More stories

  • in

    Analysis of influencing factors of phenanthrene adsorption by different soils in Guanzhong basin based on response surface method

    Surface morphology analysisSEM images were shown in Fig. 1. It showed that the contour of three soils were fairly clear before adsorption. But it became fuzzier and the degree of cementation was increased when phenanthrene was adsorbed on the soils. According to the surface morphology, the silty sand (A) had furrows on the surface before adsorption compared with the fairly smooth without any furrows after adsorption (B). The silts (C) were flaky and the lamellar accumulation decreased (D). The loess (E) had a smooth surface with some flaky and rod like structure, after adsorption (F), the surface of loess increased in clay-like structure.Figure 1SEM micrographs of the three soil samples. (A) Silty sand; (B) Adsorbing 5 h of Silty sand; (C) Silts; (D) Adsorbing 5 h of Silts; (E) Loess; (F) Adsorbing 5 h of Loess.Full size imageAdsorption and desorption experimentsAdsorption and desorption kineticsAdsorption kinetics is one of the most important characteristics governing solute uptake rate and represents adsorption efficiency33. The sorption and desorption kinetics of phenanthrene in three soils were shown in Fig. 2. The results showed that the adsorption processes among all soils were similar. The kinetics of phenanthrene in soils was completed in two steps: a “fast” adsorption and a “slow” adsorption. The adsorption amount increased during 0-18h. It was a rapid reaction from 0 to 200 minutes. From 200 to 600 minutes, the adsorption amount increased slightly into balance. This phenomenon was due to the adsorption of phenanthrene occurred on the surface of soil organic matter. With the increase of time, soil surface adsorption sites were gradually saturated, causing the decrease of adsorption rate until reaching the equilibrium. Phenanthrene was a hydrophobic substance. It was easy to reach the soil surface and adhere to the grain surface. The results were consistent with the study of had also found that the balance time was approximately 18h and the adsorption amount increased with the adsorption reaction time34. Under the same conditions, loess had the highest adsorption capacity, which was mainly due to the highest organic content 18. The maximum phenanthrene sorption capacities ranked as follows: loess > silty sand > silts. As shown in Fig. 2, phenanthrene desorption in soils was relatively quick and its desorption equilibrium time was 3h. To reach an adequate desorption balance while remaining consistent with the adsorption reaction time, the balance time of the adsorption–desorption experiment was set at 18h. Generally, PAHs below 4 cycles could reach the adsorption equilibrium for about 16~24h.Figure 2(a)Adsorption equilibration curves of phenanthrene sorption in soils. (b) Desorption equilibration curves of phenanthrene sorption in soils.Full size imagePseudo-second-order and Elovich models were used to study the phenanthrene adsorption mechanism (Table 3). Phenanthrene sorption kinetics were satisfactorily described by a pseudo-second-order model with coefficients of determination (R2) ranging from 0.99875 to 0.99847, compared with R2 values of 0.26508–0.73901 for the Elovich model. This well-fitting pseudo-second-order model indicated that the rate-limiting step was chemical adsorption, including electronic forces through sharing or exchange of electrons35,36. Moreover, it suggested that sorption was governed by the availability of sorption sites on the soil surfaces instead of by the phenanthrene concentration in solution.Table 3 Constants and coeffients of determination of Pseudo-second-order kinetics and Elovich models of sorption.Full size tableAdsorption and desorption isothermsThe isotherm was used for quantitative analysis of phenanthrene transport from liquid to solid phase and for understanding the nature of interactions between phenanthrene and the soil matrix. The sorption and desorption isotherms of phenanthrene in soils were shown in Fig. 3. The data showed that phenanthrene adsorption and desorption capacities of three soils varied markedly due to their different physicochemical properties. With the increase of phenanthrene concentration, the adsorbed amount increased. At the same temperature, the adsorption capacity of silty sand was minimum while loess was maximum. This is mainly related to the soil physicochemical properties. At the same initial concentration, the temperature increase from 20 °C to 40 °C showed that the adsorption and desorption capacity decreased with temperature increase. On the one hand, the rise of temperature can increase the phenanthrene solubility in the liquid phase. On the other hand, it could reduce various forces between the soil surface and phenanthrene37.Figure 3(a)20 °C adsorption isotherms for phenanthrene in soils. (b)30 °C adsorption isotherms for phenanthrene in soils. (c)40 °C adsorption isotherms for phenanthrene in soils. (d) 20 °C desorption isotherms for phenanthrene in soils. (e) 30 °C desorption isotherms for phenanthrene in soils. (f) 40 °C desorption isotherms for phenanthrene in soils.Full size imageThe Freundlich isotherm was used mainly for adsorption surfaces with nonuniform energy distribution, and the Langmuir isotherm was used for monolayer adsorption on perfectly smooth and homogeneous surfaces38. The experimental data were fitted with the Langmuir and Freundlich adsorption models, and the isotherm parameters logKF, 1/n, KL, qmax and the coefficient of determination (R2) of phenanthrene in soils were listed in Table 4.Table 4 Isotherm parameters for Phenanthrene sorption in soils.Full size tableAs shown in Table 4, according to the coefficients of determination (R2), all soils were better fitted with the Freundlich model, which assumes that phenanthrene sorption and desorption occurs on a heterogeneous surface with the possibility of sorption being multi-layered39. This phenomenon has also been observed in humic acid and nanometer clay mineral40. It showed that the soil adsorption of organic matter was not only surface adsorption but also the process of soil organic matter distribution41,42,43 reached the equilibrium isotherm fitted well with the Freundlich equation when studying the adsorption behavior of aromatic compounds by solids.Adsorption and desorption thermodynamicsTo clarify the adsorption mechanisms, the thermodynamic parameters mentioned earlier were calculated and presented in Table 5. Generally, the value of Gibbs free energy changeΔG0 indicated the spontaneity of a chemical reaction. Therefore, it could evaluate whether sorption was relate to spontaneous interaction44. Negative values of ΔG0 indicated that the feasibility and spontaneous nature. The research was under the temperature range about 293–313 K. For adsorption process, all soils ΔG0 was  0 and desorption ΔH  1, P  temperature  > phenanthrene concentration  > pH. In the interaction, the phenanthrene concentration and organic matter have a significant effect on the silt adsorption rate. The coefficient of determination of the silt complex correlation is R2 = 0.9464, indicating that the response model has a good fit, and the experimental error is within the acceptable range. Adjusting the complex correlation coefficient R2 = 0.8982 indicates that the regression relationship can explain 89.82% of the change in the dependent variable. Therefore, this The model can be used to analyze and predict the effect of different factors on the adsorption rate of phenanthrene.3D response surface analysisIn response surface optimization, the three-dimensional response surface graph reflects the influence of the interaction of the other two variables on the response value, and the slope of the response surface reflects the significance of the interaction of the two variables on the response value. The more significant the interaction effect is on the response value, when the slope is gentle, the effect is not significant. If the contour map is elliptical, it indicates that the interaction between the two variables is significant, and if the contour map is circular, it is not significant46. In addition, the slope and density of the contour line also reflect the influence of the variable on the response value. The steeper the contour line and the greater the density, the greater the influence of the variable on the response value47.

    (1) Loess Fig. 5 is a three-dimensional response surface diagram of the interaction between initial phenanthrene concentration and pH to phenanthrene adsorption on loess. It can be seen from the figure that the slope of the response surface graph is steep, and the contour line is an approximate circle, indicating that the interaction between phenanthrene concentration and pH is not significant for the response value. With the increase of pH, the adsorption rate of phenanthrene on loess showed a slow decline at first to the lowest point at 6, and then gradually increased. When the soil pH was close to 6, with the increase of the initial phenanthrene concentration, the adsorption rate of loess also showed a trend of first decreasing and then increasing. According to the F value, F = 0.337, P = 0.5532  > 0.05, it can be concluded that soil pH and initial phenanthrene concentration of the solution have no significant interaction on the adsorption rate of loess.

