More stories

  • in

    Seasonal range fidelity of a megaherbivore in response to environmental change

    Richard, E., Said, S., Hamann, J. L. & Gaillard, J. M. Daily, seasonal and annual variations in individual home range overlap of two sympatric spacies of deer. Can. J. Zool. 92, 853–859 (2014).Article 

    Google Scholar 
    Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).Article 

    Google Scholar 
    van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Naidoo, R., Du, P., Weaver, G. S. L. C., Jago, M. & Wegmann, M. Factors affecting intraspecific variation in home range size of a large African herbivore. Landsc. Ecol. 27, 1523–1534 (2012).Article 

    Google Scholar 
    Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. Jr. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).Article 

    Google Scholar 
    Passadore, C., Möller, L., Diaz-aguirre, F. & Parra, G. J. High site fidelity and restricted ranging patterns in southern Australian bottlenose dolphins. Ecol. Evol. 8, 242–256 (2018).Article 

    Google Scholar 
    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).Article 

    Google Scholar 
    Morrison, T. A. et al. Drivers of site fidelity in ungulates. J. Anim. Ecol. 00, 1–12 (2021).
    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).Article 

    Google Scholar 
    Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology 89, 3336–3348 (2008).Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).
    Google Scholar 
    Shakeri, Y. N., White, K. S. & Waite, J. N. Staying close to home: Ecological constraints on space use and range fidelity in a mountain ungulate. Ecol. Evol. 11, 11051–11064 (2021).Article 

    Google Scholar 
    Damuth, J. Home range, home range overlap, and species energy use among herbivorous mammals. Biol. J. Linn. Soc. 15, 185–193 (1981).Article 

    Google Scholar 
    Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecol. Soc. Am. 67, 413–418 (1986).
    Google Scholar 
    Ofstad, E. G., Herfindal, I., Solberg, E. J. & Sæther, B. E. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proc. R. Soc. B Biol. Sci. 283, 20161234 (2016).Article 

    Google Scholar 
    Gehr, B. et al. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).Article 

    Google Scholar 
    Sach, F., Dierenfeld, E. S., Langley-Evans, S. C., Watts, M. J. & Yon, L. African savanna elephants (Loxodonta africana) as an example of a herbivore making movement choices based on nutritional needs. PeerJ 7, 1–27 (2019).Article 

    Google Scholar 
    Pretorius, Y. et al. Diet selection of African elephant over time shows changing optimization currency. Oikos 121, 2110–2120 (2012).Article 

    Google Scholar 
    Chamaillé-Jammes, S., Valeix, M. & Fritz, H. Managing heterogeneity in elephant distribution: Interactions between elephant population density and surface-water availability. J. Appl. Ecol. 44, 625–633 (2007).Article 

    Google Scholar 
    Purdon, A. & van Aarde, R. J. Water provisioning in Kruger National Park alters elephant spatial utilisation patterns. J. Arid Environ. 141, 45–51 (2017).Article 
    ADS 

    Google Scholar 
    Shannon, G., Matthews, W. S., Page, B. R., Parker, G. E. & Smith, R. J. The affects of artificial water availability on large herbivore ranging patterns in savanna habitats: A new approach based on modelling elephant path distributions. Divers. Distrib. 15, 776–783 (2009).Article 

    Google Scholar 
    Kos, M. et al. Seasonal diet changes in elephant and impala in mopane woodland. Eur. J. Wildl. Res. 58, 279–287 (2012).Article 

    Google Scholar 
    Shannon, G., Mackey, R. L. & Slotow, R. Diet selection and seasonal dietary switch of a large sexually dimorphic herbivore. Acta Oecologica 46, 48–55 (2013).Article 
    ADS 

    Google Scholar 
    Loarie, S. R., van Aarde, R. J. & Pimm, S. L. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 142, 3099–3107 (2009).Article 

    Google Scholar 
    Scogings, P. F. et al. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species. J. Arid Environ. 114, 54–61 (2015).Article 
    ADS 

    Google Scholar 
    Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS ONE 7, 1–8 (2012).Article 

    Google Scholar 
    Cushman, S. A., Chase, M. & Griffin, C. Elephants in space and time. Oikos 109, 331–341 (2005).Article 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 1–12 (2014).Article 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Shannon, G., Page, B. R., Duffy, K. J. & Slotow, R. The ranging behaviour of a large sexually dimorphic herbivore in response to seasonal and annual environmental variation. Austral Ecol. 35, 731–742 (2010).Article 

    Google Scholar 
    Tsalyuk, M., Kilian, W., Reineking, B. & Getz, W. M. Temporal variation in resource selection of African elephants follows long-term variability in resource availability. Ecol. Monogr. 89, 1–19 (2019).Article 

    Google Scholar 
    Thaker, M., Prins, H. H. T., Slotow, R., Vanak, A. T. & Gupte, P. R. Fine-scale tracking of ambient temperature and movement reveals shuttling behavior of elephants to water. Front. Ecol. Evol. 7, 1–12 (2019).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 25, 880–894 (2019).Article 

    Google Scholar 
    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).Article 

    Google Scholar 
    Switzer, P. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).Article 

    Google Scholar 
    Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    Kranstauber, B., Smolla, M. & Safi, K. Similarity in spatial utilization distributions measured by the earth mover’s distance. Methods Ecol. Evol. 8, 155–160 (2017).Article 

    Google Scholar 
    Wartmann, F., Juarez, C. & Fernandez-duque, E. Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of Northern Argentina. Int. J. Primatol. 35, 919–939 (2014).Article 

    Google Scholar 
    Pringle, R. M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89, 26–33 (2008).Article 

    Google Scholar 
    Valeix, M. et al. Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biol. Conserv. 144, 902–912 (2011).Article 

    Google Scholar 
    Coverdale, T. C. et al. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).Article 

    Google Scholar 
    Gertenbach, W. Rainfall patterns in the Kruger National Park. Koedoe 23, 35–43 (1980).Article 

    Google Scholar 
    Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience (eds du Toit, J. T. et al.) 83–129 (Island Press, 2003).
    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. The influence of increasing population size and vegetation productivity on elephant distribution in the Kruger National Park. Austral Ecol. 34, 329–342 (2009).Article 

    Google Scholar 
    Ferreira, S. M., Greaver, C. & Simms, C. Elephant population growth in Kruger National Park, South Africa, under a landscape management approach. Koedoe 59, 1–6 (2017).Article 

    Google Scholar 
    Brownrigg, R. Package ‘Maps’: Draw Geographical Maps (2022).Kranstauber, B. & Smolla, M. Move: Visualizing and analyzing animal track data. R package version 2.1.0 (2013).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL https://www.R-project.org/ (2017).Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movement using Brownian bridges. Ecology 88, 2354–2363 (2007).Article 

    Google Scholar 
    Wato, Y. A. et al. Movement patterns of African elephants (Loxodonta africana) in a semi-arid savanna suggest that they have information on the location of dispersed water sources. Front. Ecol. Evol. 6, 1–8 (2018).Article 

    Google Scholar 
    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc. R. Soc. B Biol. Sci. 282, 1–7 (2015).
    Google Scholar 
    Archibald, S. & Scholes, R. J. Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J. Veg. Sci. 18, 583–594 (2007).
    Google Scholar 
    Majozi, N. P. et al. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol. Earth Syst. Sci. 21, 3401–3415 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 1–14 (2013).Article 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Redfern, J. V., Grant, C. C., Gaylard, A. & Getz, W. M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Environ. 63, 406–424 (2005).Article 
    ADS 

    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 278, 189–205 (2009).Article 

    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proc. R. Soc. B Biol. Sci. 285, 1–8 (2018).
    Google Scholar 
    Woolley, L.-A. et al. Population and individual elephant response to a catastrophic fire in Pilanesberg National Park. PLoS ONE 3, 1–10 (2008).Article 

    Google Scholar 
    Eby, S. L., Anderson, T. M., Mayemba, E. P. & Ritchie, M. E. The effect of fire on habitat selection of mammalian herbivores: The role of body size and vegetation characteristics. J. Anim. Ecol. 83, 1196–1205 (2014).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).van Moorter, B. et al. Memory keeps you at home: A mechanistic model for home range emergence. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Guldemond, R. A. R., Purdon, A. & van Aarde, R. J. A systematic review of elephant impact across Africa. PLoS ONE 12, 1–12 (2017).Article 

    Google Scholar 
    Abraham, J. O., Goldberg, E. R., Botha, J. & Staver, A. C. Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National Park, South Africa. Ecol. Evol. 11, 5624–5634 (2021).Article 

    Google Scholar 
    Wall, J., Douglas-Hamilton, I. & Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 16, 527–529 (2006).Article 

    Google Scholar 
    Presotto, A., Fayrer-Hosken, R., Curry, C. & Madden, M. Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim. Cogn. 22, 251–263 (2019).Article 

    Google Scholar 
    Landman, M., Schoeman, D. S., Hall-Martin, A. J. & Kerley, G. I. H. Understanding long-term variations in an elephant piosphere effect to manage impacts. PLoS ONE 7, 1–11 (2012).Article 

    Google Scholar 
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 

    Google Scholar 
    Hamm, M. & Drossel, B. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 426, 40–48 (2017).Article 
    ADS 

    Google Scholar 
    Katayama, N. et al. Landscape heterogeneity-biodiversity relationship: Effect of range size. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    O’Connor, T. G., Goodman, P. S. & Clegg, B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 136, 329–345 (2007).Article 

    Google Scholar 
    Codron, J. et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: Spatial and landscape differences. J. Mammal. 87, 27–34 (2006).Article 

    Google Scholar 
    Mduma, S. A. R., Sinclair, A. R. E. & Hilborn, R. Food regulates the Serengeti wildebeest: A 40-year record. J. Anim. Ecol. 68, 1101–1122 (1999).Article 

    Google Scholar 
    Ogutu, J. O. & Owen-Smith, N. ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003).Article 

    Google Scholar 
    Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).Article 
    ADS 

    Google Scholar 
    Woolley, L.-A., Millspaugh, J. J., Woods, R. J., Page, B. R. & Slotow, R. Intraspecific strategic responses of African elephants to temporal variation in forage quality. J. Wildl. Manag. 73, 827–835 (2009).Article 

    Google Scholar 
    Dube, K. & Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environ. Dev. 33, 1–11 (2020).Article 

    Google Scholar 
    Tshipa, A. et al. Partial migration links local surface-water management to large-scale elephant conservation in the world’s largest transfrontier conservation area. Biol. Conserv. 215, 46–50 (2017).Article 

    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science (80-.) 375, 1–12 (2022).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science (80-.) 348, 1222–1232 (2015).Article 
    CAS 

    Google Scholar 
    Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Zvidzai, M. & Madiri, T. H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.) 39, 240–252 (2016).Article 

    Google Scholar 
    Shannon, G. et al. Relative impacts of elephant and fire on large trees in a savanna ecosystem. Ecosystems 14, 1372–1381 (2011).Article 

    Google Scholar 
    Mole, M. A., DÁraujo, S. R., van Aarde, R. J., Mitchell, D. & Fuller, A. Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4, 1–11 (2016).Article 

