nets. Adult alewife and quagga mussels (Dreissena bugensis) were collected from Sturgeon Bay, Lake Michigan using bottom trawls. Fish collections were completed during July 2007. Sex of sampled fish was not identified. Upon collection, unanesthetized animals were immediately euthanized by flash freezing between slabs of dry ice and stored at − 80 °C. Fish were harvested by the Great Lakes Science Center, U.S. Geological Survey (USGS). Laboratory use of frozen animal tissues and wild type and recombinant bacteria was in accordance with institutional guidelines and biosafety procedures at Oregon State University and USGS. Animal care and use procedures were approved by the Great Lakes Science Center, USGS. All USGS sampling and handling of fish during research are carried out in accordance with guidelines for the care and use of fishes by the American Fisheries Society44. All methods are reported in accordance with applicable ARRIVE guidelines (https://arriveguidelines.org). Zebrafish from OSU’s zebrafish facility were anesthetized and euthanized by overdose with waterborne 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) following protocols approved by the OSU Animal Institutional Care and Use Committee and were frozen at − 80 °C after euthanization. Gills, liver, spleen, and the intestinal tract were dissected, and gill tissue was homogenized separately from liver, spleen, and gut, which were homogenized together and designated “viscera.” Homogenization and protein preparation procedures were the same as that for alewife. Zebrafish from Columbia Environmental Research Center (CERC), USGS cultures were anesthetized and euthanized by overdose with 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) in water following protocols approved by CERC Institutional Animal Care and Use Committee (IACUC). Whole fish (0.2–0.6 g) were homogenized in 10 mL cold phosphate buffer, pH 6.5. Whole common carp and alewife were thawed until they could just be dissected. Preliminary trial extractions on alewife stomach and intestines, spleen, and gills revealed similar results and revealed that gills and spleen tissue produced the cleanest protein preparations. Therefore, subsequent extractions for common carp and alewife used gill tissue. Samples were pooled from 3 to 5 individual fish, haphazardly chosen from the sampled fish without exclusions. Quagga mussels were thawed just sufficiently to be husked from their shell and were used whole. Researchers were aware of the species and tissue designation of each sample throughout the experiments. Animal tissues were placed in ice-cold (4 °C) beakers containing cold extraction buffer (16 mM K3HPO4, 84 mM KH2PO4, 100 mM NaCl, pH 6.5 with 1 mM DTT, 2 mM EDTA, 3 mM Pepstatin, 1X Protease inhibitor cocktail (Sigma), and 1 mM AEBSF). All extractions were carried out at 4 °C in pre-chilled glassware. Samples were mechanically homogenized using a rotor–stator tissue grinder. Samples were stirred gently for several hours to overnight at 4 °C, centrifuged at 14,000×g to remove debris, and strained through cheesecloth to remove any insoluble lipids. Extracts were then subjected to 30–75% ammonium sulfate precipitation. Pellets from the precipitation were resuspended in buffer (83 mM KH2PO4, 17 mM K2HPO4, and 100 mM NaCl), centrifuged to remove any remaining debris, and stored in 30% glycerol at − 20 °C.Protein electrophoresisNative PAGE was run using either pre-cast TGX gels (BioRad, Hercules, California) of varying percentage (7.5% to 12% or 8–16% gradient gels) or on hand-cast gels (TGX FastCast, BioRad) made according to the manufacturer’s instructions.Blue-native PAGE was used to estimate the mass of thiaminases in their native conformation. Blue-native PAGE45 gels were run using the NativePage Novex Bis–Tris system (Life Technologies) or hand-cast equivalents46. Light blue cathode buffer was used to facilitate visualization of the activity stain.Standard denaturing SDS-PAGE was used to estimate the molecular mass of thiaminases after denaturation. Denaturing SDS-PAGE was run using one of three relatively equivalent methods: pre-cast TGX gels (BioRad) according to the manufacturer’s instructions, hand-cast Tris–HCl gels using standard Laemmli chemistry47 with an operating pH of approximately 9.5, or hand-cast Bis–Tris gels (MOPS buffer) with an operating pH of approximately 7. For all denaturing and non-denaturing SDS-PAGE applications, standard Laemmli sample buffer was used, and samples were heated to 75 °C for 15 min to facilitate denaturation followed by brief centrifugation to eliminate any precipitated debris.Non-denaturing PAGE was used as an alternative to denaturing PAGE for the common carp thiaminase that could not be renatured (i.e., activity could not be recovered) following a denaturing SDS-PAGE. Non-denaturing PAGE was conducted using any of the three aforementioned gel chemistries with SDS-containing running buffers including reductant (DTT), but samples were not heated prior to application to the gel. Samples for non-denaturing