More stories

  • in

    Survival fluctuation is linked to precipitation variation during staging in a migratory shorebird

    Marra, P., Hobson, K. A. & Holmes, R. T. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282, 1884–1886 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Korslund, L. & Steen, H. Small rodent winter survival: Snow conditions limit access to food resources. J. Anim. Ecol. 75, 423–436 (2009).
    Google Scholar 
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rughetti, M. & Festa-Bianchet, M. Effects of spring–summer temperature on body mass of chamois. J. Mammal. 93, 1301–1307 (2012).
    Google Scholar 
    Davidson, J. & Andrewartha, H. The influence of rainfall, evaporation and atmospheric temperature on fluctuations in the size of a natural population of Thrips imaginis (Thysanoptera). J. Anim. Ecol. 17, 200–222 (1948).
    Google Scholar 
    Sillett, T. S., Holmes, R. T. & Sherry, T. W. Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288, 2040–2043 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    SÆther, B. E., Sutherland, W. J. & Engen, S. Climate influences on avian population dynamics. Adv. Ecol. Res. 35, 185–209 (2004).
    Google Scholar 
    Frederiksen, M., Daunt, F., Harris, M. & Wanless, S. The demographic impact of extreme events: Stochastic weather drives survival and population dynamics in a long-lived seabird. J. Anim. Ecol. 77, 1020–1029 (2008).CAS 
    PubMed 

    Google Scholar 
    Cox, A. R., Robertson, R. J., Rendell, W. B. & Bonier, F. Population decline in tree swallows (Tachycineta bicolor) linked to climate change and inclement weather on the breeding ground. Oecologia 192, 713–722 (2020).ADS 
    PubMed 

    Google Scholar 
    Peach, W., Baillie, S. & Underhill, L. Survival of British Sedge Warblers in relation to west African rainfall. Ibis 133, 300–305 (1991).
    Google Scholar 
    Altwegg, R., Dummermuth, S., Anholt, B. R. & Flatt, T. Winter weather affects asp viper Vipera aspis population dynamics through susceptible juveniles. Oikos 110, 55–66 (2005).
    Google Scholar 
    Woodworth, B. K., Wheelwright, N. T., Newman, A. E., Schaub, M. & Norris, D. R. Winter temperatures limit population growth rate of a migratory songbird. Nat. Commun. 8, 14812 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ådahl, E., Lundberg, P. & Jonzén, N. From climate change to population change: The need to consider annual life cycles. Glob. Change Biol. 12, 1627–1633 (2006).ADS 

    Google Scholar 
    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Telenský, T., Klvaňa, P., Jelínek, M., Cepák, J. & Reif, J. The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Sci. Rep. 10, 17592 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dybala, K. E., Eadie, J. M., Gardali, T., Seavy, N. E. & Herzog, M. P. Projecting demographic responses to climate change: Adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population. Glob. Chang. Biol. 19, 2688–2697 (2013).ADS 
    PubMed 

    Google Scholar 
    Gullett, P., Evans, K. L., Robinson, R. A. & Hatchwell, B. J. Climate change and annual survival in a temperate passerine: Partitioning seasonal effects and predicting future patterns. Oikos 123, 389–400 (2014).
    Google Scholar 
    Selwood, K. E., McGeoch, M. A. & Mac Nally, R. The effects of climate change and land-use change on demographic rates and population viability. Biol. Rev. 90, 837–853 (2015).PubMed 

    Google Scholar 
    Bridge, E. S. et al. Technology on the move: Recent and forthcoming innovations for tracking migratory birds. Bioscience 61, 689–698 (2011).
    Google Scholar 
    van Bemmelen, R. S. A. et al. Red-necked phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies. Front. Ecol. Evol. 7, 86 (2019).
    Google Scholar 
    Jiguet, F. et al. Unravelling migration connectivity reveals unsustainable hunting of the declining ortolan bunting. Sci. Adv. 5, eaau2642 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stutchbury, B. J. M. et al. Tracking long-distance songbird migration by using geolocators. Science 323, 896 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & Van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).
    Google Scholar 
    Sandvik, H., Erikstad, K. E., Barrett, R. T. & Yoccoz, N. G. The effect of climate on adult survival in five species of North Atlantic seabirds. J. Anim. Ecol. 74, 817–831 (2005).
    Google Scholar 
    BirdLife International and NatureServe. Bird species distribution maps of the world. (2014).Hedenström, A., Klaassen, R. H. G. & Åkesson, S. Migration of the little ringed plover Charadrius dubius breeding in South Sweden tracked by geolocators. Bird Study 60, 466–474 (2013).
    Google Scholar 
    Fransson, T., Österblom, H. & Hall-Karlsson, S. Svensk ringmärkningsatlas. (2008).Pakanen, V., Lampila, S., Arppe, H. & Valkama, J. Estimating sex specific apparent survival and dispersal of Little Ringed Plovers (Charadrius dubius). Ornis Fenn. 92, 52 (2015).
    Google Scholar 
    Jarošík, V., Honěk, A., Magarey, R. & Skuhrovec, J. Developmental database for phenology models: Related insect and mite species have similar thermal requirements. J. Econ. Entomol. 104, 1870–1876 (2011).PubMed 

    Google Scholar 
    Cramp, J. Handbook of the Birds of Europe, the Middle East and North Africa (Oxford University Press, 1992).
    Google Scholar 
    Leyrer, J. et al. Mortality within the annual cycle: Seasonal survival patterns in Afro-Siberian Red Knots Calidris canutus canutus. J. Ornithol. 154, 933–943 (2013).
    Google Scholar 
    Norris, R. D. & Marra, P. P. Seasonal interactions, habitat quality, an population dynamics in migratory birds. Condor 109, 535–547 (2007).
    Google Scholar 
    Schmaljohann, H., Eikenaar, C. & Sapir, N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol. Rev. 97, 1231–1252 (2022).PubMed 

    Google Scholar 
    Doyle, S. et al. Temperature and precipitation at migratory grounds influence demographic trends of an Arctic-breeding bird. Glob. Change Biol. 26, 5447–5458 (2020).ADS 

    Google Scholar 
    Rockwell, S. M. et al. Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia 183, 715–726 (2017).ADS 
    PubMed 

