More stories

  • in

    Plant traits and marsh fate

    Coleman, D. J. et al. Limnol. Oceanogr. Lett. 7, 140–149 (2022).Article 

    Google Scholar 
    Noyce, G. L. et al. https://doi.org/10.1038/s41561-022-01070-6 (2022).Kirwan, M. L. & Megonigal, J. P. Nature 504, 53–60 (2013).Article 

    Google Scholar 
    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerve, B. & Cahoon, D. R. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Proc. Natl Acad. Sci. 116, 21623–21628 (2019).Article 

    Google Scholar 
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Proc. Natl Acad. Sci. 106, 182–6186 (2009).Article 

    Google Scholar 
    Dean, J. F. et al. Rev. Geophys. 56, 207–250 (2018).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).Lin, Y. et al. Water Res. 205, 117682 (2021).Article 

    Google Scholar 
    Zakharova, L., Meyer, K. M. & Seifan, M. Ecol. Modell. 407, 108703 (2019).Article 

    Google Scholar  More

  • in

    Bald eagle mortality and nest failure due to clade 2.3.4.4 highly pathogenic H5N1 influenza a virus

    Sample collection and postmortem evaluationBald eagle carcasses, and/or oropharyngeal and cloacal swabs were collected in the field and submitted to the Southeastern Cooperative Wildlife Disease Study Research and Diagnostic Service. In some cases, live bald eagles were found moribund and transported to wildlife rehabilitation clinics and either died in transit or soon after arrival. Carcasses underwent postmortem evaluation, including gross and histopathology. Tissue samples [heart, brain, kidney, spleen, lung, adrenal gland, pancreas, liver, small and large intestine, and cloacal bursa (if present)] were fixed in 10% neutral buffered formalin and routinely processed for histopathology23 at the Athens Veterinary Diagnostic Laboratory. Histopathology was assessed by a board-certified veterinary pathologist.Additional bald eagle and waterfowl species mortality dataData on wild bird deaths attributed to highly pathogenic influenza A viruses were retrieved from the U.S. Department of Agriculture, Animal and Plant Health Inspection Service website, at: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/hpai-2022/2022-hpai-wild-birds. These data are publicly available and include state, county, date detected, and species of individual birds that tested positive for HP IAV.ImmunohistochemistryImmunohistochemistry (IHC) for avian influenza virus was performed in select cases on brain, pancreas, spleen, liver, and/or adrenal gland at the Athens Veterinary Diagnostic Laboratory. IHC was performed on an automated stainer (Nemesis 3600, Biocare Medical). Polyclonal antiserum against influenza A virus was used as the primary antibody (ab155877, Abcam), diluted 1:3000, and incubated for 60 min at 37 °C with agent-positive control. Antigen retrieval was with Target Retrieval Solution (S2367, Dako) pH (10x) at 110 °C for 15 min. Enzyme blockage was via 3% H2O2 for 20 min (H324-500, Fisher Scientific); protein blockage was with Universal Blocking Reagent (10x) Power Block diluted at 1:10 for 5 min (HK085-5 K, BioGenex); link was by biotinylated rabbit anti-goat (BA-5000, Vector) at a 1:100 dilution for 10 min with 4 + streptavidin alkaline phosphatase label for 10 min (AP605H, BioCare Medical). Staining was with warp red chromogen kit for 5 min (WR8065, BioCare Medical). Known influenza A-virus positive control tissues were tested alongside each case.Polymerase chain reactionOropharyngeal and cloacal swabs from bald eagle carcasses were pooled for each individual eagle and tested by real-time reverse transcription polymerase chain reaction (rRT-PCR). Briefly, swabs samples were extracted with the KingFisher magnetic particle processer using the MagMAX-96 AI/ND Viral RNA isolation Kit (Ambion/Applied Biosystems, Foster City, CA) following a modified MagMAX-S protocol24. Resultant nucleic acids were screened against primers specific for H5 IAV in rRT-PCR; samples that yielded a cycle threshold value  More

  • in

    Functional group analyses of herpetofauna in South Korea using a large dataset

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Pey, B. et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl Ecol 15, 194–206 (2014).Article 

    Google Scholar 
    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19, 2921–2947 (2010).Article 

    Google Scholar 
    Kim, J. H. et al. Structural implications of traditional agricultural landscapes on the functional diversity of birds near the Korean Demilitarized Zone. Ecol Evol 10, 12973–12982 (2020).Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol Evol 21, 178–185 (2006).Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol Evol 28, 167–177 (2013).Article 

    Google Scholar 
    Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol Evol 7, 831–844 (2017).Article 

    Google Scholar 
    Hood, R. R. et al. Pelagic functional group modeling: Progress, challenges and prospects. Deep Sea Res II: Top Stud Oceanogr 53, 459–512 (2006).Article 
    ADS 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89, 118–125 (2001).Article 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).Article 

    Google Scholar 
    Mouillot, D., Mason, N. W. H. & Wilson, J. B. Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia 152, 729–737 (2007).Article 
    ADS 

    Google Scholar 
    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24, 867–876 (2010).Article 

    Google Scholar 
    Hocking, D. J. & Babbitt, K. J. Amphibian contributions to ecosystem services. Herpetol Conserv Biol 9, 1–17 (2014).
    Google Scholar 
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int J Biodivers Sci Ecosyst Serv Manag 9, 257–272 (2013).Article 

    Google Scholar 
    Cortéz-Gómez, A. M. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. & Ladle, R. J. Ecological functions of neotropical amphibians and reptiles: a review. Univ Sci (Bogota) 20, 229–245 (2015).
    Google Scholar 
    Jeon, J. Y., Jung, J., Suk, H. Y., Lee, H. & Min, M.-S. The Asian plethodontid salamander preserves historical genetic imprints of recent northern expansion. Sci Rep 11, 9193 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, H., Yan, J., Zhang, G. & Zhou, K. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata): Evidence for independent refugia expansion and secondary contact. BMC Evol Biol 8, 1–16 (2008).Article 
    CAS 

    Google Scholar 
    Lee, S.-J. et al. Phylogeography of the Asian lesser white-toothed shrew, Crocidura shantungensis, in East Asia: role of the Korean Peninsula as refugium for small mammals. Genetica 2018 146:2 146, 211–226 (2018).CAS 

    Google Scholar 
    Min, M.-S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Baek, H.-J., Lee, M.-Y., Lee, H. & Min, M.-S. Mitochondrial DNA data unveil highly divergent populations within the Genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol Cells 31, 105–112 (2011).Article 
    CAS 

    Google Scholar 
    Borzée, A. et al. Yellow sea mediated segregation between North East Asian Dryophytes species. PLoS One 15, e0234299 (2020).Article 

    Google Scholar 
    Borzée, A. & Min, M.-S. Disentangling the impacts of speciation, sympatry and the island effect on the morphology of seven Hynobius sp. salamanders. Animals 11, 187 (2021).Article 

    Google Scholar 
    Borzée, A. et al. Dwindling in the mountains: Description of a critically endangered and microendemic Onychodactylus species (Amphibia, Hynobiidae) from the Korean Peninsula. Zool Res 43, 750–755 (2022).Article 

