More stories

  • in

    Unaltered fungal community after fire prevention treatments over widespread Mediterranean rockroses (Halimium lasianthum)

    Cairney, J. W. G. & Bastias, B. A. Influences of fire on forest soil fungal communities. Can. J. For. Res. 37, 207–215 (2007).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. The effects of fuel reduction treatments on runoff, infiltration and erosion in two shrubland areas in the north of Spain. J. Environ. Manage. 105, 96–102 (2012).Article 

    Google Scholar 
    Reazin, C., Morris, S., Smith, J. E., Cowan, A. D. & Jumpponen, A. Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US ponderosa pine forest ecosystem. For. Ecol. Manage. 377, 118–127 (2016).Article 

    Google Scholar 
    Durán-Manual, F. et al. Prescribed burning in Pinus cubensis-dominated tropical natural forests: A myco-friendly fire-prevention tool. For. Syst. 31, e012 (2022).
    Google Scholar 
    Busse, M. D., Hubbert, K. R., Fiddler, G. O., Shestak, C. J. & Powers, R. F. Lethal soil temperatures during burning of masticated forest residues. Int. J. Wildl. Fire 14, 267–276 (2005).Article 

    Google Scholar 
    Frazão, D. F. et al. Cistus ladanifer (Cistaceae): A natural resource in Mediterranean-type ecosystems. Planta 247, 289–300 (2018).Article 

    Google Scholar 
    Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G. & Rundel, P. W. Fire in mediterranean ecosystems. Fire Medit. Ecosyst. https://doi.org/10.1017/cbo9781139033091 (2011).Article 

    Google Scholar 
    Louro, R., Peixe, A. & Santos-silva, C. New insights on Cistus salviifolius L. micropropagation. J. Bot. Sci. 6, 10–14 (2017).CAS 

    Google Scholar 
    Valbuena, L., Tarrega, R. & Luis, E. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. J. Wildl. Fire 2, 15–20 (1992).Article 

    Google Scholar 
    Martín-Pinto, P., Vaquerizo, H., Peñalver, F., Olaizola, J. & Oria-De-Rueda, J. A. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For. Ecol. Manage. 225, 296–305 (2006).Article 

    Google Scholar 
    Comandini, O., Contu, M. & Rinaldi, A. C. An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 16, 381–395 (2006).Article 
    CAS 

    Google Scholar 
    Zuzunegui, M. et al. Growth response of Halimium halimifolium at four sites with different soil water availability regimes in two contrasted hydrological cycles. Plant Soil 247, 271–281 (2002).Article 

    Google Scholar 
    Civeyrel, L. et al. Molecular systematics, character evolution, and pollen morphology of Cistus and Halimium (Cistaceae). Plant Syst. Evol. 295, 23–54 (2011).Article 

    Google Scholar 
    Leonardi, M., Furtado, A. N. M., Comandini, O., Geml, J. & Rinaldi, A. C. Halimium as an ectomycorrhizal symbiont: New records and an appreciation of known fungal diversity. Mycol. Prog. 19, 1495–1509 (2020).Article 

    Google Scholar 
    Oria-De-Rueda, J. A., Martín-Pinto, P. & Olaizola, J. Bolete productivity of cistaceous scrublands in northwestern Spain. Econ. Bot. 62, 323–330 (2008).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Does shrub recovery differ after prescribed burning, clearing and mastication in a Spanish heathland?. Plant Ecol. 216, 429–437 (2015).Article 

    Google Scholar 
    Ponte, E. D., Costafreda-Aumedes, S. & Vega-Garcia, C. Lessons learned from arson wildfire incidence in reforestations and natural stands in Spain. Forests 10, 1–18 (2019).Article 

    Google Scholar 
    Franco-Manchón, I., Salo, K., Oria-de-Rueda, J. A., Bonet, J. A. & Martín-Pinto, P. Are wildfires a threat to fungi in European Pinus forests? A case study of boreal and Mediterranean forests. Forests 10, 309 (2019).Article 

    Google Scholar 
    Mediavilla, O., Oria-de-Rueda, J. A. & Martin-Pinto, P. Changes in sporocarp production and vegetation following wildfire in a Mediterranean Forest Ecosystem dominated by Pinus nigra in Northern Spain. For. Ecol. Manage. 331, 85–92 (2014).Article 

    Google Scholar 
    Tomao, A., Antonio Bonet, J., Castaño, C. & De-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manage. 457, 117678 (2020).
    Article 

    Google Scholar 
    Espinosa, J., Rodríguez de Rivera, O., Madrigal, J., Guijarro, M. & Hernando, C. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. ssp. salzmannii. For. Ecol. Manage. 474, 118372 (2020).Article 

    Google Scholar 
    Potts, J. B. & Stephens, S. L. Invasive and native plant responses to shrubland fuel reduction: Comparing prescribed fire, mastication and treatment season. Biol. Conserv. 142, 1657–1664 (2009).Article 

    Google Scholar 
    Agee, J. K. & Skinner, C. N. Basic principles of forest fuel reduction treatments. For. Ecol. Manage. 211, 83–96 (2005).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Fuel reduction at a Spanish heathland by prescribed fire and mechanical shredding: Effects on seedling emergence. J. Environ. Manage. 129, 621–627 (2013).Article 

    Google Scholar 
    Huggett, R. J., Abt, K. L. & Shepperd, W. Efficacy of mechanical fuel treatments for reducing wildfire hazard. For. Policy Econ. 10, 408–414 (2008).Article 

    Google Scholar 
    Fernández, C. & Vega, J. A. Shrub recovery after fuel reduction treatments and a subsequent fire in a Spanish heathland. Plant Ecol. 215, 1233–1243 (2014).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Does fire severity influence shrub resprouting after spring prescribed burning?. Acta Oecologica 48, 30–36 (2013).Article 
    ADS 

    Google Scholar 
    Ellsworth, J. W., Harrington, R. A. & Fownes, J. H. Seedling emergence, growth, and allocation of Oriental bittersweet: Effects of seed input, seed bank, and forest floor litter. For. Ecol. Manage. 190, 255–264 (2004).Article 

    Google Scholar 
    Castaño, C. et al. Resistance of the soil fungal communities to medium-intensity fire prevention treatments in a Mediterranean scrubland. For. Ecol. Manage. 472, 118217 (2020).Article 

    Google Scholar 
    Anderson, I. C., Bastias, B. A., Genney, D. R., Parkin, P. I. & Cairney, J. W. G. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol. Res. 111, 482–486 (2007).Article 
    CAS 

    Google Scholar 
    Hernández-Rodríguez, M. et al. Soil fungal community composition in a Mediterranean shrubland is primarily shaped by history of major disturbance, less so by current fire fuel reduction treatments. Unpublished (2015).Oria de Rueda, J. A., Martín-Pinto, P. & Olaizola, J. Boletus edulis PRODUCTION IN XEROPHILIC AND PIROPHITIC SCHRUBS OF Cistus ladanifer AND Halimium lasianthum IN WESTERN SPAIN. in IV International Workshop on Edible Mycorrhizal Mushrooms (2005).Hart, B. T. N., Smith, J. E., Luoma, D. L. & Hatten, J. A. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains. Oregon. For. Ecol. Manage. 422, 11–22 (2018).Article 

    Google Scholar 
    Hernández-Rodríguez, M., Oria-de-Rueda, J. A., Pando, V. & Martín-Pinto, P. Impact of fuel reduction treatments on fungal sporocarp production and diversity associated with Cistus ladanifer L. ecosystems. For. Ecol. Manage. 353, 10–20 (2015).Article 

    Google Scholar 
    Fernandes, P. M. Scientific support to prescribed underburning in southern Europe: What do we know?. Sci. Total Environ. 630, 340–348 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Day, N. J. et al. Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Glob. Chang. Biol. 25, 2310–2324 (2019).Article 
    ADS 

    Google Scholar 
    Salo, K., Domisch, T. & Kouki, J. Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota). For. Ecol. Manage. 451, 117454 (2019).Article 