    Google Scholar 
    Insley, H., Peach, W., Swann, B. & Etheridge, B. Survival rates of Redshank Tringa totanus wintering on the Moray Firth. Bird Study 44, 277–289 (1997).
    Google Scholar 
    Duriez, O., Ens, B. J., Choquet, R., Pradel, R. & Klaassen, M. Comparing the seasonal survival of resident and migratory oystercatchers: Carry-over effects of habitat quality and weather conditions. Oikos 121, 862–873 (2012).
    Google Scholar 
    Cook, A. S. C. P. et al. Temperature and density influence survival in a rapidly declining migratory shorebird. Biol. Conserv. 260, 109198 (2021).
    Google Scholar 
    Pearce-Higgins, J. W., Yalden, D., Dougall, T. & Beale, C. M. Does climate change explain the decline of a trans-Saharan Afro-Palaearctic migrant?. Oecologia 159, 649–659 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weiser, E. L. et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk 135, 29–43 (2018).
    Google Scholar 
    Piersma, T. & Baker, A. Life history characteristics and the conservation of migratory shorebirds. In Behaviour and Conservation (eds Gosling, L. & Sutherland, W.) 105–124 (Cambridge University Press, 2000).
    Google Scholar 
    Conklin, J. R., Senner, N. R., Battley, P. F. & Piersma, T. Extreme migration and the individual quality spectrum. J. Avian Biol. 48, 19–36 (2017).
    Google Scholar 
    Méndez, V., Alves, J. A., Gill, J. A. & Gunnarsson, T. G. Patterns and processes in shorebird survival rates: A global review. Ibis (Lond.) 160, 723–741 (2018).
    Google Scholar 
    Roche, E. A. et al. Range-wide piping plover survival: Correlated patterns and temporal declines. J. Wildl. Manage. 74, 1784–1791 (2010).
    Google Scholar 
    Skagen, S. K. & Knopf, F. L. Toward conservation of midcontinental shorebird migrations. Conserv. Biol. 7, 533–541 (1993).
    Google Scholar 
    Kasahara, S., Moritomo, G., Kitamura, W., Imanishi, S. & Azuma, N. Rice fields along the East Asian-Australasian flyway are important habitats for an inland wader’s migration. Sci. Rep. 10, 4118 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Studds, C. E. & Marra, P. P. Linking fluctuations in rainfall to nonbreeding season performance in a long-distance migratory bird, Setophaga ruticilla. Clim. Res. 35, 115–122 (2007).
    Google Scholar 
    Newton, I. Can conditions experienced during migration limit the population levels of birds?. J. Ornithol. 147, 146–166 (2006).
    Google Scholar 
    Anderson, A. M. et al. Drought at a coastal wetland affects refuelling and migration strategies of shorebirds. Oecologia 197, 661–674 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakhimberdiev, E. et al. Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nat. Commun. 9, 4263 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wikelski, M. et al. Costs of migration in free-flying songbirds. Nature 423, 704 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meissner, W. Ageing and sexing the curonicus subspecies of the Little Ringed Plover Charadrius dubius. Wader Study Gr. Bull. 113, 28–31 (2007).
    Google Scholar 
    Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, L08707 (2006).ADS 

    Google Scholar 
    Almazroui, M., Saeed, S., Saeed, F., Islam, M. N. & Ismail, M. Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst. Environ. 4, 297–320 (2020).ADS 

    Google Scholar 
    Lisovski, S. et al. The Indo-European flyway: Opportunities and constraints reflected by Common Rosefinches breeding across Europe. J. Biogeogr. 48, 1255–1266 (2021).
    Google Scholar 
    Lislevand, T. et al. Red-spotted Bluethroats Luscinia s. svecica migrate along the Indo-European flyway: A geolocator study. Bird Study 62, 508–515 (2015).
    Google Scholar 
    Brlík, V., Ilieva, M., Lisovski, S., Voigt, C. C. & Procházka, P. First insights into the migration route and migratory connectivity of the Paddyfield Warbler using geolocator tagging and stable isotope analysis. J. Ornithol. 159, 879–882 (2018).
    Google Scholar 
    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland (Poyser, 2002).
    Google Scholar 
    Saurola, P., Valkama, J. & Velmala, W. The Finnish Bird Ringing Atlas (Finnish Museum of Natural History and the Ministry of Environment, 2013).
    Google Scholar 
    Bairlein, F. et al. Atlas des Vogelzugs—Ringfunde Deutscher Brut- und Gastvögel (AULA-Verlag GmbH, 2014).
    Google Scholar 
    Salewski, V., Hochachka, W. M. & Fiedler, W. Multiple weather factors affect apparent survival of European Passerine birds. PLoS One 8, e59110 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaub, M., Jakober, H. & Stauber, W. Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine. Oecologia 167, 445–459 (2011).ADS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Weak effects of geolocators on small birds: A meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).PubMed 

    Google Scholar 
    Weiser, E. L. et al. Effects of geolocators on hatching success, return rates, breeding movements, and change in body mass in 16 species of Arctic-breeding shorebirds. Mov. Ecol. 4, 12 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lisovski, S., Sumner, M. D., & Wotherspoon, S. J. TwGeos: Basic data processing for light based geolocation archival tags. 2015. https://github.com/slisovski/TwGeosLisovski, S. & Hahn, S. GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol. Evol. 3, 1055–1059 (2012).
    Google Scholar 
    Ekstrom, P. A. An advance in geolocation by light. Mem. Natl Inst. Polar Res. 58, 210–226 (2004).
    Google Scholar 
    Brunsdon, C. & Chen, H. GISTools: Some further GIS capabilities for R. (2014).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, B. The Asian Monsoon (Springer, 2006).
    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing (2021).Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 

    Google Scholar 
    Lebreton, J., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).
    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Google Scholar 
    Pradel, R. Flexibility in survival analysis from recapture data: Handling trap-dependence. In Marked Individuals in the Study of Bird Population (eds Lebreton, J.-D. & North, P.) (Birkhäuser-Verlag, 1993).
    Google Scholar 
    Choquet, R., Lebreton, J. D., Gimenez, O., Reboulet, A. M. & Pradel, R. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography (Cop.) 32, 1071–1074 (2009).
    Google Scholar 
    Pakanen, V. M. et al. Natal dispersal does not entail survival costs but is linked to breeding dispersal in a migratory shorebird, the southern dunlin Calidris alpina schinzii. Oikos 2022, ee08951 (2022).Article 

    Google Scholar 
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical in-Formation-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Grosbois, V. et al. Assessing the impact of climate variation on survival in vertebrate populations. Biol. Rev. 83, 357–399 (2008).CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Survival fluctuations linked to variation in the South Asian monsoon in a Palearctic migratory shorebird. Zenodo https://doi.org/10.5281/zenodo.7026440 (2022). More

  • in

    Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor

    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of lack’s principle. Am. Nat. 100, 687–690 (1966).
    Google Scholar 
    Stearns, S. C. The evolution of life histories. (Oxford University Press, 1992).Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Partridge, L., Prowse, N. & Pignatelli, P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc. R. Soc. B. 266, 255–261 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metcalfe, N. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).PubMed 

    Google Scholar 
    Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B. 280, 20122370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B. 282, 20150209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. J. Anim. Ecol. 90, 282–297 (2021).PubMed 

    Google Scholar 
    Pawelec, G. Age and immunity: What is “immunosenescence”?. Exp. Gerontol. 105, 4–9 (2018).CAS 
    PubMed 

    Google Scholar 
    Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).CAS 
    PubMed 

    Google Scholar 
    Maklakov, A. A. & Chapman, T. Evolution of ageing as a tangle of trade-offs: Energy versus function. Proc. R. Soc. B. 286, 20191604 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamel, S. et al. Fitness costs of reproduction depend on life speed: empirical evidence from mammalian populations: Fitness costs of reproduction in mammals. Ecol. Lett. 13, 915–935 (2010).PubMed 

    Google Scholar 
    Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).
    Google Scholar 
    Sorci, G. & Faivre, B. Inflammation and oxidative stress in vertebrate host–parasite systems. Phil. Trans. R. Soc. B. 364, 71–83 (2009).PubMed 

    Google Scholar 
    Ashley, N. T., Weil, Z. M. & Nelson, R. J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43, 385–406 (2012).
    Google Scholar 
    Babin, A., Moreau, J. & Moret, Y. Storage of carotenoids in crustaceans as an adaptation to modulate immunopathology and optimize immunological and life history strategies. BioEssays 41, 1800254 (2019).
    Google Scholar 
    Vasto, S. et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech. Ageing Dev. 128, 83–91 (2007).CAS 
    PubMed 

    Google Scholar 
    Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Licastro, F. et al. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing 2, 8 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Pawelec, G., Goldeck, D. & Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 29, 23–28 (2014).CAS 
    PubMed 

    Google Scholar 
    Pursall, E. R. & Rolff, J. Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE 6, e19972 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, I., Agashe, D. & Rolff, J. Early-life inflammation, immune response and ageing. Proc. R. Soc. B. 284, 20170125 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: The mealworm beetle, Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Chogne, M., Rigaud, T. & Moret, Y. Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort. BMC Evol. Biol. 20, 18 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Jehan, C., Sabarly, C., Rigaud, T. & Moret, Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J. Anim. Ecol. 91, 101–111 (2022).PubMed 

