More stories

  • in

    Non-inversion conservation tillage as an underestimated driver of tillage erosion

    Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 104, 13268–13272 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, D. L., Quinton, J. N., Davies, J. A. C., Zhao, J. & Govers, G. Soil lifespans and how they can be extended by land use and management change. Environ. Res. Lett. 15, 1. https://doi.org/10.1088/1748-9326/aba2fd (2020).Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009 (2016).Article 
    CAS 

    Google Scholar 
    Gao, Y. et al. Effects of tillage methods on soil carbon and wind erosion. Land Degrad. Dev. 27, 583–591. https://doi.org/10.1002/ldr.2404 (2016).Article 

    Google Scholar 
    Klik, A. & Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Till. Res. 203, 1. https://doi.org/10.1016/j.still.2020.104669 (2020).Seitz, S. et al. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 39, 1. https://doi.org/10.1007/s13593-018-0545-z (2018).Lal, R., Reicosky, D. C. & Hanson, J. D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 93, 1–12. https://doi.org/10.1016/j.still.2006.11.004 (2007).Article 

    Google Scholar 
    Mal, P., Schmitz, M. & Hesse, J. W. Economic and environmental effects of conservation tillage with glyphosate use: A case study of Germany. Outlooks Pest Manag. 26, 24–27. https://doi.org/10.1564/v26_feb_07 (2015).Article 

    Google Scholar 
    Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei. Bodenbearbeitung, Bewässerung, Landschaftselemente. Erhebung über landwirtschaftliche Produktionsmethoden (ELPM). 2010. (2011).Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314. https://doi.org/10.1038/ngeo838 (2010).Article 
    CAS 

    Google Scholar 
    Öttl, L. K. et al. Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 32, 3077–3091. https://doi.org/10.1002/ldr.3968 (2021).Article 

    Google Scholar 
    Wilken, F., Ketterer, M., Koszinski, S., Sommer, M. & Fiener, P. Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling. SOIL 6, 549–564. https://doi.org/10.5194/soil-6-549-2020 (2020).Article 
    CAS 

    Google Scholar 
    Van Oost, K., Govers, G., De Alba, S. & Quine, T. A. Tillage erosion: A review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 30, 443–466. https://doi.org/10.1191/0309133306pp487ra (2006).Article 

    Google Scholar 
    Winnige, B. Ergebnisse zur Bodenverlagerung durch Bearbeitungserosion in der Jungmoränenlandschaft Nordostdeutschlands—Investigations of soil movement by tillage as a type of soil erosion in the young moraine soil landscape of Northeast Germany. Arch. Agron. Soil Sci. 50, 319–327. https://doi.org/10.1080/03650340410001663864 (2004).Article 

    Google Scholar 
    Fiener, P., Wilken, F. & Auerswald, K. Filling the gap between plot and landscape scale—eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany. Adv. Geosci. 48, 31–48. https://doi.org/10.5194/adgeo-48-31-2019 (2019).Article 

    Google Scholar 
    Fiener, P. et al. Uncertainties in assessing tillage erosion—How appropriate are our measuring techniques?. Geomorphology 304, 214–225. https://doi.org/10.1016/j.geomorph.2017.12.031 (2018).Article 

    Google Scholar 
    Kimaro, D. N., Deckers, J. A., Poesen, J., Kilasara, M. & Msanya, B. M. Short and medium term assessment of tillage erosion in the Uluguru Mountains Tanzania. Soil Till. Res. 81, 97–108. https://doi.org/10.1016/j.still.2004.05.006 (2005).Article 

    Google Scholar 
    Sadowski, H. & Sorge, B. Der Normalhöhenpunkt von 1912 – Datumspunkt des DHHN 2012? Vermessung Brandenburg (2005).Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario Canada. Soil Till. Res. 51, 1. https://doi.org/10.1016/S0167-1987(99)00037-9 (1999).Article 

    Google Scholar 
    Zhang, J. H. & Li, F. C. An appraisal of two tracer methods for estimating tillage erosion rates under hoeing tillage. Proc. Environ. Sci. 11, 1227–1233. https://doi.org/10.1016/j.proenv.2011.12.184 (2011).Article 

    Google Scholar 
    Turkelboom, F. et al. Assessment of tillage erosion rates on steep slopes in northern Thailand. CATENA 29, 29–44 (1997).Article 
    CAS 

    Google Scholar 
    Van Muysen, W., Govers, G., Van Oost, K. & Van Rompaey, A. The effect of tillage depth, tillage speed, and soil condition on chisel tillage erosivity. J. Soil Water Conserv. 55, 355–364 (2000).
    Google Scholar 
    Quine, T. A., Desmet, P. J. J., Govers, G., Vandaele, K. & Walling, D. E. A comparison of the roles of tillage and water erosion in landform development and sediment export on agricultural land near Leuven, Belgium. IAHS Publ. 224, 77–86 (1994).CAS 

    Google Scholar 
    Heckrath, G. et al. Tillage erosion and its effect on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312–324. https://doi.org/10.2134/jeq2005.0312a (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carter, M. R. Conservation tillage. Encyclop. Soils Environ. 1, 306–311. https://doi.org/10.1016/B0-12-348530-4/00270-8 (2005).Article 

    Google Scholar 
    Govers, G., Vandaele, K., Desmet, P., Poesen, J. & Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 45, 469–478. https://doi.org/10.1111/j.1365-2389.1994.tb00532.x (1994).Article 

    Google Scholar 
    Marques da Silva, J. R. & Alexandre, C. Soil carbonation processes as evidence of tillage-induced erosion. Soil Till. Res. 78, 217–224. https://doi.org/10.1016/j.still.2004.02.008 (2004).Mech, S. J. & Free, G. R. Movement of soil during tillage operations. Agric. Eng. 1, 379–382 (1942).
    Google Scholar 
    Tiessen, K. H. D., Mehuys, G. R., Lobb, D. A. & Rees, H. W. Tillage erosion within potato production systems in Atlantic Canada: I. Measurement of tillage translocation by implements used in seedbed preparation. Soil Till. Res. 95, 308–319. https://doi.org/10.1016/j.still.2007.02.003 (2007).Article 

    Google Scholar 
    Marques da Silva, J. R., Soares, J. M. C. N. & Karlen, D. L. Implement and soil condition effects on tillage-induced erosion. Soil Till. Res. 78, 207–216. https://doi.org/10.1016/j.still.2004.02.009 (2004).Article 

    Google Scholar 
    Kietzer, B. Aufklärung der Bodenverlagerung durch Bearbeitungserosion in Jungmoränenlandschaften—Elucidation of soil displacement by tillage erosion in young moraine landscapes PhD thesis, Technical University of Berlin, (2007).Lüthgens, C., Böse, M. & Preusser, F. Age of the Pomeranian ice-marginal position in northeastern Germany determined by Optically Stimulated Luminescence (OSL) dating of glaciofluvial sediments. Boreas 40, 598–615. https://doi.org/10.1111/j.1502-3885.2011.00211.x (2011).Article 

    Google Scholar 
    Deumlich, D., Schmidt, R. & Sommer, M. A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. J. Plant Nutr. Soil Sci. 173, 843–851. https://doi.org/10.1002/jpln.200900094 (2010).Article 
    CAS 

    Google Scholar 
    Koszinski, S., Gerke, H. H., Hierold, W. & Sommer, M. Geophysical-based modeling of a kettle hole catchment of the morainic soil landscape. Vadose Zone J. 12, 1. https://doi.org/10.2136/vzj2013.02.0044 (2013).Article 

    Google Scholar 
    Sommer, M., Gerke, H. H. & Deumlich, D. Modelling soil landscape genesis: A “time split” approach for hummocky agricultural landscapes. Geoderma 145, 480–493. https://doi.org/10.1016/j.geoderma.2008.01.012 (2008).Article 
    CAS 

    Google Scholar 
    DWD Climate Data Center (CDC). Historical hourly station observations of 2m air temperature and humidity for Germany, version v006. (2018).DWD Climate Data Center (CDC). Historical hourly station observations of precipitation for Germany, version v21.3. (2021).Zhang, H. et al. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dyn. 7, 807–827. https://doi.org/10.5194/esurf-7-807-2019 (2019).Article 

    Google Scholar 
    Lindstrom, M. J., Nelson, W. W., Schumacher, T. E. & Lemme, G. D. Soil movement by tillage as affected by slope. Soil Till. Res. 17, 255–264. https://doi.org/10.1016/0167-1987(90)90040-K (1990).Article 

    Google Scholar 
    Crawley, M. J. The R book. 2nd edn, (Wiley, 2013).Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    R Core Team. A language and environment for statistical computing. (2021).De Alba, S. Modelling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough. J. Soil Water Conserv. 1, 335–345 (2001).
    Google Scholar 
    Gerontidis, D. V. S. et al. The effect of moldboard plow on tillage erosion along a hillslope. J. Soil Water Conserv. 56, 147–152 (2001).
    Google Scholar 
    Heckrath, G., Halekoh, U., Djurhuus, J. & Govers, G. The effect of tillage direction on soil redistribution by mouldboard ploughing on complex slopes. Soil Tillage Res. 88, 225–241. https://doi.org/10.1016/j.still.2005.06.001 (2006).Article 

    Google Scholar 
    Kosmas, C. et al. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Till Res. 58, 31–44. https://doi.org/10.1016/S0167-1987(00)00175-6 (2001).Article 

    Google Scholar 
    Lindstrom, M. J., Nelson, W. W. & Schumacher, T. E. Quantifying tillage erosion rates due to moldboard plowing. Soil Till Res. 24, 243–255. https://doi.org/10.1016/0167-1987(92)90090-X (1992).Article 