    Google Scholar 
    Zakaria, A. J. & Boddy, L. Mycelial foraging by Resinicium bicolor: Interactive effects of resource quantity, quality and soil composition. FEMS Microbiol. Ecol. 40, 135–142 (2002).Article 
    CAS 

    Google Scholar 
    Hul, S. et al. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microbiol. 81, 7869–7880 (2015).Article 
    ADS 

    Google Scholar 
    Vázquez-Veloso, A. et al. Prescribed burning in spring or autumn did not affect the soil fungal community in Mediterranean Pinus nigra natural forests. For. Ecol. Manage. 512, 120161 (2022).Article 

    Google Scholar 
    Lindahl, B. D. et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173, 611–620 (2007).Article 
    CAS 

    Google Scholar 
    Salomón, R., Rodríguez-Calcerrada, J., González-Doncel, I., Gil, L. & Valbuena-Carabaña, M. On the general failure of coppice conversion into high forest in Quercus pyrenaica stands: A genetic and physiological approach. Folia Geobot. 52, 101–112 (2017).Article 

    Google Scholar 
    Williams, R. J., Hallgren, S. W. & Wilson, G. W. T. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For. Ecol. Manage. 265, 241–247 (2012).Article 

    Google Scholar 
    Semenova-Nelsen, T. A., Platt, W. J., Patterson, T. R., Huffman, J. & Sikes, B. A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol. 224, 916–927 (2019).Article 

    Google Scholar 
    Oliver, A. K., Callaham, M. A. & Jumpponen, A. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For. Ecol. Manage. 345, 1–9 (2015).Article 

    Google Scholar 
    Sanz-Benito, I., Mediavilla, O., Casas, A., Oria-de-Rueda, J. A. & Martín-Pinto, P. Effects of fuel reduction treatments on the sporocarp production and richness of a Quercus/Cistus mixed system. For. Ecol. Manage. 503, 119798 (2022).Article 

    Google Scholar 
    Santos-Silva, C., Gonçalves, A. & Louro, R. Canopy cover influence on macrofungal richness and sporocarp production in montado ecosystems. Agrofor. Syst. 82, 149–159 (2011).Article 

    Google Scholar 
    Lin, W. R. et al. The impacts of thinning on the fruiting of saprophytic fungi in Cryptomeria japonica plantations in central Taiwan. For. Ecol. Manage. 336, 183–193 (2015).Article 

    Google Scholar 
    Aragón, G., López, R. & Martínez, I. Effects of Mediterranean dehesa management on epiphytic lichens. Sci. Total Environ. 409, 116–122 (2010).Article 
    ADS 

    Google Scholar 
    Hämäläinen, A., Kouki, J. & Lohmus, P. The value of retained Scots pines and their dead wood legacies for lichen diversity in clear-cut forests: The effects of retention level and prescribed burning. For. Ecol. Manage. 324, 89–100 (2014).Article 

    Google Scholar 
    Schimmel, J. & Granstrom, A. Fire severity and vegetation response in the boreal Swedish. Ecol. Soc. Am. 77, 1436–1450 (1996).
    Google Scholar 
    Hinojosa, M. B., Albert-Belda, E., Gómez-Muñoz, B. & Moreno, J. M. High fire frequency reduces soil fertility underneath woody plant canopies of Mediterranean ecosystems. Sci. Total Environ. 752, 141877 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Disentangling global soil fungal diversity. Science 346, 1052–1053 (2014).Article 

    Google Scholar 
    Adamo, I. et al. Sampling forest soils to describe fungal diversity and composition. Which is the optimal sampling size in Mediterranean pure and mixed pine oak forests?. Fungal Biol. https://doi.org/10.1016/j.funbio.2021.01.005 (2021).Article 

    Google Scholar 
    Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in northern Europe. Front. Microbiol. 11, 1953 (2020).Article 

    Google Scholar 
    Peay, K., Garbelotto, M. & Bruns, T. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology 91, 3631–3640 (2010).Article 

    Google Scholar 
    Koivula, M. & Vanha-Majamaa, I. Experimental evidence on biodiversity impacts of variable retention forestry, prescribed burning, and deadwood manipulation in Fennoscandia. Ecol. Process. 9, 1–22 (2020).Article 

    Google Scholar 
    Fox, S. et al. Fire as a driver of fungal diversity—A synthesis of current knowledge. Mycologia 00, 1–27 (2022).
    Google Scholar 
    Raudabaugh, D. B. et al. Where are they hiding? Testing the body snatchers hypothesis in pyrophilous fungi. Fungal Ecol. 43, 100870 (2020).Article 

    Google Scholar 
    Izzo, A., Canright, M. & Bruns, T. D. The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol. Res. 110, 196–202 (2006).Article 

    Google Scholar 
    Kipfer, T., Moser, B., Egli, S., Wohlgemuth, T. & Ghazoul, J. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167, 219–228 (2011).Article 
    ADS 

    Google Scholar 
    Glassman, S. I., Levine, C. R., Dirocco, A. M., Battles, J. J. & Bruns, T. D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: Some like it hot. ISME J. 10, 1228–1239 (2016).Article 

    Google Scholar 
    Buscardo, E. et al. Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol. 114, 628–636 (2010).Article 

    Google Scholar 
    Pringle, A., Vellinga, E. & Peay, K. The shape of fungal ecology: Does spore morphology give clues to a species’ niche?. Fungal Ecol. 17, 213–216 (2015).Article 

    Google Scholar 
    Zhang, K., Cheng, X., Shu, X., Liu, Y. & Zhang, Q. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 431, 19–36 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xiang, X. et al. Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant Soil 397, 347–356 (2015).Article 
    CAS 

    Google Scholar 
    Dove, N. C., Klingeman, D. M., Carrell, A. A., Cregger, M. A. & Schadt, C. W. Fire alters plant microbiome assembly patterns: Integrating the plant and soil microbial response to disturbance. New Phytol. 230, 2433–2446 (2021).Article 
    CAS 

    Google Scholar 
    Fernandes, P. M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 110, 175–182 (2013).Article 

    Google Scholar 
    Fontúrbel, M. T., Fernández, C. & Vega, J. A. Prescribed burning versus mechanical treatments as shrubland management options in NW Spain: Mid-term soil microbial response. Appl. Soil Ecol. 107, 334–346 (2016).Article 

    Google Scholar 
    Geml, J. et al. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol. Ecol. 23, 2452–2472 (2014).Article 
    CAS 

    Google Scholar 
    Chu, H. et al. Effects of slope aspects on soil bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere 26, 226–234 (2016).Article 

    Google Scholar 
    Geml, J. Soil fungal communities reflect aspect-driven environmental structuring and vegetation types in a Pannonian forest landscape. Fungal Ecol. 39, 63–79 (2019).Article 

    Google Scholar 
    Castaño, C. et al. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol. 220, 1211–1221 (2018).Article 

    Google Scholar 
    Collado, E. et al. Mushroom productivity trends in relation to tree growth and climate across different European forest biomes. Sci. Total Environ. 689, 602–615 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ihrmark, K., Bödeker, I. & Cruz-Martinez, K. New primers to amplify the fungal ITS2 region—Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).Article 
    CAS 

    Google Scholar 
    White, T., Bruns, S., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    Kent, M. Vegetation Description and Data Analysis: A Practical Approach (Wiley, 2011).

