More stories

  • in

    Permafrost in the Cretaceous supergreenhouse

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).Article 
    ADS 

    Google Scholar 
    Murton, J. B. What and where are periglacial landscapes? Permaf. Periglac. Process. 32, 186–212 (2021).Article 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Reyes, F. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).Article 

    Google Scholar 
    Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P. & Lamoureux, S. F. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nat. Commun. 11, 4500 (2020).Article 
    ADS 

    Google Scholar 
    Alley, N. F., Hore, S. B. & Frakes, L. A. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Aust. J. Earth Sci. 67, 1045–1095 (2020).Article 
    ADS 

    Google Scholar 
    Hore, S. B., Hill, S. M. & Alley, N. F. Early Cretaceous glacial environment and paleosurface evolution within the Mount Painter Inlier, northern Flinders Ranges, South Australia. Aust. J. Earth Sci. 67, 1117–1160 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P. et al. Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 452, 11–27 (2016).Article 

    Google Scholar 
    Schneider, S. et al. Macrofauna and biostratigraphy of the Rollrock Section, northern Ellesmere Island, Canadian Arctic Islands e a comprehensive high latitude archive of the Jurassic–Cretaceous transition. Cret. Res. 114, 104508 (2020).Article 

    Google Scholar 
    Jeans, C. V. & Platten, I. M. The erratic rocks of the Upper Cretaceous Chalk of England: how did they get there, ice transport or other means? Acta Geol. Pol. 71, 287–304 (2021).
    Google Scholar 
    Wu, C. & Rodríguez-López, J. P. Cryospheric processes in Quaternary and Cretaceous hyper-arid oases. Sedimentology 68, 755–770 (2021).Article 

    Google Scholar 
    Grasby, S. E., McCune, G. E., Beauchamp, B. & Galloway, J. M. Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. GSA Bull. 129, 771–787 (2017).Article 
    CAS 

    Google Scholar 
    Galloway, J. M. et al. Finding the VOICE: organic carbon isotope chemostratigraphy of the Late Jurassic–Early Cretaceous of Arctic Canada. Geol. Mag. 1–15 https://doi.org/10.1017/S0016756819001316 (2019).Rogov, M. et al. Database of global glendonite and ikaite records throughout the Phanerozoic. Earth Syst. Sci. Data 13, 343–356 (2021).Article 
    ADS 

    Google Scholar 
    Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth–Sci. Rev. 48, 183–210 (1999).Article 
    ADS 

    Google Scholar 
    Savidge, R. A. Evidence of early glaciation of southeastern Beringia. Can. J. Earth Sci. 57, 199–226 (2020).Article 
    ADS 

    Google Scholar 
    Wang, Y. et al. Relict sand wedges suggest a high altitude and cold temperature during the Early Cretaceous in the Ordos Basin, North China. Int. Geol. Rev. https://doi.org/10.1080/00206814.2022.2081938 (2022).Nelson, D. A., Cottle, J. M., Bindeman, I. N. & Camacho, A. Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica. Nat. Commun. 13, 5209 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, W.-B. et al. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous. Sci. Rep. 3, 2732 (2013).Article 

    Google Scholar 
    Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).Article 
    ADS 

    Google Scholar 
    Huang, Y. B. The origin and evolution of the desert in southern Ordos in early Cretaceous: Constraint from Magnetostratigraphy of Zhidan Group and magnetic susceptibility of its sediment. Doctoral Dissertation. Lanzhou University (2010).Ma, J. Sedimentary Basin Analysis of the Cretaceous Ancient Desert in the Ordos Basin. Master’s thesis, China University of Geosciences (2020).Wu, C. H., Rodríguez-López, J. P. & Santosh, M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geosci. Front. 13, 101454 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, R. X., Chen, L., Wu, F. Y. & Liu, J. L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54, 789–797 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to Recent aeolian sand systems and their preserved successions: current understanding and way forward. Sedimentology 61, 1487–1534 (2014).Article 

    Google Scholar 
    Murton, J. B. in Encyclopedia of Quaternary Science Vol. 3 (eds Elias, S. A. & Mock, C. J.) 436–451 (Elsevier, Amsterdam, 2013).Rodríguez-López, J. P., Van Vliet-Lanöe, B., López-Martínez, J. & Martín-García, R. Scouring by rafted ice and cryogenic pattern ground preserved in a Palaeoproterozoic equatorial proglacial lagoon succession, eastern India, Nuna supercontinent. Mar. Pet. Geol. 123, 104766 (2021).Article 

    Google Scholar 
    Murton, J. B., Worsley, P. & Gozdzik, J. Sand veins and wedges in cold aeolian environments. Quat. Sci. Rev. 19, 899–922 (2000).Article 
    ADS 

    Google Scholar 
    Kovács, J., Fábián, S. A., Schweitzer, F. & Varga, G. A relict sand-wedge polygon site in north-central Hungary. Permafr. Periglac. Process. 18, 379–384 (2007).Article 

    Google Scholar 
    Fábián, S. Á. et al. Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 43, 722–732 (2014).Article 

    Google Scholar 
    Williams, G. E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: principles and tests. Earth–Sci. Rev. 87, 61–93 (2008).Article 
    ADS 

    Google Scholar 
    Williams, G. E., Schmidt, P. W. & Young, G. M. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: radically different climate system on the pre-Ediacaran Earth. Geosci. Front. 7, 555–571 (2016).Article 

    Google Scholar 
    Van Vliet-Lanoë, B. Deformations in the active layer related with ice/soil wedge growth and decay in present day Arctic. Paleoclimate implications. Ann. Soc. Géol. Nord. 13, 81–95 (2005).
    Google Scholar 
    Remillard, A. M. et al. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite wedge casts on the Magdalen Islands (eastern Canada). Boreas 44, 658–675 (2015).Article 

    Google Scholar 
    Murton, J. B. Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob. Planet. Change 28, 175–192 (2001).Article 
    ADS 

    Google Scholar 
    Harris, C., Murton, J. B. & Davies, M. C. R. An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge modelling. Geomorphology 71, 328–343 (2005).Article 
    ADS 

    Google Scholar 
    Houmark-Nielsen, M. et al. Early and Middle Valdaian glaciations, ice-dammed lakes and periglacial interstadials in northwest Russia: new evidence from the Pyoza River area. Glob. Planet. Change 31, 215–237 (2001).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Kolstrup, E. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Prog. Phys. Geogr. 27, 155–170 (2003).Article 

    Google Scholar 
    Harry, D. G. & Gozdzik, J. S. Ice wedges: growth, thaw transformation, and palaeoenvironmental significance. J. Quat. Sci. 3, 39–55 (1988).Article 

    Google Scholar 
    Wolfe, S. A., Morse, P. D., Neudorf, C. M., Kokelj, S. V., Lian, O. B. & O’Neill, H. B. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 308, 215–229 (2018).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Bateman, M. D. Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada. Permafr. Periglac. Process. 18, 33–47 (2007).Article 

    Google Scholar 
    Obu, J., Westermann, S., Kääb, A., & Bartsch, A. Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, 2018)Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth–Sci. Rev. 193, 299–316 (2019).Article 
    ADS 

    Google Scholar 
    Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019).Mackay, J. R. The origin of hummocks, western arctic coast, Canada. Can. J. Earth Sci. 17, 996–1006 (1980).Article 
    ADS 

    Google Scholar 
    Kokelj, S. V., Burn, C. R. & Tarnocai, C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 39, 99–109 (2007).Article 

    Google Scholar 
    Rodríguez-López, J. P., Meléndez, N., de Boer, P. L., Soria, A. R. & Liesa, C. L. Spatial variability of multicontrolled aeolian supersurfaces in central-erg and marine erg-margin systems. Aeolian Res. 11, 141–154 (2013).Article 
    ADS 

    Google Scholar 
    Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar 
    Cheng, G., Bai, Y. & Sun, Y. Paleomagnetic study on the tectonic evolution of the Ordos Block, North China. Seismol. Geol. 10, 81–87 (1988).
    Google Scholar 
    Zheng, Z. et al. The apparent polar wander path for the North China Block since the Jurassic. Geophys. J. Int. 104, 29–40 (1991).Article 
    ADS 

    Google Scholar 
    Malinverno, A., Hildebrandt, J., Tominaga, M. & Channell, J. E. T. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res. 117, B06104 (2012).ADS 

    Google Scholar 
    Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Westall, F. The nature of fossil bacteria: a guide to the search for extraterrestial live. J. Geophys. Res. 104, 437–16,451 (1999).
    Google Scholar 
    Yang, H., Chen, Z.-Q. & Papineau, D. Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Res. 368, 106496 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Kremer, B., Kazmierczak, J., Łukomska-Kowalczyk, M. & Kempe, S. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo’ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12, 535–548 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Astafieva M. M. et al. Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials (Paleontological Institute Russian Academy of Science, Moscow, 2011).Rozanov, A. Y. & Zavarzin, G. A. Bacterial paleontology. Vestn. Akad. Med. Nauk 67, 241–245 (1997).
    Google Scholar 
    Perez-Mon, C., Stierli, B., Plötze, M. & Frey, B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807, 150–720 (2022).Article 

    Google Scholar 
    Rivkina, E. et al. Earth’s perennially frozen environments as a model of cryogenic planet ecosystems. Permafr. Periglac. Process. 29, 246–256 (2018).Article 

    Google Scholar 
    Vishnivetskaya, T. A. et al. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol. Ecol. 96, fiaa229 (2020).Article 
    CAS 

    Google Scholar 
    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Choe, Y. H. et al. Comparing rock-inhabiting microbial communities in different rock types from a high arctic polar desert. FEMS Microbiol. Ecol. 94, fiy070 (2018).ADS 

    Google Scholar 
    Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Vickers, M. L. et al. The duration and magnitude of Cretaceous cold events: evidence from the northern high latitudes. Geol. Soc. Am. Bull. 131, 1979–1994 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Lehmann, J. in Ammonoid Palaeobiology: From Macroevolution to Palaeogeography (eds Klug, C. De Baets, K., Kruta I. & Mapes, R. H.) 403–429 (Springer, Amsterdam, 2015).Keller, M. A. & Macquaker, J. H. S. in Studies by the U.S. Geological Survey in Alaska: US Geological Survey Professional Paper 1814-B Vol. 15 (ed Dumoulin, J. A.) 1–35 (US Geological Survey, US Department of The Interior, Reston, 2015).Cavalheiro, L. et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 12, 5411 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    McArthur, J. M. et al. Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, d18O, d13C, 87Sr/86Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 391–430 (2007).Article 

    Google Scholar 
    Lini, A., Weissert, H. & Erba, E. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 4, 374–384 (1992).Article 
    ADS 

    Google Scholar 
    Li, X. et al. Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time. Geol. Mag. 151, 830–849 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    O’Brien, Ch. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth–Sci. Rev. 172, 224–247 (2017).Article 
    ADS 

    Google Scholar 
    Price, G. D. et al. A high-resolution Belemnite geochemical analysis of early Cretaceous (Valanginian–Hauterivian) environmental and climatic perturbations. Geochem. Geophys. Geosyst. 19, 3832–3843 (2018).Article 
    CAS 

    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Van der Kolk, D. A., Whalen, M. T., Wartes, M. A., Newberry, R. J. & McCarthy, P. in Arctic to the Cordillera: Unlocking the Potential. American Association of Petroleum Geologists Pacific Section Meeting, May 8–11, Anchorage, AK, USA, Search and Discovery Article 90125 (American Association of Petroleum Geologists, 2011).Walter Anthony, K. M. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).Article 
    ADS 

    Google Scholar 
    Cheng, F. et al. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene palaeoclimate analogue. Nat. Commun. 13, 1329 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Brouillette, M. How microbes in permafrost could trigger a massive carbon bomb. Nature 591, 360–362 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Murton, J. B. in Climate Change, Observed Impacts on Planet Earth, 3rd edn (ed Letcher, T.) 281–326 (Elsevier, Amsterdam, 2021).Schnyder, J., Ruffell, A., Deconinck, J. F. & Baudin, F. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 303–320 (2006).Article 

    Google Scholar 
    Li, M. et al. Astrochronology of the Anisian stage (Middle Triassic) at the guandao reference section, south china. Earth Planet. Sci. Lett. 482, 591–606 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Palaeoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China. Earth–Sci. Rev. 189, 125–146 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M., Hinnov, L. & Kump, L. Acycle: time–series analysis software for palaeoclimate research and education. Comput. Geosci. 127, 12–22 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Laskar, J. et al. A long–term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 
    ADS 

    Google Scholar  More

  • in

    Responses to salinity in the littoral earthworm genus Pontodrilus

    Lavelle, P., Blanchart, E., Martin, A., Spain, A. V. & Martin, S. Impact of soil fauna on the properties of soils in the humid tropics. In Myths and Science of Soils of the Tropics (eds Lal, R. & Sanchez, P.) 157–185 (Soil Science Society of America, 1992).
    Google Scholar 
    Eisenhauer, N. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).Article 