    Google Scholar 
    Suk, H. Y. et al. Phylogenetic structure and ancestry of Korean clawed salamander, Onychodactylus koreanus (Caudata: Hynobiidae). Mitochondrial DNA A DNA Mapp Seq Anal 29, 650–658 (2018).CAS 

    Google Scholar 
    Kim, C., Kang, J. & Kim, M. Status and development of national ecosystem survey in Korea. J Environ Impact Assess 22, 725–738 (2013).Article 

    Google Scholar 
    Kim, D.-I. et al. Prediction of present and future distribution of the Schlegel’s Japanese gecko (Gekko japonicus) using MaxEnt modeling. J Ecol Environ 44, 1–8 (2020).
    Google Scholar 
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation. (PRIMER-E: Plymouth, 2014).Borzée, A. & Jang, Y. Policy Recommendation for the conservation of the Suweon Treefrog (Dryophytes suweonensis) in the Republic of Korea. Front Environ Sci 0, 39 (2019).Article 

    Google Scholar 
    Chung, M. Y. et al. The Korean Baekdudaegan Mountains: A glacial refugium and a biodiversity hotspot that needs to be conserved. Front Genet 9, 489 (2018).Article 

    Google Scholar 
    Lee, J., Jang, H.-J. & Suh, J.-H. Ecological Guide Book of Herpetofauna in Korea. (National Institutite of Environmental Research, 2011).Lee, J. & Park, D. The Encyclopedia of Korean Amphibians. (Econature, 2016).Kim, J.-B. & Song, J. Y. Korean Herpetofauna. (worldscience, 2010).Strauß, A., Reeve, E., Randrianiaina, R.-D., Vences, M. & Glos, J. The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecol 10, 1–10 (2010).Article 

    Google Scholar 
    Shim, Y.-J. et al. Site selection of narrow-mouth frog (Kaloula borealis) habitat restoration using habitat suitability index. Journal of the Korean Society of Environmental Restoration. Technology 18, 33–44 (2015).
    Google Scholar 
    Jeong, S., Seo, C., Yoon, J., Lee, D. K. & Park, J. A study on riparian habitats for amphibians using habitat suitability mode. J Environ Impact Assess 24, 175–189 (2015).Article 

    Google Scholar 
    Jang, H.-J., Kim, D.-I. & Chang, M.-H. Distribution of reptiles in South Korea – Based on the 3rd National Ecosystem Survey -. Korean Journal of Herpetology 7, 30–35 (2016).
    Google Scholar 
    Tsianou, M. A. & Kallimanis, A. S. Geographical patterns and environmental drivers of functional diversity and trait space of amphibians of Europe. Ecol Res 35, 123–138 (2020).Article 

    Google Scholar 
    Chergui, B., Pleguezuelos, J. M., Fahd, S. & Santos, X. Modelling functional response of reptiles to fire in two Mediterranean forest types. Sci Total Environ 732, 139205 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Nelson, N. & Piovia-Scott, J. Using environmental niche models to elucidate drivers of the American bullfrog invasion in California. Biol Invasions 24, 1767–1783 (2022).Article 

    Google Scholar 
    Liu, X. et al. Diet and prey selection of the Invasive American bullfrog (Lithobates catesbeianus) in southwestern China. Asian Herpetol Res 6, 34–44 (2015).
    Google Scholar 
    Borzée, A., Kwon, S., Koo, K. S. & Jang, Y. Policy recommendation on the restriction on amphibian trade toward the Republic of Korea. Front Environ Sci 8, 129 (2020).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals 11, 2185 (2021).Article 

    Google Scholar 
    Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci Rep 9, 1–9 (2019).Article 

    Google Scholar 
    Shin, Y., Min, M. & Borzée, A. Driven to the edge: Species distribution modeling of a Clawed Salamander (Hynobiidae: Onychodactylus koreanus) predicts range shifts and drastic decrease of suitable habitats in response to climate change. Ecol Evol 11, 14669–14688 (2021).Article 

    Google Scholar 
    Park, I. et al. Past, present, and future predictions on the suitable habitat of the Slender racer (Orientocoluber spinalis) using species distribution models. Ecol Evol 12, e9169 (2022).Article 

    Google Scholar 
    Berriozabal-Islas, C., Badillo-Saldaña, L. M., Ramírez-Bautista, A. & Moreno, C. E. Effects of habitat disturbance on lizard functional diversity in a tropical dry forest of the Pacific Coast of Mexico. Trop Conserv Sci 10, 1940082917704972 (2017).
    Google Scholar 
    Petchey, O. L., O’Gorman, E. J. & Flynn, D. F. B. A functional guide to functional diversity measures. in Biodiversity, Ecosystem Functioning, & Human Wellbeing (eds. Naeem, S., Bunker, D., Hector, A., Loreau, M. & Perrings, C.) 49–59 (Oxford University Press, 2009).Tsianou, M. A. & Kallimanis, A. S. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers Conserv 25, 117–132 (2016).Article 

    Google Scholar 
    Tsianou, M. A. & Kallimanis, A. S. Trait selection matters! A study on European amphibian functional diversity patterns. Ecol Res 34, 225–234 (2019).Article 

    Google Scholar 
    Campos, F. S. et al. Ecological trait evolution in amphibian phylogenetic relationships. Ethol Ecol Evol 31, 526–543 (2019).Article 

    Google Scholar 
    Lourenço-de-Moraes, R. et al. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. J Biogeogr 47, 275–287 (2020).Article 

    Google Scholar 
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci Data 4, 1–7 (2017).Article 

    Google Scholar 
    Jeon, J. Y. et al. Resolving the taxonomic equivocacy and the population genetic structure of Rana uenoi – insights into dispersal and demographic history. Salamandra 57, 529–540 (2021).
    Google Scholar 
    Othman, S. N. et al. From Gondwana to the Yellow Sea, evolutionary diversifications of true toads Bufo sp. in the Eastern Palearctic and a revisit of species boundaries for Asian lineages. Elife 11, e70494 (2022).Article 

    Google Scholar 
    Chang, M.-H., Song, J.-Y. & Koo, K.-S. The status of distribution for native freshwater turtles in Korea, with remarks on taxonomic position. Korean J Environ Biol 30, 151–155 (2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.r-project.org/ (2013).Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J Stat Softw 61, 1–36 (2014).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. https://cran.r-project.org/package=vegan (2020).Zizka, A., Antonelli, A. & Silvestro, D. Sampbias, a method for quantifying geographic sampling biases in species distribution data. Ecography 44, 25–32 (2021).Article 

    Google Scholar 
    Magurran, A. E. Measuring biological diversity. (John Wiley & Sons, Ltd, 2013).Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12.1 (2014).Crego, R. D., Stabach, J. A. & Connette, G. Implementation of species distribution models in Google Earth Engine. Divers Distrib 28, 904–916 (2022).Article 