    Google Scholar 
    Lobb, D. A., Kachanoski, R. G. & Miller, M. H. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can. J. Soil Sci. 75, 211–218. https://doi.org/10.4141/cjss95-029 (1995).Article 

    Google Scholar 
    Quine, T. A. & Zhang, Y. Re-defining tillage erosion: Quantifying intensity–direction relationships for complex terrain: 1. Derivation of an adirectional soil transport coefficient. Soil Use Manag. 20, 114–123. https://doi.org/10.1111/j.1475-2743.2004.tb00346.x (2004).Article 

    Google Scholar 
    Quine, T. A., Basher, L. R. & Nicholas, A. P. Tillage erosion intensity in the South Canterbury Downlands, New Zealand. Aust. J. Soil Res. 41, 789–807. https://doi.org/10.1071/SR02063 (2003).Article 

    Google Scholar 
    Revel, J. C. & Guiresse, M. Erosion due to cultivation of calcareous clay soils on the hillsides of south west France: I. Effect of former farming practices. Soil Till Res. 35, 147–155. https://doi.org/10.1016/0167-1987(95)00482-3 (1995).Article 

    Google Scholar 
    Van Muysen, W. & Govers, G. Soil displacement and tillage erosion during secondary tillage operations: The case of rotary harrow and seeding equipment. Soil Till Res. 65, 185–191. https://doi.org/10.1016/S0167-1987(01)00284-7 (2002).Article 

    Google Scholar 
    Van Muysen, W., Govers, G., Bergkamp, G., Roxo, M. & Poesen, J. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil Till Res. 51, 303–316. https://doi.org/10.1016/S0167-1987(99)00044-6 (1999).Article 

    Google Scholar 
    Poesen, J. et al. Patterns of rock fragment cover generated by tillage erosion. Geomorphology 18, 183–197. https://doi.org/10.1016/S0169-555X(96)00025-6 (1997).Article 

    Google Scholar 
    Quine, T. A. et al. Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: An investigation using caesium-134. Soil Till Res. 51, 279–301. https://doi.org/10.1016/S0167-1987(99)00043-4 (1999).Article 
    MathSciNet 

    Google Scholar 
    Kemper, W. D. & Rosenau, R. C. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 1, 1001–1006. https://doi.org/10.2136/sssaj1984.03615995004800050009x (1984).Article 

    Google Scholar 
    Reinermann, S., Gessner, U., Asam, S., Kuenzer, C. & Dech, S. The effect of droughts on vegetation condition in Germany: An analysis based on two decades of satellite earth observation time series and crop yield statistics. Rem. Sens. 11, 1. https://doi.org/10.3390/rs11151783 (2019).Article 

    Google Scholar 
    Lüttger, A. B. & Feike, T. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theor. Appl. Climatol. 1, 15–29. https://doi.org/10.1007/s00704-017-2076-y (2018).Article 

    Google Scholar 
    Madarász, B. et al. Conservation tillage vs. conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe. Hungary. Int. J. Agric. Sustain. 14, 408–427. https://doi.org/10.1080/14735903.2016.1150022 (2016).Article 

    Google Scholar 
    Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041 (2016).Article 

    Google Scholar 
    Napoli, M., Altobelli, F. & Orlandini, S. Effect of land set up systems on soil losses. Ital. J. Agron. 15, 306–314. https://doi.org/10.4081/ija.2020.1768 (2020).Article 

    Google Scholar 
    Dumanski, J., Peiretti, R., Benites, J. R., McGarry, D. & Pieri, C. The paradigm of conservation agriculture. In Proceedings of World Association of Soil and Water Conservation, 58–64 (2006). More

  • in

    Vultures for climate

    Pablo Ignacio Plaza and Sergio Agustín Lambertucci from the National University of Comahue and the Argentine Research Council in Argentina quantified the contribution of vultures to reducing greenhouse gas emissions by developing two contrasting scenarios. The first assumes that all the dead animals that the vultures can consume are disposed of, whereas in the second scenario, the dead animals are left to decompose in the environment without scavengers. The results show that the current vulture population can reduce emissions by up to 60.7 teragrams CO2 equivalent per year. A decline in vulture populations decreases their mitigation capacity by 30%. The study highlights that vultures are essential to keep our climate cool. More

  • in

    A non-avian dinosaur with a streamlined body exhibits potential adaptations for swimming

    Dinosauria Owen, 1842Theropoda Marsh, 1881Dromaeosauridae Matthew and Brown, 1922Halszkaraptorinae Cau et al., 2017Revised diagnosisSmall dromaeosaurids that possess dorsoventrally flattened premaxillae, premaxillary bodies perforated by many neurovascular foramina, enlarged and closely packed premaxillary teeth that utilized delayed replacement patterns, reduced anterior maxillary teeth, dorsolateral placement of retracted external nares, greatly elongated cervical vertebrae, anterior cervical vertebrae with round lobes formed by the postzygapophyses, horizontal zygapophyses, and pronounced zygapophyseal laminae in the anterior caudal vertebrae, mediolaterally compressed ulnae with sharp posterior margins, second and third metacarpals with similar thicknesses, shelf-like supratrochanteric processes on the ilia, elongated fossae that border posterolateral ridges on the posterodistal surfaces of the femoral shafts, and third metatarsals in which the proximal halves are unconstricted and anteriorly convex.Natovenator polydontus gen. et sp. nov.HolotypeMPC-D 102/114 (Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia) is a mostly articulated skeleton with a nearly complete skull (See Supplementary Table 1 for measurements).Locality and horizonBaruungoyot Formation (Upper Cretaceous), Hermiin Tsav, Omnogovi Province, Mongolia13 (Supplementary Fig. 5).EtymologyNatovenator, from the Latin nato (swim) and venator (hunter), in reference to the hypothesized swimming behaviour and piscivorous diet of the new taxon; polydontus, from the Greek polys (many) and odous (tooth) in reference to the unusually many teeth.DiagnosisA small halszkaraptorine dromaeosaurid with the following autapomorphies: wide groove delimited by a pair of ridges on the anterodorsal surface of the premaxilla, premaxilla with an elongated internarial process that overlies nasal and extends posterior to the external naris, 13 premaxillary teeth with large and incisiviform crowns, first three anteriormost maxillary teeth are greatly reduced and are clustered together with the following tooth without any separations by interdental septa, anteroposteriorly long external naris (about 30% of the preorbital skull length), paroccipital process with a anteroposteriorly broad dorsal surface, elongate maxillary process of the palatine that extends anteriorly beyond the middle of the antorbital fenestra, pterygoid with a deep fossa on the medial surface of the quadrate ramus, distinct posterolaterally oriented projection on the lateral surface of atlas, absence of pleurocoels in cervical vertebrae (not confirmed in the missing fifth cervical centrum), posterolaterally oriented and nearly horizontal proximal shafts in the dorsal ribs, hourglass-shaped metacarpal II with distinctly concave medial and lateral surfaces.DescriptionThe skull of Natovenator is nearly complete, although the preorbital region has been affected by compression and is slightly offset from the rest of the skull (Figs. 1c, d, 2a–d and Supplementary Figs. 1, 2). Near the tip of the snout, the premaxilla is marked by a broad groove. The body of the premaxilla is also dorsoventrally low and is perforated by numerous foramina that lead into a complex network of neurovascular chambers (Supplementary Fig. 1b) as in Halszkaraptor4. Similarly, the external naris is positioned posteriorly and is level with the premaxilla-maxilla contact (Fig. 2a, b), although it is marginally behind this position in Halszkaraptor4. It is also dorsally placed compared to those of other non-avian theropods and faces dorsolaterally. The exceptionally long external naris and accordingly elongated internarial process of Natovenator (Fig. 2c) are unique among dromaeosaurids but comparable to those in aquatic toothed birds14 as well as in therizinosaurs15,16. The frontal is similar to those of other halszkaraptorines4,17 in that it is vaulted to accommodate a large orbit and has little contribution to the supratemporal fossa. A sharp nuchal crest is formed by the parietal and the squamosal (Supplementary Fig. 2a–e). The latter also produces a shelf that extends over the quadrate head as in other dromaeosaurids18. The paroccipital process curves gently on the occiput and has a broad dorsal surface that tapers laterally (Fig. 2f and Supplementary Fig. 2b, e). Its ventrolateral orientation is reminiscent of Mahakala17 but is different from the more horizontal paroccipital process of Halszkaraptor4. The occipital condyle is long and constricted at its base. A shallow dorsal tympanic recess on the lateral wall of the braincase is different from the deep one of Mahakala17. The palatine is tetraradiate with a greatly elongated maxillary process, which extends anteriorly beyond the level of the mid-antorbital fenestra. The pterygoid is missing its anterior portion (Fig. 2g and Supplementary Fig. 2a–e). A deep fossa on the medial surface of the thin quadrate ramus is not seen in any other dromaeosaurids. The mandibles of Natovenator preserve most of the elements, especially those on the left side (Fig. 1a, b, d and Supplementary Figs. 1a, 2). Each jaw is characterized by a slender dentary with nearly parallel dorsal and ventral margins, a surangular partially fused with the articular, a distinctive surangular shelf, and a fan-shaped retroarticular process that protrudes dorsomedially. The upper dentition of Natovenator is heterodont as the premaxillary teeth are morphologically distinct from the maxillary teeth (Fig. 2a, b, e and Supplementary Fig. 1a, c). There are unusually numerous premaxillary teeth tightly packed without any separation of the alveoli by bony septa. The roots of the teeth are long, and the crowns are tall and incisiviform as in Halszkaraptor4. Moreover, the large replacement teeth in the premaxilla suggest that the replacement of the premaxillary teeth was delayed as in Halszkaraptor4. However, the number of teeth in each premaxilla is 13 in Natovenator, whereas it is only 11 in Halszkaraptor4. In the maxilla, the three most anterior maxillary teeth are markedly shorter than the premaxillary teeth and the more posterior maxillary teeth. This pattern is also observed in Halszkaraptor, although the number of shorter maxillary teeth differs as it has two reduced ones7. Both the maxillary and dentary teeth have sharp fang-like crowns that lack serrations. Although posteriormost parts are poorly preserved, there are at least 23 alveoli in each of the maxilla and dentary, which suggests high numbers of teeth in both elements.The neck of Natovenator, as preserved, is twisted and includes ten elongated cervical vertebrae, although most of the 5th cervical is missing (Figs. 1, 3a–d). This elongation of the cervicals results in a noticeably longer neck than those of most dromaeosaurids and is estimated to be longer than the dorsal series. It is, however, proportionately shorter than that of Halszkaraptor, which has a neck as long as its dorsal and sacral vertebra combined4. Another peculiarity in the neck of the Natovenator is a pronounced posterolaterally extending projection on the neurapophysis of the atlas (Fig. 3a and Supplementary Fig. 2b, c, e). The postzygapophyses of each anterior cervical are fused into a single lobe-like process as in Halszkaraptor4. Pleurocoels are absent in the cervical vertebrae. In contrast, Halszkaraptor has pleurocoels on its 7th–9th cervicals4. A total of 12 dorsal vertebrae are preserved (Figs. 1a, b, 3e, 4a and Supplementary Figs. 3a–d). They all lack pleurocoels, and their parapophyses on the anterior and mid-dorsals are placed high on the anterodorsal end of each centrum. Interestingly, the positions of the parapophyses are similar to those of hesperornithiforms19,20,21 rather than other dromaeosaurids such as Deinonychus22 or Velociraptor23. The preserved dorsal ribs, articulated with the second to seventh dorsals, are flattened and posteriorly oriented (Figs. 1, 3e, 4a–d). The proximal shafts are also nearly horizontal, which is indicative of a dorsoventrally compressed ribcage. Each proximal caudal vertebra has a long centrum and horizontal zygapophyses with expanded laminae (Fig. 3f and Supplementary Fig. 3e–i), all of which are characters shared with other halszkaraptorines4,17. The forelimb elements are partially exposed (Figs. 1a, b, 2a–d, 3e, g). The nearly complete right humerus is proportionately short and distally flattened like that of Halszkaraptor4. The shaft of the ulna is mediolaterally compressed to produce a sharp posterior margin as in Halszkaraptor4 and Mahakala17. Metacarpal III is robust and is only slightly longer than metacarpal II. Similarly, metacarpal III is almost as thick and long as other second metacarpals of other halszkaraptorines4,17. The femur has a long ridge on its posterior surface, which is another characteristic shared among halszkaraptorines4. Typically for a dromaeosaurid, metatarsals II and III have ginglymoid distal articular surfaces (Fig. 3h and Supplementary Fig. 4f, h). The ventral surface of metatarsal III is invaded by a ridge near the distal end, unlike other halszkaraptorines (Fig. 3h)4,5,17,24.Phylogenetic analysisThe phylogenetic analysis found more than 99,999 most parsimonious trees (CI = 0.23, RI = 0.55) with 6574 steps. Deinonychosaurian monophyly is not supported by the strict consensus tree (Supplementary Fig. 6). Instead, Dromaeosauridae was recovered as a sister clade to a monophyletic clade formed by Troodontidae and Avialae, which is consistent with the results of Cau et al.4 and Cau7. Halszkaraptorinae is positioned at the base of Dromaeosauridae as in Cau et al.4, although there are claims that dromaeosaurid affinities of halszkaraptorines are not well supported25. Nine (seven ambiguous and two unambiguous) synapomorphies support the inclusion of Halszkaraptorinae in Dromaeosauridae. The two unambiguous synapomorphies are the anterior tympanic recess at the same level as the basipterygoid process and the presence of a ventral flange on the paroccipital process. A total of 20 synapomorphies (including one unambiguous synapomorphy) unite the four halszkaraptorines, including Natovenator (Supplementary Fig. 7). In Halszkaraptorinae, Halszkaraptor is the earliest branching taxon, and the remaining three taxa form an unresolved clade supported by three ambiguous synapomorphies (characters 121/1, 569/0, and 1153/1). Two of these synapomorphies are related to the paroccipital process (characters 121 and 569), which is not preserved in Hulsanpes5,24. The other is the presence of an expansion on the medial margin of the distal half of metatarsal III, which is not entirely preserved in the Natovenator. When scored as 0 for this character, Natovenator branches off from the unresolved clade. It suggests that the medial expansion of the dorsal surface of metatarsal III could be a derived character among halszkaraptorines. More

