More stories

  • in

    Evolution of self-organised division of labour driven by stigmergy in leaf-cutter ants

    Wilson, E. O. Success and dominance in ecosystems: the case of the social insects. Vol. 2 I-XXI (Ecology Institute, 1990).Anderson, C., Franks, N. R. & McShea, D. W. The complexity and hierarchical structure of tasks in insect societies. Anim. Behav. 62, 643–651. https://doi.org/10.1006/anbe.2001.1795 (2001).Article 

    Google Scholar 
    Theraulaz, G. & Deneubourg, J.-L. in The Ethological roots of Culture (eds Gardner RA, Chiarelli AB, Gardner BT, & Ploojd FX) 1–19 (Kluwer Academic Publishers, 1994).Theraulaz, G. & Bonabeau, E. Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400. https://doi.org/10.1006/jtbi.1995.0255 (1995).Article 
    ADS 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).Article 
    ADS 

    Google Scholar 
    Gordon, D. M. The evolution of the algorithms for collective behavior. Cell Syst. 3, 514–520 (2016).Article 

    Google Scholar 
    Grüter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. PLoS ONE 7, e44501. https://doi.org/10.1371/journal.pone.0044501 (2012).Article 
    ADS 

    Google Scholar 
    Wehner, R., Harkness, R. D. & Schmid-Hempel, P. Foraging Strategies in Individually Searching Ants. (Fischer, 1983).Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects. (Princeton University Press, 1978).Anderson, C. & Franks, N. R. Teams in animal societies. Behav. Ecol. 12, 534–540. https://doi.org/10.1093/beheco/12.5.534 (2001).Article 

    Google Scholar 
    Jeanne, R. L. The evolution of the organization of work in social insects. Monitore Zool. Italiano-Ital. J. Zool. 20, 119–133. https://doi.org/10.1080/00269786.1986.10736494 (1986).Article 

    Google Scholar 
    Ratnieks, F. L. & Anderson, C. Task partitioning in insects societies. Insectes Soc. 46, 95–108 (1999).Article 

    Google Scholar 
    Anderson, C., Boomsma, J. J. & Bartholdi, J. J. Task partitioning in insect societies: bucket brigades. Insectes Soc. 49, 171–180. https://doi.org/10.1007/s00040-002-8298-7 (2002).Article 

    Google Scholar 
    Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).Article 

    Google Scholar 
    Leighton, G. M., Charbonneau, D. & Dornhaus, A. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav. Ecol. 28, 319–327. https://doi.org/10.1093/beheco/arw162 (2017).Article 

    Google Scholar 
    Grassé, P.-P. La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6, 41–80 (1959).Article 

    Google Scholar 
    Theraulaz, G. & Bonabeau, E. A brief history of stigmergy. Artif. Life 5, 97–116. https://doi.org/10.1162/106454699568700 (1999).Article 

    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artif. Life 5, 117–136. https://doi.org/10.1162/106454699568719 (1999).Article 

    Google Scholar 
    Karsai, I. & Penzes, Z. Comb Building in Social Wasps – Self-Organization and Stigmergic Script. J. Theor. Biol. 161, 505–525. https://doi.org/10.1006/jtbi.1993.1070 (1993).Article 
    ADS 

    Google Scholar 
    Dorigo, M., Bonabeau, E. & Theraulaz, G. Ant algorithms and stigmergy. Fut. Gen. Comput. Syst. 16, 851–871 (2000).Article 

    Google Scholar 
    Camazine, S. Self-organizing pattern-formation on the combs of Honey-Bee Colonies. Behav. Ecol. Sociobiol. 28, 61–76. https://doi.org/10.1007/bf00172140 (1991).Article 

    Google Scholar 
    Camazine, S., Sneyd, J., Jenkins, M. J. & Murray, J. D. A Mathematical-model of self-organized pattern-formation on the combs of Honeybee Colonies. J. Theor. Biol. 147, 553–571. https://doi.org/10.1016/S0022-5193(05)80264-4 (1990).Article 
    ADS 

    Google Scholar 
    Deneubourg, J.-L. et al. in Simulation of Adaptive Behavior: From Animals to Animats (eds J.A. Meyer & S.W. Wilson) 356–365 (The MIT Press/Bradford Books, 1991).Franks, N. R. & Sendovafranks, A. B. Brood Sorting by Ants – Distributing the Workload over the Work-Surface. Behav. Ecol. Sociobiol. 30, 109–123 (1992).Article 

    Google Scholar 
    Sendova-Franks, A. B., Scholes, S. R., Franks, N. R. & Melhuish, C. Brood sorting by ants: two phases and differential diffusion. Anim. Behav. 68, 1095–1106. https://doi.org/10.1016/j.anbehav.2004.02.013 (2004).Article 

    Google Scholar 
    Lan, T., Liu, S. & Yang, S. X. in 2006 6th World Congress on Intelligent Control and Automation. 441–445 (IEEE).Renucci, M., Tirard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insectes Soc. 58, 9–16 (2011).Article 

    Google Scholar 
    Detrain, C. & Deneubourg, J. L. Collective decision-making and foraging patterns in Ants and Honeybees. Advances in Insect Physiology 35(35), 123–173. https://doi.org/10.1016/S0065-2806(08)00002-7 (2008).Article 

    Google Scholar 
    Couzin, I. D. & Franks, N. R. Self-organized lane formation and optimized traffic flow in army ants. Proc Biol Sci 270, 139–146. https://doi.org/10.1098/rspb.2002.2210 (2003).Article 

    Google Scholar 
    Gulyas, L., Laufer, L. & Szabo, R. in International Workshop on Engineering Self-Organising Applications 50–65 (Springer).Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529. https://doi.org/10.1007/s00265-004-0824-3 (2004).Article 

    Google Scholar 
    Oberst, S. et al. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput. Struct. Biotechnol. J. 18, 2522–2534 (2020).Article 

    Google Scholar 
    Hart, A., Anderson, C. & Ratnieks, F. Task partitioning in leafcutting ants. Acta Ethologica 5, 1–11. https://doi.org/10.1007/s10211-002-0062-5 (2002).Article 

    Google Scholar 
    Hart, A. G. & Ratnieks, F. L. Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Anim. Behav. 62, 227–234 (2001).Article 

    Google Scholar 
    Röschard, J. & Roces, F. Sequential load transport in grass-cutting ants (Atta vollenweideri): maximization of plant delivery rate or improved information transfer? Psyche 2011 (2011).Nickele, M. A., Reis Filho, W. & Pie, M. R. Sequential load transport during foraging in Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Myrmecol News 21, 73–82 (2015).Ferrante, E., Turgut, A. E., Duenez-Guzman, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comp. Biol. 11, e1004273. https://doi.org/10.1371/journal.pcbi.1004273 (2015).Article 
    ADS 

    Google Scholar 
    Grueter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. (2012).Holcombe, M. et al. Modelling complex biological systems using an agent-based approach. Integr. Biol. 4, 53–64 (2012).Article 

    Google Scholar 
    Fourcassié, V., Dussutour, A. & Deneubourg, J.-L. Ant traffic rules. J. Exp. Biol. 213, 2357–2363 (2010).Article 

    Google Scholar 
    Modlmeier, A. P., Keiser, C. N., Shearer, T. A. & Pruitt, J. N. Species-specific influence of group composition on collective behaviors in ants. Behav. Ecol. Sociobiol. 68, 1929–1937 (2014).Article 

    Google Scholar 
    Modlmeier, A. P., Liebmann, J. E. & Foitzik, S. Diverse societies are more productive: a lesson from ants. Proc. R. Soc. B 279, 2142–2150 (2012).Article 

    Google Scholar 
    Walsh, J. T., Garnier, S. & Linksvayer, T. A. Ant collective behavior is heritable and shaped by selection. Am. Nat. 196, 541–554 (2020).Article 

    Google Scholar 
    Tannenbaum, E. When does division of labor lead to increased system output?. J. Theor. Biol. 247, 413–425 (2007).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wahl, L. M. Evolving the division of labour: Generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Wakano, J., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).Article 
    ADS 

    Google Scholar 
    Goldsby, H. J., Dornhaus, A., Kerr, B. & Ofria, C. Task-switching costs promote the evolution of division of labor and shifts in individuality. Proc. Natl. Acad. Sci. 109, 13686–13691 (2012).Article 
    ADS 

    Google Scholar 
    Rueffler, C., Hermisson, J. & Wagner, G. P. Evolution of functional specialization and division of labor. Proc. Natl. Acad. Sci. 109, E326–E335 (2012).Article 
    ADS 

    Google Scholar 
    Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. & Verza, S. S. The effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology 42, 87–92 (2003).
    Google Scholar 
    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42(42), 91–110. https://doi.org/10.1146/annurev-ecolsys-102710-145017 (2011).Article 

    Google Scholar 
    Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957. https://doi.org/10.1007/s00265-012-1343-2 (2012).Article 

    Google Scholar 
    Floreano, D. & Keller, L. Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol. 8, e1000292 (2010).Article 

    Google Scholar 
    Floreano, D., Mitri, S., Magnenat, S. & Keller, L. Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17, 514–519 (2007).Article 

    Google Scholar 
    Mitri, S., Floreano, D. & Keller, L. The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106, 15786–15790 (2009).Article 
    ADS 

    Google Scholar 
    Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938 (2018).Article 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 

    Google Scholar 
    Van den Berg, P. & Weissing, F. J. The importance of mechanisms for the evolution of cooperation. Proc. R. Soc. B 282, 20151382 (2015).Article 

    Google Scholar 
    Wetterer, J. K. Ontogenetic changes in forager polymorphism and foraging ecology in the leaf-cutting ant Atta cephalotes. Oecologia 98, 235–238. https://doi.org/10.1007/BF00341478 (1994).Article 
    ADS 

    Google Scholar 
    Wetterer, J. K. Forager size and ecology of Acromyrmex coronatus and other leaf-cutting ants in Costa Rica. Oecologia 104, 409–415. https://doi.org/10.1007/BF00341337 (1995).Article 
    ADS 

    Google Scholar 
    Evison, S. E. F. & Hughes, W. O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98, 643–649 (2011).Article 
    ADS 

    Google Scholar 
    Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).Article 
    ADS 

    Google Scholar 
    Villesen, P., Murakami, T., Schultz, T. R. & Boomsma, o. J. Identifying the transition between single and multiple mating of queens in fungus-growing ants. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 1541–1548 (2002).Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl. Acad. Sci. 105, 5287–5288 (2008).Article 
    ADS 