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).Article 

    Google Scholar 
    Abarenkov, K. et al. Plutof-a web based workbench for ecological and taxonomic research, with an online implementation for fungal its sequences. Evol. Bioinforma. 2010, 189–196 (2010).
    Google Scholar 
    Põlme, S. et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Agerer, R. Fungal relationships and structural identity of their ectomycorrhizae. Mycol. Prog. 5, 67–107 (2006).Article 

    Google Scholar 
    Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1–128. http://CRAN.R-project.org/package=nlme (2016).Chao, A. & Chiu, C. Species richness: Estimation and comparison. Wiley StatsRef https://doi.org/10.1002/9781118445112.stat03432.pub2 (2016).Article 

    Google Scholar 
    Chiu, C. H., Wang, Y. T., Walther, B. A. & Chao, A. An improved nonparametric lower bound of species richness via a modified good-turing frequency formula. Biometrics 70, 671–682 (2014).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4–2. https://CRAN.R-project.org/package=vegan. (2017).Oksanen, J., Blanchet, F., Kindt, R. & Al, E. vegan: Community Ecology Package. R package version 2.3–0. (2015). More

  • in

    Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology

    Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).Article 
    ADS 

    Google Scholar 
    Page, S., et al. Tropical Fire Ecology Ch. 9 (Springer, 2009).Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371, 20150176 (2016).Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    Kusumaningtyas, S. D. A. & Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11, 075007 (2016).Article 
    ADS 

    Google Scholar 
    Gaveau, D. L. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 4, 1–7 (2014).Article 

    Google Scholar 
    Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).Article 
    ADS 

    Google Scholar 
    Posa, M. R. C., Wijedasa, L. S. & Corlett, R. T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 61, 49–57 (2011).Article 

    Google Scholar 
    Harrison, M. E. & Rieley, J. O. Tropical peatland biodiversity and conservation in Southeast Asia. Mires Peat 22, 1–7 (2018).
    Google Scholar 
    Purnomo, H. et al. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 78, 21–31 (2017).Article 

    Google Scholar 
    Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O. & Limin, S. H. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 73, 212–224 (2008).Article 

    Google Scholar 
    Taufik, M., Setiawan, B. I. & Van Lanen, H. A. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio 48, 363–373 (2019).Article 

    Google Scholar 
    Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).Article 
    ADS 

    Google Scholar 
    Fanin, T. & Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).Article 
    ADS 

    Google Scholar 
    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A. 113, 9204–9209 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Chang. Biol. 18, 3410–3422 (2012).Article 
    ADS 

    Google Scholar 
    Ohkubo, S., Hirano, T. & Kusin, K. Influence of fire and drainage on evapotranspiration in a degraded peat swamp forest in Central Kalimantan Indonesia. J. Hydrol. 603, 126906 (2021).Article 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 1–8 (2020).Article 

    Google Scholar 
    Lin, Y., Wijedasa, L. S. & Chisholm, R. A. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environ. Res. Lett. 12, 024017 (2017).Article 
    ADS 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. & Mezbahuddin, S. ProbFire: A probabilistic fire early warning system for Indonesia. Nat. Hazards Earth Syst. Sci. 22, 303–322 (2022).Article 
    ADS 

    Google Scholar 
    Taufik, M., Veldhuizen, A. A., Wösten, J. H. M. & van Lanen, H. A. J. Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma 347, 160–169 (2019).Article 
    ADS 

    Google Scholar 
    Sloan, S., Tacconi, L. & Cattau, M. E. Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 26, 1–30 (2021).Article 

    Google Scholar 
    Lestari, I., Murdiyarso, D. & Taufik, M. Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau Province Indonesia. Forests 13, 505 (2022).Article 

    Google Scholar 
    Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).Article 
    ADS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: Modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).Article 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland. Biogeosciences 11, 577–599 (2014).Article 
    ADS 

    Google Scholar 
    Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).Article 
    ADS 

    Google Scholar 
    Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).Article 
    ADS 

    Google Scholar 
    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra Indonesia. Geoderma 338, 410–421 (2019).Article 
    ADS 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Couwenberg, J. & Hooijer, A. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12, 1–13 (2013).
    Google Scholar 
    Khasanah, N. M. & van Noordwijk, M. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 24, 147 (2019).Article 

    Google Scholar 
    Marwanto, S., Watanabe, T., Iskandar, W., Sabiham, S. & Funakawa, S. Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Sci. Plant Nutr. 64, 386–395 (2018).Article 
    CAS 

    Google Scholar 
    Lubis, M. E. S. et al. Changes in water table depth in an oil palm plantation and its surrounding regions in Sumatra Indonesia. J. Agron. 13, 140–146 (2014).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Wüst, R. Developments in Earth Surface Processes (Volume 9) Ch. 3 (Elsevier, 2006).Haffiez, N. et al. Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion. Sci. Total Environ. 839, 156211 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Grant, R. F., Desai, A. R. & Sulman, B. N. Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences 9, 4215–4231 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Flanagan, L. B. Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland. J. Geophys. Res. Biogeosci. 121, 2216–2242 (2016).Article 

    Google Scholar 
    Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).Article 
    ADS 

    Google Scholar 
    Dimitrov, D. D., Bhatti, J. S. & Grant, R. F. The transition zones (ecotone) between boreal forests and peatlands: Modelling water table along a transition zone between upland black spruce forest and poor forested fen in central Saskatchewan. Ecol. Modell. 274, 57–70 (2014).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Funk, C. et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).Article 

    Google Scholar 
    Osaki, M., Hirose, K., Segah, H. & Helmy, F. Tropical Peatland Ecosystems Ch. 9 (Springer, 2016).Razavi, S. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environ. Modell. Softw. 144, 105159 (2021).Article 

    Google Scholar  More

  • in

    The double life of Methanoperedens

    Galperin, M. Y. Environ. Microbiol. 6, 552–567 (2004).Article 
    CAS 

    Google Scholar 
    Higgins, D. & Dworkin, J. FEMS Microbiol. Rev. 36, 131–148 (2012).Article 
    CAS 

    Google Scholar 
    Maamar, H., Raj, A. & Dubnau, D. Science 317, 526–529 (2007).Article 
    CAS 

    Google Scholar 
    Ackermann, M. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    McIlroy, S. J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 (2023).Article 

    Google Scholar 
    Leu, A. O. et al. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Cui, M., Ma, A., Qi, H., Zhuang, X. & Zhuang, G. Microbiologyopen 4, 1–11 (2015).Article 

    Google Scholar 
    Haroon, M. F. et al. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Fritts, R. K., McCully, A. L. & McKinlay, J. B. Microbiol. Molec. Biol. Rev. 85, e00135-20 (2021).Article 

    Google Scholar  More

  • in

    Warmth shifts symbionts

    Abigail Meyer from the University of Minnesota, USA, and colleagues from the USA, investigated the physiological and morphological responses to experimental warming and CO2 additions in the widespread forest lichen Evernia mesomorpha. While impacts of CO2 were largely negligible, warming and associated drying was linked to decreases in biomass, carbon assimilation and respiration rates. As well as bleaching of the lichen, indicative of death of the photobiont, the authors found evidence of shifts in internal algal communities, including increased proportions of certain algal clades under warming. While the study reveals the sensitivity of lichen algae to warming, further work is needed to reveal whether photobiont turnover may assist in lichen acclimation and recovery. More

  • in

    Anthropogenic edge effects and aging errors by hunters can affect the sustainability of lion trophy hunting

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73. https://doi.org/10.1038/nature22900 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. J. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197. https://doi.org/10.1371/journal.pbio.0020197 (2004).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14895–14899 (2015).Article 
    ADS 

    Google Scholar 
    Bauer, H., Page-Nicholson, S., Hinks, A. & Dickman, A. Guidelines for the Conservation of lion in Africa 17–24 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Lindsey, P. A., Roulet, P. A. & Romanach, S. S. Economic and conservation significance of the trophy hunting industry in sub-Saharan Africa. Biol. Conserv. 134, 455–469. https://doi.org/10.1016/j.biocon.2006.09.005 (2007).Article 

    Google Scholar 
    Vucetich, J. A. et al. The value of argument analysis for understanding ethical considerations pertaining to trophy hunting and lion conservation. Biol. Conserv. 235, 260–272. https://doi.org/10.1016/j.biocon.2019.04.012 (2019).Article 

    Google Scholar 
    Dube, N. Voices from the village on trophy hunting in Hwange district, Zimbabwe. Ecol. Econ. 159, 335–343. https://doi.org/10.1016/j.ecolecon.2019.02.006 (2019).Article 

    Google Scholar 
    Murombedzi, J. African wildlife and livelihoods. In The Promise and Performance of Community Conservation (eds Hulme, D. & Murphree, M.) 244–255 (James Currey, 2001).
    Google Scholar 
    Leader-Williams, N., Baldus, R. D. & Smith, R. J. Recreational hunting. In Conservation and Rural Livelihoods (eds Dickson, B. et al.) 296–316 (Blackwell Publishing Ltd., 2009).Chapter 