  • in

    Younger trees in the upper canopy are more sensitive but also more resilient to drought

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    CAS 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    CAS 

    Google Scholar 
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).Article 

    Google Scholar 
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).Article 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).Article 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).Article 
    CAS 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).Article 
    CAS 

    Google Scholar 
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).Article 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Change 10, 1091–1095 (2020).Article 

    Google Scholar 
    Zhang, T., Niinemets, Ü., Sheffield, J. & Lichstein, J. W. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018).Article 
    CAS 

    Google Scholar 
    Engelbrecht, B. M. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).Article 
    CAS 

    Google Scholar 
    Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).Article 
    CAS 

    Google Scholar 
    Au, T. F. et al. Demographic shifts in eastern US forests increase the impact of late‐season drought on forest growth. Ecography 43, 1475–1486 (2020).Article 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).Article 
    CAS 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).Article 
    CAS 

    Google Scholar 
    Ellsworth, D. & Reich, P. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96, 169–178 (1993).Article 
    CAS 

    Google Scholar 
    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).Article 
    CAS 

    Google Scholar 
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).Article 

    Google Scholar 
    Piovesan, G. & Biondi, F. On tree longevity. N. Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Jucker, T. et al. Tallo: a global tree allometry and crown architecture database. Glob. Change Biol. 28, 5254–5268 (2022).Article 
    CAS 

    Google Scholar 
    Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).Article 

    Google Scholar 
    D’orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).Article 

    Google Scholar 
    Luo, Y. & Chen, H. Y. Observations from old forests underestimate climate change effects on tree mortality. Nat. Commun. 4, 1655 (2013).Article 

    Google Scholar 
    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).Article 

    Google Scholar 
    Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).Article 
    CAS 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 
    CAS 

    Google Scholar 
    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).Article 
    CAS 

    Google Scholar 
    Phillips, R. P. et al. A belowground perspective on the drought sensitivity of forests: towards improved understanding and simulation. For. Ecol. Manage. 380, 309–320 (2016).Article 

    Google Scholar 
    Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. Size- and Age-Related Changes in Tree Structure and Function Vol. 4 (Springer, 2011).Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).Article 
    CAS 

    Google Scholar 
    Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).Article 

    Google Scholar 
    Cavender-Bares, J. & Bazzaz, F. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124, 8–18 (2000).Article 
    CAS 

    Google Scholar 
    Gallé, A., Haldimann, P. & Feller, U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. N. Phytol. 174, 799–810 (2007).Article 

    Google Scholar 
    Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).Article 
    CAS 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. The International Tree‐Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).Article 

    Google Scholar 
    Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).Article 

    Google Scholar 
    Rayback, S. A. et al. The DendroEcological Network: a cyberinfrastructure for the storage, discovery and sharing of tree-ring and associated ecological data. Dendrochronologia 60, 125678 (2020).Article 

    Google Scholar 
    Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Climate of the Past 16, 1901–1916 (2020).Article 

    Google Scholar 
    Maxwell, J. T. et al. Higher CO2 concentrations and lower acidic deposition have not changed drought response in tree growth but do influence iWUE in hardwood trees in the Midwestern USA. J. Geophys. Res. Biogeosci. 124, 3798–3813 (2019).Article 
    CAS 

    Google Scholar 
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer, 2013).Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
    Google Scholar 
    Fritts, H. Tree Rings and Climate (Academic Press, 1976).
    Google Scholar 
    Wilson, R. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Holmes, R. Program COFECHA User’s Manual (Univ. Arizona Laboratory of Tree-Ring Research, 1983).Palmer, J. G. et al. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environ. Res. Lett. 10, 124002 (2015).Article 

    Google Scholar 
    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).Article 
    CAS 

    Google Scholar 
    Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).Article 
    CAS 

    Google Scholar 
    Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long‐term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).Article 

    Google Scholar 
    Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).Article 

    Google Scholar 
    Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl Acad. Sci. USA 117, 16816–16823 (2020).Article 
    CAS 

    Google Scholar 
    Stokes, M. & Smiley, T. An Introduction to Tree-Ring Dating. (Univ. Chicago Press, 1968).
    Google Scholar 
    Lockwood, B. R., Maxwell, J. T., Robeson, S. M, & Au, T. F. Assessing bias in diameter at breast height estimated from tree rings and its effects on basal area increment and biomass. Dendrochronologia 67, 125844 (2021).Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).Article 
    CAS 

    Google Scholar 
    Rozas, V., DeSoto, L. & Olano, J. M. Sex‐specific, age‐dependent sensitivity of tree‐ring growth to climate in the dioecious tree Juniperus thurifera. N. Phytol. 182, 687–697 (2009).Article 