    Google Scholar 
    Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. 105, 5435–5440 (2008).Article 
    ADS 

    Google Scholar 
    Fowler, H. G. Latitudinal gradients and diversity of the leaf-cutting ants (Atta and Acromyrmex)(Hymenoptera: Formicidae). Rev. Biol. Trop. 31, 213–216 (1983).
    Google Scholar 
    Jackson, D. E. & Ratnieks, F. L. Communication in ants. Curr. Biol. 16, R570–R574 (2006).Article 

    Google Scholar 
    Roces, F. & Hölldobler, B. Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav. Ecol. Sociobiol. 37, 297–302 (1995).Article 

    Google Scholar 
    Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B. & Fowler, H. Foraging by bucket-brigade in leaf-cutter ants. Biotropica 1, 210–213 (1980).Article 

    Google Scholar 
    Boi, S., Couzin, I. D., Buono, N. D., Franks, N. & Britton, N. Coupled oscillators and activity waves in ant colonies. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 371–378 (1999).Cole, B. J. Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259 (1991).Article 

    Google Scholar 
    Cornejo, A., Dornhaus, A., Lynch, N. & Nagpal, R. in International Symposium on Distributed Computing. 46–60 (Springer).Franks, N. R., Bryant, S., Griffiths, R. & Hemerik, L. Synchronization of the behaviour within nests of the antleptothorax acervorum (fabricius)—I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612 (1990).Pagliara, R., Gordon, D. M. & Leonard, N. E. Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Comp. Biol. 14, e1006200 (2018).Article 
    ADS 

    Google Scholar 
    Schmickl, T. & Karsai, I. Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115, 13180–13185 (2018).Article 
    ADS 

    Google Scholar 
    Solé, R. V., Miramontes, O. & Goodwin, B. C. Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357 (1993).Article 
    ADS 

    Google Scholar 
    Gordon, D. M., Goodwin, B. C. & Trainor, L. E. A parallel distributed model of the behaviour of ant colonies. J. Theor. Biol. 156, 293–307 (1992).Article 
    ADS 

    Google Scholar 
    Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).Article 

    Google Scholar 
    Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).Article 

    Google Scholar 
    Niemeyer, N., Schleimer, J.-H. & Schreiber, S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr. Opin. Neurobiol. 70, 81–88 (2021).Article 

    Google Scholar 
    Rombouts, J., Vandervelde, A. & Gelens, L. Delay models for the early embryonic cell cycle oscillator. PLoS ONE 13, e0194769 (2018).Article 

    Google Scholar 
    Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).Article 

    Google Scholar 
    Bryant, B. D. & Miikkulainen, R. Foundations of Trusted Autonomy 87–115 (Springer, 2018).
    Google Scholar 
    Masad, D. & Kazil, J. in 14th PYTHON in Science Conference. 53–60 (Citeseer).Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).Article 

    Google Scholar  More

  • in

    Soil fertility analysis in the Republic of Bashkortostan

    Soil studies were carried out on 115,896.2 hectares of agricultural lands in fifteen villages of the municipal district obtained by subtracting from the available area of the village industrial lands, populated areas, forest plots occupied by water, etc.As a result of the land reform and redistribution of land for various purposes for the period from 1972 to 2021, the area of agricultural land decreased by 12.7% compared to the data of the previous survey.In the research area, the largest territories are occupied by black soils, which amount to 52,826.24 ha, including bleached soils—42,605.9 ha, alkaline – 6983.8 ha and shortened – 3236.54 ha. Slightly inferior to the black soils are dark gray forest soils with an area of 37,043.63 hectares, alluvial—12,287.4 hectares, gray forest—6371.96 hectares and forest soils of a rooted profile – 5058.94 hectares. The share of sod-carbonate soils accounts for 7792.7 hectares of land, which is 6.2%. The gradation did not include the soils of the ravine-beam complex, sand and gravel masses, existing ravines and disturbed lands, and quarries that occupy 5,452.4 hectares of territory (4.3%).One of the important indicators of soils, especially used in agricultural production, is the humus state. Thus, over 49 years there has been a slight decrease in the area under obese (high-humus) soils in the hectare ratio, due to a general decrease in the area of farmland, but in the context of the security group, they have increased by 1.3% (Table 1). The remaining levels of security have remained almost at the same level. The increase in the amount of fat chernozems was facilitated by the withdrawal of arable land from circulation and their transfer to perennial plantations. Earlier researches conducted on experimental fields of the Bashkir State Agrarian University identified and revealed changes in the quantitative and qualitative composition of organic matter from 15 to 30% when introducing a land plot for arable land26. To preserve and improve soil fertility, it is recommended to carry out a complex of agrotechnical, agrochemical and reclamation measures and the use of various meliorants, organic and mineral fertilizers27.Studies of the capacity of the humus horizon have shown that low–sized soils have become the most widespread—69,660.2 hectares or 60.1% of the total area of agricultural land (Fig. 2). A smaller area is occupied by medium-sized soils – 38,128.7 hectares (32.9%), not included in the gradation – 8107.3 hectares or 7.0%, respectively. It should be noted that the specific gravity of the soil of the ravine-beam complex, sand and gravel masses, active ravines and disturbed lands, and quarries increased by 2.5%.Figure 2Distribution of soils by humus horizon thickness by region.Full size imageThe granulometric composition of the soil is also of great agronomic importance28. Physical, physico-chemical, physico-mechanical properties and water, air, and nutrient regimes of soils depend on it29,30. In the Salavatskiy district there were practically no changes in soil areas in terms of granulometric composition, mainly clay soil varieties predominate. According to the mechanical composition of the soil there were distributed as follows: light clay – 71,807.38 ha or 62% (in 1972, 86,375 ha or 65.1%) of the total area of agricultural land and heavy loamy – 34,745.24 ha (30%) (in 1972—39,614 ha or 29.8%). The share of medium-loamy varieties accounts for 0.8% (in 1972—0.84%) (Fig. 3).Figure 3Distribution of Salavatskiy district soil areas by granulometric composition, %.Full size imageThe gradation did not include 8362.27 hectares of land. Heavy loamy, medium clay, sandy loam and sandy soils have not been identified.All arable soils of the analyzed territory are slightly susceptible to erosion processes, the processes of water and, to a lesser extent, wind erosion have developed. 67,445.21 hectares of land, or 58.2% (in 1972, 77,702 hectares) of the total area of agricultural lands are occupied under lightly washed soils, the share of medium and heavily washed accounts for 3.9% and 0.1%, respectively. Unwashed soils are distributed on 36,985.46 hectares (31.9%) (Table 2).Table 2 Soil areas by category of erosion feature (Salavatskiy district of the Republic of Bashkortostan).Full size tableAccording to the results of the field research and laboratory agrochemical analyses of soils, land refinements related to agricultural land were carried out. The basis for correcting and digitizing the contours of soil varieties were in the maps made in 1972 (Fig. 4).Figure 4Soil map within the boundaries of the Salavatskiy district of the Republic of Bashkortostan, 1972.Full size imageDigitization included scanning the topographic basis, then assigning coordinates to a raster image, decrypting and digitizing orthophotos (Fig. 5).Figure 5Orthophotoplan within the boundaries of the Salavatskiy district of the Republic of Bashkortostan, 2007.Full size imageAfter the carried-out activities, a soil map was obtained in the digital format of the Mapinfo program, after which it was converted into a raster basis with reference to the local coordinate system MSK 02 zone 1. The digitization of the 1972 soil map was carried out manually by outlining the contours of the topographic base and the scanned map.During digitization, information partially lost due to its wear and distortion during scanning was restored. A necessary condition is the use of the originals of the soil maps of the previous survey (1972).As a planned basis on which the created layers can be opened and information on soils can be obtained, a raster basis was ordinated into a local coordinate system (Fig. 6).Figure 6Completed soil map within the boundaries of the Salavat district of the Republic of Belarus, 2021.Full size imageThe result of the conducted research is the developed electronic digital soil map of the municipal district of Salavatskiy district which unites 15 rural settlements. The electronic soil map is presented in the form of a complex of electronic layers with the names of the type and subtype of soils, soil variety, mechanical or granulometric composition, soil-forming and underlying rocks. It also includes indicators of organic carbon, humus, mobile phosphorus, exchangeable potassium, soil acidity by pH value and the capacity of the humus-accumulative horizon. More

  • in

    Potential negative effects of the installation of video surveillance cameras in raptors’ nests

    Ribic, C. A., Thompson, F. R. & Pietz, P. J. Video Surveillance of Nesting Birds (University of California Press, 2012).Book 

    Google Scholar 
    O’Brien, T. G. & Kinnaird, M. F. A picture is worth a thousand words: The application of camera trapping to the study of birds. Bird Conserv. Int. 18, S144–S162 (2008).Article 

    Google Scholar 
    Kristan, D. M., Golightly Jr, R. T. & Tomkiewicz Jr, S. M. A solar-powered transmitting video camera for monitoring raptor nests. Wildl. Soc. Bull. 24, 284–290 (1996).
    Google Scholar 
    Grubb, T. An infrared video camera system for monitoring diurnal and nocturnal raptors. J. Raptor Res. 32, 290–296 (1998).
    Google Scholar 
    Margalida, A. et al. A solar-powered transmitting video camera for monitoring cliff-nesting raptors. J. Field Ornithol. 77, 7–12 (2006).Article 

    Google Scholar 
    Bolton, M., Butcher, N., Sharpe, F., Stevens, D. & Fisher, G. Remote monitoring of nests using digital camera technology. J. Field Ornithol. 78, 213–220 (2007).Article 

    Google Scholar 
    Pierce, A. J. & Pobprasert, K. A portable system for continuous monitoring of bird nests using digital video recorders. J. Field Ornithol. 78, 322–328 (2007).Article 

    Google Scholar 
    Benson, T. J., Brown, J. D. & Bednarz, J. C. Identifying predators clarifies predictors of nest success in a temperate passerine. J. Anim. Ecol. 79, 225–234 (2010).Article 

    Google Scholar 
    Lewis, S. B., Fuller, M. R. & Titus, K. A comparison of 3 methods for assessing raptor diet during the breeding season. Wildl. Soc. Bull. 32, 373–385 (2004).Article 

    Google Scholar 
    Rogers, A. S. Quantifying Northern Goshawk diets using remote cameras and observations from blinds. J. Raptor Res. 39, 303–309 (2005).ADS 

    Google Scholar 
    Tornberg, R. & Reif, V. Assessing the diet of birds of prey: A comparison of prey items found in nests and images. Ornis Fenn. 84, 21 (2007).
    Google Scholar 
    López-López, P. & Urios, V. Use of digital trail cameras to study Bonelli’s eagle diet during the nestling period. Ital. J. Zool. 77, 289–295 (2010).Article 