PAGE were allowed to incubate in sample buffer at room temperature for 30 min prior to gel loading. This preserves the charge-shift induced by SDS but does not result in protein denaturation, facilitating in-gel analysis of thiaminase I activity after separation.To visualize proteins following electrophoresis, gels were stained with Coomassie stain (CBR-250 at 1 g/L in methanol/acetic acid/water (4:5:1) and destained with methanol/acetic acid/water (1.7:1:11.5). Mini-gels were run on BioRad’s mini-protean gel rigs. Midi-gels (16 cm length) were run on Hoefer’s SE660, and large-format gels (32 cm length) were run on a BioRad’s Protean Slab Cell. Mini-gels were generally run at room temperature, and midi- and large-format gels were run at 4 °C. Blue-native PAGE was always run at 4 °C.Two-dimensional electrophoresis (2DE) separated proteins in the first dimension based on pI and in the second dimension based on mass (either native or denatured). 2DE was performed by combining in-gel IEF with either denaturing SDS-PAGE, non-denaturing SDS-PAGE, or native PAGE. IPG strips were incubated in TRIS-buffered equilibration solution48 either with 6 M urea, SDS, and iodacetamide (denaturing) or without urea, SDS, and iodacetamide (non-denaturing) for 20 min. Low melting point agarose was used to solidify IGP strips in place. Agarose was cooled to just above the gelling temperature, as hot agarose inactivated thiaminase I activity.Isoelectric focusingIsoelectric focusing (IEF) was conducted both in-gel and in-liquid. In-gel IEF was conducted in immobilized pH gradient (IPG) strips using a Multifor II (GE Healthcare Life Sciences). Prior to rehydration, all protein preparations were desalted in low-salt (~ 5 to 10 mM) sodium or potassium phosphate buffer (pH 6.5) using 10 kDA MWCO filters. All samples were applied using sample volumes and protein concentrations recommended by the manufacturer. For standard denaturing in-gel IEF, rehydration solution consisted of 8 M urea, 2% CHAPS, 2% IPG buffer of the appropriate pH-range, 1% bromophenol blue, and 18 mM DTT. The IEF was conducted at maximum of 2 mA total current and 5 W total power, with an EPS3500 XL power supply in gradient mode. Voltage gradients were based on standard protocols recommended by the manufacturer. In-gel IEF was also performed under native conditions to allow thiaminase I activity staining of IPG strips. Protocols were essentially the same as those for denaturing conditions, with the following exceptions: (1) urea was eliminated and the CHAPS concentration was reduced to 0.5% in the rehydration solution; (2) rehydration was conducted at 14 °C; and (3) the water in the cooling tray was cooled to 4 °C.In-liquid IEF was conducted using a Rotofor (BioRad) according to the manufacturer’s instructions. Non-denaturing in-liquid IEF was also conducted using a focusing solution including no urea, 2% pH 3–10 biolyte, 0.5% CHAPS, 20% glycerol, and 5 mM DTT. The addition of glycerol helped retain activity but also increased focusing times. The Rotofor was run at a constant 15 W with a maximum current of 20 mA and voltage set for a maximum of 2000 V. Samples containing 8 M urea were cooled to 14 °C during focusing to avoid urea precipitation, whereas samples lacking urea were cooled to 4 °C during focusing. Protein extracts in salt solutions greater than 10 mM were desalted directly in focusing solution using a 10 kDA MWCO filter. Focusing runs were allowed to proceed until the voltage stabilized and fractions were harvested with the needle array and vacuum pump. Ampholytes were removed by addition of NaCl to 1 M and then samples were desalted into phosphate buffer using a 10kD MWCO filter.Thiaminase I activity measurementsFor quantitative measurements of thiaminase I activity, we conducted a radiometric assay at CERC as previously described49. Zebrafish homogenates were diluted 1:8, 1:16, or 1:32 in cold phosphate buffer, pH 6.5. Two replicates per dilution were assayed. Activity was calculated from the greatest dilution that gave activity within the linear range of the assay and was reported as pmol thiamine consumed per g tissue (wet weight) per minute (pmol/g/min).Thiaminase I activity stainingAfter electrophoresis, gels were stained for thiaminase I activity using a previously described diazo-coupling reaction19,50. Briefly, gels were washed 3 times in water, twice in 25 mM sodium phosphate buffer with 1 mM DTT, and once in 25 mM sodium phosphate buffer without DTT. Gels were then incubated in 0.89 mM thiamine-HCl and co-substrate (1.45 mM pyridoxine, 24 mM nicotinic acid, or 20 mM pyridine) in 25 mM sodium phosphate buffer for 10 min. Gels were briefly rinsed in water and placed in a lidded container and incubated at 37 °C for 30 min to allow thiamine degradation by any thiaminases in the gel. The diazo stain19,50 was then applied to detect remaining thiamine in the gel for five minutes with gentle agitation. Stained gels were rinsed with water and photographed, and further stained with Coomassie to visualize proteins. More