    Google Scholar 
    Ncongwane, K. P., Botai, J. O., Sivakumar, V., Botai, C. M. & Adeola, A. M. Characteristics and long-term trends of heat stress for South Africa. Sustainability 13, 1–20 (2021).Article 

    Google Scholar 
    Lagendijk, G., Mackey, R. L., Page, B. R. & Slotow, R. The effects of herbivory by a mega- and mesoherbivore on tree recruitment in sand forest, South Africa. PLoS ONE 6, 1–9 (2011).Article 

    Google Scholar 
    Wells, H. B. M. et al. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species’ traits. J. Anim. Ecol. 90, 2510–2522 (2021).Article 

    Google Scholar 
    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).Article 

    Google Scholar 
    Fležar, U. et al. Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biol. Conserv. 237, 267–279 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Characterizing multispecies connectivity across a transfrontier conservation landscape. J. Appl. Ecol. 57, 1700–1710 (2020).Article 

    Google Scholar 
    Roever, C. L., van Aarde, R. J. & Leggett, K. Functional connectivity within conservation networks: Delineating corridors for African elephants. Biol. Conserv. 157, 128–135 (2013).Article 

    Google Scholar 
    Green, S. E., Davidson, Z., Kaaria, T. & Doncaster, C. P. Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor. Afr. J. Ecol. 56, 860–871 (2018).Article 

    Google Scholar  More

  • in

    The success of woody plant removal depends on encroachment stage and plant traits

    Deng, Y., Li, X., Shi, F. & Hu, X. Woody plant encroachment enhanced global vegetation greening and ecosystem water-use efficiency. Glob. Ecol. Biogeogr. 30, 2337–2353 (2021).Article 

    Google Scholar 
    Brandt, J., Haynes, M., Kuemmerle, T., Waller, D. & Radeloff, V. Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biol. Conserv. 158, 116–127 (2013).Article 

    Google Scholar 
    García Criado, M., Myers-Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020).Article 

    Google Scholar 
    van Auken, O. Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manage. 90, 2931–2942 (2009).Article 
    CAS 

    Google Scholar 
    Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Chang. Biol. 9, 973–982 (2010).Article 

    Google Scholar 
    D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5, 520–530 (2012).Article 

    Google Scholar 
    Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).Article 
    CAS 

    Google Scholar 
    Eldridge, D. J. & Soliveres, S. Are shrubs really a sign of declining ecosystem function? Disentangling the myths and truths of woody encroachment in Australia. Aust. J. Bot. 62, 594–608 (2015).Article 

    Google Scholar 
    Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).Article 

    Google Scholar 
    Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).Article 

    Google Scholar 
    Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).Article 

    Google Scholar 
    Archer, S. R. & Predick, K. I. An ecosystem services perspective on brush management: research priorities for competing land-use objectives. J. Ecol. 102, 1394–1407 (2014).Article 

    Google Scholar 
    Eldridge, D. J. & Ding, J. Remove or retain: ecosystem effects of woody encroachment and removal are linked to plant structural and functional traits. N. Phytol. 229, 2637–2646 (2020).Article 

    Google Scholar 
    Albrecht, M. A., Becknell, R. E. & Long, Q. Habitat change in insular grasslands: woody encroachment alters the population dynamics of a rare ecotonal plant. Biol. Conserv. 196, 93–102 (2016).Article 

    Google Scholar 
    Stanton, R. A. et al. Shrub encroachment and vertebrate diversity: a global meta-analysis. Glob. Ecol. Biogeogr. 27, 368–379 (2017).Article 

    Google Scholar 
    Archer, S. R. et al. in Rangeland Systems: Processes, Management and Challenges (ed. Briske, D.) 25–84 (Springer, 2017).Anadón, J. D., Sala, O. E., Turner, B. L. & Bennett, E. M. Effect of woody-plant encroachment on livestock production in North and South America. Proc. Natl Acad. Sci. USA 111, 12948–12953 (2014).Article 

    Google Scholar 
    Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Eco. Evol. Syst. 47, 215–237 (2016).Article 

    Google Scholar 
    Teague, W. et al. Sustainable management strategies for mesquite rangeland: the Waggoner Kite project. Rangelands 19, 4–9 (1997).
    Google Scholar 
    Hamilton, W. T., McGinty, A., Ueckert, D. N., Hanselka, C. W. & Lee, M. R. Brush Management: Past, Present, Future (A&M Univ. Press, 2004).Bestelmeyer, B. T. et al. The grassland–shrubland regime shift in the southwestern United States: misconceptions and their implications for management. BioScience 68, 678–690 (2018).Article 

    Google Scholar 
    Ding, J. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. Evol. Syst. 39, 125460 (2019).Article 

    Google Scholar 
    Huxman, T. E. et al. Ecohydrological implication of woody plant encroachment. Ecology 86, 308–319 (2005).Article 

    Google Scholar 
    Schmutz, E. M., Cable, D. R. & Warwick, J. J. Effect of shrub removal on the vegetation of a semidesert grass-shrub range. Rangel. Ecol. Manag. 12, 34–37 (1959).Article 

    Google Scholar 
    Noble, J. C. & Walker, P. Integrated shrub management in semi-arid woodlands of eastern Australia: a systems-based decision support model. Agric. Syst. 88, 332–359 (2006).Article 

    Google Scholar 
    Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Chang. Biol. 26, 6003–6014 (2020).Article 

    Google Scholar 
    Bestelmeyer, B. T., Goolsby, D. P. & Archer, S. R. Spatial perspectives in state-and-transition models: a missing link to land management. J. Appl. Ecol. 48, 746–757 (2011).Article 

    Google Scholar 
    Riginos, C. & Young, T. P. Positive and negative effects of grass, cattle, and wild herbivores on Acacia saplings in an East African savanna. Oecologia 153, 985–995 (2007).Article 

    Google Scholar 
    Soliveres, S. et al. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Glob. Ecol. Biogeogr. 23, 1408–1416 (2014).Article 

    Google Scholar 
    Soliveres, S. & Eldridge, D. J. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Funct. Ecol. 28, 530–537 (2013).Article 

    Google Scholar 
    Maestre, F. T., Bowker, M. A., Puche, M., Hinojosa, M. B. & Escudero, A. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol. Lett. 12, 930–941 (2010).Article 

    Google Scholar 
    Abreu, R. C. R., Durigan, G., Melo, A. C. G., Pilon, N. A. L. & Hoffmann, W. A. Facilitation by isolated trees triggers woody encroachment and a biome shift at the savanna-forest transition. J. Appl. Ecol. 58, 2650–2660 (2021).Article 

    Google Scholar 
    North, M., Oakley, B., Fiegener, R. & Barbour, G. M. Influence of light and soil moisture on Sierran mixed-conifer understory communities. Plant Ecol. 177, 13–24 (2005).Article 

    Google Scholar 
    Muvengwi, J., Mbiba, M., Jimu, L., Mureva, A. & Dodzo, B. An assessment of the effectiveness of cut and ring barking as a method for control of invasive Acacia mearnsii in Nyanga National Park, Zimbabwe. For. Ecol. Manag. 427, 1–6 (2018).Article 

    Google Scholar 
    Abella, S. R. & Chiquoine, L. P. The good with the bad: when ecological restoration facilitates native and non-native species. Restor. Ecol. 27, 343–351 (2019).Article 

    Google Scholar 
    Bestelmeyer, B., Ward, J., Herrick, E. J. & Tugel, A. J. Fragmentation effects on soil aggregate stability in a patchy arid grassland. Rangel. Ecol. Manag. 59, 406–415 (2006).Article 

    Google Scholar 
    Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).Article 

    Google Scholar 
    Hu, X., Li, X. Y., Zhao, Y., Gao, Z. & Zhao, S. J. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. Catena 202, 105230 (2021).Article 
    CAS 

    Google Scholar 
    D’Odorico, P. et al. Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1, 1–11 (2010).Article 

    Google Scholar 
    Eldridge, D. J., Soliveres, S., Bowker, M. A. & Val, J. Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi‐arid woodland. J. Appl. Ecol. 50, 1028–1038 (2013).Article 

    Google Scholar 
    Daryanto, S., Eldridge, D. J. & Throop, H. L. Managing semi-arid woodlands for carbon storage: grazing and shrub effects on above- and belowground carbon. Agric. Ecosyst. Environ. 169, 1–11 (2013).Article 

    Google Scholar 
    Paynter, Q. & Flanagan, G. J. Integrating herbicide and mechanical control treatments with fire and biological control to manage an invasive wetland shrub, Mimosa pigra. J. Appl. Ecol. 41, 615–629 (2004).Article 

    Google Scholar 
    Throop, H. L., Reichmann, L. G., Sala, O. E. & Archer, S. R. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia 169, 373–383 (2012).Article 

    Google Scholar 
    Brantley, S. T. & Young, D. R. Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets. Oecologia 155, 337–345 (2008).Article 

    Google Scholar 
    Ding, J. & Eldridge, D. J. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 459, 173–183 (2020).Article 

    Google Scholar 
    Mihoč, M. et al. Soil under nurse plants is always better than outside: a survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).Article 

    Google Scholar 
    Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).Article 
    CAS 

    Google Scholar 
    Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: the role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Syst. 14, 402–410 (2012).Article 

    Google Scholar 
    Schlesinger, W. et al. Biological feedbacks in global desertification. Science 147, 1043–1048 (1990).Article 

    Google Scholar 
    Ding, J. & Eldridge, D. J. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena 201, 105233 (2021).Article 
    CAS 

    Google Scholar 
    Ding, J., Travers, S. K., Delgado-Baquerizo, M. & Eldridge, D. J. Multiple trade-offs regulate the effects of woody plant removal on biodiversity and ecosystem functions in global rangelands. Glob. Chang. Biol. 26, 709–720 (2020).Article 

    Google Scholar 
    De Soyza, A. G., Whitford, W. G., Martinez-Meza, E. & Van Zee, J. W. Variation in creosotebush (Larrea tridentata) canopy morphology in relation to habitat, soil fertility and associated annual plant communities. Am. Nat. 137, 13–26 (1997).Article 

    Google Scholar 
    Breemen, N. V. Nutrient cycling strategies. Plant Soil 168, 321–326 (1995).Li, J., Gilhooly, W. P. III., Okin, G. S. & Blackwell, J. III. Abiotic processes are insufficient for fertile island development: a 10-year artificial shrub experiment in a desert grassland. Geophys. Res. Lett. 44, 2245–2253 (2017).Article 

    Google Scholar 
    Ward, D. et al. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 310, 153–162 (2018).Article 
    CAS 

    Google Scholar 
    Miwa, C. Persistence of Western Juniper Resource Islands following Canopy Removal. MSc thesis, Oregon State Univ. (2007).Zhou, L. et al. Shrub-encroachment induced alterations in input chemistry and soil microbial community affect topsoil organic carbon in an Inner Mongolian grassland. Biogeochemistry 136, 311–324 (2017).Article 
    CAS 

    Google Scholar 
    Kwok, A. B. C. & Eldridge, D. J. The influence of shrub species and fine-scale plant density on arthropods in a semiarid shrubland. Rangel. J. 38, 381–389 (2016).Article 

    Google Scholar 
    Young, J. A., Evans, R. A. & Rimbey, C. Weed control and revegetation following western juniper (Juniperus occidentalis) control. Weed Sci. 33, 513–517 (1985).Article 