    Google Scholar 
    DiMinin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).Article 

    Google Scholar 
    Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941. https://doi.org/10.1371/journal.pone.0005941 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Mweetwa, T. et al. Quantifying lion (Panthera leo) demographic response following a three-year moratorium on trophy hunting. PLoS ONE 13, e0197030. https://doi.org/10.1371/journal.pone.0197030 (2018).Article 
    CAS 

    Google Scholar 
    Loveridge, A. J. et al. Conservation of large predator populations: Demographic and spatial responses of African lions to the intensity of trophy hunting. Biol. Conserv. 204, 247–254. https://doi.org/10.1016/j.biocon.2016.10.024 (2016).Article 

    Google Scholar 
    Starfield, A. M., Shiell, J. D. & Smuts, G. L. Simulation of lion control strategies in a large game reserve. Ecol. Model. 13, 17–28 (1981).Article 

    Google Scholar 
    Venter, J. & Hopkins, M. E. Use of a simulation model in the management of a lion population. S. Afr. J. Wildl. Res. 18, 126–130 (1988).
    Google Scholar 
    Starfield, A. M. & Bleloch, A. L. Modelling the effect of contraception on part of the lion population in Etosha National Park. Applied Mathematic Dept. Report R3/82, Witwaterstrand University, South Africa. 7 (1982).Dickman, A., Becker, M., Begg, C., Loveridge, A. J. & Macdonald, D. W. Guidelines for the Conservation of Lions in Africa, Ch. 6 69–75 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Creel, S. et al. Assessing the sustainability of lion trophy hunting with recomendations for policy. Ecol. Appl. 26, 2347–2357. https://doi.org/10.1002/eap.1377 (2016).Article 

    Google Scholar 
    Barthold, J., Loveridge, A. J., Macdonald, D. W., Packer, C. & Colchero, F. Bayesian estimates of male and female African lion mortality for future use in population management. J. Appl. Ecol. 53, 295–304 (2016).Article 

    Google Scholar 
    Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825. https://doi.org/10.1111/1365-2664.12794 (2017).Article 

    Google Scholar 
    Loveridge, A. J. et al. Evaluating the spatial intensity and demographic impacts of wire-snare bush-meat poaching on large carnivores. Biol. Conserv. 244, 108504 (2020).Article 

    Google Scholar 
    Becker, M. S. et al. Estimating past and future male loss in three Zambian lion populations. J. Wildl. Manag. 77, 128–142 (2013).Article 

    Google Scholar 
    Kiffner, C., Meyer, B., Muhlenberg, M. & Waltert, M. Plenty of prey, few predators: What limits lions Panthera leo in Katavi National park, western Tanzania?. Oryx 43, 52–59 (2009).Article 

    Google Scholar 
    Loveridge, A. J., Searle, A. W., Murindagomo, F. & Macdonald, D. W. The impact of sport hunting on the population dynamics of an African lion population in a protected area. Biol. Conserv. 134, 548–558 (2007).Article 

    Google Scholar 
    Miller, J. R. B. et al. Aging traits and sustainable trophy hunting of African lions. Biol. Conserv. 201, 160–168 (2016).Article 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Gervasi, V., Linnell, J. D. C., Brøseth, H. & Gimenez, O. Failure to coordinate management in transboundary populations hinders the achievement of national management goals: The case of wolverines in Scandinavia. J. Appl. Ecol. 56, 1905–1915. https://doi.org/10.1111/1365-2664.13379 (2019).Article 

    Google Scholar 
    Breitenmoser, U. & Nobbe, C. Guidelines for the Conservation of Lions in Africa (ed IUCN CSG/SSC) 29–30 (IUCN, 2018).du Preez, B. & Lopez-Bao, J. V. Guidelines for the Conservation of the Lion in Africa (ed IUCN CSG/SSC) 76–78 (IUCN, 2018).Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: reserve boundaries as ‘attractive sinks’ In Biology and Conservation of Wild Felids, Ch. 11 (eds Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, London, 2010).

    Google Scholar 
    Borrego, N., Ozgul, A., Slotow, R. & Packer, C. Lion population dynamics: Do nomadic males matter?. Behav. Ecol. 29, 660–666. https://doi.org/10.1093/beheco/ary018%JBehavioralEcology (2018).Article 

    Google Scholar 
    Packer, C. et al. The case for fencing remains intact. Ecol. Lett. https://doi.org/10.1111/ele.12171 (2013).Balme, G. et al. Big cats at large: Density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267. https://doi.org/10.1002/1438-390x.1023 (2019).Article 

    Google Scholar 
    Grünewald, C., Schleuning, M. & Böhning-Gaese, K. Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biol. Conserv. 201, 60–68. https://doi.org/10.1016/j.biocon.2016.05.036 (2016).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population. Regulation 132, 652–661. https://doi.org/10.1086/284880 (1988).Article 

    Google Scholar 
    Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117, 17876–17883. https://doi.org/10.1073/pnas.1922097117 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Robinson, H. S., Weilgus, R. B., Cooley, H. & Cooley, S. Source—sink populations in carnivore management: cougar demography and immigration in a hunted population. Ecol. Appl. 18, 1028–1037 (2008).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A. et al. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE 13, e0196213. https://doi.org/10.1371/journal.pone.0196213 (2018).Article 
    CAS 

    Google Scholar 
    Kelly, M. J. & Durant, S. M. Viability of the Serengeti cheetah population. Conserv. Biol. 14, 786–797 (2000).Article 

    Google Scholar 
    Skalski, J. R., Ryding, K. & Millspaug, J. J. Wildlife Demography: Analysis of Sex, Age, and Count Data (Elsevier Academic Press, 2005).
    Google Scholar 
    Hamlin, K. L., Pac, D. F., Sime, C. A., DeSimone, R. M. & Dusek, G. L. Evaluating the accuracy of ages obtained by two methods for montana ungulates. J. Wildl. Manag. 64, 441–449. https://doi.org/10.2307/3803242 (2000).Article 

    Google Scholar 
    Storm, D. J. et al. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli. Wildl Soc Bull 38, 849–856. https://doi.org/10.1002/wsb.457 (2014).Article 
    ADS 

    Google Scholar 
    Balme, G. A., Hunter, L. & Braczkowski, A. R. Applicability of age-based hunting regulations for African Leopards. PLoS ONE 7, e35209. https://doi.org/10.1371/journal.pone.0035209 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752–758. https://doi.org/10.2307/3802745 (2000).Article 

    Google Scholar 
    Hiller, T. L. Comparison of two age-estimation techniques for cougars. J. Northwest. Nat. 77–82, 76 (2014).
    Google Scholar 
    Begg, C. M., Miller, J. R. B. & Begg, K. S. Effective implementation of age restrictions increases selectivity of sport hunting of the African lion. J. Appl. Ecol. 55, 139–146. https://doi.org/10.1111/1365-2664.12951 (2018).Article 

    Google Scholar 
    Mandisodza-Chikerema, R., Jooste, D. & Funston, P. J. Lion aging and adaptive quota management report: Ages of lions hunted and recommended quotas for 2019 in Zimbabwe. 12 (Unpublished report, Zimbabwe Parks and Wildlife Management and Panthera, Harare, Zimbabwe, 2019).Smuts, G. L., Anderson, J. L. & Austin, J. C. Age determination of the African lion (Panthera leo). J. Zool. Lond. 185, 115–146 (1978).Article 

    Google Scholar 
    Lindsey, P. A. et al. The trophy hunting of African lions: Scale, current management practices and factors undermining sustainability. PLoS ONE 8, 1–11 (2013).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Packer, C. et al. Effects of trophy hunting on lion and leopard populations in Tanzania. Conserv. Biol. 25, 142–153 (2011).Article 
    CAS 

