More stories

  • in

    Population admixtures in medaka inferred by multiple arbitrary amplicon sequencing

    DNA sample collectionTo analyze the population structure of wild medaka populations, we selected samples from the DNA collection of Takehana et al.29, deposited in University of Shizuoka. The original DNA collection had been made throughout 1980s and 2000s. The selected samples covered the major mitotypes and contained more than three individuals of each population (Table S11, Fig. 3), which were collected from three collection sites for O. sakaizumii and 12 collection sites for O. latipes. We also examined several artificial strains: HNI and Hd-rR, which are inbred strains derived from O. sakaizumii and O. latipes, respectively, and four Himedaka individuals from commercial stock (Uruma city, Okinawa Prefecture, Japan).In addition, samples were newly collected at Kunigami Village, Okinawa Prefecture. Live fish were anesthetized with MS-222 (aminobenzene methanesulfonate, FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) and then fixed in 99% ethanol. Genomic DNA was extracted using a DNeasy kit (Qiagen Inc., Hilden, Germany) from ethanol-fixed pectoral fin samples according to the manufacturer’s protocol. The DNA concentration was measured using a spectrophotometer (Nanodrop 1000, Thermo Fisher Scientific, Waltham, Massachusetts, USA), and the DNA was diluted with PCR-grade water to a concentration of c.a. 10 ng/µl (UltraPure™ DNase/RNase-Free Distilled Water, Thermo Fisher Scientific).Ethic statementAll methods were carried out in accordance with the Regulation for Animal Experiments at University of the Ryukyus for handling live fish. All experiments were approved by the Animal Care Ethics Committee of University of the Ryukyus (R2019035). All experimental methods are reported in accordance with ARRIVE guidelines.PCR primer designThe following steps were used to select primers for MAAS (Fig. 1). (1) All possible 10-mer sequence combinations (i.e., 410 = 1,048,576 sequences) were generated in silico. (2) The sequences containing simple sequence repeats, some of which had been used in the MIG-seq method17, were excluded. (3) Sequences containing a functional motif, such as a transcription factor-binding site, were also excluded because they may not be suitable for examining neutral genetic markers. We obtained a catalog of motifs from the JASPAR CORE40 (http://jaspar.genereg.net). (4) To avoid taxon-dependency in primer performance, we used information about the k-mer (k = 10) frequency of reference genomes from multiple phyla. Sequences that showed marked differences in frequency among taxa were excluded. The frequencies of each 10-mer sequence in the reference genomes of 17 species belonging to 12 phyla of metazoa were counted (Table S12) using the “oligonucleotideFrequency” function in the “Biostrings” package ver. 2.441. In each of these taxa, the frequencies of sequences were stratified into three grades ( 103). We then selected the sequences that showed the same grade in more than 80% (14/17) of the species. (5) To avoid synthesizing primer dimers, self-complementary sequences were excluded, taking Illumina adapter sequences (5′-CGCTCTTCCGATCT-3′ and 5′-TGCTCTTCCGATCT-3′) into account. Self-complementation of two bases at the 3′-end or every three continuous bases in primer sequences was then evaluated using a custom script in R ver. 3.5.0 (R Development Core Team, http://cran.r-project.org). Based on the selected 10-mer sequences (i.e., 129 sequences, Fig. 1), 7-mer primer sequences were designed by removing the 3 bases at the 3′ end. Finally, we selected 24 candidate sequences for both 10-mer and 7-mer primers for the subsequent step (Table S1).The primer sequence consisted of three parts17: partial sequence of the Illimina adapter, 7 N bases, and a short priming sequence, e.g., 5′-CGCTCTTCCGATCTNNNNNNNGTCGCCC-3′. PCR amplification was performed using the candidate primers using the first PCR protocol described below (Table S1). Banding patterns were observed by electrophoresis on 1% agarose gels (agarose S; TaKaRa, Japan). Of the candidate primers, we selected four 7-mer primers and four 10-mer primers that each gave a smeared banding pattern with amplification products ranging from 500 to 2000 bp, indicating uniform amplification of multiple target sequences (Table S1).Library construction and sequencingThe library was constructed by a two-step PCR approach using a modification of a MIG-seq protocol14. In the first PCR step, multiple regions of genomic DNA were amplified using a cocktail of primers with a Multiplex PCR Assay Kit Ver.2 (TaKaRa) (Table 1). The volume of the PCR reaction mixture was 7 μl, containing 1 μl of template DNA, 2 μM of each PCR primer, 3.5 μl of 2 × Multiplex PCR Buffer, and 0.035 μl of Multiplex PCR Enzyme Mix. PCR was performed under the following conditions: denaturation at 94 °C for 1 min; 25 cycles of 94 °C for 30 s, 38 °C for 1 min, and 72 °C for 1 min, followed by a final extension step at 72 °C for 10 min.The primers in the second PCR step contained the Illumina sequencing adapter and an index sequence to identify each sample. Following the Truseq indexes, we used the combinations of eight forward indexes (i5) and 12 reverse indexes (i7), which resulted in a total of 96 combinations. To be used as a template for the second PCR, the first PCR product from each sample was diluted 50 times with PCR-grade water. The second PCR was performed in a 15-μl reaction mixture containing, 3 μl of diluted first PCR product, 3 μl of 5 × PrimeSTAR GXL Buffer, 200 μM of each dNTP, 0.2 μM of forward index primer and reverse index primer, 0.375 U of PrimeSTAR GXL DNA Polymerase (TaKaRa). The PCR conditions were as follows: 12 cycles at 98 °C for 10 s, 54 °C for 15 s, and 68 °C for 30 s.The second PCR product of each sample was pooled by equal volume and size-selected from 600 to 1000 bp using solid phase reversible immobilization (SPRI) select beads (Beckman Coulter Inc, Brea, California, USA) according to the manufacturer’s protocol. The DNA concentration of the pooled library was measured using a Qubit fluorometer (Thermo Fisher Scientific). We sequenced the libraries using two NGS platforms, MiSeq (Illumina, MiSeq Reagent Kit v2 Micro, Paired-End (PE), 150 bp) and HiSeq X (Illumina, PE, 150 bp). Sequencing using the HiSeq X platform was performed by Macrogen Japan (Tokyo, Japan).To compare primer performance, the DNA libraries constructed using the 7-mer and 10-mer primers for one individual were sequenced using MiSeq. Then, a 7-mer primer cocktail containing four sets of mixed primers was used for the subsequent analyses (Table 1). We also constructed DNA libraries using 7-mer and MIG-seq primer cocktails for three individuals and sequenced them using the HiSeq X platform. Finally, we constructed DNA libraries using 7-mer primer cocktails for 67 wild individuals and six artificial strain individuals for population genetics analyses (Table S11, Fig. 3).Mapping and SNV callingGenotyping was conducted using the following BWA-GATK best-practices pipeline for each sample42. Primer sequences were removed using cutadapt with the –b option selected43. The Illumina adapter sequences were also removed and quality filtering was performed using fastp ver. 0.20.0 with the “–detect_adapter_for_pe, –cut_front” option selected44. The remaining reads were mapped on the reference genome of medaka, Hd-rR strain, GCA_002234675.1; ASM223467v127 using Burrows-Wheeler Alignment tool, BWA mem ver. 0.7.1745. After mapping, output files were converted to Binary Alignment/Map (BAM) format using SAMtools ver. 1.746. SNVs and InDels in the sample were determined following the best practice guidelines set out in the Genome Analysis Tool Kit (GATK ver. 3.8.0)42. We then filtered out SNVs and InDels based on the following criteria: “QD  60.0 || MQ  More

