More stories

  • in

    Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology

    We incorporated a macromolecular model of phytoplankton (CFM-Phyto) into the global ocean model (MITgcm). This combined model predicts cellular growth rate based on the macromolecular allocation, which in turn is used to determine the elemental stoichiometry of phytoplankton for the next model time step.The phytoplankton component of the model is executed using the following algorithm, which is illustrated graphically in Extended Data Fig. 2: (1) relate the growth rate and elemental stoichiometry of phytoplankton based on the macromolecular allocation; (2) evaluate the possible growth rates under four different limiting nutrient assumptions and select the lowest rate: Liebig’s Law of the Minimum; (3) evaluate storage of non-limiting elements; (4) evaluate excess of non-limiting elements relative to maximum quotas; (5) based on that excess, evaluate effective nutrient uptake rate; and (6) evaluate the change in the elemental stoichiometry based on the balance between the growth rate and effective nutrient uptake rate. We describe the procedural details in the following text. Parameter values are listed in Extended Data Table 1. See ref. 21 for further details and justification of each equation in CFM-Phyto; here we repeat equations essential to explain the model used in the current study.Connecting the elemental stoichiometry and the growth rateThe first step of the algorithm is to obtain the relationship between the current elemental stoichiometry and the growth rate (μ). To do that, we use CFM-Phyto21 (Extended Data Fig. 1). The model is based on the assumption of pseudo-steady state with respect to macromolecular allocation; in other words, the cellular-scale acclimation occurs rapidly relative to environmental changes. Laboratory studies show that macromolecular re-allocation occurs on the timescale of hours to days19. This is fast relative to the rates of environmental change in our coarse-resolution ocean simulations and so steady state solutions21 are used to relate growth rate, macromolecular allocation and elemental stoichiometry, as described in detail below. We first describe the case of N quota (here defined as QN; moles cellular N per mole cellular C) in detail, and then we briefly explain the case of P and C quotas as the overall procedures are similar. After that, we describe the case with Fe quota, which extends the previously published model21 for this study.Relating N quota and growth rateCFM-Phyto describes the allocation of N quota as follows, focusing on the quantitatively major molecules:$$Q_{mathrm{N}} = Q_{mathrm{N}}^{{mathrm{Pro}}} + Q_{mathrm{N}}^{{mathrm{RNA}}} + Q_{mathrm{N}}^{{mathrm{DNA}}} + Q_{mathrm{N}}^{{mathrm{Chl}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}$$
    (2)
    where QN is total N quota (per cellular C: mol N (mol C)−1), the terms on the right-hand side are the contributions from protein, RNA, DNA, chlorophyll and N storage. We use empirically determined fixed elemental stoichiometry of macromolecules21 (Extended Data Table 1) to connect the macromolecular contributions of different elements (here C and P):$$Q_{mathrm{N}} = Q_{mathrm{C}}^{{mathrm{Pro}}}Y_{{mathrm{Pro}}}^{{mathrm{N:C}}} + Q_{mathrm{P}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}} + Q_{mathrm{C}}^{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + Q_{mathrm{N}}^{{mathrm{Nsto}}}$$
    (3)
    Here (Y_l^{j:k}) represents the imposed elemental ratio (elements j and k) for each macromolecular pool (l). (Q_{mathrm{C}}^x) and (Q_{mathrm{P}}^x) describe the contributions of macromolecule x to the total C quota (mol C (mol C)−1) and P quota (mol P (mol C)−1), respectively.CFM-Phyto uses the following empirically supported relationship to describe (Q_{mathrm{P}}^{{mathrm{RNA}}}) (ref. 21):$$Q_{mathrm{P}}^{{mathrm{RNA}}} = A_{{mathrm{RNA}}}^{mathrm{P}}mu Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}$$
    (4)
    where (A_{{mathrm{RNA}}}^{mathrm{P}}) is constant (below, A values represent constant except (A_{{mathrm{Chl}}}); see below), μ is growth rate (d−1) and (Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}) represents the minimum amount of RNA in phosphorus per cellular C (mol P (mol C)−1). Substituting this equation into equation (3) gives:$$begin{array}{l}Q_{mathrm{N}} = Q_{mathrm{C}}^{{mathrm{Pro}}}Y_{{mathrm{Pro}}}^{{mathrm{N:C}}} + left( {A_{{mathrm{RNA}}}^{mathrm{P}}mu Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}} right)\Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}} + Q_{mathrm{C}}^{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + Q_{mathrm{N}}^{{mathrm{Nsto}}}end{array}$$
    (5)
    In CFM-Phyto, we resolve three types of protein, photosynthetic, biosynthetic and other:$$Q_{mathrm{C}}^{{mathrm{Pro}}} = Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Pho}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Bio}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}$$
    (6)
    Photosynthetic proteins represent those in chloroplasts largely responsible for light harvesting and electron transport. The model assumes a constant composition of chloroplasts; thus, the amount of photosynthetic protein is proportional to the amount of chlorophyll21:$$Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Pho}}} = A_{{mathrm{Pho}}}Q_{mathrm{C}}^{{mathrm{Chl}}}$$
    (7)
    Biosynthetic proteins represent proteins related to producing new material such as proteins, carbohydrates, lipids, RNAs, DNAs and other molecules. The models use the following empirically derived relationship21:$$Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Bio}}} = A_{{mathrm{Bio}}}mu$$
    (8)
    Substituting equations (6)–(8) (in this order) into equation (5) leads to the following equation:$$begin{array}{l}Q_{mathrm{N}} = left( {A_{{mathrm{Pho}}}Q_{mathrm{C}}^{{mathrm{Chl}}} + A_{{mathrm{Bio}}}mu + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{Pro}}}^{{mathrm{N:C}}}\ + left( {A_{{mathrm{RNA}}}^{mathrm{P}}mu left( {A_{{mathrm{Pho}}}Q_{mathrm{C}}^{{mathrm{Chl}}} + A_{{mathrm{Bio}}}mu + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right) + Q_{{mathrm{P,min}}}^{{mathrm{RNA}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{N:P}}}\ + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}} + Q_{mathrm{C}}^{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}end{array}$$
    (9)
    Empirically, chlorophyll depends on the growth rate and equation (10) accurately describes the relationship between the growth-rate dependences of chlorophyll under different light intensities21:$$Q_{mathrm{C}}^{{mathrm{Chl}}} = A_{{mathrm{Chl}}}mu + B_{{mathrm{Chl}}}$$
    (10)
    with (A_{{mathrm{Chl}}} = left( {1 + E} right)/v_I) and (B_{Chl} = m/v_I) with E (dimensionless) as a constant representing growth-rate-dependent respiration, and m (d−1) describing maintenance respiration. vI (mol C (mol C in Chl)−1 d−1) represents chlorophyll-specific photosynthesis rate based on an established function of light intensity I (μmol m−2 s−1)21,57:$$v_I = v_I^{{mathrm{max}}}left( {1 – e^{A_II}} right)$$
    (11)
    where (v_I^{{mathrm{max}}}) is the maximum chlorophyll-specific photosynthesis rate, e is the natural base and AI is a combined coefficient for absorption cross-section and turnover time. Substitution of equation (10) into equation (9) leads to the following quadratic relationship between QN and μ:$$Q_{mathrm{N}} = a_{mathrm{N}}mu ^2 + b_{mathrm{N}}mu + c_{mathrm{N}} + Q_{mathrm{N}}^{{mathrm{Sto}}}$$
    (12)
    where$$begin{array}{l}a_{mathrm{N}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{N:P}}}\ b_{mathrm{N}} = left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)Y_{{mathrm{Pro}}}^{{mathrm{N:C}}} + A_{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{mathrm{{RNA}}}^{{mathrm{N:P}}}\ c_{mathrm{N}} = B_{{mathrm{Chl}}}Y_{{mathrm{Chl}}}^{{mathrm{N:C}}} + left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{Pro}}}^{{mathrm{N:C}}}\ + Q_{{mathrm{P}},{mathrm{min}}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{N:C}}}end{array}$$Relating P quota and growth rateSimilarly, CFM-Phyto describes the relationship between the current P quota QP and μ. P is allocated to its major molecular reservoirs:$$Q_{mathrm{P}} = Q_{mathrm{P}}^{{mathrm{RNA}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{P:C}}} + Q_{mathrm{P}}^{{mathrm{Thy}}} + Q_{mathrm{P}}^{{mathrm{Other}}} + Q_{mathrm{P}}^{{mathrm{Sto}}}$$
    (13)
    Similar to equation (7), with the assumption of the constant composition of photosynthetic apparatus, the model connects the amount of the chlorophyll to phosphorus in thylakoid membranes:$$Q_{mathrm{P}}^{{mathrm{Thy}}} = A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}Q_{mathrm{C}}^{{mathrm{Chl}}}$$
    (14)
    As for N allocation, substitution of equations (14), (4), (6), (7), (8) and (10) (in this order) into equation (13) leads to a quadratic relationship between QP and μ:$$Q_{mathrm{P}} = a_{mathrm{P}}mu ^2 + b_{mathrm{P}}mu + c_{mathrm{P}} + Q_{mathrm{P}}^{{mathrm{Sto}}}$$
    (15)
    where$$begin{array}{l}a_{mathrm{P}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)\ b_{mathrm{P}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{N:P}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}A_{{mathrm{Chl}}}\ c_{mathrm{P}} = Q_{{mathrm{P,min}}}^{{mathrm{RNA}}} + Q_{mathrm{C}}^{{mathrm{DNA}}}Y_{{mathrm{DNA}}}^{{mathrm{P:C}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}B_{{mathrm{Chl}}} + Q_{mathrm{P}}^{{mathrm{Other}}}end{array}$$Relating C quota and growth rateSimilarly, CFM-Phyto describes C allocation as follows:$$begin{array}{l}Q_{mathrm{C}} = 1 = Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{mathrm{C}}^{{mathrm{RNA}}} + Q_{mathrm{C}}^{{mathrm{DNA}}} + Q_{mathrm{C}}^{{mathrm{Other}}} + Q_{mathrm{C}}^{{mathrm{Plip}} – {mathrm{Thy}}}\qquad + Q_{mathrm{C}}^{{mathrm{Csto}}} + Q_{mathrm{C}}^{{mathrm{Nsto}}}end{array}$$
    (16)
    where Plip−Thy indicates P lipid in thylakoid membranes. The equation represents the allocation per total cellular C in mol C (mol C)−1, so the sum of the macromolecules in C (QC) becomes 1. Using the imposed elemental ratios of macromolecular pools ((Y_l^{j:k})) we relate the elemental contributions:$$Q_{mathrm{C}} = Q_{mathrm{C}}^{{mathrm{Pro}}} + Q_{mathrm{P}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{C:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}} + Q_{mathrm{C}}^{{mathrm{Other}}} + Q_{mathrm{P}}^{{mathrm{Thy}}}Y_{{mathrm{Plip}}}^{{mathrm{C:P}}} + Q_{mathrm{C}}^{{mathrm{Sto}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}Y_{{mathrm{Nsto}}}^{{mathrm{C:N}}}$$
    (17)
    Following the steps similar to those for the N and P allocations, substituting equations (14), (4), (6), (7), (8) and (10) (in this order) into equation (17) leads to the following quadratic relationship between cellular C quota QC (=1 mol C (mol C)−1) and μ:$$Q_{mathrm{C}} = a_{mathrm{C}}mu ^2 + b_{mathrm{C}}mu + c_{mathrm{C}} + Q_{mathrm{C}}^{{mathrm{Sto}}} + Q_{mathrm{N}}^{{mathrm{Sto}}}Y_{{mathrm{Nsto}}}^{{mathrm{C:N}}}$$
    (18)
    where$$begin{array}{l}a_{mathrm{C}} = A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}A_{{mathrm{Chl}}} + A_{{mathrm{Bio}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{C:P}}}\ b_{mathrm{C}} = A_{{mathrm{Chl}}}left( {1 + A_{{mathrm{Pho}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}Y_{{mathrm{Plip}}}^{{mathrm{C:P}}}} right) + A_{{mathrm{Bio}}} + A_{{mathrm{RNA}}}^{mathrm{P}}left( {A_{{mathrm{Pho}}}B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{mathrm{Other}}}} right)Y_{{mathrm{RNA}}}^{{mathrm{C:P}}}\ c_{mathrm{C}} = left( {1 + A_{{mathrm{Pho}}} + A_{{mathrm{Pho}}}^{{mathrm{P:Chl}}}Y_{{mathrm{Plip}}}^{{mathrm{C:P}}}} right)B_{{mathrm{Chl}}} + Q_{mathrm{C}}^{{mathrm{Pro}}_{rm{Other}}}\ + Q_{{mathrm{P}},{mathrm{min}}}^{{mathrm{RNA}}}Y_{{mathrm{RNA}}}^{{mathrm{C:P}}} + Q_{mathrm{C}}^{{mathrm{DNA}}} + Q_{mathrm{C}}^{{mathrm{Other}}}end{array}$$Relating Fe quota and growth rateIn order to capture global scale biogeochemical dynamics including the iron-limited high-nitrogen, low chlorophyll regimes, CFM-Phyto21 is extended to resolve Fe quota and allocation. The model is guided by a laboratory proteomic study58 in which the major Fe allocations are to photosystems, storage and nitrogen-fixing enzymes (nitrogenase). As we do not resolve nitrogen-fixing organisms here, Fe allocation (mol Fe (mol C)−1) represents only the first two:$$Q_{{mathrm{Fe}}} = Q_{{mathrm{Fe}}}^{{mathrm{Pho}}} + Q_{{mathrm{Fe}}}^{{mathrm{Sto}}}$$