    Google Scholar 
    Harrison, J. T., Kochert, M. N., Pauli, B. P. & Heath, J. A. Using motion-activated trail cameras to study diet and productivity of cliff-nesting Golden Eagles. J. Raptor Res. 53, 26–37 (2019).Article 

    Google Scholar 
    McRae, S. B., Weatherhead, P. J. & Montgomerie, R. American robin nestlings compete by jockeying for position. Behav. Ecol. Sociobiol. 33, 101–106 (1993).Article 

    Google Scholar 
    Nathan, A., Legge, S. & Cockburn, A. Nestling aggression in broods of a siblicidal kingfisher, the laughing kookaburra. Behav. Ecol. 12, 716–725 (2001).Article 

    Google Scholar 
    Grivas, C. et al. An audio–visual nest monitoring system for the study and manipulation of siblicide in bearded vultures Gypaetus barbatus on the island of Crete (Greece). J. Ethol. 27, 105–116 (2009).Article 

    Google Scholar 
    Gula, R., Theuerkauf, J., Rouys, S. & Legault, A. An audio/video surveillance system for wildlife. Eur. J. Wildl. Res. 56, 803–807 (2010).Article 

    Google Scholar 
    Sanaiotti, T. M., Seixas, G. H., Duleba, S. & Martins, F. D. Camera trapping at harpy eagle nests: Interspecies interactions under predation risk. J. Raptor Res. 51, 72–78 (2017).Article 

    Google Scholar 
    Allen, M. L., Inagaki, A. & Ward, M. P. Cannibalism in raptors: A review. J. Raptor Res. 54, 424–430 (2020).Article 

    Google Scholar 
    Academia, M. H. & Dalgleish, H. J. Use of nest web cameras and citizen science to quantify osprey prey delivery rate and nest success. J. Raptor Res. 56, 212–219 (2022).Article 

    Google Scholar 
    Gysel, L. W. & Davis, E. M. A simple automatic photographic unit for wildlife research. J. Wildl. Manag. 20, 451–453 (1956).Article 

    Google Scholar 
    Royama, T. A device of an auto-cinematic food-recorder. Jpn. J. Ornithol. 15, 172–176 (1959).Article 

    Google Scholar 
    Cox, W. A. et al. Development of camera technology for monitoring nests. In Chapter 15. Video Surveill. Nesting Birds Stud. Avian Biol. (eds Ribic, C. A. et al.) 185–210 (Univ. Calif. Press, 2012).Sanders, M. D. & Maloney, R. F. Causes of mortality at nests of ground-nesting birds in the Upper Waitaki Basin, South Island, New Zealand: A 5-year video study. Biol. Conserv. 106, 225–236 (2002).Article 

    Google Scholar 
    Reif, V. & Tornberg, R. Using time-lapse digital video recording for a nesting study of birds of prey. Eur. J. Wildl. Res. 52, 251–258 (2006).Article 

    Google Scholar 
    McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article 

    Google Scholar 
    Powell, L. A., Giovanni, M. D., Groepper, S. R., Reineke, M. & Schacht, W. H. Attendance Patterns and Survival of Western Meadowlark Nests (University of California Press, 2012).Book 

    Google Scholar 
    Herranz, J., Yanes, M. & Suárez, F. Does Photo-Monitoring Affect Nest Predation? J. Field Ornithol. 73, 97–101 (2002).Article 

    Google Scholar 
    Richardson, T. W., Gardali, T. & Jenkins, S. H. Review and meta-analysis of camera effects on avian nest success. J. Wildl. Manag. 73, 287–293 (2009).Article 

    Google Scholar 
    Cain, S. L. Nesting activity time budgets of Bald Eagles in southeast Alaska. (1985).García-Salgado, G. et al. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model. PLoS ONE 10, e0127585 (2015).Article 

    Google Scholar 
    Swann, D. E., Kawanishi, K. & Palmer, J. Evaluating types and features of camera traps in ecological studies: a guide for researchers. In Camera Traps in Animal Ecology 27–43 (Springer, 2011).Dykstra, C., Meyer, M. & Warnke, D. Bald Eagle reproductive performance following video camera placement. J. Raptor Res. 36, 136–139 (2002).
    Google Scholar 
    Del Moral, J. C. & Molina, B. El águila perdicera en España, población reproductora en 2018 y método de censo (SEO/BirdLife, 2018).
    Google Scholar 
    Generalitat Valenciana. Orden 2/2022, de 16 de febrero, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se actualizan los listados valencianos de especies protegidas de flora y fauna (2022).Real, J. & Mañosa, S. Demography and conservation of western European Bonelli’s eagle Hieraaetus fasciatus populations. Biol. Conserv. 79, 59–66 (1997).Article 

    Google Scholar 
    Hernández-Matías, A. et al. From local monitoring to a broad-scale viability assessment: A case study for the Bonelli’s Eagle in western Europe. Ecol. Monogr. 83, 239–261 (2013).Article 

    Google Scholar 
    Rollan, A. et al. Guiding local-scale management to improve the conservation of endangered populations: The example of Bonelli’s Eagle Aquila fasciata. Bird Conserv. Int. 31, 395–409 (2021).Article 

    Google Scholar 
    López-López, P., García-Ripollés, C. & Urios, V. Population size, breeding performance and territory quality of Bonelli’s Eagle Hieraaetus fasciatus in eastern Spain. Bird Study 54, 335–342 (2007).Article 

    Google Scholar 
    López-López, P. Informe científico valoración de la inclusión del águila perdicera como especie en peligro de extinción en el Catálogo Valenciano de Especies de Fauna Amenazadahttps://doi.org/10.13140/RG.2.2.32806.04166 (2021).López-López, P., Perona, A., Egea-Casas, O., Morant, J. & Urios, V. Tri-axial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. 68, 57–67 (2022).Article 

    Google Scholar 
    Perona, A. M., Urios, V. & López-López, P. Holidays? Not for all Eagles have larger home ranges on holidays as a consequence of human disturbance. Biol. Conserv. 231, 59–66 (2019).Article 

    Google Scholar 
    Morollón, S., Urios, V. & López-López, P. Fifteen days are enough to estimate home-range size in some long-lived resident eagles. J. Ornithol. 163, 849–854 (2022).Article 

    Google Scholar 
    Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment:” Pseudoreplication” in time?. Ecology 67, 929–940 (1986).Article 

    Google Scholar 
    Underwood, A. Beyond BACI: The detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol. 161, 145–178 (1992).Article 

    Google Scholar 
    López-López, P., García-Ripollés, C., García-López, F., Aguilar, J. M. & Verdejo, J. Patrón de distribución del águila real Aquila chrysaetos y del águila-azor perdicera Hieraaetus fasciatus en la provincia de Castellón. Ardeola 51, 275–283 (2004).
    Google Scholar 
    López-López, P., García-Ripollés, C., Aguilar, J. M., Garcia-López, F. & Verdejo, J. Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J. Ornithol. 147, 97–106 (2006).Article 

    Google Scholar 
    Gil-Sánchez, J. Effects of altitude and prey availability on the laying date of Bonelli’s Eagles (Hieraaetus fasciatus) in Granada (SE Spain). Ardeola 47, 1–8 (2000).
    Google Scholar 
    Forsman, D. Flight Identification of Raptors of Europe, North Africa and the Middle East (Bloomsbury Publishing, 2016).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.46.0. (2022).Cutler, T. L. & Swann, D. E. Using remote photography in wildlife ecology: A review. Wildl. Soc. Bull. 27, 571–581 (1999).
    Google Scholar 
    Richardson, C. T. & Miller, C. K. Recommendations for protecting raptors from human disturbance: A review. Wildl. Soc. Bull. 25, 634–638 (1997).
    Google Scholar 
    Balbontin, J., Penteriani, V. & Ferrer, M. Variations in the age of mates as an early warning signal of changes in population trends? The case of Bonelli’s eagle in Andalusia. Biol. Conserv. 109, 417–423 (2003).Article 

    Google Scholar 
    Martinez, J. A. et al. Breeding performance, age effects and territory occupancy in a Bonelli’s eagle Hieraaetus fasciatus population. Ibis 150, 223–233 (2008).Article 

    Google Scholar 
    Sánchez-Zapata, J., Calvo, J., Carrete, M. & Martínez, J. Age and breeding success of a Golden Eagle Aquila chrysaetos population in southeastern Spain. Bird Study 47, 235–237 (2000).Article 

    Google Scholar 
    Ferrer, M., Penteriani, V., Balbontin, J. & Pandolfi, M. The proportion of immature breeders as a reliable early warning signal of population decline: Evidence from the Spanish imperial eagle in Donana. Biol. Conserv. 114, 463–466 (2003).Article 

    Google Scholar 
    Cano, A. & Parrinder, E. Studies of less familiar birds, Bonelli’s Eagle. Br. Birds 54, 422–427 (1961).
    Google Scholar 
    Blondel, J., Coulon, L., Girerd, B. & Hortigue, M. Deux cents heures d’observation aupre‘s de l’aire de l’Aigle de Bonelli Hieraaetus fasciatus. Nos Oiseaux 30, 37–60 (1969).
    Google Scholar 
    Vaucher, C. Notes sur 1’ethologie de I’Aigle de Bonelli. Nos Oiseaux 31, 101–111 (1971).
    Google Scholar 
    Elósegui, J. Informe preliminar sobre alimentación de aves rapaces en Navarra y provincias limítrofes. Ardeola 19, 249–256 (1974).
    Google Scholar 
    Cheylan, G. L. place trophique de l’Aigle de Bonelli Hieraaetus fasciatus dans les biocénoses méditerranéennes. Alauda 45, 1–15 (1977).
    Google Scholar 
    Palma, L., Cancela da Fonseca, L. & Oliveira, L. L’alimentation de l’aigle de Bonelli Hieraaetus fasciatus dans la coˆte portugaise. Rapinyaires Mediterranis 2, 87–96 (1984).
    Google Scholar 
    Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60, 632–638 (1996).Article 

    Google Scholar 
    Gil-Sánchez, J. M., Molino, F., Valenzuela, G. & Moleón, M. Demografía y alimentación del Águila-azor Perdicera (Hieraaetus fasciatus) en la provincia de Granada. Ardeola 47, 69–75 (2000).
    Google Scholar 
    Ontiveros, D., Pleguezuelos, J. M. & Caro, J. Prey density, prey detectability and food habits: The case of Bonelli’s eagle and the conservation measures. Biol. Conserv. 123, 19–25 (2005).Article 

