Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead
1.
Rezapour, S., Atashpaz, B., Moghaddam, S. S. & Damalas, C. A. Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Sci. Total Environ. 656, 261–269. https://doi.org/10.1016/j.scitotenv.2018.11.288 (2019).
ADS CAS Article PubMed Google Scholar
2.
Wang, S., Wu, W., Liu, F., Liao, R. & Hu, Y. Accumulation of heavy metals in soil–crop systems: a review for wheat and corn. Environ. Sci. Pollut. Res. 24, 15209–15225. https://doi.org/10.1007/s11356-017-8909-5 (2017).
CAS Article Google Scholar
3.
Rezapour, S., Kouhinezhad, P., Samadi, A. & Rezapour, M. Level, pattern, and risk assessment of the selected soil trace metals in the calcareous cultivated Vertisols. Chem. Ecol. 8, 692–706. https://doi.org/10.1080/02757540.2013.810728 (2015).
CAS Article Google Scholar
4.
Zhang, Y. et al. Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Sci. Total Environ. 622–623, 1499–1508. https://doi.org/10.1016/j.scitotenv.2017.09.317 (2018).
ADS CAS Article PubMed Google Scholar
5.
Gill, R. A. et al. Reduced glutathione mediates pheno-ultrastructure kinome and transportome in chromium-induced Brassica napus L.. Front. Plant Sci. 8, 2037. https://doi.org/10.3389/fpls.2017.02037 (2017).
Article PubMed PubMed Central Google Scholar
6.
Khan, M. U., Malik, R. N. & Muhammad, S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 93, 2230–2238. https://doi.org/10.1016/j.chemosphere.2013.07.067 (2013).
ADS CAS Article PubMed Google Scholar
7.
Zajac, L. et al. Probabilistic estimates of prenatal lead exposure at toxic hotspots in low- and middle-income countries. Environ. Res. 183, 109251. https://doi.org/10.1016/j.envres.2020.109251 (2020).
CAS Article PubMed Google Scholar
8.
Odongo, A. O., Moturi, W. N. & Mbuthia, E. K. Heavy metals and parasitic geo helminths toxicity among geophagous pregnant women: a case study of Nakuru Municipality, Kenya. Environ. Geochem. Health 38, 123–131. https://doi.org/10.1007/s10653-015-9690-3 (2015).
CAS Article PubMed Google Scholar
9.
Vergara, C., María, C., Judith, L. P. & Rodriguez, H. Effects of co-cropping on soybean growth and stress response in lead-polluted soils. Chemosphere 246, 125833. https://doi.org/10.1016/j.chemosphere.2020.125833 (2020).
ADS CAS Article Google Scholar
10.
Shekar, C. C., Sammaiah, D., Shasthree, T. & Reddy, K. J. Effect of mercury on tomato growth and yield attributes. Int. J. Pharm. Biol. Sci. 2, B358–B364. https://doi.org/10.1007/s11356-018-1498-0 (2011).
CAS Article Google Scholar
11.
Tiwari, K., Singh, N. K. & Rai, U. N. Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake. Bull. Environ. Contam. Toxicol. 91, 339–344. https://doi.org/10.1007/s00128-013-1047-y (2013).
CAS Article PubMed Google Scholar
12.
Bergqvist, C., Herbert, R., Persson, I. & Greger, M. Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables. Environ. Pollut. 184, 540–546. https://doi.org/10.1016/j.envpol.2013.10.003 (2014).
CAS Article PubMed Google Scholar
13.
Rizwan, M. et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182, 90–105. https://doi.org/10.1016/j.chemosphere.2017.05.013 (2017).
ADS CAS Article PubMed Google Scholar
14.
Rafaqat, A. G. et al. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.. Chemosphere 120, 154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029 (2015).
ADS CAS Article Google Scholar
15.
Ali, B. et al. Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L.. PLoS ONE 10(4), e0123328. https://doi.org/10.1371/journal.pone.0123328 (2015) (eCollection).
CAS Article PubMed PubMed Central Google Scholar
16.
Basharat, A. et al. Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind. Crops Prod. 52, 617–626. https://doi.org/10.1016/j.indcrop.2013.11.033 (2014).
CAS Article Google Scholar
17.
