More stories

  • in

    Vultures for climate

    Pablo Ignacio Plaza and Sergio Agustín Lambertucci from the National University of Comahue and the Argentine Research Council in Argentina quantified the contribution of vultures to reducing greenhouse gas emissions by developing two contrasting scenarios. The first assumes that all the dead animals that the vultures can consume are disposed of, whereas in the second scenario, the dead animals are left to decompose in the environment without scavengers. The results show that the current vulture population can reduce emissions by up to 60.7 teragrams CO2 equivalent per year. A decline in vulture populations decreases their mitigation capacity by 30%. The study highlights that vultures are essential to keep our climate cool. More

  • in

    Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States

    Honey bee colony loss and parasites across space and timeHoney bee colony loss strongly depends on spatio-temporal factors33,42, which in turn have to be jointly modeled with other stressors. Focusing on CONUS climatic regions, defined by the National Centers for Environmental Information40 (see Fig. 1), this is supported by the box plots in Fig. 2 which depict appropriately normalized honey bee colony loss (upper panel) and presence of V. destructor (lower panel) quarterly between 2015 and 2021. Specifically, Fig. 2a highlights that the first quarter generally accounts for a higher and more variable proportion of losses. Average losses are typically lower and less dispersed during the second quarter, and then tend to increase again during the third and fourth quarters. The Central region, which reports the highest median losses during the first quarter (larger than 20%) exemplifies this pattern, which is in line with existing studies that link overwintering with honey bee colony loss6,29,30,31,32,33,43. On the other hand, the West North Central region follows a different pattern, where losses are typically lower during the first quarter and peak during the third. This holds, albeit less markedly, also for Northwest and Southwest regions. These differing patterns are also depicted in Fig. 3, which shows the time series of normalized colony loss for each state belonging to Central and West North Central regions – with the smoothed conditional means highlighted in black and red, respectively. Figure 2b shows that also the presence of V. destructor tends to follow a specific pattern; in most regions it increases from the first to the third quarter, and then it decreases in the fourth – with the exception of the Southwest region, where it keeps increasing. This is most likely because most beekeepers try to get V. destructor levels low by fall, so that colonies are as healthy as possible going into winter, and also because of the population dynamics of V. destructor alongside honey bee colonies – i.e., their presence typically increases as the colony grows and has more brood cycles, since this parasite develops inside honey bee brood cells44,45. The West region (which encompasses only California since Nevada was missing in the honey bee dataset; see Data) reports high levels of V. destructor throughout the year, with very small variability. A comparison of Fig. 2a and b shows that honey bee colony loss and the presence of V. destructor tend to be higher than the corresponding medians during the third quarter, suggesting a positive association. This is further confirmed in Fig. 4, which shows a scatter plot of normalized colony loss against V. destructor presence, documenting a positive association in all quarters. Although with the data at hand we are not able to capture honey bee movement across states, as well as intra-quarter losses and honey production, these preliminary findings can be useful to support commercial beekeeper strategies and require further investigation.Figure 2Empirical distribution of honey bee (Apis mellifera) colony loss (a) and Varroa destructor presence (b) across quarters (the first one being January-March) and climatic regions; red dashed lines indicate the overall medians. (a) Box plots of normalized colony loss (number of lost colonies over the maximum number of colonies) for each quarter of 2015–2021 and each climatic region. At the contiguous United States level, this follows a stable pattern across the years, with higher and more variable losses during the first quarter (see Supplementary Figs. S2-S6), but some regions do depart from this pattern (e.g., West North Central). (b) Box plots of normalized V. destructor presence (number of colonies affected by V. destructor over the maximum number of colonies) for each quarter of 2015–2021 and each climatic region. The maximum number of colonies is defined as the number of colonies at the beginning of a quarter, plus all colonies moved into that region during the same quarter.Full size imageFigure 3Comparison of normalized honey bee (Apis mellifera) colony loss (number of lost colonies over the maximum number of colonies) between Central and West North Central climatic regions for each quarter of 2015–2021 (the first quarter being January-March). (a) Trajectory of each state belonging to Central (yellow) and West North Central (blue) climatic regions. (b) Smoothed conditional means for each of the two sets of curves based on a locally weighted running line smoother where the width of the sliding window is equal to 0.2 and corresponding standard error bands are based on a 0.95 confidence level46.Full size imageFigure 4Scatter plot of normalized honey bee (Apis mellifera) colony loss (number of lost colonies over the maximum number of colonies) against normalized Varroa destructor presence (number of colonies affected by V. destructor over the maximum number of colonies) for each state and each quarter of 2015–2021 (the first quarter being January-March). Points are color-coded by quarter, and ordinary least squares fits (with corresponding standard error bands based on a 0.95 confidence level) computed by quarter are superimposed to visualize the positive association.Full size imageUp-scaling weather dataThe data sets available to us for weather related variables had a much finer spatio-temporal resolution (daily and on a (4 times 4) kilometer grid) than the colony loss data (quarterly and at the state level). Therefore, we aggregated the former to match the latter. For similar data up-scaling tasks, sums or means are commonly employed to summarize the variables available at finer resolution47. The problem with aggregating data in such a manner is that one only preserves information on the “center” of the distributions – thus losing a potentially considerable amount of information. To retain richer weather related information in our study, we considered additional summaries capturing more complex characteristics, e.g., the tails of the distributions or their entropy, to ascertain whether they may help in predicting honey bee colony loss. Within each state and quarter we therefore computed, in addition to means, indexes such as standard deviation, skewness, kurtosis, (L_2)-norm (or energy), entropy and tail indexes48. This was done for minimum and maximum temperatures, as well as precipitation data (see Data processing for details).Next, as a first way to validate the proposed weather data up-scaling approach, we performed a likelihood ratio test between nested models. Specifically, we considered a linear regression for colony loss (see Statistical model) and compared an ordinary least squares fit comprising all the computed indexes as predictors (the full model) against one comprising only means and standard deviations (the reduced model). The test showed that the use of additional indexes provides a statistically significant improvement in the fit (p-(text {value}=0.03)). This test, which can be replicated for other choices of models and estimation methods (see Supplementary Table S5), supports the use of our up-scaling approach.Figure 5 provides a spatial representation of (normalized) honey bee colony losses and of three indexes relative to the minimum temperature distribution; namely, mean, kurtosis and skewness (these all turn out to be relevant predictors based on subsequent analyses; see Table 1). For each of the four quantities, the maps are color-coded by state based on the median of first quarter values over the period 2015-2021 (first quarters typically have the highest losses, but similar patterns can be observed for other quarters; see Supplementary Figs. S12-S14). Notably, the indexes capture characteristics of the within-state distributions of minimum temperatures that do vary geographically. For example, considering minimum temperature, skewness is an index that (broadly speaking) provides information on whether the data tends to accumulate at one end or the other of the observed range of minimum temperatures (i.e., a positive/negative skewness indicates that the data accumulates towards the lower/upper range, respectively). On the other hand, kurtosis is an index that captures the presence of “extreme” values in the tails of the data (i.e., a low/high value of kurtosis indicates that the tail minimum temperatures are relatively close/very far from the typical minimum temperatures). With this in mind, going back to Fig. 5, we can see that minimum temperatures in states in the north-west present large kurtosis (a prevalence of extreme values in the tails) and negative skewness (a tendency to accumulate towards the upper values of the minimum temperature range), while the opposite is true for states in the south-east. More generally, the mean minimum temperature separates northern vs southern states, kurtosis is higher for states located in the central band of the CONUS, and skewness separates western vs eastern states.We further note that the states with lower losses during the first quarter (e.g., Montana and Wyoming) do not report extreme values in any of the considered indexes. Although these states are generally characterized by low minimum temperatures, these are somewhat “stable” (they do not show marked kurtosis or skewness in their distributions) – perhaps allowing honey bees and beekeepers to adapt to more predictable conditions. On the other hand, states with higher losses during the first quarter such as New Mexico have higher minimum temperatures as well as marked kurtosis, and thus higher chances of extreme minimum temperatures – which may indeed affect honey bee behavior and colony loss. Overall, across all quarters of the years 2015-2021, we found that normalized colony losses and mean minimum temperatures are negatively associated (the Pearson correlation is -0.17 with a p-(text {value} More

