More stories

  • in

    City comfort: weaker metabolic response to changes in ambient temperature in urban red squirrels

    Speakman, J. R. The cost of living: Field metabolic rates of small mammals. Adv. Ecol. Res. 30, 177–297 (1999).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metaboolic theory of ecology. Ecology 85(7), 1771–1789. https://doi.org/10.1890/03-9000 (2004).Article 

    Google Scholar 
    Larivée, M. L., Boutin, S., Speakman, J. R., McAdam, A. G. & Humphries, M. M. Associations between over-winter survival and resting metabolic rate in juvenile North American red squirrels. Funct. Ecol. 24(3), 597–607. https://doi.org/10.1111/j.1365-2435.2009.01680.x (2010).Article 

    Google Scholar 
    Corp, N., Gorman, M. L. & Speakman, J. R. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart. J. Comp. Physiol. B 167(3), 229–239. https://doi.org/10.1007/s003600050069 (1997).Article 
    CAS 

    Google Scholar 
    Lehto Hürlimann, M., Martin, J. G. A. & Bize, P. Evidence of phenotypic correlation between exploration activity and resting metabolic rate among populations across an elevation gradient in a small rodent species. Behav. Ecol. Sociobiol. 73(9), 131. https://doi.org/10.1007/s00265-019-2740-6 (2019).Article 

    Google Scholar 
    Reher, S., Rabarison, H., Montero, B. K., Turner, J. M. & Dausmann, K. H. Disparate roost sites drive intraspecific physiological variation in a Malagasy bat. Oecologia 198(1), 35–52. https://doi.org/10.1007/s00442-021-05088-2 (2022).Article 
    ADS 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. https://doi.org/10.1038/s41893-019-0436-6 (2019).Article 

    Google Scholar 
    Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019 (2006).Article 

    Google Scholar 
    United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2018: Highlights. https://population.un.org/wup/Publications/ (2018).Alberti, M. et al. The complexity of urban eco-evolutionary dynamics. Bioscience 70(9), 772–793. https://doi.org/10.1093/biosci/biaa079 (2020).Article 

    Google Scholar 
    Birnie-Gauvin, K., Peiman, K. S., Gallagher, A. J., de Bruijn, R. & Cooke, S. J. Sublethal consequences of urban life for wild vertebrates. Environ. Rev. 24(4), 416–425. https://doi.org/10.1139/er-2016-0029 (2016).Article 

    Google Scholar 
    Diamond, S. E. & Martin, R. A. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J. Exp. Biol. 224((Suppl_1)), jeb22336. https://doi.org/10.1242/jeb.229336 (2021).Article 

    Google Scholar 
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319(5864), 756–760. https://doi.org/10.1126/science.1150195 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    McDonnell, M. J. & Pickett, S. T. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71(4), 1232–1237. https://doi.org/10.2307/1938259 (1990).Article 

    Google Scholar 
    Francis, R. A. & Chadwick, M. A. What makes a species synurbic?. Appl. Geogr. 32(2), 514–521. https://doi.org/10.1016/j.apgeog.2011.06.013 (2012).Article 

    Google Scholar 
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proc. 4th Int. Symposium Urban Wildl. Conserv (Tucson, University of Arizona, 2004).Coogan, S. C. P., Raubenheimer, D., Zantis, S. P. & Machovsky-Capuska, G. E. Multidimensional nutritional ecology and urban birds. Ecosphere 9(4), e02177. https://doi.org/10.1002/ecs2.2177 (2018).Article 

    Google Scholar 
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. Camb. Philos. Soc. 88(3), 537–549. https://doi.org/10.1111/brv.12012 (2013).Article 

    Google Scholar 
    Łopucki, R., Klich, D., Ścibior, A. & Gołębiowska, D. Hormonal adjustments to urban conditions: Stress hormone levels in urban and rural populations of Apodemus agrarius. Urban Ecosyst. 22(3), 435–442. https://doi.org/10.1007/s11252-019-0832-8 (2019).Article 

    Google Scholar 
    McCleery, R. in Urban mammals in Urban Ecosystem Ecology (eds. Aitkenhead-Peterson, J., Volder, A.) 87–102 (American Society of Agronomy, 2010). https://doi.org/10.2134/agronmonogr55.c52010Uchida, K., Suzuki, K., Shimamoto, T., Yanagawa, H. & Koizumi, I. Seasonal variation of flight initiation distance in Eurasian red squirrels in urban versus rural habitat. J. Zool. 298(3), 225–231. https://doi.org/10.1111/jzo.12306 (2016).Article 

    Google Scholar 
    Kleerekoper, L., van Esch, M. & Salcedo, T. B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recyl. 64, 30–38. https://doi.org/10.1016/j.resconrec.2011.06.004 (2012).Article 

    Google Scholar 
    Pickett, S. T. et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 92(3), 331–362. https://doi.org/10.1016/j.jenvman.2010.08.022 (2011).Article 
    CAS 

    Google Scholar 
    Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20(1), 120–128 (2008).Article 
    CAS 

    Google Scholar 
    Isaksson, C. Urban ecophysiology: Beyond costs, stress and biomarkers. J. Exp. Biol. 223(22), jeb203794. https://doi.org/10.1242/jeb.203794 (2020).Article 

    Google Scholar 
    Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14(1), 3–11. https://doi.org/10.1111/eva.13165 (2020).Article 

    Google Scholar 
    Gavett, A. P. & Wakeley, J. S. Blood constituents and their relation to diet in urban and rural house sparrows. Condor 88(3), 279–284. https://doi.org/10.2307/1368873 (1986).Article 

    Google Scholar 
    Murray, M. et al. Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography 38(12), 1235–1242. https://doi.org/10.1111/ecog.01128 (2015).Article 

    Google Scholar 
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7(1), 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Schulte-Hostedde, A. I., Mazal, Z., Jardine, C. M. & Gagnon, J. Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conserv. Physiol. 6(1), coy026. https://doi.org/10.1093/conphys/coy026 (2018).Article 
    CAS 

    Google Scholar 
    Fingland, K., Ward, S. J., Bates, A. J. & Bremner-Harrison, S. A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris. Mamm. Rev. 52(1), 26–38. https://doi.org/10.1111/mam.12264 (2021).Article 

    Google Scholar 
    Jokimäki, J., Selonen, V., Lehikoinen, A. & Kaisanlahti-Jokimäki, M.-L. The role of urban habitats in the abundance of red squirrels (Sciurus vulgaris, L.) in Finland. Urban For. Urban Green. 27, 100–108. https://doi.org/10.1016/j.ufug.2017.06.021 (2017).Article 

    Google Scholar 
    Dausmann, K. H., Wein, J., Turner, J. M. & Glos, J. Absence of heterothermy in the European red squirrel (Sciurus vulgaris). Mammal. Biol. 78(5), 332–335. https://doi.org/10.1016/j.mambio.2013.01.004 (2013).Article 

    Google Scholar 
    Turner, J. M., Reher, S., Warnecke, L. & Dausmann, K. H. Eurasian red squirrels show little seasonal variation in metabolism in food-enriched habitat. Physiol. Biochem. Zool. 90(6), 655–662. https://doi.org/10.1086/694847 (2017).Article 

    Google Scholar 
    McNab, B. K. On the comparative ecological and evolutionary significance of total and mass-specific rates of metabolism. Physiol. Biochem. Zool. 72(5), 642–644 (1999).Article 
    CAS 

    Google Scholar 
    Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34(11), 2292–2301. https://doi.org/10.1111/1365-2435.13640 (2020).Article 

    Google Scholar 
    Wauters, L. & Dhondt, A. Activity budget and foraging behaviour of the red squirrel (Sciurus vulgaris Linnaeus, 1758) in a coniferous habitat. Z. Säugetierkd. 52(6), 341–353 (1987).
    Google Scholar 
    Wauters, L., Swinnen, C. & Dhondt, A. A. Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J. Zool. 227(1), 71–86. https://doi.org/10.1111/j.1469-7998.1992.tb04345.x (1992).Article 

    Google Scholar 
    Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. Food availability affects habitat use of Eurasian red squirrels (Sciurus vulgaris) in a semi-urban environment. J. Mammal. 97(6), 1543–1554. https://doi.org/10.1093/jmammal/gyw105 (2016).Article 

    Google Scholar 
    Moller, H. Foods and foraging behavior of red (Sciurus vulgaris) and grey (Sciurus carolinensis) squirrels. Mammal. Rev. 13(2–4), 81–98. https://doi.org/10.1111/j.1365-2907.1983.tb00270.x (1983).Article 

    Google Scholar 
    Krauze-Gryz, D. & Gryz, J. in A review of the diet of the red squirrel (Sciurus vulgaris) in different types of habitats in Red squirrels: Ecology, conservation & management in Europe (eds. Shuttleworth, C. M., Lurz, P. W. W., Hayward, M. W.) 39–50 (European Squirrel Initiative, London, 2015)Shuttleworth, C. M. in The effect of supplemental feeding on the red squirrel (Sciurus vulgaris), Doctoral dissertation (University of London, London, 1996).Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. https://doi.org/10.1093/conphys/cox030 (2017).Article 

    Google Scholar 
    Wist, B., Stolter, C. & Dausmann, K. H. Sugar addicted in the city: Impact of urbanisation on food choice and diet composition of the Eurasian red squirrel (Sciurus vulgaris). J. Urban Ecol. 8(1), juac012. https://doi.org/10.1093/jue/juac012 (2022).Article 

    Google Scholar 
    Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. Biol. Sci. 278(1724), 3465–3473. https://doi.org/10.1098/rspb.2011.1778 (2011).Article 
    CAS 

    Google Scholar 
    Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18(11), 573–581. https://doi.org/10.1016/j.tree.2003.08.007 (2003).Article 

    Google Scholar 
    Lovegrove, B. G. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. J. Comp. Physiol. B 173(2), 87–112. https://doi.org/10.1007/s00360-002-0309-5 (2003).Article 
    CAS 

    Google Scholar 
    McNab, B. K. The energetics of endotherms. Ohio J. Sci. 74(6), 370–380 (1974).
    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr. Physiol. 2(3), 2151–2202 (2012).Article 

    Google Scholar 
    Broggi, J. et al. Sources of variation in winter basal metabolic rate in the great tit. Funct. Ecol. 21(3), 528–533. https://doi.org/10.1111/j.1365-2435.2007.01255.x (2007).Article 

    Google Scholar 
    Schlünzen, K. H., Hoffmann, P., Rosenhagen, G. & Riecke, W. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol. 30(8), 1121–1136. https://doi.org/10.1002/joc.1968 (2010).Article 

    Google Scholar 
    Reher, S. & Dausmann, K. H. Tropical bats counter heat by combining torpor with adaptive hyperthermia. Proc. R. Soc. B Biol. Sci. 288(1942), 20202059. https://doi.org/10.1098/rspb.2020.2059 (2021).Article 

    Google Scholar 
    Rezende, E. L. & Bacigalupe, L. D. Thermoregulation in endotherms: Physiological principles and ecological consequences. J. Comp. Physiol. B 185(7), 709–727. https://doi.org/10.1007/s00360-015-0909-5 (2015).Article 
    CAS 

    Google Scholar 
    Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99(2), 237–258. https://doi.org/10.2307/1538741 (1950).Article 
    CAS 

    Google Scholar 
    Terblanche, J. S., Clusella-Trullas, S., Deere, J. A., Van Vuuren, B. J. & Chown, S. L. Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate. Physiol. Biochem. Zool. 82(5), 495–503. https://doi.org/10.1086/605361 (2009).Article 

    Google Scholar 
    Gallo, K. P., Easterling, D. R. & Peterson, T. C. The influence of land use/land cover on climatological values of the diurnal temperature range. J. Clim. 9(11), 2941–2944. https://doi.org/10.1175/1520-0442(1996)009%3c2941:TIOLUC%3e2.0.CO;2 (1996).Article 
    ADS 

    Google Scholar 
    Wang, K. et al. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Clim. 25(3), 1022–1027. https://doi.org/10.1175/jcli-d-10-05030.1 (2012).Article 
    ADS 

    Google Scholar 
    Fristoe, T. S. et al. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals. Proc. Natl. Acad. Sci. USA 112(52), 15934–15939. https://doi.org/10.1073/pnas.1521662112 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Sándor, K. et al. Urban nestlings have reduced number of feathers in Great Tits (Parus major). Ibis 163(4), 1369–1378. https://doi.org/10.1111/ibi.12948 (2021).Article 