Gill, R. A. et al. Genotypic variation of the responses to chromium toxicity in four oilseed rape cultivars. Biol. Plant. 58, 539–550. https://doi.org/10.1007/s10535-014-0430-9 (2014).
CAS Article Google Scholar
18.
Tandon, V., Gupta, B. M. & Tandon, R. Free radicals/reactive oxygen species. JK Pract. Nurs. Res. Pract. 12, 143–148. https://doi.org/10.1155/2011/260482 (2005).
Article Google Scholar
19.
Yang, Y., Liu, H., Xiang, X. H. & Liu, F. Y. Outline of occupational chromium poisoning in China. Bull Environ. Contam. Toxicol. 90, 742–749. https://doi.org/10.1007/s00128-013-0998-3 (2013).
CAS Article PubMed Google Scholar
20.
Vaiserman, A. M. Aging-modulating treatments: from reductionism to a system oriented perspective. Front. Genet. 5, 1–3. https://doi.org/10.3389/fgene.2014.00446 (2016).
CAS Article Google Scholar
21.
Bewley, J.D. & Black, M. Biochemistry of germination and growth. In: Physiology and Biochemistry of seeds in relation to germination. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66668-1_5 (1978).
22.
Zadoks, J. C., Chang, T. T. & Konzak, C. T. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).
Article Google Scholar
23.
Vernay, P. et al. Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere 72, 763–771. https://doi.org/10.1016/j.chemosphere.2008.03.018 (2008).
ADS CAS Article PubMed Google Scholar
24.
Arnon, D. T. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. J. Plant Physiol. 24, 1–15. https://doi.org/10.1104/pp.24.1.1 (1949).
CAS Article Google Scholar
25.
Zofia, L., Kmiecik, W. & Korus, A. Content of vitamin C, carotinoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J. Food Compos. Anal. 19, 134–140. https://doi.org/10.1016/j.jfca.2005.04.009 (2006).
CAS Article Google Scholar
26.
Ryan, J., Estfan, G. & Rashid, A. Soil and Plant Analysis Laboratory Manual. 2nd ed., pp. 87–89. ISBN 9788172337650 (2001).
27.
Panichev, N., Mandiwana, K., Kataeva, M. & Siebert, S. Determination of Cr (VI) in plants by electrothermal atomic absorption spectrometry after leaching with sodium carbonate. Spectrochim. Acta Part B 60, 699–703. https://doi.org/10.1016/j.sab.2005.02.018 (2005).
ADS CAS Article Google Scholar
28.
Chandra, R., Kumar, P. K. & Singh, J. Impact of an aerobically treated and untreated (raw) distillery effluent irrigation on soil micro flora, growth, total chlorophyll and protein contents of Phaseolus aureus L.. J. Environ. Biol. 25, 381–385 (2004).
PubMed Google Scholar
29.
Velthof, G., Van-Beusichem, M. & Raijmakers, W. Relationship between availability indices and plant uptake of nitrogen and phosphorus from organic products. Plant Soil 200, 215. https://doi.org/10.1023/A:1004336903214 (1998).
CAS Article Google Scholar
30.
Steel, R. G. D. & Torrie, J. H. Principles and Procedures of Statistics 172–177 (McGraw Hill Book Crop., Inc., Singapore, 1984).
Google Scholar
31.
Chun, X. L. et al. Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci. 19, 725–732. https://doi.org/10.1016/S1001-0742(07)60121-1 (2007).
Article Google Scholar
32.
Alghobar, M. A. & Suresha, A. Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka India. J. Saudi Soc. Agric. Sci. 16, 49–59. https://doi.org/10.1016/j.jssas.2015.02.002 (2017).
Article Google Scholar
33.
Yourtchi, M. S. & Bayat, H. Y. Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV). Int. J. Agric. Crop Sci. 6, 1099–1103 (2013).
CAS Google Scholar
34.
Barberon, M. & Geldner, N. Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol. 166, 528–537. https://doi.org/10.1104/pp.114.246124 (2014).
CAS Article PubMed PubMed Central Google Scholar
35.
Shahid, M. et al. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 232, 1–44. https://doi.org/10.1007/978-3-319-06746-9_1 (2014).
CAS Article PubMed Google Scholar
36.
Yadav, K. K. et al. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol. Eng. 120, 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039 (2018).
Article Google Scholar
37.
Gopal, R. & Rizvi, A. H. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70, 1539–1544. https://doi.org/10.1016/j.chemosphere.2007.08.043 (2008).