    Google Scholar 
    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. in Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (eds. Drew, C. A., Wiersma, Y. F. & Huettmann, F.) Modeling Species Distribution and Change Using Random Forest (Springer New York, 2011).Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25, 1965–1978 (2005).Article 

    Google Scholar 
    Jeon, J., Kim, J. H. & Lee, D. K. Data for: Functional group analyses of herpetofauna in South Korea using a large dataset. Figshare https://doi.org/10.6084/m9.figshare.21755345.v1 (2022). More

  • in

    Carbohydrate complexity limits microbial growth and reduces the sensitivity of human gut communities to perturbations

    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17, 4954–4964 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morrison, K. E., Jašarević, E., Howard, C. D. & Bale, T. L. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 8, 15 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maslowski, K. M. & Mackay, C. R. Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5–9 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cantu-Jungles, T. M. et al. Dietary fiber hierarchical specificity: the missing link for predictable and strong shifts in gut bacterial communities. mBio 12, e01028-21 (2022).
    Google Scholar 
    Murga-Garrido, S. M. et al. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome 9, 117 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantu-Jungles, T. M. & Hamaker, B. R. New view on dietary fiber selection for predictable shifts in gut microbiota. mBio 11, e02179-19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, V. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175, 679–694.e22 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terrapon, N., Lombard, V., Gilbert, H. J. & Henrissat, B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31, 647–655 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Terrapon, N. et al. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res. 46, D677–D683 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kouzuma, A., Kato, S. & Watanabe, K. Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol. 6, 477 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cartmell, A. et al. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat. Microbiol. 3, 1314–1326 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichler, M. J. et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 11, 3285 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Feng, J. et al. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.12.006 (2022).Pollak, S. et al. Public good exploitation in natural bacterioplankton communities. Sci. Adv. 7, eabi4717 (2022).Article 

    Google Scholar 
    Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patnode, M. L. et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179, 59–73.e13 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walter, J., Maldonado-Gómez, M. X. & Martínez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 49, 129–139 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stone, L. The stability of mutualism. Nat. Commun. 11, 2648 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).Article 
    PubMed 

    Google Scholar 
    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, W. & Stevens, M. H. H. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121, 435–441 (2012).Article 

    Google Scholar 
    Nobuhiko, K. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).Article 

    Google Scholar 
    Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE 8, e53957 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leatham, M. P. et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77, 2876–2886 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark, R. L. et al. Design of synthetic human gut microbiome assembly and butyrate production. Nat. Commun. 12, 3254 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hromada, S. et al. Negative interactions determine Clostridioides difficile growth in synthetic human gut communities. Mol. Syst. Biol. 17, e10355 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W. & Brumer, H. Polysaccharide utilization loci: fueling microbial communities. J. Bacteriol. 199, e00860-16 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devendran, S. et al. Clostridium scindens ATCC 35704: integration of nutritional requirements, the complete genome sequence, and global transcriptional responses to bile acids. Appl. Environ. Microbiol. 85, e00052-19 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl Acad. Sci. USA 110, 13582–13587 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaoutari, A. E., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).Article 
    PubMed 

    Google Scholar 
    Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Despres, J. et al. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17, 326 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Déjean, G. et al. Synergy between cell surface glycosidases and glycan-binding proteins dictates the utilization of specific beta(1,3)-glucans by human gut bacteroides. mBio 11, e00095-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamaker, B. R. & Tuncil, Y. E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, 2006).Wasserman, L. All of Statistics: A Concise Course in Statistical Inference (Springer Texts in Statistics) (Springer, 2003).Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Panda, S. et al. Short-term effect of antibiotics on human gut microbiota. PLoS ONE 9, e95476 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 26, 650–665.e4 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-van der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hygiene 69, 405–411 (1971).Article 

    Google Scholar 
    Freter, R. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. II. The inhibitory mechanism. J. Infect. Dis. 110, 38–46 (1962).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016).Article 
    PubMed 

    Google Scholar 
    Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Litvak, Y. & Bäumler, A. J. The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathog. 15, e1007563 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. D. Clostridium difficile colonizes alternative nutrient niches during infection across distinct murine gut microbiomes. mSystems 2, e00063-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Momose, Y., Hirayama, K. & Itoh, K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94, 165–171 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. D. Clostridium difficilealters the structure and metabolism of distinct cecal microbiomes during initial infection to promote sustained colonization. mSphere 3, e00261-18 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, S., Tan, J., Yang, X., Ma, C. & Jiang, L. Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. ISME J. 13, 402–412 (2019).Article 
    PubMed 

    Google Scholar 
    Deng, Y.-J. & Wang, S. Y. Synergistic growth in bacteria depends on substrate complexity. J. Microbiol. 54, 23–30 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y.-J. & Wang, S. Y. Complex carbohydrates reduce the frequency of antagonistic interactions among bacteria degrading cellulose and xylan. FEMS Microbiol. Lett. 364, fnx019 (2017).Article 
    PubMed Central 

    Google Scholar 
    Wu, F. et al. Modulation of microbial community dynamics by spatial partitioning. Nat. Chem. Biol. 18, 394–402 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Åström, K. J. & Murray, R. Feedback Systems. An Introduction for Scientists and Engineers (Princeton Univ. Press, 2008).Hammarlund, S. P. & Harcombe, W. R. Refining the stress gradient hypothesis in a microbial community. Proc. Natl Acad. Sci. USA 116, 15760–15762 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial community responses to environmental complexity. Nat. Commun. 12, 2365 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dal Bello, M., Lee, H., Goyal, A. & Gore, J. Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434 (2021).Article 
    PubMed 

    Google Scholar 
    Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).Article 
    PubMed 

    Google Scholar 
    Baranwal, M. et al. Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics. eLife 11, e73870 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raue, A. et al. Lessons learned from quantitative dynamical modeling in systems biology. PLoS ONE 8, e74335 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Babtie, A. C., Kirk, P. & Stumpf, M. P. H. Topological sensitivity analysis for systems biology. Proc. Natl Acad. Sci. USA 111, 18507–18512 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munsky, B., Hlavacek, W. S. & Tsimring, L. S. Quantitative Biology. Theory, Computational Methods, and Models (MIT Press, 2018).Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J. A. & Blom, J. G. Systems biology: parameter estimation for biochemical models. FEBS J. 276, 886–902 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ravcheev, D. A., Godzik, A., Osterman, A. L. & Rodionov, D. A. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics 14, 873 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salyers, A. A., Vercelloitti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, X., Liu, Y., Jiang, P., Song, S. & Ai, C. Interaction of sulfated polysaccharides with intestinal Bacteroidales plays an important role in its biological activities. Int. J. Biol. Macromol. 168, 496–506 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Respondek, F. et al. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS ONE 8, e71026 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schwiertz, A. et al. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst. Appl. Microbiol. 25, 46–51 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benítez-Páez, A., Moreno, F. J., Sanz, M. L. & Sanz, Y. Genome structure of the symbiont Bifidobacterium pseudocatenulatum CECT 7765 and gene expression profiling in response to lactulose-derived oligosaccharides. Front. Microbiol. 7, 624 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernalier, A., Willems, A., Leclerc, M., Rochet, V. & Collins, M. D. Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch. Microbiol. 166, 176–183 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moshfegh, A. J., Friday, J. E., Goldman, J. P. & Ahuja, J. K. C. Presence of inulin and oligofructose in the diets of Americans. J. Nutr. 129, 1407S–1411S (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devillé, C., Damas, J., Forget, P., Dandrifosse, G. & Peulen, O. Laminarin in the dietary fibre concept. J. Sci. Food Agric. 84, 1030–1038 (2004).Article 