    Figure 6 shows the effects of initial phenanthrene concentration and organic matter on phenanthrene adsorption on Loess under the condition that pH value and temperature are at the central point. It can be seen from the figure that the initial phenanthrene concentration and soil organic matter contour are steep, indicating that their interaction is significant. The range of phenanthrene adsorption rate is 70 ~ 95, and the change of surface is steep. From the Loess error analysis, it can be seen that if f value is 6.05 and P value is 0.0275  More

  • in

    A trait-based conceptual framework to examine urban biodiversity, socio-ecological filters, and ecosystem services linkages

    United Nations. World Urbanization Prospects: The 2018 revision. (Department of Economic and Social Affairs, Population Division, United Nations, 2018).Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).Article 

    Google Scholar 
    McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).Article 

    Google Scholar 
    Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 997–1040 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).DĂ­az, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article 

    Google Scholar 
    Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P. & Pickett, S. T. A. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–160 (2022).Article 

    Google Scholar 
    Childers, D. L. et al. Urban ecological infrastructure: An inclusive concept for the non-built urban environment. Elementa 7, 1–14 (2019).
    Google Scholar 
    GĂłmez-Baggethun, E. et al. Urban ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (eds. Elmqvist, T. et al.) 175–251 (Springer, Netherlands, 2013).DĂ­az, S. & Cabido, M. Vive la diffĂ©rence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Burkhard, B. & Maes, J. Mapping Ecosystem Services (Pensoft Publishers, Sofia, 2017).Eviner, V. T. & Chapin, F. S. Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 34, 455–485 (2003).Article 

    Google Scholar 
    Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14, 1125–1140 (2008).Article 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol. Evol. 7, 831–844 (2017).Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).Article 

    Google Scholar 
    Andersson, E. et al. What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. npj Urban Sustain. 1, 14 (2021).Article 

    Google Scholar 
    Pickett, S. T. A. et al. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Article 

    Google Scholar 
    Zhou, W., Pickett, S. T. A. & McPhearson, T. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustain. 1, 1 (2021).Article 

    Google Scholar 
    Andersson, E. et al. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 12, 157–164 (2015).Article 

    Google Scholar 
    Pinho, P. et al. Research agenda on biodiversity and ecosystem functions and services in European cities. Basic Appl. Ecol. 53, 124–133 (2021).Article 

    Google Scholar 
    Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).Article 

    Google Scholar 
    Avolio, M. L., Swan, C., Pataki, D. E. & Jenerette, G. D. Incorporating human behaviors into theories of urban community assembly and species coexistence. Oikos 130, 1849–1864 (2021).Article 

    Google Scholar 
    Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).Article 

    Google Scholar 
    Woodward, F. I. & Diament, A. D. Functional approaches to predicting the ecological effects of global change. Funct. Ecol. 5, 212 (1991).Article 

    Google Scholar 
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020).Article 

    Google Scholar 
    Grimm, N. B., Grove, J. M., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems. Bioscience 50, 571–584 (2000).Article 

    Google Scholar 
    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).Article 

    Google Scholar 
    Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).Article 

    Google Scholar 
    Cavender-Bares, J. et al. Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecol. Appl. 30, 1–16 (2020).Article 

    Google Scholar 
    Pearse, W. D. et al. Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 9, e02105 (2018).Article 

    Google Scholar 
    Cubino, J. P. et al. Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landsc. Ecol. 34, 63–77 (2019).Article 

    Google Scholar 
    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).
    Google Scholar 
    Sukopp, H. Human-caused impact on preserved vegetation. Landsc. Urban Plan. 68, 347–355 (2004).Article 

    Google Scholar 
    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).Article 

    Google Scholar 
    Williams, N. S. G., Hahs, A. K. & Vesk, P. A. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst. 17, 78–86 (2015).Article 

    Google Scholar 
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).Article 

    Google Scholar 
    Jochner, S. & Menzel, A. Urban phenological studies—past, present, future. Environ. Pollut. 203, 250–261 (2015).Article 

    Google Scholar 
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).Article 

    Google Scholar 
    de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).Article 

    Google Scholar 
    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).Article 

    Google Scholar 
    Martin, C. A., Warren, P. S. & Kinzig, A. P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 69, 355–368 (2004).Article 

    Google Scholar 
    Kinzig, A. P., Warren, P., Martin, C., Hope, D. & Katti, M. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol. Soc. 10, 23 (2005).Article 

    Google Scholar 
    Stephenson, J. The cultural values model: An integrated approach to values in landscapes. Landsc. Urban Plan. 84, 127–139 (2008).Article 

    Google Scholar 
    Andersson, E., Barthel, S. & AhrnĂ©, K. Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol. Appl. 17, 1267–1278 (2007).Article 

    Google Scholar 
    Fraser, E. D. G. & Kenney, W. A. Cultural background and landscape history as factors affecting perceptions of the urban forest. J. Arboric. 26, 106–113 (2000).
    Google Scholar 
    Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 100, 8788–8792 (2003).Article 

    Google Scholar 
    Avolio, M. L. et al. Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosyst. 18, 73–86 (2015).Article 

    Google Scholar 
    Körmöndi, B., Tempfli, J., Kocsis, J. B., Adams, J. & Szkordilisz, F. E. The secret ingredient—The role of governance in green infrastructure development: Through the examples of European cities. IOP Conf. Ser. Earth Environ. Sci. 323, (2019).Conway, T. M. & Vander Vecht, J. Growing a diverse urban forest: species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 138, 1–10 (2015).Article 

    Google Scholar 
    Lack, W. H. The Book of Palms (Taschen-Bibliotheca Universalis, 2015).Grilo, F. et al. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Sci. Total Environ. 724, 138182 (2020).Article 

    Google Scholar 
    Prasifka, J. R. et al. Using nectar-related traits to enhance crop–pollinator interactions. Front. Plant Sci. 9, 1–8 (2018).Article 

    Google Scholar 
    Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).Article 

    Google Scholar 
    Farmer, J. Trees in Paradise: A California History (WW Norton & Company, 2013).Goodness, J., Andersson, E., Anderson, P. M. L. & Elmqvist, T. Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol. Indic. 70, 597–605 (2016).Article 

    Google Scholar 
    Masterson, V. A. et al. The contribution of sense of place to social-ecological systems research: A review and research agenda. Ecol. Soc. 22, 49 (2017).Article 

    Google Scholar 
    Masterson, V. A., Enqvist, J. P., Stedman, R. C. & Tengö, M. Sense of place in social-ecological systems: From theory to empirics. Sustain. Sci. 14, 555–564 (2019).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. Ecotoxicol. Environ. Saf. 152, 42–54 (2018).Article 

    Google Scholar 
    Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J. & Naryan, D. Air pollution tolerance index of plants. J. Environ. Manage. 32, 45–55 (1991).Article 

    Google Scholar 
    Mukherjee, A. & Agrawal, M. Pollution response score of tree species in relation to ambient air quality in an urban area. Bull. Environ. Contam. Toxicol. 96, 197–202 (2016).Article 

    Google Scholar 
    Barwise, Y. & Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. npj Clim. Atmos. Sci. 3, 12 (2020).Article 

    Google Scholar 
    Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550 (2016).Article 

    Google Scholar 
    Tomson, M. et al. Green infrastructure for air quality improvement in street canyons. Environ. Int. 146, 106288 (2021).Article 