  • in

    Integrating crop redistribution and improved management towards meeting China’s food demand with lower environmental costs

    Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, K. F. et al. Assessing the sustainability of post-Green Revolution cereals in India. Proc. Natl Acad. Sci. USA 116, 25034 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    O Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88 (2018).Article 

    Google Scholar 
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    PubMed 

    Google Scholar 
    van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494 (2021).Article 

    Google Scholar 
    Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).Article 
    PubMed 

    Google Scholar 
    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 
    PubMed 

    Google Scholar 
    Chen, X. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    FAOSTAT. FAO http://www.fao.org/faostat/en/#home (2021).Liu, Z. et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2, 426 (2021).Article 

    Google Scholar 
    Zhang, Q. et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Glob. Food Secur. 26, 100444 (2020).Article 

    Google Scholar 
    Duan, J. et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2, 1014 (2021).Article 
    CAS 

    Google Scholar 
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, F. et al. Deceleration of China’s human water use and its key drivers. Proc. Natl Acad. Sci. USA 117, 7702 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, H. et al. Estimating ammonia emissions from cropland in China based on the establishment of agro-region-specific models. Agr. For. Meteorol. 303, 108373 (2021).Article 

    Google Scholar 
    Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Global Environ. Chang. 41, 26 (2016).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Global Environ. Chang. 26, 152 (2014).Article 

    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davis, K. F., Rulli, M. C., Seveso, A. & D. Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919 (2017).Article 
    CAS 

    Google Scholar 
    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    UN Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019, Online Edition. Rev. 1 (2019). https://population.un.org/wpp/2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284 (2020).Article 

    Google Scholar 
    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Price Bureau of the National Development and Reform Commission of China. China Agricultural Products Cost–Benefit Compilation of Information 2017 (in Chinese) (China Statistics Press, 2017).Fan, S., Brzeska, J., Keyzer, M. & Halsema, A. From Subsistence to Profit: Transforming Smallholder Farms. (Inter. Food Policy Res. Inst., 2013).Wang, S. et al. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food 2, 183 (2021).Article 

    Google Scholar 
    Yin, Y. et al. A steady-state N balance approach for sustainable smallholder farming. Proc. Natl Acad. Sci. USA 118, e2106576118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guiding opinions of the ministry of agriculture on the adjustment of maize structure in the “sickle” area. Ministry of Agriculture and Rural Affairs of the People’s Republic of China http://www.moa.gov.cn/nybgb/2015/shiyiqi/201712/t20171219_6103893.htm (2017).Zhang, F., Chen, X. & Vitousek, P. An experiment for the world. Nature 497, 33 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cyberspace Administration of China. State Council of the People’s Republic of China http://www.gov.cn/xinwen/2021-12/28/content_5664873.htm (2021).Kou, T. et al. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil Till. Res. 118, 132 (2012).Article 