    Google Scholar 
    Moleón, M. et al. Large-scale spatio-temporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).Article 

    Google Scholar 
    Resano-Mayor, J. et al. Diet–demography relationships in a long-lived predator: From territories to populations. Oikos 125, 262–270 (2016).Article 

    Google Scholar 
    Di Vittorio, M. et al. Long-term changes in the breeding period diet of Bonelli’s eagle (Aquila fasciata) in Sicily, Italy. Wildl. Res. 46, 409–414 (2019).Article 

    Google Scholar  More

  • in

    Global predictions for the risk of establishment of Pierce’s disease of grapevines

    Thermal requirements to develop PDWe examined the response of a wide spectrum of European grapevine varieties to XfPD infection in three independent experiments conducted in 2018, 2019, and 2020. Overall, 86.1% (n = 764) of 886 inoculated plants, comprising 36 varieties and 57 unique scion/rootstock combinations, developed PD symptoms 16 weeks after inoculation. European V. vinifera varieties exhibited significant differences in their susceptibility to XfPD (Supplementary Table S1). All varieties, however, showed PD symptoms to some extent, confirming previous field observations of general susceptibility to XfPD9,12,37. We also found significant differences in virulence (χ2 = 68.73, df = 1, P = 2.2 × 10−16) between two XfPD strains isolated from grapevines in Majorca across grapevine varieties (Supplementary Fig. S1). Full details on the results of the inoculation tests are available in “Methods”, Supplementary Note 1, Supplementary Table S1 and Supplementary Data 1.Growing degree days (GDD) have traditionally been used to describe and predict phenological events of plants and insect pests, but rarely in plant diseases58. We took advantage of data collated in the inoculation trials together with temperature to relate symptom development to the accumulated heat units at weeks eight, 10, 12, 14, and 16 after inoculation (Supplementary Data 1). Rather than counting GDDs linearly above a threshold temperature, we consider Xf ’s specific growth rate in vitro within its cardinal temperatures. The empirical growth rates come from the seminal work by Feil & Purcell38 shown in the inset of Fig. 1a. This Arrhenius plot was transformed, as explained in Supplementary Note 2A, to obtain a a piece-wise function f(T) Eq. (1). Our model and risk maps are based on f(T) (red line in Fig. 1a) because it provides the best fit to the experimental data when compared with the commonly used Beta function (blue line) for representing the thermal response in biological processes59,60. This Modified Growing Degree Day (MGDD) profile Eq. (1) enables to measure the thermal integral from hourly average temperatures, improving the prediction scale of the biological process61. MGDD also provides an excellent metric to link XfPD growth in culture with PD development as, once the pathogen is injected into the healthy vine, symptoms progression mainly depends upon the bacterial load (i.e., multiplication) and the movement through the xylem vessel network, which are fundamentally temperature-dependent processes38,62. Moreover, MGDD can be mathematically related to the exponential or logistic growth of the pathogen within the plant (Supplementary Note 2B).Fig. 1: Climatic and transmission layers composing the epidemiological model.a MGDD profile fitted to the in vitro data of Xf growth rate in Feil & Purcell 200138. The original Arrhenius plot in Kelvin degrees (inset) was converted to Celsius, as explained in (Supplementary Note 2A), to obtain the fit shown in the main plot red line; the blue line represents the fit with a Beta function. b Correlation between CDD and the average ({T}_{min }) of the coldest month between 1981 and 2019. Plotted black dots (worldwide) and yellow dots (main wine-producing zones) depict climatic data from 6,487,200 cells at 0.1∘ × 0.1∘ resolution, spread globally and retrieved from ERA5-Land dataset. The red solid line depicts the fitted exponential function for worldwide data and the blue solid line for main vineyard zones. c Nonlinear relationship between MGDD (red line) and CDD (blue line) and the likelihood of developing chronic infections. Black dots depict the cumulative proportion of grapevine plants in the population of 36 inoculated varieties showing five or more symptomatic leaves at each of the 15 MGDD levels (see Supplementary Information). Vertical bars are the 95% CI. d Combined ranges of MGDD and CDD on the likelihood of developing chronic infection. e Transmission layer in the dynamic equation (1) of the SIR compartmental model. f Relationship between the exponential growth of the number of infected plants with the risk index and their ranks.Full size imageInterannual infection survival in grapevines plays a relevant role when modelling PD epidemiology. In our model, we assumed a threshold of five or more symptomatic leaves for these chronic infections based on the relationship between the timing and severity of the infection during the growing season and the likelihood of winter recovery38,39,42. This five-leaf cut-off was grounded on: (i) the bimodal distribution in the frequency of the number of symptomatic leaves among the population of inoculated grapevines (Supplementary Fig. S1), whereby vines that generally show less than five symptomatic leaves at 12 weeks after inoculation remain so in the following weeks, while those that pass that threshold continue to produce symptomatic leaves, and (ii) the observed correlation between the acropetal and basipetal movement of Xf along the cane (Supplementary Fig. S1). The likelihood of developing chronic infections as a function of accumulated MGDD among the population of grapevine varieties was modelled using survival analysis with data fitted to a logistic distribution ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})). A minimum window of MGDD = 528 was needed to develop chronic infections (var. Tempranillo), about 975 for a median estimate, while a cumulative MGDD  > 1159 indicate over 90% probability within a growing season (red curve in Fig. 1c and “Methods”).Next, we intended to model the probability of disease recovery by exposure to cold temperatures. Previous works had specifically modelled cold curing on Pinot Noir and Cabernet Sauvignon varieties in California as the effect of temperature and duration39 by assuming a progressive elimination of the bacterial load with cold temperatures42. In the absence of appropriate empirical data to formulate a general average pattern of winter curing among grapevine varieties, we combined the approach of Lieth et al.39 and the empirical observations of Purcell on the distribution of PD in the US related to the average minimum temperature of the coldest month, Tmin, isolines41. To consider the accumulation of cold units in an analogy of the MGDD, we searched for a general correlation between Tmin and the cold degree days (CDDs) with base temperature = 6 ∘C (see “Methods”). We found an exponential relation, ({{{{{rm{CDD}}}}}} sim 230exp (-0.26cdot {T}_{min })), where specifically, CDD ≳ 306 correspond to ({T}_{min } < -1.{1},^{circ }{{{{{rm{C}}}}}}) (Fig. 1b). To transform this exponential relationship to a probabilistic function analogous to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})), hereafter denoted ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})), ranging between 0 and 1, we considered the sigmoidal family of functions (f(x)=frac{A}{B+{x}^{C}}) with A = 9 × 106, B = A and C = 3 (Fig. 1c), fulfilling the limit ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}}=0)=1), i.e., no winter curing when no cold accumulated, and a conservative 75% of the infected plants recovered at ({T}_{min }=-1.{1},^{circ }{{{{{rm{C}}}}}}) instead of 100% to reflect uncertainties on the effect of winter curing.MGDD/CDD distribution mapsMGDD were used to compute annual risk maps of developing PD during summer for the period 1981–2019 (see “Methods”). The resulting averaged map identifies all known areas with a recent history of severe PD in the US corresponding to ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 90 %) (i.e., high-risk), such as the Gulf Coast states (Texas, Alabama, Mississippi, Louisiana, Florida), Georgia and Southern California sites (e.g., Temecula Valley) (Fig. 2a), while captures areas with a steep gradation of disease endemicity in the north coast of California (({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}} , > , 50 % )). Overall, more than 95% of confirmed PD sites (n = 155) in the US (Supplementary Data 2) fall in grid cells with ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 50 %).Fig. 2: Average thermal-dependent maps for Pierce’s disease (PD) development and recovery in North America and Europe.PD development during the growing season based on average ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}})) estimations between 1981 and 2019 in North America (a) and Europe (b) derived from the results of the inoculation experiments on 36 grapevine varieties. Large differences in the areal extension with favourable MGDDs can be observed between the US and Europe. The winter curing effect is reflected in the distribution of the average ({{{{{{{mathcal{G}}}}}}}}({{{{{rm{CDD}}}}}})) for the 1981–2019 period in the United States (c) and Europe (d). A snapshot of the temperature-driven probability of chronic infection averaged for the 1981–2019 period is obtained from the joint effect of MGDD and CDD in North America (e) and Europe (f). Warmer colours indicate more favourable conditions for chronic PD and the dashed line highlights the threshold of chronic infection probability being 0.5.Full size imageThe average MGDD-projected map for Europe during 1981–2019 spots a high risk for the coast, islands and major river valleys of the Mediterranean Basin, southern Spain, the Atlantic coast from Gibraltar to Oporto, and continental areas of central and southeast Europe (Fig. 2b). Of these, however, only some Mediterranean islands, such as Cyprus and Crete, show ({{{{{{{mathcal{F}}}}}}}}({{{{{rm{MGDD}}}}}}) , > , 99 %) comparable to areas with high disease incidence in the Gulf Coast states of the US and California. Almost all the Atlantic coast from Oporto (Portugal) to Denmark are below suitable MGDD, with an important exception in the Garonne river basin in France (Bordeaux Area) with low to moderate MGDD (Fig. 2b).Figure 2a shows how the area with high-risk MGDD values extends further north of the current known PD distribution in the southeastern US, suggesting that winter temperatures limit the expansion of PD northwards9. A comparison between MGDD and CDD maps (Fig. 2a vs. Fig. 2c, Fig. 2e) further supports the idea that winter curing is restricting PD northward migration from the southeastern US. However, consistent with growing concern among Midwest states winegrowers on PD northward migration led by climate change63, we found a mean increase of 0.12% y−1 in the areal extent with CDD  0.075) in 22.3% of the vineyards in Europe. However, no vineyard is in epidemic-risk zones with a high-risk index and only 2.9% of the vineyard surface is at moderate risk (Supplementary Table S8). The areas with the highest risk index (r(t) between 0.70 and 0.88) are mainly located in the Mediterranean islands of Crete, Cyprus and the Balearic Islands or at pronounced peninsulas like Apulia (Italy) and Peloponnese (Greece) in the continent (Fig. 6a and Supplementary Table S8). Most vineyards are in non-risk zones (42.1%), whereas 35.6% are located in transition zones with presently non-risk but where XfPD could become established in the next decades causing some sporadic outbreaks. In Supplementary Data 4 and Supplementary Table S8, we provide full details of the total vineyard areas currently at risk for each country and region.Fig. 6: Intersection between Corine-land-cover vineyard distribution map and PD-risk maps for 2020 and 2050.Data were obtained from Corine-land-cover (2018) and the layer of climatic suitability forP. spumarius in Europe from35. The surface of the vineyard contour has been enlarged to improve the visualisation of the risk zones and disease-incidence growth-rate ranks. a PD risk map for 2019 and its projection for 2050 (b). Blue colours represent non-risk zones and transient risk zones for chronic PD (R0  More