    (19)
    As for equation (7) and equation (14), we relate the allocation of Fe to photosystems to the investment in chlorophyll, (Q_{mathrm{C}}^{{mathrm{Chl}}}):$$Q_{{mathrm{Fe}}}^{{mathrm{Pho}}} = A_{{mathrm{Pho}}}^{{mathrm{Fe}}}Q_{mathrm{C}}^{{mathrm{Chl}}}$$
    (20)
    This is a strong simplification because the pigment to photosystem ratio is observed to vary59, but enables an explicit, mechanistically motivated representation of Fe limitation, which, a posteriori, results in global scale regimes of iron limitation that resemble those observed43 (Extended Data Fig. 4). With equations (10), (19) and (20), we obtain the following relationship between QFe and μ:$$Q_{{mathrm{Fe}}} = A_{{mathrm{Pho}}}^{{mathrm{Fe}}}A_{{mathrm{Chl}}}mu + A_{{mathrm{Pho}}}^{{mathrm{Fe}}}B_{{mathrm{Chl}}} + Q_{{mathrm{Fe}}}^{{mathrm{Sto}}}$$
    (21)
    Evaluating the growth rateWe assume that the cellular growth rate is constrained by the most limiting element within the cell (and its associated functional macromolecules). Thus, at each time step and location, and for each cell type, the evaluation of growth rate is based on the following two steps: (1) computation of the growth rate for each element without storage; that is, the case when all of the elemental quotas are allocated to functional macromolecules; and (2) selection of the lowest growth rate among these; Liebig’s Law of the Minimum. For the first step, we define (mu _i) (i = C, N, P, Fe) as the growth rate, assuming that nutrient i is limiting. Under this condition, (Q_i^{{mathrm{Sto}}}) should be small as element i is allocated to other essential molecules. We assume that (Q_{mathrm{N}}^{{mathrm{Sto}}}) is also small under C limitation because N storage molecules are rich in carbon. With these assumptions, the solution for (mu _i) is obtained by solving the standard quadratic relationships of equations (12), (15) and (18) for N, P and C, respectively, neglecting any (Q_i^{{mathrm{Sto}}}) terms:$$mu _i = frac{{ – b_i + sqrt {b_i^2 – 4a_ileft( {c_i – Q_i} right)} }}{{2a_i}}$$
    (22)
    where QC = 1. For μFe, equation (21) without (Q_{{mathrm{Fe}}}^{{mathrm{Sto}}}) leads to$$mu _{{mathrm{Fe}}} = frac{{Q_{{mathrm{Fe}}} – A_{{mathrm{Pho}}}^{{mathrm{Fe}}}B_{{mathrm{Chl}}}}}{{A_{{mathrm{Pho}}}^{{mathrm{Fe}}}A_{{mathrm{Chl}}}}}$$
    (23)
    Once the μi values are obtained, we determine the effective growth rate, μ, based on the lowest value, which identifies the limiting element based on current intracellular quotas:$$mu = {mathrm{min}}left( {mu _{mathrm{N}},mu _{mathrm{P}},mu _{mathrm{C}},mu _{{mathrm{Fe}}}} right)$$
    (24)
    Evaluating nutrient storageIn CFM-Phyto, non-limiting nutrients can be stored in an intracellular reserve21, reflecting commonly observed luxury uptake. Storage is evaluated as the difference between the total elemental quota (updated later) and the functionally allocated portion of that element:$$Q_i^{{mathrm{Sto}}} = Q_i – Q_i^{{mathrm{Non}}_{mathrm{Sto}}}$$
    (25)
    Here (Q_i^{{mathrm{Non}}_{mathrm{Sto}}}) represents the contribution to element i by functional, non-storage molecules. For N, P and C, (Q_i^{{mathrm{Non}}_{mathrm{Sto}}}) is represented by the non-(Q_i^{{mathrm{Sto}}}) terms on the right-hand side in equations (12), (15) and (18), respectively:$$Q_i^{{mathrm{Non}}_{mathrm{Sto}}} = a_imu ^2 + b_imu + c_i$$
    (26)
    Similarly, for Fe, from equation (21):$$Q_{{mathrm{Fe}}}^{{mathrm{Non}}_{mathrm{Sto}}} = A_{{mathrm{Pho}}}^{{mathrm{Fe}}}A_{{mathrm{Chl}}}mu + A_{{mathrm{Pho}}}^{{mathrm{Fe}}}B_{{mathrm{Chl}}}$$
    (27)
    When there is N storage, (Q_{mathrm{C}}^{{mathrm{Sto}}}) must be recomputed to consider the allocation of C to it:$$Q_{mathrm{C}}^{{mathrm{Sto}}} = Q_{mathrm{C}} – Q_{mathrm{C}}^{{mathrm{Non}}_{mathrm{Sto}}} – Q_{mathrm{N}}^{{mathrm{Sto}}}Y_{{mathrm{Nsto}}}^{{mathrm{C:N}}}$$
    (28)
    Evaluating the excess nutrientStorage capacity for any element is finite and we define excess nutrient as a nutrient (N, P, Fe) that is in beyond an empirically informed, imposed maximum phytoplankton storage capacity. Excess nutrient is assumed to be excreted (see below). Excess of element i ((Q_i^{{mathrm{Exc}}})) is computed:$$Q_i^{{mathrm{Exc}}} = {mathrm{max}}left( {Q_i – Q_i^{{mathrm{max}}},0} right)$$
    (29)
    where (Q_i^{{mathrm{max}}}) is maximum capacity for nutrient i. For N, CFM-Phyto computes (Q_i^{{mathrm{max}}}) as a sum of non-storage molecules and prescribed maximum nutrient storing capacity according to model–data comparison21:$$Q_i^{{mathrm{max}}} = Q_i^{{mathrm{Non}}_{mathrm{Sto}}} + Q_i^{{mathrm{Sto}}_{mathrm{max}}}$$
    (30)
    Laboratory studies suggest that when P is not limiting, the phosphorus quota maximizes to a value that is almost independent of growth rate21,39,44. Storage of each element is finite and the upper limit to storage is imposed by specifying the maximum cellular quotas ((Q_{mathrm{P}}^{{mathrm{max}}}) (ref. 21) and also (Q_{{mathrm{Fe}}}^{{mathrm{max}}})) with size and taxonomic dependencies (for example, refs. 27,41). Thus, the maximum storage is represented by the difference between the prescribed maximum quota and the actual quota21:$$Q_i^{{mathrm{Sto}}_{mathrm{max}}} = Q_i^{{mathrm{max}}} – Q_i$$
    (31)
    In the case where (Q_i^{{mathrm{Sto}}}) computed in the previous section exceeds (Q_i^{{mathrm{Sto}}_{mathrm{max}}}), the value of (Q_i^{{mathrm{Sto}}}) is replaced by (Q_i^{{mathrm{Sto}}_{mathrm{max}}}) and the difference is placed in the excess pool, (Q_i^{{mathrm{Exc}}}).Computing effective nutrient uptake rateOne factor that influences the cellular elemental quota is the effective nutrient uptake rate (mol i (mol C)−1 d−1) of N, P and Fe, which we define as follows:$$V_i^{{mathrm{Eff}}} = V_i – frac{{Q_i^{{mathrm{Exc}}}}}{{tau _i^{{mathrm{Exu}}}}}$$
    (32)
    where Vi (mol i (mol C)−1 d−1) is nutrient uptake rate and the second term represents the exudation of the excess nutrient based on the timescale (tau _i^{{mathrm{Exu}}}) (d−1). For Vi, we use Monod kinetics60,61:$$V_i = V_i^{{mathrm{max}}}frac{{[i]}}{{left[ i right] + K_i}}$$
    (33)
    where (V_i^{{mathrm{max}}}) is maximum nutrient uptake, [i] (mmol m−3) is the environmental concentration of nutrient i and Ki (mmol m−3) is the half-saturation constant of i. Previous models have resolved the relationship between nutrient uptake and allocation to transporters31,62. Here we do not explicitly resolve allocation to transporters, as proteomic studies indicate that it is a relatively minor component of the proteome compared with photosystems and biosynthesis in phytoplankton63. Transporter proteins could be represented in a model with a finer-scale resolution of the proteome64.Differentiating small and large phytoplanktonIn this model, ‘small’ phytoplankton broadly represent picocyanobacteria, which have high nutrient affinities and low maximum growth rates (for example, Prochlorococcus), whereas ‘large’ phytoplankton represent eukaryotes with higher maximum growth rates (for example, diatoms). The former are associated with a gleaner strategy adapted to oligotrophic regimes, while the latter are opportunistic, adapted to variable and nutrient-enriched regimes. To encapsulate this, the large phytoplankton have overall higher imposed (V_i^{{mathrm{max}}}) (~µmaxQi), Ki and (v_I^{mathrm{max}}) than for the small phytoplankton (Extended Data Table 1), consistent with the previous models (for example, ref. 10). In addition, the larger cells are assigned a higher (Q_{mathrm{P}}^{{mathrm{max}}}) following the observed trends (Fig. 1 and Extended Data Table 1).Computing the change in the elemental stoichiometryThe computation of the change in the elemental quotas is done based on the balance between the effective nutrient uptake rate and the loss of nutrient to the new cells:$$frac{{{mathrm{d}}Q_i}}{{{mathrm{d}}t}} = V_i^{{mathrm{Eff}}} – mu Q_i$$
    (34)
    This change in the elemental quotas based on the cellular processes and the passive transport of elements in phytoplankton by the flow field created by MITgcm governs the elemental stoichiometry of the next time step at a specific grid box, as in other versions of ecological models with MITgcm10.Calculation of CV valuesWe computed the CV values based on the following equation:$${mathrm{CV}} = frac{sigma }{{bar x}}$$
    (35)
    where σ is the standard deviation and (bar x) is the mean. The purpose of this computation is to quantify the latitudinal variation of the averaged elemental stoichiometry. Thus, we used the averaged values for each latitude (as plotted in Fig. 2) for the calculation of σ and (bar x).MITgcm-CFMThe biogeochemical and ecological component of the model resolves the cycling of C, P, N and Fe through inorganic, living, dissolved and particulate organic phases. The biogeochemical and biological tracers are transported and mixed by the MIT general circulation model (MITgcm)35,36, constrained to be consistent with altimetric and hydrographic observations (the ECCO-GODAE state estimates)65. This three-dimensional configuration has a coarse resolution (1° × 1° horizontally) and 23 depth levels ranging from 5 m at the surface to 5450 m at depth. The model was run for three years, and the results of the third year were analysed, by which time the modelled plankton distribution becomes quasi-stable. Equations for the biogeochemical processes are as described by equations and parameters in previous studies10,38. Here, however, we include only nitrate for inorganic nitrogen, and do not resolve the silica cycle. We simulated eukaryotic and prokaryotic analogues of phytoplankton (as ‘large’ and ‘small’ phytoplankton). The eukaryotic analogue has a higher maximum C fixation rate for the same macromolecular composition and higher maximum nutrient uptake rates, but also has overall higher half-saturation constants for nutrient uptake. We used light absorption spectra of picoeukaryotes, which sits in-between small prokaryotes and large eukaryotes10. In MITgcm, the mortality of phytoplankton is represented by the sum of a linear term (ml), representing sinking and maintenance losses, and quadratic terms representing the action of unresolved next-trophic levels66,67, implicitly assuming that the higher-trophic-level biomass scales with that of its prey. We assumed that the latter term is small to avoid introducing additional uncertainties. Similarly, we do not resolve the stoichiometric effects of prey selection due to the nutritional status of prey, or viral partitioning of nutrients in the environment50. Atmospheric iron deposition varies by orders of magnitude around the globe and has a large margin of uncertainty, including the bio-availability of the deposited iron, which in turn depends on the source and chemical history of the deposited material68. To realize a realistic global net primary production, we doubled the atmospheric iron input from ref. 10; this factor is well within the uncertainty of the iron supply estimates. Each of the two phytoplankton groups has variable C:N:P:Fe as determined by the component macromolecules at each time step. The pools of C, N, P and Fe are tracked within the modelled three-dimensional flow fields. More