    Google Scholar 
    Li, X. et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 4, 943 (2021).Article 

    Google Scholar 
    Damerau, K. et al. India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability. Nat. Food 1, 631 (2020).Article 

    Google Scholar 
    Kuang, W. et al. Cropland redistribution to marginal lands undermines environmental sustainability. Natl Sci. Rev. 9, 1 (2021).
    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385 (2018).Article 

    Google Scholar 
    National population development plan: 2016–2030. National Development and Reform Commission http://www.gov.cn/zhengce/content/2017-01/25/content_5163309.htm (2016).Ma, L. et al. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 47, 7260 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179 (2009).Article 

    Google Scholar 
    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H., Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochem. Cy. https://doi.org/10.1029/2008GB003299 (2009).Smith, P., Martino, Z. & Cai, D. ‘Agriculture’, in Climate Change 2007: Mitigation (Cambridge Univ. Press, 2007).Liang, D. et al. China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data 8, 171 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Growth of alpine grassland will start and stop earlier under climate warming

    Körner, C. Alpine Plant Life: Functional plant ecology of high mountain ecosystems. (Springer, 2021). https://doi.org/10.1007/978-3-030-59538-8.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).Article 

    Google Scholar 
    Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).Stewart, I. T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process 23, 78–94 (2009).Article 

    Google Scholar 
    Vorkauf, M., Marty, C., Kahmen, A. & Hiltbrunner, E. Past and future snowmelt trends in the Swiss Alps: the role of temperature and snowpack. Clim. Change 165, 44–62 (2021).Article 

    Google Scholar 
    Inouye, D. W. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353–362 (2008).Article 
    PubMed 

    Google Scholar 
    Vorkauf, M., Kahmen, A., Körner, C. & Hiltbrunner, E. Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alp. Bot. 131, 73–88 (2021).Article 

    Google Scholar 
    Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 29, 95–109 (2010).Article 

    Google Scholar 
    Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. 12, 3442 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).Article 

    Google Scholar 
    Xie, J. et al. Land surface phenology and greenness in alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nord, E. A. & Lynch, J. P. Plant phenology: a critical controller of soil resource acquisition. J. Exp. Bot. 60, 1927–1937 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).Article 
    PubMed 

    Google Scholar 
    Rosa, R. K. et al. Plant phenological responses to a long‐term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Glob. Change Biol. 21, 4520–4532 (2015).Article 

    Google Scholar 
    Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8, plw021 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383–397 (2021).Article 

    Google Scholar 
    Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).Article 
    PubMed 

    Google Scholar 
    Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. N. Phytol. 205, 34–58 (2015).Article 

    Google Scholar 
    Abramoff, R. Z. & Finzi, A. C. Are above‐ and below‐ground phenology in sync? N. Phytol. 205, 1054–1061 (2015).Article 

    Google Scholar 
    Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Change 12, 97–102 (2022).Article 
    CAS 

    Google Scholar 
    Rixen, C. et al. Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arct. Sci. 1–37 (2022) https://doi.org/10.1139/as-2020-0058.Johnson, M. G., Tingey, D. T., Phillips, D. L. & Storm, M. J. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45, 263–289 (2001).Article 
    PubMed 

    Google Scholar 
    Atkinson, J. A., Pound, M. P., Bennett, M. J. & Wells, D. M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotech. 55, 1–8 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Blume-Werry, G. The belowground growing season. Nat. Clim. Change 12, 11–12 (2022).Article 

    Google Scholar 
    Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).Article 

    Google Scholar 
    Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vitasse, Y. et al. ‘Hearing’ alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. Int J. Biometeorol. 61, 349–361 (2017).Article 
    PubMed 

    Google Scholar 
    Blume‐Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).Article 

    Google Scholar 
    Darrouzet‐Nardi, A. et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol. Evol. 9, 1820–1844 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).Article 

    Google Scholar 
    Keller, F. & Körner, C. The role of photoperiodism in alpine plant development. Arct. Antarct. Alp. Res 35, 361–368 (2003).Article 

    Google Scholar 
    Hiltbrunner, E., Arnaiz, J. & Körner, C. Biomass allocation and seasonal non-structural carbohydrate dynamics do not explain the success of tall forbs in short alpine grassland. Oecologia 1–15 (2021) https://doi.org/10.1007/s00442-021-04950-7.Inauen, N., Körner, C. & Hiltbrunner, E. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob. Change Biol. 18, 985–999 (2012).Article 

    Google Scholar 
    Möhl, P., Hiltbrunner, E. & Körner, C. Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland. Glob. Change Biol. 26, 1857–1872 (2020).Article 

    Google Scholar 
    Porter, J. R. & Gawith, M. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36 (1999).Article 

    Google Scholar 
    Parent, B., Turc, O., Gibon, Y., Stitt, M. & Tardieu, F. Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. J. Exp. Bot. 61, 2057–2069 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Körner, C. H. & Woodward, F. I. The dynamics of leaf extension in plants with diverse altitudinal ranges. Oecologia 72, 279–283 (1987).Article 
    PubMed 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr, G., Oberbauer, S. F. & Pop, E. W. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Glob. Change Biol. 6, 357–369 (2000).Article 

    Google Scholar 
    Yoshie, F. Vegetative phenology of alpine plants at Tateyama Murodo-daira in central Japan. J. Plant Res. 123, 675–688 (2010).Article 
    PubMed 

    Google Scholar 
    Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. 113, G03013 (2008).
    Google Scholar 
    Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frei, E. R. & Henry, G. H. R. Long-term effects of snowmelt timing and climate warming on phenology, growth, and reproductive effort of Arctic tundra plant species. Arct. Sci. 1–22 (2021) https://doi.org/10.1139/as-2021-0028.Schäppi, B. & Körner, C. Growth responses of an alpine grassland to elevated CO2. Oecologia 105, 43–52 (1996).Article 
    PubMed 