  • in

    Significance of seed dispersal by the largest frugivore for large-diaspore trees

    Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).Article 

    Google Scholar 
    Wang, B. C. & Smith, T. B. Closing the seed dispersal loop. Trends Ecol. Evol. 17, 379–385 (2002).Article 

    Google Scholar 
    Fleming, T. H., Breitwish, R. & Whitesides, G. H. Patterns of tropical vertebrate frugivore diversity. Annu. Rev. Ecol. Syst. 18, 91–109 (1987).Article 

    Google Scholar 
    Schupp, E. W. Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107(108), 15–29 (1993).Article 

    Google Scholar 
    Garber, P. A. & Lambert, J. E. Primates as seed dispersers: Ecological processes and directions for future research. Am. J. Primatol. 45, 3–8 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Godínez-Alvarez, H. & Jordano, P. An empirical approach to analysing the demographic consequences of seed dispersal by frugivores. In Seed Dispersal: Theory and its Application in a Changing World (eds Dennis, A. J. et al.) 391–406 (CAB International, 2007).Chapter 

    Google Scholar 
    Schupp, E. W., Jordano, P. & Gomez, J. M. Seed dispersal effectiveness revisited: A conceptual review. New Phytol. 188, 333–353 (2010).Article 
    PubMed 

    Google Scholar 
    McConkey, K. R., Brockelman, W. Y. & Saralamba, C. Mammalian frugivores with different foraging behavior can show similar seed dispersal effectiveness. Biotropica 46, 647–651 (2014).Article 

    Google Scholar 
    Culot, L., Huynen, M. C. & Heymann, E. W. Partitioning the relative contribution of one-phase and two-phase seed dispersal when evaluating seed dispersal effectiveness. Methods Ecol. Evol. 6, 178–186 (2015).Article 

    Google Scholar 
    McConkey, K. R., Brockelman, W. Y., Saralamba, C. & Nathalang, A. Effectiveness of primate seed dispersers for an “oversized’’ fruit, Garcinia benthamii. Ecology 96, 2737–2747 (2015).Article 
    PubMed 

    Google Scholar 
    Camargo, P., Martins, M. M., Feitosa, R. M. & Christianini, A. V. Bird and ant synergy increases the seed dispersal effectiveness of an ornithochoric shrub. Oecologia 181, 507–518 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    McConkey, K. R. et al. Different megafauna vary in their seed dispersal effectiveness of the megafaunal fruit Platymitra macrocarpa (Annonaceae). PLoS One 13, e0198960 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balcomb, S. R. & Chapman, C. A. Bridging the gap: Influence of seed deposition on seedling recruitment in a primate-tree interaction. Ecol. Monogr. 73, 625–642 (2003).Article 

    Google Scholar 
    Russo, S. E. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): Implications for selection. Oecologia 136, 80–87 (2003).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gross-Camp, N. D., Masozera, M. & Kaplin, B. A. Chimpanzee seed dispersal quantity in a tropical montane forest of Rwanda. Am. J. Primatol. 71, 901–911 (2009).Article 
    PubMed 

    Google Scholar 
    Jordano, P. & Schupp, E. W. Seed disperser effectiveness: The quantity component and patterns of seed rain for Prunus mahaleb. Ecol. Monogr. 70, 591–615 (2000).Article 

    Google Scholar 
    Leighton, M. Modeling dietary selectivity by Bornean orangutans: evidence for integration of multiple criteria in fruit selection. Int. J. Primatol. 14, 257–313 (1993).Article 

    Google Scholar 
    Stevenson, P. R. Fruit choice by woolly monkeys in Tinigua National Park, Colombia. Int. J. Primatol. 25, 367–381 (2004).Article 

    Google Scholar 
    Palacio, F. X. & Ordano, M. The strength and drivers of bird-mediated selection on fruit crop size: A meta-analysis. Front. Ecol. Evol. 6, 18 (2018).Article 

    Google Scholar 
    Flörchinger, M., Braun, J., Böhning-Gaese, K. & Schaefer, H. M. Fruit size, crop mass, and plant height explain differential fruit choice of primates and birds. Oecologia 164, 151–161 (2010).Article 
    ADS 
    PubMed 

    Google Scholar 
    Wenny, D. G. Seed dispersal, seed predation, and seedling recruitment of a neotropical montane tree. Ecol. Monogr. 70, 331–351 (2000).Article 

    Google Scholar 
    Calviño-Cancela, M. Spatial patterns of seed dispersal and seedling recruitment in Corema album (Empetraceae): The importance of unspecialized dispersers for regeneration. J. Ecol. 90, 775–784 (2002).Article 

    Google Scholar 
    Masaki, T. & Nakashizuka, A. Seedling demography of Swida controversa: Effect of light and distance to conspecifics. Ecology 83, 3497–3507 (2002).Article 

    Google Scholar 
    Vulinec, K. Dung beetle communities and seed dispersal in primary forest and disturbed land in Amazonia. Biotropica 34, 297–309 (2002).Article 

    Google Scholar 
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G.) 298–312 (PUDOC, 1971).
    Google Scholar 
    Howe, H. F., Schupp, E. W. & Westley, L. C. Early consequences of seed dispersal for a Neotropical tree (Virola surinamensis). Ecology 66, 781–791 (1985).Article 

    Google Scholar 
    Valenta, K. & Fedigan, L. M. Spatial patterns of seed dispersal by white-faced capuchins in Costa Rica: Evaluating distant-dependent seed mortality. Biotropica 42, 223–228 (2010).Article 