    Google Scholar 
    Wiedemann, H. T. & Kelly, P. J. Turpentine (Eremophila sturtii) control by mechanical uprooting. Rangel. J. 23, 173–181 (2001).Article 

    Google Scholar 
    Bowker, M. A., Belnap, J., Chaudhary, V. B. & Johnson, N. C. Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biol. Biochem. 40, 2309–2316 (2008).Article 
    CAS 

    Google Scholar 
    Ding, J. & Eldridge, D. J. Biotic and abiotic effects on biocrust cover vary with microsite along an extensive aridity gradient. Plant Soil 450, 429–441 (2020).Article 
    CAS 

    Google Scholar 
    Blaum, N., Seymour, C., Rossmanith, E., Schwager, M. & Jeltsch, F. Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers. Conserv. 18, 1187–1199 (2009).Article 

    Google Scholar 
    Eldridge, D. J., Poore, A., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).Article 

    Google Scholar 
    Maestre, F. T. & Cortina, J. Insights into ecosystem composition and function in a sequence of degraded semiarid steppes. Restor. Ecol. 12, 494–502 (2004).Article 

    Google Scholar 
    Nakagawa, S. in Ecological Statistics: Contemporary Theory and Application (eds Fox, G. A. et al.) Ch. 4 (Oxford Univ. Press, 2015).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for mediterranean basin plants. Sci. Data 5, 180135 (2018).Article 

    Google Scholar 
    The PLANTS Database (USDA, 2019); https://plants.usda.gov/Kattge, J. et al. TRY—a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).Article 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    Mallen-Cooper, M. et al. Global synthesis reveals strong multifaceted effects of eucalypts on soils. Glob. Ecol. Biogeogr. 31, 1667–1678 (2022).Article 

    Google Scholar 
    Chen, X., Chen, H. Y. & Chang, S. X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat. Ecol. Evol. 6, 1112–1121 (2022).Article 

    Google Scholar 
    Noble, D. W. A., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 26, 2410–2425 (2017).Article 

    Google Scholar 
    Nakagawa, S. & Santos, E. Methodological issues and advances in biological meta-analysis. Ecol. Evol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 2006).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    Archer, E. rfPermute v2.1.1 (R Foundation for Statistical Computing, 2010).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Stefan, V. & Levin, S. plotbiomes: plot Whittaker biomes with ggplot2 (R package version 0009001, 2021).Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R. J. 5, 144–161 (2013).Article 

    Google Scholar 
    R Core Team. MOSR connections (R Foundation for Statistical Computing, 2013). More

  • in

    Unreliable prediction of B-vitamin source species

    Cantwell-Jones, A. et al. Global plant diversity as a reservoir of micronutrients for humanity. Nat. Plants https://doi.org/10.1038/s41477-022-01100-6 (2022).Swenson, N. G. Phylogenetic imputation of plant functional trait databases. Ecography 37, 105–110 (2014).Article 

    Google Scholar 
    Swenson, N. G. et al. Phylogeny and the prediction of tree functional diversity across novel continental settings. Glob. Ecol. Biogeogr. 26, 553–562 (2017).Article 

    Google Scholar 
    Molina-Venegas, R. et al. Assessing among-lineage variability in phylogenetic imputation of functional trait datasets. Ecography 41, 1740–1749 (2018).Article 

    Google Scholar 
    Guénard, G., Legendre, P. & Peres-Neto, P. Phylogenetic eigenvector maps: a framework to model and predict species traits. Methods Ecol. Evol. 4, 1120–1131 (2013).Article 

    Google Scholar 
    Guénard, G., Ohe, P. C., von der, Walker, S. C., Lek, S. & Legendre, P. Using phylogenetic information and chemical properties to predict species tolerances to pesticides. Proc. R. Soc. B 281, 20133239 (2014).Article 

    Google Scholar 
    Ezekiel, M. Methods of Correlation Analysis (John Wiley and Sons, 1930).Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).Article 

    Google Scholar 
    Debastiani, V. J., Bastazini, V. A. G. & Pillar, V. D. Using phylogenetic information to impute missing functional trait values in ecological databases. Ecol. Inform. 63, 101315 (2021).Article 

    Google Scholar 
    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar  More

  • in

    An evolution towards scientific consensus for a sustainable ocean future

    IPCC. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).IOC-UNESCO. Global Ocean Science Report 2020-Charting Capacity for Ocean Sustainability (UNESCO Publishing, 2020).Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).Article 
    CAS 

    Google Scholar 
    Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 1–11 (2020).Article 

    Google Scholar 
    Foundation Prince Albert II of Monaco. “Which Knowledge for Which Sustainable Ocean Governance?” in Livre de restitution de la Monaco Ocean Week 2021 (2021).Swilling, M. et al. The Ocean Transition: What to learn from System Transitions (World Resources Institute, 2020).OECD. The Ocean Economy in 2016 (OECD Publishing, 2016).High Level Panel for a Sustainable Ocean Economy. Transformations for a Sustainable Ocean Economy – a vision for Protection, Production and Prosperity (2020).Landrigan, P. J. et al. Human health and ocean pollution. Ann. Global Health 86, 151 (2020).Article 

    Google Scholar 
    OECD. Development Co-operation Report 2016: the Sustainable Development Goals as Business Opportunities (OECD Publishing, 2016).OECD. Development Co-operation Report 2020: Learning from Crises, Building Resilience (OECD Publishing, 2020).Hoegh-Guldberg, O. et al. The Ocean as a Solution to Climate Change: Five Opportunities for Action. (World Resources Institute, 2019).Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).Article 

    Google Scholar 
    Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl Acad. Sci. USA 118, e2008478118 (2021).Article 
    CAS 

    Google Scholar 
    IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds. Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) (IPBES Secretariat, 2019).IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).Article 

    Google Scholar 
    UN General Assembly. General Assembly Resolution Declaration of Principles Governing the Seabed and Ocean Floor. A/RES/25/2749. (1970).Brodie Rudolph, T. et al. A transition to sustainable ocean governance. Nat. Commun 11, 1–14 (2020).Article 

    Google Scholar 
    Claudet, J., Amon, D. J. & Blasiak, R. Opinion: transformational opportunities for an equitable ocean commons. Proc. Natl Acad. Sci. USA 118, e2117033118 (2021).Article 
    CAS 

    Google Scholar 
    Laffoley, D. et al. Evolving the narrative for protecting a rapidly changing ocean, post‐ COVID‐19. Aquatic Conserv. 31, 1512–1534 (2021).Article 
    CAS 

    Google Scholar 
    Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).Article 

    Google Scholar 
    Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    United Nations General Assembly. Oceans and the law of the sea A/RES/72/73 (5 December 2017).De Santo, E. M. et al. Protecting biodiversity in areas beyond national jurisdiction: an earth system governance perspective. Earth Syst. Governance 2, 100029 (2019).Röckmann, C., van Leeuwen, J., Goldsborough, D., Kraan, M. & Piet, G. The interaction triangle as a tool for understanding stakeholder interactions in marine ecosystem based management. Mar. Pol. 52, 155–162 (2015).Article 

    Google Scholar 
    Kotzé, L. J. Fragmentation revisited in the context of global environmental law and governance. SALJ 131, 548–582 (2014).
    Google Scholar 
    Claudet, J. et al. A roadmap for using the UN decade of ocean science for sustainable development in support of science, policy, and action. One Earth 2, 34–42 (2020).Article 

    Google Scholar 
    Pörtner, H. O. et al. IPBES-IPCC Co-sponsored Workshop Report on Biodiversity and Climate Change (IPBES and IPCC, 2021).Picourt, L. et al. Swimming the Talk: How to Strengthen Collaboration and Synergies between the Climate and Biodiversity Conventions? (Ocean & Climate Platform, 2021).Valdes, L. The UN architecture for ocean science knowledge and governance. Chapter 18. In Handbook on the Economics and Management of Sustainable Oceans (eds. Paulo A.L.D. Nunes, P.A.L.D., Svensson, L. E. & Markandya, A. (Edward Elgar Publishing, 2017).Valdés, L. Mees, J. & Enevoldsen, H. International organizations supporting ocean science. In IOC-UNESCO, Global Ocean Science Report—The current status of ocean science around the world (eds. Valdés, L. et al.) 146–169 (UNESCO, 2017).Fawkes, K., Ferse, S., Scheffers, A. & Cummins, V. Learning from experience: what the emerging global marine assessment community can learn from the social processes of other global environmental assessments. Anthropocene Coasts 4, 87–114 (2021).Article 

    Google Scholar 
    Tessnow-von Wysocki, I. & Vadrot, A. B. M. The voice of science on marine biodiversity negotiations: a systematic literature review. Front. Mar. Sci. 7, 614282 (2020).Article 

    Google Scholar 
    Dalton, K. et al. Marine-related learning networks: shifting the paradigm toward collaborative ocean governance. Front. Mar. Sci. 7, 1–16 (2020).Article 

    Google Scholar 
    Gerbara, M. F. Understanding international bricolage. What drives behaviour change towards sustainable land use in the Eastern Amazon? Int. J. Commons 13, 1 (2019).
    Google Scholar 
    Jabbour, J. & Flachsland, C. 40 years of global environmental assessments: a retrospective analysis. Environ. Sci. Policy 77, 193–202 (2017).Article 

    Google Scholar 
    Messerli, P. et al. Expansion of sustainability science needed for the SDGs. Nat. Sustain. 2 10, 892–894 (2019).Article 

    Google Scholar 
    The Because the Ocean Initiative. Ocean for climate – Ocean-related measures in climate strategies (Nationally determined contributions, national adaptation plans, adaptation communications and national policy frameworks) (2019).Vieross, M. K. et al. Considering indigenous peoples and local communities in the governance of the global ocean commons. Mar. Pol. 119, 104039 (2020).Article 

    Google Scholar 
    Halpern, B. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7 (2015).Article 

    Google Scholar 
    Watson-Wright, W., & Valdes, J.L. Fragmented Governance of Our One Global Ocean. In The Future of Ocean Governance and Capacity Development – Essays in Honor of Elisabeth Mann Borgese (1918–2002) 16–22 (Brill, Nijhoff, 2019).United Nations Framework Convention on Climate Change. Chile Madrid Time for Action. FCCC/CO/2019/13.Add.1 Decision 1/CP (2020).Fawkes, K. & Cummins, V. Beneath the surface of the first world ocean assessment: an investigation into the global process’ support for sustainable development. Front. Mar. Sci. 6, 612 (2019).Article 

    Google Scholar 
    Bayliss-Brown, G., Cavaleri Gerhardinger, L. & Starger, C. Networked knowledge to action in support of ocean sustainability. Coast. Manage. 4, 4, 235–237 (2020).
    Google Scholar 
    Gerhardinger, L. C., Holzkämper, E., de Andrade, M. M., Corrêa, M. R. & Turra, A. Envisioning ocean governability transformations through network-based marine spatial planning. Marit. Stud. 21, 1, 131–152 (2022).Article 

    Google Scholar 
    Wyborn, C. et al. Imagining transformative biodiversity futures. Nat. Sustain. 3, 670–672 (2021).Article 