  • in

    Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis

    Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ. Marine chemosynthetic symbioses. Prokaryotes. 2006;1:475–507.Article 

    Google Scholar 
    Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, Girguis PR. The bacterial symbionts of closely related hydrothermal vent snails with distinct geochemical habitats show broad similarity in chemoautotrophic gene content. Front Microbiol. 2019;10:1818.Article 

    Google Scholar 
    Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, et al. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol. 2008;10:727–37.Article 
    CAS 

    Google Scholar 
    Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A, Felbeck H, et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom Sci. 2017;12:50.Article 

    Google Scholar 
    Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol. 2006;8:1441–7.Article 
    CAS 

    Google Scholar 
    Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.Article 
    CAS 

    Google Scholar 
    Sogin EM, Leisch N, Dubilier N. Chemosynthetic symbioses. Curr Biol. 2020;30:R1137–R1142.Article 
    CAS 

    Google Scholar 
    Roeselers G, Newton ILG. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol. 2012;94:1–10.Article 
    CAS 

    Google Scholar 
    Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104 Suppl 1:8627–33.Article 
    CAS 

    Google Scholar 
    McMullen JG, Peterson BF, Forst S, Blair HG, Patricia Stock S. Fitness costs of symbiont switching using entomopathogenic nematodes as a model. BMC Evol Biol. 2017;17. https://doi.org/10.1186/s12862-017-0939-6.Taylor JD, Glover E. Biology, evolution and generic review of the chemosymbiotic bivalve family Lucinidae. London, UK: Ray Society; 2021.Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S, Polzin J, et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2104378118.Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol. 2016;2:16195.Article 
    CAS 

    Google Scholar 
    Lim SJ, Davis B, Gill D, Swetenburg J, Anderson LC, Engel AS, et al. Gill microbiome structure and function in the chemosymbiotic coastal lucinid Stewartia floridana. FEMS Microbiol Ecol. 2021;97. https://doi.org/10.1093/femsec/fiab042.Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 2019;13:902–20.Article 
    CAS 

    Google Scholar 
    Gros O, Liberge M, Felbeck H. Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-endosymbionts. Mar Biol. 2003;142:57–66.Article 

    Google Scholar 
    Gros O, Elisabeth NH, Gustave SDD, Caro A, Dubilier N. Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol. 2012;14:1584–95.Article 
    CAS 