    Google Scholar 
    Chung, K.-H. & Moon, M.-J. Fine structure of the hemopoietic tissues in the mealworm beetle, Tenebrio molitor. Entomol. Res. 34, 131–138 (2004).
    Google Scholar 
    Urbański, A., Adamski, Z. & Rosiński, G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L.. Micron 104, 8–20 (2018).PubMed 

    Google Scholar 
    Vommaro, M. L., Kurtz, J. & Giglio, A. Morphological characterisation of haemocytes in the mealworm beetle Tenebrio molitor (Coleoptera, Tenebrionidae). Insects 12, 423 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Söderhäll, K. & Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998).PubMed 

    Google Scholar 
    Siva-Jothy, M. T., Moret, Y. & Rolff, J. Insect immunity: an evolutionary ecology perspective. in Advances in Insect Physiology vol. 32 1–48 (Elsevier, 2005).Nappi, A. J. & Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22, 469–480 (2000).CAS 
    PubMed 

    Google Scholar 
    Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. B. 273, 2571–2574 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Daukšte, J., Kivleniece, I., Krama, T., Rantala, M. J. & Krams, I. Senescence in immune priming and attractiveness in a beetle: Immunosenescence in a beetle. J. Evol. Biol. 25, 1298–1304 (2012).PubMed 

    Google Scholar 
    Krams, I. et al. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor. Curr. Zool. 59, 340–346 (2013).
    Google Scholar 
    Moon, H. J., Lee, S. Y., Kurata, S., Natori, S. & Lee, B. L. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J. Biochem. 116, 53–58 (1994).CAS 
    PubMed 

    Google Scholar 
    Lee, Y. J. et al. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Comm. 218, 6–11 (1996).CAS 
    PubMed 

    Google Scholar 
    Kim, D. H. et al. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol. Cells 8, 786–789 (1998).CAS 
    PubMed 

    Google Scholar 
    Roh, K.-B. et al. Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem. 284, 19474–19481 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, J.-W. et al. Beetle Immunity. in Invertebrate Immunity (ed. Söderhäll, K.) vol. 708 163–180 (Springer US, 2010).Chae, J.-H. et al. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev. Comp. Immunol. 36, 540–546 (2012).CAS 
    PubMed 

    Google Scholar 
    Haine, E. R., Pollitt, L. C., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J. Insect Physiol. 54, 1090–1097 (2008).CAS 
    PubMed 

    Google Scholar 
    Dhinaut, J., Chogne, M. & Moret, Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J. Anim. Ecol. 87, 448–463 (2018).PubMed 

    Google Scholar 
    Hoffmann, J. A., Reichhart, J.-M. & Hetru, C. Innate immunity in higher insects. Curr. Opin. Immunol. 8, 8–13 (1996).CAS 
    PubMed 

    Google Scholar 
    Moret, Y. Explaining variable costs of the immune response: selection for specific versus non-specific immunity and facultative life history change. Oikos 102, 213–216 (2003).
    Google Scholar 
    Khan, I., Prakash, A. & Agashe, D. Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum. J. Anim. Ecol. 85, 291–301 (2016).PubMed 

    Google Scholar 
    Rolff, J. Effects of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can. J. Zool. 79, 2176–2180 (2001).
    Google Scholar 
    Doums, C., Moret, Y., Benelli, E. & Schmid-Hempel, P. Senescence of immune defence in Bombus workers. Ecol. Entomol. 27, 138–144 (2002).
    Google Scholar 
    Schmid, M. R., Brockmann, A., Pirk, C. W. W., Stanley, D. W. & Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444 (2008).CAS 
    PubMed 

    Google Scholar 
    Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).
    Google Scholar 
    Armitage, S. A. O. & Boomsma, J. J. The effects of age and social interactions on innate immunity in a leaf-cutting ant. J. Insect Physiol. 56, 780–787 (2010).CAS 
    PubMed 

    Google Scholar 
    Korner, P. & Schmid-Hempel, P. In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J. Invert. Pathol. 87, 59–66 (2004).CAS 

    Google Scholar 
    Li, T., Yan, D., Wang, X., Zhang, L. & Chen, P. Hemocyte changes during immune melanization in Bombyx Mori infected with Escherichia coli. Insects 10, 301 (2019).PubMed Central 

    Google Scholar 
    Chase, M. R., Raina, K., Bruno, J. & Sugumaran, M. Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem. Mol. Biol. 30, 953–967 (2000).CAS 
    PubMed 

    Google Scholar 
    Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. in Insect Immunology 69–96 (Elsevier, 2008).Sadd, B. M. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).CAS 
    PubMed 

    Google Scholar 
    Gálvez, D. & Chapuisat, M. Immune priming and pathogen resistance in ant queens. Ecol. Evol. 4, 1761–1767 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Armitage, S. A. O. & Siva-Jothy, M. T. Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity 94, 650–656 (2005).CAS 
    PubMed 

    Google Scholar 
    Armitage, S. A. O., Thompson, J. J. W., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).CAS 
    PubMed 

    Google Scholar 
    Kokoza, V. A. et al. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274, 47–65 (2001).CAS 
    PubMed 

    Google Scholar 
    Isaac, P. G. & Bownes, M. Ovarian and fat-body vitellogenin synthesis in Drosophila melanogaster. Europ. J. Biochem. 123, 527–534 (2005).
    Google Scholar 
    Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).CAS 
    PubMed 

    Google Scholar 
    Haine, E. R., Moret, Y., Siva-Jothy, M. T. & Rolff, J. Antimicrobial defense and persistent infection in insects. Science 322, 1257–1259 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moret, Y. & Siva-Jothy, M. T. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 270, 2475–2480 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du Rand, N. & Laing, M. D. Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). Afr. J. Microbiol. Res. 5, 2222–2228 (2011).
    Google Scholar 
    Jurat-Fuentes, J. L. & Jackson, T. Bacterial entomopathogens. In Insect Pathology 2nd edn (eds Kaya, H. & Vera, F.) 265–349 (Elsevier Academic Press, Cambridge, Mass, 2012).
    Google Scholar 
    Dhinaut, J., Balourdet, A., Teixeira, M., Chogne, M. & Moret, Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci. Rep. 7, 12429 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moreau, J., Martinaud, G., Troussard, J.-P., Zanchi, C. & Moret, Y. Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos 121, 1828–1832 (2012).
    Google Scholar 
    Lee, H. S. et al. The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Lett. 444, 255–259 (1999).CAS 
    PubMed 

    Google Scholar 
    Zanchi, C., Troussard, J.-P., Martinaud, G., Moreau, J. & Moret, Y. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. J. Anim. Ecol. 80, 1174–1183 (2011).PubMed 

    Google Scholar 
    Moret, Y. ‘Trans-generational immune priming’: Specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B. 273, 1399–1405 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubuffet, A. et al. Trans-generational immune priming protects the eggs only against gram-positive bacteria in the mealworm beetle. PLoS Pathog. 11, e1005178 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Population status, distribution and trophic implications of Pinna nobilis along the South-eastern Italian coast