  • in

    An odorant-binding protein in the elephant's trunk is finely tuned to sex pheromone (Z)-7-dodecenyl acetate

    MaterialsTrunk wash was collected from one male (Tembo, born 1985) and five female (Tonga, 1984; Numbi, 1992; Mongu, 2003; Iqhwa, 2013; Kibali, 2019) African elephants at the Vienna Zoo during routine procedures. Briefly, 100 mL of a sterile 0.9% saline solution is injected in each nostril of the trunk, which is kept in a lifted position, so that the solution is running up to the base of the trunk. The mixture of the solution and trunk mucus is collected in sterile plastic bags by active blowing of the elephant. Chemicals were all from Merck, Austria, unless otherwise stated. Restriction enzymes and kits for DNA extraction and purification were from New England Biolabs, USA. Oligonucleotides and synthetic genes were custom synthesised at Eurofins Genomics, Germany.Ethics declarationWe confirm that the trunk wash performed to provide a sample of the mucus was carried out as a routine procedure to monitor the health of elephants at the Vienna Zoo and in accordance with relevant guidelines and regulations.Trunk wash fractionationTrunk wash was centrifuged for 1 h at 10,000 g, the supernatant was dialyzed against 50 mM Tris–HCl buffer, pH 7.4 and concentrated by ultrafiltration in the Amicon stirred cell, then fractionated by anion-exchange chromatography on HiPrep-Q 16/10 column, 20 mL (Bio-Rad), along with standard protocols.Protein alkylation and digestion, and mass spectrometry analysisSDS-PAGE gel portions of proteins from whole elephant trunk wash (for component identification), chromatographic fractions of the elephant trunk wash (for PTMs analysis) or SDS-PAGE gel bands of LafrOBP1 expressed in P. pastoris were in parallel triturated, washed with water, in gel-reduced, S-alkylated, and digested with trypsin (Sigma, sequencing grade). Resulting peptide mixtures were desalted by μZip-TipC18 (Millipore) using 50% (v/v) acetonitrile, 5% (v/v) formic acid as eluent, vacuum-dried by SpeedVac (Thermo Fisher Scientific, USA), and then dissolved in 20 μL of aqueous 0.1% (v/v) formic acid for subsequent MS analyses by means of a nanoLC-ESI-Q-Orbitrap-MS/MS system, comprising an UltiMate 3000 HPLC RSLC nano-chromatographer (Thermo Fisher Scientific) interfaced with a Q-ExactivePlus mass spectrometer (Thermo Fisher Scientific) mounting a nano-Spray ion source (Thermo Fisher Scientific). Chromatographic separations were obtained on an Acclaim PepMap RSLC C18 column (150 mm × 75 μm ID; 2 μm particle size; 100 Å pore size, Thermo Fisher Scientific), eluting the peptide mixtures with a gradient of solvent B (19.92/80/0.08 v/v/v water/acetonitrile/formic acid) in solvent A (99.9/0.1 v/v water/formic acid), at a flow rate of 300 nL/min. In particular, solvent B started at 3%, increased linearly to 40% in 45 min, then achieved 80% in 5 min, remaining at this percentage for 4 min, and finally returned to 3% in 1 min. The mass spectrometer operated in data-dependent mode in positive polarity, carrying out a full MS1 scan in the range m/z 345–1350, at a nominal resolution of 70,000, followed by MS/MS scans of the 10 most abundant ions in high energy collisional dissociation (HCD) mode. Tandem mass spectra were acquired in a dynamic m/z range, with a nominal resolution of 17,500, a normalized collision energy of 28%, an automatic gain control target of 50,000, a maximum ion injection time of 110 ms, and an isolation window of 1.2 m/z. Dynamic exclusion was set to 20 s36.Bioinformatics for peptide identification and post-translational modification assignmentRaw mass data files were searched by Proteome Discoverer v. 2.4 package (Thermo Fisher Scientific), running the search engine Mascot v. 2.6.1 (Matrix Science, UK), Byonic™ v. 2.6.46 (Protein Metrics, USA) and Peaks Studio 8.0 (BSI, Waterloo, Ontario, Canada) software, both for peptide assignment/protein identification and for post-translational modification analysis.In the first case, analyses were carried out against a customized database containing protein sequences downloaded from NCBI (https://www.ncbi.nlm.nih.gov/) for superorder Afrotheria (consisting of 192,838 protein sequences, December 2021) plus the most common protein contaminants and trypsin. Parameters for database searching were fixed carbamidomethylation at Cys, and variable oxidation at Met, deamidation at Asn/Gln, and pyroglutamate formation at Gln. Mass tolerance was set to ± 10 ppm for precursors and to ± 0.05 Da for MS/MS fragments. Proteolytic enzyme and maximum number of missed cleavages were set to trypsin and 3, respectively. All other parameters were kept at default values. In the latter case, raw mass data were analyzed against a customized database containing LafrOBP1 (XP_023395442.1) protein sequence plus the most common protein contaminants and trypsin, allowing to search Lys-acetylation (Δm =  + 42.01), Ser/Thr/Tyr-phosphorylation (Δm =  + 79.97), and the most common mammals N-linked glycans at Asn and O-linked glycans at Ser/Thr/Tyr, using the same parameters previously set. The max PTM sites per peptide was set to 2.Proteome Discoverer peptide candidates were considered confidently identified only when the following criteria were satisfied: (i) protein and peptide false discovery rate (FDR) confidence: high; (ii) peptide Mascot score:  > 30; (iii) peptide spectrum matches (PSMs): unambiguous; (iv) peptide rank (rank of the peptide match): 1; (v) Delta CN (normalized score difference between the selected PSM and the highest-scoring PSM for that spectrum): 0. Byonic peptide candidates were considered confidently identified only when the following criteria were satisfied: (i) PEP 2D and PEP 1D:  More

  • in

    Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers

    Hart, M. B. et al. The search for the origin of the planktic foraminifera. J. Geol. Soc. Lond. 160, 341–343 (2003).Article 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).Article 
    PubMed 

    Google Scholar 
    Gradstein, F., Waskowska, A. & Glinskikh, L. The first 40 million years of planktonic foraminifera. Geosci 11, 1–25 (2021).Article 

    Google Scholar 
    Ujiié, Y., Kimoto, K. & Pawlowski, J. Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Mar. Micropaleontol. 69, 334–340 (2008).Article 
    ADS 

    Google Scholar 
    Darling, K. F. et al. Surviving mass extinction by bridging the benthic/planktic divide. Proc. Natl Acad. Sci. USA 106, 12629–33 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic–planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).
    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–352 (2011).Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of foraminifera: molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013).Article 
    ADS 

    Google Scholar 
    Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Pawlowski, J. et al. The evolution of early foraminifera. Proc. Natl Acad. Sci. USA 100, 11494–8 (2003).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Vachard, D. Macroevolution and biostratigraphy of paleozoic foraminifers. in Stratigraphy and Timescales (Ed. Montenari, M.) Vol. 1, 257–323 (Academic Press, 2016).Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Mar. Micropaleontol. 132, 18–34 (2017).Article 
    ADS 

    Google Scholar 
    John, A. W. G. The regular occurrence of Reophax Scottie Chaster, a benthic foraminiferan, in plankton samples from the North Sea. J. Micropalaeontol. 6, 61–63 (1987).Article 

    Google Scholar 
    Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic-planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar. Micropaleontol. 30, 251–266 (1997).Article 
    ADS 

    Google Scholar 
    Church, S. H., Ryan, J. F. & Dunn, C. W. Automation and evaluation of the SOWH test with SOWHAT. Syst. Biol. 64, 1048–1058 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).Article 
    PubMed 

    Google Scholar 
    Pawlowski, J. et al. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol. Biol. Evol. 14, 498–505 (1997).Article 
    PubMed 
    CAS 

    Google Scholar 
    Peijnenburg, K. T. C. A. et al. The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc. Natl Acad. Sci. USA 117, 25609–25617 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Sci. Rev. 172, 224–247 (2017).Article 
    ADS 

    Google Scholar 
    Olsson, R. K., Berggren, W. A., Hemleben, C. & Huber, B. T. Atlas of Paleocene planktonic foraminifera. Smithson. Contrib. Paleobiol. 1–252 https://doi.org/10.5479/si.00810266.85.1 (1999).Arenillas, I. & Arz, J. A. Benthic origin and earliest evolution of the first planktonic foraminifera after the Cretaceous/Palaeogene boundary mass extinction. Hist. Biol. 29, 25–42 (2017).Article 

    Google Scholar 
    Huber, B. T., Petrizzo, M. R. & MacLeod, K. G. Planktonic foraminiferal endemism at southern high latitudes following the terminal cretaceous extinction. J. Foraminifer. Res. 50, 382–402 (2020).Article 

    Google Scholar 
    Arenillas, I., Arz, J. A. & Gilabert, V. An updated suprageneric classification of planktic foraminifera after growing evidence of multiple benthic-planktic transitions. Spanish J. Palaeontol. https://doi.org/10.7203/sjp.22189 (2022).Culver, S. J. Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar. Micropaleontol. 47, 177–226 (2003).Article 
    ADS 

    Google Scholar 
    Widmark, J. G. V. & Malmgren, B. A. Benthic foraminiferal changes across the Cretaceous/Tertiary boundary in the deep sea; DSDP sites 525, 527, and 465. J. Foraminifer. Res. 22, 81–113 (1992).Article 

    Google Scholar 
    Rigaud, S., Martini, R. & Vachard, D. Early evolution and new classification of the order Robertinida (foraminifera). J. Foraminifer. Res. 45, 3–28 (2015).Article 

    Google Scholar 
    Rigaud, S., Granier, B. & Masse, J. P. Aragonitic foraminifers: an unsuspected wall diversity. J. Syst. Palaeontol. 19, 461–488 (2021).Article 

    Google Scholar 
    Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 
    Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Resour. 15, 1472–1485 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30 (2019).Article 

    Google Scholar 
    Morard, R., Vollmar, N. M., Greco, M. & Kucera, M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE 14, e0213936 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinforma. 10, 1–9 (2009).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).Liaw, A. & Wiener, M. Classification and Regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Lang, M. et al. mlr3: a modern object-oriented machine learning framework in R. J. Open Source Softw. 4, 1903 (2019).Article 
    ADS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).Article 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar 
    Kozlov, A. M. et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, 293–296 (2021).Article 

    Google Scholar 
    Löytynoja, A. & Goldman, N. WebPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinform. 11, 1–7 (2010).Ronquist, F. et al. MrBayes 3. 2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).Article 
    PubMed 

    Google Scholar 
    Song, H., Tong, J. & Chen, Z. Q. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 98–110 (2011).Article 

    Google Scholar 
    Copestake, P. & Johnson, B. Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole, North Wales, UK. Monogr. Palaeontogr. Soc. 167, 1–403 (2013).Article 

    Google Scholar 
    Rigaud, S. & Blau, J. New Robertinid Foraminifers from the Early Jurassic of Adnet, Austria and Their Evolutionary Importance. Acta Palaeontol. Pol. 61, 721–734 (2016).Article 

    Google Scholar 
    Boudagher-fadel, M. K. Evolution and Geological Significance of Larger Benthic Foraminifera. Evolution and Geological Significance of Larger Benthic Foraminifera (UCL Press, 2018).Piuz, A. & Meister, C. Cenomanian rotaliids (Foraminiferida) from Oman and Morocco. Swiss J. Palaeontol. 132, 81–97 (2013).Article 

    Google Scholar 
    Kucera, M. & Schönfeld, J. The origin of modern oceanic foraminiferal faunas and Neogene climate change. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. (ed. The Micropalaeontological Society, S. P.) 409–425 (The Geological Society, 2007).Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree version 1.3.1. http://tree.bio.ed.ac.uk (2009).Groussin, M., Pawlowski, J. & Yang, Z. Bayesian relaxed clock estimation of divergence times in foraminifera. Mol. Phylogenet. Evol. 61, 157–166 (2011).Article 
    PubMed 

    Google Scholar 
    Loeblich Jr, A. R. & Tappan, H. Foraminiferal Genera and Their Classification (Springer, 1988). More

  • in

    Marine bacteroidetes use a conserved enzymatic cascade to digest diatom β-mannan

    Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4:759–67.PubMed 

    Google Scholar 
    Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci. 2020;117:6599.PubMed 
    PubMed Central 

    Google Scholar 
    Pauly M, Gille S, Liu L, Mansoori N, Souza A, de, Schultink A, et al. Hemicellulose biosynthesis. Planta. 2013;238:627–42.PubMed 

    Google Scholar 
    Domozych D. Algal Cell Walls. In: Lauc G, Wuhrer M High-throughput glycomics and glycoproteomics. Humana Press, New York, 2016. pp 1–11.Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.PubMed 
    PubMed Central 

    Google Scholar 
    Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62:567–90.PubMed 

    Google Scholar 
    Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280:309–16.PubMed 
    PubMed Central 

    Google Scholar 
    Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009;284:24673–7.PubMed 
    PubMed Central 

    Google Scholar 
    Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.PubMed 
    PubMed Central 

    Google Scholar 
    Falkowski PG, Barber RT, Smetacek VV. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science. 1998;281:200–7.PubMed 