    Google Scholar 
    Andresen, E. Seed dispersal by monkeys and the fate of dispersed seeds in a Peruvian rain forest. Biotropica 31, 145–158 (1999).
    Google Scholar 
    Dausmann, K. H., Glos, J., Linsenmair, K. E. & Ganzhorn, J. U. Improved recruitment of a lemur-dispersed tree in Malagasy dry forests after the demise of vertebrates in forest fragments. Oecologia 157, 307–316 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jordano, P. & Herrera, C. M. Shuffling the offspring: uncoupling and spatial discordance of multiple stages in vertebrate seed dispersal. Ecoscience 2, 230–237 (1995).Article 

    Google Scholar 
    Rey, P. J. & Alcantara, J. M. Recruitment dynamics of a fleshy-fruited plant (Olea europaea): Connecting patterns of seed dispersal to seedling establishment. J. Ecol. 88, 622–633 (2000).Article 

    Google Scholar 
    Traveset, A., Gulias, J., Riera, N. & Mus, M. Transition probabilities from pollination to establishment in a rare dioecious shrub species (Rhamnus ludovici salvatoris) in two habitats. J. Ecol. 91, 427–437 (2003).Article 

    Google Scholar 
    Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl. Acad. Sci. USA 100, 14052–14056 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blendinger, P. G., Blake, J. G. & Loiselle, B. A. Connecting fruit production to seedling establishment in two co-occurring Miconia species: consequences of seed dispersal by birds in upper Amazonia. Oecologia 167, 61–73 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Corlett, R. T. The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica 39, 292–303 (2007).Article 

    Google Scholar 
    Nuñez-Iturri, G., Olsson, O. & Howe, H. F. Hunting reduces recruitment of primate-dispersed trees in Amazonian Peru. Biol. Conserv. 141, 1536–1546 (2008).Article 

    Google Scholar 
    Effiom, E. O., Nuñez-Iturri, G., Smith, H. G., Ottosson, U. & Olsson, O. Bushmeat hunting changes regeneration of African rainforests. Proc. R. Soc. B-Biol. Sci. 280, 20130246 (2013).Article 

    Google Scholar 
    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).Article 
    PubMed 

    Google Scholar 
    Fuentes, E. R., Hoffmann, A. J., Poiani, A. & Alliende, M. C. Vegetation change in large clearings: patterns in the Chilean matorral. Oecologia 68, 358–366 (1986).Article 
    ADS 
    PubMed 

    Google Scholar 
    Holl, K. D. Do bird perching structures elevate seed rain and seedling establishment in abandoned tropical pasture?. Restor. Ecol. 6, 253–261 (1998).Article 

    Google Scholar 
    Beltran, L. C. & Howe, H. F. The frailty of tropical restoration plantings. Restor. Ecol. 28, 16–21 (2020).Article 

    Google Scholar 
    Bollen, A., Van Elsacker, L. & Ganzhorn, J. U. Relations between fruits and disperser assemblages in a Malagasy littoral forest: a community-level approach. J. Trop. Ecol. 20, 599–612 (2004).Article 

    Google Scholar 
    Ganzhorn, J. U. et al. Possible fruit protein effects of primate communities in Madagascar and the Neotropics. PLoS One 4, e8253 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albert-Daviaud, A. et al. The ghost fruits of Madagascar: identifying dysfunctional seed dispersal in Madagascar’s endemic flora. Biol. Conserv. 242, 108438 (2020).Article 

    Google Scholar 
    Dew, J. L. & Wright, P. Frugivory and seed dispersal by four species of primates in Madagascar’s eastern rain forest. Biotropica 30, 425–437 (1998).Article 

    Google Scholar 
    Moses, K. L. & Semple, S. Primary seed dispersal by the black-and-white ruffed lemur (Varecia variegata) in the Manombo forest, south-east Madagascar. J. Trop. Ecol. 27, 529–538 (2011).Article 

    Google Scholar 
    Sato, H. Frugivory and seed dispersal by brown lemurs in a Malagasy tropical dry forest. Biotropica 44, 479–488 (2012).Article 

    Google Scholar 
    Razafindratsima, O. H., Jones, T. A. & Dunham, A. E. Patterns of movement and seed dispersal by three lemur species. Am. J. Primatol. 76, 84–96 (2014).Article 
    PubMed 

    Google Scholar 
    Steffens, K. J., Sanamo, J. & Razafitsalama, J. The role of lemur seed dispersal in restoring degraded forest ecosystems in Madagascar. Folia Primatol. 93, 1–19 (2022).Article 

    Google Scholar 
    Ganzhorn, J. U., Fietz, J., Rakotovao, E., Schwab, D. & Zinner, D. Lemurs and the regeneration of dry deciduous forest in Madagascar. Conserv. Biol. 13, 794–804 (1999).Article 

    Google Scholar 
    Razafindratsima, O. H. et al. Consequences of lemur loss for above-ground carbon stocks in a Malagasy rainforest. Int. J. Primatol. 39, 415–426 (2018).Article 

    Google Scholar 
    Razafindratsima, O. H. Seed dispersal by vertebrates in Madagascar’s forests: Review and future directions. Madag. Conserv. Dev. 9, 90–97 (2014).Article 

    Google Scholar 
    Nathan, R. & Muller-Landau, H. C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pérez-Ramos, I. M., Urbieta, I. R., Maranon, T., Zavala, M. A. & Kobe, R. K. Seed removal in two coexisting oak species: Ecological consequences of seed size, plant cover and seed-drop timing. Oikos 117, 1386–1396 (2008).Article 

    Google Scholar 
    Sato, H. Seasonal fruiting and seed dispersal by the brown lemur in a tropical dry forest, north-western Madagascar. J. Trop. Ecol. 29, 61–69 (2013).Article 

    Google Scholar 
    Chapman, C. A. & Chapman, L. J. Determinants of group size in primates: the importance of travel costs. In On the Move: How and Why Animals Travel in Groups (eds Boinski, S. & Garber, P. A.) 24–42 (The University of Chicago Press, 2000).
    Google Scholar 
    Sato, H. Diurnal resting in brown lemurs in a dry deciduous forest, northwestern Madagascar: Implications for seasonal thermoregulation. Primates 53, 255–263 (2012).Article 
    PubMed 

    Google Scholar 
    Razanaparany, P. T. & Sato, H. Abiotic factors affecting the cathemeral activity of Eulemur fulvus in the dry deciduous forest of north-western Madagascar. Folia Primatol. 91, 463–480 (2020).Article 