    Google Scholar 
    Beliniak, A., Krauze-Gryz, D., Jasińska, K., Jankowska, K. & Gryz, J. Contrast in daily activity patterns of red squirrels inhabiting urban park and urban forest. Hystrix https://doi.org/10.4404/hystrix-00476-2021 (2021).Article 

    Google Scholar 
    Thomas, L. S., Teich, E., Dausmann, K., Reher, S. & Turner, J. M. Degree of urbanisation affects Eurasian red squirrel activity patterns. Hystrix 29(2), 175–180. https://doi.org/10.4404/hystrix-00065-2018 (2018).Article 

    Google Scholar 
    Krauze-Gryz, D., Gryz, J. & Brach, M. Spatial organization, behaviour and feeding habits of red squirrels: Differences between an urban park and an urban forest. J. Zool. 315(1), 69–78. https://doi.org/10.1111/jzo.12905 (2021).Article 

    Google Scholar 
    Jarman, T. E., Gartrell, B. D. & Battley, P. F. Differences in body composition between urban and rural mallards Anas platyrhynchos. J. Urban Ecol. 6(1), juaa011. https://doi.org/10.1093/jue/juaa011 (2020).Article 

    Google Scholar 
    Cruz-Neto, A. P. & Bozinovic, F. The relationship between diet quality and basal metabolic rate in endotherms: Insights from intraspecific analysis. Physiol. Biochem. Zool. 77(6), 877–889 (2004).Article 

    Google Scholar 
    Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. 72(2), 189–197 (1999).Article 
    CAS 

    Google Scholar 
    Seebacher, F. Is endothermy an evolutionary by-product?. Trends Ecol. Evol. 35(6), 503–511. https://doi.org/10.1016/j.tree.2020.02.006 (2020).Article 

    Google Scholar 
    Perissinotti, P. P., Antenucci, C. D., Zenuto, R. & Luna, F. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp. Biochem. Physiol. Mol. Integr. Physiol. 154(3), 298–307. https://doi.org/10.1016/j.cbpa.2009.05.013 (2009).Article 
    CAS 

    Google Scholar 
    Thorp, C. R., Ram, P. K. & Florant, G. L. Diet alters metabolic rate in the yellow-bellied marmot (Marmota flaviventris) during hibernation. Physiol. Zool. 67(5), 1213–1229. https://doi.org/10.1086/physzool.67.5.30163890 (1994).Article 

    Google Scholar 
    Silva, S. I., Jaksic, F. M. & Bozinovic, F. Interplay between metabolic rate and diet quality in the South American fox Pseudalopex culpaeus. Comp. Biochem. Physiol. Mol Integr. Physiol. 137(1), 33–38. https://doi.org/10.1016/j.cbpb.2003.09.022 (2004).Article 
    CAS 

    Google Scholar 
    Rewkiewicz-Dziarska, A., Wielopolska, A. & Gill, J. Hematological indices of Apodemus agrarius (Pallas, 1771) from different urban environments. Bull. Acad. Polon. Sci. Ser. Sci. Biol. 25(4), 261–268 (1977).CAS 

    Google Scholar 
    Ohrnberger, S. A., Hambly, C., Speakman, J. R. & Valencak, T. G. Limits to sustained energy intake XXXII: Hot again: Dorsal shaving increases energy intake and milk output in golden hamsters (Mesocricetus auratus). J Exp. Biol. https://doi.org/10.1242/jeb.230383 (2020).Article 

    Google Scholar 
    Speakman, J. R. & Król, E. The heat dissipation limit theory and evolution of life histories in endotherms—Time to dispose of the disposable soma theory?. Integr. Comp. Biol. 50(5), 793–807. https://doi.org/10.1093/icb/icq049 (2010).Article 

    Google Scholar 
    Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: Parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B Biol. Sci. 285(1882), 20180036. https://doi.org/10.1098/rspb.2018.0036 (2018).Article 

    Google Scholar 
    Isaksson, C. & Hahs, A. Urbanization, oxidative stress and inflammation: A question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29(7), 913–923. https://doi.org/10.1111/1365-2435.12477 (2015).Article 

    Google Scholar 
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change. Clim. Res. 37(2–3), 181–201 (2008).Article 

    Google Scholar 
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83(4), 1153–1181 (2003).Article 
    CAS 

    Google Scholar 
    Pereira, M. E., Aines, J. & Scheckter, J. L. Tactics of heterothermy in eastern gray squirrels (Sciurus carolinensis). J. Mammal. 83(2), 467–477 (2002).Article 

    Google Scholar 
    Breuner, C. W., Wingfield, J. C. & Romero, L. M. Diel rhythms of basal and stress-induced corticosterone in a wild, seasonal vertebrate. Gambel’s white-crowned sparrow. J Exp. Zool. 284(3), 334–342. https://doi.org/10.1002/(SICI)1097-010X(19990801)284:3%3c334::AID-JEZ11%3e3.0.CO;2-# (1999).Article 
    CAS 

    Google Scholar 
    Careau, V., Thomas, D., Humphries, M. M. & Réale, D. Energy metabolism and animal personality. Oikos 117(5), 641–653. https://doi.org/10.1111/j.0030-1299.2008.16513.x (2008).Article 

    Google Scholar 
    Fletcher, Q. E. et al. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. Funct. Ecol. 26(3), 677–687. https://doi.org/10.1111/j.1365-2435.2012.01975.x (2012).Article 

    Google Scholar 
    Barthel, L. & Berger, A. Unexpected gene-flow in urban environments: The example of the European Hedgehog. Animals 10(12), 2315. https://doi.org/10.3390/ani10122315 (2020).Article 

    Google Scholar 
    Fusco, N. A., Carlen, E. J. & Munshi-South, J. Urban landscape genetics: are biologists keeping up with the pace of urbanization?. Current Landsc. Ecol. Rep. 6(2), 35–45. https://doi.org/10.1007/s40823-021-00062-3 (2021).Article 

    Google Scholar 
    Ziege, M. et al. Population genetics of the European rabbit along a rural-to-urban gradient. Sci. Rep. 10(1), 2448. https://doi.org/10.1038/s41598-020-57962-3 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Morash, A. J., Neufeld, C., MacCormack, T. J. & Currie, S. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species. J. Exp. Biol. 221(14), jeb164673. https://doi.org/10.1242/jeb.164673 (2018).Article 

    Google Scholar 
    Pörtner, H.-O., et al. Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report (2022).Anderies, J. M., Katti, M. & Shochat, E. Living in the city: Resource availability, predation, and bird population dynamics in urban areas. J. Theor. Biol. 247(1), 36–49. https://doi.org/10.1016/j.jtbi.2007.01.030 (2007).Article 
    ADS 
    MATH 

    Google Scholar 
    Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106(3), 622–626. https://doi.org/10.1111/j.0030-1299.2004.13159.x (2004).Article 

    Google Scholar 
    Koprowski, J. L. Handling tree squirrels with a safe and efficient restraint. Wildl. Soc. B 30(1), 101–103. https://doi.org/10.2307/3784642 (2002).Article 

    Google Scholar 
    Magris, L. & Gurnell, J. Population ecology of the red squirrel (Sciurus vulgaris) in a fragmented woodland ecosystem on the Island of Jersey Channel Islands. J. Zool. 256(1), 99–112. https://doi.org/10.1017/s0952836902000134 (2002).Article 

    Google Scholar 
    Bethge, J., Wist, B., Stalenberg, E. & Dausmann, K. Seasonal adaptations in energy budgeting in the primate Lepilemur leucopus. J Comp. Physiol. B 187(5–6), 827–834. https://doi.org/10.1007/s00360-017-1082-9 (2017).Article 

    Google Scholar 
    Dausmann, K. H., Glos, J. & Heldmaier, G. Energetics of tropical hibernation. J Comp. Physiol. B 179(3), 345–357. https://doi.org/10.1007/s00360-008-0318-0 (2009).Article 
    CAS 

    Google Scholar 
    Kobbe, S., Nowack, J. & Dausmann, K. H. Torpor is not the only option: Seasonal variations of the thermoneutral zone in a small primate. J. Comp. Physiol. B 184(6), 789–797. https://doi.org/10.1007/s00360-014-0834-z (2014).Article 

    Google Scholar 
    Lighton, J. R. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2018).Book 

    Google Scholar 
    Bethge, J., Razafimampiandra, J. C., Wulff, A. & Dausmann, K. H. Sportive lemurs elevate their metabolic rate during challenging seasons and do not enter regular heterothermy. Conserv. Physiol. 9(1), coab075. https://doi.org/10.1093/conphys/coab075 (2021).Article 

    Google Scholar 
    Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B 188(6), 1015–1027. https://doi.org/10.1007/s00360-018-1171-4 (2018).Article 
    CAS 

    Google Scholar 
    Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J Stat. Softw. 40(3), 1–25 (2011).Article 

    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. RStudio. dplyr: A Grammar of Data Manipulation (1.0. 7) (2021).Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14(6), 1–27. https://doi.org/10.18637/jss.v014.i06 (2005).Article 

    Google Scholar 
    Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer Science & Business Media, New York, 2008).Book 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8(15), 1–27 (2003).Article 

    Google Scholar 
    Garamszegi, L. Z. et al. Changing philosophies and tools for statistical inferences in behavioral ecology. Behav. Ecol. 20(6), 1363–1375. https://doi.org/10.1093/beheco/arp137 (2009).Article 

    Google Scholar 
    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65(1), 13–21. https://doi.org/10.1007/s00265-010-1037-6 (2010).Article 

    Google Scholar 
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75(5), 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).Article 

    Google Scholar 
    Barton, K. & Barton, M. K. MuMIn: Multi-Model Inference. R package version 1.43.17; https://CRAN.R-project.org/package=MuMIn (2020).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R ( Springer Science & Business Media 2009).Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Soc. Method. Res. 33(2), 261–304 (2004).Article 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19(2), 101–108. https://doi.org/10.1016/j.tree.2003.10.013 (2004).Article 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: Definition, interpretation, and TIMSS example. Large-scale Assess. Educ. 6(1), 8. https://doi.org/10.1186/s40536-018-0061-2 (2018).Article 

    Google Scholar 
    Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D. & Mermelstein, R. J. A practical guide to calculating cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3, 111–111. https://doi.org/10.3389/fpsyg.2012.00111 (2012).Article 

    Google Scholar 
    Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version 2.8.5 2020; https://CRAN.R-project.org/package=sjPlot (2020).Nakagawa, S., Johnson, P. C. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14(134), 20170213 (2017).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 85(4), 935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x (2010).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8(11), 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar  More

  • in

    Bimodality and alternative equilibria do not help explain long-term patterns in shallow lake chlorophyll-a

    Real-world dataThe dataset consisted of 2986 observations from 902 freshwater shallow lakes in Denmark and North America (data extracted from the LAGOSNE database on 22 February 2022 via R LAGOSNE package version 2.0.2)56 (Supplementary Fig. 9). The Danish lakes were sampled for one or several years from 1984 to 2020 (data extracted in October 2021 from https://odaforalle.au.dk/main.aspx) (Supplementary Fig. 10). Prerequisites for inclusion in the analysis were that lakes had been sampled for physical and chemical variables at least four times or at least three times over the growing season (May to September) for the Danish or North American lakes, respectively, had a mean depth of less than 3 m and were freshwater. Water chemistry samples were analysed using standard methods and data for total phosphorus (TP), total nitrogen (TN) and chlorophyll-a are included here57. The mean and range of TP, TN and chlorophyll-a for the combined sites is given in Table 1, along with the values for each region separately.To gain a longer-term perspective on the relationship between nutrients and chlorophyll-a, we calculated the across-year averages of the summer means of TP, TN and chlorophyll-a, sequentially increasing numbers of years included in the mean up to a total of a five-year mean, at which point there were only 99 lakes left in the dataset. In calculating the multi-year means we allowed a maximum gap of 2 years between observations (i.e. two observations could cover 3 years) to avoid including time series with too many missing years in between. Hence, only lakes with sufficient numbers of sequential data were included, resulting in a large drop in lake numbers as the length of the multi-year mean increased (Table 2).Numerical methodsDiagnostic tests or proxies of alternative equilibriaWe modelled the response of chlorophyll-a to TP and TN using generalised-linear models58 with Gamma distribution and an identity link on untransformed data for single-year and multiple-year means up to 5-year means. We used the Gamma distribution, as chlorophyll fit this significantly better than a normal or log-normal distribution. We used psuedo R2 of the model along with the patterns of residuals, and finally, we plotted the kernel density of the chlorophyll-a values as diagnostics of the presence, absence or prevalence of alternative equilibria in the simulated and real work data.To test how appropriate these diagnostics or proxies of alternative stable states in terms of how well they identify the existence of alternative stable states in randomly sampled multi-year data, we

    1.