    Google Scholar 
    Smetacek V. Seeing is Believing: Diatoms and the Ocean Carbon Cycle Revisited. Protist. 2018;169:791–802.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:e11888.PubMed 
    PubMed Central 

    Google Scholar 
    Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.PubMed 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.PubMed 
    PubMed Central 

    Google Scholar 
    Chanzy H, Dube M, Marchessault RH, Revol JF. Single crystals and oriented crystallization of ivory nut mannan. Biopolymers 1979;18:887–98.
    Google Scholar 
    Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Sato T, Matsuzaki K. Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym. 2003;53:183–9.
    Google Scholar 
    Melton L, Smith BG, Ibrahim R, Schröder R, Harris P, Schmitt U. Mannans in primary and secondary plant cell walls. NZ J forestry Sci. 2009;39:153–60.
    Google Scholar 
    Hannuksela T, Du Hervé Penhoat C. NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res. 2004;339:301–12.PubMed 

    Google Scholar 
    Gilbert HJ, Stålbrand H, Brumer H. How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol. 2008;11:338–48.PubMed 

    Google Scholar 
    Bågenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaja E, Bahr CM, et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus: Enzyme synergy and crystal structure of a β-mannanase. J Biol Chem. 2017;292:229–43.PubMed 

    Google Scholar 
    Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, et al. Alpha- and beta-mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018;20:4127–40.PubMed 

    Google Scholar 
    Klemetsen T, Raknes IA, Fu J, Agafonov A, Balasundaram SV, Tartari G, et al. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucl Acids Res. 2018;46:D692–99.PubMed 

    Google Scholar 
    Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucl Acids Res. 2022;50:D20–26.PubMed 

    Google Scholar 
    Gilchrist CL, Booth TJ, van Wersch B, van Grieken L, Medema MH, Chooi Y-H. cblaster: a remote search tool for rapid identification and visualisation of homologous gene clusters. Bioinformatics Advances. 2021;1:016.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucl Acids Res. 2018;46:W95–W101.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997;25:3389–402.PubMed 
    PubMed Central 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Del Glavina Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann J-H, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.PubMed 
    PubMed Central 

    Google Scholar 
    Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.PubMed 
    PubMed Central 

    Google Scholar 
    Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.PubMed 
    PubMed Central 

    Google Scholar 
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.PubMed 
    PubMed Central 

    Google Scholar 
    Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucl Acids Res. 2022;50(W1):W276–79.Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59:307–21.PubMed 

    Google Scholar 
    Lefort V, Longueville J-E, Gascuel O. SMS: Smart Model Selection in PhyML. Mol Biol Evol. 2017;34:2422–4.PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–59.PubMed 
    PubMed Central 

    Google Scholar 
    Hahnke RL, Harder J. Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. Syst Appl Microbiol. 2013;36:497–504.PubMed 

    Google Scholar 
    Schut F, Vries EJ, de, Gottschal JC, Robertson BR, Harder W, Prins RA, et al. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. Appl Environ Microbiol. 1993;59:2150–60.PubMed 
    PubMed Central 

    Google Scholar 
    Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst F-A, Siebourg J, et al. Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun. 2010;1:137.PubMed 

    Google Scholar 
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.PubMed 

    Google Scholar 
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.PubMed 

    Google Scholar 
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–15.PubMed 
    PubMed Central 

    Google Scholar 
    Yu C-S, Lin C-J, Hwang J-K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13:1402–6.PubMed 
    PubMed Central 

    Google Scholar 
    Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucl Acids Res. 2022;50:D543–52.PubMed 

    Google Scholar 
    Studier F. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005;41:207–34.The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994;50:760–3.Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–32.PubMed 
    PubMed Central 

    Google Scholar 
    Cartmell A, Topakas E, Ducros VM-A, Suits MDL, Davies GJ, Gilbert HJ. The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem. 2008;283:34403–13.PubMed 
    PubMed Central 

    Google Scholar 
    Couturier M, Roussel A, Rosengren A, Leone P, Stålbrand H, Berrin J-G. Structural and Biochemical Analyses of Glycoside Hydrolase Families 5 and 26 β-(1,4)-Mannanases from Podospora anserina Reveal Differences upon Manno-oligosaccharide Catalysis*. J Biol Chem. 2013;288:14624–35.PubMed 
    PubMed Central 

    Google Scholar 
    Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–67.PubMed 
    PubMed Central 

    Google Scholar 
    Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–67.PubMed 
    PubMed Central 

    Google Scholar 
    Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot.Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.PubMed 
    PubMed Central 

    Google Scholar 
    Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr. 2006;62:1002–11.PubMed 

    Google Scholar 
    DeLano WL. The PyMOL Molecular Graphics System Version 2.3.4. Schrödinger, LLC, New York; 2010.Fontes CM, Clarke JH, Hazlewood GP, Fernandes TH, Gilbert HJ, Ferreira LM. Possible roles for a non-modular, thermostable and proteinase-resistant cellulase from the mesophilic aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol. 1997;48:473–9.PubMed 

    Google Scholar 
    Brändén C-I. The TIM barrel—the most frequently occurring folding motif in proteins: Current Opinion in Structural Biology. 1991;1:978–83.Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, et al. Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J. 2010;64:191–203.PubMed 

    Google Scholar 
    Meikle PJ, Hoogenraad NJ, Bonig I, Clarke AE, Stone BA. A (1-3,1-4)-beta-glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1-3,1-4)-beta-glucans. Plant J. 1994;5:1–9.PubMed 

    Google Scholar 
    Kračun SK, Fangel JU, Rydahl MG, Pedersen HL, Vidal-Melgosa S, Willats WGT. Carbohydrate microarray technology applied to high-throughput mapping of plant cell wall glycans using comprehensive microarray polymer profiling (CoMPP). In: High-Throughput Glycomics and Glycoproteomics. Humana Press, New York, NY, 2017;1503:147–65.Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J, et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J. 2007;50:1118–28.PubMed 

    Google Scholar 
    Yan X-X, An X-M, Gui L-L, Liang D-C. From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman. J Mol Biol. 2008;379:535–44.PubMed 

    Google Scholar 
    Tailford LE, Ducros VM-A, Flint JE, Roberts SM, Morland C, Zechel DL, et al. Understanding how diverse beta-mannanases recognize heterogeneous substrates. Biochemistry. 2009;48:7009–18.PubMed 

    Google Scholar 
    Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, et al. Structure of Novel Enzyme in Mannan Biodegradation Process 4-O-β-d-Mannosyl-d-Glucose Phosphorylase MGP. J Mol Biol. 2013;425:4468–78.PubMed 

    Google Scholar 
    Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.PubMed 

    Google Scholar 
    Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, et al. Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology. 2015;25:1323–4.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMed 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Adult sex ratios: causes of variation and implications for animal and human societies

    Wedekind, C. & Küng, C. Shift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae). Conserv. Biol. 24, 1418–1423 (2010).PubMed 

    Google Scholar 
    Capdevila, P., Stott, I., Beger, M. & Salguero-Gómez, R. Towards a comparative framework of demographic resilience. Trends Ecol. Evol. 35, 776–786 (2020).PubMed 

    Google Scholar 
    Katzner, T. E. et al. Assessing population-level consequences of anthropogenic stressors for terrestrial wildlife. Ecosphere 11, e03046 (2020).
    Google Scholar 
    Zhou, X. & Hesketh, T. High sex ratios in rural China: declining well-being with age in never-married men. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160324 (2017). One of the few studies in humans that targets well-being as an outcome, showing concerning mental health implications of sex ratio skew.
    Google Scholar 
    Schacht, R., Rauch, K. L. & Borgerhoff Mulder, M. Too many men: the violence problem? Trends Ecol. Evol. 29, 214–222 (2014). An influential review of violence and sex ratios across human societies that sets the agenda how reformulated sexual selection theory can inform mating strategies in humans.PubMed 

    Google Scholar 
    Donald, P. F. Adult sex ratios in wild bird populations. Ibis 149, 671–692 (2007).
    Google Scholar 
    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512 (2014). A comprehensive overview of mate choice, mating systems and parental care in relation to ASR.PubMed 

    Google Scholar 
    Du Bois, W. E. B. The Philadelphia Negro (The University of Pennsylvania, 1899).Groves, E. & Ogburn, W. American Marriage and Family Relationships (Henry Holt and Company, 1928).Mayr, E. The sex ratio in wild birds. Am. Naturalist 73, 156–179 (1939).
    Google Scholar 
    Trivers, R. L. Parental investment and sexual selection. in Sexual Selection & the Descent of Man 136–179 (Aldine de Gruyter, 1972).Kramer, K., Schacht, R. & Bell, A. Adult sex ratios and partner scarcity among hunter–gatherers: Implications for dispersal patterns and the evolution of human sociality. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160316 (2017).
    Google Scholar 
    Kappeler, P. M. et al. Sex roles and sex ratios in animals. Biol. Rev. (in press).Kappeler, P. M. Sex roles and adult sex ratios: insights from mammalian biology and consequences for primate behaviour. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160321 (2017).
    Google Scholar 
    Clutton-Brock, T. Social evolution in mammals. Science 373, eabc9699 (2021).PubMed 

    Google Scholar 
    Garamszegi, L. Z., Pavlova, D. Z., Eens, M. & Møller, A. P. The evolution of song in female birds in Europe. Behav. Ecol. 18, 86–96 (2007).
    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Ancona, S., Dénes, F. V., Krüger, O., Székely, T. & Beissinger, S. R. Estimating adult sex ratios in nature. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160313 (2017). A methodology-focused review highlighting the pros and cons of various ASR estimation methods used in wildlife biology.
    Google Scholar 
    Fitze, P. S. & Le Galliard, J.-F. Operational sex ratio, sexual conflict and the intensity of sexual selection. Ecol. Lett. 11, 432–439 (2008).PubMed 

    Google Scholar 
    Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evolut. Biol. 21, 919–948 (2008). A landmark theoretical study that explains the complex relationships between parental care, ASR and OSR.
    Google Scholar 
    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977). A landmark study that introduced the concept of operational sex ratio (OSR).PubMed 

    Google Scholar 
    Pipoly, I. et al. The genetic sex-determination system predicts adult sex ratios in tetrapods. Nature 527, 91–94 (2015). A pathbreaking phylogenetic study that showed sex determination systems are related to ASR in tetrapods.PubMed 

    Google Scholar 
    Carmona-Isunza, M. C. et al. Adult sex ratio and operational sex ratio exhibit different temporal dynamics in the wild. Behav. Ecol. 28, 523–532 (2017).
    Google Scholar 
    Weir, L., Grant, J. & Hutchings, J. The influence of operational sex ratio on the intensity of competition for mates. Am. Naturalist 177, 167–176 (2011).
    Google Scholar 
    Hays, G. C., Shimada, T. & Schofield, G. A review of how the biology of male sea turtles may help mitigate female-biased hatchling sex ratio skews in a warming climate. Mar. Biol. 169, 89 (2022).
    Google Scholar 
    Ancona, S., Liker, A., Carmona-Isunza, M. C. & Székely, T. Sex differences in age-to-maturation relate to sexual selection and adult sex ratios in birds. Evolution Lett. 4, 44–53 (2020).
    Google Scholar 
    Gluckman, P. D. & Hanson, M. A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12 (2006).PubMed 

    Google Scholar 
    Veran, S. & Beissinger, S. R. Demographic origins of skewed operational and adult sex ratios: perturbation analyses of two-sex models. Ecol. Lett. 12, 129–143 (2009).PubMed 

    Google Scholar 
    Wilson, E. O. Sociobiology: The New Synthesis. (Harvard University Press, 1975).Ågren, J. A. & Clark, A. G. Selfish genetic elements. PLoS Genet. 14, e1007700 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol., Evolution, Syst. 40, 127–149 (2009).
    Google Scholar 
    Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination. (Oxford University Press, 2014). https://doi.org/10.1093/acprof:oso/9780199657148.001.0001.Geffroy, B. & Douhard, M. The adaptive sex in stressful environments. Trends Ecol. Evol. 34, 628–640 (2019).PubMed 

    Google Scholar 
    Nemesházi, E. et al. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol. Ecol. 29, 3607–3621 (2020).PubMed 

    Google Scholar 
    Geffroy, B. Energy as the cornerstone of environmentally driven sex allocation. Trends Endocrinol. Metab. 33, 670–679 (2022).PubMed 

    Google Scholar 
    Janzen, F. J. & Paukstis, G. L. Environmental sex determination in reptiles: ecology, evolution, and experimental design. Q Rev. Biol. 66, 149–179 (1991).PubMed 

    Google Scholar 
    Cook, J. M. Sex determination in invertebrates. in Sex Ratios: Concepts and Research Methods (ed. Hardy, I. C. W.) 178–194 (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511542053.009.Godwin, J., Luckenbach, J. A. & Borski, R. J. Ecology meets endocrinology: environmental sex determination in fishes. Evol. Dev. 5, 40–49 (2003).PubMed 

