Schendel, V., Rash, L. D., Jenner, R. A. & Undheim, E. A. The diversity of venom: The importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins 11(11), 666 (2019).Article
CAS
Google Scholar
Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 28(4), 219–229 (2013).Article
Google Scholar
Pineda, S. S. et al. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl. Acad. Sci. USA 117(21), 11399–11408 (2020).Article
ADS
CAS
Google Scholar
Chippaux, J. P., Williams, V. & White, J. Snake venom variability: Methods of study, results and interpretation. Toxicon 29(11), 1279–1303 (1991).Article
CAS
Google Scholar
Lyons, K., Dugon, M. M. & Healy, K. Diet breadth mediates the prey specificity of venom potency in snakes. Toxins 12(2), 74 (2020).Article
Google Scholar
Pekár, S. et al. Venom gland size and venom complexity—essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 27(21), 4257–4269 (2018).Article
Google Scholar
Phuong, M. A., Mahardika, G. N. & Alfaro, M. E. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 17(1), 401 (2016).Article
Google Scholar
Holding, M. L., Biardi, J. E. & Gibbs, H. L. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc. R. Soc. B. 283(1829), 20152841 (2016).Article
Google Scholar
Pekár, S., Líznarová, E., Bočánek, O. & Zdráhal, Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 87(6), 1639–1652 (2018).Article
Google Scholar
Pekár, S., Coddington, J. A. & Blackledge, T. A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution 66(3), 776–806 (2012).Article
Google Scholar
Herzig, V., King, G. F. & Undheim, E. A. Can we resolve the taxonomic bias in spider venom research?. Toxicon: X 1, 100005 (2019).Article
CAS
Google Scholar
Platnick, N. A relimitation and revision of the Australasian ground spider family Lamponidae (Araneae: Gnaphosoidea). Bull. Am. Mus. Nat. Hist. 2000(245), 1–328 (2000).Article
Google Scholar
World Spider Catalog. Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 15 Mar 2021 (2021).White, J. & Weinstein, S. A. A phoenix of clinical toxinology: White-tailed spider (Lampona spp.) bites. A case report and review of medical significance. Toxicon 87, 76–80 (2014).Article
CAS
Google Scholar
Rash, L. D., King, R. G. & Hodgson, W. C. Sex differences in the pharmacological activity of venom from the white-tailed spider (Lampona cylindrata). Toxicon 38, 1111–1127 (2000).Article
CAS
Google Scholar
Young, A. R. & Pincus, S. J. Comparison of enzymatic activity from three species of necrotising arachnids in Australia: Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon 39, 391–400 (2001).Article
CAS
Google Scholar
Michálek, O., Petráková, L. & Pekár, S. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison. Ecol. Evol. 7(8), 2756–2766 (2017).Article
Google Scholar
Klint, J. K. et al. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon 60(4), 478–491 (2012).Article
CAS
Google Scholar
Diniz, M. R. et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 13(8), e0200628 (2018).Article
Google Scholar
Wilson, D. et al. The aromatic head group of spider toxin polyamines influences toxicity to cancer cells. Toxins 9(11), 346 (2017).Article
Google Scholar
Herzig, V. & King, G. F. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-hexatoxin-Hv1a. Toxins 7(10), 4366–4380 (2015).Article
CAS
Google Scholar
Wang, X. H. et al. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat. Struct. Biol. 7(6), 505–513 (2000).Article
CAS
Google Scholar
Yuan, C. H. et al. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE 3(10), e3414 (2008).Article
ADS
Google Scholar
Luo, J. et al. Molecular diversity and evolutionary trends of cysteine-rich peptides from the venom glands of Chinese spider Heteropoda venatoria. Sci. Rep. 11, 3211 (2021).Article
ADS
CAS
Google Scholar
Cole, J., Buszka, P. A., Mobley, J. A. & Hataway, R. A. Characterization of the venom proteome for the wandering spider, Ctenus hibernalis (Aranea: Ctenidae). J. Proteom. Bioinform. 9, 196–199 (2016).Article
Google Scholar
Korolkova, Y. et al. New Insectotoxin from Tibellus Oblongus Spider venom presents novel daptation of ICK Fold. Toxins 13(1), 29 (2021).Article
CAS
Google Scholar
Koua, D. et al. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins 12(8), 501 (2020).Article
CAS
Google Scholar
Liberato, T., Troncone, L. R. P., Yamashiro, E. T., Serrano, S. M. & Zelanis, A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids 48(3), 901–906 (2016).Article
CAS
Google Scholar
Oldrati, V. et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE 12(3), e0172966 (2017).Article
Google Scholar
King, G. F. & Hardy, M. C. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 58, 475–496 (2013).Article
CAS
Google Scholar
Turner, A. J., Isaac, R. E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays 23(3), 261–269 (2001).Article
CAS
Google Scholar
Casewell, N. R., Harrison, R. A., Wüster, W. & Wagstaff, S. C. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genom. 10(1), 1–12 (2009).Article
Google Scholar
Tan, C. H., Tan, K. Y., Fung, S. Y. & Tan, N. H. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genom. 16(1), 1–21 (2015).Article
Google Scholar
Tan, K. Y., Tan, C. H., Chanhome, L. & Tan, N. H. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: Elucidating geographical venom variation and insights into sequence novelty. PeerJ 5, e3142 (2017).Article
Google Scholar
Undheim, E. A. et al. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins. 5(12), 2488–2503 (2013).Article
CAS
Google Scholar
do Nascimento, S. M., de Oliveira, U. C., Nishiyama-Jr, M. Y., Tashima, A. K. & Silva Junior, P. I. D. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. Toxin Rev. 41(2), 370–379 (2021).Article
Google Scholar