    Google Scholar 
    Aloni, R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. Planta 238, 819–830 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).Article 
    CAS 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alp. Bot. 126, 11–21 (2016).Article 

    Google Scholar 
    Woo, H. R., Kim, H. J., Lim, P. O. & Nam, H. G. Leaf senescence: systems and dynamics aspects. Annu. Rev. Plant Biol. 70, 1–30 (2019).Article 

    Google Scholar 
    Liu, Z., Marella, C. B. N., Hartmann, A., Hajirezaei, M. R. & Wirén, Nvon An age-dependent sequence of physiological processes defines developmental root senescence. Plant Physiol. 181, 993–1007 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryser, P., Puig, S., Müller, M. & Munné-Bosch, S. Abscisic acid responses match the different patterns of autumn senescence in roots and leaves of Iris versicolor and Sparganium emersum. Environ. Exp. Bot. 176, 104097 (2020).Article 
    CAS 

    Google Scholar 
    Budge, K., Leifeld, J., Hiltbrunner, E. & Fuhrer, J. Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8, 1911–1923 (2011).Article 
    CAS 

    Google Scholar 
    Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. 9, 3006 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trumbore, S. E., Sierra, C. A. & Pries, C. E. H. Radiocarbon and climate change, mechanisms, applications and laboratory techniques. 45–82 (2016) https://doi.org/10.1007/978-3-319-25643-6_3.Windmaißer, T. & Reisch, C. Long-term study of an alpine grassland: local constancy in times of global change. Alp. Bot. 123, 1–6 (2013).Article 

    Google Scholar 
    De Witte, L. C. D., Armbruster, G. F. J., Gielly, L., Taberlet, P. & Stöcklin, J. AFLP markers reveal high clonal diversity and extreme longevity in four key arctic‐alpine species. Mol. Ecol. 21, 1081–1097 (2012).Article 
    PubMed 

    Google Scholar 
    Landolt, E. Unsere Alpenflora. (SAC-Verlag, 2012).Puşcaş, M. & Choler, P. A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora – Morphol. Distrib. Funct. Ecol. Plants 207, 168–178 (2012).Article 

    Google Scholar 
    Grabherr, G., Mahr, E. & Reisigl, H. Nettoprimärproduktion und Reproduktion in einem Krummseggenrasen (Caricetum curvulae) der Otztaler Alpen, Tirol. Oecologia Plant. 13, 227–251 (1978).
    Google Scholar 
    Chiang, C., Bånkestad, D. & Hoch, G. Reaching natural growth: light quality effects on plant performance in indoor growth facilities. Plants 9, 1273 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chiang, C., Olsen, J. E., Basler, D., Bånkestad, D. & Hoch, G. Latitude and weather influences on sun light quality and the relationship to tree growth. Forests 10, 610–621 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152, 323–334 (2007).Article 
    PubMed 

    Google Scholar 
    Jiang, Y. & Li, C. Convolutional neural networks for image-based high-throughput plant phenotyping: a review. Plant Phenomics 2020, 4152816 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Möller, B. et al. rhizoTrak: a flexible open source Fiji plugin for user-friendly manual annotation of time-series images from minirhizotrons. Plant Soil 444, 519–534 (2019).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, A. G., Petersen, J., Selvan, R. & Rasmussen, C. R. Segmentation of roots in soil with U-Net. Plant Methods 16, 13–27 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seethepalli, A. et al. Rhizovision crown: an integrated hardware and software platform for root crown phenotyping. Plant Phenomics 2020, 3074916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1. (2021).Möhl P., von Büren R. S. & Hiltbrunner E. Data from: Growth of alpine grassland will start and stop earlier under climate warming figshare. https://doi.org/10.6084/m9.figshare.20440497 (2022). More

  • in

    Non-inversion conservation tillage as an underestimated driver of tillage erosion

    Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 104, 13268–13272 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, D. L., Quinton, J. N., Davies, J. A. C., Zhao, J. & Govers, G. Soil lifespans and how they can be extended by land use and management change. Environ. Res. Lett. 15, 1. https://doi.org/10.1088/1748-9326/aba2fd (2020).Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009 (2016).Article 
    CAS 

    Google Scholar 
    Gao, Y. et al. Effects of tillage methods on soil carbon and wind erosion. Land Degrad. Dev. 27, 583–591. https://doi.org/10.1002/ldr.2404 (2016).Article 

    Google Scholar 
    Klik, A. & Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Till. Res. 203, 1. https://doi.org/10.1016/j.still.2020.104669 (2020).Seitz, S. et al. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 39, 1. https://doi.org/10.1007/s13593-018-0545-z (2018).Lal, R., Reicosky, D. C. & Hanson, J. D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 93, 1–12. https://doi.org/10.1016/j.still.2006.11.004 (2007).Article 

    Google Scholar 
    Mal, P., Schmitz, M. & Hesse, J. W. Economic and environmental effects of conservation tillage with glyphosate use: A case study of Germany. Outlooks Pest Manag. 26, 24–27. https://doi.org/10.1564/v26_feb_07 (2015).Article 

    Google Scholar 
    Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei. Bodenbearbeitung, Bewässerung, Landschaftselemente. Erhebung über landwirtschaftliche Produktionsmethoden (ELPM). 2010. (2011).Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314. https://doi.org/10.1038/ngeo838 (2010).Article 
    CAS 