    Google Scholar 
    Jacobs, S. et al. Use your power for good: plural valuation of nature – the Oaxaca statement. Glob. Sustain. 3, e8 (2020).Article 

    Google Scholar 
    Herbst, D. F., Gerhardinger, L. C., Vila-Nova, D. A., de Carvalho, F. G. & Hanazaki, N. Integrated and deliberative multidimensional assessment of a subtropical coastal-marine ecosystem (Babitonga bay, Brazil). Ocean Coast. Manag. 196, 105279 (2020).Article 

    Google Scholar 
    McCrory, G., Holmén, J., Schäpke, N. & Holmberg, J. Sustainability-oriented labs in transitions: an empirically grounded typology. Environ. Innov. Soc. Transit. 43, 99–117 (2022).Article 

    Google Scholar 
    Gerhardinger, L. C., Andrade, M. M. de, Corrêa, M. R., & Turra, A. Crafting a sustainability transition experiment for the Brazilian blue economy. Mar. Pol. 120, 104157 (2020).Pereira, L., Sitas, N., Ravera, F., Jimenez-Aceituno, A. & Merrie, A. Building capacities for transformative change towards sustainability: imagaination in Intergovernmental Science-Policy Processes. Elem. Sci.Anth 7, 35 (2019).Article 

    Google Scholar 
    Flannery, W., Toonen, H., Jay, S. & Vince, J. A critical turn in marine spatial planning. Marit. Stud. 1987, 223–228 (2020).Article 

    Google Scholar 
    Clarke, J. & Flannery, W. The post-political nature of marine spatial planning and modalities for its re-politicisation. J. Envir. Policy Plan. 22 2, 170–183 (2020).Article 

    Google Scholar 
    von Schuckmann, K. et al. Copernicus marine service ocean state report 5th issue. J. Oper.Oceanogr. 14, 1–185 (2021).
    Google Scholar 
    Mercator International. Digital twin of the ocean. https://www.mercator-ocean.eu/en/digital-twin-ocean/ (2022).Geomar. Digital twin ocean. https://www.geomar.de/en/research/irf/digital-twin-ocean (2022).Creative Commons. https://creativecommons.org/licenses/ (2022).Orchid. Connecting research and researchers. https://orcid.org/#:~:text=ORCID%20provides%20a%20persistent%20digital,%2C%20peer%20review%2C%20and%20more (2022).Jasanoff, S. Technologies of humility. Nature 450, 33 (2007).Article 
    CAS 

    Google Scholar 
    Pörtner, H.-O. et al. Technical summary. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Pereira, L. M., Hichert, T., Hamann, M., Preiser, R. & Biggs, R. Using futures methods to create transformative spaces: visions of a good anthropocene in Southern Africa. Ecol. Soc. 23, 1, https://doi.org/10.5751/ES-09907-230119 (2018).Article 

    Google Scholar 
    TWI2050 Report. Transformations to Achieve the Sustainable Development Goals. Report prepared by World in 2050 Initiative. International Institute for Applied Systems Analysis (IIASA). www.twi2050.org (2018).Mitchell, R. B., Clark, W. C., Cash, D. W., & Dickson, N. M. Global Environmental Assessments: Information and Influence (MIT Press, 2016).Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).Article 

    Google Scholar 
    Galland, G., Harrould-Kolieb, E. & Herr, D. The ocean and climate change policy. Clim. Pol. 12, 6, 764–771 (2012).Article 

    Google Scholar 
    Pereira, L. M. et al. Developing multiscale and integrative nature–people scenarios using the nature futures framework. People Nat. 2, 1172–1195 (2020).Article 

    Google Scholar 
    Evans, K. et al. Transferring complex scientific knowledge to useable products for society: the role of the global integrated ocean assessment and challenges in the effective delivery of ocean knowledge. Front. Environ. Sci 9, 626532 (2021).Article 

    Google Scholar 
    United Nations Ocean Conference. An international panel for ocean sustainability side event. (2022).Foundation Prince Albert II of Monaco. “Why an IPOS” in Livre de restitution de la Monaco Ocean Week 2022 (2022).Convention on Biodiversity. Open ended working group on the post 2020 global biodiversity framework. 3rd meeting. First Draft of the post-2020 global biodiversity framework (2021).Sitas, N. et al. Exploring the usefulness of scenario archetypes in science-policy processes: experience across IPBES assessments. Ecol. Soc. 24, 35 (2019).Article 

    Google Scholar 
    Laffoley, D. et al. The forgotten ocean: why COP26 must call for vastly greater ambition and urgency to address ocean change. Aquatic Conserv. 32, 1–12 (2021).
    Google Scholar 
    Martin, M. A. et al. Ten new insights in climate science 2021: a horizon scan. Glob.Sustain. 4, 1–20 (2021).Article 

    Google Scholar 
    Poli, R. Anticipation: what about turning the human and social sciences upside down? Futures 64, 15–18 (2014).Article 

    Google Scholar 
    Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).Sumaila, U. R. et al. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).Article 
    CAS 

    Google Scholar 
    Muiderman, K., Gupta, A., Vervoort, J. & Biermann, F. Four approaches to anticipatory climate governance: different conceptions of the future and implications for the present. WIREs Clim. Change 11, e673 (2020).Article 

    Google Scholar 
    Obermeister, N. Local knowledge, global ambitions: IPBES and the advent of multi-scale models and scenarios. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    Vadrot, A., Rankovic, A., Lapeyre, R., Aubert, P. & Laurans, Y. Why are social sciences and humanitites needed in the workds of IPBES? A systematic review of the literature. Innovation 31, S78–S100 (2018).
    Google Scholar 
    Edenhofer, O. & Kowarsch, M. Cartography of pathways: a new model for environemntal policy assessments. Enviro.Sci.Policy 51, 56–64 (2015).Article 

    Google Scholar 
    Kowarsch, M. et al. An road map for global assessments. Nat. Clim. Change 7, 379–382 (2017).Article 

    Google Scholar 
    European Commission Press Release. International Ocean Governance: EU’s Contribution for Setting the Course of a Blue Planet. https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3742 (2022).Seafood Business for Ocean Stewardship (SeaBOS). http://www.seabos.org/ (2022). More

  • in

    Integrating orientation mechanisms, adrenocortical activity, and endurance flight in vagrancy behaviour

    Newton, I. The Migration Ecology of Birds (Academic Press, USA, 2010).
    Google Scholar 
    Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24(6), 664–674 (2015).Article 

    Google Scholar 
    Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos 118(4), 624–626 (2009).Article 

    Google Scholar 
    DeLuca, W. V. et al. Transoceanic migration by a 12 g songbird. Biol. Let. 11(4), 20141045 (2015).Article 

    Google Scholar 
    Deppe, J. L. et al. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico. Proc. Natl. Acad. Sci. USA 112(46), E6331–E6338 (2015).Article 
    CAS 

    Google Scholar 
    Sutherland, W. J. The heritability of migration. Nature 334, 471–472 (1988).Article 
    ADS 

    Google Scholar 
    Alerstam, T. & Lindström, Å. Optimal bird migration: the relative importance of time, energy, and safety. In Bird Migration 331–351 (Springer, 1990).Chapter 

    Google Scholar 
    Thorup, K. Vagrancy of yellow-browed warbler Phylloscopus inornatus and Pallas’s Warbler Ph. proregulusin north-west Europe: misorientation on great circles. Ring. Migr. 19(1), 7–12 (1998).Article 

    Google Scholar 
    del Hoyo, J., Elliott, A. & Christie, D. Handbook of the Birds of the World (Lynx Edicions, 2008).
    Google Scholar 
    Rabøl, J. Reversed migration as the cause of westward vagrancy by four Phylloscopus warblers. British Birds 62, 89–92 (1969).
    Google Scholar 
    Thorup, K. Reverse migration as a cause of vagrancy: capsule reverse migration in autumn does not occur to the same degree in all species of migrants, but is related to migratory direction. Bird Study 51(3), 228–238 (2004).Article 

    Google Scholar 
    BirdLife International and Handbook of the Birds of the World, Bird species distribution maps of the world. Version 6.0. Available at http://datazone.birdlife.org/species/requestdis. (2016).R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. (2017).Thorup, K. et al. Orientation of vagrant birds on the Faroe Islands in the Atlantic Ocean. J. Ornithol. 153(4), 1261–1265 (2012).Article 

    Google Scholar 
    Able, K. The concepts and terminology of bird navigation. J. Avian. Biol. 32(2), 174–183 (2001).Article 

    Google Scholar 
    Griffin, D. R. & Hock, R. J. Experiments on bird navigation. Science 107(2779), 347–349 (1948).Article 
    ADS 
    CAS 

    Google Scholar 
    Kishkinev, D. Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J. Ornithol. 156(S1), 145–161 (2015).Article 

    Google Scholar 
    Thorup, K. et al. Juvenile songbirds compensate for displacement to oceanic islands during autumn migration. PLoS One 6(3), e17903 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Wingfield, J. & Sapolsky, R. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15(8), 711–724 (2003).Article 
    CAS 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21(1), 55–89 (2000).CAS 

    Google Scholar 
    Jenni, L. & Jenni-Eiermann, S. Fuel supply and metabolic constraints in migrating birds. J. Avian Biol. 29(4), 521–528 (1998).Article 

    Google Scholar 
    Casagrande, S. et al. Dietary antioxidants attenuate the endocrine stress response during long-duration flight of a migratory bird. Proc. Biol. Sci. 2020(287), 20200744 (1929).
    Google Scholar 
    Gwinner, E. et al. Corticosterone levels of passerine birds during migratory flight. Naturwissenschaften 79(6), 276–278 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Jenni, L. et al. Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278(5), R1182–R1189 (2000).Article 
    CAS 

    Google Scholar 
    Holberton, R. L., Boswell, T. & Hunter, M. J. Circulating prolactin and corticosterone concentrations during the development of migratory condition in the Dark-eyed Junco Junco hyemalis. Gen. Comp. Endocrinol. 155(3), 641–649 (2008).Article 
    CAS 

    Google Scholar 
    Ramenofsky, M., J. Moffat, and G. Bentley, Corticosterone and migratory behaviour of captive white-crowned sparrows. In International proceedings of ICA-CPB, Pressures of Life: Molecules to Migration. Masai, Mara Game Reserve, p. 575–82 (2008).Eikenaar, C., Klinner, T. & Stowe, M. Corticosterone predicts nocturnal restlessness in a long-distance migrant. Horm. Behav. 66(2), 324–329 (2014).Article 
    CAS 

    Google Scholar 
    Ramenofsky, M. Fat storage and fat metabolism in relation to migration. In Bird Migration 214–231 (Springer, 1990).Chapter 

    Google Scholar 
    Eikenaar, C., Fritzsch, A. & Bairlein, F. Corticosterone and migratory fueling in Northern wheatears facing different barrier crossings. Gen. Comp. Endocrinol. 186, 181–186 (2013).Article 
    CAS 

    Google Scholar 
    Landys, M. M., Ramenofsky, M. & Wingfield, J. C. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen. Comp. Endocrinol. 148(2), 132–149 (2006).Article 
    CAS 

    Google Scholar 
    Romero, L. M. & Reed, J. M. Collecting baseline corticosterone samples in the field: Is under 3 min good enough?. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 140(1), 73–79 (2005).Article 