    Google Scholar 
    Mace, G. M. & Reynolds, J. Exploitation as a conservation issue. In Conservation of Exploited Species, Ch. 1 (eds Reynolds, J. et al.) 3–15 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Struhsaker, T. T. A biologists perspective on the role of sustainable harvest in conservation. Conserv. Biol. 12, 930–932 (1998).Article 

    Google Scholar  More

  • in

    Complex multiple introductions drive fall armyworm invasions into Asia and Australia

    Strain assessmentWe did not detect any C-strain individual following analysis of 138 fully assembled mitochondrial DNA genomes (mitogenomes) from Australian samples. Our results, particularly that from Northern Territory, are not dissimilar to the finding of Piggott et al.56 who detected only two (i.e., 4.2%) C-strain mtCOI haplotype individuals from a much larger (i.e., n = 48) Northern Territory sample size. Proportions of C-strain to R-strain also varied significantly across the different SEA populations (Table S1) in contrast to the patterns observed in China, India, and African nations (e.g.,22,33,34,39,57). All Australian populations analysed for their corn or rice mitochondrial haplotypes via mitogenome assemblies of whole genome sequencing data therefore contrasted with the invasive populations from SEA where in some countries (e.g., Myanmar, Vietnam) FAW with the C-strain mtCOI haplotypes made up approximately 50% of the populations examined (see Table S1 for C- and R-strains mitogenome proportions, see also Fig. 1 ‘C-strain’ and ‘R-strain’ Maximum Likelihood cladograms).Figure 1Maximum Likelihood cladograms of unique Spodoptera frugiperda C-strain and R-strain partial mitochondrial genomes based on concatenation of the 13 PCGs (11,393 bp) using IQ-Tree with 1000 UFBoot replications. Individuals in clades I, II, III, and IV (C-strain) and in Clades I, II, V (R-strain) that are in the same colour scheme (i.e., green, orange, blue, or pinks) shared 100% nucleotide identity. Mitogenome haplotypes from native individuals for both C- and R-strains are in khaki green colour. Red and dark grey dots at branch nodes represent bootstrap values of 87–100% and 74–86%, respectively. Bootstrap values  Hetexp; see60) could likewise indicate recent mixing of distinct populations from SEA that suggest multiple introductions (e.g.,33,39 cf.46,47,61,62; i.e., due to a recent bottleneck from a recent western Africa founder event).Table 1 Population genetic differentiation via pairwise FST estimates between Spodoptera frugiperda populations from the invasive ranges of Africa (Uganda, Malawi, Benin), South Asia (India), East Asia (China (Cangyuan (CY), Xinping (XP), YuanJiang (YJ)), South Korea), Southeast Asia (Malaysia (Johor, Kedah, Penang States), Laos, Vietnam, Myanmar), and Pacific/Australia (Papua New Guinea (PNG), Australia—Kununurra (Western Australia, WA), Northern Territory (NT), Strathmore, Walkamin, Burdekin, Mackay (Queensland, Qld), Wee Waa (New South Wales, NSW).Full size tableThe observed heterozygosity excess detected in all invasive range populations could be further explained as due to population sub-structure and isolation breaking through periodic migration. Significant numbers of loci (ca. 30%) were also shown to not be in Hardy–Weinberg equilibrium (HWE) especially for the Malaysian (i.e., Kedah), but also Australian (i.e., Wee Waa, NT, Kununurra), Chinese (e.g., XP), South Korean, and Malawian populations. Taken as a whole, genetic diversity results from this study therefore suggested that the invasive Asian (i.e., SA, SEA, EA) FAW populations exhibited signatures of recent mixing of previously separated populations. Simulated patterns of moth migration of various invasive FAW populations such as between Myanmar and China (e.g.,41,42,55) and to Australia54 are incompatible with the population genomic data, which suggests these were likely discrete and non-panmictic FAW populations with the most probable explanation being due to multiple origins of founding populations.Genetic differentiation analysisEstimates of pairwise genetic differentiation (FST) between populations varied significantly (Table 1) and extended to between populations within a country (e.g., Mackay vs. rest of Australia; Kedah vs. rest of Malaysia). Of interest are the pairwise estimates between different Australian FAW populations from Kununurra (Western Australia), Northern Territory, Queensland (Strathmore, Walkamin, Burdekin, Mackay) and New South Wales (Wee Waa) that represented the most recently reported invasive populations in this study, and predominantly showed significant differentiation amongst themselves (with the exception of the two Queensland populations of Mackay and partially for Walkamin) and with other SEA/SA/EA countries. The majority of non-significant population genetic differentiation estimates were in SEA where the presence of FAW was reported earlier, i.e., since 2018 (e.g.,63,64 or as early as 200865,66; see also33), while across Asia (e.g., China) since 2016 but also potentially pre-2014 (16,67; see also33).Interestingly, significant genetic differentiation was observed between populations from Yunnan province in China and populations from Myanmar, Laos, and Vietnam. Penang and Johor (Malaysia) populations were not significantly differentiated from other SE Asian populations, nor with Ugandan and Malawian populations from east Africa. Individuals from Benin and Mackay (Queensland, Australia) showed non-significant genetic differentiation with all populations except with Kedah, and for Mackay also surprisingly with the Wee Waa population from New South Wales. The South Korean population exhibited significant genetic differentiation with SE Asian population except with Mackay, India and the Yuanjiang (YJ) population in Yunnan Province. Finally, the Kedah population, being one of the earliest collected samples from Malaysia and having been maintained as a laboratory population, showed strong differentiation with all populations (and lowest nucleotide diversity, π = 0.237; Table 2) further supporting unique, non-African, introduction events in SEA. Strong genetic differentiation suggested there was limited gene flow to breakdown sub-structure between populations, and the FST estimates from these invasive populations therefore failed to support a west-to-east spread pathway for the FAW. This observation instead suggested the widespread presence of genetically distinct FAW populations, likely due to independent introductions and therefore also highlighting likely biosecurity weaknesses especially in East Asia (e.g., China, South Korea) and SEA (e.g., Malaysia).Table 2 Population statistics for Spodoptera frugiperda populations from Southeast Asia (i.e., Malaysia (MYS; Johor, Kedah, Penang), Laos, Vietnam, Myanmar), East Asia (i.e., South Korea), and Pacific/Australia (i.e., Papua New Guinea (PNG), Australia).Full size tableThe genetic diversity of Australian populations identified surprisingly complex sub-structure patterns given the short time frame of population detections across different northern Australian regions. Significant genetic differentiation between, e.g., Kununurra (WA), Northern Territory (NT), Queensland (e.g., Strathmore, Burdekin), and Wee Waa (NSW) populations suggests these populations likely derived from separate establishment events. The WA Kununurra population was not significantly differentiated from the Johor State (Malaysia), India and the Cangyuan (CY) China populations, suggesting a potential south-eastern route from SA/SEA into north-western Australia. Contrasting this, Walkamin and Mackay populations showed non-significant genetic differentiation with the Madang (PNG) population, suggesting a potential second pathway for SEA individuals to arrive at the north-eastern region of Australia. Significant genetic differentiation between WA, NT, and Qld populations suggested that at least during the early stage of pest establishment in northern Australia, there was limited gene flow to homogenise the unique genetic background carried by these distinct individuals, some of which exhibited also distinct insecticide resistance profiles48,49.PCAWe selected specific populations to compare using Principal Component Analysis (PCA) as examples to support evidence of independent introductions, as seen from Fig. 3a between China (CY, YJ, XP) populations vs. Myanmar, in Fig. 3b (within Malaysian populations between those collected from Penang and Johor States vs. Kedah State), in Fig. 3c for between China and East Africa (e.g., Uganda, Malawi), and where Benin and India individuals that grouped with either China or east Africa; and in Fig. 3d between China, Malaysia (Kedah State), and Australia (NT, NSW)). Genetic variability between Australian populations (e.g., Strathmore (QLD) vs. NT and NSW) was also evident (Fig. 3d).Figure 3Principal component analysis (PCA) showing variability between selected FAW populations from their invasive ranges. (a) China and Myanmar; (b) Kedah and Johor/Penang populations from Malaysia, (c) China and east African (Uganda/Malawi) populations, (d) Australia (Strathmore, Qld/Northern Territory + New South Wales), China, and Malaysia (Kedah) populations, (e) Australia (Strathmore, Qld) and PNG (Madang Province) populations, (f) Lao PDR/Vietnam and South Korea populations, (g) China and SE Asian (Lao PDR/Vietnam/Myanmar/Philippines/Malaysia) and Pacific/Australia (PNG) populations, and (h) Australia, China and Malaysia (Kedah) populations. Note the overall population genomic variability between countries (e.g., a, c–g) and within countries (e.g., Malaysia (b), Australia (d)). Populations with similar genomic variability are also evident, e.g., for Strathmore (e) and South Korea (f); and