    Google Scholar 
    Gros O, Frenkiel L, Mouëza M. Embryonic, larval, and post-larval development in the symbiotic clam Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol. 1997;116:86–101.Article 

    Google Scholar 
    König S, Gros O, Heiden SE, Hinzke T, Thürmer A, Poehlein A, et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol. 2016;2:16193.Article 

    Google Scholar 
    Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.Article 
    CAS 

    Google Scholar 
    Cardini U, Bednarz VN, Foster RA, Wild C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol Evol. 2014;4:1706–27.Article 

    Google Scholar 
    Glover EA, Taylor JD. Lucinidae of the Philippines: highest known diversity and ubiquity of chemosymbiotic bivalves from intertidal to bathyal depths (Mollusca: Bivalvia). mém Mus Natl Hist Nat. 2016;208:65–234.
    Google Scholar 
    Taylor JD, Glover EA, Williams ST. Diversification of chemosymbiotic bivalves: origins and relationships of deeper water Lucinidae. Biol J Linn Soc Lond. 2014;111:401–20.Article 

    Google Scholar 
    von Cosel R. Taxonomy of tropical West African bivalves. VI. Remarks on Lucinidae (Mollusca, Bivalvia), with description of six new genera and eight new species. Zoosystema. 2006;28:805.
    Google Scholar 
    Glover EA, Taylor JD, Rowden AA. Bathyaustriella thionipta, a new lucinid bivalve from a hydrothermal vent on the Kermadec Ridge, New Zealand and its relationship to shallow-water taxa (Bivalvia: Lucinidae). J Mollusca Stud. 2004;70:283–95.Article 

    Google Scholar 
    Paulus E Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front Mar Sci. 2021;8. https://doi.org/10.3389/fmars.2021.667048.Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc. 2014;89:406–26.Article 

    Google Scholar 
    Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol. 2008;23:518–28.Article 

    Google Scholar 
    Gage JD, Tyler PA. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge, UK: Cambridge University Press; 1991.Iken K, Brey T, Wand U, Voigt J, Junghans P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr. 2001;50:383–405.Article 

    Google Scholar 
    von Cosel R, Bouchet P. Tropical deep-water lucinids (Mollusca: Bivalvia) from the Indo-Pacific: essentially unknown, but diverse and occasionally gigantic. mém Mus Natl Hist Nat. 2008;196:115–213.
    Google Scholar 
    Stearns REC Scientific results of explorations by the US Fish Commission steamer Albatross. No. XVII. Descriptions of new West American land, fresh-water, and marine shells, with notes and comments. Proceedings of the United States National Museum. 1890. https://repository.si.edu/bitstream/handle/10088/13174/1/USNMP-13_813_1890.pdf.Taylor JD, Glover EA. The lucinid bivalve genus Cardiolucina (Mollusca, Bivalvia, Lucinidae): systematics, anatomy and relationships. Bull Br Mus Nat Hist Zoo. 1997;63:93–122.
    Google Scholar 
    Coan EV, Valentich-Scott P, Sadeghian PS. Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to Northern Peru. Santa Barbara, USA: Museum of Natural History; 2012.von Cosel R, Gofas S. Marine bivalves of tropical West Africa: from Rio de Oro to southern Angola. Marseille, France: Muséum national d’Histoire naturelle, Paris; 2019. p 1104.Atkinson L, Sink K. Field guide to the offshore marine invertebrates of South Africa. 2018. https://doi.org/10.15493/SAEON.PUB.10000001.Montagu G. Testacea Britannica, or natural history of British shells. London, UK: JS Hollis; 1803.Taylor J, Glover E. New lucinid bivalves from shallow and deeper water of the Indian and West Pacific Oceans (Mollusca, Bivalvia, Lucinidae). ZooKeys. 2013;326:69–90.Article 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.Article 
    CAS 

    Google Scholar 
    Pjevac P, Hausmann B, Schwarz J, Kohl G, Herbold CW, Loy A, et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front Microbiol. 2021;12:669776.Article 