    Google Scholar 
    Eisenhauer, N. & Eisenhauer, E. The “intestines of the soil”: The taxonomic and functional diversity of earthworms—A review for young ecologists. Preprint at https://doi.org/10.32942/osf.io/tfm5y (2020).Gates, G. E. Burmese earthworms, an introduction to the systematics and biology of megadrile oligochaetes with special reference to South-east Asia. Trans. Amer. Phil. Soc. 62, 1–326. https://doi.org/10.2307/1006214 (1972).Article 

    Google Scholar 
    Blakemore, R. J. Origin and means of dispersal of cosmopolitan Pontodrilus litoralis (Oligocaheta: Megascolecidae). Eur. J. Soil Biol. 443, S3–S8. https://doi.org/10.1016/j.ejsobi.2007.08.041 (2007).Article 

    Google Scholar 
    Seesamut, T., Sutcharit, C., Jirapatrasilp, P., Chanabun, R. & Panha, S. Morphological and molecular evidence reveal a new species of the earthworm genus Pontodrilus Perrier, 1874 (Clitellata, Megascolecidae) from Thailand and Peninsular Malaysia. Zootaxa 4496, 218–237. https://doi.org/10.11646/zootaxa.4496.1.18 (2018).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Chanabun, R., Oba, Y. & Panha, S. Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. Zookeys 862, 23–43. https://doi.org/10.3897/zookeys.862.35727 (2019).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Sutcharit, C., Tongkerd, P. & Panha, S. Mitochondrial genetic population structure and variation of the littoral earthworm Pontodrilus longissimus Seesamut and Panha, 2018 along the coast of Thailand. Eur. J. Soil Biol. 93, 103091. https://doi.org/10.1016/j.ejsobi.2019.103091 (2019).Article 

    Google Scholar 
    Attrill, M. J. A testable linear model for diversity trends in estuaries. J. Anim. Ecol. 71, 262–269. https://doi.org/10.1046/j.1365-2656.2002.00593.x (2002).Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management 3rd edn. (Oxford University Press, 2004).Book 

    Google Scholar 
    Telesh, I. V. & Khlebovich, V. V. Principal processes within the estuarine salinity gradient: A review. Mar. Pollut. Bull. 61, 149–155. https://doi.org/10.1016/j.marpolbul.2010.02.008 (2010).Article 
    CAS 

    Google Scholar 
    Owojori, O. J. & Reinecke, A. J. Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. Appl. Soil Ecol. 44, 156–163. https://doi.org/10.1016/j.apsoil.2009.11.006 (2010).Article 

    Google Scholar 
    Guzyte, G., Sujetoviene, G. & Zaltauskaite, J. Effects of salinity on earthworm (Eisenia fetida). Environ. Eng. 8, 111 (2011).
    Google Scholar 
    Ganapati, P. N. & Subba Rao, B. V. S. S. R. Salinity tolerance of a littoral oligochaete, Pontodrilus bermudensis Beddard. Proc. Ind. Nat. Sci. Acad. 38, 350–354 (1972).
    Google Scholar 
    Subba Rao, B. V. S. S. R. Volume regulation in a euryhaline oligochaete, Pontodrilus bermudensis Beddard. Proc. Indian Acad. Sci. 87, 339–347 (1978).Article 

    Google Scholar 
    Owojori, O. J., Reinecke, A. J. & Rozanov, A. B. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biol. Biochem. 40, 2385–2393. https://doi.org/10.1016/j.soilbio.2008.05.019 (2008).Article 
    CAS 

    Google Scholar 
    Seesamut, T. et al. Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus. Sci. Rep. 11, 8407 (2021).Article 
    CAS 

    Google Scholar 
    Sivinski, J. & Forrest, T. Luminous defense in an earthworm. Fla. Entomol. 66, 517 (1983).Article 

    Google Scholar 
    Verdes, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comp. Biol. 57, 18–32. https://doi.org/10.1093/icb/icx017 (2017).Article 
    CAS 

    Google Scholar 
    Shimomura, O. & Yampolsky, I. Bioluminescence: Chemical Principles and Methods 3rd edn. (World Scientific, 2019).Book 

    Google Scholar 
    Easton, E. G. Earthworms (Oligochaeta) from islands of the south-western Pacific, and a note on two species from Papua New Guinea. N. Z. J. Zool. 11, 111–128. https://doi.org/10.1080/03014223.1984.10423750 (1984).Article 

    Google Scholar 
    Shen, H.-P., Tsai, S.-C. & Tsai, C.-F. Occurrence of the earthworms Pontodrilus litoralis (Grube, 1855), Metaphire houlleti (Perrier, 1872), and Eiseniella tetraedra (Savigny, 1826) from Taiwan. Taiwania 50, 11–21 (2005).
    Google Scholar 
    Satheeshkumar, P., Khan, A. B. & Senthilkumar, D. Annelida, Oligochaeta, Megascolecidae, Pontodrilus litoralis (Grupe, 1985): First record from Pondicherry mangroves, southeast coast of India. Int. J. Zool. Res. 7, 406–409. https://doi.org/10.3923/ijzr.2011.406.409 (2011).Article 

    Google Scholar 
    Nguyen, T. T., Nguyen, D. A., Tran, T. T. B. & Blakemore, R. J. A comprehensive checklist of earthworm species and subspecies from Vietnam (Annelida: Clitellata: Oligochaeta: Almidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Moniligastridae, Ocnerodrilidae, Octochaetidae). Zootaxa 4140, 1–92. https://doi.org/10.11646/zootaxa.4140.1.1 (2016).Article 

    Google Scholar 
    Chen, S.-Y., Hsu, C.-H. & Soong, K. How to cross the sea: Testing the dispersal mechanisms of the cosmopolitan earthworm Pontodrilus litoralis. R. Soc. Open Sci. 8, 202297. https://doi.org/10.1098/rsos.202297 (2021).Article 
    ADS 

    Google Scholar 
    Smyth, K. & Elliott, M. Effects of changing salinity on the ecology of the marine environment. In Stressors in the Marine Environment (eds Solan, M. & Whiteley, N. M.) 161–175 (Oxford University Press, 2016).Chapter 

    Google Scholar 
    Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160. https://doi.org/10.1093/mollus/eyv044 (2016).Article 

    Google Scholar 
    Carley, W. W., Caracciolo, E. A. & Mason, R. T. Cell and coelomic fluid volume regulation in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 74, 569–575 (1983).Article 

    Google Scholar 
    Sharif, F. et al. Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of Sorghum bicolor. Arch. Agron. Soil Sci. 62, 1169–1181. https://doi.org/10.1080/03650340.2015.1132838 (2016).Article 
    CAS 

    Google Scholar 
    Wu, Z. et al. Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. Int. J. Environ. Res. Public Health 16, 4737. https://doi.org/10.3390/ijerph16234737 (2019).Article 
    CAS 

    Google Scholar 
    Oglesby, L. C. Volume regulation in aquatic invertebrates. J. Exp. Zool. 215, 289–301 (1981).Article 
    CAS 

    Google Scholar 
    Generlich, O. & Giere, O. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334, 251–261. https://doi.org/10.1007/BF00017375 (1996).Article 

    Google Scholar 
    Carregosa, V. et al. Tolerance of Venerupis philippinarum to salinity: Osmotic and metabolic aspects. Comp. Biochem. Physiol. A 171, 36–43. https://doi.org/10.1016/j.cbpa.2014.02.009 (2014).Article 
    CAS 

    Google Scholar 
    Freitas, R. et al. The effects of salinity changes on the polychaete Diopatra neapolitana: Impacts on regenerative capacity and biochemical markers. Aquat. Toxicol. 163, 167–176. https://doi.org/10.1016/j.aquatox.2015.04.006 (2015).Article 
    CAS 

    Google Scholar 
    Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760. https://doi.org/10.1242/jeb.135624 (2017).Article 

    Google Scholar 
    Munnoli, P. M. & Bhosle, S. Effect of soil cow dung proportion of vermicomposting. J. Sci. Ind. Res. 68, 57–60 (2009).
    Google Scholar  More

  • in

    Ocean acidification causes fundamental changes in the cellular metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic analysis