    Google Scholar 
    Öttl, L. K. et al. Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 32, 3077–3091. https://doi.org/10.1002/ldr.3968 (2021).Article 

    Google Scholar 
    Wilken, F., Ketterer, M., Koszinski, S., Sommer, M. & Fiener, P. Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling. SOIL 6, 549–564. https://doi.org/10.5194/soil-6-549-2020 (2020).Article 
    CAS 

    Google Scholar 
    Van Oost, K., Govers, G., De Alba, S. & Quine, T. A. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 30, 443–466. https://doi.org/10.1191/0309133306pp487ra (2006).Article 

    Google Scholar 
    Winnige, B. Ergebnisse zur Bodenverlagerung durch Bearbeitungserosion in der Jungmoränenlandschaft Nordostdeutschlands—Investigations of soil movement by tillage as a type of soil erosion in the young moraine soil landscape of Northeast Germany. Arch. Agron. Soil Sci. 50, 319–327. https://doi.org/10.1080/03650340410001663864 (2004).Article 

    Google Scholar 
    Fiener, P., Wilken, F. & Auerswald, K. Filling the gap between plot and landscape scale—eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany. Adv. Geosci. 48, 31–48. https://doi.org/10.5194/adgeo-48-31-2019 (2019).Article 

    Google Scholar 
    Fiener, P. et al. Uncertainties in assessing tillage erosion—How appropriate are our measuring techniques?. Geomorphology 304, 214–225. https://doi.org/10.1016/j.geomorph.2017.12.031 (2018).Article 

    Google Scholar 
    Kimaro, D. N., Deckers, J. A., Poesen, J., Kilasara, M. & Msanya, B. M. Short and medium term assessment of tillage erosion in the Uluguru Mountains Tanzania. Soil Till. Res. 81, 97–108. https://doi.org/10.1016/j.still.2004.05.006 (2005).Article 

    Google Scholar 
    Sadowski, H. & Sorge, B. Der Normalhöhenpunkt von 1912 – Datumspunkt des DHHN 2012? Vermessung Brandenburg (2005).Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario Canada. Soil Till. Res. 51, 1. https://doi.org/10.1016/S0167-1987(99)00037-9 (1999).Article 

    Google Scholar 
    Zhang, J. H. & Li, F. C. An appraisal of two tracer methods for estimating tillage erosion rates under hoeing tillage. Proc. Environ. Sci. 11, 1227–1233. https://doi.org/10.1016/j.proenv.2011.12.184 (2011).Article 

    Google Scholar 
    Turkelboom, F. et al. Assessment of tillage erosion rates on steep slopes in northern Thailand. CATENA 29, 29–44 (1997).Article 
    CAS 

    Google Scholar 
    Van Muysen, W., Govers, G., Van Oost, K. & Van Rompaey, A. The effect of tillage depth, tillage speed, and soil condition on chisel tillage erosivity. J. Soil Water Conserv. 55, 355–364 (2000).
    Google Scholar 
    Quine, T. A., Desmet, P. J. J., Govers, G., Vandaele, K. & Walling, D. E. A comparison of the roles of tillage and water erosion in landform development and sediment export on agricultural land near Leuven, Belgium. IAHS Publ. 224, 77–86 (1994).CAS 

    Google Scholar 
    Heckrath, G. et al. Tillage erosion and its effect on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312–324. https://doi.org/10.2134/jeq2005.0312a (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carter, M. R. Conservation tillage. Encyclop. Soils Environ. 1, 306–311. https://doi.org/10.1016/B0-12-348530-4/00270-8 (2005).Article 

    Google Scholar 
    Govers, G., Vandaele, K., Desmet, P., Poesen, J. & Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 45, 469–478. https://doi.org/10.1111/j.1365-2389.1994.tb00532.x (1994).Article 

    Google Scholar 
    Marques da Silva, J. R. & Alexandre, C. Soil carbonation processes as evidence of tillage-induced erosion. Soil Till. Res. 78, 217–224. https://doi.org/10.1016/j.still.2004.02.008 (2004).Mech, S. J. & Free, G. R. Movement of soil during tillage operations. Agric. Eng. 1, 379–382 (1942).
    Google Scholar 
    Tiessen, K. H. D., Mehuys, G. R., Lobb, D. A. & Rees, H. W. Tillage erosion within potato production systems in Atlantic Canada: I. Measurement of tillage translocation by implements used in seedbed preparation. Soil Till. Res. 95, 308–319. https://doi.org/10.1016/j.still.2007.02.003 (2007).Article 

    Google Scholar 
    Marques da Silva, J. R., Soares, J. M. C. N. & Karlen, D. L. Implement and soil condition effects on tillage-induced erosion. Soil Till. Res. 78, 207–216. https://doi.org/10.1016/j.still.2004.02.009 (2004).Article 

    Google Scholar 
    Kietzer, B. Aufklärung der Bodenverlagerung durch Bearbeitungserosion in Jungmoränenlandschaften—Elucidation of soil displacement by tillage erosion in young moraine landscapes PhD thesis, Technical University of Berlin, (2007).Lüthgens, C., Böse, M. & Preusser, F. Age of the Pomeranian ice-marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598–615. https://doi.org/10.1111/j.1502-3885.2011.00211.x (2011).Article 

    Google Scholar 
    Deumlich, D., Schmidt, R. & Sommer, M. A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. J. Plant Nutr. Soil Sci. 173, 843–851. https://doi.org/10.1002/jpln.200900094 (2010).Article 
    CAS 