for Madang (e) and Lao PDR/Vietnam (f), further supporting potential different population origins of various FAW populations across the current invasive regions. The Southeast Asian and Chinese populations are overall different (g), Australia’s FAW populations showed similarity with both Southeast Asia and China (g, h).Full size imagePCA also showed that differences existed between FAW populations from the Madang Province in PNG and with the Strathmore population from Qld (Fig. 3e). The SEA FAW populations from Lao PDR/Vietnam also exhibited diversity from the South Korean population (Fig. 3f), with the South Korean and Strathmore populations largely exhibiting similar diversity patterns, while the Madang population shared similarity with Laos and Vietnam populations. Plotting all SEA populations against China clearly showed that populations from SEA were distinct from the Chinese FAW populations (Fig. 3g), while in Australia, individuals from various populations shared similarity with both Chinese and SEA FAW. Despite the connectedness of the landscape between SEA and China, SEA largely appeared to have their own FAW populations, with FAW in SEA and in China differing in their genome compositions overall as shown via PCA.PCA further enabled visualisation of genetic diversity amongst Australia FAW populations, suggesting that arrival and establishment of FAW likely involved separate introduction events that followed closely after each other and over a short timeframe. While it had been anticipated that the southward spread of FAW from SEA would necessarily lead to Australia FAW and PNG FAW to share similar genetic backgrounds, the Madang Province FAW population appeared to be different from the Strathmore (Qld) population, with the Madang population being more similar to Lao PDR/Vietnam populations, and the Strathmore population more similar to FAW from South Korea.DivMigrate analysisDirectionality of gene flow between African, South Asia (Indian), East Asia (China) and SE Asian populations were predominantly from China to east African and SE Asian populations (e.g., Figs. 4a, b, S-1; see also Table 3), while movements of FAW in Laos and Vietnam (i.e., the Indochina region) were predominantly with other SEA countries (e.g., with Myanmar and East Africa; Figs. 4c, d, S-2; see also Table 3) but with no directional movements to the three Yunnan populations (CY, XP, YJ). Migration directionality with other SE Asian populations (e.g., Johor (JB; Fig. S-3) and Penang (PN, Fig. S-4)) showed that these two populations (but especially the Johor population) were predominantly source populations for Uganda, Malawi, Philippines, Vietnam, and PNG (Fig. S-3). Bidirectional migration between Myanmar and Laos PDR populations were also detected with the Johor population from Malaysia (Fig. S-3). When India was selected as the source population, bidirectional migration events were detected with Myanmar and with the Cangyuan (CY) populations (Fig. S-5) while unidirectional migration events from India to Uganda and Malawi and to Laos were detected, and the China Yuanjian (YJ) population showed unidirectional migration to India. Unidirectional migration events from CY and YJ populations to the PNG Madang population were detected, while bidirectional migration events between PNG and Myanmar, Laos PDR, Philippines, Vietnam, and with Uganda and Malawi were also detected (Fig. S-6). No migration events were detected between the West African Benin population and with the South Korean population.Figure 4Source populations are CY (a) and XP (b). (c, d) DivMigrate analyses with edge weight setting at 0.453 showing unidirectional (yellow arrow lines) and bidirectional (blue arrow lines) migration between countries in Africa and South Asia/East Asia/SE Asia. Migration rates between populations are as provided in Table 3. (c) Vietnam (VNM) as the source population identified an incidence of unidirectional migration from Malaysia (MYS) Johor state (JB) to Vietnam, while bidirectional migration events were detected from Vietnam to other SE Asian (e.g., Philippines (PHL), Lao PDR (Lao), Myanmar (MMR)), to Pacific/Australia (i.e., Papua New Guinea (PNG)), as well as to east Africa (Uganda (UGA), Malawi (MWI)). (d) Lao PDR (LAO) as source population identified bidirectional migration events between various SEA populations and east African populations, while unidirectional migration events were identified from India (IND) and China (CHN) Yunnan populations (CY, YJ) to Laos PDR. No migration events were evident from SE Asian populations to China.(a, b) DivMigrate analyses with edge weight setting at 0.453 showing unidirectional (yellow arrow lines) and bidirectional (blue arrow lines) gene flow between countries in Africa and South Asia/East Asia/SE Asia. Significant migration rates (at alpha = 0.5) are in red and as provided in Table 3. Incidences of unidirectional migration were predominantly detected from China (CHN) Yunnan populations (CY, XP) to SE Asian populations (e.g., Myanmar (MMR), Laos PDR (Lao), Philippines (PHL)) and to east African populations (e.g., Uganda (UGA), Malawi (MWI)) (a, b).Full size imageTable 3 DivMigrate matrix showing effective migration rates calculated using GST from source to target invasive populations.Full size tableAdmixture analysisAdmixture analyses involving all Australian, Southeast Asian and South Korean populations from this study; and native populations from the Americas and Caribbean Islands, and invasive populations from Africa (Benin, Uganda, Malawi), India, and China33, provided an overall complex picture of population structure that reflected the species’ likely introduction histories across its invasive ranges.Admixture analysis that excluded New World, African and Indian populations identified four genetic clusters (i.e., K = 4) to best describe these invasive populations from SEA, and EA (i.e., China, South Korea), and Pacific/Australia (Fig. 5a). At K = 4, Australian populations from NT and NSW, YJ population from China, South Korean, and Malaysia’s Kedah population, each showed unique admixture patterns (i.e., some individuals from NT and NSW populations lacked cluster 3; most of YJ (but also some CY and XP) individuals lacked clusters 1 and 2; South Korean (e.g., MF individuals) lacked cluster 2; Malaysia’s Kedah population lacked evidence of admixture (i.e., reflecting its laboratory culture history) and was made up predominantly by individuals that belonged to cluster 4. Populations from China also differed from most populations from SEA due to the overall absence of genetic cluster 4. Taken as a whole, establishment of the FAW populations in China, Malaysia, vs. other SE Asian populations, and between Australian populations (e.g., NT/NSW cf. WA/Qld), likely involved individuals from diverse genetic background (i.e., multiple introductions). At K = 4, the majority of Australian populations appeared to contain genetic clusters similar to China (i.e., cluster 3) and to SEA (i.e., cluster 2).Figure 5Admixture and corresponding CV plots for FAW populations from: (a) Australia, China, South Korea, Lao PDR, Myanmar, Malaysia, Philippines, PNG, and Vietnam, and (b) Benin, China, India, South Korea, Lao PDR, Myanmar, Malaysia, Philippines, PNG, Tanzania, and Vietnam. Optimal ancestral genetic clusters are K = 4 for both admixture plots. Boxed individuals have unique admixture patterns at K = 4 when compared with other populations. China FAW lacked Cluster 2 (navy blue colour; present in almost all SEA and Australian FAW), while in NSW and NT some individuals lacked cluster 3. South Korea ‘MF’ population generally lacked cluster 2, while Kedah (Malaysia) showed distinct (cluster 4) pattern for all individuals. The overall same observations are evident in the admixture plot in (b), with African FAW generally exhibiting admixture patterns similar to SEA populations than to Chinese FAW. With the exception of Kedah (Malaysia) and some Chinese FAW individuals, all FAW in the invasive range showed evidence of genomic admixture (i.e., hybrid signature). The figures were generated using the POPHELPER program  and further manipulated in Microsoft PowerPoint for Mac v16.54.Full size imageOverall admixture patterns at best K = 4 in China and SEA remained unchanged when analysed together with African and Indian individuals (Fig. 5b; excluded Australia). Benin individuals were either similar to China or to SEA, while eastern African populations (e.g., Uganda, Malawi) were similar to Southeast Asian populations from e.g., Vietnam, Laos, and is in agreement with the phylogenetic inference (Fig. 3) that identified these African individuals as having loci that were derived from Southeast Asian populations.Genome-wide SNP loci demonstrated that invasive FAW populations from SEA and Australia exhibited admixed genomic signatures similar to that observed in other invasive populations33,34. While the current invasive populations in Africa and Asia likely arrived already as hybrids as suggested by Yainna et al.68, the Malaysia Kedah State population was potentially established by offspring of a non-admixed female. Distinct admixture patterns in Malaysian FAW populations between Kedah and Johor/Penang states therefore suggested that establishment of these populations was likely as separate introduction events. As reported also in Tay et al.33, the Chinese YJ population appeared to have admixed signature that differed from XP and CY populations, and suggested that the YJ population could have a different introduction history than the XP and CY populations. Similar multiple genetic signatures based on lesser nuclear markers by Jiang et al.39 also supported likely multiple introductions of China Yunnan populations. More