    Using a targeted metabolomics approach, we showed that late copepodite stages of the keystone Arctic copepod Calanus glacialis experience important changes in several central energetic pathways following exposure to decreasing pH. These findings shed light on the physiological changes underpinning the effects of OA on fitness related traits such as ingestion rate and metabolic rate previously observed in this species17,18,20.Cellular energy metabolismCellular energy production was altered consistently in both stage CIV and CV, with concentrations of higher energy adenosine phosphates (ATP and ADP) increasing, and concentrations of the lower energy, less-phosphorylated AMP decreasing, with decreasing seawater pH. Moreover, Phospho-L-arginine, which in crustaceans functions as phosphagen in the replenishment of ATP from ADP during transient energy demands32, increased significantly in stage CV. These changes strongly suggest that exposure to low pH affects energy production and expenditure in both developmental stages, although with nuanced differences.NAD+ increased significantly in stage CIV. NAD+ is an essential redox carrier receiving electrons from oxidative processes in the glycolysis, the TCA cycle, and fatty acid oxidation to form NADH. A high NAD+/NADH ratio facilitates higher rates of these reactions and thus potentially higher rates of ATP production (unfortunately, the LC-HRMS could not detect NADH). But most importantly, the produced NADH serves as electron donors to ATP synthesis in the oxidative phosphorylation. For every ATP produced in the oxidative phosphorylation one NADH is oxidised back to NAD+. High rates of ATP production in the oxidative phosphorylation would therefore amass NAD+, as observed in stage CIV. Conversely, ATP production in the glycolysis and TCA cycle consumes NAD+ (9 NAD+ per 4 ATP) and glycolytic ATP production would decrease the NAD+ concentration with decreasing pH.Heterotrophic organisms generally face a trade-off between rate and yield of ATP production. The efficient low rate/high yield production in the TCA cycle/oxidative phosphorylation may prevail under certain circumstances, whereas under other circumstances, the less efficient high rate/low yield production in the glycolysis may predominate33. Because glycolysis and oxidative phosphorylation compete for ADP, the one dominate over the other in terms of rates depending on the substrate being metabolised. In stage CIV copepodites, the TCA cycle pathway was enriched in the MetPA, and metabolites associated with glycolysis and the TCA cycle showed significant changes in their concentrations at decreasing seawater pH. Glucose, the entry point to glycolysis, increased significantly with decreasing pH. High levels of blood glucose (hyperglycemia) have been observed as a general stress response in decapod crustaceans34. Copepods have no circulatory system (although they have a dorsal heart) but might nevertheless react similarly on the cellular level. Along with the significant increase in glucose, lactate decreased significantly with pH in stage CIV. Lactate is an inevitable end product of glycolysis, because lactate dehydrogenase has the highest Vmax of any enzymes in the glycolytic pathway and the Keq for pyruvate to lactate is far in the direction of lactate35. Accordingly, although the glycolysis was not enriched in the MetPA, conceivably because none of its intermediate metabolites were included in the analyses (the protocol did not allow for it), we hypothesise that stage CIV copepodites experience a general down-regulation of glycolysis under decreasing pH. Alternatively, the amassing of glucose and depletion of lactate could also indicate increased gluconeogenesis. Gluconeogenesis occurs during starvation to replenish glycogen stores and ingestion rates did decrease in stage CIV20. But again, we did not target any intermediates in our analyses, and thus cannot firmly conclude on this.Phosphofructokinase-1 is a key regulatory enzyme of glycolysis36. This enzyme is allosterically inhibited by ATP and activated by AMP, and interestingly this regulation is augmented by low pH37,38. Thus, phosphofructokinase-1 could be key to the down-regulation of glycolysis we hypothesise. The fact that we found increasing oxygen consumption with decreasing pH in stage CIV copepodites from the same experiment adds further momentum to this line of thought20. It seems that stage CIV copepodites might experience the so-called Pasteur effect—a decrease in glycolysis at increased levels of oxygen uptake—when exposed to decreasing pH39. Although ATP and AMP were significantly affected also in stage CV, glucose, pyruvate and lactate did not change with decreasing pH, which perhaps indicate absence of the down-regulation of glycolysis we hypothesise for stage CIV. There is, nevertheless, one indication that down-regulation may in fact occur also in this developmental stage. Alpha-glycerophosphate decreased significantly with decreasing pH in stage CV. This molecule is an intermediate in the transfer of electrons from NADH produced by glycolysis in the cytosol to the oxidative phosphorylation in the mitochondria, and decreased concentrations could result from down-regulation of the glycolysis also in stage CV copepodites.The TCA cycle was enriched for stage CIV and most of the measured TCA cycle metabolites (alpha-ketoglutarate, succinate, fumarate, and malate) showed increasing concentrations at decreasing pH. Trigg et al.40 observed a similar increase in concentrations of TCA cycle-related metabolites in the Dungeness crab, Cancer magister (Dana, 1852), at decreased pH and concluded that TCA cycle activity is upregulated under OA. Since NAD+ is the product of the transport of electrons from the TCA cycle to the oxidative phosphorylation in the mitochondria,  the increase in NAD+ concentration we observed in stage CIV could reflect an increase in the flow of electrons from the TCA cycle to the oxidative phosphorylation, and by extension an increase in the energy production by the TCA cycle and the oxidative phosphorylation. There is negative feedback from the TCA cycle to glycolysis through inhibition of phosphofructokinase-1 by citrate, a metabolite of the TCA cycle38. Unfortunately, we did not target citrate in our targeted approach to specifically test this hypothesis, but the amassing of NAD+ do provide additional support to the idea that glycolysis is down-regulated at decreasing pH. Again, there is a less clear picture of how cellular energy metabolism is affected by decreasing pH in stage CV when compared to stage CIV. There was no clear pattern of regulation of TCA metabolites, and the TCA cycle was not enriched in the MetPA. Nevertheless, alpha-ketoglutarate concentrations did increase with decreasing pH in CVs.The glyoxylate/dicarboxylate cycle was also enriched in the pathway analysis, but this is probably also a result of the increases in concentrations of alpha-ketoglutarate, succinate, fumarate, and malate, and we are unable to distinguish it from the TCA cycle based on the set of metabolites analysed.Conclusively, lowered glycolysis due to inhibition of phosphofructokinase-1 and upregulation of the TCA cycle and oxidative phosphorylation at low pH in stage CIV appear plausible causes for the changes in ATP, ADP and AMP concentrations we observed. Alongside these effects, down-regulation of transcription of genes involved in the glycolysis were also present in nauplii of C. glacialis exposed to 35–38 days of low pH conditions16. On the other hand, studies on the acclimatisation and adaptation to OA in another calanoid copepod species, Pseudocalanus acuspes (Giesbrecht, 1881), showed no increase in expression of mitochondrial genes at pHT 7.54, which would have been expected if the TCA cycle or oxidative phosphorylation is upregulated41. Interestingly, De Wit et al.41 also showed natural selection in a large fraction of mitochondrial genes under OA conditions. Even evolutionarily conserved sequences, such as cytochrome oxidase subunit I, were under selection and it was hypothesised that the mitochondrial function of oxidative phosphorylation is a target for natural selection in copepods at low pH41.Besides its role in the transfer of energy from the mitochondria to the cell, ATP is also used to fuel cell homeostasis and active cellular acid–base regulation by activation of ATP-dependent enzymes involved in osmo-ionic- and acid–base regulation. In crustaceans, acid–base status is linked to ion regulation, and is maintained primarily through ion transport mechanisms moving acid and/or base equivalents between the extracellular fluid and the ambient water42. One prominent process in this respect is regulation by Na+/K+-ATPase42,43. While this regulation takes place in the gills of decapod crustaceans43, it is located in the maxillary glands and other specialised organs on the swimming legs of copepods44. Any extensive ATPase mediated pH regulation could have manifested itself by decreasing ATP concentrations, but this is contrary to what we report here. Interestingly, while the pCO2-sensitive isopod Cymodoce truncata (Leach, 1814) is able to maintain its cellular ATP concentration at the expense of the concentration of carbonate anhydrase (an enzyme involved in the cellular transformation of water and CO2 to bicarbonate ions and H+ prior to the ATPase mediated transport of H+ across the cell membrane), the pCO2-tolerant isopod Dynamene bifida (Torelli, 1930) upregulates ATP with no functional compromise to CA concentrations45. Finally, C. glacialis nauplii have shown upregulation of Na+/H+-antiporters independent of ATPase as a response to OA16, which one could hypothesise also may be the case in the copepodites. Arctic populations of the amphipod Gammarus setosus also do not experience increased ATPase activity during OA conditions46. It seems that C. glacialis faces OA without any ATP dependent acid/base regulation activity.Glycolysis is the first step of catabolism of carbohydrates for the production of energy. When down-regulating glycolysis the copepods may be increasingly dedicated to catabolism of amino acids e.g. through oxidative deamination of glutamate and/or catabolism of fatty acids through beta-oxidation to produce the energy they require21. Both lead to the production of molecules entering the TCA cycle and ultimately the oxidative phosphorylation for energy production in the mitochondria.Amino acid metabolismOf the free amino acids which were significantly affected by decreasing pH, the majority decreased in concentration, for both stage CIV and CV copepodites. This could be an indication of changes in protein synthesis at decreasing pH. Supporting this idea, biosynthesis of aminoacyl-tRNA was indicated as significantly enriched in the MetPA in both stage CIV and CV. Aminoacyl-tRNA partakes in the elongation of the protein amino acid chain during protein synthesis and the enrichment was most likely due to the changes in concentration of the many amino acids tested. One probable cause of protein synthesis is the increased demands of enzymes needed to handle stress at low pH, including for example enzymes involved in acid–base- and osmo-regulation or regulation of energy production. Increased protein synthesis caused by OA conditions has been observed in larvae of the purple sea urchin Strongylocentrotus purpuratus (O.F. Müller, 1776), where in vivo rates of protein synthesis and ion transport increased ∼50%47. Costs of protein synthesis are high and have shown to constitute a major part of copepod metabolic demand48 and we did observe significant increases in metabolic rate in copepodite stage CIV from the same experiment20 giving further credit to the idea that protein synthesis was upregulated.An alternate but not mutually exclusive explanation is that the copepods experience increased amino acid catabolism under OA. Glutamate increased in stage CIV accompanied by a significant increase in alpha-ketoglutarate in both stage CIV and CV. Alpha-ketoglutarate is part of the metabolic pathway of glutamine, glutamate and arginine in which glutamate acts as an intermediate in catabolism of these amino acids when it is deaminated to alpha-ketoglutarate to enter the TCA cycle49. Glutamate metabolism (in conjunction with alanine and aspartate metabolism) was significantly enriched in the MetPA in both stage CIV and CV, and these changes could be taken as an indication of a shift towards amino acid catabolism with decreasing pH. The key enzyme catalysing the oxidative deamination of glutamate is glutamate dehydrogenase (GDH), which functions in both directions: deamination of glutamate to form alpha-ketoglutarate or formation of glutamate from alpha-ketoglutarate. Studies on the ribbed mussel, Modiolus dernissus (Dillwyn, 1817), have shown that the balance of this action is strongly pushed towards deamination when pH decreases from 8.0 to 7.550. GDH is activated by ADP, and one could argue that the increase in ADP we observed would work against this shift, but ADP activates GDH mainly in the glutamate forming direction51. The other measured amino acids enter the TCA cycle at different positions we unfortunately could not target in our analyses. Glutamate also partakes in the arginine biosynthesis pathway in which it is transformed to ornithine to enter the urea cycle. Arginine biosynthesis was enriched in the MetPA and it is therefore possible that decreasing pH also changes amino acid catabolism to increase urea excretion. Decreasing pH has a similar depressing effect on amino acid concentration in the gills of the shore crab Carcinus maenas (Linnaeus, 1758) which also has been interpreted as a sign of increased protein catabolism52. Hammer and colleagues52 argued that this increase in catabolism served to buffer H+ by supplying nitrogen to NH4 formation in the cells. All in all, we hypothesise that increased amino acid catabolism, possibly driven by changes in GDH activity, and the down-regulation of glycolysis by inhibition of phosphofructokinase-1 may be major drivers of a shift from carbohydrate metabolism towards catabolism of amino acids.D-glutamine/D-glutamate metabolism was highly enriched in the MetPA in both developmental stages. Several studies show enriched D-glutamine/D-glutamate metabolism in crustaceans [e.g. 53], but they offer no explanation of its function or the reason why it is enriched. While D-glutamate act in neurotransmission, this action is evolutionarily restricted to ctenophores, and biochemical measurements of D-amino acid concentrations have shown absence of D-glutamate in crustaceans54,55.We observed no changes in concentrations of 8-oxy-2-deoxyguanosine, a product of DNA oxidation. Furthermore, regulation of cellular response to oxidative stress is down-regulated in C. glacialis nauplii16, and OA may not induce oxidative stress in C. glacialis.Fatty acid metabolismBesides their importance in energy storage as wax esters, fatty acids are involved in many central processes in cells, most prominently through their function as cell membrane building blocks. Many fatty acids are obtained from the diet but some longer chain fatty acids, such as 20:1n-9 are synthesised de novo in copepods56. Stage CV copepodites experienced increases in most of the targeted free fatty acids (18 of 21) with decreasing pH. Only one of those 18 increased significantly, but since the direction of change were the same in all, we argue that the pattern of change does merit consideration. Conspicuous exceptions were eicosapentaenoic acid (EPA) 20:5n-3 and docosahexaenoic acid (DHA) 22:6n-3, which both decreased significantly. The only other study (to our knowledge) of metabolomic effects of environmental changes in copepods showed the exact same response to starvation in a mix of C. finmarchicus and C. helgolandicus stage CV copepodites, with most fatty acids increasing while EPA and DHA decreased in concentration57. EPA and DHA are key marine polyunsaturated fatty acids (PUFAs) exclusively produced by marine algae. They contribute a major fraction of the fatty acids of cell membrane phospholipids58, and zooplankton reproductive production is highly dependent on especially EPA59. EPA and DHA are key for cell membrane fluidity, which for calanoid copepods is especially important during diapause in the deep during copepodite stage CV60. They have also been linked to diapause buoyancy control, and are selectively metabolized in diapausing copepodites61. The importance of EPA and DHA for cell membrane integrity may be central for the changes we observed. Glycerol-3-phosphate, the precursor for the glycerol backbone of cell membrane phospholipids also decreased significantly and it seems decreasing pH could affect cell membrane turnover.Changing fatty acid concentration could be due to either a change in lipid intake from feeding or increased fatty acid catabolism. While ingestion rates decreased in stage CIV, they were unchanged in stage CV with decreasing pH20. Also, Thalassiosira weissflogii (Grunow) G.Fryxell & Hasle, 1977, the diatom we fed to the copepods, is rich in 16:0, 16:1n-7 and EPA59. The concentrations of 16:0 and 16:1n-7 increased, whereas EPA concentration decreased. If fatty acid concentrations reflected feeding, we would have seen increased concentrations of all three. We therefore believe that the general increases in concentrations of free fatty acids were caused by increasing catabolism of the wax esters stored in stage CV. It may be that due to the metabolic reconfiguration to enter hibernation, stage CV copepodites are already committed to the catabolism of fatty acids through beta-oxidation, and stored wax esters are being hydrolysed to increase the availability of free fatty acids for energy production. Mayor and colleagues57 arrived at the same conclusion. We hypothesise that stress due to low pH increases the organism’s energetic demands, but carbohydrates are not used to accommodate these demands due to the down-regulation of the glycolysis, rather demands are met by hydrolysing and metabolising wax esters in stage CV. The further ramifications of future OA could therefore be a less efficient build-up of wax esters so important for hibernation in this species.Finally, besides their importance for cell membrane fluidity, EPA and DHA are important precursors for eicosanoid endocrine hormones. These hormones are important regulators of, among other processes, ion flux62. As mentioned above, acid base regulation is coupled to osmoregulation in crustaceans42, and the decrease in concentrations of these two specific fatty acids, when all other fatty acid concentrations increased might represent an indication for changing endocrine hormone production to counter adverse whole-organism effects of OA.Changes in metabolite concentrations cannot be directly translated into changes in the rate of the processes they are involved in. However, they do pin-point processes which are affected by the imposed environmental changes. Also, in our analyses we targeted a limited range of molecules. In that respect OA could inflict changes in other important metabolic pathways we did not investigate. The absence of specific biochemical pathways in our analyses and discussion should therefore not be taken as indication that these are not implicated in this species responses to OA.From our previously published study on copepodites from the same incubations, we know that high pCO2/low pH conditions have detrimental effects on the balance between energy input (ingestion) and energy expenditure (metabolism) in stage CIV copepodites but not in stage CV copepodites20. The effects we report here help in this sense to shed light on the metabolic origin of the rather severe effects on energy balance we observed in stage CIV copepodites and the difference in response between stage CIV and CV20. Copepods develop through six nauplii and five copepodite stages before maturation, and while previous studies show negligible effects in stage CV and adults17,18,20, any effects in any developmental stage along the way will affect the fitness of the individual and the recruitment to the population as a whole. In addition, the enhanced fatty acid metabolism observed in stage CV needs further investigation, to determine the magnitude of the fitness implications of the energy diverted away from energy storage for hibernation. More