  • in

    Urban population structure and dispersal of an Australian mosquito (Aedes notoscriptus) involved in disease transmission

    Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G, Chen N (2017) Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet 13:e1006911Article 

    Google Scholar 
    Browning BL, Browning SR (2016) Genotype imputation with millions of reference samples. Am J Hum Genet 98:116–126Article 

    Google Scholar 
    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140Article 

    Google Scholar 
    Carvajal TM, Ogiski K, Yaegeshi S, Hernandez LFT, Viacrusis KM, Ho HT, Amalin DM, Watanable K (2020) Fine-scale population genetic structure of dengue mosquito vector, Aedes aegypti, in metropolitan manila, Philippines. PLOS Neglected Tropical Dis 14:e0008279Article 

    Google Scholar 
    Christophers SR. 1960. Aedes aegypti: the yellow fever mosquito. CUP Archive.Combs M, Puckett EE, Richardson J, Mims D, Munshi-South J (2018) Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. Mol Ecol 27:83–98Article 

    Google Scholar 
    Conomos MP, Reiner AP, Weir BS, Thornton TA (2016) Model-free estimation of recent genetic relatedness. Am J Hum Genet 98:127–148Article 

    Google Scholar 
    Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al. (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:1–4Article 

    Google Scholar 
    Doak DF, Marino PC, Kareiva PM (1992) Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor Popul Biol 41:315–336Article 

    Google Scholar 
    Dobrotworsky NV (1965) The mosquitoes of Victoria (Diptera, Culicidae). Melbourne University Press, London
    Google Scholar 
    Doggett SL, Russell RC (1997) Aedes notoscriptus can transmit inland and coastal isolates of Ross River and Barmah Forest viruses from New South Wales. Arbovirus Asutrlian Reg 7:79–81
    Google Scholar 
    Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Article 

    Google Scholar 
    Edland T (1983) Attacks by the winter moth group (Operophtera brumata, Agriopis aurantiaria, Erannis defoliaria) in orchards. A system for forecasting the expected attack degree. Gartneryrket 73:208–212
    Google Scholar 
    Endersby NM, White WL, Chan J, Hust T, Rašić G, Miller A, Hoffmann AA (2013) Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infect, Genet Evolution 18:191–201Article 

    Google Scholar 
    Feria-Arroyo T, Aguilar C, Vazquez CQ, Santos-Luna R, Roman-Perez S, Oraby T et al. (2020) A tale of two cities: Aedes Mosquito surveillance across the Texas-Mexico Border. Subtropical Agriculture Environ 71:12
    Google Scholar 
    Fountain T, Husby A, Nonaka E, DiLeo MF, Korhonen JH, Rastas P et al. (2018) Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly. Evolut Appl 11:287–297Article 

    Google Scholar 
    Goldberg EE, Lande R (2015) Species’ borders and dispersal barriers. Am Naturalist 170:297–304Article 

    Google Scholar 
    Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19Article 

    Google Scholar 
    Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R (2020) Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36(9):2896–2898Article 

    Google Scholar 
    Guerra CA, Reiner RC, Perkins TA, Lindsay SW, Midega JT, Brady OJ et al. (2014) A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-born pathogens. Parasites Vectors 7(1):1–15Article 

    Google Scholar 
    Hardy OJ, Vekemans X (2002) spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620Article 

    Google Scholar 
    Harrington LC, Edman JD, Scott TW (2001) Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38:411–422Article 

    Google Scholar 
    Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG et al. (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J tropical Med Hyg 72(2):209–220Article 

    Google Scholar 
    Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA et al. (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30:828–830Article 

    Google Scholar 
    Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011 476 7361 476:454–457
    Google Scholar 
    Honório AN, da Costa Silva W, José Leite P, Monteiro Gonçalves J, Philip Lounibos L, Lourenço-de-Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an Urban Endemic dengue Area in the State of Rio de Janeiro, Brazil. Memórias do Inst Oswaldo Cruz, Rio de Jan 98:191–198Article 

    Google Scholar 
    Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA (2019) A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito. Mol Ecol Resour 22.3:1200–1212Jasper M, Schmidt TL, Hoffmann AA (2022) Estimating dispersal using close kin dyads: The KINDISPERSE R package. Mol Ecol Resour 22:1200–1212Article 

    Google Scholar 
    Jeger MJ (1999) Improved understanding of dispersal in crop pest and disease management: current status and future directions. Agric For Meteorol 97:331–349Article 

    Google Scholar 
    Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science 358Juarez JG, Chaves LF, Garcia-Luna SM, Martin E, Badillo-Vargas I, Medeiros MCI, Hamer GL (2021) Variable coverage in an Autocidal Gravid Ovitrap intervention impacts efficacy of Aedes aegypti control. J Appl Ecol 58:2075–2086Article 

    Google Scholar 
    Kay BH, Watson TM, Ryan PA (2008) Definition of productive Aedes notoscriptus (Diptera: Culicidae) habitats in western Brisbane, and a strategy for their control. Aust J Entomol 47:142–148Article 

    Google Scholar 
    Kolmogorov M, Yuan J, Lin Y, Pevzner P (2019) Assembly of long error-prone reads using repeat graphs. Nat Biotechnol 37.5:540–546Article 

    Google Scholar 
    Kotsakiozi P, Evans BR, Gloria-Soria A, Kamgang B, Mayanja M, Lutwama J et al. (2018) Population structure of a vector of human diseases: Aedes aegypti in its ancestral range, Africa. Ecol Evolution 8:7835–7848Article 

    Google Scholar 
    Krueger F (2021) Trimgalore. GitHub repository, https://github.com/FelixKrueger/TrilGalore.Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat methods 9:357Article 

    Google Scholar 
    Lee DJ, Hicks MM, Griffiths M, Debenham ML, Bryan JH, Russel RC et al. (1987) The Culicidae of the Australasian Region: Genus Anopheles (Anopheles, Cellia). Australian Government Publishing Service: 315.Liew CCFC, Curtis CF (2004) Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vetenary Enetomology 18.4:351–360Article 

    Google Scholar 
    Malinsky M, Trucchi E, Lawson DJ, Falush D (2018) RADpainter and fineRADstructure: Population Inference from RADseq Data. Mol Biol Evolution 35:1284–1290Article 

    Google Scholar 
    McCarroll L, Paton MG, Karunaratne SHPP, Jayasuryia HTR, Kalpage KSP, Hemingway J (2000) Insecticides and mosquito-borne disease. Nature 407:961–962. 6807 407Article 

    Google Scholar 
    Metzger ME, Wekesa JW, Kluh S, Fujioka KK, Saviskas R, Arugay A et al. (2021) Detection and establishment of Aedes notoscriptus (Diptera: Culicidae) mosquitoes in Southern California, United States. J Med Entomol 59.1:67–77
    Google Scholar 
    Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Tropical Med Hyg 58:277–282Article 

    Google Scholar 
    Palsøll P, Zachariah MP, Bérubé M (2010) Detecting populations in the ‘ambiguous’ zone: Kinship-based estimation of population structure at low genetic divergence. Mol Ecol Resourses 10:797–805Article 

    Google Scholar 
    Rasheed SB, Boots M, Frantz AC, Butlin RK (2013) Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan. Med Vet Entomol 27:430–440Article 

    Google Scholar 
    Rašić G, Filipović I, Weeks AR, Hoffmann AA (2014) Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC genomics 15(1):1–12Article 

    Google Scholar 
    Reiter P, Amador MA, Anderson RA, Clark GG (1995) Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Tropical Med Hyg 52:177–179Article 

    Google Scholar 
    Ribeiro Jr JP, Diggle PJ (2001) geoR: a package for geostatistical analysis. R N. 1.2:14–18
    Google Scholar 
    Ritchie SA (2001) Effect of some animal feeds and oviposition substrates on Aedes oviposition in ovitraps in Cairns. Aust J Am Mosq Contol Assoc 11:2
    Google Scholar 
    Rousset (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62Article 

    Google Scholar 
    RStudio Team (2021) RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA, http://www.rstudio.com/Russell RC, Geary MJ (1992) The susceptibility of the mosquitoes Aedes notoscriptus and Culex annulirostris to infection with dog heartworm Dirofilaria immitis and their vector efficiency. Med Vet Entomol 6:154–158Article 

    Google Scholar 
    Schmidt TL, Filipović I, Hoffmann AA, Rašić G (2018) Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120:386–395Article 

    Google Scholar 
    Schmidt TL, Swan T, Chung J, Karl S, Demok S, Yang Q et al. (2021) Spatial population genomics of a recent mosquito invasion. Mol Ecol 30:1174–1189Article 

    Google Scholar 
    Schmidt TL, Elfekih S, Cao LJ, Wie SJ, Al-Fageeh MB, Nassar M, et al. (2022) Close kin dyads indicate intergenerational dispersal and barriers. The American Naturalist.Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934Article 

    Google Scholar 
    Shirk AJ, Cushman SA (2014) Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Front Ecol Evolution 2:62Article 

    Google Scholar 
    Sumner J, Rousset F, Estoup A, Moritz C (2001) ‘Neighbourhood’ size, dispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methods. Mol Ecol 10:1917–1927Article 

    Google Scholar 
    Sunahara T, Mogi M (2004) Searching clusters of community composition along multiple spatial scales: a case study on aquatic invertebrate communities in bamboo stumps in West Timor. Popul Ecol 46:149–158Article 

    Google Scholar 
    Tantowijoyo W, Arguni E, Johnson P, Budiwati N, Nurhayati PI, Fitriana I et al. (2016) Spatial and temporal variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) numbers in the Yogyakarta area of Java, Indonesia, with implications for Wolbachia Releases. J Med Entomol 53:188–198Article 

    Google Scholar 
    Trense D, Schmidt TL, Yang Q, Chung J, Hoffmann AA, Fischer K (2021) Anthropogenic and natural barriers affect genetic connectivity in an Alpine butterfly. Mol Ecol 30:114–130Article 