    Google Scholar 
    Selvendran, R. R. The plant cell wall as a source of dietary fiber: chemistry and structure. Am. J. Clin. Nutr. 39, 320–337 (1984).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Measuring the world’s cropland area

    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Land Use Statistics and Indicators. Global, Regional and Country Trends 2000–2020 FAOSTAT Analytical Brief Series No 48 https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1599856/ (FAO, 2022).FAO. Land Statistics. Global, Regional and Country Trends, 1990–2018 FAOSTAT Analytical Brief Series No. 15 https://www.fao.org/3/cb2860en/cb2860en.pdf (FAO, 2021).Summary for policymakers in: Special Report on Climate Change and Land (eds Shukla, P. R. et al.) https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf (WMO, in the press).Sustainable Development Goals Indicator 2.4.1 (FAO, accessed); https://www.fao.org/sustainable-development-goals/indicators/241/en/Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IGES, 2006).Grassi, G. et al. Carbon fluxes from land 2000–2020: bringing clarity on countries’ reporting. Earth Syst. Sci. Data 14, 4643–4666 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Measuring Progress Towards Sustainable Agriculture FAO Statistical Working Papers Series No. 21–24 https://www.fao.org/3/cb4549en/cb4549en.pdf (FAO, 2021).Conchedda, G. & Tubiello, F. N. Drainage of organic soils and GHG emissions: validation with country data. Earth Syst. Sci. Data 12, 3113–3137 (2020).Article 
    ADS 

    Google Scholar 
    Hanson, C., Mazur, E., Stolle, F., Davis, C. & Searchinger, T. 5 takeaways on cropland expansion and what it means for people and the planet. WRI Insights https://www.wri.org/insights/cropland-expansion-impacts-people-planet (2022).Potapov, P. et al. The Global 2000–-2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).Article 

    Google Scholar 
    Hansen, M. C. et al. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 17, 034050 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Carbon emissions and removals from forests: new estimates, 1990–2020. Earth Syst. Sci. Data. 13, 1681–1691 (2021).Article 
    ADS 

    Google Scholar  More

  • in

    Solar radiation, temperature and the reproductive biology of the coral Lobactis scutaria in a changing climate

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).Article 
    ADS 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. 116, 12907–12912 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    ADS 

    Google Scholar 
    Van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307–2313 (2015).Article 
    ADS 

    Google Scholar 
    Parrett, J. M. & Knell, R. J. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B. 285, 20180303 (2018).Article 

    Google Scholar 
    Hagedorn, M. et al. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. 118, e2110559118 (2021).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Epstein, N., Bak, R. & Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 13, 387–395 (2003).Article 

    Google Scholar 
    West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conserv. Biol. 17, 956–967 (2003).Article 

    Google Scholar 
    Yeemin, T., Sutthacheep, M. & Pettongma, R. Coral reef restoration projects in Thailand. Ocean Coast. Manag. 49, 562–575 (2006).Article 

    Google Scholar 
    Anthony, K. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 21, 48–61 (2015).Article 
    ADS 

    Google Scholar 
    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).Article 
    ADS 

    Google Scholar 
    Porter, J. W., Fitt, W. K., Spero, H. J., Rogers, C. S. & White, M. W. Bleaching in reef corals: Physiological and stable isotopic responses. Proc. Natl. Acad. Sci. 86, 9342–9346 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).Article 
    ADS 

    Google Scholar 
    Grottoli, A., Rodrigues, L. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).Article 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).Article 
    ADS 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B. 282, 20151887 (2015).Article 

    Google Scholar 
    Dai, C., Fan, T. & Yu, J. Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar. Ecol. Prog. Ser. 201, 179–187 (2000).Article 
    ADS 

    Google Scholar 
    Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122 (2006).Article 
    ADS 

    Google Scholar 
    Rosser, N. & Gilmour, J. New insights into patterns of coral spawning on Western Australian reefs. Coral Reefs 27, 345–349 (2008).Article 
    ADS 

    Google Scholar 
    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).Article 
    ADS 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 
    ADS 

    Google Scholar 
    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10 (2014).Article 
    ADS 

    Google Scholar 
    Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In Proc. 9th Int. Coral Reef Symp. 1123–1128 (2002).Johnston, E. C., Counsell, C. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).Article 

    Google Scholar 
    Hirose, M. & Hidaka, M. Reduced reproductive success in scleractinian corals that survived the 1998 bleaching in Okinawa. Galaxea 2000, 17–21 (2000).Article 

    Google Scholar 
    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706 (2001).Article 
    ADS 

    Google Scholar 
    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061–1071 (2016).Article 
    CAS 

    Google Scholar 
    Bassim, K., Sammarco, P. & Snell, T. Effects of temperature on success of (self and non-self) fertilization and embryogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar. Biol. 140, 479–488 (2002).Article 

    Google Scholar 
    Kenkel, C. D. et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6, e26914 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C. & Dyall, S. D. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191, 63–77 (2017).Article 
    CAS 

    Google Scholar 
    Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).Article 

    Google Scholar 
    Gierz, S., Ainsworth, T. D. & Leggat, W. Diverse symbiont bleaching responses are evident from 2-degree heating week bleaching conditions as thermal stress intensifies in coral. Mar. Freshw. Res. 71, 1149–1160 (2020).Article 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 

    Google Scholar 
    Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).Article 

    Google Scholar 
    Lesser, M. P. Coral bleaching: causes and mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Riegl, B. M. & Purkis, S. J.) 405–419 (Springer, 2011).Chapter 

    Google Scholar 
    Barber, J. & Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61–66 (1992).Article 
    CAS 

    Google Scholar 
    Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenergy 1143, 113–134 (1993).Article 
    CAS 

    Google Scholar 
    Lesser, M. P. & Farrell, J. H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23, 367–377 (2004).Article 

    Google Scholar 
    Salih, A., Hoegh-Guldberg, O. & Cox, G. Bleaching responses of symbiotic dinoflagellates in corals: the effects of light and elevated temperature on their morphology and physiology. In Proceedings of the Australian Coral Reef Society 75th Anniversary Conference (eds Greenwood, J. G. & Hall, N. R.) 199–216 (1998).Smith, D. J., Suggett, D. J. & Baker, N. R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Glob. Chang. Biol. 11, 1–11 (2005).Article 
    ADS 

    Google Scholar 
    Downs, C. et al. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 8, e77173 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276–1294 (2009).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & York, R. H. Jr. Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
    Google Scholar 
    Vareschi, E. & Fricke, H. Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90, 395–402 (1986).Article 

    Google Scholar 
    Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Wellington, G. & Fitt, W. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).Article 
    CAS 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).Article 
    ADS 