    Google Scholar 
    McLaren MR, Callahan BJ. Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4587955.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.Article 
    CAS 

    Google Scholar 
    Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. 2018. https://www.biorxiv.org/content/10.1101/299537v1.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, USA: Lawrence Berkeley National Lab. (LBNL); 2014.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.Article 
    CAS 

    Google Scholar 
    Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Research in Computational Molecular Biology. Springer Berlin Heidelberg; 2013. p. 158–70.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.Article 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.Article 

    Google Scholar 
    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.Article 
    CAS 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.Article 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz848.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.Article 
    CAS 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.Article 
    CAS 

    Google Scholar 
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.Article 

    Google Scholar 
    Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.Article 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.Article 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.Article 
    CAS 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296.Article 
    CAS 

    Google Scholar 
    Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–71.Article 
    CAS 

    Google Scholar 
    Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol. 2014;196:2210–5.Article 

    Google Scholar 
    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365.Article 

    Google Scholar 
    Mahram A, Herbordt MC. NCBI BLASTP on high-performance reconfigurable computing systems. ACM Trans Reconfigurable Technol Syst. 2015;7:1–20.Article 

    Google Scholar 
    Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.CAS 

    Google Scholar 
    Osvatic J, Wilkins L. Strength of selection scripts. FigShare. 2022;8. https://doi.org/10.6084/m9.figshare.20626746.v1.Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.Article 
    CAS 

    Google Scholar 
    Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, et al. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun. 2021;12:1165.Article 
    CAS 

    Google Scholar 
    Leray M, Wilkins LGE, Apprill A, Bik HM, Clever F, Connolly SR, et al. Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. PLoS Biol. 2021;19:e3001322.Article 
    CAS 

    Google Scholar 
    Petersen Jillian M, Yuen B, Alexandre G. The symbiotic ‘all-rounders’: partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2020;87:e02129–20.Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep Sea Res A. 1988;35:1723–44.Article 

    Google Scholar 
    Kennicutt ME II, Brooks JM, Burke RA Jr. Hydrocarbon seepage, gas hydrates, and authigenic carbonate in the northwestern Gulf of Mexico. Offshore Technology Conference; 1989. https://doi.org/10.4043/5952-ms.Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature. 1993;364:45–47.Article 
    CAS 

    Google Scholar 
    Von Damm KL, Edmond JM, Measures CI, Grant B. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta. 1985;49:2221–37.Article 

    Google Scholar 
    Lee RW, Thuesen EV, Childress JJ. Ammonium and free amino acids as nitrogen sources for the chemoautotrophic symbiosis Solemya reidi Bernard (Bivalvia: Protobranchia). J Exp Mar Bio Ecol. 1992;158:75–91.Article 
    CAS 

    Google Scholar 
    Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J. 2013;7:1556–67.Article 
    CAS 

    Google Scholar 
    Touchette BW, Burkholder JM. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Bio Ecol. 2000;250:133–67.Article 
    CAS 

    Google Scholar 
    Fourqurean JW, Zieman JC, Powell GVN. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Mar Biol. 1992;114:57–65.Article 
    CAS 

    Google Scholar 
    Williams SL. Experimental studies of Caribbean seagrass bed development. Ecol Monogr. 1990;60:449–69.Article 

    Google Scholar 
    Herbert RA. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev. 1999;23:563–90.Article 
    CAS 

    Google Scholar 
    Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K, et al. Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser. 1998;174:281–91.Article 
    CAS 

    Google Scholar 
    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.Article 
    CAS 

    Google Scholar 
    Karthäuser C, Ahmerkamp S, Marchant HK, Bristow LA, Hauss H, Iversen MH, et al. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nat Commun. 2021;12:3235.Article 

    Google Scholar 
    Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.Article 
    CAS 

    Google Scholar 
    Johnson KS, Beehler CL, Sakamoto-Arnold CM, Childress JJ. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science. 1986;231:1139–41.Article 
    CAS 