  • in

    Nature-positive goals for an organization’s food consumption

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    Díaz, S., et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).Article 

    Google Scholar 
    Locke, H., et al. A Nature-Positive World: The Global Goal for Nature (Wildlife Conservation Society, 2020); https://library.wcs.org/doi/ctl/view/mid/33065/pubid/DMX3974900000.aspxOpen-ended Working Group on the Post-2020 Global Biodiversity Framework. First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (Convention on Biological Diversity, 2021).Open-Ended Working Group on the Post-2020 Global Biodiversity Framework. Draft Recommendation Submitted by the Co-Chairs CBD/WG2020/4/L.2-ANNEX (Convention on Biological Diversity, 2022).Environment Act 2021 (UK) (HM Government, 2021); https://www.legislation.gov.uk/ukpga/2021/30/contents/enactedBull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    Prendeville, S., Cherim, E. & Bocken, N. Circular cities: mapping six cities in transition. Environ. Innov. Soc. Transit. 26, 171–194 (2018).de Silva, G. C., Regan, E. C., Pollard, E. H. B. & Addison, P. F. E. The evolution of corporate no net loss and net positive impact biodiversity commitments: understanding appetite and addressing challenges. Bus. Strategy Environ. 28, 1481–1495 (2019).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early‐adopter jurisdictions in England. Conserv. Lett. 14, e12820 (2021).Article 

    Google Scholar 
    McGlyn, J., et al. Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020); https://sciencebasedtargetsnetwork.org/resource-repository/zu Ermgassen, S. O. S. E. et al. Are corporate biodiversity commitments consistent with delivering ‘nature-positive’ outcomes? A review of ‘nature-positive’ definitions, company progress and challenges. J. Clean. Prod. 379, 134798 (2022).Article 

    Google Scholar 
    Addison, P. F. E., Bull, J. W. & Milner‐Gulland, E. J. Using conservation science to advance corporate biodiversity accountability. Conserv. Biol. 33, 307–318 (2019).Article 

    Google Scholar 
    Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Maron, M. et al. Setting robust biodiversity goals. Conserv. Lett. https://doi.org/10.1111/conl.12816 (2021).Newing, H. & Perram, A. What do you know about conservation and human rights? Oryx 53, 595–596 (2019).Article 

    Google Scholar 
    Standard on Biodiversity Offsets (The Business and Biodiversity Offsets Programme, 2012).Arlidge, W. N. S., et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2020).Article 

    Google Scholar 
    Gupta, T. et al. Mitigation of elasmobranch bycatch in trawlers: a case study in Indian fisheries. Front. Mari. Sci. 7, 571 (2020).Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environ. Change 52, 152–161 (2018).Article 

    Google Scholar 
    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).Article 

    Google Scholar 
    Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. BioScience 68, 336–347 (2018).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 
    ADS 

    Google Scholar 
    Wolff, A., Gondran, N. & Brodhag, C. Detecting unsustainable pressures exerted on biodiversity by a company. Application to the food portfolio of a retailer. J. Clean. Prod. 166, 784–797 (2017).Article 

    Google Scholar 
    FAOSTAT Analytical Brief 15 Land Use and Land Cover Statistics: Global, Regional and Country Trends, 1990–2018 (FAO, 2020).Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).Article 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    ADS 

    Google Scholar 
    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).Article 

    Google Scholar 
    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Benton, T. G. et al. A ‘net zero’ equivalent target is needed to transform food systems. Nat. Food 2, 905–906 (2021). 2021.Article 

    Google Scholar 
    Crenna, E., Sinkko, T. & Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 227, 378–391 (2019).Article 
    CAS 

    Google Scholar 
    Bull, J. W., et al. Analysis: the biodiversity footprint of the University of Oxford. Nature 604, 420–424 (2022).Harrington, R. A., Adhikari, V., Rayner, M. & Scarborough, P. Nutrient composition databases in the age of big data: foodDB, a comprehensive, real-time database infrastructure. BMJ Open 9, e026652 (2019).Article 

    Google Scholar 
    Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Winter, L., Lehmann, A., Finogenova, N. & Finkbeiner, M. Including biodiversity in life cycle assessment—state of the art, gaps and research needs. Environ. Impact Assess. Rev. 67, 88–100 (2017).Article 

    Google Scholar 
    Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Global Environ. Change 38, 195–204 (2016).Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, B., et al. National Diet and Nutrition Survey Years 1 to 9 of the Rolling Programme (2008/2009–2016/2017): Time Trend and Income Analyses (Public Health England & Food Standards Agency, 2019).Stewart, C., Piernas, C., Cook, B. & Jebb, S. A. Trends in UK meat consumption: analysis of data from years 1–11 (2008–09 to 2018–19) of the National Diet and Nutrition Survey rolling programme. Lancet Planet. Health 5, e699–e708 (2021).Article 

    Google Scholar 
    Nielsen, K. S. et al. Improving climate change mitigation analysis: a framework for examining feasibility. One Earth 3, 325–336 (2020).Article 
    ADS 

    Google Scholar 
    Selinske, M. J. et al. We have a steak in it: eliciting interventions to reduce beef consumption and its impact on biodiversity. Conserv. Lett. 13, e12721 (2020).Article 

    Google Scholar 
    Hollands, G. J. et al. The TIPPME intervention typology for changing environments to change behaviour. Nat. Hum. Behav. 1, 1–9 (2017).Article 

    Google Scholar 
    Marteau, T. M., Hollands, G. J. & Fletcher, P. C. Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337, 1492–1495 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).Article 

    Google Scholar 
    Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).Article 
    ADS 

    Google Scholar 
    Godar, J., Suavet, C., Gardner, T. A., Dawkins, E. & Meyfroidt, P. Balancing detail and scale in assessing transparency to improve the governance of agricultural commodity supply chains. Environ. Res. Lett. 11, 035015 (2016).Article 
    ADS 

    Google Scholar 
    DeFries, R. S., Fanzo, J., Mondal, P., Remans, R. & Wood, S. A. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence. Environ. Res. Lett. 12, 033001 (2017).Article 
    ADS 

    Google Scholar 
    Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).Article 

    Google Scholar 
    Waddock, S. Achieving sustainability requires systemic business transformation. Glob. Sustain. 3, e12 (2020).Travers, H., Walsh, J., Vogt, S., Clements, T. & Milner-Gulland, E. J. Delivering behavioural change at scale: what conservation can learn from other fields. Biol. Conserv. 257, 109092 (2021).Article 

    Google Scholar 
    Gaupp, F. et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food 2, 928–934 (2021).Article 

    Google Scholar 
    Astill, J. et al. Transparency in food supply chains: a review of enabling technology solutions. Trends Food Sci. Technol. 91, 240–247 (2019).Article 
    CAS 