Zobel-Thropp, P. A. et al. Not so dangerous after all? Venom composition and potency of the Pholcid (daddy long-leg) spider Physocyclus mexicanus. Front. Ecol. Evol. 7, 256 (2019).Article
Google Scholar
Diniz, M. R. et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 13(8), e0200628 (2018).Article
Google Scholar
He, Q. et al. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE 8(11), e81357 (2013).Article
ADS
Google Scholar
Haney, R. A., Ayoub, N. A., Clarke, T. H., Hayashi, C. Y. & Garb, J. E. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom. 15(1), 1–18 (2014).Article
Google Scholar
Haney, R. A., Matte, T., Forsyth, F. S. & Garb, J. E. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol. 7, 85 (2019).Article
Google Scholar
Lüddecke, T. et al. An economic dilemma between molecular weapon systems may explain an arachno-atypical venom in wasp spiders (Argiope bruennichi). Biomolecules 10(7), 978 (2020).Article
Google Scholar
Fainzilber, M., Gordon, D., Hasson, A., Spira, M. E. & Zlotkin, E. Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur. J. Biochem. 202(2), 589–595 (1991).Article
CAS
Google Scholar
Pawlak, J. et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 281(39), 29030–29041 (2006).Article
CAS
Google Scholar
Krasnoperov, V. G., Shamotienko, O. G. & Grishin, E. V. Isolation and properties of insect and crustacean-specific neurotoxins from the venom of the black widow spider (Latrodectus mactans tredecimguttatus). J. Nat. Toxins 1, 17–23 (1992).CAS
Google Scholar
Xu, X. et al. A comparative analysis of the venom gland transcriptomes of the fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous. PLoS ONE 10(10), e0139908 (2015).Article
Google Scholar
Kuzmenkov, A. I., Sachkova, M. Y., Kovalchuk, S. I., Grishin, E. V. & Vassilevski, A. A. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem. J. 473(16), 2495–2506 (2016).Article
CAS
Google Scholar
Pekár, S. & Toft, S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae). Biol. Rev. 90(3), 744–761 (2015).Article
Google Scholar
Nyffeler, M. & Pusey, B. J. Fish predation by semi-aquatic spiders: A global pattern. PLoS ONE 9(6), e99459 (2014).Article
ADS
Google Scholar
Pekár, S. & Lubin, Y. Prey and predatory behavior of two zodariid species (Araneae, Zodariidae). J. Arachnol. 37(1), 118–121 (2009).Article
Google Scholar
Michálek, O., Kuhn-Nentwig, L. & Pekár, S. High specific efficiency of venom of two prey-specialized spiders. Toxins 11(12), 687 (2019).Article
Google Scholar
Modahl, C. M., Mrinalini, Frietze, S. & Mackessy, S. P. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc. R. Soc. B. 285(1884), 20181003 (2018).Article
Google Scholar
Harris, R. J., Zdenek, C. N., Harrich, D., Frank, N. & Fry, B. G. An appetite for destruction: Detecting prey-selective binding of α-neurotoxins in the venom of Afro-Asian elapids. Toxins 12(3), 205 (2020).Article
CAS
Google Scholar
Duran, L. H., Rymer, T. L. & Wilson, D. T. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon: X 8, 100063 (2020).Article
CAS
Google Scholar
Kuhn-Nentwig, L., Schaller, J. & Nentwig, W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae). Toxicon 32(3), 287–302 (1994).Article
CAS
Google Scholar
Friedel, T. & Nentwig, W. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon 27(3), 305–316 (1989).Article
CAS
Google Scholar
Eggs, B., Wolff, J. O., Kuhn-Nentwig, L., Gorb, S. N. & Nentwig, W. Hunting without a web: How lycosoid spiders subdue their prey. Ethology 121(12), 1166–1177 (2015).Article
Google Scholar
Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2015).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014).Article
CAS
Google Scholar
Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4(1), s13742–s14015 (2015).Article
Google Scholar
Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29(7), 644 (2011).Article
CAS
Google Scholar
Gilbert, D. EvidentialGene: Evidence directed gene predictions for eukaryotes. Available online at: http://arthropods.eugenes.org/EvidentialGene/ (2010).Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 1–10 (2009).Article
Google Scholar
Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene Prediction (ed. Kollmar, M.) 227–245 (Humana, 2019).
Google Scholar
Haas, B. TransDecoder. Available online at: https://github.com/TransDecoder/TransDecoder (2015).Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011).Article
CAS
Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).Article
CAS
Google Scholar
UniProt. The universal protein knowledgebase in 2021. Nucleic Acids Res. 49(1), 480–489 (2021).
Google Scholar
Eddy, S. R. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 4(5), e1000069 (2008).Article
ADS
MathSciNet
Google Scholar
Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Res. 42(1), 222–230 (2014).Article
Google Scholar
Wong, E. S., Hardy, M. C., Wood, D., Bailey, T. & King, G. F. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS ONE 8(7), e66279 (2013).Article
ADS
CAS
Google Scholar
King, G. F., Gentz, M. C., Escoubas, P. & Nicholson, G. M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 52(2), 264–276 (2008).Article
CAS
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/ (2019).Venables, W. N. & Ripley, B. D. Random and mixed effects in Modern Applied Statistics with S 271–300 (Springer, New York, 2002).Pekár, S. & Brabec, M. Modern Analysis of Biological Data: Generalized Linear Models in R (Masaryk University Press, 2016).
Google Scholar
Halekoh, U., Højsgaard, S. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15(2), 1–11 (2006).Article
Google Scholar
Pekár, S. & Brabec, M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology 124(2), 86–93 (2018).Article
Google Scholar More