    Google Scholar 
    Wingfield, J. C., Kelley, J. P. & Angelier, F. What are extreme environmental conditions and how do organisms cope with them?. Curr. Zool. 57(3), 363–374 (2011).Article 

    Google Scholar 
    Wingfield, J. C. & Hunt, K. E. Arctic spring: hormone–behavior interactions in a severe environment. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132(1), 275–286 (2002).Article 

    Google Scholar 
    Hammer, S. et al. Færøsk Trækfugleatlas: the Faroese bird migration atlas. Fróðskapur spf. (2014).DeSante, D. Vagrants: when orientation or navigation goes wrong. Point Reyes Bird Observ. Newsl. 61, 12–16 (1983).
    Google Scholar 
    Wingfield, J. C. et al. A mechanistic approach to understanding range shifts in a changing world: What makes a pioneer?. Gen. Comp. Endocrinol. 222, 44–53 (2015).Article 
    CAS 

    Google Scholar 
    Cramp, S. Handbook of the Birds of Europe, the Middle east and North Africa: Birds of the western Palearctic (University Press, 1988).
    Google Scholar 
    Svensson, L., Identification guide to European passerines. L. Svensson. (1992).Helbig, A. J. & Seibold, I. Molecular phylogeny of Palearctic-African Acrocephalus and Hippolais warblers (Aves: Sylviidae). Mol. Phylogenet. Evol. 11(2), 246–260 (1999).Article 
    CAS 

    Google Scholar 
    Baker, K. Identification of Siberian and other forms of lesser whitethroat. Brit. Birds 81, 382–390 (1988).
    Google Scholar 
    Olsson, U. et al. New insights into the intricate taxonomy and phylogeny of the Sylvia curruca complex. Mol. Phylogenet. Evol. 67(1), 72–85 (2013).Article 

    Google Scholar 
    Tsvey, A., Loshchagina, J. & Naidenko, S. Migratory species show distinct patterns in corticosterone levels during spring and autumn migrations. Anim. Migr. 6(1), 4–18 (2019).Article 

    Google Scholar 
    Owen, J. C. Collecting, processing, and storing avian blood: a review. J. Field Ornithol. 82(4), 339–354 (2011).Article 

    Google Scholar 
    Pettersson, J. & Hasselquist, D. Fat deposition and migration capacity of robins Erithacus rebecula and goldcrests Regulus regulus at Ottenby Sweden. Ring Migr. 6(2), 66–76 (1985).Article 

    Google Scholar 
    Bairlein, F. et al. European-African Songbird Migration Network: Manual of Field Methods (Wilhelmshaven, 1995).
    Google Scholar 
    Wingfield, J. C., Vleck, C. M. & Moore, M. C. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J. Exp. Zool. A Comp. Exp. Biol. 264(4), 419–428 (1992).Article 
    CAS 

    Google Scholar 
    SAS Institute, SAS for windows, version 9.4. (2014).Cook, R. D. Detection of influential observation in linear regression. Technometrics 19(1), 15–18 (1977).MathSciNet 
    MATH 

    Google Scholar 
    Rawlings, J. O., Pantula, S. G. & Dickey, D. A. Applied Regression Analysis: A Research Tool (Springer Science & Business Media, 2001).MATH 

    Google Scholar 
    Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969).Article 

    Google Scholar 
    Wingfield, J. C. & Kitaysky, A. S. Endocrine responses to unpredictable environmental events: stress or anti-stress hormones?. Integr. Comp. Biol. 42(3), 600–609 (2002).Article 
    CAS 

    Google Scholar 
    Angelier, F. & Wingfield, J. C. Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives. Gen. Comp. Endocrinol. 190, 118–128 (2013).Article 
    CAS 

    Google Scholar 
    Ralph, C. J. Disorientation and possible fate of young passerine coastal migrants. Bird-Banding 49(3), 237–247 (1978).Article 

    Google Scholar 
    Atwell, J. W. et al. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behav. Ecol. 23(5), 960–969 (2012).Article 

    Google Scholar 
    Krause, J. S. et al. Breeding on the leading edge of a northward range expansion: differences in morphology and the stress response in the arctic Gambel’s white-crowned sparrow. Oecologia 180(1), 33–44 (2016).Article 
    ADS 

    Google Scholar 
    Falsone, K., Jenni-Eiermann, S. & Jenni, L. Corticosterone in migrating songbirds during endurance flight. Horm. Behav. 56(5), 548–556 (2009).Article 
    CAS 

    Google Scholar 
    Long, J. A. & Holberton, R. L. Corticosterone secretion, energetic condition, and a test of the migration modulation hypothesis in the hermit thrush (Catharus Guttatus), a short-distance migrant. Auk 121(4), 1094 (2004).Article 

    Google Scholar 
    Romero, L. M., Ramenofsky, M. & Wingfield, J. C. Season and migration alters the corticosterone response to capture and handling in an Arctic migrant, the white-crowned sparrow (Zonotrichia leucophrys gambelii). Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 116(2), 171–177 (1997).Article 
    CAS 

    Google Scholar 
    Schwabl, H. Individual variation of the acute adrenocortical response to stress in the white-throated sparrow. Zool.-Anal. Complex Syst. 99(2), 113–120 (1995).CAS 

    Google Scholar 
    Wingfield, J. et al. Environmental stress, field endocrinology, and conservation biology. In Behavioral approaches to conservation in the wild 95–131 (Cambridge University Press, 1997).
    Google Scholar 
    Wingfield, J. C., Suydam, R. & Hunt, K. The adrenocortical responses to stress in snow buntings (Plectrophenax nivalis) and Lapland longspurs (Calcarius lapponicus) at Barrow, Alaska. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol. 108(3), 299–306 (1994).
    Google Scholar 
    Krause, J. S. et al. Weathering the storm: Do arctic blizzards cause repeatable changes in stress physiology and body condition in breeding songbirds?. Gen. Comp. Endocrinol. 267, 183–192 (2018).Article 
    CAS 

    Google Scholar 
    Krause, J. S. et al. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic. Gen. Comp. Endocrinol. 237, 10–18 (2016).Article 
    CAS 

    Google Scholar 
    Romero, L. M., Reed, J. M. & Wingfield, J. C. Effects of weather on corticosterone responses in wild free-living passerine birds. Gen. Comp. Endocrinol. 118(1), 113–122 (2000).Article 
    CAS 

    Google Scholar 
    Wingfield, J. C., Moore, M. C. & Farner, D. S. Endocrine responses to inclement weather in naturally breeding populations of white-crowned sparrows (Zonotrichia leucophrys pugetensis). Auk 100(1), 56–62 (1983).Article 

    Google Scholar 
    Schwabl, H., Bairlein, F. & Gwinner, E. Basal and stress-induced corticosterone levels of garden warblers, Sylvia borin, during migration. J. Comp. Physiol. B. 161(6), 576–580 (1991).Article 
    CAS 

    Google Scholar 
    Wingfield, J. C. et al. Ecological bases of hormone—behavior interactions: the “emergency life history stage”. Am. Zool. 38(1), 191–206 (1998).Article 
    CAS 

    Google Scholar 
    Silverin, B., Arvidsson, B. & Wingfield, J. The adrenocortical responses to stress in breeding willow warblers Phylloscopus trochilus in Sweden: effects of latitude and gender. Funct. Ecol. 11(3), 376–384 (1997).Article 

    Google Scholar 
    Krause, J. S. et al. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows. Physiol. Behav. 177, 282–290 (2017).Article 
    CAS 

    Google Scholar 
    Fokidis, H. B. et al. Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers. Physiol. Biochem. Zool. 84(6), 595–606 (2011).Article 
    CAS 

    Google Scholar 
    Buttemer, W. A., Astheimer, L. B. & Wingfield, J. C. The effect of corticosterone on standard metabolic rates of small passerine birds. J. Comp. Physiol. B. 161(4), 427–431 (1991).Article 
    CAS 

    Google Scholar 
    Snell, K. R. S. Physiology of avian migratory processes, in Center for Macroecology, Evolution and Climate. University of Copenhagen. (2018).Krause, J. S. et al. The stress response is attenuated during inclement weather in parental, but not in pre-parental, Lapland longspurs (Calcarius lapponicus) breeding in the Low Arctic. Horm. Behav. 83, 68–74 (2016).Article 
    CAS 

    Google Scholar 
    Wingfield, J. C. et al. How birds cope physiologically and behaviourally with extreme climatic events. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 372(1723), 20160140 (2017).Article 

    Google Scholar 
    Walker, J. J. et al. Rapid intra-adrenal feedback regulation of glucocorticoid synthesis. J. R. Soc. London Interface 12(102), 20140875 (2015).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Holberton, R. L., Parrish, J. D. & Wingfield, J. C. Modulation of the adrenocortical stress response in Neotropical migrants during autumn migration. Auk 113(3), 558–564 (1996).Article 

    Google Scholar 
    Cornelius, J. M. et al. Contributions of endocrinology to the migration life history of birds. Gen. Comp. Endocrinol. 190, 47–60 (2013).Article 
    CAS 

    Google Scholar 
    Landys-Ciannelli, M. M. et al. Baseline and stress-induced plasma corticosterone during long-distance migration in the bar-tailed godwit Limosa lapponica. Physiol. Biochem. Zool. 75(1), 101–110 (2002).Article 
    CAS 

    Google Scholar 
    Jenni-Eiermann, S. et al. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot. Gen. Comp. Endocrinol. 164(2–3), 101–106 (2009).Article 
    CAS 

    Google Scholar  More

  • in

    Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats

    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast Shelf Sci. 80, 435–471 (2008).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    CAS 

    Google Scholar 
    Normille, D. El Niño’s warmth devastating reefs worldwide. Science 352, 2015–2016 (2016).
    Google Scholar 
    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci USA 116, 10586–10591 (2019).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article 

    Google Scholar 
    Thomas, L. et al. Mechanisms of thermal tolerance in Reef-building corals across a fine-grained environmental mosaic: lessons from Ofu. Am. Samoa. Front Mar. Sci. 4, 434 (2018).Article 

    Google Scholar 
    Kenkel, C. D., Meyer, E. & Matz, M. V. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol. Ecol. 22, 4322–4334 (2013).Article 
    CAS 

    Google Scholar 
    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction? Evolution 49, 201–207 (1995).
    Google Scholar 
    Bruno, J. F., Siddon, C. E., Witman, J. D., Colin, P. L. & Toscano, M. A. El Niño related coral bleaching in Palau, western Caroline Islands. Coral Reefs 20, 127–136 (2001).Article 

    Google Scholar 
    Golbuu, Y. et al. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26, 319–332 (2007).Article 

    Google Scholar 
    van Woesik, R. et al. Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).Article 

    Google Scholar 
    Barkley, H. C. & Cohen, A. L. Skeletal records of community-level bleaching in Porites corals from Palau. Coral Reefs 35, 1407–1417 (2016).Article 

    Google Scholar 
    Gouezo, M. et al. Drivers of recovery and reassembly of coral reef communities. Proc. R. Soc. B Biol. Sci. 286, 20182908 (2019).Shamberger, K. E. F. et al. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys. Res. Lett. 41, 499–504 (2014).Article 