    Simulated two scenarios for the main manuscript, with and without alternative stable states in the data, which were as close to the real-life data as possible. The results of these scenarios appear in the main text (please see details below in the “Data Simulation” section).

    2.

    We provide multiple scenarios with different degrees, or prevalence, of alternative stable states in the data, see simulations of alternative stable state scenarios. The results of these scenarios appear in Supplementary note 2.

    Hierarchical bootstrap approachThere are a large number of permutations of data, both real-world and simulated, that can provide a mean of the two to five sequential years from each lake in the time series data. It was vital to have a method that selects the data for analysis that provides a valid and comparable representation of both real work and simulated data and the models’ errors. In order to provide this we used a non-parametric hierarchical bootstrap procedure38. The flowchart shows the data preparation and data analysis steps of the hierarchical bootstrap procedure (Fig. 4). In the first step (step 1 in Fig. 4), all possible longer-term means are calculated for each lake. To keep as much data as possible, we decided to allow for up to 2 years of gap in the data between years. Taking the 5-year mean data as an example, if data from a lake existed for the years 1991 and 1994−1997, a 5-year mean would be calculated for the years 1991, 1994, 1995, 1996 and 1997. However, if the time series would contain a larger gap, e.g. data would only exist for the years 1991 and 1995–1998, no 5-year mean could be calculated. After the selection procedure, all the 2-year, 3-year and 5-year means are transferred into a new table (step 2 in Fig. 4).Fig. 4Data preparation and analysis steps of the hierarchical bootstrap procedure.Full size imageThe procedure is the same for each temporal scale from 2-year means to 5-year means. For the example of 5 mean years, lakes are randomly sampled from the full 5-year mean dataset in step 2 (Fig. 4) with replacement up to the number of lakes as in the original dataset, for the 5-year means 99 (step 3a). Here, the same lake can appear multiple times or not at all. This step is common for every bootstrap procedure59. However, since we have nested data (5-year means within lakes), we need a second step, in which for every resampled lake in step 3a, one 5-year mean is chosen (step 3b in Fig. 4). Then the three GLM models are produced from the randomly selected data in step 3c (Fig. 4). These steps are then repeated 1000 times to get a good representation of the uncertainties of the model. To ensure a fair comparison between single-year data and their equivalent multi-year mean data, we repeated the bootstrap procedure with single years only using only the lakes for which we also calculated multi-year means. To take the five-year mean as an example, there were 99 lakes where we could calculate at least one 5-year mean observation. First, we ran the bootstrap procedure to calculate 5-year mean values of TP, TN and chlorophyll-a (1000 times) and then took single years’ values of TP, TN and chlorophyll-a (1000 times) from exactly the same 99 lakes. With this approach, exactly the same datasets with the same lakes and observations within lakes are used for the calculation of the multi-year means and their single-year counterparts, making for a robust analysis. The GLM models did not always converge. If either the TP, TN or TP*TN model with interaction did not converge, the iteration was not used in further analysis. The number of converging models equal for each iteration of random samples is given in the results.The described hierarchical approach is the best way to reflect the structure of the original data. A simple, non-hierarchical bootstrap would favour lakes with more five-year means over lakes with fewer five-year means, simply because these make up a larger part of the data. Furthermore, sampling without replacement at the lake level would result in five-year means from lakes with few data dominating the produced random dataset, as every lake would be sampled every time, which then would result in high model leverage of 5-year means from lakes with less data. In contrast, the hierarchical procedure ensures that every lake has the same chance to end up in the randomly sampled bootstrap, in the second step, it ensures that of each sampled lake, every 5-year mean has the same chance to end up in the random dataset. These notions are in agreement with the findings of an assessment on how to properly resample hierarchical data by non-parametric bootstrap38.Data simulationGeneral approach of simulation assumptions and proceduresWe generated random scatter for the generalised-linear model based on Gamma distributions for two different “populations” of lakes with two different intercepts and slopes. At first, we calculated the linear equations for the two populations:For each population i and j, 99 samples (equalling the number of lakes in real-life data with 5-year means, nlake) were generated with a specific number of data points depending on the scenario (nyear) each, hence nlake = 1−99 for each population of lakes, e.g. with 20 years (nyear = 20) each.We found the real nutrient data to be normally distributed, with total nitrogen (TN) having a range between 0.33 and 4.93 mg/L and a constant coefficient of variation (CV, with a mean CV of 0.35) across this range (the same is true for total phosphorus (TP) at a shorter range). Hence, for each nlake, the x for the nyear = 20 were generated based on the mean range (mean per lake of the real-life data) and CV (0.35) from the real-life TN concentration data, hence with a range of 0.33 to 4.33 mg/L. Therefore the values and random variability of x in the simulations are close to the true values of the TN concentrations. The x is then fed into the linear equations above.To the resulting yi and yj we added random noise based on the Gamma distribution (using the rgamma function in R). We used a Gamma distribution because the Chlorophyll-a concentration also follows a Gamma distribution. The variability of a Gamma distribution is expressed by the shape variable. The variability of chlorophyll-a, its shape value, equals 2.63. This shape value was used in the Gamma distribution of yi and yj. The final calculated yi and yj had therefore a random rate calculated as shape/yi or shape/yj. Hence, their variability in the y dimension was close to the true chlorophyll-a variability.The data from both lake populations were then pooled and randomly sampled using the same hierarchical bootstrap procedure with 500 iterations for the scenarios in the supplementary materials and with 1000 iterations for main text simulation scenarios, which is identical to what was done for the real-world data.Simulation scenarios based on characteristics of real-world dataThe real-world 5-year mean data consisted of 99 lakes with 5–20 years of data for each lake. For the simulation scenario in the main text, we therefore randomly sampled between 5 and 20 data points for each of the 99 simulated lakes based on the x distribution described above. Intercepts and slopes of the simulation, resembled the range of the true data (see scatter plots in Fig. 2 of the main manuscript).In the alternative stable state scenario, we chose two slopes and intercepts for different populations of lakes:

    Population i: ai = 0, bi = 40

    Population j: aj = 50, bj = 120

    We based the slopes and intercepts of the ASS scenarios on the diagnostic combination defined by Scheffer and Carpenter7 which propose an abrupt shift in (a) the time series, (b) the multimodal distribution of states and (c) the dual relationship to a controlling factor. Here, the idea is that an ecosystem will jump from one state to the next at the same (nutrient) conditions (different intercept and/or slope, condition a within ref. 7), where any change in the nutrient will have different effects on algae or macrophytes (best represented by different slope, condition c), resulting in a multimodal distribution of the response (condition b). Hence, simulations are in line with what is predicted for ASS, but we took great lengths to also show other possibilities with the simulations in the Supplementary information to ensure we did not overlook any occasional occurrence of alternative equilibria.Here, the appearance of alternative stable states in the data could happen at any point in the time series of a single lake, or the entire time series could include only one of the two alternative stable states. To accommodate these alternative stable state constellations (for each of which we made a separate simulation scenario, (see Supplementary Note 2, “Simulations of alternative stable state constellations”), we forced the alternative stable state scenario to be constructed of 1/3 of data with one state, 1/3 of data with the second state and 1/3 of data where both alternative states could occur. In the latter case, the alternative stable state appeared after the first 20% but before the last 20% of the time series. Since the variability and range of x (nutrient) and y (chlorophyll -a response) is simulated as close as possible to the real-world data in all scenarios, the measures taken here (variable time series and combination of different alternative stable state scenario constellations) produce a simulation as close to the real-world data as possible. Specifically, we found the real-world nutrient data to be normally distributed, with total nitrogen (TN) having a range between 0.33 and 4.93 mg/L and a constant coefficient of variation (CV, with a mean CV of 0.35) across this range (the same is true for total phosphorus (TP) at a shorter range). Hence, for each simulated lake, the x were generated based on this mean range and CV. Furthermore, the resulting yi and yj were randomised by using a Gamma distribution (using the rgamma function in R). We used a Gamma distribution because the chlorophyll-a concentration also follows a Gamma distribution. The variability of a Gamma distribution is expressed by the shape variable. The variability of chlorophyll-a, its shape value, equals 2.63. This shape value was used in the Gamma distribution of yi and y. The final calculated yi and yj had, therefore a random rate calculated as shape/yi or shape/y. Hence, their variability in the y dimension was close to the true chlorophyll-a variability.For the scenario without alternative stable states, both populations of data had the same intercept and slope:

    Population i: ai = 0, bi = 40

    Population j: aj = 0, bj = 40.

    Please see Supplementary Note 2 for further simulations of different potential constellations of alternative states. There we show that our approach finds alternative stable states in response to nutrient concentration, even if they appear in time series from different lakes.Assessment of diagnostic tests or proxies of alternative equilibriaWe modelled the response of chlorophyll-a to TP and TN using generalised-linear models3 with Gamma distribution and an identity link on untransformed data for single-year and multiple-year means up to 5-year means. We used the Gamma distribution, as chlorophyll fit this significantly better than a normal or log-normal distribution. We used R2 of the model along with the patterns of residuals, and finally, we plotted the kernel density of the chlorophyll-a values as diagnostics of the presence, absence or prevalence of alternative equilibria in the simulated and real work data.The comparison of how the diagnostics/proxies of alternative stable states respond to the variation in the prevalence of alternative equilibria in the simulated datasets provides a robust assessment of their ability to identify both the presence and absence of alternative equilibria. It is the response of these diagnostic tests over time, with the increase in the temporal perspective as more years are added to the mean values of TP, TN and chlorophyll-a, that are key to the identification of the presence and or absence of alternative equilibria in a given dataset. The simulations show that a dataset which contains alternative equilibria will show (1) no improvement in R2 as the temporal perspective of the data increases (more years in the multi-year mean); (2) an increased bimodality in the residuals of the models of nutrients predicting chlorophyll-a will increase as more years are added to the multi-year mean and (3) the kernel density function of chlorophyll-a will display increasingly bimodality as more years are added to the mean. In the absence of alternative equilibria, the patterns differ with an R2, and increase in unimodality of residuals and a consistent unimodal pattern in the kernel density function. Thus, the diagnostic tests provide a robust test of both the presence and absence of alternative equilibria in a given dataset.Alternative stable state assessment for real data with limited data rangeIt could be the case that alternative stable states do not appear in the full dataset but only in a limited TN and TP concentration range. We filtered and re-analyzed the data, only keeping data points within the following two ranges: – TN concentration = 0.5−2 mg/L–TP concentration = 0.05−0.4 mg/L. In the filtered data, 1329 out of the original 2876 single-year data points, 289 out of 1028 3-year mean data points and 212 out of the 864 five-mean year data points remained. The filtered data consisted of data points from 550, 48 and 27 lakes for the single-year data, 3-year means and 5-year means, respectively. The smaller range resulted in lower R² of the models, yet the pattern that multi-year means result in higher R² compared to single-year data was largely consistent, apart from the 5-year mean TN models for which both, the single-year and mean data resulted in very low R² (Supplementary Fig. 6). Furthermore, due to the lower number of samples, the errors of all proxies are higher, making conclusions more difficult than for the full data. Still, we do not see any clear indication of alternative stable states in the scatter plots (two groups of dots are not appearing (Supplementary Fig. 5), the Kernel density plots (or model residuals (Supplementary Fig. 6)). i.e. no signs of bimodality in residuals or Kernel density plots. Please see details on this analysis in the supplementary material.Details and the R code for the steps for the random multi-year sampling can be found in the supplementary materials.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Diversity enables the jump towards cooperation for the Traveler’s Dilemma