    According to the target of the present study, the mortality incidence on P. nobilis in local populations along the Apulia peninsula (the Southeast coast of Italy) following the MME was assessed. In addition, an investigation on the species distribution and densities in the Adriatic and the Ionian Sea was carried out, which allowed us to build a picture of species populations before the MME.Concerning the P. nobilis distribution in the Apulia region before the MME, unfortunately, there is a lack of information at the wide scale, and literature reports only concern semi-enclosed systems such as the Taranto basins17,18,19 and the Aquatina lagoon20. No large-scale monitoring program on P. nobilis, in fact, has been carried out previously along the Apulian coast, although this kind of surveys is indispensable for the management of a protected species and must become mandatory for a critically endangered species such has become P. nobilis. The present data-gathering, that is aimed to partially address this information gap, based on the monitoring of recently dead specimens, allowed to realize a plausible map of P. nobilis distribution and densities before the MME in 30 areas distributed along the entire Apulian region coast.Along the Ionian coast, recently dead P. nobilis were detected in all the areas studied, highlighting a continuous distribution of the species prior to the MME, differently from the not continuous distribution along the Adriatic coast. The occurrence of P. nobilis was recorded in the areas surveyed in the south, from A7 to A17, but no traces were found along the northernmost areas except for the Tremiti archipelago, suggesting that the northernmost Adriatic coast of the region does not meet the environmental conditions suitable for hosting this species. Nevertheless, in the Gulf of Manfredonia multiple reports from fisherman indicating the presence of the species in a local Cymodocea nodosa meadow before the 1980s, suggest that this area may have been an exception in the past. Therefore, we can assume that excessive fishing and anthropogenic activities in this area are likely to have caused the species to disappear many decades ago.Data regarding the mortality incidence after the MME in Apulian populations is scarce. Panarese et al.11 reported the advent of the disease in Mar Piccolo di Taranto but without describing the disease incidence. In this study, a mortality incidence of 100% in all basins, bathymetric (down to 15 m) and habitat types, was recorded, demonstrating the severity of the situation along the entire Apulian coast, both inshore and offshore, and in lagoon and marine-protected areas.Although the availability of nutrients and the trophic conditions are assumed to be very different between offshore, inshore, and transitional systems, the archipelago of Tremiti islands, located 13 miles away from the coast, showed no differences in mortality incidence from sites along the coast, evidencing the same critical conditions in all environments.Many Mediterranean lagoon systems, including the Ebro Delta, Mar Menor Lagoon in Spain21, the Rhone delta, Leucate and Thau in France22,23,24, Venice, Grado-Marano and Faro in Italy25,26,27, Bizerte in Tunisia24 are considered the last healthy shelters for P. nobilis populations in the Mediterranean Sea22. These systems seem to offer a degree of resistance against the disease and are all characterized by high seasonal fluctuations of environmental parameters, such as temperature and salinity. It has been supposed that the effect of these fluctuations could make these environments less suitable for the spread of the disease and reduce the rate of transmission21,22. In the present study, two lagoon systems were also investigated, but no live specimens were found. These systems are strongly affected by the saltwater intrusion and the freshwater inputs became very low during the dry season. Hence, we can assume that during the summer season, when P. nobilis become susceptible to the disease, no salinity barrier against the pathogen spread persists in these lagoons systems.Considering that the lagoon refuges currently represent the main source of larval production for P. nobilis recruitment22,28, the collapse of these populations confirms the severity of the situation for species conservation. For the Italian coast, the last live populations are those in the lagoons located in the northen Adriatic Sea (Venice and Grado-Marano lagoon). These environments can act as larval exporters for the Adriatic Sea taking advantage of the mobility of the larvae that can spread over hundreds of kms28.Regarding the timeframe of the spread of the MME along the Apulian coast, the first report of the infection dates back to 201818, in the Mar Piccolo di Taranto. Compared to the first MME event observed in the Spanish coast in 20165,7, the disease has spread from the western to the eastern basin of the Mediterranean Sea over a period of 2 years. Our surveys, carried out in 2020, showed that 91% of the shells were still undamaged and with joined valves. Based on the state of conservation of the shells29 it is possible to hypothesize that the death of the specimens was a recent phenomenon that had occurred in Apulia in the two years preceding our surveys, and most probably it should be dated back to 2019.Kersting and Ballesteros30 have suggested that other species, such as P. rudis, could benefit from the collapse of the P. nobilis population. During our surveys, only 5 specimens of P. rudis were found, located in 2 sites, but it must be considered that the survey was carried out only a short time after the MME of P. nobilis. Further studies aimed at assessing an increase in P. rudis in the investigated areas would be of great interest to corroborate this hypothesis.In these surveys, P. nobilis showed transverse distribution among habitat types occurring both in marine and lagoon systems, inside and outside seagrass meadows, on sandy, rocky, and maerl beds substrate. Nevertheless, on a spatial macro (from a few kilometers to tens of kilometers) and mesoscale (from hundreds to thousands of meters), an overlap with the distributional range of seagrass meadows emerges. A clear cross-boundary subsidy trend was evidenced by the data collected on P. nobilis distribution in association with seagrasses. The specimens inside seagrass meadows were almost double than those detected nearby and a gradual decrease was observed with the increase of the distance from the seagrass patches (Fig. 2). This is particularly evident along the northern Adriatic coast of the region, where extended seagrass meadows are absent and, no trace of P. nobilis was encountered, except in the Tremiti archipelago where both P. oceanica meadows and pen shells were found. By contrast, present data reporting P. nobilis as associated with various seagrass species, such as P. oceanica, C. nodosa, and Zostera sp., are consistent with the macroscale and mesoscale association between P. nobilis and seagrass meadows sensu lato and most literature reporting ubiquitous distribution of P. nobilis both in lagoon-estuarine21,22,24,25,26,31 and in marine ecosystems4,7,9,14,16,24.However, regarding their microscale distribution, the pen shells in our surveys were recorded also outside the seagrass meadows boundaries, at times up to 1 km away. Hence, seagrass sheltering can potentially be ruled out as the sole explanatory factor for the distribution pattern of the species. The pattern emerging from this study led us to hypothesize that a trophic link with the seagrass detritus food-chain may explain both the macroscale–mesoscale association with seagrass species and the microscale cross-boundary distribution. In fact, seagrass detritus is highly refractory, since it is largely exported to the nearby areas where it can represent the major food source for other invertebrates32,33,34. This hypothesis is consistent with the stomach contents observations reported by Davenport et al.3 indicating detritus as the bulk component, accounting for 95% of the total ingested material.One of the main factors underlying the distribution pattern in benthic invertebrates is indeed food availability35,36. According to the Ideal Free Distribution (IFD) theory, the individuals in a population disperse to different resource patches within their environment, minimizing competition and maximizing fitness37. When the IFD assumptions are met, the number of individuals who aggregate in patches is proportional to the amount of food resource available in each one. Accordingly, the distribution of large, long life, and sessile organisms such as P. nobilis would be expected to depict the species trophic supply, by analyzing the resources available in those patches.Studies on the seagrass system energy flow have shown that seagrass debris must be fractionated before entering the food chain33. In this way, plant material becomes fine particulates moving in the boundary layer over the sediment–water interface38,39. These processes take time, and while the matter is transported, heterotrophic bacteria grow exponentially, turning it into a high quality and protein-enriched food for consumers. Hence, bacteria adhering to seagrass detritus may play a key role in this benthic food chain and sediment–water interface consumers may incorporate more energy from associated microbes than from the detritus itself32,38. On the basis of these considerations, it is reasonable to hypothesize that the quantity, composition and origin of the suspended particles are regulated by a drift mechanism and that this mechanism may explain local densities of P. nobilis as a response to sinking rates and resuspension effects. This hypothesis explain also the species distribution in systems, characterized by strong dominant current and shallow seabeds where the seagrass detritus can be spread/drift several kilometers away from the meadows. An example of this condition is encountered in the north Adriatic Sea (e.g., Gulf of Trieste) where extensive population of P. nobilis develops on several sink areas even kilometers downstream from the meadows. The assumption of the species’ ability to feed on seagrass detritus, together with the high biomasses reached (large size specimens and high density), lead us to suppose that P. nobilis may play a key role in the processing of matter and in the energy pathway deriving from seagrass detritus in Mediterranean coastal areas. This makes the repercussions of the MME not only a problem of conservation, but also and above all, an ecological-functional issue.We can, therefore, conclude that Mediterranean seagrass meadows not only constitute a habitat for P. nobilis, but probably also a food source through refractory detritus generation which is transferred and transformed outside the meadows. Unfortunately, literature is lacking on this topic and further investigations are needed to define the trophic role and function of these filter feeders in the different seagrass meadows.The density values that emerged were significantly different among basins. In the Adriatic Sea, where all the coastal values were recorded, the densities were consistently lower than those reported in the Ionian Sea, except for the two southernmost areas. In the Adriatic basin, it was also possible to recognize a north-south trend when considering the densities of pen shells in the coastal areas. Although the values recorded along the southern coast of the region were much greater than those recorded in the central coast, they were far lower than those reported by Čižmek et al.40 in the Croatian coast (North Adriatic Sea). Similar values to ours within the same basin were reported by Celebicic et al.41 in Bosnian waters (0.12 individuals/100 m2).On the other hand, in the Ionian areas, the values recorded were consistently >0.1 individuals/100 m2. The values recorded in the Mar Grande di Taranto were higher than those reported by Centoducati et al.17 (0.1–0.7 ind/ha2). From interviews with fishermen, it emerged that illegal trawling in this area has strongly impacted the natural populations of the Mar Grande di Taranto, and a partial reduction of this activity, in recent years could explain the slight increase in density compared to the 2004 survey data17.In interpreting our data, it should be considered that the surveys were carried out employing an extensive sampling protocol conceived to assess wide surface densities on coastal areas investigating across several habitat types. Therefore, literature density values focused only on local areas or habitat patchiness that were not randomly selected must be contextualized when compared with these data. In addition, given the scale of the presented surveys, emphasis must be given to P. nobilis absence data of which the literature appears poor. Indeed, contrary to the data on presence, reliable absence data are difficult to obtain requiring much greater effort to rule out a rare occurrence42. The absence data obtained in this study derive from the merger of two different data types. The first come from the local ecological knowledge obtained from interviews with the local fishermen, which allowed us to confirm our data, excluding spot occurrences in the same areas. Furthermore the interviews allowed us to collect information on a historical series of species presence/absence in the areas, which was helpful to confirm local absence when no P. nobilis specimens were recorded in our surveys. The second derives from the complete vision of divers during the field surveys. Indeed the scuba diver’s view was at least 10 times wider than 50 cm from the side around the rope and hence, the perception of absence can be extended over a much larger surface area investigated. By merging these two sources of information, we can assume that the absence data collected in exhaustive and complete.In conclusion, this study investigated different basins, habitat types, and bathymetries along the Apulian coast. The shells spatial distribution that arise from this study allowed to obtain important information on the species trophic ecology. Indeed, the species distributional pattern showed a strong overlap with seagrass meadows on meso and macro geographical scale, however this was not the case on a micro scale. This result indicates that although there is a strong relationship between P. nobilis and seagrass meadows, it is not limited to the habitat patch but crosses the boundaries of seagrass. This result led us to hypothesize that the distribution of P. nobilis displays a trophic link through the cross-boundary subsidy occurring from seagrass meadows to the nearby habitat, by means of the refractory detrital pathway. However, further investigations taking into account other factors such as hydrodynamics, are needed to investigate this topic.No live specimens of P. nobilis were found in >800 km of coastal line, leading us to the conclusion that the coastal and lagoon population had totally collapsed in the region after the MME. The seriousness of the situation on the Apulian coasts, just as in the other Mediterranean ecoregions, indicates that the MME that began in 2016 is still in progress, and no local population can be considered safe. Given the gravity of the current situation, it is vital for species preservation to extend the survey across the entire Italian coast to gain a overall picture of the status of the P. nobilis population on a national scale. Indeed, other regions may reveal the existence of natural shelters, where live populations of P. nobilis may still persist. If this is the case, it is essential to identify and protect them in time. As already suggested by Kersting et al.9, this initiative should be conducted in parallel by all the nations of the Mediterranean basin to implement standard guidelines for the monitoring, protection, and recovery of this critically endangered species. More