    Google Scholar 
    Carrer, M. & Urbinati, C. Age‐dependent tree‐ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85, 730–740 (2004).Article 

    Google Scholar 
    Gazol, A., Camarero, J., Anderegg, W. & Vicente‐Serrano, S. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).Article 

    Google Scholar 
    Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    Pardos, M. et al. The greater resilience of mixed forests to drought mainly depends on their composition: analysis along a climate gradient across Europe. For. Ecol. Manage. 481, 118687 (2021).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: thestandardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).Rollinson, C. R. et al. Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology 102, e03264 (2021).Article 

    Google Scholar 
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: effects of successive low‐growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).Article 

    Google Scholar 
    Li, X. et al. Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 736–737 (2021).Article 

    Google Scholar 
    Zheng, T. et al. Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nat. Ecol. Evol. 5, 733–735 (2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Long, J. A. jtools: Analysis and Presentation of Social Scientific Data R Package v.2.2.0 https://cran.r-project.org/package=jtools (2022).Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on AIC R Package v.2.3-1 https://cran.r-project.org/package=AICcmodavg (2020).Au, T. F. Au_et_al_NCC.R. Figshare https://doi.org/10.6084/m9.figshare.21263676.v1 (2022). More

  • in

    Individual variability in habitat selection by aquatic insects is driven by taxonomy rather than specialisation

    Rosenzweig, M. L. Habitat selection and population interactions: the search for mechanism. Am. Nat. 137, S5–S28 (1991).Article 

    Google Scholar 
    Binckley, C. A. & Resetarits, W. J. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 1, 370–374 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foltz, S. J. & Dodson, S. I. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia 621, 49–62 (2009).Article 

    Google Scholar 
    Resetarits, W. J. Habitat selection behaviour links local and regional scales in aquatic systems: Habitat selection at multiple spatial scales. Ecol. Lett. 8, 480–486 (2005).Article 
    PubMed 

    Google Scholar 
    Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705 (2016).Article 
    PubMed 

    Google Scholar 
    Morris, D. W. Adaptation and habitat selection in the eco-evolutionary process. Proc. R. Soc. B Biol. Sci. 278, 2401–2411 (2011).Article 

    Google Scholar 
    Resetarits, W. J. Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129, 155–160 (2001).Article 
    PubMed 

    Google Scholar 
    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).Article 

    Google Scholar 
    Klečka, J. & Boukal, D. S. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS ONE 7, e37741 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nilsson, P. A. & Brönmark, C. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos 88, 539–546 (2000).Article 

    Google Scholar 
    Šigutová, H. et al. Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa. Sci. Rep. 11, 18928 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pintar, M. R. & Resetarits, W. J. Match and mismatch: integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects. Ecol. Evol. 11, 1902–1917 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pintar, M. R. & Resetarits, W. J. Jr. Out with the old, in with the new: oviposition preference matches larval success in cope’s gray treefrog Hyla chrysoscelis. J. Herpetol. 51, 186–189 (2017).Article 

    Google Scholar 
    Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): an experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica 22, 27–44 (1993).Fortin, D., Morris, D. W. & McLoughlin, P. D. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evol. 54, 311–328 (2008).Article 

    Google Scholar 
    McLoughlin, P. D., Boyce, M. S., Coulson, T. & Clutton-Brock, T. Lifetime reproductive success and density-dependent, multi-variable resource selection. Proc. R. Soc. B Biol. Sci. 273, 1449–1454 (2006).Article 

    Google Scholar 
    Morris, D. W. Scales and costs of habitat selection in heterogeneous landscapes. Evol. Ecol. 6, 412–432 (1992).Article 

    Google Scholar 
    McLoughlin, P. D., Morris, D. W., Fortin, D., Wal, E. V. & Contasti, A. L. Considering ecological dynamics in resource selection functions. J. Anim. Ecol. 79, 4–12 (2010).Article 
    PubMed 

    Google Scholar 
    Leclerc, M., Dussault, C. & St-Laurent, M.-H. Behavioural strategies towards human disturbances explain individual performance in woodland caribou. Oecologia 176, 297–306 (2014).Article 
    PubMed 

    Google Scholar 
    Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Sheppard, C. E. et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 21, 665–673 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forstmeier, W. & Birkhead, T. R. Repeatability of mate choice in the zebra finch: consistency within and between females. Anim. Behav. 68, 1017–1028 (2004).Article 

    Google Scholar 
    Gómez-Laplaza, L. M. The influence of social status on shoaling preferences in the freshwater angelfish (Pterophyllum scalare). Behaviour 142, 827–844 (2005).Article 

    Google Scholar 
    Gillingham, M. P. & Parker, K. L. The importance of individual variation in defining habitat selection by moose in northern British Columbia. Alces 44, 7–20 (2008).
    Google Scholar 
    Lesmerises, R. & St-Laurent, M.-H. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears. Oecologia 185, 415–425 (2017).Article 
    PubMed 

    Google Scholar 
    van Beest, F. M. et al. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 83, 147–156 (2014).Article 
    PubMed 

    Google Scholar 
    Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development. Biotheoretica 19, 16–36 (1970).Article 

    Google Scholar 
    Binckley, C. A. & Resetarits, W. J. Functional equivalence of non-lethal effects: generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102, 623–629 (2003).Article 

    Google Scholar 
    Kraus, J. M. & Vonesh, J. R. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 79, 795–802 (2010).PubMed 

    Google Scholar 
    Pollard, C. J. et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 81, 720–727 (2017).Article 

    Google Scholar 
    Calenge, C., Dufour, A. B. & Maillard, D. K-select analysis: a new method to analyse habitat selection in radio-tracking studies. Ecol. Model. 186, 143–153 (2005).Article 

    Google Scholar 
    Freitas, C., Kovacs, K. M., Lydersen, C. & Ims, R. A. A novel method for quantifying habitat selection and predicting habitat use. J. Appl. Ecol. 45, 1213–1220 (2008).
    Google Scholar 
    Mitchell, L. J., Kohler, T., White, P. C. L. & Arnold, K. E. High interindividual variability in habitat selection and functional habitat relationships in European nightjars over a period of habitat change. Ecol. Evol. 10, 5932–5945 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter, L. et al. So close and yet so different: the importance of considering temporal dynamics to understand habitat selection. Basic Appl. Ecol. 43, 99–109 (2020).Article 

    Google Scholar 
    Tyler, J. A. & Rose, K. A. Individual variability and spatial heterogeneity in fish population models. Rev. Fish Biol. Fish. 4, 91–123 (1994).Article 

    Google Scholar 
    Córdoba-Aguilar, A. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. (Oxford University Press, 2008).Sandall, E. L. & Fischer, B. Be a professional: attend to the insects. Am. Entomol. 65, 176–179 (2019).Article 

    Google Scholar 
    Blaustein, L. Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community. in Evolutionary theory and processes: modern perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).Helebrandová, J. B., Pyszko, P. & Dolný, A. Behavioural phenotypic plasticity of submerged oviposition in damselflies (Insecta: Odonata). Insects 10, 124 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hollis, K. & Guillette, L. What associative learning in insects tells us about the evolution of learning and fixed behavior. Int. J. Comp. Psychol. 28, 25706 (2015).Article 

    Google Scholar 
    Papaj, D. R. & Lewis, A. C. Insect Learning: Ecological and Evolutinary Perspectives. (Chapman & Hall, 1993).Simons, M. & Tibbetts, E. Insects as models for studying the evolution of animal cognition. Curr. Opin. Insect Sci. 34, 117–122 (2019).Article 
    PubMed 

    Google Scholar 
    Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).Article 

    Google Scholar 
    Cook, W. L. & Streams, F. A. Fish predation on Notonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia 64, 177–183 (1984).Article 
    CAS 
    PubMed 

    Google Scholar 
    Larson, D. J. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 11, 245–498 (1985).
    Google Scholar 
    Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects 22, 81–98 (2000).Lock, K., Adriaens, T., Meutter, F. V. D. & Goethals, P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 49, 121–128 (2013).Article 

    Google Scholar 
    Macan, T. T. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 45, 913–922 (1976).Article 

    Google Scholar 
    Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana 43 (Suppl.), 1–289 (2007).Åbjörnsson, K., Wagner, B. M. A., Axelsson, A., Bjerselius, R. & Olsén, K. H. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111, 166–171 (1997).Article 
    PubMed 

    Google Scholar 
    Gioria, M., Schaffers, A., Bacaro, G. & Feehan, J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133 (2010).Article 

    Google Scholar 
    Bergsten, J. & Miller, K. B. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 31, 145–197 (2005).Article 

    Google Scholar 
    Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).Miller, K. B. & Bergsten, J. Predaceous diving beetle sexual systems. in Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 199–234 (Springer Netherlands, 2014).Culler, L. E., Ohba, S. & Crumrine, P. Predator-prey interactions of dytiscids. in Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).Baines, C. B., McCauley, S. J. & Rowe, L. Dispersal depends on body condition and predation risk in the semi-aquatic insect Notonecta undulata. Ecol. Evol. 5, 2307–2316 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baines, C. B., Ferzoco, I. M. & McCauley, S. J. Sex-biased dispersal is independent of sex ratio in a semiaquatic insect. Behav. Ecol. Sociobiol. 71, 119 (2017).Article 

    Google Scholar 
    Hungerford, H. B. The biology and ecology of aquatic and semiaquatic Hemiptera. Univ. Kans. Sci. Bull. 11, 3–334 (1919).
    Google Scholar 
    Streams, F. A. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 85, 265–273 (1992).Article 