    Google Scholar 
    Sato, H. Predictions of seed shadows generated by common brown lemurs (Eulemur fulvus) and their relationship to seasonal behavioral strategies. Int. J. Primatol. 39, 377–396 (2018).Article 

    Google Scholar 
    Agetsuma, N. & Nakagawa, N. Effects of habitat differences on feeding behaviors of Japanese monkeys: Comparison between Yakushima and Kinkazan. Primates 39, 275–289 (1998).Article 

    Google Scholar 
    Stevenson, P. R. Seed dispersal by woolly monkeys (Lagothrix lagothricha) at Tinigua National Park, Colombia: Dispersal distance, germination rates, and dispersal quantity. Am. J. Primatol. 50, 275–289 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hladik, A. & Miquel, S. Seedling types and plant establishment in an African rain forest. In Reproductive Ecology of Tropical Forest Plants (eds Bawa, K. S. & Hadley, M.) 261–282 (UNESCO and The Parthenon Publishing Group, 1990).
    Google Scholar 
    Ibarra-Manriquez, G., Ramos, M. M. & Oyama, K. Seedling functional types in a lowland rain forest in Mexico. Am. J. Bot. 88, 1801–1812 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Blate, G. M., Peart, D. R. & Leighton, M. Post-dispersal predation on isolated seeds: A comparative study of 40 tree species in a Southeast Asian rainforest. Oikos 82, 522–538 (1998).Article 

    Google Scholar 
    Hosaka, T. et al. Responses of pre-dispersal seed predators to sequential flowering of Dipterocarps in Malaysia. Biotropica 49, 177–185 (2017).Article 

    Google Scholar 
    Iku, A., Itioka, T., Shimizu-Kaya, U., Kishimoto-Yamada, K. & Meleng, P. Differences in the fruit maturation stages at which oviposition occurs among insect seed predators feeding on the fruits of five dipterocarp tree species. Entomol. Sci. 21, 412–422 (2018).Article 

    Google Scholar 
    Kitajima, K. Impact of cotyledon and leaf removal on seedling survival in three tree species with contrasting cotyledon functions. Biotropica 35, 429–434 (2003).Article 

    Google Scholar 
    Marchand, P. et al. Seed-to-seedling transitions exhibit distance-dependent mortality but no strong spacing effects in a Neotropical forest. Ecology 101, e02926 (2020).Article 
    PubMed 

    Google Scholar 
    Moles, A. T. & Westoby, M. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92, 372–383 (2004).Article 

    Google Scholar 
    Sonesson, L. K. Growth and survival after cotyledon removal in Quercus robur seedlings, grown in different natural soil types. Oikos 69, 65–70 (1994).Article 

    Google Scholar 
    Hubbell, S. P., Condit, R. & Foster, R. B. Presence and absence of density dependence in a neotropical tree community. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 330, 269–281 (1990).Article 
    ADS 

    Google Scholar 
    Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).Article 
    PubMed 

    Google Scholar 
    Godínez-Alvarez, H., Valiente-Banuet, A. & Rojas-Martínez, A. The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia tetetzo. Ecology 83, 2617–2629 (2002).Article 

    Google Scholar 
    Carson, W. P., Anderson, J. T., Leigh, E. G. Jr. & Schnitzer, S. A. Challenges associated with testing and falsofying the Janzen-Connell hypothesis: a review and critique. In Tropical Forest Community Ecology (eds Carson, W. P. & Schnitzer, S. A.) 210–241 (Wiley-Blackwell, 2008).
    Google Scholar 
    Swamy, V. et al. Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest. Ecol. Lett. 14, 195–201 (2011).Article 
    PubMed 

    Google Scholar 
    Reid, J. L. et al. Multi-scale habitat selection of key frugivores predicts large-seeded tree recruitment in tropical forest restoration. Ecosphere 12, e03868 (2021).Article 

    Google Scholar 
    Steffens, K. J. E. Lemur food plants as options for forest restoration in Madagascar. Restor. Ecol. 28, 1517–1527 (2020).Article 

    Google Scholar 
    Chapman, C. A. & Dunham, A. E. Primate seed dispersal and forest restoration: an African perspective for a brighter future. Int. J. Primatol. 39, 427–442 (2018).Article 

    Google Scholar 
    Morris, P. & Hawkins, F. Birds of Madagascar: A Photographic Guide (Yale University Press, 1998).
    Google Scholar 
    Garbutt, N. Mammals of Madagascar: A Complete Guide (Yale University Press, 2007).
    Google Scholar 
    Mittermeier, R. A. et al. Lemurs of Madagascar 3rd edn. (Conservation International, 2010).
    Google Scholar 
    Sato, H., Ichino, S. & Hanya, G. Dietary modification by common brown lemurs (Eulemur fulvus) during seasonal drought conditions in western Madagascar. Primates 55, 219–230 (2014).Article 
    PubMed 

    Google Scholar 
    Laman, T. G. Ficus seed shadows in a Bornean rain forest. Oecologia 107, 347–355 (1996).Article 
    ADS 
    PubMed 

    Google Scholar 
    Clark, C. J., Poulsen, J. R., Connor, E. F. & Parker, V. T. Fruiting trees as dispersal foci in a semi-deciduous tropical forest. Oecologia 139, 66–75 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sato, H. Gut passage time and size of swallowed seeds in the common brown lemur and the mongoose lemur. Primate Res. 25, 45–54 (2009) (In Japanese with English summary).Article 

    Google Scholar 
    Menard, S. W. Applied Logistic Regression Analysis 2nd edn. (Sage Publication, 2002).Book 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    Richards, S. A. Testing ecological theory using the information-theoretic approach: Examples and cautionary results. Ecology 86, 2805–2814 (2005).Article 

    Google Scholar 
    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar  More

  • in

    Cooperate to save a changing planet

    Tallis, H. M. et al. Front. Ecol. Environ. 16, 563–570 (2018).Article 

    Google Scholar 
    Tu, C. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01008-1 (2022).Article 

    Google Scholar 
    Lloyd, W. F. Two lectures on the checks to population (S. Collingwood, The University of Oxford, 1833).Gordon, H. S. J. Polit. Econ. 62, 124–142 (1954).Article 

    Google Scholar 
    Nash, J. F. Jr Proc. Natl Acad. Sci. USA 36, 48–49 (1950).Article 
    CAS 

    Google Scholar 
    Hardin, G. Science 162, 1243–1248 (1968).Article 
    CAS 

    Google Scholar 
    Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge University Press, 1990).Sethi, R. & Somanathan, E. Am. Econ. Rev. 86, 766–788 (1996).
    Google Scholar 
    Schill, C. et al. Nat. Sustain. 2, 1075–1082 (2019).Article 