    Google Scholar 
    Koszinski, S., Gerke, H. H., Hierold, W. & Sommer, M. Geophysical-based modeling of a kettle hole catchment of the morainic soil landscape. Vadose Zone J. 12, 1. https://doi.org/10.2136/vzj2013.02.0044 (2013).Article 

    Google Scholar 
    Sommer, M., Gerke, H. H. & Deumlich, D. Modelling soil landscape genesis: A “time split” approach for hummocky agricultural landscapes. Geoderma 145, 480–493. https://doi.org/10.1016/j.geoderma.2008.01.012 (2008).Article 
    CAS 

    Google Scholar 
    DWD Climate Data Center (CDC). Historical hourly station observations of 2m air temperature and humidity for Germany, version v006. (2018).DWD Climate Data Center (CDC). Historical hourly station observations of precipitation for Germany, version v21.3. (2021).Zhang, H. et al. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 7, 807–827. https://doi.org/10.5194/esurf-7-807-2019 (2019).Article 

    Google Scholar 
    Lindstrom, M. J., Nelson, W. W., Schumacher, T. E. & Lemme, G. D. Soil movement by tillage as affected by slope. Soil Till. Res. 17, 255–264. https://doi.org/10.1016/0167-1987(90)90040-K (1990).Article 

    Google Scholar 
    Crawley, M. J. The R book. 2nd edn, (Wiley, 2013).Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    R Core Team. A language and environment for statistical computing. (2021).De Alba, S. Modelling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough. J. Soil Water Conserv. 1, 335–345 (2001).
    Google Scholar 
    Gerontidis, D. V. S. et al. The effect of moldboard plow on tillage erosion along a hillslope. J. Soil Water Conserv. 56, 147–152 (2001).
    Google Scholar 
    Heckrath, G., Halekoh, U., Djurhuus, J. & Govers, G. The effect of tillage direction on soil redistribution by mouldboard ploughing on complex slopes. Soil Tillage Res. 88, 225–241. https://doi.org/10.1016/j.still.2005.06.001 (2006).Article 

    Google Scholar 
    Kosmas, C. et al. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Till Res. 58, 31–44. https://doi.org/10.1016/S0167-1987(00)00175-6 (2001).Article 

    Google Scholar 
    Lindstrom, M. J., Nelson, W. W. & Schumacher, T. E. Quantifying tillage erosion rates due to moldboard plowing. Soil Till Res. 24, 243–255. https://doi.org/10.1016/0167-1987(92)90090-X (1992).Article 

    Google Scholar 
    Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can. J. Soil Sci. 75, 211–218. https://doi.org/10.4141/cjss95-029 (1995).Article 

    Google Scholar 
    Quine, T. A. & Zhang, Y. Re-defining tillage erosion: Quantifying intensity–direction relationships for complex terrain: 1. Derivation of an adirectional soil transport coefficient. Soil Use Manag. 20, 114–123. https://doi.org/10.1111/j.1475-2743.2004.tb00346.x (2004).Article 

    Google Scholar 
    Quine, T. A., Basher, L. R. & Nicholas, A. P. Tillage erosion intensity in the South Canterbury Downlands, New Zealand. Aust. J. Soil Res. 41, 789–807. https://doi.org/10.1071/SR02063 (2003).Article 

    Google Scholar 
    Revel, J. C. & Guiresse, M. Erosion due to cultivation of calcareous clay soils on the hillsides of south west France: I. Effect of former farming practices. Soil Till Res. 35, 147–155. https://doi.org/10.1016/0167-1987(95)00482-3 (1995).Article 

    Google Scholar 
    Van Muysen, W. & Govers, G. Soil displacement and tillage erosion during secondary tillage operations: The case of rotary harrow and seeding equipment. Soil Till Res. 65, 185–191. https://doi.org/10.1016/S0167-1987(01)00284-7 (2002).Article 

    Google Scholar 
    Van Muysen, W., Govers, G., Bergkamp, G., Roxo, M. & Poesen, J. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil Till Res. 51, 303–316. https://doi.org/10.1016/S0167-1987(99)00044-6 (1999).Article 

    Google Scholar 
    Poesen, J. et al. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197. https://doi.org/10.1016/S0169-555X(96)00025-6 (1997).Article 

    Google Scholar 
    Quine, T. A. et al. Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: An investigation using caesium-134. Soil Till Res. 51, 279–301. https://doi.org/10.1016/S0167-1987(99)00043-4 (1999).Article 
    MathSciNet 

    Google Scholar 
    Kemper, W. D. & Rosenau, R. C. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 1, 1001–1006. https://doi.org/10.2136/sssaj1984.03615995004800050009x (1984).Article 

    Google Scholar 
    Reinermann, S., Gessner, U., Asam, S., Kuenzer, C. & Dech, S. The effect of droughts on vegetation condition in Germany: An analysis based on two decades of satellite earth observation time series and crop yield statistics. Rem. Sens. 11, 1. https://doi.org/10.3390/rs11151783 (2019).Article 

    Google Scholar 
    Lüttger, A. B. & Feike, T. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theor. Appl. Climatol. 1, 15–29. https://doi.org/10.1007/s00704-017-2076-y (2018).Article 

    Google Scholar 
    Madarász, B. et al. Conservation tillage vs. conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe. Hungary. Int. J. Agric. Sustain. 14, 408–427. https://doi.org/10.1080/14735903.2016.1150022 (2016).Article 

    Google Scholar 
    Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041 (2016).Article 

    Google Scholar 
    Napoli, M., Altobelli, F. & Orlandini, S. Effect of land set up systems on soil losses. Ital. J. Agron. 15, 306–314. https://doi.org/10.4081/ija.2020.1768 (2020).Article 