    Google Scholar  More

  • in

    Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

    Study area descriptionYangtze River Basin is situated in central China (Fig. 1). Its geographical coordinates are between 30° 48â€Č 30″–31° 02â€Č 30″ N and 112° 48â€Č 45″–113° 03â€Č 45″ E. Taizishan is located in the transition zone between the north and south of China, with an altitude of 403–467.4 m. It belongs to the subtropical monsoon humid climate zone and has obvious karst landforms. The farm area is 7576 hectares, the forest coverage rate is 82.0%, and the vegetation is mainly Masson pine, fir, and various broad-leaved tree species. Increased forest coverage reduces sediment production30. The soil is mainly viscous yellow–brown soil and loess parent material. Rain is concentrated in summer, with an average annual rainfall of 1094.6 mm and an average annual temperature of 16.4 °C. Rainfall-related flood risk increased in the Yangtze River Delta in recent years31.The study was based in a Pinus massoniana forest in the Taizishan forest farm of Hubei Province. The Pinus massoniana (Masson pine) is a common species distributed in Central China.Figure 1Geographic location of the study area. Maps were generated using ArcGIS 10.8 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageExperiment designWe chose the Pinus massoniana forest with 47a in the study area as the research object. In the typical Pinus massoniana forest, the separate layers of litter (semi-decomposed and non-decomposed layers) were collected from several 1 m × 1 m quadrat and placed in grid bags. The litter of the semi-decomposed layer have no complete outline, and the color was brown. As the litter leaves of the completely decomposed layer are powdery and are combined with the soil layer, this layer is difficult to collect. Before testing, it was necessary to clean the soil off the pine needles and then allow the litter to dry naturally. The characteristics of the semi-decomposed and non-decomposed litter layers are shown in Table 1. The soil samples need to be dried and screened by 10 mm. When filling the soil trough, every 0.1 m of soil thickness was one layer, for a total of four layers (0.4 m). The characteristics by soil particle sizes are different (Fig. 2). The soil samples were dried naturally, crushed, and then sieved. The soil trough (2 m long, 0.5 m wide and 0.5 m deep) was filled to have a bulk density of 1.53 g·m−3. In this process, an appropriate amount of water was sprinkled on the surface of each soil layer to achieve a soil moisture content consistent with the surrounding, undisturbed, or natural, state. The simulation experiment was conducted in the Jiufeng rainfall laboratory at Beijing Forestry University, China. We used a rainfall simulation system (QYJY-503T, Qingyuan Measurement Technology, Xi’an, China) used a rotary downward spray nozzle. The system is able to simulate a wide range of rainfall intensities (10 to 300 mm h−1) using various water pressure and nozzle sizes controlled by a computer system.Table 1 Characteristics of the non-decomposed and semi-decomposed layers of Pinus massoniana litter.Full size tableFigure 2Soil particle composition of study area soil layers.Full size imageAccording to the results of the field forest investigation, the litter was covered with the experimental treatments shown in Table 2. The treatments mass coverage of non-decomposed litter layer was named as follows: N1 denoted litter mass coverage 0 g·m−2, N2 was ‘the non-decomposed litter mass coverage 100 g·m−2’, N3 was ‘the non-decomposed litter mass coverage 200 g·m−2’, and N4 was ‘the non-decomposed litter mass coverage 400 g·m−2’, N5 was ‘the semi-decomposed litter mass coverage 100 g·m−2’, N6 was ‘the non-decomposed litter mass coverage 100 g·m−2 and the semi-decomposed litter mass coverage 100 g·m−2’, N7 was ‘the non-decomposed litter mass coverage 200 g·m−2 and the semi-decomposed litter mass coverage 100 g·m−2’. N2, N3 and N4 were the undissolved state of litter layer, and N4 (non-decomposed state, ND), N7 (initial stage of litter decomposition, ID), N6 (middle stage of litter decomposition, MD) and N5 (final stage of litter decomposition, FD) respectively represent different stages of litter decomposition.Table 2 The experimental design of this study.Full size tableAccording to the rainfall in the Taizishan area of Hubei Province, erosive rainfall and extreme rainstorms were selected as the research conditions. Summer rainfall events occur mainly in the summer in this area, and a rainfall intensity of 60 mm·h−1 was the most common erosive rainfall intensity. Under extreme weather conditions, the rainfall intensity can reach up to 120 mm·h−1. Our experiments were conducted with 60 and 120 mm·h−1 rain intensities with a rainfall that lasted 1 h. According to the field investigation data of forest land, this area is a low mountain and hilly area with a slope mostly between 5° and 10°. Therefore, 5° and 10° were selected for the slope treatments in this study. The combination of slope and rainfall intensity was named as follows: T1 denoted ‘Slope 5° and rainfall intensity 60 mm·h−1’, T2 was ‘Slope 10° and rainfall intensity 60 mm·h−1’, T3 was ‘Slope 5° and rainfall intensity 120 mm·h−1’, and T4 was ‘Slope 10° and rainfall intensity 120 mm·h−1’. With two rainfall intensities, two slopes, seven litter coverage gradient and two repetitions combined, this study had a total of 56 rainfall events.Experimental procedureBefore the test, the soil samples were wetted for 10 h and then drained for 2 h to eliminate the effect of the initial soil moisture on the soil detachment measurement. When the simulated rainfall started, all the runoff and sediment produced from plot were collected every 5 min in the first 10 min, and then collected once every 10 min during the subsequent 50 min. At the same time, runoff velocity, depth and temperature were measured and vernier calliper (accuracy 0.02 mm) respectively.The overland flow velocity was measured using dying method (KMnO4 solution)32. After judging the flow pattern, we confirmed the correction coefficient K value (in laminar flow state, K = 0.67; transition flow state, K = 0.70; turbulent flow state, K = 0.8). The average velocity of overland flow was obtained by multiplying the correction coefficient K and the instantaneous velocity. Runoff depth was measured using vernier calliper (accuracy 0.02 mm). Runoff temperature was measured using thermometer. When the rainfall experiment finished, the collected runoff samples were measured volumetric cylinder and then settled for at least 12 h. The clear water was decanted, and the samples were put into an oven to dry for 24 h under 105 °C. The sediment sample was dried and weighed with an electronic scale.Calculation of hydrodynamic parametersOverland flow has the characteristics of a thin water layer, large fluctuations of the underlying surface, and unstable flow velocity. At present, most scholars use open-channel flow theory to study overland flow33,34. In open-channel flow theory, the Reynold’s number (Re), Froude constant (Fr), flow index (m), resistance coefficient (f), and soil separation rate (({D}_{r})) are the basic parameters of overland flow dynamics, through Reynold’s number (Re), Froude constant (Fr), flow index (m) can distinguish flow patterns. Re is calculated as:$$Re=Rcdot V/nu ,$$where Re is the Reynolds number of the water flow, which is dimensionless, and can be used to judge the flow state of overland flow. When Re ≀ 500, the flow pattern is laminar; when 500   5000, the flow pattern is turbulent. R is the hydraulic radius (m), which is generally replaced by flow depth as measured by a vernier calliper (accuracy 0.02 mm). (V) is the average velocity (m·s−1); (nu) is the kinematic viscosity coefficient (m2·s−1), and the calculation formula is (nu) = 0.01775·10−4·(1 + 0.0337 t + 0.00021 t2), where t is the test overland flow temperature35.Fr is the Froude constant, which is the ratio of the inertial force to gravity and can be used to distinguish overland flow as rapid flow, slow flow, or critical flow. When Fr  1, the fluid is rapid flow.Fr is calculated as:$$Fr=V/sqrt{gcdot R},$$where (Fr) is the Froude constant of the water flow, which is dimensionless; (V) is the average velocity (m·s−1); g is the acceleration of gravity and has a constant value of 9.8 m·s−2; R is a hydraulic radius (m), and is generally replaced by flow depth as measured by a vernier calliper (accuracy 0.02 mm).Regression fitting is made for runoff depth (h) and single width flow (Q). The runoff depth equation for slope is as follows:$$h=k{q}^{m},$$where q is the single width flow (L·m−1·s−1); h is the depth of water on the slope (m); and m is the flow index, which reflects the turbulent characteristics of the flow state. The larger m is, the more energy the flow consumes in the work of resistance. The comprehensive index (k) reflects the characteristics of the underlying surface and the water viscosity of the slope flow. The larger k is, the stronger the surface material of the slope works on the flow.The resistance of overland flow reflects the inhibition effect of different underlying surface conditions on the velocity of overland flow. The Darcy–Weisbach formula is widely used in research because of its two advantages: applicability and dimensionlessness under laminar and turbulent flow conditions36,37.The resistance coefficient (f) is calculated as follows:$$f=8cdot gcdot Rcdot J/{V}^{2},$$where the resistance coefficient f has no dimension; g is the acceleration of gravity and is always 9.8 m·s−2; R is a hydraulic radius (m), generally replaced by flow depth measured by a vernier calliper (accuracy 0.02 mm); (V) is the average velocity (m·s−1); and J is the hydraulic gradient, which can be converted by the gradient in a uniform flow state and is generally replaced by the sine value of the gradient.Shear stress ((tau)) is the main driving force that affects the stripping of soil particles from the surface soil38. Shear stress is calculated as:$$tau =rcdot gcdot Rcdot J,$$where (tau) is the shear force of runoff (Pa); and r is the density of water and sediment concentration flow (kg·m−3). This study used a muddy water mass and volume ratio in the unseparated state to calculate the density of water and sediment concentration flow.Flow power (W) is the runoff power per unit area of water and refers to the power consumed by the weight of water acting on the riverbed surface to transport runoff and sediment. W is calculated as:$$W=tau cdot V,$$where W is the flow power (N·m−1·s−1); and (tau) is the shear force of runoff (Pa).Soil separation rate (({D}_{r})) refers to the quality of soil in which soil particles are separated from the soil per unit time. The calculation formula is as follows:$${D}_{r}={W}_{d}-{W}_{w}/tcdot A,$$where ({D}_{r}) is the rate of soil separation (kg·m−2·s−1); ({W}_{w}) is the dry weight of soil before the test; ({W}_{d}) is the dry weight of soil after the test, measured by the drying method (kg); t is the scouring time (s); and A is the surface area of the soil sample (m2). More