    Google Scholar 
    West, S. Sex Allocation. (Princeton University Press, 2009).Geffroy, B. & Wedekind, C. Effects of global warming on sex ratios in fishes. J. Fish. Biol. 97, 596–606 (2020).PubMed 

    Google Scholar 
    Edmands, S. Sex ratios in a warming world: thermal effects on sex-biased survival, sex determination, and sex reversal. J. Heredity 112, 155–164 (2021).
    Google Scholar 
    Valenzuela, N. et al. Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Sci. Rep. 9, 4254 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hays, G. C., Mazaris, A. D. & Schofield, G. Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Front. Marine Sci. 1, 43 (2014).Maitre, D. et al. Sex differentiation in grayling (Salmonidae) goes through an all-male stage and is delayed in genetic males who instead grow faster. Sci. Rep. 7, 15024 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Donald, P. F. Lonely males and low lifetime productivity in small populations. Ibis 153, 465–467 (2011).
    Google Scholar 
    Mabry, K. E., Shelley, E. L., Davis, K. E., Blumstein, D. T. & Vuren, D. H. V. Social mating system and sex-biased dispersal in mammals and birds: a phylogenetic analysis. PLoS ONE 8, e57980 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Clutton-Brock, T. Mammal Societies. (John Wiley and Sons, 2016).Kalmbach, E. & Benito, M. M. Sexual size dimorphism and offspring vulnerability in birds. in Sex, Size and Gender Roles (Oxford University Press, 2007). https://doi.org/10.1093/acprof:oso/9780199208784.003.0015.Berger, J. & Gompper, M. E. Sex ratios in extant ungulates: products of contemporary predation or past life histories? J. Mammal. 80, 1084–1113 (1999).
    Google Scholar 
    Christe, P., Keller, L. & Roulin, A. The predation cost of being a male: implications for sex-specific rates of ageing. Oikos 114, 381–384 (2006).
    Google Scholar 
    Boukal, D. S., Berec, L. & Křivan, V. Does sex-selective predation stabilize or destabilize predator-prey dynamics? PLoS ONE 3, e2687 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018 (2002).PubMed 

    Google Scholar 
    Fairbairn, D., Blanckenhorn, W. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism https://doi.org/10.1093/acprof:oso/9780199208784.001.0001 (2007).Székely, T., Liker, A., Freckleton, R. P., Fichtel, C. & Kappeler, P. M. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B: Biol. Sci. 281, 20140342 (2014).
    Google Scholar 
    Tidière, M. et al. Does sexual selection shape sex differences in longevity and senescence patterns across vertebrates? A review and new insights from captive ruminants. Evolution 69, 3123–3140 (2015).PubMed 

    Google Scholar 
    Lemaître, J.-F. et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc. Natl Acad. Sci. USA 117, 8546–8553 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Wedekind, C. et al. Persistent unequal sex ratio in a population of grayling (Salmonidae) and possible role of temperature increase. Conserv. Biol. 27, 229–234 (2013).PubMed 

    Google Scholar 
    Eberhart-Phillips, L. J. et al. Demographic causes of adult sex ratio variation and their consequences for parental cooperation. Nat. Commun. 9, 1651 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R., Macfarlan, S. J., Meeks, H., Cervantes, P. L. & Morales, F. Male survival advantage on the Baja California peninsula. Biol. Lett. 16, 20200600 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R., Tharp, D. & Smith, K. R. Sex ratios at birth vary with environmental harshness but not maternal condition. Sci. Rep. 9, 9066 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R. et al. Frail males on the American frontier: the role of environmental harshness on sex ratios at birth across a period of rapid industrialization. Soc. Sci. 10, 319 (2021).
    Google Scholar 
    Casey, J. A., Gemmill, A., Elser, H., Karasek, D. & Catalano, R. Sun smoke in Sweden: perinatal implications of the Laki volcanic eruptions, 1783–1784. Epidemiology 30, 330–333 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Catalano, R., Bruckner, T. & Smith, K. R. Ambient temperature predicts sex ratios and male longevity. Proc. Natl Acad. Sci. USA 105, 2244–2247 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Hollingshaus, M., Utz, R., Schacht, R. & Smith, K. R. Sex ratios and life tables: Historical demography of the age at which women outnumber men in seven countries, 1850–2016. Historical Methods.: A J. Quant. Interdiscip. Hist. 52, 244–253 (2019).
    Google Scholar 
    Li, X.-Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 

    Google Scholar 
    Alho, J. S., Matsuba, C. & Merilä, J. Sex reversal and primary sex ratios in the common frog (Rana temporaria). Mol. Ecol. 19, 1763–1773 (2010).PubMed 

    Google Scholar 
    Sandercock, B. K., Beissinger, S. R., Stoleson, S. H., Melland, R. R. & Hughes, C. R. Survival rates of a neotropical parrot: implications for latitudinal comparisons of avian demography. Ecology 81, 1351–1370 (2000).Budden, A. E. & Beissinger, S. R. Against the odds? Nestling sex ratio variation in green-rumped parrotlets. Behav. Ecol. 15, 607–613 (2004).
    Google Scholar 
    Thompson, F. J. et al. Reproductive competition triggers mass eviction in cooperative banded mongooses. Proc. Biol. Sci. 283, 20152607 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Jaccarini, V., AGius, L., Schembri, P. J. & Rizzo, M. Sex determination and larval sexual interaction in Bonellia viridis Rolando (Echiura: Bonelliidae). J. Exp. Mar. Biol. Ecol. 66, 25–40 (1983).
    Google Scholar 
    Tingley, G. & Anderson, R. Environmental sex determination and density-dependent population regulation in the entomogenous nematode Romanomermis culcivorax. Parasitology 92, 431–449 (1986).
    Google Scholar 
    Hardisty, M. W. Sex composition of lamprey populations. Nature 191, 1116–1117 (1961).
    Google Scholar 
    Docker, M. F., William, F. & Beamish, H. Age, growth, and sex ratio among populations of least brook lamprey, Lampetra aepyptera, larvae: an argument for environmental sex determination. Environ. Biol. Fish. 41, 191–205 (1994).
    Google Scholar 
    Geffroy, B. & Bardonnet, A. Sex differentiation and sex determination in eels: consequences for management. Fish. Fish. 17, 375–398 (2016).
    Google Scholar 
    Ribas, L., Valdivieso, A., Díaz, N. & Piferrer, F. Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. J. Exp. Biol. 220, 1056–1064 (2017).PubMed 

    Google Scholar 
    García-Cruz, E. L. et al. Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 245, 110701 (2020).PubMed 

    Google Scholar 
    Geffroy, B. et al. Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass. Sci. Rep. 11, 13620 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).PubMed 

    Google Scholar 
    Todd, E. V. et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kuwamura, T., Nakashimn, Y. & Yogo, Y. Sex change in either direction by growth-rate advantage in the monogamous coral goby, Paragobiodon echinocephalus. Behav. Ecol. 5, 434–438 (1994).
    Google Scholar 
    Rodgers, E. W., Earley, R. L. & Grober, M. S. Social status determines sexual phenotype in the bi-directional sex changing bluebanded goby Lythrypnus dalli. J. Fish. Biol. 70, 1660–1668 (2007).
    Google Scholar 
    Munday, P. L., Caley, M. J. & Jones, G. P. Bi-directional sex change in a coral-dwelling goby. Behav. Ecol. Sociobiol. 43, 371–377 (1998).
    Google Scholar 
    Goikoetxea, A., Todd, E. V. & Gemmell, N. J. Stress and sex: does cortisol mediate sex change in fish? Reproduction 154, R149–R160 (2017).PubMed 

    Google Scholar 
    Nozu, R. & Nakamura, M. Cortisol administration induces sex change from ovary to testis in the protogynous Wrasse, Halichoeres trimaculatus. Sex. Dev. 9, 118–124 (2015).PubMed 

    Google Scholar 
    Olivotto, I. & Geffroy, B. Clownfish. in Marine Ornamental Species Aquaculture (eds. Calado, R., Olivotto, I., Oliver, M. P. & Holt, G. J.) 177–199 (John Wiley & Sons, Ltd, 2017). https://doi.org/10.1002/9781119169147.ch12.Bessa, E., Brandão, M. L. & Gonçalves-de-Freitas, E. Integrative approach on the diversity of nesting behaviour in fishes. Fish Fisheries 23, 564–583 (2022).Safari, I. & Goymann, W. The evolution of reversed sex roles and classical polyandry: Insights from coucals and other animals. Ethology 127, 1–13 (2021).
    Google Scholar 
    Komdeur, J., Székely, T., Long, X. & Kingma, S. A. Adult sex ratios and their implications for cooperative breeding in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160322 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Jankowiak, Ł., Tryjanowski, P., Hetmański, T. & Skórka, P. Experimentally evoked same-sex sexual behaviour in pigeons: better to be in a female-female pair than alone. Sci. Rep. 8, 1654 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).Bleu, J., Bessa-Gomes, C. & Laloi, D. Evolution of female choosiness and mating frequency: effects of mating cost, density and sex ratio. Anim. Behav. 83, 131–136 (2012).
    Google Scholar 
    Forsgren, E., Amundsen, T., Borg, A. A. & Bjelvenmark, J. Unusually dynamic sex roles in a fish. Nature 429, 551–554 (2004).PubMed 

    Google Scholar 
    Monier, M., Nöbel, S., Isabel, G. & Danchin, E. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jirotkul, M. Operational sex ratio influences preference and male–male competition in guppies. Anim. Behav. 58, 287–294 (1999).PubMed 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Adult sex ratio influences mate choice in Darwin’s finches. Proc. Natl Acad. Sci. USA 116, 12373–12382 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Queller, D. C. Why do females care more than males? Proc. Biol. Sci. 264, 1555–1557 (1997). A prescient overview that explains why females are more likely than males to provide care, including the explanation that a female-biased ASR means that males have a higher mean mating rate than females, which makes caring more costly for males.PubMed Central 

    Google Scholar 
    Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal kingdom. Sci. Adv. 2, e1500983 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Liker, A. et al. Evolution of large males is associated with female‐skewed adult sex ratios in amniotes. Evolution 75, 1636–1649 (2021).PubMed 

    Google Scholar 
    Clutton-Brock, T. H., Harvey, P. H. & Rudder, B. Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269, 797–800 (1977).PubMed 

    Google Scholar 
    Wittenberger, J. F. The evolution of mating systems in grouse. Condor 80, 126–137 (1978).
    Google Scholar 
    Vahl, W. K., Boiteau, G., Heij, M. E., de, MacKinley, P. D. & Kokko, H. Female fertilization: effects of sex-specific density and sex ratio determined experimentally for colorado potato beetles and drosophila fruit flies. PLoS ONE 8, e60381 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    House, C. M., Rapkin, J., Hunt, J. & Hosken, D. J. Operational sex ratio and density predict the potential for sexual selection in the broad-horned beetle. Anim. Behav. 152, 63–69 (2019).
    Google Scholar 
    Warner, R. R. & Hoffman, S. G. Population density and the economics of territorial defense in a coral reef fish. Ecology 61, 772–780 (1980).
    Google Scholar 
    Pröhl, H. Population differences in female resource abundance, adult sex ratio, and male mating success in Dendrobates pumilio. Behav. Ecol. 13, 175–181 (2002).
    Google Scholar 
    McNamara, J. M., Székely, T., Webb, J. N. & Houston, A. I. A dynamic game-theoretic model of parental care. J. Theor. Biol. 205, 605–623 (2000).PubMed 

    Google Scholar 
    Davies, N. B. Dunnock Behaviour and Social Evolution. (Oxford University Press, 1992).Pilastro, A., Biddau, L., Marin, G. & Mingozzi, T. Female brood desertion increases with number of available mates in the Rock Sparrow. J. Avian Biol. 32, 68–72 (2001).
    Google Scholar 
    Rossmanith, E., Grimm, V., Blaum, N. & Jeltsch, F. Behavioural flexibility in the mating system buffers population extinction: lessons from the lesser spotted woodpecker Picoides minor. J. Anim. Ecol. 75, 540–548 (2006).PubMed 

    Google Scholar 
    Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1587 (2013). An important comparative study that shows both social mating system and parenting are associated with ASR in shorebirds.PubMed 

    Google Scholar 
    Liker, A., Freckleton, R. P. & Székely, T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 24, 880–884 (2014).PubMed 

    Google Scholar 
    Balshine-Earn, S. & Earn, D. J. D. On the evolutionary pathway of parental care in mouth-brooding cichlid fishes. Proc. ofn R. Soc. 265, 2217–2222 (1998).
    Google Scholar 
    Parra, J. E., Beltrán, M., Zefania, S., Dos Remedios, N. & Székely, T. Experimental assessment of mating opportunities in three shorebird species. Anim. Behav. 90, 83–90 (2014).
    Google Scholar 
    Székely, T., Cuthill, I. & Kis, J. Brood desertion in Kentish plover: sex differences in remating opportunities. Behav. Ecol. 10, 185–190 (1999). An important early field study showing that intraspecific variation in parental care can be explained by the availability of mates, which in turn depends on the prevailing ASR.
    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care. The Evolution of Parental Care (Princeton University Press, 1991). https://doi.org/10.1515/9780691206981.Bessa-Gomes, C., Legendre, S. & Clobert, J. Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol. Lett. 7, 802–812 (2004).
    Google Scholar 
    Lindström, J. & Kokko, H. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. Biol. Sci. 265, 483–488 (1998).PubMed 
    PubMed Central 