    Google Scholar 
    Levin, S. Philos. Trans R. Soc. B Biol. Sci. 365, 13–18 (2010).Article 

    Google Scholar  More

  • in

    Meteorological change and hemorrhagic fever with renal syndrome epidemic in China, 2004–2018

    HFRS distribution in China, 2004–2018From January 1, 2004 to December 31, 2018, 190 203 cases of HFRS were reported nationwide in China, with an average annual incidence rate of 0.950 per 100,000 people, with the highest incidence in 2004 (1.926 per 100,000) and the lowest in 2018 (0.86 per 100,000) (Fig. 1A), and the cases showed obvious seasonal fluctuations (Fig. 1B). HFRS cases existed every month and showed an obvious dual-season mode every year, with a spring peak from May to June and a winter peak from November to December. The highest number of cases were in May and November, with the composition ratios accounting of 9.51% and 17.06%, respectively (Fig. 1B).Figure 1The incidence and number of HFRS cases reported in China, 2004–2018. (A) Number of cases and incidence by year. Trend of the incidence rate of HFRS between 2004 and 2018 shown by the joinpoint regression (upper right corner). The red squares represent the observed crude incidence of HFRS and the lines represent the slope of the annual percentage change (APC). (B) The pink line represents the monthly incidence of HFRS. The bar chart shows the number of cases at peak and trough.Full size imageThe incidence of HFRS in northern regions was higher than that in the south, especially in Heilongjiang, Liaoning, Jining, Shaanxi, Shandong and Hebei provinces. Relatively few cases existed in south China, which were mainly concentrated in Jiangxi, Zhejiang, Hunan and Fujian (Figs. S1 and S2). Spatial autocorrelation analysis indicated that HFRS cases were positively correlated (Moran’s I = 0.09, p  More

  • in

    Consistent diel activity patterns of forest mammals among tropical regions

    Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).
    Google Scholar 
    Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: Environmental factors. Prog. Brain Res. 199, 281–304 (2012).PubMed 

    Google Scholar 
    Cox, D., Gardner, A. & Gaston, K. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1–10 (2021).
    Google Scholar 
    Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).PubMed 

    Google Scholar 
    Baker, J. & Venditti, C. Rapid change in mammalian eye shape is explained by activity pattern. Curr. Biol. 29, 1082–1088. e1083 (2019).PubMed 

    Google Scholar 
    Crompton, A., Taylor, C. R. & Jagger, J. A. Evolution of homeothermy in mammals. Nature 272, 333–336 (1978).ADS 
    PubMed 

    Google Scholar 
    Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed 

    Google Scholar 
    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mccain, C. M. & King, S. R. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).ADS 

    Google Scholar 
    Veldhuis, M. P. et al. Predation risk constrains herbivores’ adaptive capacity to warming. Nat. Ecol. Evol. 4, 1069–1074 (2020).PubMed 

    Google Scholar 
    Riede, S. J., van der Vinne, V. & Hut, R. A. The flexible clock: Predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. J. Exp. Biol. 220, 738–749 (2017).PubMed 

    Google Scholar 
    van der Vinne, V. et al. Maximising survival by shifting the daily timing of activity. Ecol. Lett. 22, 2097–2102 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Harper, G. & Bunbury, N. Invasive rats on tropical islands: Their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).
    Google Scholar 
    Sovie, A. R., Greene, D. U., Frock, C. F., Potash, A. D. & McCleery, R. A. Ephemeral temporal partitioning may facilitate coexistence in competing species. Anim. Behav. 150, 87–96 (2019).
    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).ADS 
    PubMed 

    Google Scholar 
    Richards, S. A. Temporal partitioning and aggression among foragers: Modeling the effects of stochasticity and individual state. Behav. Ecol. 13, 427–438 (2002).
    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol., Evol., Syst. 34, 153–181 (2003).
    Google Scholar 
    Sunarto, S., Kelly, M., Parakkasi, K. & Hutajulu, M. Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. J. Zool. 296, 104–115 (2015).
    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Naturalist 153, 649–659 (1999).
    Google Scholar 
    Beschta, R. L. & Ripple, W. J. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol. Conserv. 142, 2401–2414 (2009).
    Google Scholar 
    Duffy, J. E. Biodiversity and ecosystem function: The consumer connection. Oikos 99, 201–219 (2002).
    Google Scholar 
    Sinclair, A., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).ADS 
    PubMed 

    Google Scholar 
    Cunningham, C. X., Scoleri, V., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Temporal partitioning of activity: Rising and falling top‐predator abundance triggers community‐wide shifts in diel activity. Ecography 42, 2157–2168 (2019).
    Google Scholar 
    Hayward, M. W. & Slotow, R. Temporal partitioning of activity in large African carnivores: Tests of multiple hypotheses. South Afr. J. Wildl. Res. 39, 109–125 (2009).
    Google Scholar 
    Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: Diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).
    Google Scholar 
    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
    Google Scholar 
    Rovero, F. et al. A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography 43, 75–84 (2020).
    Google Scholar 
    Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2703–2711 (2011).
    Google Scholar 
    Zhang, J. et al. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. R. Soc. B: Biol. Sci. 285, 20180949 (2018).
    Google Scholar 
    Beaudrot, L. et al. Local temperature and ecological similarity drive distributional dynamics of tropical mammals worldwide. Glob. Ecol. Biogeogr. 28, 976–991 (2019).
    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Naturalist 101, 233–249 (1967).
    Google Scholar 
    Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B: Biol. Sci. 281, 20141097 (2014).
    Google Scholar 
    Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (John Wiley & Sons, 2009).Cruz, P., Paviolo, A., Bó, R. F., Thompson, J. J. & Di Bitetti, M. S. Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm. Biol. 79, 376–383 (2014).
    Google Scholar 
    Taylor, W. & Skinner, J. Adaptations of the aardvark for survival in the Karoo: A review. Trans. R. Soc. South Afr. 59, 105–108 (2004).
    Google Scholar 
    Levy, O., Dayan, T., Porter, W. P. & Kronfeld‐Schor, N. Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).
    Google Scholar 
    Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals Vol. 11 (Yale University Press, 1980).Gutiérrez-González, C. E. & López-González, C. A. Jaguar interactions with pumas and prey at the northern edge of jaguars’ range. PeerJ 5, e2886 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Porfirio, G., Sarmento, P., Foster, V. & Fonseca, C. Activity patterns of jaguars and pumas and their relationship to those of their potential prey in the Brazilian Pantanal. Mammalia 81, 401–404 (2017).
    Google Scholar 
    Foster, V. C. et al. Jaguar and puma activity patterns and predator‐prey interactions in four Brazilian biomes. Biotropica 45, 373–379 (2013).
    Google Scholar 
    Ross, J., Hearn, A., Johnson, P. & Macdonald, D. Activity patterns and temporal avoidance by prey in response to S unda clouded leopard predation risk. J. Zool. 290, 96–106 (2013).
    Google Scholar 
    Lima, S. L. Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48, 25–34 (1998).
    Google Scholar 
    Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS One 14, e0213671 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Herrera, H. et al. Time partitioning among jaguar Panthera onca, puma Puma concolor and ocelot Leopardus pardalis (Carnivora: Felidae) in Costa Rica’s dry and rainforests. Rev. de. Biol.ía Tropical 66, 1559–1568 (2018).
    Google Scholar 
    Pratas‐Santiago, L. P., Gonçalves, A. L. S., da Maia Soares, A. & Spironello, W. R. The moon cycle effect on the activity patterns of ocelots and their prey. J. Zool. 299, 275–283 (2016).
    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    PubMed 