  • in

    Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation

    Many eukaryotes display intraspecific genome size (GS) variation due to varying amounts of non-coding DNA1,2,3,4,5. Such GS variation can be mediated by additional genomic elements, which are physically represented either by extra (B-)chromosomes or by large heterozygous insertions into the regular chromosomes. On a DNA sequence level, non-coding DNA can be classified as highly repetitive, e.g. interspersedly repeated transposable elements or tandemly repeated satellite DNA, or as the result of previous duplications of the genome followed by pseudogenization6. The long-term gain and loss of such non-coding DNA sequences is thought to be governed by largely neutral evolutionary processes, and their excessive accumulation in some genomes can be explained by genetic drift7,8, even though selection might also sometimes play a role9,10.Non-coding DNA can affect organisms in different ways. A large number of studies document correlations between genome size and organismic traits such as cell size11,12, body size13,14, or developmental rates15, sometimes even at the within-population level13. Under some circumstances, differential amounts of non-coding DNA might even affect fitness16. Furthermore, DNA can have coding-independent effects that operate at lower levels, such as intragenomic selection. For example, (additional) genomic elements might increase their own fitness by increasing their transmission rates to offspring by meiotic drive, sometimes at the expense of their host’s fitness17,18,19. Meiotic drive in this classical sense occurs during the chromosome segregation during the meiotic divisions, even though later stages during gametogenesis can also be affected20. Recognizing and disentangling such effects is important for a better understanding of the evolution of eukaryotic genomes, in particular, the evolutionary causes of the large intraspecific genome size variation.Here we study meiotic transmission patterns of additional genomic elements in the monogonont rotifer Brachionus aplanchnoidis. Individuals of this species can differ by up to almost two-fold in genome size, which is mediated by several Megabase-sized independently segregating genomic elements (ISEs) consisting mainly of tandemly repeated satellite DNA21. The genomic data are consistent with a mixture of both B-chromosomes and large insertions to normal chromosomes21,22. Individual rotifers and their clonal offspring can be characterized by the number and size of their ISEs and their composition stays constant through hundreds of asexual (mitotic) generations22. Occasionally, monogonont rotifers engage in sexual reproduction (Fig. 1), producing sexual females, whose oocytes undergo classical meiosis with two polar bodies formed23. Unfertilized haploid eggs develop mitotically into males, and sperm production does not involve any meiotic maturation divisions24. By analyzing the genome size distributions of haploid males produced by different mother clones, it has been shown that ISEs segregate in a manner suggesting that they do not pair with each other, nor with any other part of the genome22. For instance, a clone containing three ISEs will produce males (and gametes) that might contain either zero, one, two, or three ISEs, corresponding to four different GS classes of the males in this clone. The frequencies of these different GS classes roughly approximated those expected by random segregation. However, previous studies in B. asplanchnoidis did not resolve different steps during meiotic transmission, so they were not designed to detect meiotic drive or subsequent changes in meiotic transmission, and they also did not test whether there were subtle deviations from completely independent segregation.Figure 1Schematics of rotifer life cycle. Monogonont rotifers are cyclical parthenogens, capable of both ameiotic parthenogenesis and sexual reproduction. The production of sexual females is triggered by quorum sensing chemicals, released by the animals themselves at high population density. In contrast to parthenogenetic females, sexual females produce oocytes by meiosis, and give rise to either haploid males or diploid resting eggs, depending on whether they get fertilized by a male24.Full size imageIn the present study, we test for meiotic transmission biases of ISEs. If meiotic transmission would be completely unbiased, the frequencies of haploid oocytes, or males, with different numbers of ISEs should be identical to those expected by random segregation. For example, a mother with two ISEs should produce males with zero, one, or two ISEs (hence, three male GS classes), which have relative frequencies of 0.25, 0.5, and 0.25, respectively. However, if ISEs avoid segregating into polar bodies due to meiotic drive17,20,25, one would expect to see an increase in the relative frequency of male GS classes with two ISEs, compared to those with no ISE . By contrast, if ISEs are preferentially sequestered into polar bodies due to meiotic drag 7,26, the GS class with two ISEs should be underrepresented. Our experimental approach for detecting meiotic transmission biases relies on measuring (by flow-cytometry) the observed relative frequencies of each male GS class and comparing these to their relative frequencies expected under unbiased transmission (Fig. 2). To allow for clear comparisons, the main output variable in these analyses is the observed/expected ratio (O/E-ratio), i.e., the observed frequency divided by the expected relative frequency for each GS class. If there were no transmission biases, O/E-ratios across all GS classes should equal one. In contrast, O/E-ratios larger than one indicate overrepresentation of a certain GS class, and if O/E ratios increase or decrease with genome size, this indicates drive or drag at a meiotic or postmeiotic stage (Fig. 2d,h).Figure 2Principle of inferring meiotic transmission patterns from the genome size distributions of haploid rotifer males. The first four panels (a–d) show a rotifer clone with one ISE (i.e., two corresponding male GS classes). The last four panels (e–h) show a clone with four ISEs (i.e., five corresponding male GS classes). a, e Example of flow cytometry data. b, f Conceptual model of ISE meiotic segregation. c, g Theoretically predicted GS distributions of males (relative to the female GS) under meiotic drive, meiotic drag, or in the absence of meiotic drive. d, h Theoretically predicted O/E ratios (observed vs. expected frequencies of different male GS classes) under drive, drag, or on absence of drive. O/E values of  > 1 indicate over-representation of a GS class (relative to the frequency expected from unbiased transmission).Full size imageWe implemented these ideas in a mathematical model that contains the two parameters, transmission bias and cosegregation bias. Values for transmission bias may range from − 1 to 1 in our model. For instance, a value of 0.1 denotes a 10% increase in probability that an ISE segregates towards the egg pole (this is equivalent to a transmission rate of 0.55 for this ISE, i.e. mild meiotic drive). Concerning the second parameter, cosegregation bias, a positive value means that pairs of ISEs have an increased probability of being sequestered towards the same pole (irrespective of whether this is the egg pole or polar body pole), while a negative bias favors migration towards opposite poles. Please note that a cosegregation bias value of − 1 (i.e., 100% probability that ISEs migrate towards opposite poles) resembles the default segregation pattern of regular chromosomes. By estimating the transmission bias and cosegregation bias parameter for each rotifer clone, we tried to infer and compare general meiotic transmission patterns across clones, even if they contained different numbers and types of ISEs.Transmission biases may not only arise during meiosis, as described above but also during later stages of male embryonic development. For instance, they might be caused by differences in the survival of embryos, or due to differences in the fitness of hatched males containing different numbers of ISEs. To address these potential sources of variation, we compared the transmission biases in relatively young, synchronized male eggs, older eggs accumulating in growing cultures, and hatched males. Finally, to address the question of whether a high number of ISEs affects male embryonic survival in general, we estimated and compared hatching rates of (haploid) male eggs and (diploid) female eggs in 19 rotifer clones of different genome sizes (which is highly correlated with the number and size of ISEs in the genome22).Our results suggested that the ISEs in B. asplanchnoidis exhibit diverse meiotic segregation patterns: In some rotifer clones, transmission bias was positive, while the ISEs of other clones showed negative transmission bias (indicative of drag). Furthermore, we obtained evidence for a negative cosegregation bias in some clones, i.e., pairs of ISEs showed an increased probability to segregate towards opposite poles. Overall, these transmission patterns seemed to be determined early in the haploid life cycle, probably at or shortly after meiosis, since early and late stages of male embryonic development showed very similar GS distributions. Finally, we found that very large genome size (i.e., a large numbers of ISEs) was associated with reduced male embryonic survival. More