    Google Scholar 
    Halekoh, U., Højsgaard, S. & Yan, J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Bates, A., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2021).Harvill, M. L. The antipredatory behavior of the aquatic diving beetle, Coptotomus venustus (Say)(Coleoptera: Dytiscidae) in response to fish predation. (Texas A&M University, 1994).McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).Article 
    PubMed 

    Google Scholar 
    Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).Article 

    Google Scholar 
    Giller, P. S. Locomotory efficiency in the predation strategies of the British Notonecta (Hempitera, Heteroptera). Oecologia 52, 273–277 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gittelman, S. H. Locomotion and predatory strategy in backswimmers (Hemiptera: Notonectidae). Am. Midl. Nat. 92, 496–500 (1974).Article 

    Google Scholar 
    Morris, D. W. Density-dependent habitat selection: testing the theory with fitness data. Evol. Ecol. 3, 80–94 (1989).Article 

    Google Scholar 
    Holt, R. D. Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 28, 181–208 (1985).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Briers, R. A. Metapopulation ecology of Notonecta in small ponds. Doctoral dissertation. (1999).Popham, E. J. The migration of aquatic bugs with special reference to the Corixidae (Hemiptera Heteroptera). Arch. Für Hydrobiol. 60, 450–496 (1964).
    Google Scholar 
    Doligez, B., Cadet, C., Danchin, E. & Boulinier, T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 66, 973–988 (2003).Article 

    Google Scholar 
    Pintar, M. R. & Resetarits, W. J. Aquatic beetles influence colonization of disparate taxa in small lentic systems. Ecol. Evol. 10, 12170–12182 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián-González, E., Sánchez-Zapata, J. A., Botella, F. & Ovaskainen, O. Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence. Proc. R. Soc. B Biol. Sci. 277, 2983–2990 (2010).Article 

    Google Scholar 
    Giller, P. S. & McNeill, S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera). J. Anim. Ecol. 50, 789–808 (1981).Article 

    Google Scholar 
    Buxton, V. L., Enos, J. K., Sperry, J. H. & Ward, M. P. A review of conspecific attraction for habitat selection across taxa. Ecol. Evol. 10, 12690–12699 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferzoco, I. M. C., Baines, C. B. & McCauley, S. J. Co-occurring Notonecta (Hemiptera: Heteroptera: Notonectidae) species differ in their behavioral response to cues of Belostoma (Hemiptera: Heteroptera: Belostomatidae) predation risk. Ann. Entomol. Soc. Am. 112, 402–408 (2019).Article 

    Google Scholar 
    Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).Article 

    Google Scholar 
    Ruckstuhl, K. E. Sexual segregation in vertebrates: proximate and ultimate causes. Integr. Comp. Biol. 47, 245–257 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hochkirch, A., Gröning, J. & Krause, S. Intersexual niche segregation in Cepero’s ground-hopper Tetrix ceperoi. Evol. Ecol. 21, 727–738 (2007).Article 

    Google Scholar 
    Romey, W. L. & Wallace, A. C. Sex and the selfish herd: sexual segregation within nonmating whirligig groups. Behav. Ecol. 18, 910–915 (2007).Article 

    Google Scholar 
    Main, M. B., Weckerly, F. W. & Bleich, V. C. Sexual segregation in ungulates: new directions for research. J. Mammal. 77, 449–461 (1996).Article 

    Google Scholar 
    Trivers, R. L. Parental investment and sexual selection. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) (Aldine Publishing Company, 1972).Bonduriansky, R. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. Camb. Philos. Soc. 76, 305–339 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Foster, S. E. & Soluk, D. A. Protecting more than the wetland: The importance of biased sex ratios and habitat segregation for conservation of the Hine’s emerald dragonfly Somatochlora hineana Williamson. Biol. Conserv. 127, 158–166 (2006).Article 

    Google Scholar 
    Miller, K. B. The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol. J. Linn. Soc. 79, 359–388 (2003).Article 

    Google Scholar 
    Watson, P. J., Stallmann, R. R. & Arnqvist, G. Sexual conflict and the energetic costs of mating and mate choice in water striders. Am. Nat. 151, 46–58 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rowe, L., Krupa, J. J. & Sih, A. An experimental test of condition-dependent mating behavior and habitat choice by water striders in the wild. Behav. Ecol. 7, 474–479 (1996).Article 

    Google Scholar 
    McLain, D. K. & Pratt, A. E. The cost of sexual coercion and heterospecific sexual harassment on the fecundity of a host-specific, seed-eating insect (Neacoryphus bicrucis). Behav. Ecol. Sociobiol. 46, 164–170 (1999).Article 

    Google Scholar 
    Stone, G. N. Female foraging responses to sexual harassment in the solitary bee Anthophora plumipes. Anim. Behav. 50, 405–412 (1995).Article 

    Google Scholar 
    Martens, A. & Rehfeldt, G. Female aggregation in Platycypha caligata (Odonata: Chlorocyphidae): A tactic to evade male interference during oviposition. Anim. Behav. 38, 369–374 (1989).Article 

    Google Scholar 
    Kolar, V. & Boukal, D. S. Habitat preferences of the endangered diving beetle Graphoderus bilineatus: implications for conservation management. Insect Conserv. Divers. 13, 480–494 (2020).Article 

    Google Scholar 
    Wilcox, C. Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects. Isr. J. Zool. 47, 459–475 (2001).Article 

    Google Scholar 
    Baines, C. B., Ferzoco, I. M. C. & McCauley, S. J. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 88, 1263–1274 (2019).Article 
    PubMed 

    Google Scholar 
    Liao, W., Venn, S. & Niemelä, J. Diving beetle (Coleoptera: Dytiscidae) community dissimilarity reveals how low landscape connectivity restricts the ecological value of urban ponds. Landsc. Ecol. 37, 1049–1058 (2022).Article 

    Google Scholar  More

  • in

    Populations adapt more to temperature in the ocean than on land

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Sasaki, M. et al. Greater evolutionary divergence of thermal limits within marine than terrestrial species. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01534-y (2022). More

  • in

    Moss establishment success is determined by the interaction between propagule size and species identity

    Ebenhard, T. Colonization in metapopulations: A review of theory and observations. Biol. J. Linn. Soc. 42, 105–121 (1991).Article 

    Google Scholar 
    Szucs, M., Melbourne, B. A., Tuff, T. & Hufbauer, R. A. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 281, 20141073 (2014).Article 

    Google Scholar 
    Williamson, M. Biological invasions Vol. 15 (Springer, 1996).
    Google Scholar 
    Dai, Z. C. et al. Synergy among hypotheses in the invasion process of alien plants: A road map within a timeline. Perspect. Plant Ecol. Evol. Syst. 47, 125575 (2020).Article 

    Google Scholar 
    Briski, E. et al. Beyond propagule pressure: Importance of selection during the transport stage of biological invasions. Front. Ecol. Environ. 16, 345–353 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to nutrient gradients. Bryologist 97, 357–364 (1994).Article 

    Google Scholar 
    Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to a moisture gradient. J. Bryol. 18, 677–687 (1995).Article 

    Google Scholar 
    Wiklund, K. & Rydin, H. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 18, 907–913 (2004).Article 

    Google Scholar 
    Zanatta, F. et al. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat. Commun. 11, 1–9 (2020).Article 

    Google Scholar 
    Seaborn, T. J., Goldberg, C. S. & Crespi, E. J. Integration of dispersal data into distribution modeling: What have we done and what have we learned?. Front. Biogeogr. 12, 1–14 (2020).Article 

    Google Scholar 
    Glime, J. M. Bryophyte Ecology (Vol. 1, Issue Physiological Ecology, Chapter 4–10 Adaptive strategies: vegetative propagules, pp. 1–44). (2021).Guerra, J., Brugués, M., Cano, M. J. & Cros, R. M. Bryum Hedw. in Flora Briofítica Ibérica, Vol. IV, Funariales, Splachnales, Schistostegales, Bryales, Timmiales (eds. Brugués, M. & Cros, R. M.) 105–178 (Universidad de Murcia. Sociedad Española de Briología, 2010).
    Google Scholar 
    Medina, N. G., Draper, I. & Lara, F. Biogeography of mosses and allies: Does size matter? in Biogeography of microscopic organisms: is everything small everywhere? 209–233 (2011). https://doi.org/10.1017/CBO9780511974878.012Miles, C. J. & Longton, R. E. The role of spores in reproduction in mosses. Bot. J. Linn. Soc. 104, 149–173 (1990).Article 

    Google Scholar 
    Estébanez, B., Draper, I. & Bujalance, R. M. Bryophytes: An approximation to the simplest land plants. in Biodiversidad. Aproximación a la diversidad botánica y zoológica de España 19 (2011).Frey, W. & Kürschner, H. Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 173–184 (2011).Article 

    Google Scholar 
    Giordano, S. et al. Regeneration from detached leaves of Pleurochaete squarrosa (Brid.) Lindb. in culture and in the wild. J. Bryol. 19, 219–227 (1996).Article 

    Google Scholar 
    La Farge, C., Williams, K. H. & England, J. H. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc. Natl. Acad. Sci. U. S. A. 110, 9839–9844 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, S. C. & Miller, N. G. Bryophyte diversity on Adirondack alpine summits is maintained by dissemination and establishment of vegetative fragments and spores. Bryologist 116, 382–391 (2013).Article 