    Google Scholar 
    Espinosa, S. & Salvador, J. Hunters landscape accessibility and daily activity of ungulates in Yasuní Biosphere Reserve. Ecuad. Therya 8, 45–52 (2017).
    Google Scholar 
    Butynski, T. M. Ecological survey of the impenetrable (Bwindi) forest, Uganda, and recommendations for its conservation and management. https://doi.org/10.13140/RG.2.1.1719.0487 (1984).Rovero, F. & Ahumada, J. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests. Sci. Total Environ. 574, 914–923 (2017).ADS 
    PubMed 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    PubMed 

    Google Scholar 
    Gorczynski, D. et al. Tropical mammal functional diversity increases with productivity but decreases with anthropogenic disturbance. Proc. R. Soc. B 288, 20202098 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera‐trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).
    Google Scholar 
    Bivand, R. et al. Maptools: Tools for Handling Spatial Objects. R package version 1.1-4. http://maptools.r-forge.r-project.org/reference/index.html (2021).Ensing, E. P. et al. GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus): Indication for a weak circadian clock in ungulates. PLoS One 9, e106997 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazquez, C., Rowcliffe, J. M., Spoelstra, K. & Jansen, P. A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 10, 2057–2066 (2019).
    Google Scholar 
    Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179 (2014).
    Google Scholar 
    Rowcliffe, J. M. Activity: Animal Activity Statistics. R package version 1.3.2. https://cran.r-project.org/package=activity (2022).Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).PubMed 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
    Google Scholar 
    Elff, M., Heisig, J. P., Schaeffer, M. & Shikano, S. Multilevel analysis with few clusters: Improving likelihood-based methods to provide unbiased estimates and accurate inference. Br. J. Polit. Sci. 51, 412–426 (2020).Elff, M. Mclogit: mixed conditional logit models. R package version 0.5. 1. https://github.com/melff/mclogit/ (2018).Burnham, K & Anderson, D. Model Selection and Multi-model Inference 2nd edn, Vol. 63, 10 (Springer-Verlag 2004).Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Hopcraft, J. G. C., Olff, H. & Sinclair, A. Herbivores, resources, and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).PubMed 

    Google Scholar 
    Meredith, M. & Ridout, M. Overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.2. 4, https://cran.r-project.org/package=overlap (2014).Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric., Biol., Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (PBC, Boston, MA, 2020). More

  • in

    Growth response and mycoremediation of heavy metals by fungus Pleurotus sp.

    Colpaert, J. V. In Stress in Yeasts and Filamentous Fungi Vol. 27 (eds Avery, S. V. et al.) 157–173 (Elsevier, Academic Press, 2008).Chapter 

    Google Scholar 
    Dalvi, A. A. & Bhalerao, S. A. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2, 362–368 (2013).
    Google Scholar 
    Langer, I. et al. Ectomycorrhizal impact on Zn accumulation of Populus tremula L. grown in metalliferous soil with increasing levels of Zn concentration. Plant Soil 355, 283–297 (2012).Article 

    Google Scholar 
    Agrahar-Murugkar, D. & Subbulakshmi, G. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem. 89, 599–603 (2005).Article 

    Google Scholar 
    Das, N., Charumathi, D. & Vimala, R. Effect of pretreatment on Cd2+ biosorption by mycelial biomass of Pleurotus florida. Afr. J. Biotechnol. 6, 2555–2558 (2007).Article 

    Google Scholar 
    Dulay, R. M. R. et al. Effects and myco-accumulation of lead (Pb) in five Pleurotus mushrooms. Int. J. Biol. Pharm. Allies Sci. 4, 1664–1677 (2015).
    Google Scholar 
    Prasad, A. A., Varatharaju, G., Anushri, C. & Dhivyasree, S. Biosorption of lead by Pleurotus florida and Trichoderma viride. Br. Biotechnol. J. 3, 66–78 (2013).Article 

    Google Scholar 
    Tay, C. C. et al. Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean J. Chem. Eng. 28, 825–830 (2011).Article 

    Google Scholar 
    Kulshreshtha, S., Mathur, N. & Bhatnagar, P. Mushroom as a product and their role in mycoremediation. AMB Express 4, 1–7 (2014).Article 

    Google Scholar 
    Khan, I. et al. Mycoremediation of heavy metal (Cd and Cr)-polluted soil through indigenous metallotolerant fungal isolates. Environ. Monit. Assess. 191, 1–11 (2019).
    Google Scholar 
    Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, O. P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7, 303 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713–716 (2009).Article 
    PubMed 

    Google Scholar 
    Fawzy, E. M., Abdel-Motaal, F. F. & El-zayat, S. A. Biosorption of heavy metals onto different eco-friendly substrates. J. Toxicol. Environ. Health Sci. 9, 35–44 (2017).
    Google Scholar 
    Kumar, V. & Dwivedi, S. K. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 28, 10375–10412 (2021).Article 

    Google Scholar 
    Barros, L., Baptista, P., Estevinho, L. M. & Ferreira, I. C. Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chem. 105, 179–186 (2007).Article 

    Google Scholar 
    Kim, H. G. et al. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J. Ethnopharmacol. 114, 307–315 (2007).Article 
    PubMed 

    Google Scholar 
    Sarikurkcu, C., Tepe, B. & Yamac, M. Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir–Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Bioresour. Technol. 99, 6651–6655 (2008).Article 
    PubMed 