  • in

    Human attachment site preferences of ticks parasitizing in New York

    The attachment site of ticks has been studied in the context of both animal and human tick preference. In Oklahoma, a study of horses indicated that A. americanum preferentially bites the inguinal area, while I. scapularis and D. albipictus, the moose-tick, primarily bite the chest and axillary region, with D. albipictus often being found on the back18. A survey of dogs and cats across the US identified a similar distribution of ticks on dogs, with the attachment being most common on the abdomen, axillary and inguinal regions. However, this was species-specific with D. variabilis preferring the head and neck specifically19. Cats were more successfully parasitized by I. scapularis which preferred the head and A. americanum, which preferred the tail and perianal region19. This is similar to a study of tick distribution on wild black bears (Ursus americanus) in Pennsylvania, indicating that the primary tick present was I. scapularis and that the greatest numbers were found in association with the ears and muzzle20. In these cases, the ability for ticks to attach to specific areas is most likely a result of the grooming habits and abilities of the animals in question.Studies of anatomical region preference in humans also reported tick bite-site specificity associated with particular tick species. For example, in Korea, H. longicornis was determined to prefer abdomen and lower extremities (33%) and the abdomen/inguinal area (26.4%)21, which is a behavior similar to that of A. americanum observed here. Although H. longicornis is present in New York1, insufficient numbers were detected to draw definitive conclusions about its biting preference here. Additionally, a study in England (I. ricinus) reported that tick bites were most common in the legs (50%) of adult humans, but in the head and necks of children (43%)22, a differentiation that our survey does not at this time include. A similar phenomenon was observed in Russia, where tick bites were most common on the head and neck of all individuals (39.2%), but were much more common in children (84.9%)23. This study determined that the bite-site of single tick bites that resulted in infection with the Tick-Borne Encephalitis virus (TBEV) were associated with lethal outcomes if the bites were located on the head, neck, arms or axilla, while less lethality was associated with bites to the lower limbs and groin. This is most directly analogous to the transmission of DTV by I. scapularis, suggesting that bite site may have a similar relationship to disease outcomes in the related North American pathogen/vector pair.Under normal circumstances, ticks exist in sylvatic cycles with specific host preferences based on the tick species and life stage, with spillover to humans occasionally occurring for species with generalist feeding habits. Therefore, the feeding behaviors of ticks are variable, and this influences the ways that the ticks interact with humans.Ixodes scapularis is less specific in host-site preferenceThe primary life stages of I. scapularis that bite humans include nymphs and adult females, although males may also be found on humans. The body segment preference of I. scapularis is less specific than for D. variabilis, which prefers the head, and A. americanum, which prefers the thighs and pelvic region. Ixodes scapularis is primarily found on the central trunk, including the groin/pelvic region, the abdomen, the thoracic region, and the head/neck. This varies between the life stages, with more adults found in the thoracic/abdominal region of the body and nymphs being more commonly found on the arms and legs. This is partly due to the substantial size difference between adult and nymph/larval I. scapularis, with larvae being almost imperceptible and nymphs having a total body length of two to four millimeters. This results in nymphs/larvae being much more difficult to see, allowing them to more readily attach to the most visible portions of the human body while adults are restricted mostly to areas covered by clothing and hair.The presence of ticks on the head and neck indicates that I. scapularis tends to climb, although not with the preference for hair observed with D. variabilis. They appear to spend substantial time moving on the host, a period where they can be removed easily without having had a chance to potentially transmit pathogens by biting. On deer, this corresponds to a preference to move toward the neck and ears where the ticks are more difficult to dislodge24,25. On humans, it results in wide distribution across the whole body with less location specificity than other ticks.In addition to body region and life stage identification, I. scapularis ticks were also screened for several pathogens to determine if infection status influences host site preference. Anaplasma phagocytophilum, B. microti, and other pathogens (DTV and B. miyamotoi) did not influence the body segment the ticks chose to feed. However, in ticks infected with B. burgdorferi, a statistically significant change in the distribution of tick bites marked by an increased report of tick bites in the midsection and a decreased tick bites in the arms, legs, and head. While this may suggest a change in tick behavior/fitness in response to infection, it may also relate to the differences in infection rates of adult and nymph/larval ticks. Larvae, having never fed, are not infected with B. burgdorferi, and the rate of infection in nymphs is lower than that of adults1. Nymphs are less likely to be infected and are more likely to attach to the arms and legs, which is a potential source of the observed difference in infection rates. However, it remains unclear why this is not observed for the other pathogens that follow the same trend of increased infection rate in adult versus nymph/larval ticks.Bacterial and protozoal agents transmitted by I. scapularis take several hours for an infectious dose to be transmitted26,27,28. Therefore, prompt detection and removal of ticks is important for preventing tick-borne disease. Furthermore, understanding where the ticks attach allows them to be more easily detected, and also assists in preparing protective clothing for individuals entering tick-endemic areas. Additionally, knowing the biting location of I. scapularis could aid in detecting potential erythema migrans, a skin condition that occurs at the point of B. burgdorferi infected tick exposure in about 80% of cases29, which is highly diagnostic for both Lyme disease and STARI, which is transmitted by A. americanum.
    Amblyomma americanum prefers the thighs and groin of subjectsAmblyomma americanum, the lone star tick, is present throughout the southern portion of New York and is particularly dominant on Long Island1. This species is relatively large, fast, and aggressive, feeding on various animals, including deer, medium-sized animals, and birds30. As a generalist feeder, both adult and nymph/larval A. americanum often bite humans in endemic areas. This experiment identified six larvae, 107 nymphs, and 48 adult A. americanum from human sources. The dominance of nymph submissions is likely due to the large size of the tick, making nymphs and adults easier to spot in more visible areas.In terms of body segment location, all life stages of A. americanum were most often found in the thigh/groin/pelvic region. Considering that most humans encounter ticks while walking through vegetation, the ticks most likely first adhere to the legs and move upward before biting. In this case, the ticks bite rapidly instead of ascending in large numbers to the torso or head. This area is also almost invariably covered in relatively tight-fitting clothing. The closeness of the fabric may also assist in inducing the ticks to feed by slowing their ascent and creating contact to induce biting.While it does not transmit the same range of pathogens as I. scapularis, A. americanum is still a medically significant species. This species can transmit Ehrlichia chaffeensis and E. ewingii31,32, which are at present rare in New York, but are likely to increase as more A. americanum becomes established. Amblyomma americanum is also associated with Southern Tick-Borne Rash Associated Illness (STARI)11, a disease of unknown etiology that has previously been observed in New York33 and with galactose-alpha-1,3-galactose (alpha-gal) allergy, a reaction to the tick’s saliva that can result in a long term, potentially serious allergic sensitivity to the consumption of red meat. While the attachment time required to transmit or induce these pathogens is still unclear, prompt detection and removal of the tick is still recommended. Knowing the approach of the tick and where it is likely to be found improves this process.Additionally, it is unclear if the results observed for A. americanum also apply to the related A. maculatum, the vector of Rickettsia parkeri, a cause of spotted fever. These ticks have been observed in the southernmost portions of New York with a high infection rate with R. parkeri34. Since early R. parkeri infection may result in a visible eschar, understanding where the eschar is most likely located can be critical for rapid diagnosis before the onset of severe disease symptoms. Considering the similarities in behavior between the two Amblyomma species, it may have similar preferences to A. americanum. Other escharotic diseases, such as F. tularensis, may also be present and linked to a tick with a highly dissimilar segment preference. The location of the escar itself, therefore, may be at least partially diagnostic for specific pathogens. However, at present, the sample size within this community engaged passive surveillance program is too small to assess its biting behavior in detail.
    Dermacentor variabilis exhibits preference for the human headIn this study, D. variabilis was almost exclusively encountered in its adult life stage. This indicates that while the adult ticks are generalist feeders that may bite humans, the nymph and larval stages are not and have much greater host specificity, either feeding exclusively on a specific type of animal or being restricted to the vicinity of animal burrows. The exact identity of the preferred larval and nymphal host of D. variabilis in New York could not be determined from these data, but is presumed to be one or several rodent species, lagomorph, or mesocarnivore with broad distribution across the eastern United States.Additionally, D. variabilis was unique among the three species of ticks studied here. It had a strong bias toward the head and neck of human hosts, as opposed to a higher preference for the midsection and pelvis/groin with I. scapularis and especially A. americanum. This is clear evidence of climbing behavior, tending upward, but is also indicative of a strong preference for dense hair. In contrast to I. scapularis and A. americanum, D. variabilis in its adult stage is less likely to feed on deer35,36, with a preference for canids36, hence its colloquial name as the “American dog tick”. Hair provides the ticks with the same benefits as feeding on canids. It protects them from being immediately detected and removed, obscuring them until they can feed extensively. This can be of potential medical consequence in the case of tick paralysis, a condition of flaccid paralysis associated with the bite of Dermacentor spp. ticks30. In such cases, prompt removal of the tick is critical for treatment. Therefore, understanding its most likely location can be useful for removal of the tick before the onset of the condition, diagnostically to confirm the presence of the tick, or during treatment to ensure its removal. Considering that the tick will most likely be adult, it should be relatively obvious with careful observation.Limitations of this studyThe data described in this manuscript derived from a set of ticks submitted by general public, with site location from a questionnaire completed upon tick submission. While speciation and pathogen testing were performed under laboratory conditions, the public completed the initial survey and is therefore subject to a level of inherent error and ambiguity. In the context of this study, this mainly concerns whether the body location submitted concerns an attachment or a tick that is still crawling over the potential host in preparation for biting. The term “attachment” may be colloquially interpreted as to contain both categories, or a person can potentially be mistaken about the state of the tick. While ticks filled with blood have fed, the situation is more indeterminate for short-duration attachments where the ticks have not yet begun to engorge. This may introduce some level of error from ticks found on a body segment that were not, at the time of collection, attached. However, the data are overall still useful for predicting the most likely location where ticks of specific species can be found on a person. Studies with test subjects and ticks under controlled conditions may assist in elucidating this matter further. Additionally, this data set was compiled without regard to gender and age group. This data was not collected with this version of the questionnaire; therefore, the tick attachment cannot be stratified by any demographic parameters of tick submitters. More

  • in

    Climate, currents and species traits contribute to early stages of marine species redistribution

    Pecl, G. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).Article 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 4216 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molinos, J. G., Burrows, M. & Poloczanska, E. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1–9 (2017).
    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean‐warming hotspot. Ecol. Lett. 18, 944–953 (2015).Article 
    PubMed 

    Google Scholar 
    Figueira, W. F., Curley, B. & Booth, D. J. Can temperature-dependent predation rates regulate range expansion potential of tropical vagrant fishes? Mar. Biol. 166, 73 (2019).Article 

    Google Scholar 
    Champion, C. & Coleman, M. A. Seascape topography slows predicted range shifts in fish under climate change. Limnol. Oceanogr. Lett. 6, 143–153 (2021).Article 