    Google Scholar 
    Lee, A. M., Saether, B.-E. & Engen, S. Demographic stochasticity, allee effects, and extinction: the influence of mating system and sex ratio. Am. Naturalist 177, 301–313 (2011).
    Google Scholar 
    Leach, D., Shaw, A. K. & Weiss-Lehman, C. Stochasticity in social structure and mating system drive extinction risk. Ecosphere 11, e03038 (2020).
    Google Scholar 
    Gownaris, N. J. & Boersma, P. D. Sex-biased survival contributes to population decline in a long-lived seabird, the Magellanic Penguin. Ecol. Appl. 29, 1–17 (2019).
    Google Scholar 
    Le Galliard, J.-F., Fitze, P. S., Ferrière, R. & Clobert, J. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl Acad. Sci. USA 102, 18231–18236 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Lea, J. M. D. et al. Non-invasive physiological markers demonstrate link between habitat quality, adult sex ratio and poor population growth rate in a vulnerable species, the Cape mountain zebra. Funct. Ecol. 32, 300–312 (2018).
    Google Scholar 
    Dreiss, A. N., Cote, J., Richard, M., Federici, P. & Clobert, J. Age-and sex-specific response to population density and sex ratio. Behav. Ecol. 21, 356–364 (2010).
    Google Scholar 
    Dale, S. Female-biased dispersal, low female recruitment, unpaired males, and the extinction of small and isolated bird populations. Oikos 92, 344–356 (2001).
    Google Scholar 
    Morrison, C. A., Robinson, R. A., Clark, J. A. & Gill, J. A. Causes and consequences of spatial variation in sex ratios in a declining bird species. J. Anim. Ecol. 85, 1298–1306 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Chipman, A. & Morrison, E. The impact of sex ratio and economic status on local birth rates. Biol. Lett. 9, 20130027 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Krainacker, D. A. & Carey, J. R. Sex ratio in a wild population of twospotted spider mites. Holarct. Ecol. 14, 97–103 (1991).
    Google Scholar 
    Bunnell, D. B., Madenjian, C. P. & Croley, T. E. Long-term trends of bloater (Coregonus hoyi) recruitment in Lake Michigan: evidence for the effect of sex ratio. Can. J. Fish. Aquat. Sci. 63, 832–844 (2006).
    Google Scholar 
    Forbes, M. R., McCurdy, D. G., Lui, K., Mautner, S. I. & Boates, J. S. Evidence for seasonal mate limitation in populations of an intertidal amphipod, Corophium volutator (Pallas). Behav. Ecol. Sociobiol. 60, 87–95 (2006).
    Google Scholar 
    Solberg, E. J., Loison, A., Ringsby, T. H., Sæther, B. E. & Heim, M. Biased adult sex ratio can affect fecundity in primiparous moose Alces alces. Wildl. Biol. 8, 117–128 (2002).
    Google Scholar 
    Pipoly, I., Székely, T. & Liker, A. Multiple paternity is related to adult sex ratio and sex determination system in reptiles. Journal of Evolutionary Biology (under review).Jones, A. G., Rosenqvist, G., Berglund, A., Arnold, S. J. & Avise, J. C. The Bateman gradient and the cause of sexual selection in a sex–role–reversed pipefish. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 267, 677–680 (2000).
    Google Scholar 
    Clutton-Brock, T. H., Coulson, T. N., Milner-Gulland, E. J., Thomson, D. & Armstrong, H. M. Sex differences in emigration and mortality affect optimal management of deer populations. Nature 415, 633–637 (2002).PubMed 

    Google Scholar 
    Lambertucci, S. A., Carrete, M., Speziale, K. L., Hiraldo, F. & Donázar, J. A. Population sex ratios: another consideration in the reintroduction – reinforcement debate? PLoS ONE 8, e75821 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Snyder, K. T., Freidenfelds, N. A. & Miller, T. E. X. Consequences of sex-selective harvesting and harvest refuges in experimental meta-populations. Oikos 123, 309–314 (2014).
    Google Scholar 
    Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95–107 (1995).
    Google Scholar 
    Sæther, B.-E. et al. Time to extinction in relation to mating system and type of density regulation in populations with two sexes. J. Anim. Ecol. 73, 925–934 (2004).
    Google Scholar 
    Milner, J., Nilsen, E. & Andreassen, H. Demographic side effects of selective hunting in ungulates and carnivores. Conserv. Biol.: J. Soc. Conserv. Biol. 21, 36–47 (2007).
    Google Scholar 
    Heinsohn, R., Olah, G., Webb, M., Peakall, R. & Stojanovic, D. Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot. J. Anim. Ecol. 88, 502–510 (2019).PubMed 

    Google Scholar 
    Lee, P. L. M., Schofield, G., Haughey, R. I., Mazaris, A. D. & Hays, G. C. A review of patterns of multiple paternity across sea turtle rookeries. Adv. Mar. Biol. 79, 1–31 (2018).PubMed 

    Google Scholar 
    Wayne, A. F. et al. Sudden and rapid decline of the abundant marsupial Bettongia penicillata in Australia. Oryx 49, 175–185 (2015).
    Google Scholar 
    Roscoe, P. Dead Birds: The “Theater” of War among the Dugum Dani. Am. Anthropologist 113, 56–70 (2011).
    Google Scholar 
    Bethmann, D. & Kvasnicka, M. World war ii, missing men and out of wedlock childbearing. Economic J. 123, 162–194 (2013).
    Google Scholar 
    Schradin, C. et al. Geographic intra-specific variation in social organization is driven by population density. Behav. Ecol. Sociobiol. 74, (2020).Brandner, J. L., Dillon, H. M. & Brase, G. L. Convergent evidence for a theory of rapid, automatic, and accurate sex ratio tracking. Acta Psychologica 210, (2020).Griskevicius, V. et al. The financial consequences of too many men: sex ratio effects on saving, borrowing, and spending. J. Personal. Soc. Psychol. 102, 69–80 (2011).
    Google Scholar 
    Fritzsche, K., Booksmythe, I. & Arnqvist, G. Sex ratio bias leads to the evolution of sex role reversal in honey locust beetles. Curr. Biol. 26, 2522–2526 (2016).PubMed 

    Google Scholar 
    Bath, E. et al. Sex ratio and the evolution of aggression in fruit flies. Proc. R. Soc. B: Biol. Sci. 288, 20203053 (2021).
    Google Scholar 
    Beltran, S., Cézilly, F. & Boissier, J. Adult sex ratio affects divorce rate in the monogamous endoparasite Schistosoma mansoni. Behav. Ecol. Sociobiol. 63, 1363–1368 (2009).
    Google Scholar 
    Chuard, P., Brown, G. & Grant, J. The effects of adult sex ratio on mating competition in male and female guppies (Poecilia reticulata) in two wild populations. Behavioural Process. 129, 1–10 (2016).
    Google Scholar 
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Naturalist 142, 911–927 (1993).
    Google Scholar 
    May, R. & Allen, P. Stability and complexity in model ecosystems. Syst., Man Cybern., IEEE Trans. 44, 887–887 (1977).
    Google Scholar 
    Wobst, H. M. Boundary conditions for paleolithic social systems: a simulation approach. Am. Antiquity 39, 147–178 (1974).
    Google Scholar 
    Dyson, T. Causes and Consequences of Skewed Sex Ratios. (2012) https://doi.org/10.1146/annurev-soc-071811-145429.Edlund, L. Son preference, sex ratios, and marriage patterns. J. Political Econ. 107, 1275–1304 (1999).
    Google Scholar 
    Hesketh, T. & Xing, Z. W. Abnormal sex ratios in human populations: causes and consequences. Proc. Natl Acad. Sci. USA 103, 13271–13275 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Hesketh, T. & Min, J. M. The effects of artificial gender imbalance. EMBO Rep. 13, 487–492 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R. & Kramer, K. L. Patterns of family formation in response to sex ratio variation. PLoS ONE 11, e0160320 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Schacht, R., Tharp, D. & Smith, K. R. Marriage markets and male mating effort: violence and crime are elevated where men are rare. Hum. Nat. 27, 489–500 (2016).PubMed 

    Google Scholar 
    Pouget, E. R. Social determinants of adult sex ratios and racial/ethnic disparities in transmission of HIV and other sexually transmitted infections in the USA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160323 (2017). An important study on humans that bridges the gap between theory and policy illustrating a societal issue related to sex ratio imbalance and sexually transmitted diseases risk in a vulnerable sub-population in the USA.PubMed 
    PubMed Central 

    Google Scholar 
    Del Giudice, M. Sex ratio dynamics and fluctuating selection on personality. J. Theor. Biol. 297, 48–60 (2012).PubMed 

    Google Scholar 
    Schacht, R. & Borgerhoff Mulder, M. Sex ratio effects on reproductive strategies in humans. R. Soc. Open Sci. 2, 140402 (2015). A pioneering study of a small-scale population that demonstrates mating strategies vary with the sex ratio at local level.PubMed 
    PubMed Central 

    Google Scholar 
    Jones, J. H. & Ferguson, B. Demographic and Social predictors of intimate partner violence in colombia: a dyadic power perspective. Hum. Nat. 20, 184–203 (2009).PubMed 

    Google Scholar 
    Uggla, C. & Mace, R. Local ecology influences reproductive timing in Northern Ireland independently of individual wealth. Behav. Ecol. 27, 158–165 (2016).
    Google Scholar 
    Guttentag, M. & Secord, P. Too Many Women? SAGE Publications Inc (1983). A landmark book that presented historical and quantitative evidence for how sex ratio skew impacts family structure and the societal values applied to men and women.United Nations Population Fund Annual Report. https://www.unfpa.org/annual-report-2020 (2020)Schmitt, D. P. Sociosexuality from Argentina to Zimbabwe: a 48-nation study of sex, culture, and strategies of human mating. Behav. Brain Sci. 28, 247–275 (2005).PubMed 

    Google Scholar 
    Baumeister, R. F. & Vohs, K. D. Sexual economics: sex as female resource for social exchange in heterosexual interactions. Pers. Soc. Psychol. Rev. 8, 339–363 (2004).PubMed 

    Google Scholar 
    Reid, P. C. et al. Global impacts of the 1980s regime shift. Glob. Change Biol. 22, 682–703 (2016).
    Google Scholar 
    Grafe, T. U. & Linsenmair, K. E. Protogynous sex change in the reed frog Hyperolius viridiflavus. Copeia 1989, 1024–1029 (1989).
    Google Scholar 
    Trochet, A. et al. Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. J. Anim. Ecol. 82, 946–955 (2013).PubMed 

    Google Scholar 
    Thomson, D., Cooch, E. & Conroy, M. Modeling demographic processes in marked populations. https://doi.org/10.1007/978-0-387-78151-8 (2009).Dail, D. & Madsen, L. Models for estimating abundance from repeated counts of an open metapopulation. Biometrics 67, 577–587 (2011).PubMed 

    Google Scholar 
    Kéry, M. & Royle, J. Andrew. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS. 783 (2015).US Census Bureau. Accuracy and coverage evaluation of Census 2000: Design and Methodology. (2004).Guillot, M. The dynamics of the population sex ratio in India, 1971-96. Popul. Stud. 56, 51–63 (2002).
    Google Scholar 
    Dyson, E. A. & Hurst, G. D. D. Persistence of an extreme sex-ratio bias in a natural population. Proc. Natl Acad. Sci. USA 101, 6520–6523 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Hays, G. C., Mazaris, A. D., Schofield, G. & Laloë, J.-O. Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proc. R. Soc. B. 284, 20162576 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Cockburn, A., Scott, M. P. & Dickman, C. R. Sex ratio and intrasexual kin competition in mammals. Oecologia 66, 427–429 (1985).PubMed 

    Google Scholar 
    Douglas III, H. & Malenke, J. R. An Extraordinary Host-Specific Sex Ratio in an Avian Louse (Phthiraptera: Insecta)-Chemical Distortion? Environ. Entomol. (2015).Bonnet, X. et al. A prison effect in a wild population: a scarcity of females induces homosexual behaviors in males. Behav. Ecol. 27, 1206–1215 (2016).
    Google Scholar 
    Beltran, S. & Boissier, J. Male-biased sex ratio: why and what consequences for the genus Schistosoma? Trends Parasitol. 26, 63–69 (2010).PubMed 

    Google Scholar 
    Beltran, S. & Boissier, J. Schistosome monogamy: who, how, and why? Trends Parasitol. 24, 386–391 (2008).PubMed 