ADS CAS Article PubMed Google Scholar
38.
Antoniadis, V. et al. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation—a review. Earth Sci. Rev. 172, 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005 (2017).
ADS CAS Article Google Scholar
39.
Hamid, N., Bukhari, N. & Jawaid, F. Physiological responses of phaseolus vulgaris to different lead concentrations. Pak. J. Bot. 42, 239–246 (2010).
CAS Google Scholar
40.
Osma, M., Serin, Z. & Leblebici, A. Heavy metals accumulation in some vegetables and soils in Istanbul. Ekoloji. 21, 1–8. https://doi.org/10.5053/ekoloji.2011.821 (2012).
CAS Article Google Scholar
41.
Singh, S., Parihar, P., Singh, R., Singh, V. P. & Prasad, S. M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 6, 1143–1148. https://doi.org/10.3389/fpls.2015.01143 (2015).
Article PubMed Google Scholar
42.
Zeng, L. S., Liao, M., Chen, C. L. & Huang, C. Y. Effects of lead contamination on soil microbial activity and physiological indices in soil-Pb-rice (Oryza sativa L.) system. Chemosphere 65, 567–574. https://doi.org/10.1016/j.chemosphere.2006.02.039 (2006).
ADS CAS Article PubMed Google Scholar
43.
Qadir, S., Qureshi, M. I., Javed, S. & Abdin, M. Z. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci. 167, 1171–1181. https://doi.org/10.1016/j.plantsci.2004.06.018 (2004).
CAS Article Google Scholar
44.
Xiong, T. T. et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ. Geochem. Health 36, 897–909. https://doi.org/10.1007/s10653-014-9607-6 (2014).
CAS Article PubMed Google Scholar
45.
Zheljazkov, V. D. & Nielsen, N. E. Effect of heavy metals on peppermint and cornmint. Plant Soil 178, 59–66. https://doi.org/10.1007/BF00011163 (1996).
CAS Article Google Scholar
46.
Lavado, R. S., Porcelli, C. A. & Alvarez, R. Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in Argentine Pampas. Soil Tillage Res. 62, 55–60. https://doi.org/10.1016/S0167-1987(01)00216-1 (2001).
Article Google Scholar
47.
Gupta, N. et al. Trace elements in soil-vegetables interface: translocation, bioaccumulation, toxicity and amelioration—a review. Sci. Total Environ. 651, 2927–2942. https://doi.org/10.1016/j.scitotenv.2018.10.047 (2019).
ADS CAS Article PubMed Google Scholar
48.
Ho, W. M., Ang, L. H. & Lee, D. K. Assessment of Pb uptake, translocation in Kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J. Evniron. Sci. 20, 1341–47. https://doi.org/10.1016/S1001-0742(08)62231-7 (2008).
CAS Article Google Scholar
49.
Vogel-Mikus, K., Drobne, D. & Regvar, M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ. Pollut. 133, 233–242. https://doi.org/10.1016/j.envpol.2004.06.021 (2005).
CAS Article PubMed Google Scholar
50.
Liu, J. G., Li, K. Q., Xu, J. K. & Zhang, Z. J. Lead toxicity, uptake and translocation in different rice cultivars. Plant Sci. 165, 793–802. https://doi.org/10.1016/S0168-9452(03)00273-5 (2003).
CAS Article Google Scholar
51.
Zhang, M. K., Liu, Z. Y. & Wang, H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal. 41, 820–831. https://doi.org/10.1080/00103621003592341 (2010).
CAS Article Google Scholar
52.
Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063 (2016).
CAS Article PubMed Google Scholar
53.
Sharma, R. K., Agrawal, M., Bhushan, S. & Agrawal, S. B. Physiological and biochemical responses resulting from cadmium and zinc accumulation in carrot plants. J. Plant Nutr. 33, 1066–1079. https://doi.org/10.1080/01904161003729774 (2010).
CAS Article Google Scholar
54.
McBride, M. B., Shayler, H. A., Russell-Anelli, J. M., Spliethoff, H. M. & Marquez, L. G. Arsenic and lead uptake by vegetable crops grown on an old Orchard site amended with compost. Water Air Soil Pollut. 226, 265–272. https://doi.org/10.1007/s11270-015-2529-9 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar More