  • in

    Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).CAS 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio 11, e02901-19 (2020).Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).Minich, J. J. et al. Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus. mSphere 5, e00401-20 (2020).Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).PubMed 

    Google Scholar 
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobbie, J. E., Daley, R. J. & Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prussin, A. J. 2nd, Garcia, E. B. & Marr, L. C. Total virus and bacteria concentrations in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomez, D., Sunyer, J. O. & Salinas, I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish. Shellfish Immunol. 35, 1729–1739 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowrey, L., Woodhams, D. C., Tacchi, L. & Salinas, I. Topographical mapping of the Rainbow Trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 81, 6915–6925 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Microbial ecology of Atlantic Salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl. Environ. Microbiol. 86, 20 (2020).Minich, J. J. et al. Impacts of the marine hatchery built environment, water and feed on mucosal microbiome colonization across ontogeny in Yellowtail Kingfish, Seriola lalandi. Front. Mar. Sci. 0, 676731 (2021).Minich, J. J. et al. The Southern Bluefin Tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment. Front. Microbiol. 11, 2015 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ruiz-Rodríguez, M. et al. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microb. Ecol. 80, 212–222 (2020).PubMed 

    Google Scholar 
    Tarnecki, A. M., Burgos, F. A., Ray, C. L. & Arias, C. R. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 123, 2–17 (2017).CAS 
    PubMed 

    Google Scholar 
    Liu, H. et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6, 24340 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karachle, P. K. & Stergiou, K. I. Gut length for several marine fish: relationships with body length and trophic implications. Mar. Biodivers. Rec. 3, 1–10 (2010).Ghilardi, M. et al. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol. Evol. 11, 13218–13231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Clements, K. D., Angert, E. R., Linn Montgomery, W. & Howard Choat, J. Intestinal microbiota in fishes: what’s known and what’s not. Mol. Ecol. 23, 1891–1898 (2014).PubMed 

    Google Scholar 
    Zhu, D., Delgado-Baquerizo, M., Ding, J., Gillings, M. R. & Zhu, Y.-G. Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome 9, 189 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3, e00218-17 (2018).Davis, C. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 103, 9–17 (2014).CAS 
    PubMed 

    Google Scholar 
    Rastogi, G., Tech, J. J., Coaker, G. L. & Leveau, J. H. J. A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. J. Microbiol. Methods 83, 127–132 (2010).CAS 
    PubMed 

    Google Scholar 
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 45, e23 (2017).PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 41 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, N. C., Rise, M. L. & Christian, S. L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 10, 2292 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 

    Google Scholar 
    Chong-Seng, K. M., Mannering, T. D., Pratchett, M. S., Bellwood, D. R. & Graham, N. A. J. The influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7, e42167 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yahel, G. et al. Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Mar. Ecol. Prog. Ser. 372, 195–209 (2008).ADS 
    CAS 

    Google Scholar 
    Glover, C. N., Bucking, C. & Wood, C. M. The skin of fish as a transport epithelium: a review. J. Comp. Physiol. B 183, 877–891 (2013).CAS 
    PubMed 