    Google Scholar 
    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).Article 
    ADS 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay. Hawaiʻi. PeerJ 3, e1136 (2015).Article 

    Google Scholar 
    Rodgers, K. S., Bahr, K. D., Jokiel, P. L. & Richards Donà, A. Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai‘i. PeerJ 5, e3355 (2017).Article 

    Google Scholar 
    Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).Article 

    Google Scholar 
    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164 (1983).Article 
    ADS 

    Google Scholar 
    Kramarsky-Winter, E. & Loya, Y. Reproductive strategies of two fungiid corals from the northern Red Sea: Environmental constraints?. Mar. Ecol. Prog. Ser. 174, 175–182 (1998).Article 
    ADS 

    Google Scholar 
    Loya, Y. & Sakai, K. Bidirectional sex change in mushroom stony corals. Proc. R. Soc. B. 275, 2335–2343 (2008).Article 

    Google Scholar 
    Hagedorn, M. et al. Coral larvae conservation: Physiology and reproduction. Cryobiology 52, 33–47 (2006).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & Brown, E. K. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641 (2004).Article 
    ADS 

    Google Scholar 
    Tanaka, K., Guidry, M. W. & Gruber, N. Ecosystem responses of the subtropical Kaneohe Bay, Hawaii, to climate change: A nitrogen cycle modeling approach. Aquat. Geochem. 19, 569–590 (2013).Article 
    CAS 

    Google Scholar 
    Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121 (2017).Article 

    Google Scholar 
    Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).Article 

    Google Scholar 
    Barnhill, K. A. & Bahr, K. D. Coral resilience at Malaukaa fringing reef, Kāneʻohe Bay, Oʻahu after 18 years. J. Mar. Sci. Eng. 7, 311 (2019).Article 

    Google Scholar 
    Lesser, M., Stochaj, W., Tapley, D. & Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225–232 (1990).Article 
    ADS 

    Google Scholar 
    Brown, B., Dunne, R., Scoffin, T. & Le Tissier, M. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 219–230 (1994).Le Tissier, M. D. A. & Brown, B. E. Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar. Ecol. Prog. Ser. 136, 235–244 (1996).Article 
    ADS 

    Google Scholar 
    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. V. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).Article 
    CAS 

    Google Scholar 
    Coelho, V. et al. Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J. Exp. Mar. Biol. Ecol. 497, 152–163 (2017).Article 

    Google Scholar 
    Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: Causes and consequences. Ecology 69, 1552–1565 (1988).Article 

    Google Scholar 
    Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411–1418 (2021).Article 

    Google Scholar 
    Hagedorn, M. et al. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS ONE 7, e33354 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61 (2021).Article 
    CAS 

    Google Scholar 
    Binet, M., Doyle, C., Williamson, J. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100 (2014).Article 
    CAS 

    Google Scholar 
    Jokiel, P., Maragos, J. & Franzisket, L. Coral growth: buoyant weight technique. In Coral Reefs: Research Methods Vol. 5 (eds Stoddart, D. R. & Johannes, R. E.) 529–542 (UNESCO, 1978).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2019).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 50, 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Graves, S., Piepho, H.-P. & Selzer, M. L. multcompView: Visualizations of paired comparisons. R package version 0.1-7. https://CRAN.R-project.org/package=multcompView (2015).Christensen, R. H. B. ordinal-Regression models for ordinal data. R package version 2019.4-25. https://cran.r-project.org/package=ordinal/. (2019).Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.7. https://cran.r-project.org/package=rcompanion (2019).Hope, R. M. Rmisc: Ryan Miscellaneous. R package version 1.5. https://cran.r-project.org/package=Rmisc (2013).Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics, R package version 0.9-73. https://cran.r-project.org/package=RVAideMemoire (2019).Callaghan, J. A short note on the intensification and extreme rainfall associated with Hurricane Lane. Trop. Cyclone Res. Rev. 8, 103–107 (2019).Article 

    Google Scholar 
    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. Invertebr. Reprod. Dev. 48, 207–218 (2005).Article 

    Google Scholar 
    Lotterhos, K. E. & Levitan, D. Gamete release and spawning behavior in broadcast spawning marine invertebrates. In The Evolution of Primary Sexual Characters (eds Leonard, J. & Córdoba-Aguilar, A.) 99–120 (Oxford Univ. Press, 2010).
    Google Scholar 
    Ims, R. A. The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5, 135–140 (1990).Article 
    CAS 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Guest, J. R., Baird, A. H., Bouwmeester, J. & Edwards, A. J. To assess temporal breakdown in spawning synchrony requires comparable temporal data. https://doi.org/10.1126/comment.737627/full/ (2020).Hartmann, D. L. et al. Observations: atmosphere and surface. In Climate change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 159–254 (Cambridge University Press, 2013).Pörtner, H. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC Intergovernmental Panel on Climate Change, 2019).
    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming?. Science 363, 128–129 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315 (2002).Article 
    ADS 

    Google Scholar 
    Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle Iii, F. J. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).Article 

    Google Scholar 
    Sweeney, A. M., Boch, C. A., Johnsen, S. & Morse, D. E. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Biol. 214, 770–777 (2011).Article 

    Google Scholar 
    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202 (2012).Article 

    Google Scholar 
    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).Article 

    Google Scholar 
    Hunter, C. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata. In Proc 6th Int Coral Reef Symp. vol. 2, 727–732.Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).
    Google Scholar 
    Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).Article 
    ADS 

    Google Scholar 
    Humanes, A., Noonan, S. H., Willis, B. L., Fabricius, K. E. & Negri, A. P. Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS ONE 11, e0161616 (2016).Article 

    Google Scholar 
    Lesser, M. P., Kruse, V. A. & Barry, T. M. Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J. Exp. Biol. 206, 4097–4103 (2003).Article 

    Google Scholar 
    Häder, D.-P. et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108–126 (2015).Article 

    Google Scholar 
    Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8, e56468 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Espinoza, J., Schulz, M., Sanchez, R. & Villegas, J. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia 41, 51–54 (2009).Article 
    CAS 

    Google Scholar 
    Paoli, D. et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–2319 (2011).Article 
    CAS 

    Google Scholar 
    Gallo, A., Esposito, M. C., Tosti, E. & Boni, R. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants 10, 1131 (2021).Article 
    CAS 

    Google Scholar 
    Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084–1090 (2015).Article 

    Google Scholar 
    Gulko, D. Effects of ultraviolet radiation on fertilization and production of planula larvae in the Hawaiian coral Fungia scutaria. In Ultraviolet Radiation and Coral Reefs Vol. 41 (eds Gulko, D. & Jokiel, P. L.) 135–147 (University of Hawai’i, 1995).
    Google Scholar 
    Pruski, A. M., Nahon, S., Escande, M.-L. & Charles, F. Ultraviolet radiation induces structural and chromatin damage in Mediterranean sea-urchin spermatozoa. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 673, 67–73 (2009).Article 
    CAS 