    Google Scholar 
    Dumanski, J., Peiretti, R., Benites, J. R., McGarry, D. & Pieri, C. The paradigm of conservation agriculture. In Proceedings of World Association of Soil and Water Conservation, 58–64 (2006). More

  • in

    Younger trees in the upper canopy are more sensitive but also more resilient to drought

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    CAS 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    CAS 

    Google Scholar 
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).Article 

    Google Scholar 
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).Article 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).Article 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).Article 
    CAS 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).Article 
    CAS 

    Google Scholar 
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).Article 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 10, 1091–1095 (2020).Article 

    Google Scholar 
    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).Article 
    CAS 

    Google Scholar 
    Engelbrecht, B. M. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).Article 
    CAS 

    Google Scholar 
    Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).Article 
    CAS 

    Google Scholar 
    Au, T. F. et al. Demographic shifts in eastern US forests increase the impact of late‐season drought on forest growth. Ecography 43, 1475–1486 (2020).Article 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).Article 
    CAS 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).Article 
    CAS 

    Google Scholar 
    Ellsworth, D. & Reich, P. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96, 169–178 (1993).Article 
    CAS 

    Google Scholar 
    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).Article 
    CAS 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).Article 

    Google Scholar 
    Piovesan, G. & Biondi, F. On tree longevity. N. Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Jucker, T. et al. Tallo: a global tree allometry and crown architecture database. Glob. Change Biol. 28, 5254–5268 (2022).Article 
    CAS 

    Google Scholar 
    Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).Article 

    Google Scholar 
    D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).Article 

    Google Scholar 
    Luo, Y. & Chen, H. Y. Observations from old forests underestimate climate change effects on tree mortality. Nat. Commun. 4, 1655 (2013).Article 

    Google Scholar 
    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).Article 

    Google Scholar 
    Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).Article 
    CAS 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 
    CAS 

    Google Scholar 
    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).Article 
    CAS 

    Google Scholar 
    Phillips, R. P. et al. A belowground perspective on the drought sensitivity of forests: towards improved understanding and simulation. For. Ecol. Manage. 380, 309–320 (2016).Article 

    Google Scholar 
    Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. Size- and Age-Related Changes in Tree Structure and Function Vol. 4 (Springer, 2011).Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).Article 
    CAS 

    Google Scholar 
    Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).Article 

    Google Scholar 
    Cavender-Bares, J. & Bazzaz, F. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124, 8–18 (2000).Article 
    CAS 

    Google Scholar 
    Gallé, A., Haldimann, P. & Feller, U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. N. Phytol. 174, 799–810 (2007).Article 

    Google Scholar 
    Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).Article 
    CAS 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. The International Tree‐Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).Article 

    Google Scholar 
    Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).Article 

    Google Scholar 
    Rayback, S. A. et al. The DendroEcological Network: a cyberinfrastructure for the storage, discovery and sharing of tree-ring and associated ecological data. Dendrochronologia 60, 125678 (2020).Article 

    Google Scholar 
    Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Climate of the Past 16, 1901–1916 (2020).Article 

    Google Scholar 
    Maxwell, J. T. et al. Higher CO2 concentrations and lower acidic deposition have not changed drought response in tree growth but do influence iWUE in hardwood trees in the Midwestern USA. J. Geophys. Res. Biogeosci. 124, 3798–3813 (2019).Article 
    CAS 

    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer, 2013).Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
    Google Scholar 
    Fritts, H. Tree Rings and Climate (Academic Press, 1976).
    Google Scholar 
    Wilson, R. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Holmes, R. Program COFECHA User’s Manual (Univ. Arizona Laboratory of Tree-Ring Research, 1983).Palmer, J. G. et al. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environ. Res. Lett. 10, 124002 (2015).Article 

    Google Scholar 
    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).Article 
    CAS 

    Google Scholar 
    Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).Article 
    CAS 

    Google Scholar 
    Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long‐term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).Article 

    Google Scholar 
    Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).Article 

    Google Scholar 
    Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl Acad. Sci. USA 117, 16816–16823 (2020).Article 
    CAS 

    Google Scholar 
    Stokes, M. & Smiley, T. An Introduction to Tree-Ring Dating. (Univ. Chicago Press, 1968).
    Google Scholar 
    Lockwood, B. R., Maxwell, J. T., Robeson, S. M, & Au, T. F. Assessing bias in diameter at breast height estimated from tree rings and its effects on basal area increment and biomass. Dendrochronologia 67, 125844 (2021).Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).Article 
    CAS 

    Google Scholar 
    Rozas, V., DeSoto, L. & Olano, J. M. Sex‐specific, age‐dependent sensitivity of tree‐ring growth to climate in the dioecious tree Juniperus thurifera. N. Phytol. 182, 687–697 (2009).Article 

    Google Scholar 
    Carrer, M. & Urbinati, C. Age‐dependent tree‐ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85, 730–740 (2004).Article 

    Google Scholar 
    Gazol, A., Camarero, J., Anderegg, W. & Vicente‐Serrano, S. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).Article 

    Google Scholar 
    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    Pardos, M. et al. The greater resilience of mixed forests to drought mainly depends on their composition: analysis along a climate gradient across Europe. For. Ecol. Manage. 481, 118687 (2021).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: thestandardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, e03264 (2021).Article 

    Google Scholar 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).Article 

    Google Scholar 
    Li, X. et al. Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 736–737 (2021).Article 