    Google Scholar 
    Glime, J. M. Chapter 2–1 Meet the bryophytes. in Bryophyte Ecology 1 (2020).Korpelainen, H., Pohjamo, M. & Laaka-Lindberg, S. How efficiently does bryophyte dispersal lead to gene flow?. J. Hattori Bot. Lab. 205, 195–205 (2005).
    Google Scholar 
    Schuster, R. M. Phytogeography of the Bryophyta. in New manual of Bryology 1, 463–626 (Hattori Bot. Lab, 1983).Löbel, S., Schröder, B. & Snäll, T. Projected shifts in deadwood bryophyte communities under national climate and forestry scenarios benefit large competitors and impair small species. J. Biogeogr. https://doi.org/10.1111/jbi.14278 (2021).Article 

    Google Scholar 
    Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. Dispersal of asexual propagules in bryophytes. J. Hattori Bot. Lab. 330, 319–330 (2003).
    Google Scholar 
    Miller, N. G. & Mogensen, G. S. Cyrtomnium hymenophylloides (Bryophyta, Mniaceae) in North America and Greenland: Male plants, sex-differential geographical distribution, and reproductive characteristics. Bryologist 100, 499–506 (1997).Article 

    Google Scholar 
    Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).Article 
    PubMed 

    Google Scholar 
    Patiño, J. & Vanderpoorten, A. Bryophyte biogeography. CRC. Crit. Rev. Plant Sci. 37, 175–209 (2018).Article 

    Google Scholar 
    Pasiche-Lisboa, C. J., Booth, T., Belland, R. J. & Piercey-Normore, M. D. Moss and lichen asexual propagule dispersal may help to maintain the extant community in boreal forests. Ecosphere 10, e02823 (2019).Article 

    Google Scholar 
    Barbé, M., Fenton, N. J. & Bergeron, Y. So close and yet so far away: Long-distance dispersal events govern bryophyte metacommunity reassembly. J. Ecol. 104, 1707–1719 (2016).Article 

    Google Scholar 
    Hansson, L., Söderström, L. & Solbreck, C. The ecology of dispersal in relation to conservation. in Ecological principles of nature conservation. Conservation Ecology series: principles, practices and management. (ed. Hansson, L.) (Springer, 1992). https://doi.org/10.1007/978-1-4615-3524-9Chapter 

    Google Scholar 
    Miller, N. G. & Ambrose, L. J. H. Growth in culture of wind-blown bryophyte gametophyte fragments from Arctic Canada. Bryologist 79, 55 (1976).Article 

    Google Scholar 
    Barbé, M., Fenton, N. J., Caners, R. & Bergeron, Y. Inter-annual variation in bryophyte dispersal: Linking bryophyte phenophases and weather conditions. Botany 95, 1151–1169 (2017).Article 

    Google Scholar 
    Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B Biol. Sci. 286, 20182253 (2019).Article 
    CAS 

    Google Scholar 
    Davison, G. W. H. Role of birds in moss dispersal. Br. Birds 69, 65–66 (1976).
    Google Scholar 
    Heinken, T., Lees, R., Raudnitschka, D. & Runge, S. Epizoochorous dispersal of bryophyte stem fragments by roe deer (Capreolus capreolus) and wild boar (Sus scrofa). J. Bryol. 23, 293–300 (2001).Article 

    Google Scholar 
    Parsons, J. G. et al. Bryophyte dispersal by flying foxes: A novel discovery. Oecologia 152, 112–114 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Glime, J. M. Bryophyte Ecology (Vol. 2, Issue Bryological Interaction) (2021).Ware, C., Bergstrom, D. M., Müller, E. & Alsos, I. G. Humans introduce viable seeds to the Arctic on footwear. Biol. Invasions 14, 567–577 (2012).Article 

    Google Scholar 
    Shacklette, H. T. Unattached moss polsters on Amchitka Island, Alaska. Bryologist 69, 346–352 (1966).Article 

    Google Scholar 
    Moles, A. T. & Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol. 92, 372–383 (2004).Article 

    Google Scholar 
    Kimmerer, R. W. Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 108, 391–401 (2005).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Stieha, C. R., Middleton, A. R., Stieha, J. K., Trott, S. H. & Mcletchie, D. N. The dispersal process of asexual propagules and the contribution to population persistence in Marchantia (Marchantiaceae). Am. J. Bot. 101, 348–356 (2014).Article 
    PubMed 

    Google Scholar 
    Hugonnot, V. Comparative investigations of niche, growth rates and reproduction between the native moss Campylopus pilifer and the invasive C. introflexus. J. Bryol. 39, 79–84 (2017).Article 

    Google Scholar 
    Benscoter, B. W. Post-fire bryophyte establishment in a continental bog. J. Veg. Sci. 17, 647–652 (2006).Article 

    Google Scholar 
    Esposito, A., Mazzoleni, S. & Strumia, S. Post-fire bryophyte dynamics in Mediterranean vegetation. J. Veg. Sci. 10, 261–268 (1999).Article 

    Google Scholar 
    Naeth, M. A. & Wilkinson, S. R. Establishment of restoration trajectories for upland tundra communities on diamond mine wastes in the Canadian arctic. Restor. Ecol. 22, 534–543 (2014).Article 

    Google Scholar 
    Lamarre, J. J. M. Tundra bryophyte revegetation: novel methods for revegetating northern ecosystems (University of Alberta, 2016).Dierßen, K. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. (Bryophytorum Bibliotheca 56. J. Cramer, Berlin, 289 pp., 2001).Smith, A. J. E. The moss flora of Britain and Ireland (Cambridge University Press, 2004).Book 

    Google Scholar 
    Casas, C., Brugués, M., Cros, R. M. & Sérgio, C. Handbook of Mosses of the Iberian Peninsula and the Balearic Islands. (Instituts d’Estudis Catalans, 2006).Medina, N., Mazimpaka Nibarere, V., Hortal, J. & Lara García, F. Catálogo de los briófitos epífitos que crecen en bosques de quercíneas del cuadrante noroccidental ibérico. Boletín la Soc. Esp. Briol. 30, 1–30 (2015).
    Google Scholar 
    Ron Alvarez, M. E. & Vicente, J. Contribución al conocimiento de la flora briológica de Canencia, Sierra de Guadarrama (Madrid). Bot. Complut. https://doi.org/10.5209/BOCM.7415 (1989).Article 

    Google Scholar 
    Pressel, S., Matcham, H. W. & Duckett, J. G. Studies of protonemal morphogenesis in mosses. XI. Bryum and allied genera: A plethora of propagules. J. Bryol. 29, 241–258 (2007).Article 

    Google Scholar 
    Söderström, L. & Herben, T. Dynamics of bryophyte metapopulations. in Advances in Briology 6. Population studies (ed. Longton, R. E.) 6, 205–240 (International Association of Briologists. Schweizerbart Science Publishers, 1997).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, E. P. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1, 179–183 (1927).
    Google Scholar 
    R Core Team. R: A language and environment for Statistical Computing (2021).Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests (2020).Zeileis, A., Meyer, D. & Hornik, K. Residual-based shadings for visualizing (conditional) independence. J. Comput. Graph. Stat. 16, 507–525 (2007).Article 
    MathSciNet 

    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of Data Manipulation (2022).Fox, J. & Weisberg, S. An R Companion to Applied Regression (2019).Maechler, M. et al. robustbase: Basic Robust Statistics (2022).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2020).Revelle, W. psych: Procedures for psychological, psychometric, and personality research (2021).Kuhn, M., Jackson, S. & Cimentada, J. corrr: correlations in R. R package version 0.4.3 (2020).Wei, T. & Simko, V. R package ‘corrplot’: visualization of a correlation matrix (Version 0.84) (2017).Wilke, C. O. ggtext: improved text rendering support for ‘ggplot2’ (2020).Auguie, B. gridExtra: miscellaneous functions for ‘Grid’ graphics (2017).Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.1 (2020).Stark, L. R., Nichols, L. II., McLetchie, D. N., Smith, S. D. & Zundel, C. Age and sex-specific rates of leaf regeneration in the Mojave Desert moss Syntrichia caninervis. Am. J. Bot. 91, 1–9 (2004).Article 
    PubMed 

    Google Scholar 
    Fernandez-Mendoza, F., Estebanez, B., Gomez-Sanz, D. & Ron, E. Sporophyte-bearing specimens of Pleurochaete squarrosa in Zamora, Spain. Cryptogam. Bryol. 23, 211–215 (2002).
    Google Scholar 
    Chen, K. H., Liao, H. L., Arnold, A. E., Bonito, G. & Lutzoni, F. RNA-based analyses reveal fungal communities structured by a senescence gradient in the moss Dicranum scoparium and the presence of putative multi-trophic fungi. New Phytol. 218, 1597–1611 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kruijer, H. J. D., Raes, N. & Stech, M. Modelling the distribution of the moss species Hypopterygium tamarisci (Hypopterygiaceae, Bryophyta) in Central and South America. Nov. Hedwigia 91, 399–420 (2010).Article 

    Google Scholar 
    Van Zanten, B. O. Preliminary report on germination experiments designed to estimate the survival chances of moss spores during aerial trans-oceanic long-range dispersal in the Southern Hemisphere, with particular reference to New Zealand. J. Hattori Bot. Lab. 41, 133–140 (1976).
    Google Scholar 
    Van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).
    Google Scholar 
    De Meester, L., Gómez, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23, 121–135 (2002).Article 

    Google Scholar 
    Izquieta-Rojano, S. et al. Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediterranean area. Ecol. Indic. 60, 1221–1228 (2016).Article 
    CAS 

    Google Scholar 
    Kimmerer, R. W. & Young, C. C. Effect of gap size and regeneration niche on species coexistence in bryophyte communities. J. Torrey Bot. Soc. 123, 16–24 (1996).Article 