    Google Scholar 
    Dahms, H.-U. & Lee, J.-S. UV radiation in marine ectotherms: Molecular effects and responses. Aquat. Toxicol. 97, 3–14 (2010).Article 
    CAS 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511 (2015).Article 

    Google Scholar 
    Jokiel, P. & Coles, S. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208 (1977).Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the Central Red Sea. Science 329, 322–325. https://doi.org/10.1126/science.1190182 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Cooper, T. F., De’Ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529–538 (2008).Article 
    ADS 

    Google Scholar 
    Tanzil, J., Brown, B., Tudhope, A. & Dunne, R. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28, 519–528 (2009).Article 
    ADS 

    Google Scholar 
    Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Chang. Biol. 19, 3011–3023 (2013).Article 
    ADS 

    Google Scholar 
    Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 226 (2018).Article 

    Google Scholar 
    Chen, P.-Y., Chen, C.-C., Chu, L. & McCarl, B. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30, 12–20 (2015).Article 

    Google Scholar 
    Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4, e09991 (2015).Article 

    Google Scholar 
    Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. 118, e2101985118 (2021).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, e0236399 (2020).Article 
    CAS 

    Google Scholar 
    Daly, J. et al. Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs 41, 455–462 (2022).Article 

    Google Scholar  More

  • in

    The greater wax moth, Galleria mellonella (L.) uses two different sensory modalities to evaluate the suitability of potential oviposition sites

    Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).Article 

    Google Scholar 
    Rudolf, V. H. W. & Rodel, M. O. Oviposition site selection in a complex and variable environment: The role of habitat quality and conspecific cues. Oecologia 142, 316–325 (2005).Article 
    ADS 

    Google Scholar 
    Blaustein, L. Oviposition site selection in response to risk of predation: Evidence from aquatic habitats and consequences for population dynamics and community structure. In Evolutionary Theory and Processes: Modern Perspectives (ed. Wasser, S. P.) 441–456 (Springer, 1999).Chapter 

    Google Scholar 
    Elsensohn, J. E., Schal, C. & Burrack, H. J. Plasticity in oviposition site selection behavior in drosophila suzukii (diptera: drosophilidae) in relation to adult density and host distribution and quality. J. Econ. Entomol. 114, 1517–1522 (2021).Article 

    Google Scholar 
    Kempraj, V., Park, S. J. & Taylor, P. W. Forewarned is forearmed: Queensland fruit flies detect olfactory cues from predators and respond with predator-specific behaviour. Sci. Rep. 10, 7297 (2020).Article 
    ADS 

    Google Scholar 
    Damodaram, K. J. P. et al. Centuries of domestication has not impaired oviposition site-selection function in the silkmoth, Bombyx mori. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Hansson, B. S. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).Article 

    Google Scholar 
    Ghosh, E., Sasidharan, A., Ode, P. J. & Venkatesan, R. Oviposition preference and performance of a specialist herbivore is modulated by natural enemies, larval odors, and immune status. J. Chem. Ecol. 48, 670–682 (2022).Article 

    Google Scholar 
    Nielsen, R. A. & Brister, C. D. The greater wax moth: Adult behavior. Ann. Entomol. Soc. Am. 70, 101–103 (1977).Article 

    Google Scholar 
    Kwadha, C. A., Ong’Amo, G. O., Ndegwa, P. N., Raina, S. K. & Fombong, A. T. The biology and control of the greater wax moth, Galleria mellonella. Insects 8, 61 (2017).Article 

    Google Scholar 
    Kebede, E. Prevalence of wax moth in modern hive with colonies in Kafta Humera. Anim. Vet. Sci. 3, 132–135 (2015).Article 

    Google Scholar 
    Ellis, J. D., Graham, J. R. & Mortensen, A. Standard methods for wax moth research. J. Apic. Res. 52, 1–17 (2013).Article 

    Google Scholar 
    Hepburn, H. R. & Radloff, S. E. Honeybees of Africa 227–241 (Springer, 1998). https://doi.org/10.1007/978-3-662-03604-4.Book 

    Google Scholar 
    Fletcher, D. J. C. The African Bee, Apis mellifera adansonii, Africa. Annu. Rev. Entomol. 23, 151–171 (1978).Article 

    Google Scholar 
    Li, Y. et al. Losing the arms race: Greater wax moths sense but ignore bee alarm pheromones. Insects 10, 81 (2019).Article 
    ADS 

    Google Scholar 
    Feng, B., Qian, K. & Du, Y. J. Floral volatiles from Vigna unguiculata are olfactory and gustatory stimulants for oviposition by the bean pod borer moth Maruca vitrata. Insects 8, 60 (2017).Article 

    Google Scholar 
    Janz, N. Evolutionary ecology of oviposition strategies. In Chemoecology of Insect Eggs and Egg Deposition (eds Hilker, M. & Meiners, T.) 349–376 (Willey, 2008). https://doi.org/10.1002/9780470760253.ch13.Chapter 

    Google Scholar 
    Renwick, J. A. A. & Chew, F. S. Oviposition behavior in lepidoptera. Annu. Rev. Entomol. 39, 377–400 (1994).Article 

    Google Scholar 
    Nakajima, Y. & Fujisaki, K. Fitness trade-offs associated with oviposition strategy in the winter cherry bug, Acanthocoris sordidus. Entomol. Exp. Appl. 137, 280–289 (2010).Article 

    Google Scholar 
    Murphy, P. J. Context-dependent reproductive site choice in a Neotropical frog. Behav. Ecol. 14, 626–633 (2003).Article 

    Google Scholar 
    Geoffrey, G. et al. Larviposition site selection mediated by volatile semiochemicals in Glossina palpalis gambiensis. Ecol. Entomol. 46, 301–309 (2021).Article 

    Google Scholar 
    Yao, F. L. et al. Oviposition preference and adult performance of the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae): Effect of leaf microstructure associated with ladybeetle attachment ability. Pest Manag. Sci. 77, 113–125 (2021).Article 

    Google Scholar 
    Spieler, M. & Linsenmair, K. E. Choice of optimal oviposition sites by Hoplobatrachus occipitalis (Anura: Ranidae) in an unpredictable and patchy environment. Oecologia 109, 184–199 (1997).Article 
    ADS 

    Google Scholar 
    Figiel, C. R. & Semlitsch, R. D. Experimental determination of oviposition site selection in the marbled salamander, Ambystoma opacum. J. Herpetol. 29, 452 (1995).Article 

    Google Scholar 
    Kotler, B. P. & Mitchell, W. A. The effect of costly information in diet choice. Evol. Ecol. 9, 18–29 (1995).Article 

    Google Scholar 
    Nylin, S. & Janz, N. Oviposition preference and larval performance in Polygonia c-album (Lepidoptera: Nymphalidae): the choice between bad and worse. Ecol. Entomol. 18, 394–398 (1993).Article 

    Google Scholar 
    Nagaya, H., Stewart, F. J. & Kinoshita, M. Swallowtail butterflies use multiple visual cues to select oviposition sites. Insects 12, 1047 (2021).Article 

    Google Scholar 
    Scolari, F., Valerio, F., Benelli, G., Papadopoulos, N. T. & Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 12, 408 (2021).Article 