    Google Scholar 
    León-Zayas, R., McCargar, M., Drew, J. A. & Biddle, J. F. Microbiomes of fish, sediment and seagrass suggest connectivity of coral reef microbial populations. PeerJ 8, e10026 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hess, S., Wenger, A. S., Ainsworth, T. D. & Rummer, J. L. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: impacts on gill structure and microbiome. Sci. Rep. 5, 10561 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sparagon, W. J. et al. Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes. Anim. Microbiome 4, 33 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edward Stevens, C. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, 2004).Wilson, J. M. & Castro, L. F. C. Morphological diversity of the gastrointestinal tract in fishes. Fish Physiol. 1–55 https://doi.org/10.1016/s1546-5098(10)03001-3 (2010).Shirakashi, S. et al. Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol. Int. 61, 242–249 (2012).PubMed 

    Google Scholar 
    Ogawa, K. & Fukudome, M. Mass mortality caused by Blood Fluke(Paradeontacylix) among Amberjack(Seriola dumeili) imported to Japan. Fish. Pathol. 29, 265–269 (1994).
    Google Scholar 
    Wilson, J. M. & Laurent, P. Fish gill morphology: inside out. J. Exp. Zool. 293, 192–213 (2002).PubMed 

    Google Scholar 
    Huang, Q. et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol. Ecol. 29, 5019–5034 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS 
    PubMed 

    Google Scholar 
    Lall, S. P. & Tibbetts, S. M. Nutrition, feeding, and behavior of fish. Vet. Clin. North Am. Exot. Anim. Pract. 12, 361–372 (2009). xi.PubMed 

    Google Scholar 
    Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).CAS 
    PubMed 

    Google Scholar 
    Day, R. D., German, D. P. & Tibbetts, I. R. Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 158, 23–29 (2011).
    Google Scholar 
    Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. Biol. Sci. 287, 20192900 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, e00097-18 (2018).Ross, A. A., Rodrigues Hoffmann, A. & Neufeld, J. D. The skin microbiome of vertebrates. Microbiome 7, 79 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Javůrková, V. G. et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 13, 2363–2376 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Doane, M. P. et al. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome 8, 93 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Chiarello, M. et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6, 147 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sylvain, F.-É. et al. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 86, e00789-20 (2020).Smith, C. C. R., Snowberg, L. K., Gregory Caporaso, J., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 2515–2526 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 

    Google Scholar 
    Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).
    Google Scholar 
    Sale, P. F. Reef fish communities: open nonequilibrial systems. In The Ecology of Fishes on Coral Reefs. 564–598. https://doi.org/10.1016/b978-0-08-092551-6.50024-6 (Academic Press Inc., San Diego, 1991).Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294-18 (2018).Press, C. McL & Evensen, Ø. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 9, 309–318 (1999).Koppang, E. O., Kvellestad, A. & Fischer, U. Fish mucosal immunity: gill. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 93–133. https://doi.org/10.1016/b978-0-12-417186-2.00005-4 (Elsevier Inc., 2015).Esteban, M. Á. & Cerezuela, R. Fish mucosal immunity: skin. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 67–92. https://doi.org/10.1016/b978-0-12-417186-2.00004-2 (Elsevier Inc., 2015).Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, e00021-16 (2016).Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Love, M. S., Bizzarro, J. J., Maria Cornthwaite, A., Frable, B. W. & Maslenikov, K. P. Checklist of marine and estuarine fishes from the Alaska–Yukon Border, Beaufort Sea, to Cabo San Lucas, Mexico. Zootaxa 5053, 1–285 (2021).PubMed 

    Google Scholar 
    Allen, L. G. & Horn, M. H. The Ecology of Marine Fishes: California and Adjacent Waters (University of California Press, 2006).Al-Hussaini, A. H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits; anatomy and histology. Q. J. Microsc. Sci. 90(Pt. 2), 109–139 (1949).PubMed 

    Google Scholar 
    Maddock, L., Bone, Q. & Rayner, J. M. V. (eds). In Mechanics and Physiology of Animal Swimming (Press Syndicate-of the University of Cambridge, 1994).Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cruz, G. N. F., Christoff, A. P. & de Oliveira, L. F. V. Equivolumetric protocol generates library sizes proportional to total microbial load in 16S amplicon sequencing. Front. Microbiol. 12, 638231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4, e00186-19 (2019).Minich, J. J. et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3, e00166-18 (2018).Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 

    Google Scholar 
    McDonald, D. et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847–848 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Minich, J. J. et al. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen 7, e00716 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Van Doan, H. et al. Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish. Sci. Aquac. 28, 16–42 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    The impact of environmental and climatic variables on genetic diversity and plant functional traits of the endangered tuberous orchid (Orchis mascula L.)

    Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K. & Sanders, N. J. Convergent effects of elevation on functional leaf traits within and among species. Funct. Ecol. 28, 37–45. https://doi.org/10.1111/1365-2435.12162 (2014).Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. https://doi.org/10.1038/nature15374 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838. https://doi.org/10.1111/ele.12618 (2016).Article 
    PubMed 

    Google Scholar 
    Paschke, M. C. & Schmid, B. Relationship between population size, allozyme variation, and plant performance in the narrow endemic Cochlearia bavarica. Conserv. Genet. 3, 131–144 (2002).Article 
    CAS 

    Google Scholar 
    Soleimani, V., Baum, B. & Johnson, D. A. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor. Appl. Genet. 104, 350–357. https://doi.org/10.1007/s001220100714 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x (2008).Article 
    PubMed 

    Google Scholar 
    Prati, D., Peintinger, M. & Fischer, M. Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant. J. Plant Ecol. https://doi.org/10.1093/jpe/rtv067 (2016).Article 

    Google Scholar 
    Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44. https://doi.org/10.1016/j.tree.2007.09.008 (2008).Article 
    PubMed 

    Google Scholar 
    Atwater, D. Z. & Callaway, R. M. Testing the mechanisms of diversity-dependent overyielding in a grass species. Ecology 96, 3332–3342. https://doi.org/10.1890/15-0889.1 (2015).Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. https://doi.org/10.1890/10-0999.1 (2011).Article 
    PubMed 

    Google Scholar 
    Whitney, K. D. et al. Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 189, 1107–1120. https://doi.org/10.1007/s00442-019-04371-7 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188. https://doi.org/10.1111/gcb.14904 (2020).Article 
    ADS 

    Google Scholar 
    König, P. et al. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Glob. Ecol. Biogeogr. 27, 310–321 (2018).Article 

    Google Scholar 
    Robinson, K. M., Ingvarsson, P. K., Jansson, S. & Albrectsen, B. R. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.). PLoS ONE 7, e37679. https://doi.org/10.1371/journal.pone.0037679 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karbstein, K., Prinz, K., Hellwig, F. & Römermann, C. Plant intraspecific functional trait variation is related to within-habitat heterogeneity and genetic diversity in Trifolium montanum L. Ecol. Evol. 10, 5015–5033. https://doi.org/10.1002/ece3.6255 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaya, S. & Tekin, A. R. The effect of salep content on the rheological characteristics of a typical ice-cream mix. J. Food Eng. 47, 59–62. https://doi.org/10.1016/S0260-8774(00)00093-5 (2001).Article 

    Google Scholar 
    Ktistis, G. & Georgakopoulos, P. P. Rheology of salep mucilages. Pharmazie 46, 55–56 (1991).CAS 

    Google Scholar 
    Kayacier, A. & Dogan, M. Rheological properties of some gums-salep mixed solutions. J. Food Eng. 72, 261–265. https://doi.org/10.1016/j.jfoodeng.2004.12.005 (2006).Article 
    CAS 

    Google Scholar 
    Sen, M. A., Palabiyik, I. & Kurultay, S. The effect of saleps obtained from various Orchidacease species on some physical and sensory properties of ice cream. Food Sci. Technol. 39, 82–87. https://doi.org/10.1590/fst.26017 (2019).Article 