    Google Scholar 
    Childress JJ, Girguis PR. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J Exp Biol. 2011;214:312–25.Article 
    CAS 

    Google Scholar 
    Hentschel U, Hand S, Felbeck H. The contribution of nitrate respiration to the energy budget of the symbiont-containing clam Lucinoma aequizonata: a calorimetric study. J Exp Biol. 1996;199:427–33.Article 
    CAS 

    Google Scholar 
    Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, et al. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. ISME J. 2020;14:2568–79.Article 
    CAS 

    Google Scholar 
    Amorim K, Loick-Wilde N, Yuen B, Osvatic JT, Wäge-Recchioni J, Hausmann B, et al. Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf. Sci Rep. 2022;12:9731.Article 
    CAS 

    Google Scholar 
    Breusing C, Johnson SB, Tunnicliffe V, Clague DA, Vrijenhoek RC, Beinart RA. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol Biol Evol. 2020;37:3469–84.Article 
    CAS 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.Article 

    Google Scholar 
    Brissac T, Gros O, Merçot H. Lack of endosymbiont release by two Lucinidae (Bivalvia) of the genus Codakia: consequences for symbiotic relationships. FEMS Microbiol Ecol. 2009;67:261–7.Article 
    CAS 

    Google Scholar 
    Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci USA. 2018;115:5229–34.Article 
    CAS 

    Google Scholar 
    Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017;25:375–90.Article 
    CAS 

    Google Scholar 
    Li Y, Liles MR, Halanych KM. Endosymbiont genomes yield clues of tubeworm success. ISME J. 2018;12:2785–95.Article 
    CAS 

    Google Scholar 
    Moran NA, Yun Y. Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci USA. 2015;112:2093–6.Article 
    CAS 

    Google Scholar 
    Sørensen MES, Wood AJ, Cameron DD, Brockhurst MA. Rapid compensatory evolution can rescue low fitness symbioses following partner switching. Curr Biol. 2021;31:3721–3728.e4.Article 

    Google Scholar 
    Taylor JD, Glover EA, Smith L, Ikebe C, Williams ST. New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia). Zootaxa. 2016;4196:zootaxa.4196.3.2.Article 

    Google Scholar 
    Osvatic J. Fig1 gtdb tree and alignment. figshare. 2021. https://doi.org/10.6084/m9.figshare.16837216.v1.Osvatic J. Figure 2: GTDB alignment and phylogeny. 2021. https://doi.org/10.6084/m9.figshare.16837237. More

  • in

    Nature-positive goals for an organization’s food consumption

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    Díaz, S., et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).Article 

    Google Scholar 
    Locke, H., et al. A Nature-Positive World: The Global Goal for Nature (Wildlife Conservation Society, 2020); https://library.wcs.org/doi/ctl/view/mid/33065/pubid/DMX3974900000.aspxOpen-ended Working Group on the Post-2020 Global Biodiversity Framework. First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (Convention on Biological Diversity, 2021).Open-Ended Working Group on the Post-2020 Global Biodiversity Framework. Draft Recommendation Submitted by the Co-Chairs CBD/WG2020/4/L.2-ANNEX (Convention on Biological Diversity, 2022).Environment Act 2021 (UK) (HM Government, 2021); https://www.legislation.gov.uk/ukpga/2021/30/contents/enactedBull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    Prendeville, S., Cherim, E. & Bocken, N. Circular cities: mapping six cities in transition. Environ. Innov. Soc. Transit. 26, 171–194 (2018).de Silva, G. C., Regan, E. C., Pollard, E. H. B. & Addison, P. F. E. The evolution of corporate no net loss and net positive impact biodiversity commitments: understanding appetite and addressing challenges. Bus. Strategy Environ. 28, 1481–1495 (2019).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early‐adopter jurisdictions in England. Conserv. Lett. 14, e12820 (2021).Article 

    Google Scholar 
    McGlyn, J., et al. Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020); https://sciencebasedtargetsnetwork.org/resource-repository/zu Ermgassen, S. O. S. E. et al. Are corporate biodiversity commitments consistent with delivering ‘nature-positive’ outcomes? A review of ‘nature-positive’ definitions, company progress and challenges. J. Clean. Prod. 379, 134798 (2022).Article 