    Game theory is a framework for analysing the outcome of the strategic interaction between decision makers1. The fundamental concept is that of a Nash equilibrium where no player can improve her payoff by a unilateral strategy change. Typically, the Nash equilibrium is considered to be the optimal outcome of a game, however in social dilemmas the individual optimal outcome is at odds with the collective optimal outcome2. This means that one player can improve her payoff at the expense of the other by unilaterally deviating, but if both deviate, they end up with lower payoffs. In this type of games, the mutually beneficial, but non-Nash equilibrium strategy is called cooperation. However, in this context cooperation should not be interpreted as an interest in the welfare of others, as players only aim to secure a high payoff for themselves.In this framework, payoff maximisation is considered to be rational, but when such rational players then seize every opportunity to gain at the opponent’s expense, they may counterintuitively both end up with low payoffs. A game that clearly exhibits this contradiction is the Traveler’s Dilemma. Since its formulation in 1994 by the economist Kaushik Basu3, the game has become one of the most studied in the economics literature. Additionally, it has been discussed in theoretical biology in the context of evolutionary game theory.In general, the dilemma relies on the individuals’ incentive to undercut the opponent. To be more specific, players are motivated to claim a lower value than their opponent to reach a higher payoff at the opponent’s expense. Such incentive leads players to a systematic mutual undercutting until the lowest possible payoff is reached, which is the unique Nash equilibrium. It seems paradoxical that players defined as rational in a game theoretical sense end up with such a poor outcome. Therefore, the question that naturally arises is how can this poor outcome be prevented and how cooperation can be achieved.To address these questions, it can be helpful to better understand price wars, which consist in the mutual undercutting of prices to gain market share. In addition, it can provide information about human behaviour, because economic experiments have shown that individuals prefer to choose the cooperative high payoff action, instead of the Nash equilibrium4.Our analysis focuses on showing that the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff optimisation is constrained to the local game, then players will inevitably end up in the Nash equilibrium. However, if players escape the local maximisation and optimise their payoff for the global game, they can reach the cooperative high payoff equilibrium.Here, we show that the cooperative equilibrium can be reached in a game like the Traveler’s Dilemma due to diversity, which we define as the presence of suboptimal strategies. The appearance of strategies far from those of the residents allows for the local maximisation process to be escaped, such that an optimisation at a global level takes place. Overall this can lead to cooperation because by considering “suboptimal strategies” that play against each other it is possible to reach higher payoffs, both collectively and individually.GameThe Traveler’s Dilemma is a two-player game. Player i has to choose a claim, (n_i), from the action space, consisting of all integers on the interval [L, U], where (0 le L < U). The payoffs are determined as follows: If both players, i and j, choose the same value ((n_i = n_j)), both get paid that value. There is a reward parameter (R >1), such that if (n_i < n_j), then i receives (n_i + R) and j gets (n_i- R) Thus, the payoff of player i playing against player j is$$begin{aligned} pi _{ij} = {left{ begin{array}{ll} n_i& text { if } n_i = n_j\ n_i + R& text { if } n_i < n_j\ n_j - R& text { if } n_i > n_j end{array}right. } end{aligned}$$
    (1)
    Thus, a player is better off by choosing a slightly lower value than the opponent: when j plays (n_j), then it is best for i to play (n_j-1). The iteration of this reasoning, which we will call the stairway to hell, leads to the only Nash equilibrium of the game, ({L,L}), where both players choose the lowest possible claim. The classical game theory method to arrive to this equilibrium is called iterative elimination of dominated strategies5.The game can be visualised through its payoff matrix (Fig. 1). For simplicity, we use the values from the original formulation: (L=2), (U=100) and (R=2). The payoff matrix shows that the Traveler’s Dilemma can be decomposed into a local and a global game. Let us begin with the local game. When the action space of the game is reduced to two adjacent actions n and (n+1) (black boxes in Fig. 1), the Traveler’s Dilemma with (R=2) is equivalent to the Prisoner’s Dilemma6. In general, for any value of R, the Traveler’s Dilemma becomes a Prisoner’s Dilemma for any pair of actions n and (n+s), where ( 1 le s le R-1 ). For example, for (R=4) the pair of actions n and (n+1), n and (n+2), n and (n+3) follow the same game structure as the Prisoner’s Dilemma. Therefore, the Traveler’s Dilemma consists of many embedded Prisoners’ Dilemmas. This means that at a local level the game is a Prisoner’s Dilemma.If we now consider actions that are distant from each other in the action space, e.g. 2 and 100, we can observe a coordination game structure (gray boxes in Fig. 1), where ({100,100}) is payoff and risk dominant7,8. In general, any pair of actions n and (n+s), where ( R le s le U-n), construct a coordination game. As a result, the Traveler’s Dilemma becomes a coordination game at a global level, which has different equilibria than the local game.Figure 1Payoff matrix of the Traveler’s Dilemma. Visualisation of the payoff scheme described by Eq. (1). For simplicity, the action space is ( {n_i in {mathbb {N}} mid 2 le n_i le 100}) and the reward parameter is (R=2). The Traveler’s Dilemma can be decomposed into a local and a global game. At a local level the game is a Prisoner’s Dilemma (black boxes). This happens when the action space is reduced to any pair of actions n and (n+s), where ( 1 le s le R-1 ). While at the global level, we can observe a coordination game (gray boxes). This level is defined as any pair of actions n and (n+s), where ( R le s le U-n).Full size imageParadoxSocial dilemmas appear paradoxical in the sense that self-interested competing players, when rationally playing the Nash equilibrium, end up with a payoff that clearly goes against their self-interest. But with the Traveler’s Dilemma, the paradox goes further, as suggested in its original formulation3. Classical game theory proposes ({L,L}) as the Nash equilibrium of the game. However, it seems unlikely and implausible that, with R being moderately low, say (R=2), for individuals to play the Nash equilibrium. This has been confirmed in economic experiments where individuals rather choose values close to the upper bound of the interval. Such experiments have also shown that the chosen value depends on the reward parameter (R), where an increasing value of R shifts players’ decision towards ({L,L})4. Nonetheless, classical game theory states that the Nash equilibrium of the game is independent of R.Consequently, the aim of this paper is to seek and explore simple mechanisms through which the apparent non-rational cooperative behaviour can come about. We also examine the effect of the reward parameter on the game’s outcome. Given that the Traveler’s Dilemma paradox emerges in the classical game theory framework, we analyse the game using evolutionary game theory tools5,9,10. This dynamical approach allows us to explore adaptive behaviour outside of the stationary classical game theory framework. To be more precise, for this approach individuals dynamically adjust their actions according to their payoffs.The key point of course is to understand how the system can converge to high claims. We show that this behaviour is possible because the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff maximisation is constrained to the local level, then the stairway to hell leads the system to the Nash equilibrium; given that locally the game is a Prisoner’s Dilemma. On the other hand, at a global level the game follows a coordination game structure, where the high claim actions are payoff dominant. Thus, for the system to reach a high claim equilibrium the maximisation process needs to jump from the local to the global level.Our analysis led us to identify the mechanism of diversity as responsible for enabling this jump and preventing players from going down the stairway to hell. This mechanism works on the idea that to reach a high claim equilibrium, players have to benefit from playing a high claim. For a population setting, it means that players need to have the chance to encounter opponents also playing high. From a learning model point of view, it refers to the belief that the opponent will also play high, at least with a certain probability. If the belief is shared by both players, they should both play high and reach the cooperative equilibrium. Here, we explore these two types of models to unveil the mechanism leading to cooperation.Population based models unveil diversity as the cooperative mechanism via the effect of mutations on the game’s outcome. This is shown for the replicator-mutator equation and the Wright–Fisher model. Similarly, a two-player learning model approach, more in line with human reasoning, shows that if players are free to adopt a higher payoff action from a diverse action set during their introspection process, they can reach the cooperative equilibrium. This result is obtained using introspection dynamics.Finally, we explain how diversity is the underlying mechanism that enables the convergence to high claims in previously proposed models. To be more precise, we show that diversity is required because it allows for the maximisation process to jump from the local to the global level. More

  • in

    Triassic stem caecilian supports dissorophoid origin of living amphibians

    Pardo, J. D., Lennie, K. & Anderson, J. S. Can we reliably calibrate deep nodes in the tetrapod tree? Case studies in deep tetrapod divergences. Front. Genet. 11, 1159 (2020).Article 

    Google Scholar 
    Rage, J.-C. & Roček, Z. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic. Palaeontographica A 206, 1–16 (1989).
    Google Scholar 
    Evans, S. E. & Borsuk-Białynicka, M. A stem-group frog from the Early Triassic of Poland. Acta Palaeontol. Pol. 43, 573–580 (1998).Article 

    Google Scholar 
    Heckert, A. B., Mitchell, J. S., Schneider, V. P. & Olsen, P. E. Diverse new microvertebrate assemblage from the Upper Triassic Cumnock Formation, Sanford Subbasin, North Carolina, USA. J. Paleontol. 86, 368–390 (2012).Article 

    Google Scholar 
    Stocker, M. R. et al. The earliest equatorial record of frogs from the Late Triassic of Arizona. Biol. Lett. 15, 20180922 (2019).Article 

    Google Scholar 
    Schoch, R. R., Werneburg, R. & Voigt, S. A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proc. Natl Acad. Sci. USA 117, 11584–11588 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B. & Sumida, S. S. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453, 515–518 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. S. Focal review: the origin(s) of modern amphibians. Evol. Biol. 35, 231–247 (2008).Article 

    Google Scholar 
    Sigurdsen, T. & Bolt, J. R. The Lower Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. J. Vertebr. Paleontol. 30, 1360–1377 (2010).Article 

    Google Scholar 
    Schoch, R. R. The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls. J. Paleontol. 93, 137–156 (2019).Article 

    Google Scholar 
    Jenkins, P. A. & Walsh, D. M. An Early Jurassic caecilian with limbs. Nature 365, 246–250 (1993).Article 
    ADS 

    Google Scholar 
    Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).Article 

    Google Scholar 
    Maddin, H. C., Jenkins, F. A. Jr & Anderson, J. S. The braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the origin of caecilians. PLoS ONE 7, e50743 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Pardo, J. D., Small, B. J. & Huttenlocker, A. K. Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia. Proc. Natl Acad. Sci. USA 114, E5389–E5395 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Nussbaum, R. A. The evolution of a unique dual jaw‐closing mechanism in caecilians: (Amphibia: Gymnophiona) and its bearing on caecilian ancestry. J. Zool. 199, 545–554 (1983).Article 

    Google Scholar 
    Kleinteich, T., Haas, A. & Summers, A. P. Caecilian jaw-closing mechanics: integrating two muscle systems. J. R. Soc. Interface 5, 1491–1504 (2008).Article 

    Google Scholar 
    Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).Article 

    Google Scholar 
    Schmidt, A. & Wake, M. H. Olfactory and vomeronasal systems of caecilians (Amphibia: Gymnophiona). J. Morphol. 205, 255–268 (1990).Article 

    Google Scholar 
    Pincheira‐Donoso, D., Meiri, S., Jara, M., Olalla‐Tárraga, M. Á. & Hodgson, D. J. Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography 42, 1682–1690 (2019).Article 

    Google Scholar 
    San Mauro, D., Vences, M., Alcobendas, M., Zardoya, R. & Meyer, A. Initial diversification of living amphibians predated the breakup of Pangaea. Am. Nat. 165, 590–599 (2005).Article 

    Google Scholar 
    Padian, K. & Sues, H.-D. in Great Transformations in Vertebrate Evolution (eds Dial, K. P., Shubin, N. & Brainerd, E. L.) 351–374 (Univ. Chicago Press, 2021).Santos, R. O., Laurin, M. & Zaher, H. A review of the fossil record of caecilians (Lissamphibia: Gymnophionomorpha) with comments on its use to calibrate molecular timetrees. Biol. J. Linn. Soc. 131, 737–755 (2020).Article 

    Google Scholar 
    Evans, S. E. & Sigogneau‐Russell, D. A stem‐group caecilian (Lissamphibia: Gymnophiona) from the Lower Cretaceous of North Africa. Palaeontology 44, 259–273 (2001).Article 

    Google Scholar 
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. GSA Bull. 123, 2142–2159 (2011).Article 
    CAS 

    Google Scholar 
    Rasmussen, C. et al. U-Pb zircon geochronology and depositional age models for the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, USA): implications for Late Triassic paleoecological and paleoenvironmental change. GSA Bull. 133, 539–558 (2021).Article 
    CAS 

    Google Scholar 
    Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. GSA Bull. 127, 1798–1815 (2015).Article 
    CAS 

    Google Scholar 
    Martz, J. W. & Parker, W. G. in Terrestrial Depositional Systems (eds Zeigler, K. E. & Parker, W. G.) 39–125 (Elsevier, 2017).Daza, J. D. et al. Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders. Science 370, 687–691 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Gardner, J. D. Monophyly and affinities of albanerpetontid amphibians (Temnospondyli; Lissamphibia). Zool. J. Linn. Soc. 131, 309–352 (2001).Article 