  • in

    A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise

    Sogin, E. M., Leisch, N. & Dubilier, N. Chemosynthetic symbioses. Curr. Biol. 30, R1137–R1142 (2020).Article 
    CAS 

    Google Scholar 
    Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725–740 (2008).Article 
    CAS 

    Google Scholar 
    Barry, J. P. et al. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay Japan. Invertebr. Biol. 121, 47–54 (2002).Article 

    Google Scholar 
    Le Pennec, M., Donval, A. & Herry, A. Nutritional strategies of the hydrothermal ecosystem bivalves. Prog. Oceanogr. 24, 71–80 (1990).Article 
    ADS 

    Google Scholar 
    Rau, G. H. & Hedges, J. I. Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source. Science 203, 648–649 (1979).Article 
    ADS 
    CAS 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Schimak, M., Borowski, C. & Dubilier, N. Forever competent: Deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ. Microbiol. 16, 3699–3713 (2014).Article 

    Google Scholar 
    Dattagupta, S., Bergquist, D., Szalai, E., Macko, S. & Fisher, C. Tissue carbon, nitrogen, and sulfur stable isotope turnover in transplanted Bathymodiolus childressi mussels: Relation to growth and physiological condition. Limnol. Oceanogr. 49, 1144–1151 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Ikuta, T. et al. Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population. ISME J. 10, 990–1001 (2016).Article 

    Google Scholar 
    Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea Bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evol. 9, 1148–1160 (2017).Article 

    Google Scholar 
    Sayavedra, L. et al. Horizontal acquisition followed by expansion and diversification of toxin-related genes in deep-sea bivalve symbionts. BioRxiv 110, 330 (2019).
    Google Scholar 
    Ponnudurai, R. et al. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J. 11, 463–477 (2017).Article 
    CAS 

    Google Scholar 
    Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom. Sci. 12, 1–9 (2017).
    Google Scholar 
    Kiel, S. The Vent and Seep Biota: Aspects from Microbes to Ecosystems Vol. 33 (Springer Science & Business Media, 2010).
    Google Scholar 
    Lorion, J. et al. Adaptive radiation of chemosymbiotic deep-sea mussels. Proc. R. Soc. B 280, 20131243 (2013).Article 

    Google Scholar 
    Nussbaumer, A. D., Fisher, C. R. & Bright, M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441, 345–348 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Gros, O., Liberge, M., Heddi, A., Khatchadourian, C. & Felbeck, H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl. Environ. Microbiol. 69, 6264–6267 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Won, Y.-J. et al. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl. Environ. Microbiol. 69, 6785–6792 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Laming, S. R., Gaudron, S. M. & Duperron, S. Lifecycle ecology of deep-sea chemosymbiotic mussels: A review. Front. Mar. Sci. 5, 282 (2018).Article 

    Google Scholar 
    Laming, S. R., Duperron, S., Cunha, M. R. & Gaudron, S. M. Settled, symbiotic, then sexually mature: Adaptive developmental anatomy in the deep-sea, chemosymbiotic mussel Idas modiolaeformis. Mar. Biol. 161, 1319–1333 (2014).Article 

    Google Scholar 
    Salerno, J. L. et al. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol. Bull. 208, 145–155 (2005).Article 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Huang, J. Y., Borowski, C. & Dubilier, N. Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels. ISME J. 7, 1244–1247 (2013).Article 
    CAS 

    Google Scholar 
    Pennec, M. L. & Beninger, P. G. Ultrastructural characteristics of spermatogenesis in three species of deep-sea hydrothermal vent mytilids. Can. J. Zool. 75, 308–316 (1997).Article 

    Google Scholar 
    Eckelbarger, K. & Young, C. Ultrastructure of gametogenesis in a chemosynthetic mytilid bivalve (Bathymodiolus childressi) from a bathyal, methane seep environment (northern Gulf of Mexico). Mar. Biol. 135, 635–646 (1999).Article 

    Google Scholar 
    Ansorge, R. et al. Diversity matters: Deep-sea mussels harbor multiple symbiont strains. bioRxiv 99, 1039 (2019).
    Google Scholar 
    Petersen, J. M., Wentrup, C., Verna, C., Knittel, K. & Dubilier, N. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals. Biol. Bull. 223, 123–137 (2012).Article 
    CAS 

    Google Scholar 
    Sayavedra, L. et al. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. Elife 4, e07966 (2015).Article 

    Google Scholar 
    Ansorge, R. et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4, 2487–2497 (2019).Article 

    Google Scholar 
    Petersen, J. M. et al. Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476, 176–180 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Nakamura, K. & Takai, K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog. Earth Planet Sci. 1, 1–24 (2014).Article 
    ADS 

    Google Scholar 
    Perez, M. & Juniper, S. K. Insights into symbiont population structure among three vestimentiferan tubeworm host species at eastern Pacific spreading centers. Appl. Environ. Microbiol. 82, 5197–5205 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wilbanks, E. G. et al. Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity. ISME J. https://doi.org/10.1038/s41396-022-01242-7 (2022).Article 

    Google Scholar 
    Rodriguez-Casariego, J. A., Cunning, R., Baker, A. C. & Eirin-Lopez, J. M. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol. Ecol. 31, 588–602 (2022).Article 
    CAS 

    Google Scholar 
    Triant, D. A. & Whitehead, A. Simultaneous extraction of high-quality RNA and DNA from small tissue samples. J. Hered. 100, 246–250 (2009).Article 
    CAS 

    Google Scholar 
    Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).Article 
    CAS 

    Google Scholar 
    Wick, R. R. et al. Trycycler: Consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 1–17 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
    CAS 

    Google Scholar 
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).Article 
    ADS 

    Google Scholar 
    Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35–e35 (2018).Article 

    Google Scholar 
    Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).Article 
    CAS 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).Article 
    CAS 

    Google Scholar 
    Perez, M., Angers, B., Young, C. R. & Juniper, S. K. Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microbial. Genom. https://doi.org/10.1099/mgen.0.000625 (2021).Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 1–11 (2010).Article 

    Google Scholar 
    Nielsen, H. Protein Function Prediction 59–73 (Springer, 2017).Book 

    Google Scholar 
    Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).Article 
    CAS 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-31C08 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Chan, P. P. & Lowe, T. M. Gene Prediction 1–14 (Springer, 2019).
    Google Scholar 
    Griffiths-Jones, S. et al. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 
    CAS 

    Google Scholar 
    Siguier, P., Pérochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).Article 
    CAS 

    Google Scholar 
    Bertelli, C. et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–W35 (2017).Article 
    CAS 

    Google Scholar 
    Arndt, D. et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).Article 
    CAS 

    Google Scholar 
    Roeselers, G. et al. Complete genome sequence of Candidatus Ruthia magnifica. Stand Genomic Sci. 3, 163–173 (2010).Article 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).Article 
    CAS 

    Google Scholar 
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).Article 
    ADS 

    Google Scholar 
    Tesler, G. GRIMM: Genome rearrangements web server. Bioinformatics 18, 492–493 (2002).Article 
    CAS 

    Google Scholar 
    Cabanettes, F. & Klopp, C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Gilchrist, C. L. & Chooi, Y.-H. Clinker & clustermap. js: Automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).Article 
    CAS 

    Google Scholar 
    Taboada, B., Estrada, K., Ciria, R. & Merino, E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 4118–4120 (2018).Article 
    CAS 

    Google Scholar 
    Søndergaard, D., Pedersen, C. N. & Greening, C. HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    NCBI Genome Browser. https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/. Accessed 12 March 2022.Mcmullin, E. R., Hourdez, S., Schaeffer, S. W. & Fisher, C. R. Review article phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis. 34, 1–41 (2003).
    Google Scholar 
    Won, Y.-J., Jones, W. J. & Vrijenhoek, R. C. Absence of cospeciation between deep-sea mytilids and their thiotrophic endosymbionts. J. Shellfish Res. 27, 129–138 (2008).Article 

    Google Scholar 
    Miyazaki, J.-I., Martins, Ld. O., Fujita, Y., Matsumoto, H. & Fujiwara, Y. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS ONE 5, e10363 (2010).Article 
    ADS 

    Google Scholar 
    Bright, M. & Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218–230 (2010).Article 
    CAS 

    Google Scholar 
    Raggi, L., Schubotz, F., Hinrichs, K. U., Dubilier, N. & Petersen, J. M. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ. Microbiol. 15, 1969–1987 (2013).Article 
    CAS 

    Google Scholar 
    Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).Article 
    CAS 

    Google Scholar 
    Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).Article 

    Google Scholar 
    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. 102, 2567–2572 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ho, P.-T. et al. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents. BMC Evol. Biol. 17, 1–16 (2017).Article 

    Google Scholar 
    Romero Picazo, D. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).Article 

    Google Scholar 
    Perez, M. & Juniper, S. K. Is the trophosome of Ridgeia piscesae monoclonal?. Symbiosis 74, 55–65 (2018).Article 
    CAS 

    Google Scholar 
    Polzin, J., Arevalo, P., Nussbaumer, T., Polz, M. F. & Bright, M. Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment. Proc. R. Soc. B 286, 20181281 (2019).Article 
    CAS 

    Google Scholar 
    Russell, S. L. & Cavanaugh, C. M. Intrahost genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol. Biol. Evol. 34, 2747–2761 (2017).Article 
    CAS 

    Google Scholar 
    Breusing, C., Genetti, M., Russell, S. L., Corbett-Detig, R. B. & Beinart, R. A. Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses. Proc. Natl. Acad. Sci. 119, e2115608119 (2022).Article 
    CAS 

    Google Scholar 
    Lan, Y. et al. Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont. ISME J. https://doi.org/10.1038/s41396-022-01261-4 (2022).Article 

    Google Scholar 
    Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl. Acad. Sci. 110, 330–335 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fritsch, J. et al. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. J. Biol. Chem. 289, 7982–7993 (2014).Article 
    CAS 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 1–11 (2016).Article 

    Google Scholar 
    Nakagawa, S. et al. Allying with armored snails: The complete genome of gammaproteobacterial endosymbiont. ISME J. 8, 40–51 (2014).Article 
    CAS 

    Google Scholar 
    Vignais, P. M., Billoud, B. & Meyer, J. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001).Article 
    CAS 

    Google Scholar 
    Perez, M. et al. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc. R. Soc. B 289, 20212137 (2022).Article 
    CAS 

    Google Scholar 
    Li, S. et al. N 4-cytosine DNA methylation is involved in the maintenance of genomic stability in Deinococcus radiodurans. Front. Microbiol. 10, 1905 (2019).Article 

    Google Scholar 
    Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).Article 

    Google Scholar 
    De Oliveira, A. L., Srivastava, A., Espada-Hinojosa, S. & Bright, M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13668 (2022).Article 

    Google Scholar 
    Ponnudurai, R. et al. Comparative proteomics of related symbiotic mussel species reveals high variability of host–symbiont interactions. ISME J. 14, 649–656 (2020).Article 
    CAS 

    Google Scholar 
    Yu, N. Y. et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article 
    CAS 

    Google Scholar  More

  • in

    Using high-throughput sequencing to investigate the dietary composition of the Korean water deer (Hydropotes inermis argyropus): a spatiotemporal comparison

    Schilling, A.-M. & Rössner, G. E. The (sleeping) beauty in the beast—a review on the water deer, Hydropotes inermis. Hystrix Ital. J. Mammal. 28, 121–133 (2017).
    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behaviour and Ecology (Stackpole Books, Pennsylvania, 1998).
    Google Scholar 
    Cooke, A. Muntjac and Water Deer: Natural History, Environmental Impact and Management (Pelagic Publishing Ltd, UK, 2019).Book 

    Google Scholar 
    Kim, B. J., Lee, B. K. & Kim, Y. J. Korean water deer (National Institute of Ecology, South Korea, 2016).
    Google Scholar 
    Belyaev, D. A. & Jo, Y.-S. Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia. Mammalia 85, 71–73 (2021).Article 

    Google Scholar 
    Harris, R. B. & Duckworth, J. W. Hydropotes inermis. The IUCN Red List of Threatened Species, e.T10329A22163569 (2015).National Institute of Biological Resources. Harmful wildlife. https://species.nibr.go.kr/home/mainHome.do?cont_link=011&subMenu=011016&contCd=011016001 (2015).Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Guo, G. & Zhang, E. Diet of the Chinese water deer (Hydropotes inermis) in Zhoushan Archipelago, China. Acta Theriol. Sin. 25, 122–130 (2005).
    Google Scholar 
    Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conserv. Genet. 12, 851–856 (2011).Article 

    Google Scholar 
    Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean J. Environ. Ecol. 25, 836–845 (2011).
    Google Scholar 
    Kim, J., Joo, S. & Park, S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia 85, 487–493 (2021).Article 