    Google Scholar 
    Haverkamp, A., Hansson, B. S. & Knaden, M. Combinatorial codes and labelled lines: How insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Front. Physiol. 9, 49 (2018).Article 

    Google Scholar 
    Ichinosé, T., Honda, H. & Honda, H. Ovipositional behavior of papilio protenor demetrius Cramer and the factors involved in its host plants. Appl. Entomol. Zool. 13, 103–114 (1978).Article 

    Google Scholar 
    Spangler, H. G. Functional and temporal analysis of sound production in Galleria mellonella L. (Lepidoptera: Pyralidae). J. Comp. Physiol. A 159, 751–756 (1986).Article 

    Google Scholar 
    Spangler, H. G. & Takessian, A. Sound perception by two species of wax moths (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 76, 94–97 (1983).Article 

    Google Scholar 
    Skals, N. & Surlykke, A. Hearing and evasive behaviour in the greater wax moth, Galleria mellonella (Pyralidae). Physiol. Entomol. 25, 354–362 (2008).Article 

    Google Scholar 
    Kwadha, C. A. Determination of Attractant Semio-Chemicals of the Wax Moth, Galleria mellonella L., in Honeybee Colonies. M.Sc. Thesis, University of Nairobi, Kenya (2017).Pickard, S. C., Quinn, R. D. & Szczecinski, N. C. A dynamical model exploring sensory integration in the insect central complex substructures. Bioinspir. Biomim. 15, 026003. https://doi.org/10.1088/1748-3190/ab57b6 (2020).Article 
    ADS 

    Google Scholar 
    Kamala Jayanthi, P. D., Saravan Kumar, P. & Vyas, M. Odour cues from fruit arils of artocarpus heterophyllus attract both sexes of oriental fruit flies. J. Chem. Ecol. 47, 552–563 (2021).Article 

    Google Scholar 
    Anfora, G., Tasin, M., de Cristofaro, A., Ioriatti, C. & Lucchi, A. Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays. J. Chem. Ecol. 35, 1054–1062 (2009).Article 

    Google Scholar 
    Fand, B. B. et al. Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii. J. Pest Sci. 93, 195–206 (2020).Article 

    Google Scholar 
    Kovats, E. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromotogr. 1, 229–247 (1965).
    Google Scholar  More

  • in

    A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica

    Martínez, G. M. & Renno, N. O. Water and brines on Mars: Current evidence and implications for MSL. Sp. Sci. Rev. 175(1), 29–51 (2013).Article 
    ADS 

    Google Scholar 
    Orosei, et al. Radar evidence of subglacial liquid water on Mars. Science 361(6401), 490–493. https://doi.org/10.1126/science.aar7268 (2018).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun. 6(6831), 1–9 (2015).
    Google Scholar 
    Forte, E., Dalle Fratte, M., Azzaro, M. & Guglielmin, M. Pressurized brines in continental Antarctica as a possible analogue of Mars. Sci. Rep. 6, 33158 (2016).Article 
    ADS 

    Google Scholar 
    Siegert, M. J., Kennicutt, M. C. & Bindschadler, R. A. Antarctic Subglacial Aquatic Environments (Wiley, 2013).
    Google Scholar 
    Boulton, G. S., Caban, P. E. & van Gijssel, K. Groundwater flow beneath ice sheets: Part I—Large-scale patterns. Quatern. Sci. Rev. 14, 545–562 (1995).Article 
    ADS 

    Google Scholar 
    Fricker, H. A., Carter, S. P., Bell, R. E. & Scambos, T. Active lakes of Recovery Ice Stream, East Antarctica: A bedrock-controlled subglacial hydrological system. J. Glaciol. 60(223), 1015–1030. https://doi.org/10.3189/2014JoG14J063 (2014).Article 
    ADS 

    Google Scholar 
    Siegert, M. J. A wide variety of unique environments beneath the Antarctic ice sheet. Geology 44(5), 399–400. https://doi.org/10.1130/focus052016.1 (2016).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Lyons, W. B. et al. The geochemistry of englacial brine from Taylor Glacier, Antarctica. J. Geophys. Res. Biogeosci. 124, 633–648. https://doi.org/10.1029/2018JG004411 (2019).Article 

    Google Scholar 
    Campbell, S., Courville, Z., Sinclair, S. & Wilner, J. Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. Ann. Glaciol. 58, 74. https://doi.org/10.1017/aog.2017.26 (2017).Article 

    Google Scholar 
    Greene, S. et al. Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: Noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. Geochim. Cosmochim. Acta 72, 4008–4019. https://doi.org/10.1016/j.gca.2008.05.058 (2008).Article 
    ADS 

    Google Scholar 
    Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tulaczyk, S. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett. 43, 2640–2648. https://doi.org/10.1002/2016GL067758 (2016).Article 
    ADS 

    Google Scholar 
    Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1(12), 827–831. https://doi.org/10.1038/ngeo356 (2008).Article 
    ADS 

    Google Scholar 
    Kennicutt, M. C. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 27(01), 3–18. https://doi.org/10.1017/S0954102014000674 (2015).Article 
    ADS 

    Google Scholar 
    Welch, K. A. et al. Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarct. Sci. 22(06), 662–672. https://doi.org/10.1017/S0954102010000702 (2010).Article 
    ADS 

    Google Scholar 
    Skidmore, M., Tranter, M., Tulaczyk, S. & Lanoil, B. Hydrochemistry of ice stream beds—evaporitic or microbial effects?. Hydrol. Process. 24(4), 517–523 (2010).
    Google Scholar 
    Lüttge, A. & Conrad, P. G. Direct observation of microbial inhibition of calcite dissolution. Appl. Environ. Microbiol. 20, 1627–1632 (2004).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. & Priscu, J. C. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microbiol. 73(12), 4029–4039 (2007).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. A contemporary microbially maintained subglacial ferrous “Ocean”. Science 324(5925), 397–400. https://doi.org/10.1126/science.1167350 (2009).Article 
    ADS 

    Google Scholar 
    Chua, M. J. et al. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. Nov., a psychrophilic, moderate halophile from Blood Falls, an Antarctic subglacial brine. FEMS Microbiol. Ecol. 94, fiy021 (2018).Article 

    Google Scholar 
    Murray, A. E. et al. Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake. PNAS 109, 20626–20631. https://doi.org/10.1073/pnas.1208607109 (2012).Article 
    ADS 

    Google Scholar 
    Borruso, L. et al. A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci. Rep. 8, 1–9 (2018).Article 

    Google Scholar 
    Papale, M. et al. Microbial assemblages in pressurized Antarctic brine pockets (Tarn Flat, Northern Victoria Land): A hotspot of biodiversity and activity. Microorganisms 7, 333 (2019).Article 

    Google Scholar 
    Azzaro, M. et al. The prokaryotic community in an extreme Antarctic environment: The brines of Boulder Clay lakes (Northern Victoria Land). Hydrobiologia 848, 1837–1857. https://doi.org/10.1007/s10750-021-04557-2 (2021).Article 