    Google Scholar 
    Bolt, J. R. Lissamphibian origins: possible protolissamphibian from the Lower Permian of Oklahoma. Science 166, 888–891 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Gardner, J. D. & Averianov, A. O. Albanerpetontid amphibians from the Upper Cretaceous of Middle Asia. Acta Palaeontol. Pol. 43, 453–476 (1998).
    Google Scholar 
    Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150, 1–140 (2007).Article 

    Google Scholar 
    Müller, H., Oommen, O. V. & Bartsch, P. Skeletal development of the direct-developing caecilian Gegeneophis ramaswamii (Amphibia: Gymnophiona: Caeciliidae). Zoomorphology 124, 171–188 (2005).Article 

    Google Scholar 
    Ahlberg, P. E. & Clack, J. A. Lower jaws, lower tetrapods—a review based on the Devonian genus Acanthostega. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 11–46 (1998).Article 

    Google Scholar 
    Bolt, J. R. & Lombard, R. E. The mandible of the primitive tetrapod Greererpeton, and the early evolution of the tetrapod lower jaw. J. Paleontol. 75, 1016–1042 (2001).Article 

    Google Scholar 
    Shishkin, M. A. & Sulej, T. The Early Triassic temnospondyls of the Czatkowice 1 tetrapod assemblage. Acta Palaeontol. Pol. 65, 31–77 (2009).
    Google Scholar 
    Anderson, J. S., Scott, D. & Reisz, R. R. The anatomy of the dermatocranium and mandible of Cacops aspidephorus Williston, 1910 (Temnospondyli: Dissorophidae), from the Lower Permian of Texas. J. Vertebr. Paleontol. 40, e1776720 (2020).Article 

    Google Scholar 
    Wilkinson, M., San Mauro, D., Sherratt, E. & Gower, D. J. A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa 2874, 41–64 (2011).Article 

    Google Scholar 
    Jared, C. et al. Skin gland concentrations adapted to different evolutionary pressures in the head and posterior regions of the caecilian Siphonops annulatus. Sci. Rep. 8, 3576 (2018).Article 
    ADS 

    Google Scholar 
    O’Reilly, J. C., Ritter, D. A. & Carrier, D. R. Hydrostatic locomotion in a limbless tetrapod. Nature 386, 269–272 (1997).Article 
    ADS 

    Google Scholar 
    Muttoni, G. & Kent, D. V. Jurassic monster polar shift confirmed by sequential paleopoles from Adria, promontory of Africa. J. Geophys. Res. 124, 3288–3306 (2019).Article 
    ADS 

    Google Scholar 
    Parsons, T. S. & Williams, E. E. The relationships of the modern Amphibia: a re-examination. Q. Rev. Biol. 38, 26–53 (1963).Article 

    Google Scholar 
    Marjanović, D. & Laurin, M. A reevaluation of the evidence supporting an unorthodox hypothesis on the origin of extant amphibians. Contrib. Zool. 77, 149–199 (2008).Article 

    Google Scholar 
    Jenkins, X. A. et al. Using manual ungual morphology to predict substrate use in the Drepanosauromorpha and the description of a new species. J. Vertebr. Paleontol. 40, e1810058 (2020).Article 

    Google Scholar 
    Kligman, B. T., Marsh, A. D., Nesbitt, S. J., Parker, W. G. & Stocker, M. R. New trilophosaurid species demonstrates a decline in allokotosaur diversity across the Adamanian–Revueltian boundary in the Late Triassic of western North America. Palaeodiversity 13, 25–37 (2020).Article 

    Google Scholar 
    Marsh, A. D., Smith, M. E., Parker, W. G., Irmis, R. B. & Kligman, B. T. Skeletal anatomy of Acaenasuchus geoffreyi Long and Murry, 1995 (Archosauria: Pseudosuchia) and its implications for the origin of the aetosaurian carapace. J. Vertebr. Paleontol. 40, e1794885 (2020).Article 

    Google Scholar 
    Marsh, A. D. & Parker, W. G. New dinosauromorph specimens from Petrified Forest National Park and a global biostratigraphic review of Triassic dinosauromorph body fossils. PaleoBios https://doi.org/10.5070/P9371050859 (2020).Kligman, B. T., Marsh, A. D., Sues, H.-D. & Sidor, C. A. A new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont record. Biol. Lett. 16, 20200631 (2020).Article 

    Google Scholar 
    Huttenlocker, A. K., Pardo, J. D., Small, B. J. & Anderson, J. S. Cranial morphology of recumbirostrans (Lepospondyli) from the Permian of Kansas and Nebraska, and early morphological evolution inferred by micro-computed tomography. J. Vertebr. Paleontol. 33, 540–552 (2013).Article 

    Google Scholar 
    Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e5565 (2019).Article 

    Google Scholar 
    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).Article 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 

    Google Scholar 
    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).Article 
    CAS 

    Google Scholar 
    Eltink, E., Schoch, R. R. & Langer, M. C. Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli). J. Iber. Geol. 45, 251–267 (2019).Article 

    Google Scholar 
    Bystrow, A. Dvinosaurus als neotenische Form der Stegocephalen. Acta Zool. 19, 209–295 (1938).Article 

    Google Scholar 
    Dutuit, J.-M. Introduction à l’étude paléontologique du Trias continental Marocain. Description des premiers stegocephales recueillis dans le couloir d’Argana (Atlas Occidental). Mémoires du Muséum National d’Histoire 36, 1–253 (1976).
    Google Scholar 
    Dias, E. V., Dias-da-Silva, S. & Schultz, C. L. A new short-snouted rhinesuchid from the Permian of southern Brazil. Revista Brasileira de Paleontologia 23, 98–122 (2020).Article 

    Google Scholar 
    Damiani, R. J. & Kitching, J. W. A new brachyopid temnospondyl from the Cynognathus Assemblage Zone, Upper Beaufort Group, South Africa. J. Vertebr. Paleontol. 23, 67–78 (2003).Article 

    Google Scholar 
    Schoch, R. R. & Witzmann, F. Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an extreme example of evolutionary stasis. Lethaia 45, 371–385 (2012).Article 

    Google Scholar 
    Schoch, R. R. Studies on braincases of early tetrapods: Structure, morphological diversity, and phylogeny-1 Trimerorhacis and other prmitive temnospondyls. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 213, 233–259 (1999).Article 

    Google Scholar 
    Ruta, M. & Bolt, J. R. The brachyopoid Hadrokkosaurus bradyi from the early Middle Triassic of Arizona, and a phylogenetic analysis of lower jaw characters in temnospondyl amphibians. Acta Palaeontol. Pol. 53, 579–592 (2008).Article 

    Google Scholar 
    Bystrow, A. & Efremov, J. Benthosuchus sushkini Efr.—a labyrinthodont from the Eotriassic of Sharzhenga River. Trudy Paleontol. Inst. 10, 1–152 (1940).
    Google Scholar 
    Warren, A. Karoo tupilakosaurid: a relict from Gondwana. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 145–160 (1998).Article 

    Google Scholar 
    Holmes, R. B., Carroll, R. L. & Reisz, R. R. The first articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the Lower Pennsylvanian locality of Joggins, Nova Scotia, and a review of its relationships. J. Vertebr. Paleontol. 18, 64–79 (1998).Article 

    Google Scholar 
    Steyer, J. S. The first articulated trematosaur ‘amphibian’ from the Lower Triassic of Madagascar: implications for the phylogeny of the group. Palaeontol. 45, 771–793 (2002).Article 

    Google Scholar 
    Englehorn, J., Small, B. J. & Huttenlocker, A. A redescription of Acroplous vorax (Temnospondyli: Dvinosauria) based on new specimens from the Early Permian of Nebraska and Kansas, USA. J. Vertebr. Paleontol. 28, 291–305 (2008).Article 

    Google Scholar 
    Warren, A. Laidleria uncovered: a redescription of Laidleria gracilis Kitching (1957), a temnospondyl from the Cynognathus Zone of South Africa. Zool. J. Linn. Soc. 122, 167–185 (1998).Article 

    Google Scholar 
    Bolt, J. R. & Chatterjee, S. A new temnospondyl amphibian from the Late Triassic of Texas. J. Paleontol. 74, 670–683 (2000).Article 

    Google Scholar 
    Milner, A. & Sequeira, S. The temnospondyl amphibians from the Viséan of east Kirkton, West Lothian, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 84, 331–361 (1993).
    Google Scholar 
    Schoch, R. R. & Milner, A. R. Encyclopedia of Paleoherpetology, Part 3A. Temnospondyli (Verlag Dr. Friedrich Pfeil, 2014).Damiani, R., Schoch, R. R., Hellrung, H., Werneburg, R. & Gastou, S. The plagiosaurid temnospondyl Plagiosuchus pustuliferus (Amphibia: Temnospondyli) from the Middle Triassic of Germany: anatomy and functional morphology of the skull. Zool. J. Linn. Soc. 155, 348–373 (2009).Article 

    Google Scholar 
    Chernin, S. A new brachyopid, Batrachosuchus concordi sp. nov. from the Upper Luangwa Valley, Zambia with a redescription of Batrachosuchus browni Broom, 1903. Palaeontol. Afr. 20, 87–109 (1977).
    Google Scholar 
    Sulej, T. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Acta Palaeontol. Pol. 64, 29–139 (2007).
    Google Scholar  More

  • in

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Bradford, M. A. et al. Soil carbon science for policy and practice. Nat. Sustain. 2, 1070–1072 (2019).Article 

    Google Scholar 
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).Article 

    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).Article 

    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).Article 

    Google Scholar 
    Wang, B. R., An, S. S., Liang, C., Liu, Y. & Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 162, 108422 (2021).Article 

    Google Scholar 
    Kästner, M. & Miltner, A. in The Future of Soil Carbon (eds Garcia, C. et al.) Ch. 5 (Academic Press, 2018).Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).Article 

    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).Article 

    Google Scholar 
    Emerson, J. B. et al. Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).Article 

    Google Scholar 
    Zhang, Y. et al. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences 18, 3147–3171 (2021).Article 

    Google Scholar 
    Ackermann, M., Stearns Stephen, C. & Jenal, U. Senescence in a bacterium with asymmetric division. Science 300, 1920–1920 (2003).Article 

    Google Scholar 
    Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).Article 

    Google Scholar 
    Maheshwari, R. & Navaraj, A. Senescence in fungi: the view from Neurospora. FEMS Microbiol. Lett. 280, 135–143 (2008).Article 

    Google Scholar 
    See, C. R. et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 28, 2527–2540 (2022).Article 

    Google Scholar 
    Pusztahelyi, T. et al. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiologica 51, 547–554 (2006).Article 

    Google Scholar 
    Bartoszewska, M. & Kiel, J. A. The role of macroautophagy in development of filamentous fungi. Antioxid. Redox Signal. 14, 2271–2287 (2011).Article 

    Google Scholar 
    Josefsen, L. et al. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8, 326–337 (2012).Article 

    Google Scholar 
    Heaton, L. L., Jones, N. S. & Fricker, M. D. Energetic constraints on fungal growth. Am. Nat. 187, E27–E40 (2016).Article 

    Google Scholar 
    Taiz, L. & Zeiger, E. Plant Physiology 4th edn (Spektrum Akademischer Verlag, 2008).Bowman, E. J. & Bowman, B. J. in Cellular and Molecular Biology of Filamentous Fungi (eds Borkovich, K. & Ebbole, D.) 179–190 (ASM Press, 2010).Voigt, O. & Pöggeler, S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl. Microbiol. Biotechnol. 97, 9277–9290 (2013).Article 

    Google Scholar 
    Grimmett, I. J., Shipp, K. N., Macneil, A. & Barlocher, F. Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol. 6, 493–500 (2013).Article 

    Google Scholar 
    Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M. C. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol. Lett. 24, 208–218 (2021).Article 

    Google Scholar 
    Mason-Jones, K., Robinson, S. L., Veen, G. F., Manzoni, S. & van der Putten, W. H. Microbial storage and its implications for soil ecology. ISME J. 16, 617–629 (2022).Article 

    Google Scholar 
    Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5, FUNK-0035–2016 (2017).Article 

    Google Scholar 
    Steiner, U. K. Senescence in bacteria and its underlying mechanisms. Front. Cell Dev. Biol. 9, 668915 (2021).Article 

    Google Scholar 
    Allocati, N., Masulli, M., Di Ilio, C. & De Laurenzi, V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6, e1609 (2015).Article 