    Google Scholar 
    Roberts, S. M., Boustany, A. M. & Halpin, P. N. Substrate-dependent fish have shifted less in distribution under climate change. Commun. Biol. 3, 1–7 (2020).Article 

    Google Scholar 
    Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. Climate change and fishing: a century of shifting distribution in North Sea cod. Glob. Change Biol. 20, 2473–2483 (2014).Article 

    Google Scholar 
    Twiname, S. et al. A cross‐scale framework to support a mechanistic understanding and modelling of marine climate‐driven species redistribution, from individuals to communities. Ecography 43, 1764–1778 (2020).Article 

    Google Scholar 
    Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).Article 

    Google Scholar 
    Fogarty, H. E., Burrows, M. T., Pecl, G. T., Robinson, L. M. & Poloczanska, E. S. Are fish outside their usual ranges early indicators of climate‐driven range shifts? Glob. Change Biol. 23, 2047–2057 (2017).Article 

    Google Scholar 
    Jiguet, F. & Barbet‐Massin, M. Climate change and rates of vagrancy of Siberian bird species to Europe. Ibis 155, 194–198 (2013).Article 

    Google Scholar 
    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).Article 
    PubMed 

    Google Scholar 
    Peck, M. A. et al. Projecting changes in the distribution and productivity of living marine resources: a critical review of the suite of modeling approaches used in the large European project VECTORS. Estuar., Coast. Shelf Sci. 201, 40–55 (2016).Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).Article 
    PubMed 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).Article 
    PubMed 

    Google Scholar 
    Champion, C., Hobday, A. J., Zhang, X., Pecl, G. T. & Tracey, S. R. Changing windows of opportunity: past and future climate-driven shifts in temporal persistence of kingfish (Seriola lalandi) oceanographic habitat within south-eastern Australian bioregions. Mar. Freshw. Res. 70, 33–42 (2019).Article 

    Google Scholar 
    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179 (2020).Article 

    Google Scholar 
    Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 1–15 (2019).Article 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).Article 

    Google Scholar 
    Lenanton, R., Dowling, C., Smith, K., Fairclough, D. & Jackson, G. Potential influence of a marine heatwave on range extensions of tropical fishes in the eastern Indian Ocean—Invaluable contributions from amateur observers. Regional Stud. Mar. Sci. 13, 19–31 (2017).Article 

    Google Scholar 
    Leriorato, J. C. & Nakamura, Y. Unpredictable extreme cold events: a threat to range-shifting tropical reef fishes in temperate waters. Mar. Biol. 166, 1–10 (2019).Article 

    Google Scholar 
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish. Biol. Fish. 24, 415–425 (2014).Article 

    Google Scholar 
    Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. 6, 349 (2019).Article 

    Google Scholar 
    Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020).Article 
    PubMed 

    Google Scholar 
    Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Change Biol. 22, 1548–1560 (2016).Article 

    Google Scholar 
    Fuchs, H. L. et al. Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nat. Clim. Change 10, 1052–1056 (2020).Article 

    Google Scholar 
    Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).Article 
    PubMed 

    Google Scholar 
    Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish. Fish. 15, 593–615 (2014).Article 

    Google Scholar 
    Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Ann. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).Pearce, A. F. & Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111, 139–156 (2013).Article 

    Google Scholar 
    Oliver, E. C. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate‐driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217 (2021).Article 

    Google Scholar 
    Nursey-Bray, M., Palmer, R. & Pecl, G. Spot, log, map: assessing a marine virtual citizen science program against Reed’s best practice for stakeholder participation in environmental management. Ocean Coast. Manag. 151, 1–9 (2018).Article 

    Google Scholar 
    Pecl, G. T. et al. Ocean warming hotspots provide early warning laboratories for climate change impacts. Rev. Fish. Biol. Fish. 24, 409–413 (2014).Article 

    Google Scholar 
    Stuart-Smith, J. et al. Southernmost records of two Seriola species in an Australian ocean-warming hotspot. Mar. Biodivers. 48, 1579–1582 (2018).Article 

    Google Scholar 
    Provoost, P. & Bosch, S. robis: R Client to access data from the OBIS API. Ocean Biogeographic Information System. Intergovernmental Oceanographic Commission of UNESCO. R package version 2.1.8, https://cran.r-project.org/package=robis (2019).Froese, R. & Pauly, D. (eds). FishBase. World Wide Web electronic publication. www.fishbase.org. (2022). Accessed 14 July 2019.ABRS. Australian Faunal Directory. Australian Biological Resources Study, Canberra. https://biodiversity.org.au/afd/home. (2020). Accessed 15 July 2019.Robinson, L. M. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Glob. Environ. Change 31, 28–37 (2015).Article 

    Google Scholar 
    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).van Etten, J. R package gdistance: distances and routes on geographical grids. J. Stat. Softw. 76, 1–21 (2017).
    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).Article 

    Google Scholar 
    Molinos, J. G., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an r package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).Article 

    Google Scholar 
    Schlegel, R. W. & Smit, A. J. heatwaveR: a central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S. 4th edn, (Springer, 2002).LĂŒdecke, D. sjPlot: data visualization for statistics in social science. R package version 2.8.6. https://CRAN.R-project.org/package=sjPlot (2020). More

  • in

    A global roadmap to seize the opportunities of healthy longevity

    Building from this background the NAM took on these issues as its first-ever grand challenge, as a critical issue of import and urgency for us all. In 2018, the NAM empaneled an international, independent and multidisciplinary commission to create a global roadmap for healthy longevity, complete with evidence-based, targeted and actionable recommendations to move societies forward from an almost-exclusive focus on ‘coping with aging populations’ toward enabling individuals and societies to age successfully, and to reap the economic and societal benefits of longevity. The commission offers a way forward for governments and societies by beginning with recommendations for the next five years, and how these solutions can be financially sustainable through the creation of a virtuous cycle.To support these goals, the commission was to “(1) comprehensively address the challenges and opportunities presented by global aging population; (2) catalyze breakthrough ideas and research that will extend the human healthspan; and (3) generate transformative and scalable innovations world wide”8. The resulting comprehensive report, which was delayed in good measure by the COVID-19 pandemic, was released in June 2022 (ref. 8). We report here a summary of the high-level vision, goals, findings and recommendations of this global roadmap.The evidence for opportunities of longevity and the costs of inactionWe are seeing longer lives with increasing years spent in ill health (that is, the decompression of morbidity)9. The implications of longevity without health are costly ones for the individual, their families and for society. By contrast, scientific evidence shows that the majority of chronic diseases are preventable, and that prevention works at every age and stage of life. Further, the subset of individuals who are the beneficiaries of cumulative health-promoting conditions across the life course are demonstrating healthy longevity, defined as “the state in which years in good health approach the biological lifespan, with physical, cognitive and social functioning, enabling well-being across populations”8. However, only a minority of people in any country have the benefit of the necessary investments that promote health, and disparities in access to these investments across the life course are a major cause of unhealthy longevity. The costs of inaction in the face of widening disparities include the high risk of young people aging with more ill health, and the attendant costs to them and society.Further, the commission reports that when people have health and function in older age, the considerable cognitive and socioemotional capabilities and expertise that accrue with aging, and the prosocial goals of older age, constitute human and social capital assets that are unprecedented in both nature and scale. Contrary to disproven myths, workforce participation not only brings these valuable capabilities (such that intergenerational teams in the workplace are more productive and innovative than single-age-group teams), but older people working is also associated with more jobs for younger individuals10. In the USA and EU, it has been shown that older adults contribute 7% of gross domestic product (GDP) through paid work and the economic value of volunteering and caregiving11, even before opportunities are specifically expanded for the increasing older population. Societies that recognize this potential and invest to create both healthy longevity and the societal organizations and policies through which older adults can contribute to societal good will develop the opportunity for all ages to thrive. The return on investment will be to create older ages with health, function, dignity, meaning, purpose and opportunities — for those who desire it — to work longer, care for others or contribute in ways that they value to their community and future generations.The definition, principles and vision of ‘Vision 2050’ for healthy longevityThe global roadmap builds on the WHO ‘Decade of Healthy Ageing’, the UN Sustainable Development Goals for 2030 and other reports. It sets out principles for achieving healthy longevity using data and meaningful metrics to track achievement of outcomes and guide decision making. The report offers a vision empowered by the evidence: that, by 2050, societies will value the capabilities and assets of older people; all people will have the opportunity to live long lives with health and function; barriers to full participation by older people in society will have been solved; and that older people, with such health, will have the opportunity to engage in meaningful and productive activities. In turn, this societal engagement will create unprecedented social, human and economic capital, contributing to intergenerational well-being and cohesion, and to GDP.Implementing Vision 2050Accomplishing this vision demands ‘all-of-society’ intent — with aligned goals for healthy longevity and transformative action across public, private and academic sectors, and all of civil society and communities — and the implementation of evidence across the full and extending life course. Transforming only one component or sector (for example, health systems) will not be sufficient to create healthy longevity or its full opportunities. Rather, given that nations are complex systems, this vision for our future requires governmental leadership and transformation of all sectors of our complex societal system (Fig. 1).Fig. 1: Relevant actors for an all-of-society approach to healthy longevity.Healthy longevity requires government leadership and cooperation across all sectors. Adapted with permission from figure S-2 of ref. 8.Full size imageInvestment for healthy longevity — across the enabling sectors of health systems, social infrastructure and protections, the physical environment, and work and volunteering contributions — will require intentional planning and leadership to transform those components in tandem, and to resolve disrupters such as ageism, the social determinants of health and inequity, and pollution. These investments across all sectors will create the conditions for achieving healthy longevity and build new capital (human, social and economic) that will benefit all of society. As a result of these investments, society will see younger people thrive and move into a position to age with healthy longevity; those individuals who are already older will be recognized as valuable contributors to society in a ‘pay-it-forward’ stage of life. The underpinning social compact between citizens and government will support valuing each age group’s capabilities and goals, and the building of a society of well-being and cohesion across generations. This is at the center of the virtuous cycle for healthy longevity (Fig. 2)Fig. 2: The virtuous cycle of healthy longevity.Healthy longevity (top) is an outcome of a virtuous cycle, itself contributing to capital development (bottom left). Bottom right, capital (human, financial and social) supports enablers (work, physical environment, health systems and social infrastructure). The enablers propel the cycle, contributing to healthy longevity. Intentional investment for healthy longevity across all enabling sectors will create new capital that will benefit all of society. Adapted with permission from figure 1-4 of ref. 8.Full size imageGoals for initiating the transformation to healthy longevityThe commission identified the following changes that should occur from now to 2027 to start transformation of all of society, towards Vision 2050 and the creation of healthy longevity for all:

    Creating social cohesion, social engagement and addressing the social determinants of health through social infrastructure are among the most effective determinants of slowed aging and the prevention of chronic conditions across the life course. Financial security in older age is essential for all.

    Governments, the private sector and civil society should partner to design physical environments and infrastructure that are user-centered, and function as cohesion-enabling intergenerational communities for healthy longevity. Initiatives should focus on the inclusion of older people in the design, creating public spaces that promote social cohesion and intergenerational connection as well as mobility, physical activity and access to food, transportation, social services and engagement.

    By 2027, governments should develop strategies and plans to arrive at adequately sized, geriatrically knowledgeable public health, clinical and long-term care workforces, and an integration of the pillars of the health system and social services. Together, these dimensions would foster and extend years of good health and support the diverse health needs and well-being of older people.

    Governments should work to build the dividend of health longevity in collaboration with the business sector and civil society, to develop policies, incentives, and supportive systems that enable and encourage lifelong learning, and greater opportunities and necessary skills to engage in meaningful work or community volunteering across the lifespan.

    We summarize the commission’s recommended goals for each of these sectors in brief in Box 1. Across all sectors, the key first steps that the commission identified are ones that can resolve obstacles to change and plan the change needed to shift multiple complex systems through both top-down and bottom-up approaches, in ways appropriate to each country and context. These initiatives should create enough momentum to foster early returns on investment and optimism to propel sustained investment for subsequent stages. This would need to begin for all governments by 2023, establishing calls to action to develop and implement data-driven, all-of-society plans to build the systems, policies, organizations and infrastructure needed, and for tracking change.Box 1 Goals for 2022–2027 to initiate the transformation to healthy longevityThese goals are reproduced from Global Roadmap for Healthy Longevity8.
    Social infrastructure

    Develop evidence-based multipronged strategies to reduce ageism against all groups.

    Develop plans for ensuring basic financial security for all older people.

    Develop strategies to increase financial literacy and mechanisms for promoting working longer, pension options and savings over the life course.

    Plan opportunities for purposeful and meaningful engagement by older people at the family, community and societal levels.

    Physical environment

    At the societal level, improve broadband accessibility to reduce the digital divide and develop public transportation solutions that address first- and last-mile transportation.

    At the city level, implement mitigation strategies to reduce the negative effects of the physical environment and related emergencies on older people (for example, air pollution and climate-induced events, including extreme heat and flooding) and design environments for connection and cohesion.

    At the neighborhood level, promote and measure innovative policy solutions for healthy longevity, including affordable housing and intergenerational living, zoning and design for connection and cohesion, and the enabling of social capital.

    At the home level, update physical infrastructure and policies to address affordability, provide coliving arrangements that match people’s goals and needs, and resolve insufficiencies and inefficiencies in housing stock.

    Health systems

    Establish healthy longevity as a major goal.

    Increase investments in public health systems, which are needed to promote health and prevent disease, disability and injury at the population level, across the full life course. This may require rebalancing investments between this type of public health and medical care, recognizing that such public health is a public good and, as such, tends to be underinvested in.

    Provide adequate primary care that includes preventive screening, addresses risk factors for chronic conditions and promotes positive health behaviors, and offers a continuum of medical care, including geriatrically knowledgeable care for older adults.

    Make culturally sensitive, person-centered and equitable long-term care systems available, which (to the degree possible) offer dignity and honor people’s preferences about care settings.

    Building the healthy longevity dividend

    Governments, in collaboration with the business sector and civil society, should design (1) work environments and develop new policies that enable and encourage older adults who want or need to remain in the work force longer, and (2) engagement opportunities that strengthen communities at every stage of life.

    Governments, employers and educational institutions should prioritize redesigning education systems to support lifelong learning and training, and invest in the science of learning and training for middle-aged and older adults.

    Pilot innovations that incentivize and allow middle-aged and older adults to retool for multiple careers and/or participate as volunteers across their lifespan in roles with meaning and purpose. More

  • in

    The impact of the first United Kingdom COVID-19 lockdown on environmental air pollution, digital display device use and ocular surface disease symptomatology amongst shielding patients

    Knight, H. et al. Impacts of the COVID-19 Pandemic and Self-Isolation on Students and Staff in Higher Education: A Qualitative Study. Int. J. Environ. Res. Public Health 18, 10675 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higham, J. E., Ramírez, C. A., Green, M. A. & Morse, A. P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Quality. Atmosphere & Health https://doi.org/10.1007/s11869-020-00937-0 (2020).Article 

    Google Scholar 
    Office, P. M. s. Slides and datasets to accompany coronavirus press conference. (2020).Organization, W. H. WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary. (2021).Singh, A. et al. Impacts of emergency health protection measures upon air quality, traffic and public health: evidence from Oxford UK. Environ. Pollut. 293, 118584. https://doi.org/10.1016/j.envpol.2021.118584 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances 7, eabd6696, doi:doi:https://doi.org/10.1126/sciadv.abd6696 (2021).Lee, J. D., Drysdale, W. S., Finch, D. P., Wilde, S. E. & Palmer, P. I. UK surface NO2 levels dropped by 42% during the COVID-19 lockdown: impact on surface O3. Atmos. Chem. Phys. 20, 15743–15759. https://doi.org/10.5194/acp-20-15743-2020 (2020).Article 
    CAS 

    Google Scholar 
    Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances 7, eabd6696, doi:https://doi.org/10.1126/sciadv.abd6696 (2021).Ropkins, K. & Tate, J. E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 754, 142374. https://doi.org/10.1016/j.scitotenv.2020.142374 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nwanaji-Enwerem, J. C., Allen, J. G. & Beamer, P. I. Another invisible enemy indoors: COVID-19, human health, the home, and United States indoor air policy. J Expo Sci Environ Epidemiol 30, 773–775. https://doi.org/10.1038/s41370-020-0247-x (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasha, A., Karan Jetly, J. & Shqran, S. Indoor Air Quality Monitoring Systems: A Comprehensive Review of Different IAQM Systems. International Journal of Knowledge-Based Organizations (IJKBO) 11, 1–14, doi:https://doi.org/10.4018/ijkbo.2021070101 (2021).World Health Organization. Regional Office for, E. WHO guidelines for indoor air quality: selected pollutants. xxv, 454 p. (World Health Organization. Regional Office for Europe, 2010).Stafoggia, M. et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: Results from 11 European cohorts within the ESCAPE project. Environ. Health Perspect 122, 919–925. https://doi.org/10.1289/ehp.1307301 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American heart association. Circulation 121, 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Raaschou-Nielsen, O. et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol. 14, 813–822. https://doi.org/10.1016/s1470-2045(13)70279-1 (2013).Article 
    PubMed 

    Google Scholar 
    Guan, W. J., Zheng, X. Y., Chung, K. F. & Zhong, N. S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 388, 1939–1951. https://doi.org/10.1016/s0140-6736(16)31597-5 (2016).Article 
    PubMed 