    Google Scholar 
    Zheng, T. et al. Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 733–735 (2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Long, J. A. jtools: Analysis and Presentation of Social Scientific Data R Package v.2.2.0 https://cran.r-project.org/package=jtools (2022).Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on AIC R Package v.2.3-1 https://cran.r-project.org/package=AICcmodavg (2020).Au, T. F. Au_et_al_NCC.R. Figshare https://doi.org/10.6084/m9.figshare.21263676.v1 (2022). More

  • in

    Populations adapt more to temperature in the ocean than on land

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Sasaki, M. et al. Greater evolutionary divergence of thermal limits within marine than terrestrial species. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01534-y (2022). More

  • in

    Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).Article 

    Google Scholar 
    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCC, 2015).IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—a review. Geochemistry 76, 327–352 (2016).Article 

    Google Scholar 
    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change 3rd edn (Elsevier, 2013).Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Du, E. Rise and fall of nitrogen deposition in the United States. Proc. Natl Acad. Sci. USA 113, E3594–E3595 (2016).Article 

    Google Scholar 
    Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).Article 

    Google Scholar 
    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 334, 664–666 (2011).Article 

    Google Scholar 
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).Article 

    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).Article 

    Google Scholar 
    Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).Article 

    Google Scholar 
    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).Article 

    Google Scholar 
    Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 

    Google Scholar 
    Zhong, Y., Yan, W. & Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 25, 475–488 (2016).Article 

    Google Scholar 
    Deng, L. et al. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol. 26, 2613–2629 (2020).Article 

    Google Scholar 
    Hagedorn, F., Kammer, A., Schmidt, M. W. I. & Goodale, C. L. Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Glob. Change Biol. 18, 1412–1427 (2012).Article 

    Google Scholar 
    Du, Y. et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Change Biol. 20, 3222–3228 (2014).Article 

    Google Scholar 
    Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: evidence from a 7-year field study of larch plantations in northern China. Agr. For. Meteorol. 262, 24–33 (2018).Article 

    Google Scholar 
    Xing, A. et al. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecol. Lett. 25, 77–78 (2021).Article 

    Google Scholar 
    Melillo, J. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).Article 

    Google Scholar 
    Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).Article 

    Google Scholar 
    Liu, X. J. et al. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut. 159, 2251–2264 (2011).Article 

    Google Scholar 
    Zhu, F. F., Yoh, M., Gilliam, F. S., Lu, X. K. & Mo, J. M. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS ONE 8, e82661 (2013).Article 

    Google Scholar 
    Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).Article 

    Google Scholar 
    Priess, J. & Fölster, H. Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biol. Biochem. 33, 503–509 (2001).Article 

    Google Scholar 
    He, T., Wang, Q., Wang, S. & Zhang, F. Nitrogen addition altered the effect of belowground C allocation on soil respiration in a subtropical forest. PLoS ONE 11, e0155881 (2016).Article 

    Google Scholar 
    Fan, H. et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant Soil 379, 361–371 (2014).Article 

    Google Scholar 
    Zheng, M. et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences 13, 3503–3517 (2016).Article 

    Google Scholar 
    Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl Acad. Sci. USA 118, e2020790118 (2021).Article 

    Google Scholar 
    Zhou, G. Y. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).Article 

    Google Scholar 
    Tian, J. et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 25, 3267–3281 (2019).Article 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 

    Google Scholar 
    Lu, X. K. et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China. Pedosphere 19, 189–198 (2009).Article 

    Google Scholar 
    Fang, Y., Gundersen, P., Mo, J. & Zhu, W. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. For. Ecol. Manage. 257, 332–342 (2009).Article 

    Google Scholar 
    Chen, X. M. et al. Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S. China. J. Plant Nutr. Soil Sci. 175, 947–953 (2012).Article 

    Google Scholar 
    Fang, H. J. et al. 13C abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant Soil 320, 243–254 (2009).Article 

    Google Scholar 
    Liu, L. et al. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci. Rep. 5, 14378–14378 (2014).Article 

    Google Scholar 
    Chen, H. et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Funct. Ecol. 30, 305–313 (2015).Article 

    Google Scholar 
    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).Article 

    Google Scholar 
    Mao, Q. G. Impacts of Long-Term Nitrogen and Phosphorus Addition on Understory Plant Diversity in Subtropical Forests in Southern China. Doctoral Thesis, Univ. Chinese Academy of Sciences (2017).Xing, A. J. et al. High-level nitrogen additions accelerate soil respiration reduction over time in a boreal forest. Ecol. Lett. https://doi.org/10.1111/ele.14065 (2022).Cao, J. et al. Plant–bacteria–soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Funct. Ecol. 34, 723–734 (2020).Article 

    Google Scholar 
    Mo, J. M., Brown, S., Peng, S. L. & Kong, G. H. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For. Ecol. Manage. 175, 573–583 (2003).Article 

    Google Scholar 
    Huang, Z. L., Ding, M. M., Zhang, Z. P. & Yi, W. M. The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecol. Sin. 18, 194–199 (1994).
    Google Scholar 
    Wright, R. F. & Rasmussen, L. Introduction to the NITREX and EXMAN projects. For. Ecol. Manage. 101, 1–7 (1998).Article 

    Google Scholar 
    Gundersen, P. et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage. 101, 37–55 (1998).Article 

    Google Scholar 
    Aber, J. D. et al. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Appl. 3, 156–166 (1993).Article 

    Google Scholar 
    Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl Acad. Sci. USA 103, 10316–10321 (2006).Article 

    Google Scholar 
    Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).Article 

    Google Scholar 
    Lu, X. et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences 10, 3931–3941 (2013).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil–atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).Article 

    Google Scholar 
    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 403 (2021).Article 

    Google Scholar  More