Citizen science helps in the study of fungal diversity in New Jersey
Martinez-Garcia, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D. & van der Heijden, M. G. A. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob. Chang. Biol. 23, 5228–5236 (2017).Article
ADS
Google Scholar
Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).Article
Google Scholar
Cairney, J. W. G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 47, 198–208 (2012).Article
CAS
Google Scholar
Milovic, M., Kebert, M. & Orlovic, S. How mycorrhizas can help forests to cope with ongoing climate change? Sumar. List 145, 279–286 (2021).Article
Google Scholar
Hawksworth, D. L. & Luecking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, 5.4.10 (2017).Article
Google Scholar
Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).Article
CAS
Google Scholar
Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).Article
Google Scholar
Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).Article
ADS
CAS
Google Scholar
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).Article
Google Scholar
Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, e2022MS003204 (2022).Article
ADS
CAS
Google Scholar
Jaouen, G. et al. Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset. Sci. Data 6, 206 (2019).Article
Google Scholar
Beninde, J. et al. CaliPopGen: A genetic and life history database for the fauna and flora of California. Sci. Data 9, 380 (2022).Article
Google Scholar
Gyeltshen, C. & Prasad, K. Biodiversity checklists for Bhutan. Biodivers. Data J. 10, e83798 (2022).Article
Google Scholar
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).Article
ADS
CAS
Google Scholar
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).Article
ADS
Google Scholar
Melo, C. D., Walker, C., Freitas, H., Machado, A. C. & Borges, P. A. V. Distribution of arbuscular mycorrhizal fungi (AMF) in Terceira and Sao Miguel Islands (Azores). Biodivers. Data J. 8, e49759 (2020).Article
Google Scholar
Ordynets, A. et al. Aphyllophoroid fungi in insular woodlands of eastern Ukraine. Biodivers. Data J. 5, e22426 (2017).Article
Google Scholar
Monteiro, M. et al. A database of the global distribution of alien macrofungi. Biodivers. Data J. 8, e51459 (2020).Article
Google Scholar
Filippova, N. et al. Yugra State University Biological Collection (Khanty-Mansiysk, Russia): general and digitisation overview. Biodivers. Data J. 10, e77669 (2022).Article
Google Scholar
Wu, B. et al. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10, 127–140 (2019).Article
Google Scholar
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).Article
CAS
Google Scholar
Gorczak, M. et al. 18th Congress of European Mycologists Bioblitz 2019 – naturalists contribute to the knowledge of mycobiota and lichenobiota of Białowieża Primeval Forest. Acta Mycol. 55, 1–26 (2020).
Google Scholar
Goncalves, S. C., Haelewaters, D., Furci, G. & Mueller, G. M. Include all fungi in biodiversity goals. Science 373, 403–403 (2021).Article
ADS
Google Scholar
Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 35, 502–509 (2021).Article
Google Scholar
Allen, E. B. et al. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170, 47–62 (1995).Article
CAS
Google Scholar
Mueller, G. M. & Schmit, J. P. Fungal biodiversity: what do we know? What can we predict? Biodivers. Conserv. 16, 1–5 (2007).Article
Google Scholar
Waters, D. P. & Lendemer, J. C. The lichens and allied fungi of Mercer County, New Jersey. Opusc. Philolichenum 18, 17–51 (2019).
Google Scholar
Waters, D. P. & Lendemer, J. C. A revised checklist of the lichenized, lichenicolous and allied fungi of New Jersey. Bartonia, 1–62 (2019).Schwarze, C. A. The parasitic fungi of New Jersey. (New Jersey Agricultural Experiment Stations, 1917).Moose, R. A., Schigel, D., Kirby, L. J. & Shumskaya, M. Dead wood fungi in North America: an insight into research and conservation potential. Nat. Conserv. 32, 1–17 (2019).Article
Google Scholar
Hibbett, D. S. et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547 (2007).Article
Google Scholar
Hibbett, D. The invisible dimension of fungal diversity. Science 351, 1150–1151 (2016).Article
ADS
CAS
Google Scholar
James, T. Y., Stajich, J. E., Hittinger, C. T. & Rokas, A. Toward a Fully Resolved Fungal Tree of Life. Annu. Rev. Microbiol. 74, 291–313 (2020).Article
CAS
Google Scholar
Braghiere, R. K. et al. Mycorrhizal distributions impact global patterns of carbon and nutrient cycling. Geophys. Res. Lett. 48, e2021GL094514 (2021).Article
ADS
CAS
Google Scholar
Bonney, R. et al. Citizen science: A developing tool for expanding science knowledge and scientific literacy. Bioscience 59, 977–984 (2009).Article
Google Scholar
Van Vliet, K. & Moore, C. Citizen science initiatives: engaging the public and demystifying science. J. Microbiol. Biol. Educ. 17, 13–16 (2016).Article
Google Scholar
Feldman, M. J. et al. Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review. PLoS One 16, e0234587 (2021).Article
CAS
Google Scholar
Shumskaya, M. et al. Fungi of parks, forests and reserves of New Jersey (2007–2019). Version 1.4. Sampling event dataset. Kean University https://doi.org/10.15468/7scek4 (2022).Heilmann-Clausen, J. et al. How citizen science boosted primary knowledge on fungal biodiversity in Denmark. Biol. Conserv. 237, 366–372 (2019).Article
Google Scholar
GBIF.Org User. NJMA dataset. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.93232n (2022).GBIF.Org User. New Jersey Agaricomycetes. GBIF Occurrence Download. Dataset. GBIF https://doi.org/10.15468/dl.6j6382 (2022).GBIF.Org User. USA Agaricomycetes. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.ncukzy (2022).GBIF.Org User. Global records Agaricomycetes. GBIF Occurrence Download. GBIF https://doi.org/10.15468/dl.nk54e7 (2022).Meyke, E. When data management meets project management. Biodivers. Inf. Sci. Stand. 3, e37224 (2019).
Google Scholar
Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).Article
ADS
CAS
Google Scholar
Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Data Descriptor: introducing the global register of introduced and invasive species. Sci. Data 5, 170102 (2018).Article
Google Scholar
Registry-Migration.Gbif.Org.GBIF Backbone Taxonomy. GBIF Secretariat. https://doi.org/10.15468/39omei (2021).Mesibov, R. Archived websites: A Data Cleaner’s Cookbook (version 3) and all BASHing data blog posts 1–200. Zenodo https://doi.org/10.5281/zenodo.6423347 (2022).Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, e3304v3301 (2017).
Google Scholar
Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.1. Available from https://cran.rproject.org/package=rgbif (2022).Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article
Google Scholar
Sousa, D. et al. Tree canopies reflect mycorrhizal composition. Geophys. Res. Lett. 48, e2021GL092764 (2021).Article
ADS
Google Scholar
R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (2016).Bederson, B. B., Shneiderman, B. & Wattenberg, M. Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Trans. Graph. 21, 833–854 (2002).Article
Google Scholar
Simpson, H. J. & Schilling, J. S. Using aggregated field collection data and the novel r package fungarium to investigate fungal fire association. Mycologia 113, 842–855 (2021).Article
Google Scholar
Robertson, T. et al. The GBIF Integrated Publishing Toolkit: Facilitating the efficient publishing of biodiversity data on the Internet. PLoS One 9, e102623 (2014).Article
ADS
Google Scholar More