    Google Scholar 
    Poore, J & Nemecek, T. Full Excel model: life-cycle environmental impacts of food drink products. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:a63fb28c-98f8-4313-add6-e9eca99320a5 (2018).Clark, M., et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).Clark, M., et al. Supplemental Data for ‘Estimating the environmental impacts of 57,000 food products’. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:4ad0b594-3e81-4e61-aefc-5d869c799a87 (2022).Bianchi, F., Dorsel, C., Garnett, E., Aveyard, P. & Jebb, S. A. Interventions targeting conscious determinants of human behaviour to reduce the demand for meat: a systematic review with qualitative comparative analysis. IJBNPA 15, 102 (2018).
    Google Scholar 
    Bianchi, F., Garnett, E., Dorsel, C., Aveyard, P. & Jebb, S. A. Restructuring physical micro-environments to reduce the demand for meat: a systematic review and qualitative comparative analysis. Lancet Planet. Health 2, e384–e397 (2018).Article 

    Google Scholar 
    Hillier-Brown, F. C. et al. The impact of interventions to promote healthier ready-to-eat meals (to eat in, to take away or to be delivered) sold by specific food outlets open to the general public: a systematic review. Obes. Rev. 18, 227–246 (2017).Article 
    CAS 

    Google Scholar 
    von Philipsborn, P. et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 6, Cd012292 (2019).
    Google Scholar 
    Attwood, S., Voorheis, P., Mercer, C., Davies, K. & Vennard, D. Playbook for Guiding Diners toward Plant-Rich Dishes in Food Service (World Resources Institute, 2020); https://www.wri.org/research/playbook-guiding-diners-toward-plant-rich-dishes-food-serviceGarnett, E. E., Balmford, A., Sandbrook, C., Pilling, M. A. & Marteau, T. M. Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proc. Natl Acad. Sci. USA 116, 20923 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Reinders, M. J., Huitink, M., Dijkstra, S. C., Maaskant, A. J. & Heijnen, J. Menu-engineering in restaurants—adapting portion sizes on plates to enhance vegetable consumption: a real-life experiment. IJBNPA 14, 41 (2017).
    Google Scholar 
    Brunner, F., Kurz, V., Bryngelsson, D. & Hedenus, F. Carbon label at a university restaurant—label implementation and evaluation. Ecol. Econ. 146, 658–667 (2018).Article 

    Google Scholar 
    McClain, A. D., Hekler, E. B. & Gardner, C. D. Incorporating prototyping and iteration into intervention development: a case study of a dining hall-based intervention. J. Am. Coll. Health 61, 122–131 (2013).Article 

    Google Scholar 
    de Vaan, J. Eating Less Meat: How to Stimulate the Choice for a Vegetarian Option without Inducing Reactance. MSc thesis, Radboud Univ. (2018). More

  • in

    Temperature fluctuation promotes the thermal adaptation of soil microbial respiration

    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. PLoS ONE 11, e0165448 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Y. et al. A data-driven global soil heterotrophic respiration dataset and the drivers of its inter‐annual variability. Glob. Biogeochem. Cycle 35, e2020GB006918 (2021).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Janssens, I. A. & Luo, Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).Article 

    Google Scholar 
    Wang, Q. et al. Soil microbial respiration rate and temperature sensitivity along a north–south forest transect in eastern China: patterns and influencing factors. J. Geophys. Res. Biogeosci. 121, 399–410 (2016).Article 

    Google Scholar 
    Sihi, D. et al. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agric. Meteorol. 252, 155–166 (2018).Article 

    Google Scholar 
    Shao, P., Zeng, X., Moore, D. J. P. & Zeng, X. Soil microbial respiration from observations and Earth system models. Environ. Res. Lett. 8, 034034 (2013).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).Article 

    Google Scholar 
    Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26, 3221–3229 (2020).Article 

    Google Scholar 
    Nie, M. et al. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16, 234–241 (2013).Article 
    PubMed 

    Google Scholar 
    Ji, F., Wu, Z., Huang, J. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Change 4, 462–466 (2014).Article 

    Google Scholar 
    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Chan, W. P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Biederbeck, V. O. & Campbell, C. A. Soil microbial activity as influenced by temperature trends and fluctuations. Can. J. Soil Sci. 53, 363–375 (1973).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Alster, C. J., Robinson, J. M., Arcus, V. L. & Schipper, L. A. Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory. Biogeochemistry 158, 131–141 (2022).Article 
    CAS 

    Google Scholar 
    Moinet, G. Y. K. et al. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Glob. Change Biol. 27, 6217–6231 (2021).Article 

    Google Scholar 
    Feng, J. et al. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 1, 71 (2021).Article 

    Google Scholar 
    Li, J. et al. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Sci. Bull. 66, 2036–2044 (2021).Article 
    CAS 

    Google Scholar 
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 10, 2593–2604 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, B. & Cheng, W. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol. Biochem. 43, 866–869 (2011).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).Article 
    PubMed 

    Google Scholar 
    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in Arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 
    PubMed 

    Google Scholar 
    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 
    PubMed 

    Google Scholar 
    Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Change Biol. 28, 2820–2829 (2022).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).Article 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecol. Lett. 25, 2489–2499 (2022).Article 
    PubMed 

    Google Scholar 
    Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramadhin, C., Yi, C. & Hendrey, G. Temperature variance portends and indicates the extent of abrupt climate shifts. IOP SciNotes 2, 014002 (2021).Article 

    Google Scholar 
    Sun, Y. Q. & Ge, Y. Temporal changes in the function of bacterial assemblages associated with decomposing earthworms. Front. Microbiol. 12, 682224 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z., Xu, J., Li, X., Li, R. & Li, Q. Links of extracellular enzyme activities, microbial metabolism, and community composition in the river-impacted coastal waters. J. Geophys. Res. Biogeosci. 124, 3507–3520 (2019).Article 

    Google Scholar 
    Razanamalala, K. et al. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J. 12, 451–462 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).Article 
    CAS 

    Google Scholar 
    Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qiao, N. et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Change Biol. 20, 1943–1954 (2014).Article 

    Google Scholar 
    Ning, Q. et al. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Glob. Change Biol. 27, 5976–5988 (2021).Article 
    CAS 

    Google Scholar 
    Wan, S. & Luo, Y. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob. Biogeochem. Cycle 17, 1054 (2003).Article 

    Google Scholar 
    Gillabel, J., Cebrian-Lopez, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Change Biol. 16, 2789–2798 (2010).Article 

    Google Scholar 
    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).Article 
    CAS 

    Google Scholar 
    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Howard, D. M. & Howard, P. J. A. Relationships between CO2 evolution, moisture-content and temperature for a range of soil types. Soil Biol. Biochem. 25, 1537–1546 (1993).Article 

    Google Scholar 
    Hoyle, F. C., Murphy, D. V. & Brookes, P. C. Microbial response to the addition of glucose in low-fertility soils. Biol. Fertil. Soils 44, 571–579 (2008).Article 
    CAS 

    Google Scholar 
    Mau, R. L. et al. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).Article 

    Google Scholar 
    Billings, S. A. & Ballantyne, F. T. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).Article 

    Google Scholar 
    Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).Article 

    Google Scholar 
    Min, K. et al. Temperature sensitivity of biomass-specific microbial exo-enzyme activities and CO2 efflux is resistant to change across short- and long-term timescales. Glob. Change Biol. 5, 1793–1807 (2019).Article 

    Google Scholar 
    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field-Fote, E. E. Mediators and moderators, confounders and covariates: exploring the variables that illuminate or obscure the “active ingredients” in neurorehabilitation. J. Neurol. Phys. Ther. 43, 83–84 (2019).Article 
    PubMed 

    Google Scholar 
    Anderson, T. H. & Domsch, K. H. Soil microbial biomass: the eco-physiological approach. Soil Biol. Biochem. 12, 2039–2043 (2010).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils—the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Koljalg, U. et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 166, 1063–1068 (2005).Article 
    CAS 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).Article 
    CAS 

    Google Scholar 
    Mazerolle, M. Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib. Reptil. 2, 169–180 (2006).Article 

    Google Scholar 
    Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).Article 
    CAS 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar  More