    Google Scholar 
    Barkley, H. C. et al. Changes in coral reef communities across a natural gradient in seawater pH. Sci. Adv. 1, e1500328 (2015).Article 

    Google Scholar 
    Fabricius, K. E., Mieog, J. C., Colin, P. L., Idip, D. & van Oppen, M. J. H. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol. Ecol. 13, 2445–2458 (2004).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).Article 
    CAS 

    Google Scholar 
    Gibbin, E. M., Putnam, H. M., Gates, R. D., Nitschke, M. R. & Davy, S. K. Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals. Mar. Biol. 162, 717–723 (2015).Article 
    CAS 

    Google Scholar 
    Boulay, J. N., Hellberg, M. E., Cortés, J. & Baums, I. B. Unrecognized coral species diversity masks differences in functional ecology. Proc. R. Soc. B Biol. Sci. 281, 20131580 (2013).Baums, I. B., Boulay, J. N., Polato, N. R. & Hellberg, M. E. No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol. Ecol. 21, 5418–5433 (2012).Article 

    Google Scholar 
    Forsman, Z. H., Wellington, G. M., Fox, G. E. & Toonen, R. J. Clues to unraveling the coral species problem: Distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. PeerJ 3, e751 (2015).Article 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).Article 
    CAS 

    Google Scholar 
    Linsley, B. K. et al. Coral carbon isotope sensitivity to growth rate and water depth with Paleo-sea level implications. Nat. Commun. 10, 1–9 (2019).
    Google Scholar 
    Peyrot-Clausade, M., Hutchings, P. & Richard, G. Temporal variations of macroborers in massive Porites lobata on Moorea, French Polynesia. Coral Reefs 11, 161–166 (1992).Article 

    Google Scholar 
    Nanami, A. & Nishihira, M. Microhabitat association and temporal stability in reef fish assemblages on massive Porites microatolls. Ichthyol. Res. 51, 165–171 (2004).Article 

    Google Scholar 
    Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef. PLoS ONE 9, e88720 (2014).Article 

    Google Scholar 
    Carilli, J. E., Norris, R. D., Black, B., Walsh, S. M. & Mcfield, M. Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Glob. Chang Biol. 16, 1247–1257 (2010).Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).Article 
    CAS 

    Google Scholar 
    Lough, J. M. & Cooper, T. F. New insights from coral growth band studies in an era of rapid environmental change. Earth Sci. Rev. 108, 170–184 (2011).Article 
    CAS 

    Google Scholar 
    Mollica, N. R. N. et al. Skeletal records of bleaching reveal different thermal thresholds of Pacific coral reef assemblages. Coral Reefs 38, 743–757 (2019).Article 

    Google Scholar 
    Barkley, H. C. et al. Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Commun. Biol. 1, 177 (2018).DeCarlo, T. M. & Cohen, A. L. Dissepiments, density bands and signatures of thermal stress in Porites skeletons. Coral Reefs 36, 749–761 (2017).Article 

    Google Scholar 
    DeCarlo, T. M. et al. Acclimatization of massive reef-building corals to consecutive heatwaves. Proc. R. Soc. B 286, 20190235 (2019).DeCarlo, T. M. The past century of coral bleaching in the Saudi Arabian central Red Sea. PeerJ 8, e10200 (2020).Article 

    Google Scholar 
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang Biol. 21, 236–249 (2015).Article 

    Google Scholar 
    Fabricius, K. E. Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching? Limnol. Oceanogr. 51, 30–37 (2006).Article 

    Google Scholar 
    Edmunds, P. J., Putnam, H. M. & Gates, R. D. Photophysiological consequences of vertical stratification of Symbiodinium in tissue of the coral Porites lutea. Biol. Bull. 223, 226–235 (2012).Article 
    CAS 

    Google Scholar 
    Smith, L. W., Wirshing, H., Baker, A. C. & Birkeland, C. Environmental versus genetic influences on growth rates of the corals Pocillopora eydouxi and Porites lobata. Pac. Sci. 62, 57–69 (2008).Article 

    Google Scholar 
    Kenkel, C. D. & Bay, L. K. Exploring mechanisms that affect coral cooperation: symbiont transmission mode, cell density and community composition. PeerJ 2018, e6047 (2018).Article 

    Google Scholar 
    Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: analysis of data for Pike (Esox lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).Article 

    Google Scholar 
    Barkley, H. C., Cohen, A. L., McCorkle, D. C. & Golbuu, Y. Mechanisms and thresholds for pH tolerance in Palau corals. J. Exp. Mar. Biol. Ecol. 489, 7–14 (2017).Article 
    CAS 

    Google Scholar 
    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl Acad. Sci. USA 115, 1754–1759 (2018).Article 
    CAS 

    Google Scholar 
    DeCarlo, T. M. et al. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43, 7–10 (2014).Article 

    Google Scholar 
    Manzello, D. P. et al. Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob. Chang Biol. 25, 1016–1031 (2019).Article 

    Google Scholar 
    Rippe, J. P., Dixon, G., Fuller, Z. L., Liao, Y. & Matz, M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol. Ecol. 1–17 https://doi.org/10.1111/mec.15931 (2021).Schoepf, V. et al. Thermally variable, macrotidal Reef habitats promote rapid recovery from mass coral bleaching. Front. Mar. Sci. 7, 245 (2020).Article 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).Article 
    CAS 

    Google Scholar 
    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, 1–23 (2019).Article 

    Google Scholar 
    Gosselin, L. A. & Qian, P.-Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146, 265–282 (1997).Article 

    Google Scholar 
    Gouezo, M. et al. Modelled larval supply predicts coral population recovery potential following disturbance. Mar. Ecol. Prog. Ser. 661, 127–145 (2021).Golbuu, Y., Gouezo, M., Kurihara, H., Rehm, L. & Wolanski, E. Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35, 909–918 (2016).Article 

    Google Scholar 
    Golbuu, Y. et al. Predicting coral recruitment in Palau’s complex reef archipelago. PLoS ONE 7, e50998 (2012).Article 
    CAS 

    Google Scholar 
    Barshis, D. J., Birkeland, C., Toonen, R. J., Gates, R. D. & Stillman, J. H. High-frequency temperature variability mirrors fixed differences in thermal limits of the massive coral Porites lobata (Dana, 1846). J. Exp. Biol. jeb.188581 https://doi.org/10.1242/jeb.188581 (2018).Shamberger, K. E. F., Lentz, S. J. & Cohen, A. L. Low and variable ecosystem calcification in a coral reef lagoon under natural acidification. Limnol. Oceanogr. https://doi.org/10.1002/lno.10662 (2017).Cacciapaglia, C. & van Woesik, R. Climate-change refugia: shading reef corals by turbidity. Glob. Chang Biol. 22, 1145–1154 (2016).Article 

    Google Scholar 
    Anthony, K. R. Enhanced energy status of corals on coastal, high-turbidity reefs. Mar. Ecol. Prog. Ser. 319, 111–116 (2006).Article 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).Article 

    Google Scholar 
    Aichelman, H. E. et al. Heterotrophy mitigates the response of the temperate coral Oculina arbuscula to temperature stress. Ecol. Evol. 6, 6758–6769 (2016).Article 

    Google Scholar 
    Gómez‐Corrales, M. & Prada, C. Cryptic lineages respond differently to coral bleaching. Mol. Ecol. 0, 1–9 (2020).
    Google Scholar 
    Fifer, J. E., Yasuda, N., Yamakita, T., Bove, C. B. & Davies, S. W. Genetic divergence and range expansion in a western North Pacific coral. Sci. Total Environ. 152423 https://doi.org/10.1016/J.SCITOTENV.2021.152423 (2021).Euclide, P. T. et al. Attack of the PCR clones: rates of clonality have little effect on RAD-seq genotype calls. Mol. Ecol. Resour. 20, 66–78 (2020).Article 
    CAS 

    Google Scholar 
    Noonan, S. H. C., DiPerna, S., Hoogenboom, M. O. & Fabricius, K. E. Effects of variable daily light integrals and elevated CO2 on the adult and juvenile performance of two Acropora corals. Mar. Biol. 169, 1–15 (2022).Article 

    Google Scholar 
    Martins, C. P. P. et al. Growth response of reef-building corals to ocean acidification is mediated by interplay of taxon-specific physiological parameters. Front. Mar. Sci. 0, 879 (2022).
    Google Scholar 
    Bairos-Novak, K. R., Hoogenboom, M. O., van Oppen, M. J. H. & Connolly, S. R. Coral adaptation to climate change: meta-analysis reveals high heritability across multiple traits. Glob. Chang. Biol. 27, 5694–5710 (2021).Article 
    CAS 

    Google Scholar 
    Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 115, 509–516 (2015).Article 
    CAS 

    Google Scholar 
    Dziedzic, K. E., Elder, H., Tavalire, H. & Meyer, E. Heritable variation in bleaching responses and its functional genomic basis in reef-building corals (Orbicella faveolata). Mol. Ecol. 28, 2238–2253 (2019).Article 

    Google Scholar 
    Quigley, K. M., Bay, L. K. & Oppen, M. J. H. Genome‐wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 2176–2188 https://doi.org/10.1111/mec.15482 (2020).Veron, J. E. N. Corals of the World (Australian Institute of Marine Science, 2000).Polato, N. R., Concepcion, G. T., Toonen, R. J. & Baums, I. B. Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata. Mol. Ecol. 19, 4661–4677 (2010).Article 
    CAS 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).Article 

    Google Scholar 
    Puritz, J. B., Hollenbeck, C. M. & Gold, J. R. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2, e431 (2014).Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article 
    CAS 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv (2013).Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. ArXiv (2012).Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M. & Rosenberg, N. A. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).Article 
    CAS 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 

    Google Scholar 
    Puechmaille, S. J. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).Article 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).Article 
    CAS 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes. 5, 184–186 (2005).Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 1–27 (2005).Ryan, J. A. & Ulrich, J. M. xts: eXtensible Time Series. Package at https://cran.r-project.org/package=xts (2018).LaJeunesse, T. C. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 141, 387–400 (2002).Article 

    Google Scholar 
    LaJeunesse, T. C. & Trench, R. K. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol. Bull. 199, 126–134 (2000).Article 
    CAS 

    Google Scholar  More

  • in

    Evolution of self-organised division of labour driven by stigmergy in leaf-cutter ants

    Wilson, E. O. Success and dominance in ecosystems: the case of the social insects. Vol. 2 I-XXI (Ecology Institute, 1990).Anderson, C., Franks, N. R. & McShea, D. W. The complexity and hierarchical structure of tasks in insect societies. Anim. Behav. 62, 643–651. https://doi.org/10.1006/anbe.2001.1795 (2001).Article 

    Google Scholar 
    Theraulaz, G. & Deneubourg, J.-L. in The Ethological roots of Culture (eds Gardner RA, Chiarelli AB, Gardner BT, & Ploojd FX) 1–19 (Kluwer Academic Publishers, 1994).Theraulaz, G. & Bonabeau, E. Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400. https://doi.org/10.1006/jtbi.1995.0255 (1995).Article 
    ADS 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).Article 
    ADS 