    Google Scholar 
    Trewin B, Pagendam DE, Darbro JM, Health Q, Devine GJ (2019) Urban Landscape Features Influence the Movement and Distribution of the Australian Container-Inhabiting Mosquito Vectors Aedes aegypti (Diptera: Culicidae) and Aedes notoscriptus (Epidemiology of Ross River virus in South East Queensland, Australia. J Med Entomol 57.2:443–453Verdonschot PFM, Besse-Lototskaya AA (2014) Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45:69–79Article 

    Google Scholar 
    Wallace JR, Mangas KM, Porter JL, Marcsisin R, Pidot SJ, Howden B et al. (2017) Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Neglected Tropical Dis 11(4):e0005553Article 

    Google Scholar 
    Watson TM, Kay BH (1999) Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of this species and Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia. J Med Entomol 36:508–514Article 

    Google Scholar 
    Watson TM, Saul A, Kay BH (2000) Aedes notoscriptus (Diptera: Culicidae) Survival and Dispersal Estimated by Mark-Release-Recapture in Brisbane, Queensland, Australia. J Med Entomol 37:380–384Article 

    Google Scholar 
    Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39Article 

    Google Scholar 
    Ye C, Ma ZS, Cannon CH, Pop M, Douglas WV (2012) Exploiting sparseness in de novo genome assembly. BMC Bioinforma 13:1–8Article 

    Google Scholar 
    Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 21:2669–77Article 

    Google Scholar  More

  • in

    Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System

    IPCC Climate Change The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).
    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    ADS 

    Google Scholar 
    Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change: Climate change impacts on catch potential. Glob. Change Biol. 16, 24–35 (2010).Article 
    ADS 

    Google Scholar 
    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).Article 
    ADS 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hodgson, E. E., Essington, T. E. & Kaplan, I. C. Extending vulnerability assessment to include life stages considerations. PLoS ONE 11, e0158917 (2016).Article 

    Google Scholar 
    Peck, M. A., Reglero, P., Takahashi, M. & Catalán, I. A. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. 116, 220–245 (2013).Article 
    ADS 

    Google Scholar 
    Tsoukali, S., Visser, A. W. & MacKenzie, B. R. Functional responses of North Atlantic fish eggs to increasing temperature. Mar. Ecol. Prog. Ser. 555, 151–165 (2016).Article 
    ADS 

    Google Scholar 
    Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779 (2010).Article 

    Google Scholar 
    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).Article 
    CAS 

    Google Scholar 
    Brauner, C. J. Acid-base balance. In Fish Larval physiology (eds Finn, R. N. & Kapoor, B. G.) 185–198 (Science Publishers, 2008).
    Google Scholar 
    Dahlke, F. T. et al. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Chang. Biol. 23, 1499–1510 (2017).Article 
    ADS 

    Google Scholar 
    Shelbourne, J. E. Significance of the subdermal space in pelagic fish embryos and larvae. Nature 176, 743–744 (1955).Article 
    ADS 

    Google Scholar 
    Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).Article 

    Google Scholar 
    Shei, M., Mies, M. & Olivotto, I. Other demersal spawners and mouthbrooders. Marine ornamental species aquaculture, 223–250 (2017).Beaudreau, A. H. The predatory role of lingcod (Ophiodon elongatus) in the San Juan Archipelago, Washington. (University of Washington, 2009).Love, M. Certainly More Than You Want to Know About the Fishes of the Pacific Coast: A Postmodern Experience. (Really Big Press, 2011).Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Reum, J. C. et al. Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES J. Mar. Sci. 73, 582–595 (2016).Article 

    Google Scholar 
    Cheresh, J. & Fiechter, J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System. Geophys. Res. Lett. 47, e2020089553 (2020).Article 
    ADS 

    Google Scholar 
    Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10, 193–216 (2013).Article 
    ADS 

    Google Scholar 
    Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503–518 (1991).Article 

    Google Scholar 
    Lauel, B. J. & Blood, D. M. The Effects of Temperature on Hatching and Survival of Northern Rock Sole Larvae (Lepidopsetta polyxystra) (Springer, 2011).
    Google Scholar 
    Guevara-Fletcher, C., Alvarez, P., Sanchez, J. & Iglesias, J. Effect of temperature on the development and mortality of European hake (Merluccius merluccius L.) eggs from southern stock under laboratory conditions. J. Exp. Mar. Biol. Ecol. 476, 50–57 (2016).Article 

    Google Scholar 
    Collins, L. A. & Nelson, S. G. Effects of temperature on oxygen consumption, growth, and development of embryos and yolk-sac larvae of Siganus randalli (Pisces: Siganidae). Mar. Biol. 117, 195–204 (1993).Article 

    Google Scholar 
    Cook, M. A., Guthrie, K. M., Rust, M. B. & Plesha, P. D. Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos. Aquac. Res. 36, 1298–1303 (2005).Article 

    Google Scholar 
    Pörtner, H. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).Article 
    ADS 

    Google Scholar 
    Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).Article 

    Google Scholar 
    Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).Article 

    Google Scholar 
    Peña, R., Dumas, S., Zavala-Leal, I. & Contreras-Olguín, M. Effect of incubation temperature on the embryonic development and yolk-sac larvae of the Pacific red snapper Lutjanus peru (Nichols & Murphy, 1922). Aquac Res 45, 519–527 (2014).Article 

    Google Scholar 
    Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781 (2002).Article 

    Google Scholar 
    Hassell, K. L., Coutin, P. C. & Nugegoda, D. Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri). Mar. Pollut. Bull. 57, 302–306 (2008).Article 
    CAS 

    Google Scholar 
    Giorgi, A. E. The Environmental Biology of the Embryos, Egg Masses and Nesting Sites of the Lingcod, Ophiodon elongatus. (University of Washington, 1981).Oseid, D. M. & Smith, L. L. Survival and hatching of walleye eggs at various dissolved oxygen levels. Progress. Fish-Cult. 33, 81–85 (1971).Article 
    CAS 

    Google Scholar 
    Shumway, D. L., Warren, C. E. & Doudoroff, P. Influence of oxygen concentration and water movement on the growth of steelhead trout and coho salmon embryos. Trans. Am. Fish. Soc. 93, 342–356 (1964).Article 

    Google Scholar 
    Baumann, H., Talmage, S. C. & Gobler, C. J. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat. Clim Change 2, 38–41 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Faria, A. M. et al. Effects of high pCO2 on early life development of pelagic spawning marine fish. Mar. Freshw. Res. 68, 2106–2114 (2017).Article 
    CAS 

    Google Scholar 
    Frommel, A. Y. et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 42–46 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Munday, P. L. et al. Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES J. Mar. Sci. 73, 641–649 (2016).Article 

    Google Scholar 
    Hurst, T. P., Fernandez, E. R. & Mathis, J. T. Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 70, 812–822 (2013).Article 

    Google Scholar 
    Wang, X., Song, L., Chen, Y., Ran, H. & Song, J. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Mar. Environ. Res. 131, 10–18 (2017).Article 

    Google Scholar 
    Franke, A. & Clemmesen, C. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences 8, 3697–3707 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO 2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).Article 

    Google Scholar 
    Bromhead, D. et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Res. II 113, 268–279 (2015).Article 
    CAS 

    Google Scholar 
    Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).Article 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Pörtner, H. O. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res. 110, 0910 (2005).Article 

    Google Scholar 
    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).Article 

    Google Scholar 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change: A review. Glob. Change Biol 24, 2239–2261 (2018).Article 
    ADS 

    Google Scholar 
    Giorgi, A. E. & Congleton, J. L. Effects of current velocity on development and survival of lingcod, Ophiodon elongatus, embryos. Environ. Biol. Fish 10, 15–27 (1984).Article 

    Google Scholar 
    Liu, G., Zhu, S., Liu, D. & Ye, Z. Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapia s fingerlings, Oreochromis niloticu reared in biofloc systems. Aquac. Res. 49, 2429–2439 (2018).Article 
    CAS 

    Google Scholar 
    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADS 

    Google Scholar 
    Miller, T. J., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: Toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670 (1988).Article 

    Google Scholar 
    Doi, H., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. open sci. 4, 170633 (2017).Article 
    ADS 

    Google Scholar 
    Pimentel, M. S. et al. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J. Exp. Biol. 1, 092635. https://doi.org/10.1242/jeb.092635 (2014).Article 

    Google Scholar 
    Politis, S. N., Dahlke, F. T., Butts, I. A., Peck, M. A. & Trippel, E. A. Temperature, paternity and asynchronous hatching influence early developmental characteristics of larval Atlantic cod, Gadus morhua. J. Exp. Mar. Biol. Ecol. 459, 70–79 (2014).Article 

    Google Scholar 
    Appelbaum, S. et al. Studies on rearing of lingcod Ophiodon elongatus. Aquaculture 135, 219–227 (1995).Article 

    Google Scholar 
    Hempel, G. Early life history of marine fish: The egg stage. Washington Sea Grant. (University of Washington Press, 1979)Gadomski, D. M. & Caddell, S. M. Effects of temperature on the development and survival of eggs of four coastal California fishes. Fish. Bull. 94, 41–48 (1996).
    Google Scholar 
    Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 18, 82–92 (2012).Article 
    ADS 

    Google Scholar 
    Rombough, P. The effects of temperature on embryonic and larval development. In Global Warming: Implications for Freshwater and Marine Fish (Society for Experimental Biology Seminar Series) (eds Wood, C. & McDonald, D.) 177–224 (Cambridge University Press, 1997).Chapter 

    Google Scholar 
    Bownds, C., Wilson, R. & Marshall, D. J. Why do colder mothers produce larger eggs? An optimality approach. J. Exp. Biol. 213, 3796–3801 (2010).Article 

    Google Scholar 
    Longo, G. C. et al. Strong population differentiation in lingcod ( Ophiodon elongatus ) is driven by a small portion of the genome. Evol. Appl. 13, 2536–2554 (2020).Article 
    CAS 

    Google Scholar 
    Silberberg, K. R., Laidig, T. E., Adams, P. B. & Albin, D. Analysis of maturity in lingcod, Ophiodon elongatus. California Fish Game 87, 139–152 (2001).
    Google Scholar 
    Palumbi, S. R. Why mothers matter. Nature 430, 621–622 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).Article 

    Google Scholar 
    Miller, D. J., & Geibel, J. J. Summary of Blue Rockfish and Lingcod Life Histories, a Reef Ecology Study, and Giant Kelp, Macrocystis Pyrifera, Experiments in Monterey Bay, California. (State of California, Resources Agency, Department of Fish and Game, 1973).Low, C. J. & Beamish, R. J. A study of the nesting behavior of lingcod (Ophiodon elongatus) in the strait of Georgia, British Columbia. Can. Fish. Mar. Serv. Tech. Rep. 843, 1–10 (1978).
    Google Scholar 
    King, J. R. & Withler, R. E. Male nest site fidelity and female serial polyandry in lingcod (Ophiodon elongatus, Hexagrammidae): Lingcod nest site fidelity. Mol. Ecol. 14, 653–660 (2005).Article 