    Google Scholar 
    Addison, P. F. E., Bull, J. W. & Milner‐Gulland, E. J. Using conservation science to advance corporate biodiversity accountability. Conserv. Biol. 33, 307–318 (2019).Article 

    Google Scholar 
    Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Maron, M. et al. Setting robust biodiversity goals. Conserv. Lett. https://doi.org/10.1111/conl.12816 (2021).Newing, H. & Perram, A. What do you know about conservation and human rights? Oryx 53, 595–596 (2019).Article 

    Google Scholar 
    Standard on Biodiversity Offsets (The Business and Biodiversity Offsets Programme, 2012).Arlidge, W. N. S., et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2020).Article 

    Google Scholar 
    Gupta, T. et al. Mitigation of elasmobranch bycatch in trawlers: a case study in Indian fisheries. Front. Mari. Sci. 7, 571 (2020).Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environ. Change 52, 152–161 (2018).Article 

    Google Scholar 
    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).Article 

    Google Scholar 
    Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. BioScience 68, 336–347 (2018).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 
    ADS 

    Google Scholar 
    Wolff, A., Gondran, N. & Brodhag, C. Detecting unsustainable pressures exerted on biodiversity by a company. Application to the food portfolio of a retailer. J. Clean. Prod. 166, 784–797 (2017).Article 

    Google Scholar 
    FAOSTAT Analytical Brief 15 Land Use and Land Cover Statistics: Global, Regional and Country Trends, 1990–2018 (FAO, 2020).Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).Article 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    ADS 

    Google Scholar 
    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Benton, T. G. et al. A ‘net zero’ equivalent target is needed to transform food systems. Nat. Food 2, 905–906 (2021). 2021.Article 

    Google Scholar 
    Crenna, E., Sinkko, T. & Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 227, 378–391 (2019).Article 
    CAS 

    Google Scholar 
    Bull, J. W., et al. Analysis: the biodiversity footprint of the University of Oxford. Nature 604, 420–424 (2022).Harrington, R. A., Adhikari, V., Rayner, M. & Scarborough, P. Nutrient composition databases in the age of big data: foodDB, a comprehensive, real-time database infrastructure. BMJ Open 9, e026652 (2019).Article 

    Google Scholar 
    Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Winter, L., Lehmann, A., Finogenova, N. & Finkbeiner, M. Including biodiversity in life cycle assessment—state of the art, gaps and research needs. Environ. Impact Assess. Rev. 67, 88–100 (2017).Article 

    Google Scholar 
    Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Global Environ. Change 38, 195–204 (2016).Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, B., et al. National Diet and Nutrition Survey Years 1 to 9 of the Rolling Programme (2008/2009–2016/2017): Time Trend and Income Analyses (Public Health England & Food Standards Agency, 2019).Stewart, C., Piernas, C., Cook, B. & Jebb, S. A. Trends in UK meat consumption: analysis of data from years 1–11 (2008–09 to 2018–19) of the National Diet and Nutrition Survey rolling programme. Lancet Planet. Health 5, e699–e708 (2021).Article 

    Google Scholar 
    Nielsen, K. S. et al. Improving climate change mitigation analysis: a framework for examining feasibility. One Earth 3, 325–336 (2020).Article 
    ADS 

    Google Scholar 
    Selinske, M. J. et al. We have a steak in it: eliciting interventions to reduce beef consumption and its impact on biodiversity. Conserv. Lett. 13, e12721 (2020).Article 

    Google Scholar 
    Hollands, G. J. et al. The TIPPME intervention typology for changing environments to change behaviour. Nat. Hum. Behav. 1, 1–9 (2017).Article 

    Google Scholar 
    Marteau, T. M., Hollands, G. J. & Fletcher, P. C. Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337, 1492–1495 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).Article 

    Google Scholar 
    Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).Article 
    ADS 