    Google Scholar 
    Peeters, S. H. & de Jonge, M. I. For the greater good: programmed cell death in bacterial communities. Microbiol. Res. 207, 161–169 (2018).Article 

    Google Scholar 
    Wang, J. & Bayles, K. W. Programmed cell death in plants: lessons from bacteria? Trends Plant Sci. 18, 133–139 (2013).Article 

    Google Scholar 
    Nagamalleswari, E., Rao, S., Vasu, K. & Nagaraja, V. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45, 8423–8434 (2017).Article 

    Google Scholar 
    Kysela, D. T., Brown, P. J. B., Huang, K. C. & Brun, Y. V. Biological consequences and advantages of asymmetric bacterial growth. Annu. Rev. Microbiol. 67, 417–435 (2013).Article 

    Google Scholar 
    Bayles, K. W. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12, 63–69 (2014).Article 

    Google Scholar 
    Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).Article 

    Google Scholar 
    Coleman, D. C. & Wall, D. H. in Soil Microbiology, Ecology and Biochemistry 4th edn (ed. Paul, E. A.) Ch. 5 (Academic Press, 2015).Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).Article 

    Google Scholar 
    Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).Article 

    Google Scholar 
    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).Article 

    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).Article 

    Google Scholar 
    Bonkowski, M. & Clarholm, M. J. A. P. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool. 51, 237–247 (2012).
    Google Scholar 
    Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V. & Chen, T.-W. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. J. Anim. Ecol. 90, 1919–1933 (2021).Article 

    Google Scholar 
    Esteban, G. F. & Fenchel, T. M. in Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists (eds Esteban, G. F. & Fenchel, T. M.) 33–54 (Springer, 2020).Koksharova, O. A. Bacteria and phenoptosis. Biochemistry 78, 963–970 (2013).
    Google Scholar 
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).Boddy, L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185–194 (2000).Article 

    Google Scholar 
    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).Article 

    Google Scholar 
    Müller, S. et al. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl. Environ. Microbiol. 81, 203–210 (2015).Article 

    Google Scholar 
    Laskowska, E. & Kuczynska-Wisnik, D. New insight into the mechanisms protecting bacteria during desiccation. Curr. Genet. 66, 313–318 (2020).Article 

    Google Scholar 
    Rillig, M. C., Ryo, M. & Lehmann, A. Classifying human influences on terrestrial ecosystems. Glob. Change Biol. 27, 2273–2278 (2021).Article 

    Google Scholar 
    Dörr, T., Moynihan, P. J. & Mayer, C. Bacterial cell wall structure and dynamics. Front. Microbiol. 10, 02051 (2019).Article 

    Google Scholar 
    Corredor, B., Lang, B. & Russell, D. Effects of nitrogen fertilization on soil fauna in a global meta-analysis. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1438491/v1 (2022).Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).Article 

    Google Scholar 
    Manzoni, S., Chakrawal, A., Spohn, M. & Lindahl, B. D. Modeling microbial adaptations to nutrient limitation during litter decomposition. Front. For. Glob. Change 4, 686945 (2021).Article 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 

    Google Scholar 
    Gunina, A. & Kuzyakov, Y. From energy to (soil organic) matter. Glob. Change Biol. 28, 2169–2182 (2022).Article 

    Google Scholar 
    Fernandez, C. W. & Koide, R. T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).Article 

    Google Scholar 
    Kästner, M., Miltner, A., Thiele-Bruhn, S. & Liang, C. Microbial necromass in soils—linking microbes to soil processes and carbon turnover. Front. Environ. Sci. 9, 756378 (2021).Article 

    Google Scholar 
    Buckeridge, K. M., Creamer, C. & Whitaker, J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Funct. Ecol. 36, 1396–1410 (2022).Article 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).Article 

    Google Scholar 
    Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020).Article 

    Google Scholar 
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Grandy, A. S. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).Article 

    Google Scholar 
    Liang, C. Soil microbial carbon pump: mechanism and appraisal. Soil Ecol. Lett. 2, 241–254 (2020).Article 

    Google Scholar 
    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).Article 

    Google Scholar 
    van Groenigen, J. W. et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. 51, 4738–4739 (2017).Article 

    Google Scholar 
    Greenlon, A. et al. Quantitative stable-isotope probing (qSIP) with metagenomics links microbial physiology and activity to soil moisture in Mediterranean-climate grassland ecosystems (in the press).Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).Article 

    Google Scholar 
    Schaible, G. A., Kohtz, A. J., Cliff, J. & Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME Commun. 2, 52 (2022).Article 

    Google Scholar 
    See, C. R. et al. Distinct carbon fractions drive a generalisable two-pool model of fungal necromass decomposition. Funct. Ecol. 35, 796–806 (2021).Article 

    Google Scholar 
    Wang, C. et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol. Biochem. 141, 107687 (2020).Article 

    Google Scholar 
    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).Article 

    Google Scholar 
    Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).Article 

    Google Scholar 
    Trap, J., Bonkowski, M., Plassard, C., Villenave, C. & Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 398, 1–24 (2016).Article 

    Google Scholar 
    Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    Muñoz-Leoz, B., Ruiz-Romera, E., Antigüedad, I. & Garbisu, C. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 43, 2176–2183 (2011).Article 

    Google Scholar 
    Meyer, M., Diehl, D., Schaumann, G. E. & Muñoz, K. Agricultural mulching and fungicides—impacts on fungal biomass, mycotoxin occurrence, and soil organic matter decomposition. Environ. Sci. Pollut. Res. 28, 36535–36550 (2021).Article 

    Google Scholar 
    Thiery, S. & Kaimer, C. The predation strategy of Myxococcus xanthus. Front. Microbiol. 11, 2 (2020).Article 

    Google Scholar 
    Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 3136 (2020).Article 

    Google Scholar  More

  • in

    Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).Article 
    CAS 

    Google Scholar 
    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 

    Google Scholar 
    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).Article 
    CAS 

    Google Scholar 
    Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253–260 (2007).Article 

    Google Scholar 
    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).Article 
    CAS 

    Google Scholar 
    Helming, K. et al. Managing soil functions for a sustainable bioeconomy-assessment framework and state of the art. Land Degrad. Dev. 29, 3112–3126 (2018).Article 

    Google Scholar 
    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).Article 

    Google Scholar 
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).Article 

    Google Scholar 
    Smith, J., Pearce, B. D. & Wolfe, M. S. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew. Agric. Food Syst. 28, 80–92 (2013).Article 

    Google Scholar 
    European Commission. A Greener and Fairer CAP (EC, 2021).Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).Article 
    CAS 

    Google Scholar 
    Mayer, S. et al. Soil organic carbon sequestration in temperate agroforestry systems – a meta-analysis. Agric. Ecosyst. Environ. 323, 107689 (2022).Article 
    CAS 

    Google Scholar 
    Pardon, P. et al. Juglans regia (walnut) in temperate arable agroforestry systems: effects on soil characteristics, arthropod diversity and crop yield. Renew. Agric. Food Syst. 35, 533–549 (2020).Article 

    Google Scholar 
    Schmidt, M. et al. Nutrient saturation of crop monocultures and agroforestry indicated by nutrient response efficiency. Nutr. Cycl. Agroecosyst. 119, 69–82 (2021).Article 
    CAS 

    Google Scholar 
    Beule, L. & Karlovsky, P. Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLoS ONE 16, e0246919 (2021).Article 
    CAS 

    Google Scholar 
    Palma, J. H. N. et al. Modeling environmental benefits of silvoarable agroforestry in Europe. Agric. Ecosyst. Environ. 119, 320–334 (2007).Article 

    Google Scholar 
    Kay, S. et al. Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforest Syst. 92, 1075–1089 (2018).Article 

    Google Scholar 
    Swieter, A., Langhof, M., Lamerre, J. & Greef, J. M. Long-term yields of oilseed rape and winter wheat in a short rotation alley cropping agroforestry system. Agroforest Syst. 93, 1853–1864 (2019).Article 

    Google Scholar 
    Ivezić, V., Yu, Y. & van der Werf, W. Crop yields in European agroforestry systems: a meta-analysis. Front. Sustain. Food Syst. 5, 606631 (2021).Article 

    Google Scholar 
    Cardinael, R. et al. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches. Biogeosciences 15, 297–317 (2018).Article 
    CAS 

    Google Scholar 
    Smith, P. Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 20, 229–236 (2004).Article 
    CAS 

    Google Scholar 
    Kay, S. et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 83, 581–593 (2019).Article 

    Google Scholar 
    Cardinael, R. et al. Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon — a case study in a Mediterranean context. Geoderma 259–260, 288–299 (2015).Article 

    Google Scholar 
    Cardinael, R. et al. Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biol. Fertil. Soils 55, 171–183 (2019).Article 
    CAS 

    Google Scholar 
    Boinot, S. et al. Alley cropping agroforestry systems: reservoirs for weeds or refugia for plant diversity? Agric. Ecosyst. Environ. 284, 106584 (2019).Article 

    Google Scholar 
    Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).Article 

    Google Scholar 
    Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).Article 

    Google Scholar 
    DuPont, S. T., Culman, S. W., Ferris, H., Buckley, D. H. & Glover, J. D. No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric. Ecosyst. Environ. 137, 25–32 (2010).Article 
    CAS 

    Google Scholar 
    Bengtsson, J. et al. Grasslands-more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).Article 

    Google Scholar 
    Beule, L. et al. Conversion of monoculture cropland and open grassland to agroforestry alters the abundance of soil bacteria, fungi and soil-N-cycling genes. PLoS ONE 14, e0218779 (2019).Article 
    CAS 

    Google Scholar 
    Borrelli, P., Ballabio, C., Panagos, P. & Montanarella, L. Wind erosion susceptibility of European soils. Geoderma 232–234, 471–478 (2014).Article 

    Google Scholar 
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 12610711–12610716 (2015).Article 

    Google Scholar 
    Olson, K. R., Al-Kaisi, M., Lal, R. & Cihacek, L. Impact of soil erosion on soil organic carbon stocks. J. Soil Water Conserv. 71, 61A–67A (2016).Article 

    Google Scholar 
    Larney, F. J., Bullock, M. S., Janzen, H. H., Ellert, B. H. & Olson, E. C. S. Wind erosion effects on nutrient redistribution and soil productivity. J. Soil Water Conserv. 53, 133–140 (1998).
    Google Scholar 
    de Jong, E. & Kowalchuk, T. E. The effect of shelterbelts on erosion and soil properties. Soil Sci. 159, 337–345 (1995).Article 

    Google Scholar 
    Deutsch, M. & Otter, V. Nachhaltigkeit und förderung? Akzeptanzfaktoren im Entscheidungsprozess deutscher Landwirte zur Anlage von Agroforstsystemen. Berichte über Landwirtschaft – Zeitschrift für Agrarpolitik und Landwirtschaft Aktuelle Beiträge (2021).Tsonkova, P., Böhm, C., Quinkenstein, A. & Freese, D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agroforest Syst. 85, 133–152 (2012).Article 

    Google Scholar 
    Lehmann, J., Weigl, D., Droppelmann, K., Huwe, B. & Zech, W. Nutrient cycling in an agroforestry system with runoff irrigation in Northern Kenya. Agroforestry Syst. 43, 49–70 (1998).Article 

    Google Scholar 
    Shao, G. et al. Impacts of monoculture cropland to alley cropping agroforestry conversion on soil N2O emissions. GCB Bioenergy https://doi.org/10.1111/gcbb.13007 (2022).Isaac, M. E. & Borden, K. A. Nutrient acquisition strategies in agroforestry systems. Plant Soil 444, 1–19 (2019).Article 
    CAS 

    Google Scholar 
    Cannell, M. G. R., van Noordwijk, M. & Ong, C. K. The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agroforestry Syst. 34, 27–31 (1996).Article 

    Google Scholar 
    Beule, L., Vaupel, A. & Moran-Rodas, V. E. Abundance, diversity, and function of soil microorganisms in temperate alley-cropping agroforestry systems: a review. Microorganisms 10, 616 (2022).Article 
    CAS 

    Google Scholar 
    Thevathasan, N. V. & Gordon, A. M. in New Vistas in Agroforestry, Vol. 1 (eds Nair, P. K. R., Rao, M. R. & Buck, L. E.) 257–268 (Springer Netherlands, 2004).Veldkamp, E. & Keller, M. Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr. Cycling Agroecosyst. 48, 69–77 (1997).Article 
    CAS 