    Google Scholar 
    Refoyo, P., Peláez, M., García-Rodríguez, M., López-Sánchez, A. & Perea, R. Moss cover and browsing scores as sustainability indicators of mountain ungulate populations in Mediterranean environments. Biodivers. Conserv. https://doi.org/10.1007/s10531-022-02454-1 (2022).Article 

    Google Scholar  More

  • in

    The spatial and temporal reconstruction of a medieval moat ecosystem

    Kirilova, E. P., Cremer, H., Heiri, O. & Lotter, A. F. Eutrophication of moderately deep Dutch lakes during the past century: Flaws in the expectations of water management? Hydrobiologia 637, 157–171 (2010).Article 
    CAS 

    Google Scholar 
    Scharf, B. & Viehberg, F. A. Living Ostracoda (Crustacea) from the town moat of Bremen, Germany. Crustaceana 87(8–9), 1124–1135 (2014).Article 

    Google Scholar 
    Rees, S. E. The historical and cultural importance of ponds and small lakes in Wales, UK. Aquat. Conserv. 7(2), 133–139 (1997).Article 

    Google Scholar 
    Brown, A. et al. The ecological impact of conquest and colonisation on a medieval frontier landscape: Combined palynological and geochemical analysis of lake sediments from Radzyń Chełmiński, northern Poland. Geoarchaeology 30, 511–527 (2015).Article 

    Google Scholar 
    Kittel, P. et al. The palaeoecological development of the Late Medieval moat—Multiproxy research at Rozprza Central Poland. Quat. Int. 482, 131–156 (2018).Article 

    Google Scholar 
    Hildebrandt-Radke, I. Geoarchaeological aspects in the studies of prehistoric and early historic settlement complexes. In Studia interdyscyplinarne nad środowiskiem i kulturą w Polsce. Tom 1. Środowisko-Człowiek-Cywilizacja (eds Makohonienko, M. et al.) 57–70 (Bogucki Wyd Naukowe, 2007).
    Google Scholar 
    Łyskowski, M. & Wardas-Lasoń, M. Georadar investigations and geochemical analysis in contemporary archaeological studies. Geol. Geophys. Environ. 38(3), 307–315 (2012).Article 

    Google Scholar 
    Korhola, A. & Rautio, M. Cladocera and other branchiopod crustaceans. In Tracking Environmental Change Using Lake Sediments, Vol. 4: Zoological Indicators (eds Smol, J. P. et al.) 5–41 (Kluwer Academic Publishers, 2001).Chapter 

    Google Scholar 
    Birks, H. H. Plant macrofossils. In Tracking Environmental Change Using Lake Sediments, 3: Terrestrial, Algal, and Siliceous Indicators (eds Smol, J. P. et al.) 49–74 (Kluwer Academic Publishers, 2001).
    Google Scholar 
    Battarbee, R. W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 527–570 (Wiley, 1986).
    Google Scholar 
    Luoto, T. P., Nevalainen, L., Kultti, S. & Sarmaja-Korjonen, K. An evaluation of the influence of water depth and river inflow on quantitative Cladocera-based temperature and lake level inferences in a shallow boreal lake. Hydrobiologia 676, 143–154 (2011).Article 
    CAS 

    Google Scholar 
    Luoto, T. P. Intra-lake patterns of aquatic insect and mite remains. J. Paleolimnol. 47, 141–157 (2012).Article 

    Google Scholar 
    Hann, B. J. Methods in Quaternary ecology. Cladocera. Geosci. Canada 16, 17–26 (1989).
    Google Scholar 
    Dimbleby, G. W. The Palynology of Archaeological Sites (Academic Press. Inc., 1985).
    Google Scholar 
    Edwards, K. J. Using space in cultural palynology: The value of the off-site pollen record. In Modelling Ecological Change: Perspectives from Neoecology, Palaeoecology and Environmental Archaeology (eds Harris, D. R. & Thomas, K. D.) 61–74 (Routledge Taylor & Francis Group, 2016).
    Google Scholar 
    Kittel, P., Sikora, J. & Wroniecki, P. A Late Medieval motte-and-bailey settlement in a lowland river valley landscape of central Poland. Geoarchaeology 33(5), 558–578 (2018).Article 

    Google Scholar 
    Antczak-Orlewska, O. et al. The environmental history of the oxbow in the Luciąża River valley—Study on the specific microclimate during Allerød and Younger Dryas in central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.08.011 (2021).Article 

    Google Scholar 
    Dearing, J. A. Core correlation and total sediment influx. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 247–270 (Wiley, 1986).
    Google Scholar 
    O’Brien, C. et al. A sediment-based multiproxy palaeoecological approach to the environmental archaeology of lake dwellings (crannogs), central Ireland. Holocene 15, 707–719 (2005).Article 

    Google Scholar 
    Ruiz, Z., Brown, A. G. & Langdon, P. G. The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. J. Archaeol. Sci. 33, 14–33 (2006).Article 

    Google Scholar 
    Kittel, P. et al. A multi-proxy reconstruction from Lutomiersk-Koziówki, Central Poland, in the context of early modern hemp and flax processing. J. Archaeol. Sci. 50, 318–337 (2014).Article 

    Google Scholar 
    Kittel, P. et al. On the border between land and water: the environmental conditions of the Neolithic occupation from 4.3 until 1.6 ka BC at Serteya, Western Russia. Geoarchaeology 36, 173–202 (2021).Article 

    Google Scholar 
    Makohonienko, M. et al. Environmental changes during Mesolithic-Neolithic transition in Kuyavia Lakeland, Central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.020 (2021).Article 

    Google Scholar 
    Porinchu, D. F. & MacDonald, G. M. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Prog. Phys. Geogr. 27, 378–422 (2003).Article 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical guide no. 10 (Quaternary Research Association, 2007).Heiri, O., Birks, H. J. B., Brooks, S. J., Velle, G. & Willassen, E. Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 95–106 (2003).Article 

    Google Scholar 
    Kittel, P., Sikora, J. & Wroniecki, P. The morphology of the Luciąża River valley floor in the vicinity of the Rozprza medieval ring-fort in light of geophysical survey. Bull. Geogr. Phys. Geogr. Ser. 8, 95–106 (2015).Article 

    Google Scholar 
    Hingham, R. & Barker, P. Timber Castles (University of Exeter Press, 2002).
    Google Scholar 
    Marciniak-Kajzer, A. Archaeology on Medieval Knights’ Manor Houses in Poland (Wyd. Uniwersytetu Łódzkiego, Wyd. Uniwersytetu Jagiellońskiego, 2016).Book 

    Google Scholar 
    Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. Biology and Ecology of the Aquatic Orthocladiinae, Prodiamesinae, Diamesinae, Buchonomyiinae, Podonominae, Telmatogetoninae (KNNV Publishing, 2013).Book 

    Google Scholar 
    Luoto, T. P. An assessment of lentic ceratopogonids, ephemeropterans, trichopterans and oribatid mites as indicators of past environmental change in Finland. Ann. Zool. Fenn. 46, 259–270 (2009).Article 

    Google Scholar 
    Cierniewski, J. Spatial complexity of the Cybina river valley organic soils against the background of physiographic conditions. Soil Sci. Annu. 32(4), 3–51 (1981).CAS 

    Google Scholar 
    Rydelek, P. Origin and composition of mineral constituents of fen peats from Eastern Poland. J. Plant Nutr. 36(6), 911–928 (2013).Article 
    CAS 

    Google Scholar 
    Wachecka-Kotkowska, L. Rozwój rzeźby obszaru między Piotrkowem Trybunalskim, Radomskiem a Przedborzem w czwartorzędzie (Wyd. Uniwersytetu Łódzkiego, 2015).Book 

    Google Scholar 
    Kittel, P. et al. Lacustrine, fluvial and slope deposits in the wetland shore area in Serteya, Western Russia. Acta Geogr. Lodz 110, 103–124 (2020).
    Google Scholar 
    Ciszewski, D. Pollution of Mała Panew River sediments by heavy metals: Part I. Effect of changes in river bed morphology. Pol. J. Environ. Stud. 13(6), 589–595 (2004).CAS 

    Google Scholar 
    Borówka, R. Late Vistulian and Holocene denudation magnitude in morainic plateaux: Case studies in the zone of maximum extent of the last ice sheet. Quat. Stud. Pol. 9, 5–31 (1990).
    Google Scholar 
    Prusinkiewicz, Z., Bednarek, R., Kośko, A. & Szmyt, M. Palaeopedological studies of the age and properties of illuvial bands at an archaeological site. Quat. Int. 51(52), 195–201 (1998).Article 

    Google Scholar 
    Kühtreiber, T. The medieval castle Lanzenkirchen in Lower Austria: reconstruction of economical and ecological development of an average-sized manor (12th–15th century). Archaeol. Pol. 37, 135–144 (1999).
    Google Scholar 
    Kočár, P., Čech, P., Kozáková, R. & Kočárová, R. Environment and economy of the early medieval settlement in Žatec. Interdiscip. Archaeol. 1, 45–60 (2010).
    Google Scholar 
    Brown, A. D. & Pluskowski, A. G. Detecting the environmental impact of the Baltic Crusades on a late medieval (13th-15th century) frontier landscape: Palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966 (2011).Article 

    Google Scholar 
    Beneš, J. et al. Archaeobotany of the Old Prague Town defence system, Czech Republic: Archaeology, macro-remains, pollen, and diatoms. Veg. Hist. Archaeobot. 11(1/2), 107–119 (2002).Article 