    Google Scholar 
    Giannopolitis, C.N. & Ries, S.K. Superoxide Dismutases II. Purification and quantitative relationship with water-soluble protein in seedlings.Plant Physiol. 59, 315–318 (1977).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dhindsa, R.S., Plumb-Dhindsa, P. & Thorpe, T.A. Leaf senescent: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101 (1981).Article 

    Google Scholar 
    Marx, D. H. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu. Rev. Phytopathol. 10, 429–454 (1972).Article 
    PubMed 

    Google Scholar 
    Calvillo-Medina, R. P. Determination of fungal tolerance index to heavy metals and heavy metal resistance tests. Bio-Protoc. 11, e4218 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Ouzounidou, G., Eleftheriou, E. & Karataglis, S. Ecophysical and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae). Can. J. Bot. 70, 947–957 (1992).Article 

    Google Scholar 
    Carrillo-González, R., González-Chávez, M. & del Carmen, A. Tolerance to and accumulation of cadmium by the mycelium of the fungi Scleroderma citrinum and Pisolithus tinctorius. Biol. Trace Elem. Res. 146, 388–395 (2012).Article 
    PubMed 

    Google Scholar 
    Mkhize, S. S., Simelane, M. B. C., Gasa, N. L. & Pooe, O. J. Evaluating the antioxidant and heavy metal content of Pleurotus ostreatus mushrooms cultivated using sugar cane agro-waste. Pharmacogn. J. 13, 1–9 (2021).Article 

    Google Scholar 
    Kumar, V. In Microbial Cell Factories (eds Sharma, D. & Saharan, B. S.) 149–174 (CRC Press, 2018).Chapter 

    Google Scholar 
    El-Sayed, M. T., Ezzat, S. M., Taha, A. S. & Ismaiel, A. A. Iron stress response and bioaccumulation potential of three fungal strains isolated from sewage-irrigated soil. J. Appl. Microbiol. 132, 1936–1953 (2022).Article 
    PubMed 

    Google Scholar 
    Li, X. et al. Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J. Hazard. Mater. 330, 1–8 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chuang, H.-W., Wang, I.-W., Lin, S.-Y. & Chang, Y.-L. Transcriptome analysis of cadmium response in Ganoderma lucidum. FEMS Microbiol. Lett. 293, 205–213 (2009).Article 
    PubMed 

    Google Scholar 
    Jones, D. & Muehlchen, A. Effects of the potentially toxic metals, aluminium, zinc and copper on ectomycorrhizal fungi. J. Environ. Sci. Health A Environ. Sci. Eng. Technol. 29, 949–966 (1994).
    Google Scholar 
    Tam, P. C. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5, 181–187 (1995).Article 

    Google Scholar 
    Purkayastha, R., Mitra, A. K. & Bhattacharyya, B. Uptake and toxicological effects of some heavy metals on Pleurotus sajor-caju (Fr.) Singer. Ecotoxicol. Environ. Saf. 27, 7–13 (1994).Article 
    PubMed 

    Google Scholar 
    Akkin, N. Mycoremediation by oyster mushroom. Acta Sci. Agric. 5, 47–48 (2021).Article 

    Google Scholar 
    Ogbo, E. & Okhuoya, J. Bio-absorption of some heavy metals by Pleurotus tuber-regium Fr. Singer (an edible mushroom) from crude oil polluted soils amended with fertilizers and cellulosic wastes. Int. J. Soil Sci. 6, 34–48 (2011).Article 

    Google Scholar 
    Brunnert, H. & Zadražil, F. The translocation of mercury and cadmium into the fruiting bodies of six higher fungi. Eur. J. Appl. Microbiol. Biotechnol. 17, 358–364 (1983).Article 

    Google Scholar 
    Singh, V., Singh, M. P. & Mishra, V. Bioremediation of toxic metal ions from coal washery effluent. Desalin. Water Treat. 197, 300–318 (2020).Article 

    Google Scholar 
    Lazarova, N., Krumova, E., Stefanova, T., Georgieva, N. & Angelova, M. The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure. Biotechnol. Biotechnol. Equip. 28, 855–862 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    An epidemiological model for mosquito host selection and temperature-dependent transmission of West Nile virus