    Google Scholar 
    Withler, R. E. et al. Polygamous mating and high levels of genetic variation in lingcod, Ophiodon elongatus of the Strait of Georgia, British Columbia. In Genetics of Subpolar Fish and Invertebrates 345–357 (Springer, 2004).
    Google Scholar 
    Perkins, M. J. et al. Application of nitrogen and carbon stable isotopes (δ15N and δ13C) to quantify food chain length and trophic structure. PLoS ONE 9, e93281 (2014).Article 
    ADS 

    Google Scholar 
    Earth Systems Research Laboratory (ESRL). NOAA’s Ocean Climate Change Web Portal. http://www.esrl.noaa.gov/psd/ipcc/ocn/ (2019).Feely, R., Doney, S. & Cooley, S. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).Article 

    Google Scholar 
    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Olito, C., White, C. R., Marshall, D. J. & Barneche, D. R. Estimating monotonic rates from biological data using local linear regression. J. Exp. Biol. 1, 148775. https://doi.org/10.1242/jeb.148775 (2017).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).Article 

    Google Scholar  More

  • in

    Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities

    Study species and pre-cultivationTo create the mesocosm communities, we selected nine herbaceous grassland species that are native to and widespread in Central Europe (Supplementary Table 9), where they can also co-occur. The species were Alopecurus pratensis L., Diplotaxis tenuifolia (L.) DC., Lolium perenne L., Poa pratensis L., Prunella vulgaris L., Sinapis arvensis L., Sonchus oleraceus L., Vicia cracca L., Vicia sativa L. To increase generalizability54, the species were selected from three functional groups (grasses, annual forbs, perennial forbs), and they represent five families.Seeds were obtained from different sources (Supplementary Table 9). For the transplanted-seedling community (see section ‘Experimental lay-out), seedlings were pre-cultivated in a greenhouse of the Botanical Garden of the University of Konstanz. As the species require different times for germination, they were sown on different dates (Supplementary Table 10) to ensure that seedlings of all species were at a similar developmental stage at transplantation. Seeds were sown separately per species in plastic trays filled with potting soil (Einheitserde®, Pikiererde CL P). The greenhouse had a regular day-night rhythm of c. 16:8 hours, and its ventilation windows automatically opened at 21 °C during the day and at 18 °C during the night. Two days before transplanting, the seedlings were placed outdoors to acclimatize. For the sown community, we sowed a seed mixture of the nine study species directly into the outdoor mesocosm pots.Experimental setupGlobal change treatmentsWe imposed six global change treatments: climate warming, light pollution, microplastic pollution, soil salinization, eutrophication, and fungicide accumulation, all of which frequently occur in the environment. These GCFs were chosen because they differ in their nature (i.e., physical, chemical), are likely to differ in their mode of action and effect direction21, and can be easily implemented. Each of the six GCFs have been shown to impact plants and their environment when applied on their own10,13,17,19,20,55,56,57,58,59,60. Furthermore, all of the chosen GCFs are likely to continue to increase in magnitude or extent in the near future61,62,63,64,65. For the climate-warming treatment, we used infrared-heater lamps (HS-2420; 240 V, 2000 W; Kalglo Electronics Co., Bethlehem, USA) set to 70% of their maximum capacity to achieve an average temperature increase of 2.0 °C (±SD = 0.2 °C) at plant level. This is within the range of temperature increases predicted by the RCP 4.5 scenario for the year 2100 [+1.1 − 2.6 °C; 63]. For the light-pollution treatment, we used LED spotlights (LED-Strahler Flare 10 W, IP 65, 900 lm, cool white 6500 K; REV Ritter GmbH, Mömbris, Germany), which were switched on daily from 9 pm to 5 am, corresponding to the times of sunset and -rise. The average light intensity was 24.5 lx at ground level, which is within the range of light intensities found below street lights, and matches the light intensities used in other light-pollution experiments14,56. For the microplastic pollution treatment, we used granules (1.0–2.5 mm diameter) of the synthetic rubber ethylene propylene diene monomer (EPDM Granulat, Gummi Appel GmbH + Co. KG, Kahl am Main, Germany) at a concentration of 1% (w/w, granules/dry soil, approximately corresponding to 1.5% v/v). EPDM granules are, for example, used in artificial sport turfs, from where they easily spread into the surroundings, and have been used previously to investigate the effects of microplastics on plants18. The chosen concentration is well within the range of concentrations used in previous studies18,66,67, and is at the low to intermediate range of concentrations found in sites polluted with plastics68. For the soil-salinization treatment, dissolved NaCl was added to the soil. Soil salinity is commonly measured as electrical conductivity, with a conductivity between 4 and 8 dS m−1 considered to be moderately saline69. For the experiment, we used a salinity of 6 dS m−1. To maintain a more or less constant salinity level, electrical conductivity was measured weekly, and, if required, adjusted by adding dissolved NaCl. For the eutrophication treatment, 3 g of a dissolved NPK fertilizer (Universol® blue oxide, ICL SF Germany & Austria, Nordhorn, Germany) was added per pot. For N, this corresponds to an input of 100 kg N ha−1, comparable to the yearly amounts of atmospheric N deposition in large parts of Europe52 and the yearly nitrogen input on agricultural field in the European Union70. To ensure a more or less constant nutrient availability during the experiments, we split total fertilizer input into three applications (directly after, 3 weeks after, and 6 weeks after starting the experiments) of 1 g fertilizer per pot per application. In addition, to avoid severe nutrient limitation in the other pots, all pots (irrespective of the eutrophication treatment) received basic fertilization. This was applied four times to the transplanted-seedling-community pots and five times to the sown community pots, with 0.2 g fertilizer per pot per application. For the pesticide treatment, we used the fungicide Landor® CT (Syngenta Agro GmbH, Maintal, Germany). This fungicide was chosen because it contains three azoles as active agents, which belong to the most widely used class of antifungal agents71. To each pot in this treatment, we added 1.5 μl fungicide dissolved in water (1‰). This corresponds to 60% of the maximum amount that should be used per hectare of cropland. A summary of the levels of the individual GCFs used in our experiment is provided in Supplementary Table 8.Combinations of simultaneously acting GCFsTo examine the potential effects of the numbers of simultaneously acting GCFs, we created five levels of increasing GCF numbers. These levels were: zero (i.e., the control without any GCF application), one (single), two, four and six GCFs. For the one-, two- and four-GCF levels, there were six different combinations, so that each of these levels included either six different GCFs in case of the one-factor, or six different GCF combinations in case of the two- and four-GCF levels. In the six-GCF level, all six factors were combined, so that there was only one combination. To avoid potential biases due to unequal representation of the different GCFs in each GCF-number level, we created the GCF combinations randomly but with the restriction that each GCF was present in an equal number of combinations for each GCF-number level (i.e., each GCF was included once in GCF-number levels 1 and 6, respectively, twice in GCF-number level 2, and four times in GCF-number level 4; Supplementary Table 11).Experimental lay-outThe experiment was conducted outdoors in the climate-warming-simulation facility of the Botanical Garden of the University of Konstanz, Germany (N: 47°69’19.56”, E: 9°17’78.42”). Twenty of the 2 m × 2 m plots of this facility were used for our experiment. As the climate-warming and light-pollution treatments could not be applied to each individual pot separately, we applied those treatments at the plot level. Therefore, we assigned four of the 20 plots to the climate-warming treatment, four plots to the light-pollution treatment and four plots to both climate-warming and light-pollution treatment combination. Each plot had a 145 cm high metal frame. The eight plots assigned to the climate-warming treatment were equipped with a 1.80 m long, horizontally hanging infrared-heating lamp at the top of the metal frame (i.e., at 145 cm above soil level). The heating lamp slowly oscillated along its longitudinal axis to ensure uniform heating of the whole 2 m × 2 m plot. The eight plots assigned to the light-pollution treatment, each had a LED spotlight attached to one of the sides of the metal frame at a height of 120 cm. To reduce illumination of the neighboring plots, light-pollution was only applied to the outer plots of the climate-warming-simulation facility (Supplementary Fig. 5), and LEDs were pointing away from the inner plots and were equipped with lamp shades made of black plastic pots (18 cm × 18 cm × 25.5 cm). Furthermore, to reduce the light intensity to a realistic light-pollution level (24.5 lx) as found below street lights, we covered the spotlight with a layer of white cloth (Supplementary Fig. 6). For further details on the artificial light treatment, see Supplementary Fig. 7.To create mesocosms with the transplanted-seedling and sown communities, we filled 10-L pots (CEP- Container, 10.0 F, Burger GmbH, Renningen-Malmsheim, Germany) with a mixture of 40% potting soil (see above), 40% quartz sand (0.5–0.8 mm), and—to inoculate the substrate with a natural soil community—20% top soil excavated from a seminatural grassland patch in the botanical garden. In total, the experiments with the transplanted-seedling and sown communities, each included 120 pots (i.e., 20 treatment combinations × six replicates × 2 experiments = 240 pots in total; see Supplementary Table 11), which were distributed across the 20 plots. To prevent leakage of fertilizer or salt solutions, each pot was placed onto a plastic dish. To reduce differences due to environmental variation within plots, the positions of pots within each plot were re-randomized every 14 days. Plants were watered regularly to avoid drought stress and to avoid differences in soil moisture due to application of fertilizer- and salt-solutions.For the sown community, we randomly distributed five seeds of each of the nine species on the substrate in each pot on 3 July 2020. For the transplanted-seedling community, two seedlings of each of the nine species were transplanted into each pot (i.e., 18 seedlings per pot) according to a fixed pattern (Supplementary Fig. 8) on 6 July 2020. Since there were a few seedlings missing for S. arvensis (six seedlings) and V. cracca (four seedlings), we re-sowed these species in germination trays on 6 July 2020. On 13 July 2020, dead seedlings, and the missing seedlings for S. arvensis were replaced. Since V. cracca took longer to germinate, the missing seedlings were transplanted on 17 July 2020.MeasurementsTo investigate the effects of single-GCFs and their number on the sown and transplanted-seedling communities, we used plant biomass as an indicator for plant performance72. As it was impossible to disentangle the roots, we only used aboveground biomass. On 14 and 15 September 2020, i.e., 10 weeks after transplanting, we harvested the transplanted-seedling communities. On 28 and 29 September, i.e., twelve weeks after sowing, we harvested the sown communities. For both community types, we harvested the plants separately by species. The harvested plants were stored in paper bags, dried at 70 °C for at least 72 hours and weighed.Statistical analysisAll analyses were done in R 3.6.273. As the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately (but see the subsection “Community type specific responses” below).Community aboveground biomassTo analyze the effects GCF number on plant-community productivity, we fitted linear mixed-effects models separately for the transplanted-seedling and sown communities, using the lmer function in the “lme4” package74. Total aboveground biomass per pot was the response variable. To improve normality of the residuals, biomass of the transplanted-seedling and sown communities was square-root- and natural-log-transformed, respectively. We included GCF number as a continuous fixed variable. To account for non-independence of pots in the same GCF combination and of pots in the same plot, GCF combination and plot were included as random effects. The effects of the individual GCFs on biomass production were also assessed by fitting linear mixed-effects models, using only the data of the control and single-GCF treatments, and including GCF identity as fixed effect.Community compositionTo assess potential effects of single-GCFs and GCF number on the final composition of the transplanted-seedling and sown communities, we first assessed variation in species composition, based on biomass proportions, among pots using principal component analysis (PCA) [rda function of the “vegan” package75,]. For each PCA (Supplementary Fig. 1), we extracted the PC1 and PC2 values, which together explained more than 65% of the variation in community composition and included them as response variables in separate linear mixed models, as described above for community biomass.To evaluate whether GCF number affects the diversity and evenness of plant communities, we calculated the Shannon index (H)76, using the diversity function in the “vegan” package, and evenness index (J)77 based on species biomass proportions. Subsequently, the single-GCF and GCF-number effects on diversity and evenness of the sown and transplanted-seedling communities were analyzed using linear mixed-effects models, or—if adding random effects did not improve the model—more parsimonious linear models78,79. For all models, we used type II analysis of variance (ANOVA) tests (Anova function in the “car” package) to assess the significance of fixed effects.Hierarchical diversity-interaction modelingWhen there is a significant GCF-number effect, this could reflect that with increasing numbers of co-acting GCFs, there is a higher chance that it will include a GCF with a strong and dominant effect (i.e., sampling or selection effects). However, it could also be that the GCF-number effect is driven by interactions among the GCFs, and the effects of these interactions could be GCF-specific or general. As our experiment does not include all possible combinations of GCFs, it does not allow to test the contributions of each possible multi-way GCF interaction. Therefore, to gain insights into whether the GCF identities and specific or general GCF interactions underlie the significant GCF-number effects, we applied the hierarchical diversity-interaction modeling framework of Kirwan et al.80. This framework was originally developed for estimating contributions of species identities and their interactions to ecosystem functions, but we here applied it to GCF identities and interactions. For each of the response variables showing a significant GCF-number effect, we ran five hierarchical models specifying different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect, and compared them using likelihood ratio tests (Fig. 4). For these analyses, the data of the control treatment (i.e., GCF number zero) was excluded. Each of the five models specified different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect. The first model is the null model, which assumed that there were no GCF-specific contributions (i.e., all GCFs contributed equally) and that there were no contributions of GCF interactions. Therefore, the null model only included the centered sum of the GCFs of each treatment (M) as fixed effect. M accounts for differences in ‘initial abundances’ of GCFs—meaning that the other model terms are interpreted based on the average initial abundance—and was also included in the four other models80. This way, we could include the GCFs’ relative proportions in each GCF combination, instead of just considering GCF presence, while taking into account that, with increasing GCF number, the relative proportion of each individual GCF is automatically reduced. In the second model, the GCF identities (i.e., their proportions in the respective GCF combination) were added, assuming that individual GCFs contribute differently to the effect of GCF number. In the third model, separate-pairwise interactions between the GCFs were added, considering that, in addition to contributions of individual GCFs, specific pairwise interactions contributed to the GCF-number effect. In the fourth model, the average GCF-interaction model (which is also called the evenness model in Kirwan et al. 2009), the separate-pairwise GCF interactions were replaced by an average interaction effect. Thus, the average GCF-interaction model assumed equivalent contributions of all pairwise GCF interactions. In the fifth model, the additive GCF-specific interaction contributions model, the average interaction effect of the fourth model was replaced by average GCF-specific interaction effects. This model assumed that each GCF’s contribution to a pairwise interaction remains constant. For the calculation of the average GCF-specific and average interaction effect, we used the equations provided by Kirwan et al.80. For each of the response variables, we generally included the same random terms as in the main analyses of the GCF-number effect. However, as this resulted in singularity warnings for some of the hierarchical diversity-interaction models, e.g., those for species diversity and evenness measures, we used for these cases linear models instead of linear mixed models.Fig. 4: Hierarchical diversity-interaction-modeling framework to assess contributions of GCF identities and GCF interactions to GCF-number effects.The framework was adapted from Kirwan et al.80. The null model assumes equivalent contributions of all GCFs and no interactions between them. The subsequent models assume more complex effects of how the individual GCFs and their interactions determine the GCF-number effects. The questions that can be answered by comparing specific models are depicted next to the arrows connecting the two models.Full size imageCommunity type-specific responsesAs the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately. However, to test explicitly whether both community types differed in their responses to single-GCFs and GCF number, we also analyzed them jointly. To this end, we fitted linear mixed-effects models for each response variable including GCF number (or single-factor treatments), community type and their interaction as fixed effects (Supplementary Table 5).Final number of plants per speciesTo test for effects of individual GCFs and GCF number on species presence, i.e., the number of individuals per species present at harvest, we fitted generalized linear mixed-effects models for the transplanted-seedling and sown communities separately. We included the survival rate (number of individuals present at harvest divided by the number of planted/sown individuals) as response variables. For the models testing the effects of GCF number, we included GCF combination, species, pot, and plot as random effects. For the models testing the effects of single-GCFs, the same random effects were included, except for GCF combination. Specific random effects were removed from the model if their incorporation resulted in singular fit warnings due to low variation. We assessed the effects of individual GCFs or GCF number using type III ANOVA tests (Anova function in the “car” package, Supplementary Table 7).Eutrophication effectsIn addition to the general assessment of individual GCF effects in the hierarchical diversity-interaction models, we specifically assessed the effects of eutrophication. This was done because eutrophication had the strongest effect on productivity as individual GCF, and this might also have dominated the GCF-number effect, indicating a sampling effect. To this end, we added a binary-coded variable to include information on whether eutrophication was included in the different GCF combinations. Subsequently, we fitted linear mixed-effects models for all response traits that were affected by GCF number. In these models, we included GCF number, community type, eutrophication, and the respective two-way interactions as fixed effects, and plot and GCF combination as random effects. Effects of fixed factors were assessed using type III ANOVA tests (Anova function in the “car” package; Supplementary Table 6).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Out-of-date datasets hamper conservation of species close to extinction