    Google Scholar 
    Farhoosh, R. & Riazi, A. A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature. Food Hydrocoll. 21, 660–666. https://doi.org/10.1016/j.foodhyd.2006.07.021 (2007).Article 
    CAS 

    Google Scholar 
    Ghorbani, A., Zarre, S., Gravendeel, B. & de Boer, H. J. Illegal wild collection and international trade of CITES-listed terrestrial orchid tubers in Iran. Traffic Bullet. 26, 52–58 (2014).
    Google Scholar 
    Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. https://doi.org/10.1126/science.1156831 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, Z.-Q., Algeo, T. J. & Fraiser, M. L. Organism-environment interactions during the Permian-Triassic mass extinction and its aftermath. Palaios 28, 661–663. https://doi.org/10.2110/palo.2012.p12-102r (2013).Article 
    ADS 

    Google Scholar 
    Ebrahimi, A. et al. Evaluation of phenotypic diversity of the endangered orchid (Orchis mascula): Emphasizing on breeding, conservation and development. S. Afr. J. Bot. 132, 304–315. https://doi.org/10.1016/j.sajb.2020.05.013 (2020).Article 

    Google Scholar 
    Ghorbani, A., Gravendeel, B., Naghibi, F. & de Boer, H. Wild orchid tuber collection in Iran: A wake-up call for conservation. Biodivers. Conserv. 23, 2749–2760. https://doi.org/10.1007/s10531-014-0746-y (2014).Article 

    Google Scholar 
    Barrett, S. C. & Kohn, J. R. The application of minimum viable population theory to plants. Genetics and conservation of rare plants 3–1 (Oxford University Press, 1991).
    Google Scholar 
    Yun, S. A., Son, H.-D., Im, H.-T. & Kim, S.-C. Genetic diversity and population structure of the endangered orchid Pelatantheria scolopendrifolia (Orchidaceae) in Korea. PLoS ONE 15, e0237546. https://doi.org/10.1371/journal.pone.0237546 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gholami, S., Vafaee, Y., Nazari, F. & Ghorbani, A. Exploring genetic variations in threatened medicinal orchids using start codon targeted (SCoT) polymorphism and marker-association with seed morphometric traits. Physiol. Mol. Biol. Plants 27, 769–785. https://doi.org/10.1007/s12298-021-00978-4 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gholami, S., Vafaee, Y., Nazari, F. & Ghorbani, A. Molecular characterization of endangered Iranian terrestrial orchids using ISSR markers and association with floral and tuber-related phenotypic traits. Physiol. Mol. Biol. Plants 27, 53–68. https://doi.org/10.1007/s12298-020-00920-0 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaki, A., Vafaee, Y. & Khadivi, A. Genetic variation of Anacamptis coriophora, Dactylorhiza umbrosa, Himantoglossum affine, Orchis mascula, and Ophrys schulzei in the western parts of Iran. Ind. Crops Prod. 156, 112854. https://doi.org/10.1016/j.indcrop.2020.112854 (2020).Article 
    CAS 

    Google Scholar 
    Falk, D., & Holsinger, K. E. Genetic sampling guidelines for conservation collections of endangered plants (1991).Dempewolf, H. et al. Past and future use of wild relatives in crop breeding. Crop Sci. 57, 1070–1082. https://doi.org/10.2135/cropsci2016.10.0885 (2017).Article 

    Google Scholar 
    Renz, J. Flora Iranica. Part 126: Orchidaceae (1978).Shahsavari, A. Flora of Iran. Part 57: Orchidaceae (2008).Boulila, A., Béjaoui, A., Messaoud, C. & Boussaid, M. Genetic diversity and population structure of Teucrium polium (Lamiaceae) in Tunisia. Biochem. Gen. 48, 57–70. https://doi.org/10.1007/s10528-009-9295-6 (2010).Article 
    CAS 

    Google Scholar 
    Zannou, A., Struik, P., Richards, P., Zoundjih, E. & Yam, J. (Dioscorea spp.) responses to the environmental variability in the Guinea Sudan zone of Benin. Afr. J. Agric. Res. 10, 4913–4925. https://doi.org/10.5897/AJAR2013.8099 (2015).Article 

    Google Scholar 
    Sujii, P. et al. Morphological and molecular characteristics do not confirm popular classification of the Brazil nut tree in Acre, Brazil. Genet. Mol. Res. https://doi.org/10.4238/2013.september.27.3 (2013).Article 
    PubMed 

    Google Scholar 
    Nadeem, M. A. et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32, 261–285. https://doi.org/10.1080/13102818.2017.1400401 (2018).Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Brys, R., Adriaens, D., Honnay, O. & Roldán-Ruiz, I. Effects of population size and forest management on genetic diversity and structure of the tuberous orchid Orchis mascula. Conserv. Genet. 10, 161–168. https://doi.org/10.1007/s10592-008-9543-z (2009).Article 

    Google Scholar 
    Mitchell, P. & Woodward, F. Responses of three woodland herbs to reduced photosynthetically active radiation and low red to far-red ratio in shade. J. Ecol. https://doi.org/10.2307/2260575 (1988).Article 

    Google Scholar 
    Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. & Pierce, R. S. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monog. 40, 23–47. https://doi.org/10.2307/1942440 (1970).Article 

    Google Scholar 
    Jacquemyn, H. & Brys, R. Lack of strong selection pressures maintains wide variation in floral traits in a food-deceptive orchid. Ann. Bot. 126, 445–453. https://doi.org/10.1093/aob/mcaa080 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olaya-Arenas, P., Meléndez-Ackerman, E. J., Pérez, M. E. & Tremblay, R. Demographic response by a small epiphytic orchid. Am. J. Bot. 98, 2040–2048. https://doi.org/10.3732/ajb.1100223 (2011).Article 
    PubMed 

    Google Scholar 
    Primack, R. B., Miao, S. & Becker, K. R. Costs of reproduction in the pink lady’s slipper orchid (Cypripedium acaule): Defoliation, increased fruit production, and fire. Am. J. Bot. 81, 1083–1090. https://doi.org/10.2307/2446500 (1994).Article 

    Google Scholar 
    Whigham, D. F. & O’Neill, J. P. Dynamics of flowering and fruit production in two eastern North American terrestrial orchids. In Tipularia Discolor and Liparis Lilifolia in Population Ecology of Terrestrial Orchids (eds Wells, T. C. E. & Willems, J. H.) 89–101 (SPB Academic Publishers, 1991).
    Google Scholar 
    Tekinşen, K. K. & Güner, A. Chemical composition and physicochemical properties of tubera salep produced from some Orchidaceae species. Food Chem. 121, 468–471. https://doi.org/10.1016/j.foodchem.2009.12.066 (2010).Article 
    CAS 

    Google Scholar 
    Whigham, D. F. Biomass and nutrient allocation of Tipularia discolor (Orchidaceae). Oikos https://doi.org/10.2307/3544398 (1984).Article 

    Google Scholar 
    Mattila, E. & Kuitunen, M. T. Nutrient versus pollination limitation in Platanthera bifolia and Dactylorhiza incarnata (Orchidaceae). Oikos 89, 360–366. https://doi.org/10.1034/j.1600-0706.2000.890217.x (2000).Article 

    Google Scholar 
    Xu, W. et al. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 37, 9. https://doi.org/10.1007/s11738-014-1760-0 (2015).Article 
    CAS 

    Google Scholar 
    March-Salas, M., Fandos, G. & Fitze, P. S. Effects of intrinsic environmental predictability on intra-individual and intra-population variability of plant reproductive traits and eco-evolutionary consequences. Ann. Bot. 127, 413–423. https://doi.org/10.1093/aob/mcaa096 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150. https://doi.org/10.1007/s00382-015-2636-8 (2016).Article 