    Google Scholar 
    Fisher, R. The Genetical Theory of Natural Selection (The Clarendon Press, 1930).Houston, A. & McNamara, J. John Maynard Smith and the importance of consistency in evolutionary game theory. Biol. Philos. 20, 933–950 (2005).
    Google Scholar 
    Kokko, H. & Jennions, M. D. Sex differences in parental care. in The Evolution of Parental Care (Oxford University Press, 2012). https://doi.org/10.1093/acprof:oso/9780199692576.003.0006.Fromhage, L. & Jennions, M. D. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat. Commun. 7, 12517 (2016). A theoretical study showing that under a simple null scenario the sex ratio of male to female care does not evolve in response to ASR, but rather to the sex ratio at maturation.PubMed 
    PubMed Central 

    Google Scholar 
    Long, X. The Evolution of Parental Sex Roles. PhD dissertation, University of Groningen (2020).Seger, J. & Stubblefield, J. W. Models of sex ratio evolution. in Sex Ratios: Concepts and Research Methods (ed. Hardy, I. C. W.) 2–25 (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511542053.002.Pen, I. & Weissing, F. J. Optimal sex allocation: steps towards a mechanistic theory. in Sex Ratios: Concepts and Research Methods (ed. Hardy, I. C. W.) 26–46 (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511542053.003.Bodmer, W. & Edwards, A. Natural selection and the sex ratio. Ann. Hum. Genet. 239–244, (1960).Sampson, R. J., Laub, J. H. & Wimer, C. Does marriage reduce crime? A counterfactual approach to within-individual causal effects. Criminology 44, 465–508 (2006).
    Google Scholar 
    Avakame, E. F. Sex ratios, female labor force participation, and lethal violence against women: extending Guttentag and Secord’s Thesis. Violence Women 5, 1321–1341 (1999).
    Google Scholar 
    Diamond-Smith, N. & Rudolph, K. The association between uneven sex ratios and violence: Evidence from 6 Asian countries. PLoS ONE 13, e0197516 (2018). One of the few studies on crime and sex ratios that uses individual-level data of reported crime as linked to area level sex ratio skew.PubMed 
    PubMed Central 

    Google Scholar 
    Drèze, J. & Khera, R. Crime, gender, and society in India: Insights from homicide data. Popul. Dev. Rev. 26, 335–352 (2000).PubMed 

    Google Scholar 
    Edlund, L., Li, H., Yi, J. & Zhang, J. Sex ratios and crime: evidence from China. Rev. Econ. Stat. 95, 1520–1534 (2013).
    Google Scholar 
    Messner, S. F. & Sampson, R. J. The sex ratio, family disruption, and rates of violent crime: the paradox of demographic structure. Soc. Forces 69, 693–713 (1991).
    Google Scholar 
    Trent, K. & South, S. J. Mate availability and women’s sexual experiences in China. J. Marriage Fam. 74, 201–214 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Filser, A., Barclay, K., Beckley, A., Uggla, C. & Schnettler, S. Are skewed sex ratios associated with violent crime? A longitudinal analysis using Swedish register data. Evolution Hum. Behav. 42, 212–222 (2021).
    Google Scholar 
    Barber, N. The sex ratio as a predictor of cross-national variation in violent crime. Cross-Cultural Res. 34, 264–282 (2000).
    Google Scholar 
    Barber, N. Countries with fewer males have more violent crime: marriage markets and mating aggression. Aggress. Behav. 35, 49–56 (2009).PubMed 

    Google Scholar 
    Obrien, R. M. Sex ratios and rape rates: a powercontrol theory. Criminology 29, 99–114 (1991).
    Google Scholar 
    Esmail, A. M., Penny, J. & Eargle, L. A. The impact of culture on crime. Race Gender Class 20, 326–343 (2013).
    Google Scholar 
    Pollet, T. V., Stoevenbelt, A. H. & Kuppens, T. The potential pitfalls of studying adult sex ratios at aggregate levels in humans. Philos. Trans. R. Soc. B: Biol. Sci. 372, (2017). A critical study that highlights shortcomings inherent in much of the early sex ratio literature, which stems in part from using nation- rather than local-level data.Uggla, C. & Mace, R. Adult sex ratio and social status predict mating and parenting strategies in Northern Ireland. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160318 (2017). A seminal study on humans demonstrating the impacts of local sex ratio skew depending on individual status on the mating market.
    Google Scholar 
    Schacht, R. & Uggla, C. Beyond sex: reproductive strategies as a function of local sex ratio variation. in The Oxford Handbook of Human Mating (Oxford University Press, 2022). More

  • in

    Influence of short and long term processes on SAR11 communities in open ocean and coastal systems

    Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep. 2011;1:9.
    Google Scholar 
    Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One. 2013;8:e83383.
    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sci. 2017;9:231–55.
    Google Scholar 
    Zhao X, Schwartz CL, Pierson J, Giovannoni SJ, McIntosh RJ, Nicastro D. Three-dimensional structure of the ultraoligotrophic marine bacterium “Candidatus pelagibacter ubique”. Appl Environ Microbiol. 2017;83:807–16.
    Google Scholar 
    Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol. 1990;56:4.
    Google Scholar 
    Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature. 2002;420:806–10.CAS 

    Google Scholar 
    Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature. 2002;418:630–3.
    Google Scholar 
    Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.CAS 

    Google Scholar 
    Field KG, Gordon D, Wright T, Rappé M, Urback E, Vergin K, et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl Environ Microbiol. 1997;63:63–70.CAS 

    Google Scholar 
    Suzuki MT, Beja O, Taylor LT, DeLong EF. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ Microbiol. 2001;3:323–31.CAS 

    Google Scholar 
    Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 2009;3:283–95.CAS 

    Google Scholar 
    Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, et al. Global biogeography of SAR11 marine bacteria. Mol Syst Biol. 2012;8:595.
    Google Scholar 
    Haro‐Moreno JM, Rodriguez‐Valera F, Rosselli R, Martinez‐Hernandez F, Roda‐Garcia JJ, Gomez ML, et al. Ecogenomics of the SAR11 clade. Environ Microbiol. 2020;22:1748–63.
    Google Scholar 
    Carini P, White AE, Campbell EO, Giovannoni SJ. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun. 2014;5:4346.CAS 

    Google Scholar 
    Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, et al. One carbon metabolism in SAR11 Pelagic marine bacteria. PLoS One. 2011;6:e23973.CAS 

    Google Scholar 
    Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol. 2010;12:490–500.CAS 

    Google Scholar 
    Sun J, Todd JD, Thrash JC, Qian Y, Qian MC, Temperton B, et al. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat Microbiol. 2016;1:16065.CAS 

    Google Scholar 
    Halsey KH, Giovannoni SJ, Graus M, Zhao Y, Landry Z, Thrash JC, et al. Biological cycling of volatile organic carbon by phytoplankton and bacterioplankton: VOC cycling by marine plankton. Limnol Oceanogr. 2017;62:2650–61.CAS 

    Google Scholar 
    Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Vergin K. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol Oceanogr. 2004;49:1073–83.CAS 

    Google Scholar 
    Wagner S, Schubotz F, Kaiser K, Hallmann C, Waska H, Rossel PE, et al. Soothsaying DOM: a current perspective on the future of oceanic dissolved organic carbon. Front Mar Sci. 2020;7:341.
    Google Scholar 
    Quinn PK, Bates TS. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature. 2011;480:51–6.CAS 

    Google Scholar 
    Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni S. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:624164.
    Google Scholar 
    Tucker SJ, Freel KC, Monaghan EA, Sullivan CES, Ramfelt O, Rii YM, et al. Spatial and temporal dynamics of SAR11 marine bacteria across a nearshore to offshore transect in the tropical Pacific Ocean. PeerJ. 2021;9:e12274.
    Google Scholar 
    Giovannoni SJ, Vergin KL. Seasonality in ocean microbial communities. Science. 2012;335:671–6.CAS 

    Google Scholar 
    Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S RRNA gene data. Methods Ecol Evol. 2013;4:1111–9.
    Google Scholar 
    Vergin K, Done B, Carlson C, Giovannoni S. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat Microb Ecol. 2013;71:1–13.
    Google Scholar 
    Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 2015;9:347–60.CAS 

    Google Scholar 
    Ortmann AC, Santos TTL. Spatial and temporal patterns in the Pelagibacteraceae across an estuarine gradient. FEMS Microbiol Ecol. 2016;92:fiw133.
    Google Scholar 
    Vergin KL, Beszteri B, Monier A, Cameron Thrash J, Temperton B, Treusch AH, et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 2013;7:1322–32.CAS 

    Google Scholar 
    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.CAS 

    Google Scholar 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;12:6–393.
    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 

    Google Scholar 
    Southward AJ, Langmead O, Hardman-Mountford NJ, Aiken J, Boalch GT, Dando PR, et al. Long-term oceanographic and ecological research in the Western English Channel. In: Advances in marine biology. Elsevier. 2005;47:1–105.Gilbert JA, Field D, Swift P, Newbold L, Oliver A, Smyth T, et al. The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol. 2009;11:3132–9.CAS 

    Google Scholar 
    Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 

    Google Scholar 
    Caporaso JG, Paszkiewicz K, Field D, Knight R, Gilbert JA. The Western English Channel contains a persistent microbial seed bank. ISME J. 2012;6:1089–93.CAS 

    Google Scholar 
    Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.
    Google Scholar 
    Vergin KL, Done B, Carlson CA, Giovannoni SJ. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat Microb Ecol. 2013;71:1–3.
    Google Scholar 
    Choi CJ, Jimenez V, Needham DM, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:542372.
    Google Scholar 
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1663–74.
    Google Scholar 
    Matsen FA, Kodner RB, Armbrust E. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:1–6.
    Google Scholar 
    Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, et al. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 2009;3:1148–63.
    Google Scholar 
    Giovannoni SJ, Rappe MS, Vergin KL, Adair NL. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc Natl Acad Sci. 1996;93:7979–84.CAS 

    Google Scholar 
    Morris RM, Vergin KL, Cho J-C, Rappé MS, Carlson CA, Giovannoni SJ. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr. 2005;50:1687–96.CAS 

    Google Scholar 
    Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.CAS 

    Google Scholar 
    Lane DJ. Nucleic acid techniques in bacterial systematics. In: Nucleic acid techniques in bacterial systematics. New York: Wiley; p. 115–75.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 

    Google Scholar 
    Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci. 2014;111:E2875–84.CAS 

    Google Scholar 
    Buchholz HH, Michelsen ML, Bolaños LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus–host model systems for fastidious heterotrophic bacteria. ISME J. 2021;15:1585–98.CAS 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria; https://www.R-project.org/Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Package “vegan”.Wickham H. ggplot2: ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.
    Google Scholar 
    Wang W, Yan J. Shape-restricted regression splines with R package splines2. J Data Sci. 2021;19:498–517.
    Google Scholar 
    Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–87.CAS 

    Google Scholar 
    Ahdesmaki M, Fokianos K, Strimmer K, Ahdesmaki MM. Package ‘GeneCycle’ 2015.Roesch A, Schmidbauer H and Roesch MA. Package ‘WaveletComp.’ 2014.Lomas MW, Bates NR, Johnson RJ, Knap AH, Steinberg DK, Carlson CA. Two decades and counting: 24-years of sustained open ocean biogeochemical measurements in the Sargasso Sea. Deep Sea Res Part II Top Stud Oceanogr. 2013;93:16–32.CAS 

    Google Scholar 
    Lomas MW, Bates NR, Johnson RJ, Steinberg DK, Tanioka T. Adaptive carbon export response to warming in the Sargasso Sea. Nature Commun. 2022;13:1–0.
    Google Scholar 
    Sargeant SL, Murrell JC, Nightingale PD, Dixon JL. Basin-scale variability of microbial methanol uptake in the Atlantic Ocean. Biogeosciences. 2018;15:5155–67.CAS 

    Google Scholar 
    Smyth TJ, Allen I, Atkinson A, Bruun JT, Harmer RA, Pingree RD, et al. Ocean net heat flux influences seasonal to interannual patterns of plankton abundance. PLoS One. 2014;9:e98709.
    Google Scholar 
    Van de Peer Y. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996;24:3381–91.
    Google Scholar 
    Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods. 2003;55:541–55.CAS 

    Google Scholar 
    Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS ONE. 2012;7:e42671.CAS 

    Google Scholar 
    Stingl U, Tripp HJ, Giovannoni SJ. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time-series study site. ISME J. 2007;1:361–71.CAS 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife. 2019;8:e46497.
    Google Scholar 
    Lévy M, Jahn O, Dutkiewicz S, Follows MJ, d’Ovidio F. The dynamical landscape of marine phytoplankton diversity. J R Soc Interface. 2015;12:20150481.
    Google Scholar 
    Hellweger FL, van Sebille E, Calfee BC, Chandler JW, Zinser ER, Swan BK, et al. The role of ocean currents in the temperature selection of plankton: insights from an individual-based model. PLoS ONE. 2016;11:e0167010.
    Google Scholar 
    Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science. 2005;309:1242–5.CAS 