    Google Scholar 
    Hofmann, R., Kock, R. A., Ludwig, J. & Axmacher, H. Seasonal changes in rumen papillary development and body condition in free ranging Chinese water deer (Hydropotes inermis). J. Zool. 216, 103–117 (1988).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).Article 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).Article 
    CAS 

    Google Scholar 
    Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).Article 
    CAS 

    Google Scholar 
    Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).Article 
    CAS 

    Google Scholar 
    Kumari, P. et al. DNA metabarcoding-based diet survey for the Eurasian otter (Lutra lutra): Development of a Eurasian otter-specific blocking oligonucleotide for 12S rRNA gene sequencing for vertebrates. PLoS ONE 14, e0226253 (2019).Article 
    CAS 

    Google Scholar 
    Iwanowicz, D. D. et al. Metabarcoding of fecal samples to determine herbivore diets: A case study of the endangered Pacific pocket mouse. PLoS ONE 11, e0165366 (2016).Article 

    Google Scholar 
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).Article 

    Google Scholar 
    Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).Article 

    Google Scholar 
    Ando, H. et al. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol. Evol. 3, 4057–4069 (2013).Article 

    Google Scholar 
    Kim, E.-K. Behavioral ecology, habitat evaluation and genetic characteristics of water deer (Hydropotes inermis) in Korea. Ph.D. thesis. Kangwon National University (2011).Park, J.-E., Kim, B.-J. & Lee, S.-D. A study of potential of diet analysis in the Korean water deer (Hydropotes inermis argyropus) using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Korean J. Environ. Ecol. 24, 318–324 (2010).
    Google Scholar 
    Hollingsworth, P. M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 108, 19451–19452 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Park, E. & Nam, M. Changes in land cover and the cultivation area of ginseng in the Civilian Control Zone -Paju City and Yeoncheon County-. Korean J. Environ. Ecol. 27, 507–515 (2013).
    Google Scholar 
    Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149 (2016).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 

    Google Scholar 
    Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 32, 3030–3032 (2015).Article 
    CAS 

    Google Scholar 
    Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).Article 

    Google Scholar 
    Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, e4652 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package v 2.5–7 (R Foundation, Vienna, Austria, 2020).
    Google Scholar 
    Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    Yan, L. ggvenn: Draw venn diagram by ‘ggplot2’ v. 0.1.8 (R Foundation, Vienna, Austria, 2021).Choi, D.-Y. et al. Flora of province Gyonggi-do. Bull. Seoul Nat’l Univ. Arbor. 21, 25–76 (2001).
    Google Scholar 
    Ko, S. & Shin, Y. Flora of middle part in Gyeonggi Province. Korean J. Plant Res. 22, 49–70 (2009).
    Google Scholar 
    Lee, S.-K., Ryu, Y. & Lee, E. J. Endozoochorous seed dispersal by Korean water deer (Hydropotes inermis argyropus) in Taehwa Research Forest, South Korea. Glob. Ecol. Conserv. 40, e02325 (2022).Article 

    Google Scholar 
    Kim, K.-H. & Kang, S.-H. Flora of western civilian control zone (CCZ) in Korea. Korean J. Plant Res. 32, 565–588 (2019).
    Google Scholar 
    Gyeonggi Tourism Organization. Pyeonghwa-Nuri Trail ecological resource survey. (Paju City, Gyeonggi Province, Korea, 2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation, Vienna, Austria, 2020).Pertoldi, C. et al. Comparing DNA metabarcoding with faecal analysis for diet determination of the Eurasian otter (Lutra lutra) in Vejlerne. Denmark. Mammal. Res. 66, 115–122 (2021).Article 

    Google Scholar 
    Lee, B. Morphological, ecological and DNA taxonomic characteristics of Chinese water deer (Hydropotes inermis Swinhoe). Ph.D. thesis. Chungbuk National University (2003).Wilmshurst, J. F., Fryxell, J. M. & Hudsonb, R. J. Forage quality and patch choice by wapiti (Cervus elaphus). Behav. Ecol. 6, 209–217 (1995).Article 

    Google Scholar 
    Langvatn, R. & Hanley, T. A. Feeding-patch choice by red deer in relation to foraging efficiency. Oecologia 95, 164–170 (1993).Article 
    ADS 

    Google Scholar 
    Gray, P. B. & Servello, F. A. Energy intake relationships for white-tailed deer on winter browse diets. J. Wildl. Manag. 59, 147–152 (1995).Article 

    Google Scholar 
    Brown, D. T. & Doucet, G. J. Temporal changes in winter diet selection by white-tailed deer in a northern deer yard. J. Wildl. Manag. 55, 361–376 (1991).Article 

    Google Scholar 
    Takahashi, H. & Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 16, 257–262 (2001).Article 

    Google Scholar 
    Bee, J. N. et al. Spatio-temporal feeding selection of red deer in a mountainous landscape. Austral Ecol. 35, 752–764 (2010).Article 

    Google Scholar 
    Gebert, C. & Verheyden-Tixier, H. Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal. Rev. 31, 189–201 (2001).Article 

    Google Scholar 
    Cornelis, J., Casaer, J. & Hermy, M. Impact of season, habitat and research techniques on diet composition of roe deer (Capreolus capreolus): a review. J. Zool. 248, 195–207 (1999).Article 

    Google Scholar 
    Kim, B. J. & Lee, S.-D. Home range study of the Korean water deer (Hydropotes inermis agyropus) using radio and GPS tracking in South Korea: Comparison of daily and seasonal habitat use pattern. J. Ecol. Field Biol. 34, 365–370 (2011).
    Google Scholar 
    Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).Article 

    Google Scholar 
    Staines, B. W., Crisp, J. M. & Parish, T. Differences in the quality of food eaten by red deer (Cervus elaphus) stags and hinds in winter. J. Appl. Ecol. 19, 65–77 (1982).Article 

    Google Scholar 
    Koga, T. & Ono, Y. Sexual differences in foraging behavior of sika deer, Cervus nippon. J. Mammal. 75, 129–135 (1994).Article 

    Google Scholar 
    Han, S.-H., Lee, S.-S., Cho, I.-C., Oh, M.-Y. & Oh, H.-S. Species identification and sex determination of Korean water deer (Hydropotes inermis argyropus) by duplex PCR. J. Appl. Anim. Res. 35, 61–66 (2009).Article 
    CAS 

    Google Scholar 
    You, Z. et al. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer (Cervus albirostris). PeerJ 10, e13753 (2022).Article 

    Google Scholar 
    Zhao, W. et al. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Gene Genom. 43, 43–53 (2021).Article 
    CAS 

    Google Scholar 
    Amato, K. R. et al. Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica 52, 981–990 (2020).Article 

    Google Scholar 
    Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    Redford, K. H., Segre, J. A., Salafsky, N., del Rio, C. M. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).Article 

    Google Scholar 
    Corse, E. et al. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. Mol. Ecol. Resour. 17, e146–e159 (2017).Article 
    CAS 

    Google Scholar 
    Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).Article 

    Google Scholar 
    Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).Article 

    Google Scholar 
    Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).Article 
    CAS 

    Google Scholar 
    Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples–a case study on DNA in faeces. Front. Zool. 3, 11 (2006).Article 

    Google Scholar 
    Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847 (2012).Article 
    CAS 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).Article 

    Google Scholar 
    Ramirez, R., Quintanilla, J. & Aranda, J. White-tailed deer food habits in northeastern Mexico. Small Rumin. Res. 25, 141–146 (1997).Article 

    Google Scholar 
    Anouk Simard, M., Côté, S. D., Weladji, R. B. & Huot, J. Feedback effects of chronic browsing on life-history traits of a large herbivore. J. Anim. Ecol. 77, 678–686 (2008).Article 
    CAS 

    Google Scholar 
    Putman, R. J. & Staines, B. W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mammal Rev. 34, 285–306 (2004).Article 

    Google Scholar 
    Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 78, 1322–1334 (2014).Article 

    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mammal Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Cappa, F., Lombardini, M. & Meriggi, A. Influence of seasonality, environmental and anthropic factors on crop damage by wild boar Sus scrofa. Folia Zool. 68, 261–268 (2019).Article 

    Google Scholar  More

  • in

    Incorporating dead material in ecosystem assessments and projections

    Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).Turetsky, M. R. et al. Nat. Geosci. 8, 11–14 (2014).Article 

    Google Scholar 
    Wenger, S. J., Subalusky, A. L. & Freeman, M. C. Food Webs 18, e00106 (2019).Article 

    Google Scholar 
    Tomatsuri, M. & Kon, K. Hydrobiologia 790, 225–232 (2017).Article 

    Google Scholar 
    Henry, L. A. & Roberts, J. M. in Marine Animal Forests (eds Rossi, S. et al.) 235–256 (Springer, 2017).Walton, M. E. M. et al. Sci. Total Environ. 820, 153191 (2022).Article 
    CAS 

    Google Scholar 
    Wolfe, K., Kenyon, T. M. & Mumby, P. J. Coral Reefs 40, 1769–1806 (2021).Article 

    Google Scholar 
    Kim, H. et al. Glob. Change Biol. 28, 6180–6193 (2022).Jackson, R. B. et al. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article 

    Google Scholar 
    Pan, Y. et al. Science 333, 988–993 (2011).Article 
    CAS 

    Google Scholar 
    Hedges, J. I., Keil, R. G. & Benner, R. Org. Geochem. 27, 195–212 (1997).Article 
    CAS 

    Google Scholar 
    Lønborg, C. et al. Front. Mar. Sci. 7, 466 (2020).Article 

    Google Scholar 
    Harden, J. W. et al. Glob. Change Biol. 6, 174–184 (2000).Davidson, E. A. & Janssens, I. A. Nature 440, 165–173 (2006).Article 
    CAS 

    Google Scholar 
    Hugelius, G. et al. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).Article 
    CAS 

    Google Scholar 
    Hennige, S. J. et al. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00668 (2020).Article 

    Google Scholar 
    Wolfram, U. et al. Sci. Rep. 12, 8052 (2022).Article 
    CAS 

    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Science 312, 543–547 (2006).Article 
    CAS 

    Google Scholar 
    Mortensen, P. B. & Fosså, J. H. Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In Proc. 10th Int. Coral Reef Symp. 1849–1868 (ICRS, 2006).Maier, S. R. et al. Deep Sea Res. I 175, 103574 (2021).. More

  • in

    Multiscale responses and recovery of soils to wildfire in a sagebrush steppe ecosystem

    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of element budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).Article 
    CAS 

    Google Scholar 
    Corman, J. R. et al. Foundations and frontiers of ecosystem science: Legacy of a classic paper (Odum 1969). Ecosystems 22, 1160–1172. https://doi.org/10.1007/s10021-018-0316-3 (2019).Article 

    Google Scholar 
    Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91. https://doi.org/10.1111/gcb.12985 (2016).Article 
    ADS 

    Google Scholar 
    Kominoski, J. S., Gaiser, E. E. & Baer, S. G. Advancing theories of ecosystem development through long-term ecological research. Bioscience 68, 554–562. https://doi.org/10.1093/biosci/biy070 (2018).Article 

    Google Scholar 
    Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183. https://doi.org/10.1111/gcb.12046 (2013).Article 
    ADS 

    Google Scholar 
    Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64(5), 471–478 (2011).Article 

    Google Scholar 
    Shi, H. et al. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management. Ecosystems 21, 913–929. https://doi.org/10.1007/s10021-017-0191-3 (2018).Article 

    Google Scholar 
    Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184. https://doi.org/10.1029/94WR02025 (1995).Article 
    ADS 

    Google Scholar 
    Gasch, C. K., Huzurbazar, S. V. & Stahl, P. D. Description of vegetation and soil properties in sagebrush steppe following pipeline burial, reclamation, and recovery time. Geoderma 265, 19–26. https://doi.org/10.1016/j.geoderma.2015.11.013 (2016).Article 
    ADS 

    Google Scholar 
    Huber, D. P. et al. Vegetation and precipitation shifts interact to alter organic and inorganic carbon storage in desert soils. Ecosphere 10, e02655. https://doi.org/10.1002/ecs2.2655 (2019).Article 

    Google Scholar 
    Knight, D. H., Jones, G. P., Reiners, W. A. & Romme, W. H. Mountains and Plains: The Ecology of Wyoming Landscapes (Yale University Press, 2014).
    Google Scholar 
    Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. & Parsons, S. Topographic controls on soil organic carbon on soil mantled landscapes. Sci. Rep. 9, 6390. https://doi.org/10.1038/s41598-019-42556-5 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Schwabedissen, S. G., Lohse, K. A., Reed, S. C., Aho, K. A. & Magnuson, T. S. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems. Biogeochemistry 134, 57–76. https://doi.org/10.1007/s10533-017-0342-9 (2017).Article 
    CAS 