    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: back from the brink? PloS ONE 6, e22531 (2011).Article 
    CAS 

    Google Scholar 
    Abeli, T., Albani Rocchetti, G., Barina, Z., Bazos, I. & Draper, D. et al. Seventeen ‘extinct’ plant species back to conservation attention in Europe. Nat. Plants 7, 282–286 (2021).Article 

    Google Scholar 
    Guidelines for Using the IUCN Red List Categories and Criteria Version 14 (IUCN Standards and Petitions Committee, 2019); http://www.iucnredlist.org/documents/RedListGuidelines.pdfDalrymple, S. E. & Abeli, T. Ex situ seed banks and the IUCN Red List. Nat. Plants 5, 122–123 (2019).Article 

    Google Scholar 
    Albani Rocchetti, G. et al. Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. Nat. Plants. https://doi.org/10.1038/s41477-022-01296-7 (2022).The IUCN Red List of Threatened Species Version 2022-1 (IUCN, accessed 264 October 2022); https://www.iucnredlist.orgHumphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).Article 

    Google Scholar 
    Knapp, W. M., Frances, A., Noss, R., Naczi, R. F. & Weakley, A. et al. Vascular plant extinction in the continental United States and Canada. Conserv. Biol. 35, 360–368 (2021).Article 

    Google Scholar 
    Sasidharan, N. Cynometra beddomei. The IUCN Red List of Threatened Species 2020 (IUCN, accessed 27 October 2021); https://www.iucnredlist.org/species/31184/115932185Cronk, Q. C. B. A new species and hybrid in the St Helena endemic genus Trochetiopsis. Edinb. J. Bot. 52, 205–213 (1995).Article 

    Google Scholar 
    Loizeau, P. A. & Jackson, P. W. World Flora Online mid-term update. Ann. Missouri Bot. Gard. 102, 341–346 (2017).Article 

    Google Scholar 
    Edwards, C., Bassüner, B., Birkinshaw, C., Camara, C. & Lehavana, A. et al. A botanical mystery solved by phylogenetic analysis of botanical garden collections: the rediscovery of the presumed-extinct Dracaena umbraculifera. Oryx 52, 427–436 (2018).Article 

    Google Scholar 
    MosaChristas, K., Karthick, R., Kowsalya, E. & Jaquline, C. R. I. Musa kattuvazhana (Musaceae): rediscovery and additional notes on a critically endangered species from Western Ghats of Tamil Nadu, India. Feddes Repert. 132, 263–268 (2021).Article 

    Google Scholar 
    Van Hoi, Q. U. A. C. H., Doudkin, R. V., Cuong, T. Q., Le Van, S. O. N. & Van Dung, L. U. O. N. G. et al. Rediscovery of Camellia langbianensis (Theaceae) in Vietnam. Phytotaxa 480, 85–90 (2021).Article 

    Google Scholar 
    Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G. & Axton, M. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Costello, M. J. & Wieczorek, J. Best practice for biodiversity data management and publication. Biol. Conserv. 173, 68–73 (2014).Article 

    Google Scholar 
    Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T. & Vieglais, D. Darwin Core: an evolving community-developed biodiversity data standard. PloS ONE 7, e29715 (2012).Article 
    CAS 

    Google Scholar 
    de Lange, P.J. Lepidium obtusatum Fact Sheet (content continuously updated) (New Zealand Plant Conservation Network, accessed 16 December 2021); https://www.nzpcn.org.nz/flora/species/lepidium-obtusatum/Knapp, W.M., Poindexter, D.B. & Weakley, A.S. The true identity of Marshallia grandiflora an extinct species and the description of Marshallia pulchra (Asteraceae Helenieae Marshalliinae). Phytotaxa 447, 1–15 (2020).Article 

    Google Scholar  More