    Google Scholar 
    Brown SN, Giovannoni S, Cho JC. Polyphasic taxonomy of marine bacteria from the SAR11 group Ia: Pelagibacter ubiquis (strain HTCC1062) & Pelagibacter bermudensis (strain HTCC7211). Oregon State University; 2012.Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. ISME J. 2022;16:178–89.CAS 

    Google Scholar 
    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.CAS 

    Google Scholar 
    Ruiz-Perez CA, Bertagnolli AD, Tsementzi D, Woyke T, Stewart FJ, Konstantinidis KT. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst Appl Microbiol. 2021;44:126185.CAS 

    Google Scholar 
    Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Commun. 2022;13:1–12.
    Google Scholar 
    McCarthy M, Spillane S, Walsh S, Kendon M. The meteorology of the exceptional winter of 2015/2016 across the UK and Ireland. Weather. 2016;71:305–13.
    Google Scholar 
    Met Office. UK Climate Projections: Headline Findings. 2021. More

  • in

    Tube length of chironomid larvae as an indicator for dissolved oxygen in water bodies

    Chironomids have the ability to survive and reproduce in polluted environments, and thus they are included in many ecological studies where approaches may be taxonomic or functional16. The diversity of most macroinvertebrates is controlled by the oxygen level of water, but chironomids may survive in hypoxic conditions where the oxygen concentration may be less than 3 mg l−117. The current study demonstrates that changing seasons, as well as anthropogenic activities, have a significant impact on the levels of DO in aquatic bodies. As observed from the result, DO highly influences the tube length of the chironomid larvae. Since KWC is a wastewater canal, the average oxygen level is lower (5.24 ± 1.14 mg l−1) than KFP (6.63 ± 1.28 mg l−1) which is a normal fish culturing pond. It has also been observed that the average tube length of the chironomid larvae of KWC (8.66 ± 0.88 mm) is higher than KFP (7.68 ± 0.62 mm), which indicates that a low concentration of DO promotes the building of longer tubes in natural conditions. Similar observations were also observed in laboratory conditions. When the oxygen level (7.03 ± 0.41 mg l−1) in the experiment was kept in the normal range, there was negligible variation in tube length (7.61 ± 0.31 mm). But when the concentration of oxygen is gradually reduced by dilution, the tube length starts to increase accordingly, which is explained graphically in Fig. 4. The regression model of both the experimental conditions also supports the hypothesis that the tube length has an inverse relationship with DO. The scatter plot and simple linear regression confirmed the inverse relationship between DO and tube length (Figs. 1 and 2).Chironomid larvae are able to grow in the polluted water of a wastewater pond as dominant macroinvertebrates18. It is observed that those larvae living in the sand tubes are more susceptible to chemical pollutants than the larvae living in silt tubes7. Sand particles are bigger than silt and are not suitable for the survival of larvae19. Chironomus riparius larvae make their tubes from different external particles and their own proteins20. Midge larvae are the inhabitants of sediments, and at the same time, sediment is the depository of different inorganic, organic, and heavy metals. In such cases, the tube of chironomid larvae may act as a defensive structure, which protects them from the adverse effects of undesirable pollutants and may increase their tolerance against such chemicals21,22,23.Larvae can thrive in benthic sediments with high decaying organic content and very low DO concentrations in water bodies24. In poor DO concentration, larvae can survive due to the presence of haemoglobin in their body tissue fluid, which plays an important physiological role in increasing respiratory efficiency, as was observed in Chironomus plumosus. Longer tube length may help larvae generate better respiratory currents so that they can cope with a low DO environment.Tube length is crucial for living in water because primarily tubes protect them from outer environmental factors like predators, and pollution. It was observed during this study that when the DO of water is low, larvae make elongated tubes to reach the upper layer of water, where the DO level is comparatively high. To get their required amount of oxygen, the larvae increase the tube length towards the water surface and increase the DO in tube water by undulating the body and other structures, creating a current inside the tube25,26. On contrary, when the DO level of the surrounding water of chironomid is sufficient, they can manage their normal physiological activities with the available oxygen. They need not to elongate their tube length. That’s why their tube length is inversely related to the DO of their surrounding medium.If tube length does not increase in size in hypoxic water, larvae will not be able to meet their oxygen demand. If the DO of water decreases, tube length will increase and vice versa. Behavioural and physiological adaptations of chironomids larvae make them successful to live in a hypoxic environment. Thus, in hypoxic conditions, larvae with longer tubes are able to gather more oxygen from the upper layer of water and get more space to create a current of water to increase the amount of O2 inside the tube by undulating the preanal papillae, anal gill, ventral gills. This would explain why the tube length of chironomids depends on the DO of water. Hence by measuring the tube length with a standard measuring scale, one may get an idea about the quality of water, especially DO, before doing any chemical analysis. The work seems to be unique and novel for its own kind. More

  • in

    Consistent diel activity patterns of forest mammals among tropical regions

    Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).
    Google Scholar 
    Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: Environmental factors. Prog. Brain Res. 199, 281–304 (2012).PubMed 

    Google Scholar 
    Cox, D., Gardner, A. & Gaston, K. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1–10 (2021).
    Google Scholar 
    Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).PubMed 

    Google Scholar 
    Baker, J. & Venditti, C. Rapid change in mammalian eye shape is explained by activity pattern. Curr. Biol. 29, 1082–1088. e1083 (2019).PubMed 

    Google Scholar 
    Crompton, A., Taylor, C. R. & Jagger, J. A. Evolution of homeothermy in mammals. Nature 272, 333–336 (1978).ADS 
    PubMed 

    Google Scholar 
    Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed 

    Google Scholar 
    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mccain, C. M. & King, S. R. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).ADS 

    Google Scholar 
    Veldhuis, M. P. et al. Predation risk constrains herbivores’ adaptive capacity to warming. Nat. Ecol. Evol. 4, 1069–1074 (2020).PubMed 

    Google Scholar 
    Riede, S. J., van der Vinne, V. & Hut, R. A. The flexible clock: Predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. J. Exp. Biol. 220, 738–749 (2017).PubMed 

    Google Scholar 
    van der Vinne, V. et al. Maximising survival by shifting the daily timing of activity. Ecol. Lett. 22, 2097–2102 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Harper, G. & Bunbury, N. Invasive rats on tropical islands: Their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).
    Google Scholar 
    Sovie, A. R., Greene, D. U., Frock, C. F., Potash, A. D. & McCleery, R. A. Ephemeral temporal partitioning may facilitate coexistence in competing species. Anim. Behav. 150, 87–96 (2019).
    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).ADS 
    PubMed 

    Google Scholar 
    Richards, S. A. Temporal partitioning and aggression among foragers: Modeling the effects of stochasticity and individual state. Behav. Ecol. 13, 427–438 (2002).
    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol., Evol., Syst. 34, 153–181 (2003).
    Google Scholar 
    Sunarto, S., Kelly, M., Parakkasi, K. & Hutajulu, M. Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. J. Zool. 296, 104–115 (2015).
    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Naturalist 153, 649–659 (1999).
    Google Scholar 
    Beschta, R. L. & Ripple, W. J. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol. Conserv. 142, 2401–2414 (2009).
    Google Scholar 
    Duffy, J. E. Biodiversity and ecosystem function: The consumer connection. Oikos 99, 201–219 (2002).
    Google Scholar 
    Sinclair, A., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).ADS 
    PubMed 

    Google Scholar 
    Cunningham, C. X., Scoleri, V., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Temporal partitioning of activity: Rising and falling top‐predator abundance triggers community‐wide shifts in diel activity. Ecography 42, 2157–2168 (2019).
    Google Scholar 
    Hayward, M. W. & Slotow, R. Temporal partitioning of activity in large African carnivores: Tests of multiple hypotheses. South Afr. J. Wildl. Res. 39, 109–125 (2009).
    Google Scholar 
    Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: Diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).
    Google Scholar 
    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
    Google Scholar 
    Rovero, F. et al. A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography 43, 75–84 (2020).
    Google Scholar 
    Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2703–2711 (2011).
    Google Scholar 
    Zhang, J. et al. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. R. Soc. B: Biol. Sci. 285, 20180949 (2018).
    Google Scholar 
    Beaudrot, L. et al. Local temperature and ecological similarity drive distributional dynamics of tropical mammals worldwide. Glob. Ecol. Biogeogr. 28, 976–991 (2019).
    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Naturalist 101, 233–249 (1967).
    Google Scholar 
    Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B: Biol. Sci. 281, 20141097 (2014).
    Google Scholar 
    Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (John Wiley & Sons, 2009).Cruz, P., Paviolo, A., Bó, R. F., Thompson, J. J. & Di Bitetti, M. S. Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm. Biol. 79, 376–383 (2014).
    Google Scholar 
    Taylor, W. & Skinner, J. Adaptations of the aardvark for survival in the Karoo: A review. Trans. R. Soc. South Afr. 59, 105–108 (2004).
    Google Scholar 
    Levy, O., Dayan, T., Porter, W. P. & Kronfeld‐Schor, N. Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).
    Google Scholar 
    Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals Vol. 11 (Yale University Press, 1980).Gutiérrez-González, C. E. & López-González, C. A. Jaguar interactions with pumas and prey at the northern edge of jaguars’ range. PeerJ 5, e2886 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Porfirio, G., Sarmento, P., Foster, V. & Fonseca, C. Activity patterns of jaguars and pumas and their relationship to those of their potential prey in the Brazilian Pantanal. Mammalia 81, 401–404 (2017).
    Google Scholar 
    Foster, V. C. et al. Jaguar and puma activity patterns and predator‐prey interactions in four Brazilian biomes. Biotropica 45, 373–379 (2013).
    Google Scholar 
    Ross, J., Hearn, A., Johnson, P. & Macdonald, D. Activity patterns and temporal avoidance by prey in response to S unda clouded leopard predation risk. J. Zool. 290, 96–106 (2013).
    Google Scholar 
    Lima, S. L. Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48, 25–34 (1998).
    Google Scholar 
    Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS One 14, e0213671 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Herrera, H. et al. Time partitioning among jaguar Panthera onca, puma Puma concolor and ocelot Leopardus pardalis (Carnivora: Felidae) in Costa Rica’s dry and rainforests. Rev. de. Biol.ía Tropical 66, 1559–1568 (2018).
    Google Scholar 
    Pratas‐Santiago, L. P., Gonçalves, A. L. S., da Maia Soares, A. & Spironello, W. R. The moon cycle effect on the activity patterns of ocelots and their prey. J. Zool. 299, 275–283 (2016).
    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    PubMed 

    Google Scholar 
    Espinosa, S. & Salvador, J. Hunters landscape accessibility and daily activity of ungulates in Yasuní Biosphere Reserve. Ecuad. Therya 8, 45–52 (2017).
    Google Scholar 
    Butynski, T. M. Ecological survey of the impenetrable (Bwindi) forest, Uganda, and recommendations for its conservation and management. https://doi.org/10.13140/RG.2.1.1719.0487 (1984).Rovero, F. & Ahumada, J. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests. Sci. Total Environ. 574, 914–923 (2017).ADS 
    PubMed 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    PubMed 

    Google Scholar 
    Gorczynski, D. et al. Tropical mammal functional diversity increases with productivity but decreases with anthropogenic disturbance. Proc. R. Soc. B 288, 20202098 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera‐trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).
    Google Scholar 
    Bivand, R. et al. Maptools: Tools for Handling Spatial Objects. R package version 1.1-4. http://maptools.r-forge.r-project.org/reference/index.html (2021).Ensing, E. P. et al. GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus): Indication for a weak circadian clock in ungulates. PLoS One 9, e106997 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazquez, C., Rowcliffe, J. M., Spoelstra, K. & Jansen, P. A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 10, 2057–2066 (2019).
    Google Scholar 
    Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179 (2014).
    Google Scholar 
    Rowcliffe, J. M. Activity: Animal Activity Statistics. R package version 1.3.2. https://cran.r-project.org/package=activity (2022).Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).PubMed 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
    Google Scholar 
    Elff, M., Heisig, J. P., Schaeffer, M. & Shikano, S. Multilevel analysis with few clusters: Improving likelihood-based methods to provide unbiased estimates and accurate inference. Br. J. Polit. Sci. 51, 412–426 (2020).Elff, M. Mclogit: mixed conditional logit models. R package version 0.5. 1. https://github.com/melff/mclogit/ (2018).Burnham, K & Anderson, D. Model Selection and Multi-model Inference 2nd edn, Vol. 63, 10 (Springer-Verlag 2004).Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Hopcraft, J. G. C., Olff, H. & Sinclair, A. Herbivores, resources, and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).PubMed 

    Google Scholar 
    Meredith, M. & Ridout, M. Overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.2. 4, https://cran.r-project.org/package=overlap (2014).Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric., Biol., Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (PBC, Boston, MA, 2020). More