    Google Scholar 
    Gordon, D. M. The evolution of the algorithms for collective behavior. Cell Syst. 3, 514–520 (2016).Article 

    Google Scholar 
    Grüter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. PLoS ONE 7, e44501. https://doi.org/10.1371/journal.pone.0044501 (2012).Article 
    ADS 

    Google Scholar 
    Wehner, R., Harkness, R. D. & Schmid-Hempel, P. Foraging Strategies in Individually Searching Ants. (Fischer, 1983).Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects. (Princeton University Press, 1978).Anderson, C. & Franks, N. R. Teams in animal societies. Behav. Ecol. 12, 534–540. https://doi.org/10.1093/beheco/12.5.534 (2001).Article 

    Google Scholar 
    Jeanne, R. L. The evolution of the organization of work in social insects. Monitore Zool. Italiano-Ital. J. Zool. 20, 119–133. https://doi.org/10.1080/00269786.1986.10736494 (1986).Article 

    Google Scholar 
    Ratnieks, F. L. & Anderson, C. Task partitioning in insects societies. Insectes Soc. 46, 95–108 (1999).Article 

    Google Scholar 
    Anderson, C., Boomsma, J. J. & Bartholdi, J. J. Task partitioning in insect societies: bucket brigades. Insectes Soc. 49, 171–180. https://doi.org/10.1007/s00040-002-8298-7 (2002).Article 

    Google Scholar 
    Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).Article 

    Google Scholar 
    Leighton, G. M., Charbonneau, D. & Dornhaus, A. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav. Ecol. 28, 319–327. https://doi.org/10.1093/beheco/arw162 (2017).Article 

    Google Scholar 
    Grassé, P.-P. La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6, 41–80 (1959).Article 

    Google Scholar 
    Theraulaz, G. & Bonabeau, E. A brief history of stigmergy. Artif. Life 5, 97–116. https://doi.org/10.1162/106454699568700 (1999).Article 

    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artif. Life 5, 117–136. https://doi.org/10.1162/106454699568719 (1999).Article 

    Google Scholar 
    Karsai, I. & Penzes, Z. Comb Building in Social Wasps – Self-Organization and Stigmergic Script. J. Theor. Biol. 161, 505–525. https://doi.org/10.1006/jtbi.1993.1070 (1993).Article 
    ADS 

    Google Scholar 
    Dorigo, M., Bonabeau, E. & Theraulaz, G. Ant algorithms and stigmergy. Fut. Gen. Comput. Syst. 16, 851–871 (2000).Article 

    Google Scholar 
    Camazine, S. Self-organizing pattern-formation on the combs of Honey-Bee Colonies. Behav. Ecol. Sociobiol. 28, 61–76. https://doi.org/10.1007/bf00172140 (1991).Article 

    Google Scholar 
    Camazine, S., Sneyd, J., Jenkins, M. J. & Murray, J. D. A Mathematical-model of self-organized pattern-formation on the combs of Honeybee Colonies. J. Theor. Biol. 147, 553–571. https://doi.org/10.1016/S0022-5193(05)80264-4 (1990).Article 
    ADS 

    Google Scholar 
    Deneubourg, J.-L. et al. in Simulation of Adaptive Behavior: From Animals to Animats (eds J.A. Meyer & S.W. Wilson) 356–365 (The MIT Press/Bradford Books, 1991).Franks, N. R. & Sendovafranks, A. B. Brood Sorting by Ants – Distributing the Workload over the Work-Surface. Behav. Ecol. Sociobiol. 30, 109–123 (1992).Article 

    Google Scholar 
    Sendova-Franks, A. B., Scholes, S. R., Franks, N. R. & Melhuish, C. Brood sorting by ants: two phases and differential diffusion. Anim. Behav. 68, 1095–1106. https://doi.org/10.1016/j.anbehav.2004.02.013 (2004).Article 

    Google Scholar 
    Lan, T., Liu, S. & Yang, S. X. in 2006 6th World Congress on Intelligent Control and Automation. 441–445 (IEEE).Renucci, M., Tirard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insectes Soc. 58, 9–16 (2011).Article 

    Google Scholar 
    Detrain, C. & Deneubourg, J. L. Collective decision-making and foraging patterns in Ants and Honeybees. Advances in Insect Physiology 35(35), 123–173. https://doi.org/10.1016/S0065-2806(08)00002-7 (2008).Article 

    Google Scholar 
    Couzin, I. D. & Franks, N. R. Self-organized lane formation and optimized traffic flow in army ants. Proc Biol Sci 270, 139–146. https://doi.org/10.1098/rspb.2002.2210 (2003).Article 

    Google Scholar 
    Gulyas, L., Laufer, L. & Szabo, R. in International Workshop on Engineering Self-Organising Applications 50–65 (Springer).Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529. https://doi.org/10.1007/s00265-004-0824-3 (2004).Article 

    Google Scholar 
    Oberst, S. et al. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput. Struct. Biotechnol. J. 18, 2522–2534 (2020).Article 

    Google Scholar 
    Hart, A., Anderson, C. & Ratnieks, F. Task partitioning in leafcutting ants. Acta Ethologica 5, 1–11. https://doi.org/10.1007/s10211-002-0062-5 (2002).Article 

    Google Scholar 
    Hart, A. G. & Ratnieks, F. L. Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Anim. Behav. 62, 227–234 (2001).Article 

    Google Scholar 
    Röschard, J. & Roces, F. Sequential load transport in grass-cutting ants (Atta vollenweideri): maximization of plant delivery rate or improved information transfer? Psyche 2011 (2011).Nickele, M. A., Reis Filho, W. & Pie, M. R. Sequential load transport during foraging in Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Myrmecol News 21, 73–82 (2015).Ferrante, E., Turgut, A. E., Duenez-Guzman, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comp. Biol. 11, e1004273. https://doi.org/10.1371/journal.pcbi.1004273 (2015).Article 
    ADS 

    Google Scholar 
    Grueter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. (2012).Holcombe, M. et al. Modelling complex biological systems using an agent-based approach. Integr. Biol. 4, 53–64 (2012).Article 

    Google Scholar 
    Fourcassié, V., Dussutour, A. & Deneubourg, J.-L. Ant traffic rules. J. Exp. Biol. 213, 2357–2363 (2010).Article 

    Google Scholar 
    Modlmeier, A. P., Keiser, C. N., Shearer, T. A. & Pruitt, J. N. Species-specific influence of group composition on collective behaviors in ants. Behav. Ecol. Sociobiol. 68, 1929–1937 (2014).Article 

    Google Scholar 
    Modlmeier, A. P., Liebmann, J. E. & Foitzik, S. Diverse societies are more productive: a lesson from ants. Proc. R. Soc. B 279, 2142–2150 (2012).Article 

    Google Scholar 
    Walsh, J. T., Garnier, S. & Linksvayer, T. A. Ant collective behavior is heritable and shaped by selection. Am. Nat. 196, 541–554 (2020).Article 

    Google Scholar 
    Tannenbaum, E. When does division of labor lead to increased system output?. J. Theor. Biol. 247, 413–425 (2007).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wahl, L. M. Evolving the division of labour: Generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Wakano, J., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).Article 
    ADS 

    Google Scholar 
    Goldsby, H. J., Dornhaus, A., Kerr, B. & Ofria, C. Task-switching costs promote the evolution of division of labor and shifts in individuality. Proc. Natl. Acad. Sci. 109, 13686–13691 (2012).Article 
    ADS 

    Google Scholar 
    Rueffler, C., Hermisson, J. & Wagner, G. P. Evolution of functional specialization and division of labor. Proc. Natl. Acad. Sci. 109, E326–E335 (2012).Article 
    ADS 

    Google Scholar 
    Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. & Verza, S. S. The effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology 42, 87–92 (2003).
    Google Scholar 
    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42(42), 91–110. https://doi.org/10.1146/annurev-ecolsys-102710-145017 (2011).Article 

    Google Scholar 
    Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957. https://doi.org/10.1007/s00265-012-1343-2 (2012).Article 

    Google Scholar 
    Floreano, D. & Keller, L. Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol. 8, e1000292 (2010).Article 

    Google Scholar 
    Floreano, D., Mitri, S., Magnenat, S. & Keller, L. Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17, 514–519 (2007).Article 

    Google Scholar 
    Mitri, S., Floreano, D. & Keller, L. The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106, 15786–15790 (2009).Article 
    ADS 

    Google Scholar 
    Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938 (2018).Article 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 

    Google Scholar 
    Van den Berg, P. & Weissing, F. J. The importance of mechanisms for the evolution of cooperation. Proc. R. Soc. B 282, 20151382 (2015).Article 

    Google Scholar 
    Wetterer, J. K. Ontogenetic changes in forager polymorphism and foraging ecology in the leaf-cutting ant Atta cephalotes. Oecologia 98, 235–238. https://doi.org/10.1007/BF00341478 (1994).Article 
    ADS 

    Google Scholar 
    Wetterer, J. K. Forager size and ecology of Acromyrmex coronatus and other leaf-cutting ants in Costa Rica. Oecologia 104, 409–415. https://doi.org/10.1007/BF00341337 (1995).Article 
    ADS 

    Google Scholar 
    Evison, S. E. F. & Hughes, W. O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98, 643–649 (2011).Article 
    ADS 

    Google Scholar 
    Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).Article 
    ADS 

    Google Scholar 
    Villesen, P., Murakami, T., Schultz, T. R. & Boomsma, o. J. Identifying the transition between single and multiple mating of queens in fungus-growing ants. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 1541–1548 (2002).Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl. Acad. Sci. 105, 5287–5288 (2008).Article 
    ADS 

    Google Scholar 
    Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. 105, 5435–5440 (2008).Article 
    ADS 

    Google Scholar 
    Fowler, H. G. Latitudinal gradients and diversity of the leaf-cutting ants (Atta and Acromyrmex)(Hymenoptera: Formicidae). Rev. Biol. Trop. 31, 213–216 (1983).
    Google Scholar 
    Jackson, D. E. & Ratnieks, F. L. Communication in ants. Curr. Biol. 16, R570–R574 (2006).Article 

    Google Scholar 
    Roces, F. & Hölldobler, B. Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav. Ecol. Sociobiol. 37, 297–302 (1995).Article 

    Google Scholar 
    Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B. & Fowler, H. Foraging by bucket-brigade in leaf-cutter ants. Biotropica 1, 210–213 (1980).Article 

    Google Scholar 
    Boi, S., Couzin, I. D., Buono, N. D., Franks, N. & Britton, N. Coupled oscillators and activity waves in ant colonies. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 371–378 (1999).Cole, B. J. Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259 (1991).Article 

    Google Scholar 
    Cornejo, A., Dornhaus, A., Lynch, N. & Nagpal, R. in International Symposium on Distributed Computing. 46–60 (Springer).Franks, N. R., Bryant, S., Griffiths, R. & Hemerik, L. Synchronization of the behaviour within nests of the antleptothorax acervorum (fabricius)—I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612 (1990).Pagliara, R., Gordon, D. M. & Leonard, N. E. Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Comp. Biol. 14, e1006200 (2018).Article 
    ADS 

    Google Scholar 
    Schmickl, T. & Karsai, I. Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115, 13180–13185 (2018).Article 
    ADS 