    Google Scholar 
    Lo Giudice, A. et al. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology 21, 551–565 (2021).Article 
    ADS 

    Google Scholar 
    Sannino, C. et al. Intra-and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land). Environ. Microbiol. 22, 3463–3477 (2020).Article 

    Google Scholar 
    Bratina, B. J., Stevenson, B. S., Green, W. J. & Schmidt, T. M. Manganese reduction by microbes from oxic regions of the lake vanda (Antarctica) water column. Appl. Environ. Microbiol. 64, 3791–3797 (1998).Article 
    ADS 

    Google Scholar 
    Tregoning, G. S. et al. A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 81, 1988–1995 (2015).Article 
    ADS 

    Google Scholar 
    Kwon, M. et al. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ. Microbiol. 19, 2258–2271 (2017).Article 

    Google Scholar 
    Forte, E., Azzaro, M. & Guglielmin, M. Evidence of an unprecedented water erosion and supraglacial-fluvial sedimentation on an Antarctic glacier in the Holocene. Sci. Total Environ. 20, 20 (2022).
    Google Scholar 
    Doran, P. T. et al. Radiocarbon distribution and the effect of legacy in lakes of the McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 59(3), 811–826. https://doi.org/10.4319/lo.2014.59.3.0811 (2014).Article 
    ADS 

    Google Scholar 
    Saccò, M. et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 96, 2828–2850 (2021).Article 

    Google Scholar 
    Ramoneda, J. et al. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol. Ecol. 97, fiab044 (2021).Article 

    Google Scholar 
    Saxton, M. A. et al. Sulfate reduction and methanogenesis in the hypersaline deep waters and sediments of a perennially ice-covered lake. Limnol. Oceanogr. 66, 1804–1818 (2021).Article 
    ADS 

    Google Scholar 
    Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92, fiw018. https://doi.org/10.1093/femsec/fiw018 (2016).Article 

    Google Scholar 
    Hu, W. et al. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 20, 337–349 (2016).Article 

    Google Scholar 
    Alekseev, I., Zverev, A. & Abakumov, E. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: Environmental controls and effect of human impact. Microorganisms 8(8), 1202 (2020).Article 

    Google Scholar 
    Tian, R. et al. Small and mighty: Adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).Article 

    Google Scholar 
    Bowman, J. P., McCammon, S. A., Rea, S. M. & McMeekin, T. A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183, 81–88 (2000).Article 

    Google Scholar 
    Aislabie, J. & Bowman J. P. “Archaeal Diversity in Antarctic Ecosystems.” Polar Microbiology: The Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments 31–59 (CRC Press, 2010).
    Google Scholar 
    Zhang, C. J. et al. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl. Microbiol. Biotechnol. 104, 4593–4603. https://doi.org/10.1007/s00253-020-10613-z (2020).Article 

    Google Scholar 
    Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the archaea: Evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).Article 

    Google Scholar 
    Bowman, J. P. et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov.. Microbiology 144, 1601–1609 (1998).Article 

    Google Scholar 
    Donachie, S. P., Bowman, J. P. & Alam, M. Psychroflexus tropicus sp. Nov., an obligately halophilic Cytophaga-Flavobacterium-Bacteroides group bacterium from an Hawaiian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54, 935–940 (2004).Article 

    Google Scholar 
    Zhong, Z. P. et al. Psychroflexus salis sp. Nov. and Psychroflexus planctonicus sp. Nov., isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 66, 125–131 (2016).Article 

    Google Scholar 
    Chun, J., Kang, J. Y. & Jahng, K. Y. Psychroflexus salarius sp. Nov., isolated from Gomso salt pan. Int. J. Syst. Evol. Microbiol. 64, 3467–3472 (2014).Article 

    Google Scholar 
    Yoon, J. H., Kang, S. J., Jung, Y. T. & Oh, T. K. Psychroflexus salinarum sp. Nov., isolated from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 59, 2404–2407 (2009).Article 

    Google Scholar 
    Buzzini, P., Turchetti, B. & Yurkov, A. Extremophilic yeasts: The toughest yeasts around?. Yeast 35, 487–497 (2018).Article 

    Google Scholar 
    Coleine, C., Stajich, J. E. & Selbmann, L. Fungi are key players in extreme ecosystems. Trends Ecol. Evol. S0169–5347(22), 00025–00028 (2022).
    Google Scholar 
    Gonçalves, V. N. et al. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21, 1005–1015 (2017).Article 

    Google Scholar 
    Ogaki, M. B. et al. Cultivable fungi present in deep-sea sediments of Antarctica: Taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 24, 227–238 (2020).Article 

    Google Scholar 
    Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).Article 

    Google Scholar 
    Sterflinger, K. Black yeasts and meristematic fungi: Ecology, diversity and identification. In Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook (eds Péter, G. & Rosa, C.) 501–514 (Springer, 2006).Chapter 

    Google Scholar 
    Canini, F. et al. Growth forms and functional guilds distribution of soil Fungi in coastal versus inland sites of Victoria Land, Antarctica. Biology (Basel) 10, 320 (2021).
    Google Scholar 
    Vaniman, D. T. et al. Magnesium sulfate salts and the history of water on Mars. Nature 431, 663–665 (2004).Article 
    ADS 

    Google Scholar 
    Gendrin, A. et al. Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science 307, 1587–1591 (2005).Article 
    ADS 

    Google Scholar 
    Carr, M. H. & Head, J. W. I. I. I. Geologic history of Mars. Earth Planet Sci. Lett. 294, 185–203 (2010).Article 
    ADS 

    Google Scholar 
    Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).Article 
    ADS 

    Google Scholar 
    Cragin, J. H., Gow, A. J. & Kovacs, A. Chemical fractionation of brine in the McMurdo Ice Shelf, Antarctica. CRREL Rep. 20, 83–86 (1983).
    Google Scholar 
    Frank, T. D. & Gui, Z. Cryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarctica. Geology 38(7), 587–590. https://doi.org/10.1130/G30849.1 (2010).Article 
    ADS 

    Google Scholar 
    Gardner, C. B. & Lyons, W. B. Modeled geochemical composition of cryogenically produced subglacial Brines, Antarctica. Antarct. Sci. 31(3), 165–166 (2019).Article 
    ADS 

    Google Scholar 
    Lyons, W. B. et al. Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: Clues to the origin of solutes and lake evolution. Geochim. Cosmochim. Acta 69, 305–323 (2005).Article 
    ADS 

    Google Scholar 
    Armienti, P. & Baroni, C. Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology 27(7), 617–620 (1999).Article 
    ADS 

    Google Scholar 
    Di Nicola, L. et al. Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica). Quatern. Res. 71(1), 83–92 (2009).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Levy, R. et al. Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Glob. Planet. Change 80–81, 61–84 (2012).Article 
    ADS 

    Google Scholar 
    Prebble, J. G., Raine, J. I., Barrett, P. J. & Hannah, M. J. Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 41–57 (2006).Article 

    Google Scholar 
    Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Myco Keys 10, 1–43 (2015).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. (2010).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).Article 

    Google Scholar  More