    Google Scholar 
    You, Y. et al. Biological soil crust bacterial communities vary along climatic and shrub cover gradients within a sagebrush steppe ecosystem. Front. Microbiol. 12, 2365. https://doi.org/10.3389/fmicb.2021.569791 (2021).Article 

    Google Scholar 
    Burke, I. C., Reiners, W. A. & Olson, R. K. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetation 84, 77–86 (1989).Article 

    Google Scholar 
    Poulos, M. J., Pierce, J. L., Flores, A. N. & Benner, S. G. Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys. Res. Lett. 39, 6. https://doi.org/10.1029/2012GL051283 (2012).Article 

    Google Scholar 
    Smith, T. & Bookhagen, B. Climatic and biotic controls on topographic asymmetry at the global scale. J. Geophys. Res.: Earth Surf. 126, e2020JF005692. https://doi.org/10.1029/2020JF005692Received22 (2021).Article 
    ADS 

    Google Scholar 
    Seyfried, M., Link, T., Marks, D. & Murdock, M. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing. Vadose Zone J. 15, 6. https://doi.org/10.2136/vzj2015.09.0128 (2016).Article 

    Google Scholar 
    Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments. Rangel. Ecol. Manage. 67, 440–454. https://doi.org/10.2111/REM-D-13-00074.1 (2014).Article 

    Google Scholar 
    Chambers, J. C. et al. Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Front. Ecol. Evol. 7, 2369. https://doi.org/10.3389/fevo.2019.00185 (2019).Article 

    Google Scholar 
    Boehm, A. R. et al. Slope and aspect effects on seedbed microclimate and germination timing of fall-planted seeds. Rangel. Ecol. Manage. 75, 58–67. https://doi.org/10.1016/j.rama.2020.12.003 (2021).Article 

    Google Scholar 
    Sankey, J. B., Germino, M. J., Sankey, T. T. & Hoover, A. N. Fire effects on the spatial patterning of soil properties in sagebrush steppe, USA: A meta-analysis. Int. J. Wildl. Fire 21, 545–556. https://doi.org/10.1071/WF11092 (2012).Article 

    Google Scholar 
    Fellows, A., Flerchinger, G., Seyfried, M. S. & Lohse, K. A. Rapid recovery of mesic mountain big sagebrush gross production and respiration following prescribed fire. Ecosystems 21, 1283–1294. https://doi.org/10.1007/s10021-017-0218-9 (2018).Article 

    Google Scholar 
    Vega, S. P. et al. Interaction of wind and cold-season hydrologic processes on erosion from complex topography following wildfire in sagebrush steppe. Earth Surf. Process. Landforms https://doi.org/10.1002/esp.4778 (2019).Article 

    Google Scholar 
    Xie, J., Li, Y., Zhai, C., Li, C. & Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 56, 953–961 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Stanbery, C., Pierce, J. L., Benner, S. G. & Lohse, K. On the rocks: Quantifying storage of inorganic soil carbon on gravels and determining pedon-scale variability. CATENA 157, 436–442. https://doi.org/10.1016/j.catena.2017.06.011 (2017).Article 
    CAS 

    Google Scholar 
    Stanbery, C. et al. Controls on the presence and concentration of soil inorganic carbon in a semi-arid watershed. CATENA https://doi.org/10.2139/ssrn.4267018 (2023).Article 

    Google Scholar 
    Cerling, T. E. & Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Geophys. Monogr. 78, 217–231 (1993).ADS 

    Google Scholar 
    Tappa, D. J., Kohn, M. J., McNamara, J. P., Benner, S. G. & Flores, A. N. Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water line. Hydrol. Process. 30, 4582–4592. https://doi.org/10.1002/hyp.10940 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Salomons, W., Goudie, A. & Mook, W. G. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surf. Process. 3, 43–57. https://doi.org/10.1002/esp.3290030105 (1978).Article 
    CAS 

    Google Scholar 
    Salomons, W. & Mook, W. G. In Handbook of Environmental Isotope Geochemistry (eds P. Fritz & J. Fontes) Ch. 6, 241–269 (Elsevier, 1986).Bodí, M. B. et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kéraval, B. et al. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature. Biogeosciences 13, 6353–6362. https://doi.org/10.5194/bg-13-6353-2016 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Goforth, B. R., Graham, R. C., Hubbert, K. R., Zanner, C. W. & Minnich, R. A. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. Int. J. Wildland Fire 14, 343–354 (2005).Article 

    Google Scholar 
    Glossner, K. L. et al. Long-term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory. Hydrol. Process. 36, e14484. https://doi.org/10.1002/hyp.14484 (2022).Article 
    CAS 

    Google Scholar 
    Seyfried, M. S. et al. Reynolds creek experimental watershed and critical zone observatory. Vadoze Zone J. 17, 180129. https://doi.org/10.2136/vzj2018.07.0129 (2018).Article 
    CAS 

    Google Scholar 
    McIntyre, D. H. Cenozoic geology of the Reynolds Creek Experimental Watershed, Owyhee County, Idaho (Idaho Bureau of Mines and Geology, 1972).Earth Resources Observation and Science (EROS) Center, U. Image of the week: Burned Area Analysis for the Soda Fire, Idaho, https://eros.usgs.gov/media-gallery/image-of-the-week/burned-area-analysis-the-soda-fire-idaho (2015).Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).Book 

    Google Scholar 
    Kormos, P. R. et al. 31 years of hourly spatially distributed air temperature, humidity, and precipitation amount and phase from Reynolds Critical Zone Observatory. Earth Syst. Sci. Data 10, 1197–1205. https://doi.org/10.5194/essd-10-1197-2018 (2018).Article 
    ADS 

    Google Scholar 
    Thomas, G. W. In Methods in Soil Analysis. Part 3. Chemical Methods (ed Sparks, D. L. ) (Soil Science Society of America and American Society of Agronomy, 1996).Brodie, C. R. et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem. Geol. 282, 67–83. https://doi.org/10.1016/j.chemgeo.2011.01.007 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Patton, N. P., Lohse, K. A., Seyfried, M. S., Will, R. & Benner, S. G. Lithology and coarse fraction adjusted bulk density estimates for determining total organic carbon stocks in dryland soils. Geoderma 337, 844–852. https://doi.org/10.1016/j.geoderma.2018.10.036 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    McGuire, L. A., Rasmussen, C., Youberg, A. M., Sanderman, J. & Fenerty, B. Controls on the Spatial distribution of near-surface pyrogenic carbon on hillslopes 1 year following wildfire. J. Geophys. Res.: Earth Surf. 126, e2020JF005996. https://doi.org/10.1029/2020JF005996 (2021).Article 
    ADS 

    Google Scholar 
    Jiménez-González, M. A. et al. Spatial distribution of pyrogenic carbon in Iberian topsoils estimated by chemometric analysis of infrared spectra. Sci. Total Env. 790, 148170. https://doi.org/10.1016/j.scitotenv.2021.148170 (2021).Article 
    CAS 

    Google Scholar 
    Baldock, J. A. et al. Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Res. 51, 561–576. https://doi.org/10.1071/SR12374 (2013).Article 
    CAS 

    Google Scholar 
    Sanderman, J. et al. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 156, 97–114. https://doi.org/10.1007/s10533-021-00755-1 (2021).Article 
    CAS 

    Google Scholar 
    Sherrod, L. A., Dunn, G., Peterson, G. A. & Kolberg, R. L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 66, 299–305 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Mikutta, R., Kleber, M., Kaiser, K. & Jahn, R. Review. Soil Sci. Soc. Am. J. 69, 120–135. https://doi.org/10.2136/sssaj2005.0120 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Risk, D., Nickerson, N., Creelman, C., McArthur, G. & Owens, J. Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agric. For. Meteorol. 151, 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020 (2011).Article 
    ADS 

    Google Scholar 
    Fierer, N. & Schimel, J. P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X (2002).Article 
    CAS 

    Google Scholar 
    Dane, J. H., Topp, G. C. & Campbell, G. S. In Methods of Soil Analysis: Physical Methods. Vol. 4 (ed SSSA) 721–738 (2002). More