    Google Scholar 
    Badura, M. & Latałowa, M. Szczątki makroskopowe roślin z obiektów archeologicznych Zespołu Przedbramia w Gdańsku. In Zespół Przedbramia ul. Długiej w Gdańsku. Studium archeologiczne (ed. Pudło, A.) 231–247 (Muzeum Historii Miasta Gdańska, 2016).
    Google Scholar 
    Dobrowolski, R. et al. Environmental conditions of settlement in the vicinity of the mediaeval capital of the Cherven Towns (Czermno site, Hrubieszów Basin, Eastern Poland). Quat. Int. 493, 258–273 (2018).Article 

    Google Scholar 
    Makohonienko, M. Środowisko przyrodnicze i gospodarka w otoczeniu średniowiecznego grodu w Łęczycy w świetle analizy palinologicznej. In Początki Łęczycy. Tom I—Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 95–190 (MAiE w Łodzi, 2014).
    Google Scholar 
    Koszałka, J. Źródła archeobotaniczne do rekonstrukcji uwarunkowań przyrodniczych oraz gospodarczych grodu w Łęczycy. In Początki Łęczycy. Tom I – Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 191–241 (MAiE w Łodzi, 2014).
    Google Scholar 
    Digerfeldt, G. Studies on past lake-level fluctuations. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 127–143 (Wiley, 1986).
    Google Scholar 
    Magny, M. Palaeoclimatology and archaeology in the wetlands. In The Oxford Handbook of Wetland Archaeology (eds Menotti, F. & O’Sullivan, A.) 585–597 (Oxford University Press, 2013).
    Google Scholar 
    Płóciennik, M. et al. Summer temperature drives the lake ecosystem during the Late Weichselian and Holocene in Eastern Europe: A case study from East European Plain. CATENA 214, 106206 (2022).Article 

    Google Scholar 
    Święta-Musznicka, J., Badura, M., Pędziszewska, A. & Latałowa, M. Environmental changes and plant use during the 5th–14th centuries in medieval Gdańsk, northern Poland. Veget. Hist. Archaeobot. 30, 363–381 (2021).Article 

    Google Scholar 
    Rackham, J. & Sidell, J. London’s landscapes: The changing environment. In The Archaeology of Greater London. An Assessment of Archaeological Evidence for Human Presence in the Area Now Covered by Greater London (ed. Kendall, M.) 12–27 (Museum of London, 2000).
    Google Scholar 
    Ledger, P., Edwards, K. & Schofield, J. A multiple profile approach to the palynological reconstruction of Norse landscapes in Greenland’s Eastern Settlement. Quat. Res. 82(1), 22–37 (2014).Article 

    Google Scholar 
    Albert, B. & Innes, J. Multi-profile fine-resolution palynological and micro-charcoal analyses at Esklets, North York Moors, UK, with special reference to the Mesolithic-Neolithic transition. Veget. Hist. Archaeobot. 24, 357–375 (2015).Article 

    Google Scholar 
    Sikora, J., Kittel, P. & Wroniecki, P. From a point on the map to a shape in the landscape. Non-invasive verification of medieval ring-forts in Central Poland: Rozprza case study. Archaeol. Pol. 53, 510–514 (2015).
    Google Scholar 
    Sikora, J. et al. A palaeoenvironmental reconstruction of the rampart construction of the medieval ring-fort in Rozprza, Central Poland. Archaeol. Anthropol. Sci. 11(8), 4187–4219 (2019).Article 

    Google Scholar 
    Tolksdorf, J. F., Turner, F., Nelle, O., Peters, S. & Bruckner, H. Environmental development and local human impact in the Jeetzel valley (N Germany) since 10 ka BP as detected by geoarchaeological analyses in a coupled aeolian and lacustrine sediment archive at Soven. E&G Quat. Sci. J. 64, 95–110 (2015).Article 

    Google Scholar 
    Oonk S., Slomp C. P. & Huisman D. J. Geochemistry as an aid in archaeological prospection and site interpretation: Current issues and research directions. Archaeol. Prospect. 16, 35–51 (2009).Article 

    Google Scholar 
    Zieliński, T. & Pisarska-Jamroży, M. Which features of deposits should be included in a code and which not? Przegl. Geol. 60, 387–397 (2012).
    Google Scholar 
    Clift, P. D. et al. Grain-size variability within a mega-scale point-bar system, False River, Louisiana. Sedimentology 66, 408–434 (2019).Article 

    Google Scholar 
    Blott, S. J. & Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001).Article 

    Google Scholar 
    Rolland, N. & Larocque, I. The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples. J. Paleolimnol. 37, 565–572 (2007).Article 

    Google Scholar 
    Schmid, P. E. A Key to the Chironomidae and Their Instars from Austrian Danube Region Streams and Rivers. Part I. Diamesinae Prodiamesinae and Orthocladiinae (Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, 1993).
    Google Scholar 
    Andersen, T., Cranston, P. S. & Epler, J. H. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. Insect Systematics and Evolution. Supplement 66 (Scandinavian Entomology, 2013).
    Google Scholar 
    Walker, I. R. Midges: Chironomidae and related Diptera. In Tracking Environmental Change Using Lake Sediments, Volume 4: Zoological Indicators (eds Smol, J. P. et al.) 43–66 (Kluwer Academic Press, 2001).Chapter 

    Google Scholar 
    Vallenduuk, H. J. & Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. General Ecology and Tanypodinae (KNNV Publishing, 2007).
    Google Scholar 
    Moller Pillot, H. K. M. Chironomidae Larvae Biology and Ecology of the Chironomini (KNNV Publishing, 2009).Book 

    Google Scholar 
    Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation (Newcastle University, 2007).
    Google Scholar 
    Schweingruber, F. H. Tree Rings. Basics and Applications of Dendrochronology (Kluwer Academic Publishers, 1988).
    Google Scholar 
    Skripkin, V. V. & Kovaliukh, N. N. Recent developments in the procedures used at the SSCER Laboratory for the routine preparation of lithium carbide. Radiocarbon 40(1), 211–214 (1998).Article 
    CAS 

    Google Scholar 
    Krąpiec, M., Rakowski, A. Z., Huels, M., Wiktorowski, D. & Hamann, C. A new graphitization system for radiocarbon dating with AMS on the dendrochronological laboratory at AGH-UST Kraków. Radiocarbon 60(4), 1091–1100 (2018).Article 

    Google Scholar 
    Zoppi, U., Crye, J., Song, Q. & Arjomand, A. Performance evaluation of the new AMS system at Accium BioSciences. Radiocarbon 49, 173–182 (2007).Article 
    CAS 

    Google Scholar 
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725–757 (2020).Article 
    CAS 

    Google Scholar 
    Bronk Ramsey, C. OxCal Version 4.4.2. Available at: https://c14.arch.ox.ac.uk (2020).Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–360 (2009).Article 

    Google Scholar 
    Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27(1–2), 42–60 (2008).Article 

    Google Scholar 
    Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Kohonen, T. Self-Organizing Maps (Springer, 2001).Book 
    MATH 

    Google Scholar 
    Park, Y.-S. et al. Application of a self-organizing map to select representative species in multivariate analysis: A case study determining diatom distribution patterns across France. Ecol. Inform. 1, 247–257 (2006).Article 

    Google Scholar 
    Zhang, Q. et al. Self-organizing feature map classification and ordination of Larix principis-rupprechtii forest in Pangquangou Nature Reserve. Acta Ecol. Sin. 31, 2990–2998 (2011).
    Google Scholar 
    Ney, J. J. Practical use of biological statistics. In Inland Fisheries Management in North America (eds Kohler, C. C. et al.) 137–158 (American Fisheries Society, 1993).
    Google Scholar 
    Płóciennik, M. et al. Fen ecosystem responses to water-level fluctuations during the early and middle Holocene in central Europe: A case study from Wilczków, Poland. Boreas 44(4), 721–740 (2015).Article 

    Google Scholar 
    Brosse, S., Giraudel, J. L. & Lek, S. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 146(1), 159–166 (2001).Article 

    Google Scholar 
    Lek, S., Scardi, M., Verdonschot, P. F. M., Descy, J. P. & Park, Y. S. Modelling Community Structure in Freshwater Ecosystems (Springer, 2005).Book 

    Google Scholar 
    Quinn, G. P. & Keough, M. Experimental Design and Data Analysis for Biologists (University of Cambridge, 2002).Book 

    Google Scholar 
    Płóciennik, M., Kruk, A., Michczyńska, D. J. & Birks, H. J. B. Kohonen artificial neural networks and the IndVal index as supplementary tools for the quantitative analysis of palaeoecological data. Geochronometria 42, 189–201 (2015).Article 

    Google Scholar 
    Vesanto, J. & Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).Article 
    MathSciNet 

    Google Scholar 
    Alhoniemi, E., Hollmén, J., Simula, O. & Vesanto, J. Process monitoring and modeling using the self-organizing map. Integr. Comput. Aided Eng. 6(1), 3–14 (1999).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    McCune, B. & Mefford, M. S. PcOrd Multivariate Analysis of Ecological Data. Version 6.06 (MjM Software, 2011).
    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: Comparative analyses of ecological interactions. Am. Nat. 183(2), 174–187 (2014).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9(2), 378–400 (2017).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R Package Version 0.4.5. https://CRAN.R-project.org/package=DHARMa (2022).Bartoń, K. MuMIn: Multi-model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).de Rosario-Martinez, H. phia: Post-Hoc Interaction Analysis. R Package Version 0.2-1. https://CRAN.R-project.org/package=phia (2015). More