    Google Scholar 
    Solé, R. V., Miramontes, O. & Goodwin, B. C. Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357 (1993).Article 
    ADS 

    Google Scholar 
    Gordon, D. M., Goodwin, B. C. & Trainor, L. E. A parallel distributed model of the behaviour of ant colonies. J. Theor. Biol. 156, 293–307 (1992).Article 
    ADS 

    Google Scholar 
    Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).Article 

    Google Scholar 
    Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).Article 

    Google Scholar 
    Niemeyer, N., Schleimer, J.-H. & Schreiber, S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr. Opin. Neurobiol. 70, 81–88 (2021).Article 

    Google Scholar 
    Rombouts, J., Vandervelde, A. & Gelens, L. Delay models for the early embryonic cell cycle oscillator. PLoS ONE 13, e0194769 (2018).Article 

    Google Scholar 
    Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).Article 

    Google Scholar 
    Bryant, B. D. & Miikkulainen, R. Foundations of Trusted Autonomy 87–115 (Springer, 2018).
    Google Scholar 
    Masad, D. & Kazil, J. in 14th PYTHON in Science Conference. 53–60 (Citeseer).Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).Article 

    Google Scholar  More

  • in

    Global predictions for the risk of establishment of Pierce’s disease of grapevines

    Thermal requirements to develop PDWe examined the response of a wide spectrum of European grapevine varieties to XfPD infection in three independent experiments conducted in 2018, 2019, and 2020. Overall, 86.1% (n = 764) of 886 inoculated plants, comprising 36 varieties and 57 unique scion/rootstock combinations, developed PD symptoms 16 weeks after inoculation. European V. vinifera varieties exhibited significant differences in their susceptibility to XfPD (Supplementary Table S1). All varieties, however, showed PD symptoms to some extent, confirming previous field observations of general susceptibility to XfPD9,12,37. We also found significant differences in virulence (χ2 = 68.73, df = 1, P = 2.2 × 10−16) between two XfPD strains isolated from grapevines in Majorca across grapevine varieties (Supplementary Fig. S1). Full details on the results of the inoculation tests are available in “Methods”, Supplementary Note 1, Supplementary Table S1 and Supplementary Data 1.Growing degree days (GDD) have traditionally been used to describe and predict phenological events of plants and insect pests, but rarely in plant diseases58. We took advantage of data collated in the inoculation trials together with temperature to relate symptom development to the accumulated heat units at weeks eight, 10, 12, 14, and 16 after inoculation (Supplementary Data 1). Rather than counting GDDs linearly above a threshold temperature, we consider Xf ’s specific growth rate in vitro within its cardinal temperatures. The empirical growth rates come from the seminal work by Feil & Purcell38 shown in the inset of Fig. 1a. This Arrhenius plot was transformed, as explained in Supplementary Note 2A, to obtain a a piece-wise function f(T) Eq. (1). Our model and risk maps are based on f(T) (red line in Fig. 1a) because it provides the best fit to the experimental data when compared with the commonly used Beta function (blue line) for representing the thermal response in biological processes59,60. This Modified Growing Degree Day (MGDD) profile Eq. (1) enables to measure the thermal integral from hourly average temperatures, improving the prediction scale of the biological process61. MGDD also provides an excellent metric to link XfPD growth in culture with PD development as, once the pathogen is injected into the healthy vine, symptoms progression mainly depends upon the bacterial load (i.e., multiplication) and the movement through the xylem vessel network, which are fundamentally temperature-dependent processes38,62. Moreover, MGDD can be mathematically related to the exponential or logistic growth of the pathogen within the plant (Supplementary Note 2B).Fig. 1: Climatic and transmission layers composing the epidemiological model.a MGDD profile fitted to the in vitro data of Xf growth rate in Feil & Purcell 200138. The original Arrhenius plot in Kelvin degrees (inset) was converted to Celsius, as explained in (Supplementary Note 2A), to obtain the fit shown in the main plot red line; the blue line represents the fit with a Beta function. b Correlation between CDD and the average ({T}_{min }) of the coldest month between 1981 and 2019. Plotted black dots (worldwide) and yellow dots (main wine-producing zones) depict climatic data from 6,487,200 cells at 0.1∘ × 0.1∘ resolution, spread globally and retrieved from ERA5-Land dataset. The red solid line depicts the fitted exponential function for worldwide data and the blue solid line for main vineyard zones. c Nonlinear relationship between MGDD (red line) and CDD (blue line) and the likelihood of developing chronic infections. Black dots depict the cumulative proportion of grapevine plants in the population of 36 inoculated varieties showing five or more symptomatic leaves at each of the 15 MGDD levels (see Supplementary Information). Vertical bars are the 95% CI. d Combined ranges of MGDD and CDD on the likelihood of developing chronic infection. e Transmission layer in the dynamic equation (1) of the SIR compartmental model. f Relationship between the exponential growth of the number of infected plants with the risk index and their ranks.Full size imageInterannual infection survival in grapevines plays a relevant role when modelling PD epidemiology. In our model, we assumed a threshold of five or more symptomatic leaves for these chronic infections based on the relationship between the timing and severity of the infection during the growing season and the likelihood of winter recovery38,39,42. This five-leaf cut-off was grounded on: (i) the bimodal distribution in the frequency of the number of symptomatic leaves among the population of inoculated grapevines (Supplementary Fig. S1), whereby vines that generally show less than five symptomatic leaves at 12 weeks after inoculation remain so in the following weeks, while those that pass that threshold continue to produce symptomatic leaves, and (ii) the observed correlation between the acropetal and basipetal movement of Xf along the cane (Supplementary Fig. S1). The likelihood of developing chronic infections as a function of accumulated MGDD among the population of grapevine varieties was modelled using survival analysis with data fitted to a logistic distribution ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})). A minimum window of MGDD = 528 was needed to develop chronic infections (var. Tempranillo), about 975 for a median estimate, while a cumulative MGDD  > 1159 indicate over 90% probability within a growing season (red curve in Fig. 1c and “Methods”).Next, we intended to model the probability of disease recovery by exposure to cold temperatures. Previous works had specifically modelled cold curing on Pinot Noir and Cabernet Sauvignon varieties in California as the effect of temperature and duration39 by assuming a progressive elimination of the bacterial load with cold temperatures42. In the absence of appropriate empirical data to formulate a general average pattern of winter curing among grapevine varieties, we combined the approach of Lieth et al.39 and the empirical observations of Purcell on the distribution of PD in the US related to the average minimum temperature of the coldest month, Tmin, isolines41. To consider the accumulation of cold units in an analogy of the MGDD, we searched for a general correlation between Tmin and the cold degree days (CDDs) with base temperature = 6 ∘C (see “Methods”). We found an exponential relation, ({{{{{rm{CDD}}}}}} sim 230exp (-0.26cdot {T}_{min })), where specifically, CDD ≳ 306 correspond to ({T}_{min } < -1.{1},^{circ }{{{{{rm{C}}}}}}) (Fig. 1b). To transform this exponential relationship to a probabilistic function analogous to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})), hereafter denoted ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})), ranging between 0 and 1, we considered the sigmoidal family of functions (f(x)=frac{A}{B+{x}^{C}}) with A = 9 × 106, B = A and C = 3 (Fig. 1c), fulfilling the limit ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}}=0)=1), i.e., no winter curing when no cold accumulated, and a conservative 75% of the infected plants recovered at ({T}_{min }=-1.{1},^{circ }{{{{{rm{C}}}}}}) instead of 100% to reflect uncertainties on the effect of winter curing.MGDD/CDD distribution mapsMGDD were used to compute annual risk maps of developing PD during summer for the period 1981–2019 (see “Methods”). The resulting averaged map identifies all known areas with a recent history of severe PD in the US corresponding to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 90 %) (i.e., high-risk), such as the Gulf Coast states (Texas, Alabama, Mississippi, Louisiana, Florida), Georgia and Southern California sites (e.g., Temecula Valley) (Fig. 2a), while captures areas with a steep gradation of disease endemicity in the north coast of California (({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}} , > , 50 % )). Overall, more than 95% of confirmed PD sites (n = 155) in the US (Supplementary Data 2) fall in grid cells with ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 50 %).Fig. 2: Average thermal-dependent maps for Pierce’s disease (PD) development and recovery in North America and Europe.PD development during the growing season based on average ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})) estimations between 1981 and 2019 in North America (a) and Europe (b) derived from the results of the inoculation experiments on 36 grapevine varieties. Large differences in the areal extension with favourable MGDDs can be observed between the US and Europe. The winter curing effect is reflected in the distribution of the average ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})) for the 1981–2019 period in the United States (c) and Europe (d). A snapshot of the temperature-driven probability of chronic infection averaged for the 1981–2019 period is obtained from the joint effect of MGDD and CDD in North America (e) and Europe (f). Warmer colours indicate more favourable conditions for chronic PD and the dashed line highlights the threshold of chronic infection probability being 0.5.Full size imageThe average MGDD-projected map for Europe during 1981–2019 spots a high risk for the coast, islands and major river valleys of the Mediterranean Basin, southern Spain, the Atlantic coast from Gibraltar to Oporto, and continental areas of central and southeast Europe (Fig. 2b). Of these, however, only some Mediterranean islands, such as Cyprus and Crete, show ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 99 %) comparable to areas with high disease incidence in the Gulf Coast states of the US and California. Almost all the Atlantic coast from Oporto (Portugal) to Denmark are below suitable MGDD, with an important exception in the Garonne river basin in France (Bordeaux Area) with low to moderate MGDD (Fig. 2b).Figure 2a shows how the area with high-risk MGDD values extends further north of the current known PD distribution in the southeastern US, suggesting that winter temperatures limit the expansion of PD northwards9. A comparison between MGDD and CDD maps (Fig. 2a vs. Fig. 2c, Fig. 2e) further supports the idea that winter curing is restricting PD northward migration from the southeastern US. However, consistent with growing concern among Midwest states winegrowers on PD northward migration led by climate change63, we found a mean increase of 0.12% y−1 in the areal extent with CDD  0.075) in 22.3% of the vineyards in Europe. However, no vineyard is in epidemic-risk zones with a high-risk index and only 2.9% of the vineyard surface is at moderate risk (Supplementary Table S8). The areas with the highest risk index (r(t) between 0.70 and 0.88) are mainly located in the Mediterranean islands of Crete, Cyprus and the Balearic Islands or at pronounced peninsulas like Apulia (Italy) and Peloponnese (Greece) in the continent (Fig. 6a and Supplementary Table S8). Most vineyards are in non-risk zones (42.1%), whereas 35.6% are located in transition zones with presently non-risk but where XfPD could become established in the next decades causing some sporadic outbreaks. In Supplementary Data 4 and Supplementary Table S8, we provide full details of the total vineyard areas currently at risk for each country and region.Fig. 6: Intersection between Corine-land-cover vineyard distribution map and PD-risk maps for 2020 and 2050.Data were obtained from Corine-land-cover (2018) and the layer of climatic suitability forP. spumarius in Europe from35. The surface of the vineyard contour has been enlarged to improve the visualisation of the risk zones and disease-incidence growth-rate ranks. a PD risk map for 2019 and its projection for 2050 (b). Blue colours represent non-risk zones and transient risk zones for chronic PD (R0  More