    Google Scholar 
    Crémieux, L., Bischoff, A., Müller-Schärer, H. & Steinger, T. Gene flow from foreign provenances into local plant populations: Fitness consequences and implications for biodiversity restoration. Am. J. Bot. 97, 94–100. https://doi.org/10.3732/ajb.0900103 (2010).Article 
    PubMed 

    Google Scholar 
    Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443. https://doi.org/10.1111/j.1365-2435.2006.01228.x (2007).Article 

    Google Scholar 
    Jacquemyn, H. et al. Multigenerational analysis of spatial structure in the terrestrial, food-deceptive orchid Orchis mascula. J. Ecol. 97, 206–216. https://doi.org/10.1111/j.1365-2745.2008.01464.x (2009).Article 

    Google Scholar 
    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962. https://doi.org/10.1126/science.aag2773 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ene, C. O., Ogbonna, P. E., Agbo, C. U. & Chukwudi, U. P. Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chilean J. Agric. Res. 76, 307–313. https://doi.org/10.4067/S0718-58392016000300007 (2016).Article 

    Google Scholar 
    Pradhan, S. K. et al. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLoS ONE 11, e0160027. https://doi.org/10.1371/journal.pone.0160027 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swarup, S. et al. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 61, 839–852. https://doi.org/10.1002/csc2.20377 (2021).Article 

    Google Scholar 
    Patzak, A. Plantaginaceae in KH Rechinger Flora Iranica 15: 1–21 (Academische Druck und Verlagsantalt, 1965).
    Google Scholar 
    Mehrvarz Saeidi, S. Plantaginaceae Family Vol. 14 (Research Institute of Forests and Rangelands, 1995).
    Google Scholar 
    Limited, M. I. I. Glucomannan assay procedure KGLUM 10/04. Ireland (2004).Limited, M. I. I. Total starch assay procedure (amyloglucosidase/a-Amylase Method) AA/AMG 11/01. AOAC Method 996.11.Ireland (2004).Bradshaw, H., Otto, K. G., Frewen, B. E., McKay, J. K. & Schemske, D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149, 367–382. https://doi.org/10.1093/genetics/149.1.367 (1998).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Del Sal, G., Manfioletti, G. & Schneider, C. The CTAB-DNA precipitation method: A common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7, 514–520 (1989).PubMed 

    Google Scholar 
    Vos, P. et al. AFLP: A new technique for DNA fingerprinting. Nucl. Acid Res. 23, 4407–4414. https://doi.org/10.1093/nar/23.21.4407 (1995).Article 
    CAS 

    Google Scholar 
    Bassam, B. J., Caetano-Anollés, G. & Gresshoff, P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83. https://doi.org/10.1016/0003-2697(91)90120-I (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Husson, F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’. An R package 96, 698 (2016).
    Google Scholar 
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Galili, T. in The R User Conference, useR! 2017 July 4–7 2017 Brussels, Belgium. 219.Wei, T. et al. Package ‘corrplot’. 56, e24 (2017).Yeh, F. POPGENE (version 1.3. 1). Microsoft Window-Bases Freeware for Population Genetic Analysis. http://www.ualbertaca/~fyeh/ (1999).Wickham, H. & Chang, W. URL: http://CRAN.R-project.org/package=ggplot2.ggplot2: An implementation of the Grammar of Graphics. 3 (2008).Kolde, R. & Kolde, M. R. Package’ pheatmap’. R package 1, 790 (2015).
    Google Scholar 
    Landgraf, A. J. & Lee, Y. Dimensionality reduction for binary data through the projection of natural parameters. J. Mult. Anal. 180, 104668. https://doi.org/10.1016/j.jmva.2020.104668 (2020).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Biol. J. Linn. Soc. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4-3 (2016).Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer. J. 2, e281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vavrek, M. J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 16. https://doi.org/10.7717/peerj.281 (2011).Article 

    Google Scholar 
    Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 (2007).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Aquaculture rearing systems induce no legacy effects in Atlantic cod larvae or their rearing water bacterial communities

    Bacterial density and growth potential in the rearing water were related to the microbial carrying capacityQuantifying the bacterial density in each tank verified that we obtained a higher bacterial load in the systems with added organic material. The bacterial density was, on average, 7.8× higher in the systems with high compared to low bacterial carrying capacity. This difference was particularly evident at 2 (34.8×, Kruskal–Wallis p = 0.0008) and 9 DPH (9.1×, Kruskal–Wallis p = 0.0007) (Fig. 1). The bacterial density increased throughout the experiment for the tanks with low microbial carrying capacity (treatment group MMS−, FTS−), reflecting increased larval feeding and defecation. Contrastingly, the bacterial density was relatively stable over time in the MMS+ treatment and even decreased over time in the FTS+ treatment. When averaging the densities at 11 and 15 DPH within each rearing treatment, we observed that the ‘MMS+ to FTS+’ had a considerable difference in the bacterial density between incoming and rearing water (24.2×). In contrast, this difference was below 8.2× in all other treatment tanks. Such differences in density indicated that some communities were below the microbial carrying capacity of the systems. We thus investigated the growth potential to determine if carrying capacity was reached in the rearing water.Figure 1Bacterial density (million bacterial cells mL−1) at various days post-hatching (DPH) in incoming and rearing tank water. Note that the y-axis is log scaled. Colours indicate the rearing treatment, and shape signifies rearing (filled circle) and incoming water (filled triangle).Full size imageThe bacterial net growth potential in the intake and rearing water was quantified as the number of cell doublings after incubation for 3 days11. Generally, the FTS− and MMS− rearing water had net growth potential with an average of 0.2 and 0.1, respectively (Supplementary Fig. 2). In contrast, the rearing water of the FTS+ and MMS+ had a negative net growth potential with averages of −0.2 and −0.06, respectively. In the case of negative net growth potential, the bacterial density decreased during the incubation. A negative net growth potential suggested that the rearing water bacterial communities were at the tank’s microbial carrying capacity at the time of sampling. Thus, the bacterial communities were at the carrying capacity of the high (+) carrying capacity systems and below in the low (−) systems. To gain a deeper understanding of the bacterial community characteristics the 16S rRNA gene of the bacterial community was sequenced at 1 and 9 DPH.Initial rearing condition did not leave a legacy effect on bacterial α-diversityThe bacterial α-diversity of the rearing water was investigated at 1 and 12 DPH (Fig. 2). At 1 DPH, the richness was comparable between the FTS−, FTS+ and MMS+ treatments, but on average, 1.5× higher for the MMS− treatment (307 vs 205 ASVs, Tukey’s test p  More

  • in

    As elephant poaching falls in Africa, instate more ivory bans

    The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) last month released its annual report on elephant poaching. It reveals a downward trend across African range states, based on data from its Monitoring the Illegal Killing of Elephants programme. The decline correlates with reduced ivory trading over the period, particularly in the Chinese market.
    Competing Interests
    The author declares no competing interests. More

  • in

    Record-breaking fires in the Brazilian Amazon associated with uncontrolled deforestation

    G.M., L.O.A., L.V.G. and L.E.O.C.A. thank the São Paulo Research Foundation (FAPESP) for funding (grants 2019/25701-8, 2020/08916-8, 2016/02018-2 and 2020/15230-5, respectively). L.O.A. and L.E.O.C.A. thank the National Council for Scientific and Technological Development (CNPq) for funding (grants 314473/2020-3 and 314416/2020-0, respectively). G.d.O. thanks the University of South Alabama Faculty Development Council Grant for funding (grant 279600-2022). More