    Google Scholar 
    Godar, J., Suavet, C., Gardner, T. A., Dawkins, E. & Meyfroidt, P. Balancing detail and scale in assessing transparency to improve the governance of agricultural commodity supply chains. Environ. Res. Lett. 11, 035015 (2016).Article 
    ADS 

    Google Scholar 
    DeFries, R. S., Fanzo, J., Mondal, P., Remans, R. & Wood, S. A. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence. Environ. Res. Lett. 12, 033001 (2017).Article 
    ADS 

    Google Scholar 
    Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).Article 

    Google Scholar 
    Waddock, S. Achieving sustainability requires systemic business transformation. Glob. Sustain. 3, e12 (2020).Travers, H., Walsh, J., Vogt, S., Clements, T. & Milner-Gulland, E. J. Delivering behavioural change at scale: what conservation can learn from other fields. Biol. Conserv. 257, 109092 (2021).Article 

    Google Scholar 
    Gaupp, F. et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food 2, 928–934 (2021).Article 

    Google Scholar 
    Astill, J. et al. Transparency in food supply chains: a review of enabling technology solutions. Trends Food Sci. Technol. 91, 240–247 (2019).Article 
    CAS 

    Google Scholar 
    Poore, J & Nemecek, T. Full Excel model: life-cycle environmental impacts of food drink products. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:a63fb28c-98f8-4313-add6-e9eca99320a5 (2018).Clark, M., et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).Clark, M., et al. Supplemental Data for ‘Estimating the environmental impacts of 57,000 food products’. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:4ad0b594-3e81-4e61-aefc-5d869c799a87 (2022).Bianchi, F., Dorsel, C., Garnett, E., Aveyard, P. & Jebb, S. A. Interventions targeting conscious determinants of human behaviour to reduce the demand for meat: a systematic review with qualitative comparative analysis. IJBNPA 15, 102 (2018).
    Google Scholar 
    Bianchi, F., Garnett, E., Dorsel, C., Aveyard, P. & Jebb, S. A. Restructuring physical micro-environments to reduce the demand for meat: a systematic review and qualitative comparative analysis. Lancet Planet. Health 2, e384–e397 (2018).Article 

    Google Scholar 
    Hillier-Brown, F. C. et al. The impact of interventions to promote healthier ready-to-eat meals (to eat in, to take away or to be delivered) sold by specific food outlets open to the general public: a systematic review. Obes. Rev. 18, 227–246 (2017).Article 
    CAS 

    Google Scholar 
    von Philipsborn, P. et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 6, Cd012292 (2019).
    Google Scholar 
    Attwood, S., Voorheis, P., Mercer, C., Davies, K. & Vennard, D. Playbook for Guiding Diners toward Plant-Rich Dishes in Food Service (World Resources Institute, 2020); https://www.wri.org/research/playbook-guiding-diners-toward-plant-rich-dishes-food-serviceGarnett, E. E., Balmford, A., Sandbrook, C., Pilling, M. A. & Marteau, T. M. Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proc. Natl Acad. Sci. USA 116, 20923 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Reinders, M. J., Huitink, M., Dijkstra, S. C., Maaskant, A. J. & Heijnen, J. Menu-engineering in restaurants—adapting portion sizes on plates to enhance vegetable consumption: a real-life experiment. IJBNPA 14, 41 (2017).
    Google Scholar 
    Brunner, F., Kurz, V., Bryngelsson, D. & Hedenus, F. Carbon label at a university restaurant—label implementation and evaluation. Ecol. Econ. 146, 658–667 (2018).Article 

    Google Scholar 
    McClain, A. D., Hekler, E. B. & Gardner, C. D. Incorporating prototyping and iteration into intervention development: a case study of a dining hall-based intervention. J. Am. Coll. Health 61, 122–131 (2013).Article 

    Google Scholar 
    de Vaan, J. Eating Less Meat: How to Stimulate the Choice for a Vegetarian Option without Inducing Reactance. MSc thesis, Radboud Univ. (2018). More