  • in

    Economic and biophysical limits to seaweed farming for climate change mitigation

    Monte Carlo analysisSeaweed production costs and net costs of climate benefits were estimated on the basis of outputs of the biophysical and technoeconomic models described below. The associated uncertainties and sensitivities were quantified by repeatedly sampling from uniform distributions of plausible values for each cost and economic parameter (n = 5,000 for each nutrient scenario from the biophysical model, for a total of n = 10,000 simulations; see Supplementary Figs. 14 and 15)47,48,49,50,51,52. Parameter importance across Monte Carlo simulations (Fig. 3 and Supplementary Fig. 9) was determined using decision trees in LightGBM, a gradient-boosting machine learning framework.Biophysical modelG-MACMODS is a nutrient-constrained, biophysical macroalgal growth model with inputs of temperature, nitrogen, light, flow, wave conditions and amount of seeded biomass30,53, that we used to estimate annual seaweed yield per area (either in tons of carbon or tons of dry weight biomass per km2 per year)33,34. In the model, seaweed takes up nitrogen from seawater, and that nitrogen is held in a stored pool before being converted to structural biomass via growth54. Seaweed biomass is then lost via mortality, which includes breakage from variable ocean wave intensity. The conversion from stored nitrogen to biomass is based on the minimum internal nitrogen requirements of macroalgae, and the conversion from biomass to units of carbon is based on an average carbon content of macroalgal dry weight (~30%)55. The model accounts for farming intensity (sub-grid-scale crowding) and employs a conditional harvest scheme, where harvest is optimized on the basis of growth rate and standing biomass33.The G-MACMODS model is parameterized for four types of macroalgae: temperate brown, temperate red, tropical brown and tropical red. These types employed biophysical parameters from genera that represent over 99.5% of present-day farmed macroalgae (Eucheuma, Gracilaria, Kappahycus, Sargassum, Porphyra, Saccharina, Laminaria, Macrocystis)39. Environmental inputs were derived from satellite-based and climatological model output mapped to 1/12-degree global resolution, which resolves continental shelf regions. Nutrient distributions were derived from a 1/10-degree resolution biogeochemical simulation led by the National Center for Atmospheric Research (NCAR) and run in the Community Earth System Model (CESM) framework35.Two nutrient scenarios were simulated with G-MACMODS and evaluated using the technoeconomic model analyses described below: the ‘ambient nutrient’ scenario where seaweed growth was computed using surface nutrient concentrations without depletion or competition, and ‘limited nutrient’ simulations where seaweed growth was limited by an estimation of the nutrient supply to surface waters (computed as the flux of deep-water nitrate through a 100 m depth horizon). For each Monte Carlo simulation in the economic analysis, the technoeconomic model randomly selects either the 5th, 25th, 50th, 75th or 95th percentile G-MACMODS seaweed yield map from a normal distribution to use as the yield map for that simulation. Figures and numbers reported in the main text are based on the ambient-nutrient scenario; results based on the limited-nutrient scenario are shown in Supplementary Figures.Technoeconomic modelAn interactive web tool of the technoeconomic model is available at https://carbonplan.org/research/seaweed-farming.We estimated the net cost of seaweed-related climate benefits by first estimating all costs and emissions related to seaweed farming, up to and including the point of harvest at the farm location, then estimating costs and emissions related to the transportation and processing of harvested seaweed, and finally estimating the market value of seaweed products and either carbon sequestered or GHG emissions avoided.Production costs and emissionsSpatially explicit costs of seaweed production ($ tDW−1) and production-related emissions (tCO2 tDW−1) were calculated on the basis of ranges of capital costs ($ km−2), operating costs (including labour, $ km−2), harvest costs ($ km−2) and transport emissions per distance travelled (tCO2 km−1) in the literature (Table 1, Supplementary Tables 1 and 2); annual seaweed biomass (tDW km−2, for the preferred seaweed type in each grid cell), line spacing and number of harvests (species-dependent) from the biophysical model; as well as datasets of distances to the nearest port (km), ocean depth (m) and significant wave height (m).Capital costs were calculated as:$$c_{cap} = c_{capbase} + left( {c_{capbase} times left( {k_d + k_w} right)} right) + c_{sl}$$
    (1)
    where ccap is the total annualized capital costs per km2, ccapbase is the annualized capital cost per km2 (for example, cost of buoys, anchors, boats, structural rope) before applying depth and wave impacts, kd and kw are the impacts of depth and waviness on capital cost, respectively, each expressed as a multiplier between 0 and 1 modelled using our Monte Carlo method and applied only to grid cells with depth >500 m and/or significant wave height >3 m, respectively, and csl is the total annual cost of seeded line calculated as:$$c_{sl} = c_{slbase} times p_{sline}$$
    (2)
    where cslbase is the cost per metre of seeded line, and psline is the total length of line per km2, based on the optimal seaweed type grown in each grid cell.Operating and maintenance costs were calculated as:$$c_{op} = c_{ins} + c_{lic} + c_{lab} + c_{opbase}$$
    (3)
    where cop is the total annualized operating and maintenance costs per km2, cins is the annual insurance cost per km2, clic is the annual cost of a seaweed aquaculture license per km2, clab is the annual cost of labour excluding harvest labour, and copbase is all other operating and maintenance costs.Harvest costs were calculated as:$$c_{harv} = c_{harvbase} times n_{harv}$$
    (4)
    where charv is the total annual costs associated with harvesting seaweed per km2, charvbase is the cost per harvest per km2 (including harvest labour but excluding harvest transport), and nharv is the total number of harvests per year.Costs associated with transporting equipment to the farming location were calculated as:$$c_{eqtrans} = c_{transbase} times m_{eq} times d_{port}$$
    (5)
    where ceqtrans is total annualized cost of transporting equipment, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons and dport is the ocean distance to the nearest port in km.The total production cost of growing and harvesting seaweed was therefore calculated as:$$c_{prod} = frac{{left( {c_{cap}} right) + left( {c_{op}} right) + left( {c_{harv}} right) + (c_{eqtrans})}}{{s_{dw}}}$$
    (6)
    where cprod is total annual cost of seaweed production (growth + harvesting), ccap is as calculated in equation (1), cop is as calculated in equation (3), charv is as calculated in equation (4), ceqtrans is as calculated in equation (5) and sdw is the DW of seaweed harvested annually per km2.Emissions associated with transporting equipment to the farming location were calculated as:$$e_{eqtrans} = e_{transbase} times m_{eq} times d_{port}$$
    (7)
    where eeqtrans is the total annualized CO2 emissions in tons from transporting equipment, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons and dport is the ocean distance to the nearest port in km.Emissions from maintenance trips to/from the seaweed farm were calculated as:$$e_{mnt} = left( {left( {2 times d_{port}} right) times e_{mntbase} times left( {frac{{n_{mnt}}}{{a_{mnt}}}} right)} right) + (e_{mntbase} times d_{mnt})$$
    (8)
    where emnt is total annual CO2 emissions from farm maintenance, dport is the ocean distance to the nearest port in km, nmnt is the number of maintenance trips per km2 per year, amnt is the area tended to per trip, dmnt is the distance travelled around each km2 for maintenance and emntbase is the CO2 emissions from travelling 1 km on a typical fishing maintenance vessel (for example, a 14 m Marinnor vessel with 2 × 310 hp engines) at an average speed of 9 knots (16.67 km h−1), resulting in maintenance vessel fuel consumption of 0.88 l km−1 (refs. 28,56).Total emissions from growing and harvesting seaweed were therefore calculated as:$$e_{prod} = frac{{(e_{eqtrans}) + (e_{mnt})}}{{s_{dw}}}$$
    (9)
    where eprod is total annual emissions from seaweed production (growth + harvesting), eeqtrans is as calculated in equation (7), emnt is as calculated in equation (8) and sdw is the DW of seaweed harvested annually per km2.Market value and climate benefits of seaweedFurther transportation and processing costs, economic value and net emissions of either sinking seaweed in the deep ocean for carbon sequestration or converting seaweed into usable products (biofuel, animal feed, pulses, vegetables, fruits, oil crops and cereals) were calculated on the basis of ranges of transport costs ($ tDW−1 km−1), transport emissions (tCO2-eq t−1 km−1), conversion cost ($ tDW−1), conversion emissions (tCO2-eq tDW−1), market value of product ($ tDW−1) and the emissions avoided by product (tCO2-eq tDW−1) in the literature (Table 1). Market value was treated as globally homogeneous and does not vary by region. Emissions avoided by products were determined by comparing estimated emissions related to seaweed production to emissions from non-seaweed products that could potentially be replaced by seaweed (including non-CO2 greenhouse gas emissions from land use)24. Other parameters used are distance to nearest port (km), water depth (m), spatially explicit sequestration fraction (%)57 and distance to optimal sinking location (km; cost-optimized for maximum emissions benefit considering transport emissions combined with spatially explicit sequestration fraction; see ‘Distance to sinking point calculation’ below). Each Monte Carlo simulation calculated the cost of both CDR via sinking seaweed and GHG emissions mitigation via seaweed products.For seaweed CDR, after the seaweed is harvested, it can either be sunk in the same location that it was grown, or be transported to a more economically favourable sinking location where more of the seaweed carbon would remain sequestered for 100 yr (see ‘Distance to optimal sinking point’ below). Immediately post-harvest, the seaweed still contains a large amount of water, requiring a conversion from dry mass to wet mass for subsequent calculations33:$$s_{ww} = frac{{s_{dw}}}{{0.1}}$$
    (10)
    where sww is the annual wet weight of seaweed harvested per km2 and sdw is the annual DW of seaweed harvested per km2.The cost to transport harvested seaweed to the optimal sinking location was calculated as:$$c_{swtsink} = c_{transbase} times d_{sink} times s_{ww}$$
    (11)
    where cswtsink is the total annual cost to transport harvested seaweed to the optimal sinking location, ctransbase is the cost to transport 1 ton of material 1 km on a barge, dsink is the distance in km to the economically optimized sinking location and sww is the annually harvested seaweed wet weight in t km−2 as in equation (10).The costs associated with transporting replacement equipment (for example, lines, buoys,anchors) to the farming location and hauling back used equipment at the end of its assumed lifetime (1 yr for seeded line, 5–20 yr for capital equipment by equipment type) in the sinking CDR pathway were calculated as:$$c_{eqtsink} = left( {c_{transbase} times left( {2 times d_{sink}} right) times m_{eq}} right) + (c_{transbase} times d_{port} times m_{eq})$$
    (12)
    where ceqtsink is the total annualized cost to transport both used and replacement equipment, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dsink is the distance in km to the economically optimized sinking location and dport is the ocean distance to the nearest port in km. We assumed that the harvesting barge travels from the farming location directly to the optimal sinking location with harvested seaweed and replaced (used) equipment in tow (including used seeded line and annualized mass of used capital equipment), sinks the harvested seaweed, returns to the farm location and then returns to the nearest port (see Supplementary Fig. 16). These calculations assumed the shortest sea-route distance (see Distance to optimal sinking point).The total value of seaweed that is sunk for CDR was therefore calculated as:$$v_{sink} = frac{{left( {v_{cprice} – left( {c_{swtsink} + c_{eqtsink}} right)} right)}}{{s_{dw}}}$$
    (13)
    where vsink is the total value (cost, if negative) of seaweed farmed for CDR in $ tDW−1, vcprice is a theoretical carbon price, cswtsink is as calculated in equation (11), ceqtsink is as calculated in equation (12) and sdw is the annually harvested seaweed DW in t km−2. We did not assume any carbon price in our Monte Carlo simulations (vcprice is equal to zero), making vsink negative and thus representing a net cost.To calculate net carbon impacts, our model included uncertainty in the efficiency of using the growth and subsequent deep-sea deposition of seaweed as a CDR method. The uncertainty is expected to include the effects of reduced phytoplankton growth from nutrient competition, the relationship between air–sea gas exchange and overturning circulation (hereafter collectively referred to as the ‘atmospheric removal fraction’) and the fraction of deposited seaweed carbon that remains sequestered for at least 100 yr. The total amount of atmospheric CO2 removed by sinking seaweed was calculated as:$$e_{seqsink} = k_{atm} times k_{fseq} times frac{{tC}}{{tDW}} times frac{{tCO_2}}{{tC}}$$
    (14)
    where eseqsink is net atmospheric CO2 sequestered annually in t km−2, katm is the atmospheric removal fraction and kfseq is the spatially explicit fraction of sunk seaweed carbon that remains sequestered for at least 100 yr (see ref. 57).The emissions from transporting harvested seaweed to the optimal sinking location were calculated as:$$e_{swtsink} = e_{transbase} times d_{sink} times s_{ww}$$
    (15)
    where eswtsink is the total annual CO2 emissions from transporting harvested seaweed to the optimal sinking location in tCO2 km−2, etransbase is the CO2 emissions (tons) from transporting 1 ton of material 1 km on a barge (tCO2 per t-km), dsink is the distance in km to the economically optimized sinking location and sww is the annually harvested seaweed wet weight in t km−2 as in equation (10). Since the unit for etransbase is tCO2 per t-km, the emissions from transporting seaweed to the optimal sinking location are equal to (e_{mathrm{transbase}} times d_{mathrm{sink}} times s_{mathrm{ww}}), and the emissions from transporting seaweed from the optimal sinking location back to the farm are equal to 0 (since the seaweed has already been deposited, the seaweed mass to transport is now 0). Note that this does not yet include transport emissions from transport of equipment post-seaweed-deposition (see equation 16 below and Supplementary Fig. 16).The emissions associated with transporting replacement equipment (for example, lines, buoys, anchors) to the farming location and hauling back used equipment at the end of its assumed lifetime (1 yr for seeded line, 5–20 yr for capital equipment by equipment type)28,41 in the sinking CDR pathway were calculated as:$$e_{eqtsink} = left( {e_{transbase} times left( {2 times d_{sink}} right) times m_{eq}} right) + (e_{transbase} times d_{port} times m_{eq})$$
    (16)
    where eeqtsink is the total annualized CO2 emissions in tons from transporting both used and replacement equipment, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dsink is the distance in km to the economically optimized sinking location and dport is the ocean distance to the nearest port in km. We assumed that the harvesting barge travels from the farming location directly to the optimal sinking location with harvested seaweed and replaced (used) equipment in tow (including used seeded line and annualized mass of used capital equipment), sinks the harvested seaweed, returns to the farm location and then returns to the nearest port. These calculations assumed the shortest sea-route distance (see Distance to optimal sinking point).Net CO2 emissions removed from the atmosphere by sinking seaweed were thus calculated as:$$e_{remsink} = frac{{left( {e_{seqsink} – left( {e_{swtsink} + e_{eqtsink}} right)} right)}}{{s_{dw}}}$$
    (17)
    where eremsink is the net atmospheric CO2 removed per ton of seaweed DW, eseqsink is as calculated in equation (14), eswtsink is as calculated in equation (15), eeqtsink is as calculated in equation (16) and sdw is the annually harvested seaweed DW in t km−2.Net cost of climate benefitsSinkingTo calculate the total net cost and emissions from the production, harvesting and transport of seaweed for CDR, we combined the cost and emissions from the sinking-pathway cost and value modules. The total net cost of seaweed CDR per DW ton of seaweed was calculated as:$$c_{sinknet} = c_{prod} – v_{sink}$$