    Google Scholar 
    Luo, J., Beule, L., Shao, G., Veldkamp, E. & Corre, M. D. Reduced soil gross N2O emission driven by substrates rather than denitrification gene abundance in cropland agroforestry and monoculture. JGR Biogeosciences 127, e2021JG006629 (2022).Article 
    CAS 

    Google Scholar 
    Langenberg, J., Feldmann, M. & Theuvsen, L. Alley cropping agroforestry systems: using Monte-Carlo simulation for a risk analysis in comparison with arable farming systems. German J. Agric. Econ. 67, 95–112 (2018).
    Google Scholar 
    Otter, V. & Langenberg, J. Willingness to pay for environmental effects of agroforestry systems: a PLS-model of the contingent evaluation from German taxpayers’ perspective. Agroforest Syst. 94, 811–829 (2020).Article 

    Google Scholar 
    Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).Article 

    Google Scholar 
    Markwitz, C., Knohl, A. & Siebicke, L. Evapotranspiration over agroforestry sites in Germany. Biogeosciences 17, 5183–5208 (2020).Article 

    Google Scholar 
    Pardon, P. et al. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric. Ecosyst. Environ. 247, 98–111 (2017).Article 
    CAS 

    Google Scholar 
    European Commission. Commission regulation (EC) No 1120/2009 (EC, 2009).Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).Article 

    Google Scholar 
    Kay, S. et al. Agroforestry is paying off – economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst. Serv. 36, 100896 (2019).Article 

    Google Scholar 
    European Council. Council agrees its position on the next EU common agricultural policy. Press release. https://www.consilium.europa.eu/en/press/press-releases/2020/10/21/council-agrees-its-position-on-the-next-eu-common-agricultural-policy/ (2020).IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, 2014).Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: a review. J. Ecol. 109, 600–613 (2021).Article 

    Google Scholar 
    Naumann, C. & Bassler, R. Die Chemische Untersuchung von Futtermitteln 3. Auflage (Chemical Analysis of Feedstuff 3rd Edition) (VDLUFA-Verlag, 1976).Beule, L., Lehtsaar, E., Rathgeb, A. & Karlovsky, P. Crop diseases and mycotoxin accumulation in temperate agroforestry systems. Sustainability 11, 2925 (2019).Article 
    CAS 

    Google Scholar 
    Verwijst, T. & Telenius, B. Biomass estimation procedures in short rotation forestry. For. Ecol. Manag. 121, 137–146 (1999).Article 

    Google Scholar 
    Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).Article 
    CAS 

    Google Scholar 
    Blake, G. & Hartge, K. in Methods of Soil Analysis: Part 1 – Physical and Mineralogical Methods 363–375 (Americal Society of Agronomy, Inc., 1995).Davidson, E. A., Hart, S. C., Shanks, C. A. & Firestone, M. K. Measuring gross nitrogen mineralization, and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42, 335–349 (1991).Article 
    CAS 

    Google Scholar 
    Tiessen, H. & Moir, J. O. in Soil Sampling and Methods of Analysis Ch. 25 (CRC Press, 1993).Beule, L. et al. Poplar rows in temperate agroforestry croplands promote bacteria, fungi, and denitrification genes in soils. Front. Microbiol. 10, 3108 (2020).Article 

    Google Scholar 
    Ando, S. et al. Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Sci. Plant Nutr. 51, 303–308 (2005).Article 
    CAS 

    Google Scholar 
    Singh, J., Singh, S. & Vig, A. P. Extraction of earthworm from soil by different sampling methods: a review. Environ. Dev. Sustain. 18, 1521–1539 (2016).Article 

    Google Scholar 
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).Article 
    CAS 

    Google Scholar 
    Shen, S. M., Pruden, G. & Jenkinson, D. S. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol. Biochem. 16, 437–444 (1984).Article 
    CAS 

    Google Scholar 
    Marx, M.-C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).Article 
    CAS 

    Google Scholar 
    Matson, A. L., Corre, M. D., Langs, K. & Veldkamp, E. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama. Biogeosciences 14, 3509–3524 (2017).Article 
    CAS 

    Google Scholar 
    Wen, Y., Corre, M. D., Schrell, W. & Veldkamp, E. Gross N2O emission and gross N2O uptake in soils under temperate spruce and beech forests. Soil Biol. Biochem. 112, 228–236 (2017).Article 
    CAS 

    Google Scholar 
    McKenzie, N. J., Green, T. W. & Jacquier, D. W. in Soil Physical Measurement and Interpretation for Land Evaluation 150–162 (Csiro Publishing, 2002).Priesack, E. Expert-N model library documentation. https://expert-n.uni-hohenheim.de/en/documentation (2005).Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A. & Corre, M. D. Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation. Biogeosciences 17, 5243–5262 (2020).Article 
    CAS 

    Google Scholar 
    Kroetsch, D. & Wang, C. in Soil sampling and methods of analysis (eds Angers, D. A. & Larney, F. J.) 713–725 (CRC Press, 2008).Kurniawan, S. et al. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 15, 5131–5154 (2018).Article 
    CAS 

    Google Scholar 
    Markwitz, C. Micrometeorological Measurements and Numerical Simulations of Turbulence and Evapotranspiration over Agroforestry (University of Göttingen, 2021).Jarrah, M., Mayel, S., Tatarko, J., Funk, R. & Kuka, K. A review of wind erosion models: data requirements, processes, and validity. Catena 187, 104388 (2020).Article 

    Google Scholar 
    van Ramshorst, J. G. V. et al. Reducing wind erosion through agroforestry: a case study using large eddy simulations. Sustainability 14, 13372 (2022).Article 

    Google Scholar 
    Kanzler, M., Böhm, C., Mirck, J., Schmitt, D. & Veste, M. Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforest Syst. 93, 1821–1841 (2019).Article 

    Google Scholar 
    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    Status does not predict stress among Hadza hunter-gatherer men

    Sapolsky, R. M. The influence of social hierarchy on primate health. Science 308, 648–652 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Snyder-Mackler, N. et al. Social status alters immune regulation and response to infection in macaques. Science 354, 1041–1045 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Levy, E. J. et al. Higher dominance rank is associated with lower glucocorticoids in wild female baboons: A rank metric comparison. Horm. Behav. 125, 104826 (2020).Article 
    CAS 

    Google Scholar 
    Sapolsky, R. M. Social status and health in humans and other animals. Annu. Rev. Anthropol. 33, 393–418 (2004).Article 

    Google Scholar 
    Goymann, W. & Wingfield, J. C. Allostatic load, social status and stress hormones: the costs of social status matter. Anim. Behav. 67, 591–602 (2004).Article 

    Google Scholar 
    Cavigelli, S. A. & Chaudhry, H. S. Social status, glucocorticoids, immune function, and health: Can animal studies help us understand human socioeconomic-status-related health disparities?. Horm. Behav. 62, 295–313 (2012).Article 
    CAS 

    Google Scholar 
    Meyer, J. S. & Hamel, A. F. Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction. ILAR J. 55, 347–360 (2014).Article 
    CAS 

    Google Scholar 
    Saltzman, W., Schultz-Darken, N. J., Scheffler, G., Wegner, F. H. & Abbott, D. H. Social and reproductive influences on plasma cortisol in female marmoset monkeys. Physiol. Behav. 56, 801–810 (1994).Article 
    CAS 

    Google Scholar 
    Abbott, D. H. et al. Are subordinates always stressed? A comparative analysis of rank differences in cortisol levels among primates. Horm. Behav. 43, 67–82 (2003).Article 
    CAS 

    Google Scholar 
    Sadoughi, B., Lacroix, L., Berbesque, C., Meunier, H. & Lehmann, J. Effects of social tolerance on stress: Hair cortisol concentrations in the tolerant Tonkean macaques (Macaca tonkeana) and the despotic long-tailed macaques (Macaca fascicularis). Stress 1, 1–9 (2021).
    Google Scholar 
    Kawachi, I. & Berkman, L. Social cohesion, social capital, and health. Social Epidemiol. 174, 290–314 (2000).
    Google Scholar 
    Dong, M. et al. Insights into causal pathways for ischemic heart disease: adverse childhood experiences study. Circulation 110, 1761–1766 (2004).Article 

    Google Scholar 
    Galobardes, B., Lynch, J. W. & Davey Smith, G. Childhood socioeconomic circumstances and cause-specific mortality in adulthood: Systematic review and interpretation. Epidemiol. Rev. 26, 7–21 (2004).Article 

    Google Scholar 
    Lockwood, K. G., John-Henderson, N. A. & Marsland, A. L. Early life socioeconomic status associates with interleukin-6 responses to acute laboratory stress in adulthood. Physiol. Behav. 188, 212–220 (2018).Article 
    CAS 

    Google Scholar 
    Taylor, S. E. Mechanisms linking early life stress to adult health outcomes. Proc. Natl. Acad. Sci. 107, 8507–8512 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Uchino, B. N. Social Support and Physical Health: Understanding the Health Consequences of Relationships (Yale University Press, 2004).Book 

    Google Scholar 
    Holt-Lunstad, J. & Uchino, B. N. Social support and health. Health Behav. Theory Res. Pract. 1, 183–204 (2015).
    Google Scholar 
    Gurven, M., Allen-Arave, W., Hill, K. & Hurtado, A. M. Reservation food sharing among the Ache of Paraguay. Hum. Nat. 12, 273–297 (2001).Article 
    CAS 

    Google Scholar 
    Hill, K. & Hurtado, A. M. Ache Life History: The Ecology and Demography of a Foraging People (Routledge, 2017).Book 

    Google Scholar 
    Kraft, T. S., Venkataraman, V. V., Tacey, I., Dominy, N. J. & Endicott, K. M. Foraging performance, prosociality, and kin presence do not predict lifetime reproductive success in Batek hunter-gatherers. Hum. Nat. 30, 71–97 (2019).Article 

    Google Scholar 
    Venkataraman, V. V., Kraft, T. S., Dominy, N. J. & Endicott, K. M. Hunter-gatherer residential mobility and the marginal value of rainforest patches. Proc. Natl. Acad. Sci. 114, 3097–3102 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Woodburn, J. Egalitarian societies. Man 1, 431–451 (1982).Article 

    Google Scholar 
    Marlowe, F. The Hadza: Hunter-Gatherers of Tanzania Vol. 3 (University of California Press, 2010).
    Google Scholar 
    Fedurek, P. et al. Status does not predict stress: Women in an egalitarian hunter–gatherer society. Evol. Hum. Sci. 2, 1–10 (2020).
    Google Scholar 
    Kornienko, O. & Santos, C. E. The effects of friendship network popularity on depressive symptoms during early adolescence: Moderation by fear of negative evaluation and gender. J. Youth Adolesc. 43, 541–553 (2014).Article 

    Google Scholar 
    Smelser, N. J. & Baltes, P. B. International Encyclopedia of the Social & Behavioral Sciences Vol. 11 (Elsevier, 2001).
    Google Scholar 
    Kim, D. A., Benjamin, E. J., Fowler, J. H. & Christakis, N. A. Social connectedness is associated with fibrinogen level in a human social network. Proc. R. Soc. B Biol. Sci. 283, 20160958 (2016).Article 

    Google Scholar 
    Kindermann, T. A. & Gest, S. D. Assessment of the peer group: Identifying naturally occurring social networks and capturing their effects. In Handbook of peer interactions, relationships, and groups, 100–117 (2009).Kornienko, O., Clemans, K. H., Out, D. & Granger, D. A. Friendship network position and salivary cortisol levels. Soc. Neurosci. 8, 385–396 (2013).Article 

    Google Scholar 
    La Greca, A. M. & Lopez, N. Social anxiety among adolescents: Linkages with peer relations and friendships. J. Abnorm. Child Psychol. 26, 83–94 (1998).Article 

    Google Scholar 
    Okamoto, J. et al. Social network status and depression among adolescents: An examination of social network influences and depressive symptoms in a Chinese sample. Res. Hum. Dev. 8, 67–88 (2011).Article 

    Google Scholar 
    Ulset, V. S. et al. Are unpopular children more likely to get sick? Longitudinal links between popularity and infectious diseases in early childhood. PLoS ONE 14, e0222222 (2019).Article 
    CAS 

    Google Scholar 
    Hawkes, K. Showing off: Tests of an hypothesis about men’s foraging goals. Ethol. Sociobiol. 12, 29–54 (1991).Article 

    Google Scholar 
    Smith, E. A. Why do good hunters have higher reproductive success?. Hum. Nat. 15, 343–364 (2004).Article 