    Google Scholar 
    Atkinson, R. W. et al. Acute effects of particulate air pollution on respiratory admissions: Results from APHEA 2 project. Air pollution and health: A European approach. Am. J. Respir. Crit. Care Med. 164, 1860–1866. https://doi.org/10.1164/ajrccm.164.10.2010138 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stapleton, F. et al. TFOS DEWS II epidemiology report. Ocular Surf. 15, 334–365. https://doi.org/10.1016/j.jtos.2017.05.003 (2017).Article 

    Google Scholar 
    Starr, C. E. et al. Dry eye disease flares: A rapid evidence assessment. Ocul. Surf. 22, 51–59. https://doi.org/10.1016/j.jtos.2021.07.001 (2021).Article 
    PubMed 

    Google Scholar 
    Torricelli, A. A. et al. Correlation between signs and symptoms of ocular surface dysfunction and tear osmolarity with ambient levels of air pollution in a large metropolitan area. Cornea 32, e11-15. https://doi.org/10.1097/ICO.0b013e31825e845d (2013).Article 
    PubMed 

    Google Scholar 
    Hwang, S. H. et al. Potential importance of ozone in the association between outdoor air pollution and dry eye disease in South Korea. JAMA Ophthalmol. 134, 503–510. https://doi.org/10.1001/jamaophthalmol.2016.0139 (2016).Article 
    PubMed 

    Google Scholar 
    Wiwatanadate, P. Acute air pollution-related symptoms among residents in Chiang Mai Thailand. J. Environ. Health 76, 76–84 (2014).CAS 
    PubMed 

    Google Scholar 
    Alves, M., Novaes, P., Morraye Mde, A., Reinach, P. S. & Rocha, E. M. Is dry eye an environmental disease? Arq. Bras. Oftalmol. 77, 193–200 https://doi.org/10.5935/0004-2749.20140050 (2014).Bourcier, T. et al. Effects of air pollution and climatic conditions on the frequency of ophthalmological emergency examinations. Br. J. Ophthalmol. 87, 809–811. https://doi.org/10.1136/bjo.87.7.809 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hao, R. et al. Impact of air pollution on the ocular surface and tear cytokine levels: A multicenter prospective cohort study. Front. Med. (Lausanne) 9, 909330. https://doi.org/10.3389/fmed.2022.909330 (2022).Article 
    PubMed 

    Google Scholar 
    Vehof, J., Snieder, H., Jansonius, N. & Hammond, C. J. Prevalence and risk factors of dry eye in 79,866 participants of the population-based lifelines cohort study in the Netherlands. Ocul. Surf. 19, 83–93. https://doi.org/10.1016/j.jtos.2020.04.005 (2021).Article 
    PubMed 

    Google Scholar 
    Wolffsohn, J. S. et al. Demographic and lifestyle risk factors of dry eye disease subtypes: A cross-sectional study. Ocul. Surf. 21, 58–63. https://doi.org/10.1016/j.jtos.2021.05.001 (2021).Article 
    PubMed 

    Google Scholar 
    NĂșñez-Álvarez, C. & Osborne, N. N. Enhancement of corneal epithelium cell survival, proliferation and migration by red light: Relevance to corneal wound healing. Exp. Eye Res. 180, 231–241. https://doi.org/10.1016/j.exer.2019.01.003 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marek, V. et al. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic. Biol. Med. 126, 27–40. https://doi.org/10.1016/j.freeradbiomed.2018.07.012 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Talens-Estarelles, C., GarcĂ­a-MarquĂ©s, J. V., Cerviño, A. & GarcĂ­a-LĂĄzaro, S. Determining the best management strategy for preventing short-term effects of digital display use on dry eyes. Eye Contact Lens 48, 416–423. https://doi.org/10.1097/icl.0000000000000921 (2022).Article 
    PubMed 

    Google Scholar 
    GOV.UK. COVID-19: guidance on protecting people defined on medical grounds as extremely vulnerable, (2020).Joy, M. et al. Reorganisation of primary care for older adults during COVID-19: A cross-sectional database study in the UK. Br. J. Gen. Pract. 70, e540–e547. https://doi.org/10.3399/bjgp20X710933 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schiffman, R. M., Christianson, M. D., Jacobsen, G., Hirsch, J. D. & Reis, B. L. Reliability and validity of the ocular surface disease index. Arch. Ophthalmol. 118, 615–621. https://doi.org/10.1001/archopht.118.5.615 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Amparo, F. & Dana, R. Web-based longitudinal remote assessment of dry eye symptoms. Ocul. Surf. 16, 249–253. https://doi.org/10.1016/j.jtos.2018.01.002 (2018).Article 
    PubMed 

    Google Scholar 
    Inomata, T. et al. Characteristics and risk factors associated with diagnosed and undiagnosed symptomatic dry eye using a smartphone application. JAMA Ophthalmol. 138, 58–68. https://doi.org/10.1001/jamaophthalmol.2019.4815 (2020).Article 
    PubMed 

    Google Scholar 
    Toth, M. & Jokić-Begić, N. Psychological contribution to understanding the nature of dry eye disease: A cross-sectional study of anxiety sensitivity and dry eyes. Health Psychol. Behav. Med. 8, 202–219. https://doi.org/10.1080/21642850.2020.1770093 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mehra, D. & Galor, A. Digital screen use and dry eye: A review. Asia-Pacific J. Ophthalmol. 9, 491–497. https://doi.org/10.1097/apo.0000000000000328 (2020).Article 

    Google Scholar 
    Galor, A., Kumar, N., Feuer, W. & Lee, D. J. Environmental factors affect the risk of dry eye syndrome in a United States veteran population. Ophthalmology 121, 972–973. https://doi.org/10.1016/j.ophtha.2013.11.036 (2014).Article 
    PubMed 

    Google Scholar 
    Courtin, R. et al. Prevalence of dry eye disease in visual display terminal workers: A systematic review and meta-analysis. BMJ Open 6, e009675. https://doi.org/10.1136/bmjopen-2015-009675 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torricelli, A. A. et al. Effects of ambient levels of traffic-derived air pollution on the ocular surface: Analysis of symptoms, conjunctival goblet cell count and mucin 5AC gene expression. Environ. Res. 131, 59–63. https://doi.org/10.1016/j.envres.2014.02.014 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gupta, S. K., Gupta, V., Joshi, S. & Tandon, R. Subclinically dry eyes in urban Delhi: An impact of air pollution?. Ophthalmologica 216, 368–371. https://doi.org/10.1159/000066183 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Berg, E. J. et al. Climatic and environmental correlates of dry eye disease severity: A report from the dry eye assessment and management (DREAM) study. Trans. Vision Sci. Technol. 9, 25–25. https://doi.org/10.1167/tvst.9.5.25 (2020).Article 

    Google Scholar 
    Lang, S.-J., Abel, G. A., Mant, J. & Mullis, R. Impact of socioeconomic deprivation on screening for cardiovascular disease risk in a primary prevention population: A cross-sectional study. BMJ Open 6, e009984. https://doi.org/10.1136/bmjopen-2015-009984 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denniston, A. K. et al. United Kingdom diabetic retinopathy electronic medical record (UK DR EMR) users group: Report 4, real-world data on the impact of deprivation on the presentation of diabetic eye disease at hospital services. Br. J. Ophthalmol. 103, 837–843. https://doi.org/10.1136/bjophthalmol-2018-312568 (2019).Article 
    PubMed 

    Google Scholar 
    Nessim, M., Denniston, A. K., Nolan, W., Holder, R. & Shah, P. Research into Glaucoma and Ethnicity (ReGAE) 8: Is there a relationship between social deprivation and acute primary angle closure?. Br. J. Ophthalmol. 94, 1304–1306. https://doi.org/10.1136/bjo.2009.160721 (2010).Article 
    PubMed 

    Google Scholar 
    Sharma, H. E. et al. The role of social deprivation in severe neovascular age-related macular degeneration. Br. J. Ophthalmol. 98, 1625–1628. https://doi.org/10.1136/bjophthalmol-2014-304959 (2014).Article 
    PubMed 

    Google Scholar 
    Bo, M., Salizzoni, P., Clerico, M. & Buccolieri, R. Assessment of indoor-outdoor particulate matter air pollution: A review. Atmosphere 8, 136 (2017).Article 

    Google Scholar 
    Strþm-Tejsen, P., Zukowska, D., Fang, L., Space, D. R. & Wyon, D. P. Advantages for passengers and cabin crew of operating a gas-phase adsorption air purifier in 11-h simulated flights. Indoor Air 18, 172–181. https://doi.org/10.1111/j.1600-0668.2007.00511.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mandell, J. T., Idarraga, M., Kumar, N. & Galor, A. Impact of air pollution and weather on dry eye. J. Clin. Med. https://doi.org/10.3390/jcm9113740 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navarro, D. Learning Statistics with R. (Daniel Joseph Navarro, 2015). More