    (18)
    where csinknet is the total net cost of seaweed for CDR per DW ton harvested, cprod is the net production cost per DW ton as calculated in equation (6) and vsink is the net value (or cost, if negative) per ton seaweed DW as calculated in equation (13).The total net CO2 emissions removed per DW ton of seaweed were calculated as:$$e_{sinknet} = e_{remsink} – e_{prod}$$
    (19)
    where esinknet is the total net atmospheric CO2 removed per DW ton of seaweed harvested annually (tCO2 tDW−1 yr−1), eremsink is the net atmospheric CO2 removed via seaweed sinking annually as calculated in equation (17) and eprod is the net CO2 emitted from production and harvesting of seaweed annually as calculated in equation (9). For each Monte Carlo simulation, locations where esinknet is negative (that is, net emissions rather than net removal) were not included in subsequent calculations since they would not be contributing to CDR in that location under the given scenario. Note that these net emissions cases only occur in areas far from port in specific high-emissions scenarios. Even in such cases, most areas still contribute to CO2 removal (negative emissions), hence costs from locations with net removal were included.Total net cost was then divided by total net emissions to get a final value for cost per ton of atmospheric CO2 removed:$$c_{pertonsink} = frac{{c_{sinknet}}}{{e_{sinknet}}}$$
    (20)
    where cpertonsink is the total net cost per ton of atmospheric CO2 removed via seaweed sinking ($ per tCO2 removed), csinknet is total net cost per ton seaweed DW harvested as calculated in equation (18) ($ tDW−1) and esinknet is the total net atmospheric CO2 removed per ton seaweed DW harvested as calculated in equation (19) (tCO2 tDW−1).GHG emissions mitigationInstead of sinking seaweed for CDR, seaweed can be used to make products (including but not limited to food, animal feed and biofuels). Replacing convention products with seaweed-based products can result in ‘avoided emissions’ if the emissions from growing, harvesting, transporting and converting seaweed into products are less than the total greenhouse gas emissions (including non-CO2 GHGs) embodied in conventional products that seaweed-based products replace.When seaweed is used to make products, we assumed it is transported back to the nearest port immediately after being harvested. The annualized cost to transport the harvested seaweed and replacement equipment (for example, lines, buoys, anchors) was calculated as:$$c_{transprod} = frac{{left( {c_{transbase} times d_{port} times left( {s_{ww} + m_{eq}} right)} right)}}{{s_{dw}}}$$
    (21)
    where ctransprod is the annualized cost per ton seaweed DW to transport seaweed and equipment back to port from the farm location, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dport is the ocean distance to the nearest port in km, sww is the annual wet weight of seaweed harvested per km2 as calculated in equation (10) and sdw is the annual DW of seaweed harvested per km2.The total value of seaweed that is used for seaweed-based products was calculated as:$$v_{product} = v_{mkt} – left( {c_{transprod} + c_{conv}} right)$$
    (22)
    where vproduct is the total value (cost, if negative) of seaweed used for products ($ tDW−1), vmkt is how much each ton of seaweed would sell for, given the current market price of conventional products that seaweed-based products replace ($ tDW−1), ctransprod is as calculated in equation (21) and cconv is the cost to convert each ton of seaweed to a usable product ($ tDW−1).The annualized CO2 emissions from transporting harvested seaweed and equipment back to port were calculated as:$$e_{transprod} = frac{{left( {e_{transbase} times d_{port} times left( {s_{ww} + m_{eq}} right)} right)}}{{s_{dw}}}$$
    (23)
    where etransprod is the annualized CO2 emissions per ton seaweed DW to transport seaweed and equipment back to port from the farm location, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dport is the ocean distance to the nearest port in km, sww is the annual wet weight of seaweed harvested per km2 as calculated in equation (10) and sdw is the annual DW of seaweed harvested per km2.Total emissions avoided by each ton of harvested seaweed DW were calculated as:$$e_{avprod} = e_{subprod} – left( {e_{transprod} + e_{conv}} right)$$
    (24)
    where eavprod is total CO2-eq emissions avoided per ton of seaweed DW per year (including non-CO2 GHGs using a GWP time period of 100 yr), esubprod is the annual CO2-eq emissions avoided per ton seaweed DW by replacing a conventional product with a seaweed-based product, etransprod is as calculated in equation (23) and econv is the annual CO2 emissions per ton seaweed DW from converting seaweed into usable products. esubprod was calculated by converting seaweed DW to caloric content58 for food/feed and comparing emissions intensity per kcal to agricultural products24, or by converting seaweed DW into equivalent biofuel content with a yield of 0.25 tons biofuel per ton DW59 and dividing the CO2 emissions per ton fossil fuel by the seaweed biofuel yield.To calculate the total net cost and emissions from the production, harvesting, transport and conversion of seaweed for products, we combined the cost and emissions from the product-pathway cost and value modules. The total net cost of seaweed for products per ton DW was calculated as:$$c_{prodnet} = c_{prod} – v_{product}$$
    (25)
    where cprodnet is the total net cost per ton DW of seaweed harvested for use in products, cprod is the net production cost per ton DW as calculated in equation (6) and vproduct is the net value (or cost, if negative) per ton DW as calculated in equation (22).The total net CO2-eq emissions avoided per ton DW of seaweed used in products were calculated as:$$e_{prodnet} = e_{avprod} – e_{prod}$$
    (26)
    where eprodnet is the total net CO2-eq emissions avoided per ton DW of seaweed harvested annually (tCO2 tDW−1 yr−1), eavprod is the net CO2-eq emissions avoided by seaweed products annually as calculated in equation (24) and eprod is the net CO2 emitted from production and harvesting of seaweed annually as calculated in equation (9). For each Monte Carlo simulation, locations where eprodnet is negative (that is, net emissions rather than net emissions avoided) were not included in subsequent calculations since they would not be avoiding any emissions in that scenario.Total net cost was then divided by total net emissions avoided to get a final value for cost per ton of CO2-eq emissions avoided:$$c_{pertonprod} = frac{{c_{prodnet}}}{{e_{prodnet}}}$$
    (27)
    where cpertonprod is the total net cost per ton of CO2-eq emissions avoided by seaweed products ($ per tCO2-eq avoided), cprodnet is total net cost per ton seaweed DW harvested for products as calculated in equation (25) ($ tDW−1) and eprodnet is total net CO2-eq emissions avoided per ton seaweed DW harvested for products as calculated in equation (26) (tCO2 tDW−1).Parameter ranges for Monte Carlo simulationsFor technoeconomic parameters with two or more literature values (see Supplementary Table 1), we assumed that the maximum literature value reflected the 95th percentile and the minimum literature value represented the 5th percentile of potential costs or emissions. For parameters with only one literature value, we added ±50% to the literature value to represent greater uncertainty within the modelled parameter range. Values at each end of parameter ranges were then rounded before Monte Carlo simulations as follows: capital costs, operating costs and harvest costs to the nearest $10,000 km−2, labour costs and insurance costs to the nearest $1,000 km−2, line costs to the nearest $0.05 m−1, transport costs to the nearest $0.05 t−1 km−1, transport emissions to the nearest 0.000005 tCO2 t−1 km−1, maintenance transport emissions to the nearest 0.0005 tCO2 km−1, product-avoided emissions to the nearest 0.1 tCO2-eq tDW−1, conversion cost down to the nearest $10 tDW−1 on the low end of the range and up to the nearest $10 tDW−1 on the high end of the range, and conversion emissions to the nearest 0.01 tCO2 tDW−1.We extended the minimum range values of capital costs to $10,000 km−2 and transport emissions to 0 to reflect potential future innovations, such as autonomous floating farm setups that would lower capital costs and net-zero emissions boats that would result in 0 transport emissions. To calculate the minimum value of $10,000 km−2 for a potential autonomous floating farm, we assumed that the bulk of capital costs for such a system would be from structural lines and flotation devices, and we therefore used the annualized structural line (system rope) and buoy costs from ref. 41 rounded down to the nearest $5,000 km−2. The full ranges used for our Monte Carlo simulations and associated literature values are shown in Supplementary Table 1.Distance to optimal sinking pointDistance to the optimal sinking point was calculated using a weighted distance transform (path-finding algorithm, modified from code in ref. 60) that finds the shortest ocean distance from each seaweed growth pixel to the location at which the net CO2 removed is maximized (including impacts of both increased sequestration fraction and transport emissions for different potential sinking locations) and the net cost is minimized. This is not necessarily the location in which the seaweed was grown, since the fraction of sunk carbon that remains sequestered for 100 yr is spatially heterogeneous (see ref. 57). For each ocean grid cell, we determined the cost-optimal sinking point by iteratively calculating equations (11–20) and assigning dsink as the distance calculated by weighted distance transform to each potential sequestration fraction (0.01–1.00) in increments of 0.01. Except for transport emissions, the economic parameter values used for these calculations were the averages of unrounded literature value ranges; we assumed that the maximum literature value reflected the 95th percentile and the minimum literature value represented the 5th percentile of potential costs or emissions, or for parameters with only one literature value, we added ±50% to the literature value to represent greater uncertainty within the modelled parameter range. For transport and maintenance transport emissions, we extended the minimum values of the literature ranges to zero to reflect potential net-zero emissions transport options and used the mean values of the resulting ranges. The dsink that resulted in minimum net cost per ton CO2 for each ocean grid cell was saved as the final dsink map, and the associated sequestration fraction value that the seaweed is transported to via dsink was assigned to the original cell where the seaweed was farmed and harvested (Supplementary Fig. 19). If the cost-optimal location to sink using this method was the same cell where the seaweed was harvested, then dsink was 0 km and the sequestration fraction was not modified from its original value (Supplementary Fig. 18).Comparison of gigaton-scale sequestration area to previous estimatesPrevious related work estimating the ocean area suitable for macroalgae cultivation13 and/or the area that might be required to reach gigaton-scale carbon removal via macroalgae cultivation13,19,36 has yielded a wide range of results, primarily due to differences in modelling methods. For example, Gao et al. (2022)36 estimate that 1.15 million km2 would be required to sequester 1 GtCO2 annually when considering carbon lost from seaweed biomass/sequestered as particulate organic carbon (POC) and refractory dissolved organic carbon (rDOC), and assume that the harvested seaweed is sold as food such that the carbon in the harvested seaweed is not sequestered. The area (0.31 million km2) required to sequester 1 GtCO2 in our study assumes that all harvested seaweed is sunk to the deep ocean to sequester carbon.Additionally, Wu et al.19 estimates that roughly 12 GtCO2 could be sequestered annually via macroalgae cultivation in approximately 20% of the world ocean area (that is, 1.67% ocean area per GtCO2), which is a much larger area per GtCO2 than our estimate of 0.085% ocean area. This notable difference arises for several reasons (including differences in yields, which in Wu et al. are around 500 tDW yr−1 in the highest-yield areas, whereas yields in our cheapest sequestration areas from G-MACMODS average 3,400 tDW km−2 yr−1) that arise from differences in model methodology. First, Wu et al. model temperate brown seaweeds, while our study considers different seaweed types, many of which have higher growth rates, and uses the most productive seaweed type for each ocean grid cell. The G-MACMODS seaweed growth model we use also has a highly optimized harvest schedule, includes luxury nutrient uptake (a key feature of macroalgal nutrient physiology) and does not directly model competition with phytoplankton during seaweed growth. Finally, tropical red seaweeds (the seaweed type in our cheapest sequestration areas) grow year-round, while others, such as the temperate brown seaweeds modelled by Wu et al., only grow seasonally. These differences all contribute to higher productivity in our model, leading to a smaller area required for gigaton-scale CO2 sequestration compared with Wu et al.Conversely, the ocean areas we model for seaweed-based CO2 sequestration or GHG emissions avoided are much larger than the 48 million km2 that Froehlich et al.13 estimate to be suitable for macroalgae farming globally. Although our maps show productivity and costs everywhere, the purpose of our modelling was to evaluate where different types of seaweed grow best and how production costs and product values vary over space, to highlight the lowest-cost areas (which are often the highest-producing areas) under various technoeconomic assumptions.Comparison of seaweed production costs to previous estimatesAlthough there are not many estimates of seaweed production costs in the scientific literature, our estimates for the lowest-cost 1% area of the ocean ($190–$2,790 tDW−1) are broadly consistent with previously published results: seaweed production costs reported in the literature range from $120 to $1,710 tDW−1 (refs. 40,41,61,62), but are highly dependent on assumed seaweed yields. For example, Camus et al.41 calculate a cost of $870 tDW−1 assuming a minimum yield of 12.4 kgDW m−1 of cultivation line (equivalent to 8.3 kgDW m−2 using 1.5 m spacing between lines). Using the economic values from Camus et al. but with our estimates of average yield for the cheapest 1% production cost areas (2.6 kgDW m−2) gives a much higher average cost of $2,730 tDW−1. Contrarily, van den Burg et al.40 calculate a cost of $1,710 tDW−1 using a yield of 20 tDW ha−1 (that is, 2.0 kg m−2). Instead assuming the average yield to be that from our lowest-cost areas (that is, 2.6 kgDW m−2 or 26 tDW ha−1) would decrease the cost estimated by van den Burg et al. (2016) to $1,290 tDW−1. Most recently, Capron et al.62 calculate an optimistic scenario cost of $120 tDW−1 on the basis of an estimated yield of 120 tDW ha−1 (12 kg m−2; over 4.5 times higher than the average yield in our lowest-cost areas). Again, instead assuming the average yield to be that in our lowest-cost areas would raise Capron et al.’s production cost to $540 tDW−1 (between the $190–$880 tDW−1 minimum to median production costs in the cheapest 1% areas from our model; Fig. 1a,b).Data sourcesSeaweed biomass harvestedWe used spatially explicit data for seaweed harvested globally under both ambient and limited-nutrient scenarios from the G-MACMODS seaweed growth model33.Fraction of deposited carbon sequestered for 100 yrWe used data from ref. 57 interpolated to our 1/12-degree grid resolution.Distance to the nearest portWe used the Distance from Port V1 dataset from Global Fishing Watch (https://globalfishingwatch.org/data-download/datasets/public-distance-from-port-v1) interpolated to our 1/12-degree grid resolution.Significant wave heightWe used data for annually averaged significant wave height from the European Center for Medium-range Weather Forecasts (ECMWF) interpolated to our 1/12-degree grid resolution.Ocean depthWe used data from the General Bathymetric Chart of the Oceans (GEBCO).Shipping lanesWe used data of Automatic Identification System (AIS) signal count per ocean grid cell, interpolated to our 1/12-degree grid resolution. We defined a major shipping lane grid cell as any cell with >2.25 × 108 AIS signals, a threshold that encompasses most major trans-Pacific and trans-Atlantic shipping lanes as well as major shipping lanes in the Indian Ocean, the North Sea, and coastal routes worldwide.Marine protected areas (MPAs)We used data from the World Database on Protected Areas (WDPA) and defined an MPA as any ocean MPA >20 km2.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More