    Google Scholar 
    Apicella, C. L., Feinberg, D. R. & Marlowe, F. W. Voice pitch predicts reproductive success in male hunter-gatherers. Biol. Lett. 3, 682–684 (2007).Article 
    CAS 

    Google Scholar 
    Apicella, C. L. Upper-body strength predicts hunting reputation and reproductive success in Hadza hunter–gatherers. Evol. Hum. Behav. 35, 508–518 (2014).Article 

    Google Scholar 
    Smith, K. M., Olkhov, Y. M., Puts, D. A. & Apicella, C. L. Hadza men with lower voice pitch have a better hunting reputation. Evol. Psychol. 15, 1474704917740466 (2017).Article 

    Google Scholar 
    MacDougall-Shackleton, S. A., Bonier, F., Romero, L. M. & Moore, I. T. Glucocorticoids and “stress” are not synonymous. Integr. Organ. Biol. 1, 017 (2019).
    Google Scholar 
    Ouellette, S. J. et al. Hair cortisol concentrations in higher-and lower-stress mother–daughter dyads: A pilot study of associations and moderators. Dev. Psychobiol. 57, 519–534 (2015).Article 
    CAS 

    Google Scholar 
    Stalder, T. et al. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology 77, 261–274 (2017).Article 
    CAS 

    Google Scholar 
    Heimbürge, S., Kanitz, E. & Otten, W. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 270, 10–17 (2019).Article 

    Google Scholar 
    Fedurek, P. et al. Relationship between proximity and physiological stress levels in hunter-gatherers: The Hadza. Horm. Behav. 147, 105294 (2023).Article 

    Google Scholar 
    Bowers, K. et al. Maternal distress and hair cortisol in pregnancy among women with elevated adverse childhood experiences. Psychoneuroendocrinology 95, 145–148 (2018).Article 
    CAS 

    Google Scholar 
    Wells, S. et al. Associations of hair cortisol concentration with self-reported measures of stress and mental health-related factors in a pooled database of diverse community samples. Stress 17, 334–342 (2014).Article 
    CAS 

    Google Scholar 
    Faresjö, T. et al. Elevated levels of cortisol in hair precede acute myocardial infarction. Sci. Rep. 10, 1–8 (2020).Article 

    Google Scholar 
    Fuchs, A. et al. Link between children’s hair cortisol and psychopathology or quality of life moderated by childhood adversity risk. Psychoneuroendocrinology 90, 52–60 (2018).Article 
    CAS 

    Google Scholar 
    Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M. & van Rossum, E. F. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology 38, 1220–1235 (2013).Article 
    CAS 

    Google Scholar 
    Davison, B., Singh, G. R. & McFarlane, J. Hair cortisol and cortisone as markers of stress in Indigenous and non-Indigenous young adults. Stress 22, 210–220 (2019).Article 
    CAS 

    Google Scholar 
    Kim, E., Bolkan, C., Crespi, E. & Madigan, J. The relationship between hair cortisol, chronic stress, and well-being among older adults with dementia. Innov. Aging 3, S468 (2019).Article 

    Google Scholar 
    Woodburn, J. Egalitarian societies revisited. Proper. Equal. 1, 18–31 (2005).
    Google Scholar 
    Berbesque, J. C., Wood, B. M., Crittenden, A. N., Mabulla, A. & Marlowe, F. W. Eat first, share later: Hadza hunter–gatherer men consume more while foraging than in central places. Evol. Hum. Behav. 37, 281–286 (2016).Article 

    Google Scholar 
    Marlowe, F. W. & Berbesque, J. C. Tubers as fallback foods and their impact on Hadza hunter-gatherers. Am. J. Phys. Anthropol. 140, 751–758 (2009).Article 

    Google Scholar 
    Berbesque, J. C. & Marlowe, F. W. Sex differences in food preferences of Hadza hunter-gatherers. Evol. Psychol. 7, 147470490900700400 (2009).Article 

    Google Scholar 
    Hawkes, K., O’Connell, J. F. & Blurton Jones, N. G. Hunting income patterns among the Hadza: Big game, common goods, foraging goals and the evolution of the human diet. Philos. Trans. R. Soc. Lond. B 334, 243–251 (1991).Article 
    ADS 
    CAS 

    Google Scholar 
    Hawkes, K. Hunting and the evolution of egalitarian societies: Lessons from the Hadza. Hierarch. Action Cui Bono 27, 1–10 (2000).
    Google Scholar 
    Stibbard-Hawkes, D. N., Attenborough, R. D. & Marlowe, F. W. A noisy signal: To what extent are Hadza hunting reputations predictive of actual hunting skills?. Evol. Hum. Behav. 39, 639–651 (2018).Article 

    Google Scholar 
    Smith, K. M. & Apicella, C. Partner choice in human evolution: The role of character, hunting ability, and reciprocity in Hadza campmate selection. (2019).Smith, K. M. & Apicella, C. L. Hadza hunter-gatherers disagree on perceptions of moral character. Soc. Psychol. Pers. Sci. 11, 616–625 (2020).Article 

    Google Scholar 
    Gurven, M., Allen-Arave, W., Hill, K. & Hurtado, M. “It’s a wonderful life”: Signaling generosity among the Ache of Paraguay. Evol. Hum. Behav. 21, 263–282 (2000).Article 
    CAS 

    Google Scholar 
    Aktipis, A. et al. Cooperation in an uncertain world: For the Maasai of East Africa, need-based transfers outperform account-keeping in volatile environments. Hum. Ecol. 44, 353–364 (2016).Article 

    Google Scholar 
    Cronk, L. et al. Managing risk through cooperation: Need-based transfers and risk pooling among the societies of the Human Generosity Project. in Global Perspectives on Long Term Community Resource Management, 41–75 (Springer, 2019).Cronk, L. & Aktipis, A. Design principles for risk-pooling systems. Nat. Hum. Behav. 1, 1–9 (2021).
    Google Scholar 
    Jones, N. B. Demography and Evolutionary Ecology of Hadza Hunter-Gatherers Vol. 71 (Cambridge University Press, 2016).
    Google Scholar 
    Crittenden, A. N. et al. Oral health in transition: The Hadza foragers of Tanzania. PLoS ONE 12, e0172197 (2017).Article 

    Google Scholar 
    Bennett, F. J., Barnicot, N. A., Woodburn, J. C., Pereira, M. S. & Henderson, B. E. Studies on viral, bacterial, rickettsial and treponemal diseases in the Hadza of Tanzania and a note on injuries. Hum. Biol. 1, 243–272 (1973).
    Google Scholar 
    Ibar, C. et al. Evaluation of stress, burnout and hair cortisol levels in health workers at a University Hospital during COVID-19 pandemic. Psychoneuroendocrinology 128, 105213 (2021).Article 
    CAS 

    Google Scholar 
    Rajcani, J., Vytykacova, S., Solarikova, P. & Brezina, I. Stress and hair cortisol concentrations in nurses during the first wave of the COVID-19 pandemic. Psychoneuroendocrinology 129, 105245 (2021).Article 
    CAS 

    Google Scholar 
    Hill, K. R., Wood, B. M., Baggio, J., Hurtado, A. M. & Boyd, R. T. Hunter-gatherer inter-band interaction rates: Implications for cumulative culture. PLoS ONE 9, e102806 (2014).Article 
    ADS 

    Google Scholar 
    Bird, D. W., Bird, R. B., Codding, B. F. & Zeanah, D. W. Variability in the organization and size of hunter-gatherer groups: Foragers do not live in small-scale societies. J. Hum. Evol. 131, 96–108 (2019).Article 

    Google Scholar 
    Fedurek, P. et al. Social status does not predict in-camp integration among egalitarian hunter-gatherer men. Behav. Ecol. 33, 65–76 (2022).Article 

    Google Scholar 
    Ponzi, D., Muehlenbein, M. P., Geary, D. C. & Flinn, M. V. Cortisol, salivary alpha-amylase and children’s perceptions of their social networks. Soc. Neurosci. 11, 164–174 (2016).Article 

    Google Scholar 
    Marlowe, F. W. Mate preferences among Hadza hunter-gatherers. Hum. Nat. 15, 365–376 (2004).Article 

    Google Scholar 
    Von Rueden, C. R. & Jaeggi, A. V. Men’s status and reproductive success in 33 nonindustrial societies: Effects of subsistence, marriage system, and reproductive strategy. Proc. Natl. Acad. Sci. 113, 10824–10829 (2016).Article 

    Google Scholar 
    Townsend, C. Egalitarianism, Evolution Of (Wiley, 2018).Book 

    Google Scholar 
    Winterhalder, B. Diet choice, risk, and food sharing in a stochastic environment. J. Anthropol. Archaeol. 5, 369–392 (1986).Article 

    Google Scholar 
    Cornell, T. & Allen, T. B. War and Games Vol. 3 (Boydell Press, 2002).
    Google Scholar 
    Smáradóttir, S. Health and Wellbeing in the Arctic: The Critical Issues of Food Insecurity and Suicide Among Indigenous People.Finkler, H. W. Violence and the administration of justice: A focus on inuit communities in Northern Canada. BC Third World LJ 4, 137 (1983).
    Google Scholar 
    Bowles, S. Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors?. Science 324, 1293–1298 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Fry, D. P. & Söderberg, P. Lethal aggression in mobile forager bands and implications for the origins of war. Science 341, 270–273 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Gat, A. Proving communal warfare among hunter-gatherers: The quasi-rousseauan error. Evol. Anthropol. 24, 111–126 (2015).Article 

    Google Scholar 
    Kreyszig, E. Bernstein polynomials and numerical integration. Int. J. Numer. Meth. Eng. 14, 292–295 (1979).Article 
    MATH 

    Google Scholar 
    Meyer, D. et al. Misc functions of the department of statistics, probability theory group (formerly: E1071). Package e1071. TU Wien (2015).R Development Core. A Language ans Environment for Statistical Computing. (R Found Stat Comput Vienna, 2018).Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 107, 5–12 (2000).Article 
    CAS 

    Google Scholar 
    Kumari, M., Shipley, M., Stafford, M. & Kivimaki, M. Association of diurnal patterns in salivary cortisol with all-cause and cardiovascular mortality: Findings from the Whitehall II study. J. Clin. Endocrinol. Metab. 96, 1478–1485 (2011).Article 
    CAS 

    Google Scholar 
    Marmot, M. G. & Sapolsky, R. Of baboons and men: Social circumstances, biology, and the social gradient in health. in Sociality, hierarchy, health: Comparative biodemography: Papers from a workshop (2014).Hoffman, M. C., Karban, L. V., Benitez, P., Goodteacher, A. & Laudenslager, M. L. Chemical processing and shampooing impact cortisol measured in human hair. Clin. Investig. Med. 37, E252 (2014).Article 
    CAS 

    Google Scholar 
    Sauvé, B., Koren, G., Walsh, G., Tokmakejian, S. & Van Uum, S. H. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Investig. Med. 30, E183–E191 (2007).Article 

    Google Scholar 
    Slominski, R., Rovnaghi, C. R. & Anand, K. J. Methodological considerations for hair cortisol measurements in children. Ther. Drug Monit. 37, 812 (2015).Article 
    CAS 

    Google Scholar 
    Xiang, L., Sunesara, I., Rehm, K. E. & Marshall, G. D. Jr. A modified and cost-effective method for hair cortisol analysis. Biomarkers 21, 200–203 (2016).Article 
    CAS 

    Google Scholar 
    Tukey, J. Exploratory Data Analysis (Addison-Wesley, 1977).MATH 

    Google Scholar 
    Mangiafico, S. & Mangiafico, M. S. Package ‘rcompanion’. Cran Repos 1–71 (2017).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bates, D. M. lme4: Mixed-Effects Modeling with R. (2010).Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Stat. Softw. 3(26), 772. https://doi.org/10.21105/joss.00772 (2018).Article 

    Google Scholar 
    Nowok, B., Raab, G. M. & Dibben, C. synthpop: Bespoke creation of synthetic data in R. J. Stat. Softw. 74, 1–26 (2016).Article 

    Google Scholar  More

  • in

    COP15: escalating tourism threatens park conservation

    At December’s United Nations Convention on Biological Diversity summit (COP15), an insidious threat emerged to national parks — even as scientists argued for expanding protected areas. The World Travel & Tourism Council wants commercial tourism to be allowed to build developments in national parks globally, without obligation to help finance park conservation (see go.nature.com/3x2fsi9). This would undermine existing private tourism developments that do support conservation.
    Competing Interests
    The authors declare no competing interests. More