    Among the 325 municipalities in Greece during the period 2010–2021, WNV events, defined as the occurrence of at least one laboratory-confirmed human WNV case during a specific year, were reported in 154 (47%) municipalities, while the remaining 171 did not report any WNV case. WNV events were reported for a period ranging from one to eight years: 54 (35%) municipalities reported laboratory-confirmed WNV cases in only one year, 38 (25%) in two years, 30 (19%) in three years, 12 (8%) in four years, 10 (6%) in five years, 6 (4%) in six years, 1 (1%) in seven years, and 3 (2%) in eight years. This means that in 60% of the positive areas (82 municipalities out of 154), WNV appeared at most for two years, in 27% (42 out of 154) between three and four years, and in the remaining 13% (20 out of 154) for five years or more. Considering the total number of reported laboratory-confirmed human WNV cases across the twelve years (Fig. 1), in approximately 50% of the positive municipalities (78 out of 154), at most 4 cases were reported: 1, 2, 3, and 4 WNV cases were reported in 24, 32, 11, and 11 municipalities, respectively. Overall, 39 municipalities recorded a number of WNV cases ranging from 5 to 10 (third quartile), 34 a number ranging from 11 to 46, while the remaining 3 municipalities recorded a number of WNV cases equal to 56, 71 and 94.Figure 1(a) Map of Greece with total numbers of laboratory-confirmed human WNV cases throughout the 12-year period 2010–2021, with breakdowns by municipality. White denotes municipalities where no human cases were observed. (b) Map of Greece with total numbers of modelled human WNV cases throughout the 12-year period 2010–2021, with breakdowns by municipality. White denotes municipalities where no human cases were modelled.Full size imageModel evaluation and comparison with MIMESISWe investigated the ability of the MIMESIS-2 model to correctly identify the occurrence of WNV events, both in space and time, and its capacity to quantify the annual number of human WNV cases and the timing of the first WNV event in the year. The performance of many quantities of interest, such as the severity and timing of occurrence of human WNV cases, was also compared output from the original MIMESIS model26.Occurrence of WNV eventsStarting with the spatial analysis, we considered the fit of the model to replicate the observed 385 WNV events out of 3,900 (325*12) possible events across municipalities. MIMESIS-2 was able to correctly identify 356 of them, generated only one false alarm, and correctly modelled 3,514 true negatives.The performance of MIMESIS-2 was then evaluated according to four indices: the probability of detection (POD), false alarm rate (FAR), miss rate (MIS), and critical success index (CSI), described in the Methods section. For the POD, MIS and CSI, we considered the 154 municipalities with at least one reported and laboratory-confirmed human WNV case over the 12-year period, while for the FAR, we considered the 153 municipalities where at least one human WNV case was modelled over the same period. We split the (0.0–1.0) index interval into five equally sized bins to derive for each index, the fraction of municipalities falling into each bin. Both the POD and CSI were above 0.8 for 139 municipalities out of 154, while the MIS was below 0.2 for 142 municipalities (out of 154) and the FAR was always below 0.2, with one false alarm produced in a municipality where WNV events were observed in eight out of twelve years (Table 1).Table 1 Capacity of the MIMESIS-2 model to correctly model laboratory-confirmed human WNV cases.Full size tableWe also analysed how the model performed in different years by studying the multiannual evolution of the indices. Both the aggregated POD and CSI were equal to 0.92, with annual variations ranging from 0.72 (2021) to 1 (2011 and 2014). The aggregated MIS was 0.08, ranging from 0.0 (2011 and 2014) to 0.28 (2021). The FAR was virtually 0, being always equal to 0.0, with the only exception being 2017, when it was 0.1 (Table 2).Table 2 Capacity of the MIMESIS-2 model to correctly model laboratory-confirmed human WNV cases by year and in the whole observed time period.Full size tableMagnitude and timing of WNV events: performance and comparison with MIMESISTo evaluate the ability of MIMESIS-2 to capture the magnitude and timing of WNV events, we first considered the discrepancy between the overall number of observed and modelled WNV cases during the 12-year period for each municipality. Out of the 153 municipalities where at least one case was modelled across the 12 years, 76 (50%) had at most 4 modelled cases of WNV: 1, 2, 3, and 4 WNV cases were modelled in 22, 31, 13, and 10 municipalities, respectively. In 42 municipalities, the number of modelled cases ranged from 5 to 10 (which, as for the observed WNV cases, coincided with the third quartile), and in 32 municipalities, the number ranged from 11 to 47, while the remaining 3 municipalities had 55, 70, and 99 modelled cases (Fig. 1).The MIMESIS-2 model closely replicated the total number of laboratory-confirmed WNV cases during the 12-year period. When considering only the 154 municipalities that recorded at least one WNV event during the considered period (excluding the true negatives), for 140 of them, the modelled number of cases fell within a ± 10% error range of the observed value, whereas for 149 the modelled number of cases fell within the ± 25% error margin. Only two municipalities showed a percent error above 50%. These were particular instances where only one WNV case was reported throughout the considered period, while MIMESIS-2 fitted zero human cases. For the original MIMESIS model, 63 and 84 municipalities fell within the ± 10% and ± 25% error margins, respectively, while 31 municipalities—mainly those where few cases were observed— had a relative error ≥ 100% (Fig. 2).Figure 2(a) For MIMESIS-2, modelled (IHMOD) vs. observed (IHOBS) human WNV cases in each municipality in the period 2010–2021. The inner black line represents the main diagonal where ideally the points would lie in case of perfect fit, while the dashed green, black and red lines represent, respectively, the ± 10%, ± 25% and ± 50% error margin. (b) Same quantities for MIMESIS. (c). Breakdown of the week of first WNV incidence by year. Plotted are the modelled quantities (WYMOD) for each of the 325 municipalities on the y-axis and the observed quantities (WYOBS) on the x-axis. The continuous line represents the main diagonal where ideally the points would lie in case of perfect fit, while the dashed lines represent the ± 4-week error margins.Full size imageTo further evaluate the bias of the model across all municipalities and years, we explored the difference between the yearly modelled and observed human WNV cases both with MIMESIS-2 and the original MIMESIS (IHMOD-IHOBS) across municipalities. In MIMESIS-2, we excluded 3,514 true negative cases to avoid distorted conclusions. For the remaining 386 cases, the mean bias was -0.04 indicating a possibly unbiased model, with the standard deviation (SD) of the residuals equal to 0.66 (original MIMESIS: mean bias 0.33, SD 2.07, after removing 3,387 true negatives) (Supplementary Fig. 1).Across the 325 municipalities and the 12 years, 385 WNV events were observed, while on 3,515 occasions, no laboratory-confirmed human WNV cases were reported; on 162 occurrences, 1 case was reported, and on 67 and 39 occasions, 2 and 3 cases were reported, respectively. The maximum yearly number of human WNV cases observed in a single municipality was 38. Considering the modelled human WNV cases with MIMESIS-2, the distribution of the 356 hits ranged between 1 and 37 modelled cases, closely mimicking the distribution of the observed cases, since 1, 2 and 3 human WNV cases were modelled on 129, 72 and 37 occasions, respectively. For the 29 misses, the observed numbers of human cases were 1 (24 times), 2 (3 times), or 3 (2 times). The only false alarm was produced in the Pellas municipality, where WNV events were observed in 8 out of the 12 years.We evaluated the timing of the first occurrence of WNV in humans for any municipality and year. Ignoring the municipalities with zero cases, the observed and MIMESIS-2-modelled first WNV cases occurred between weeks 22 and 44 and weeks 24 and 36, respectively. Modelled values tended to be dispersed around the observed ones: excluding the 3514 true negatives, 290 (75.13%) of the remaining 386 cases fell into the ± 4-week error margins from the observed cases (Fig. 2). This translated into a much lower bias of the week of first appearance (WYMOD-WYOBS) with respect to MIMESIS (Supplementary Fig. 2).Case study: The Pellas municipalityIn addition to presenting the overall performance of the model throughout different years and Greek municipalities, we highlight here the capacity of the model to capture population-specific behaviour and epidemiological features, such as the force of infection, that is, the rate at which susceptible humans, birds, and mosquitoes become infected, by presenting a single municipality case study for the municipality of Pellas. The Pellas municipality had the highest number of observed WNV cases over the 12-year period with a total of 94 human WNV cases, 38 in 2010, 16 in 2018, and 13 in 2021, no cases from 2014 to 2017, and between 4 to 8 cases in the remaining years.We considered the impact arising from the changes in parameters defining the forces of infection. In addition to the introduction of bird (({psi }_{B})) and human (({psi }_{H})) host selections, changes included modifications for the mosquito-to-bird (({p}_{M})) and bird-to-mosquito (({p}_{B})) probabilities of transmission, whose values were made temperature-dependent following Vogels et al.21, and the replacement of the mosquito-to-bird (({varphi }_{B})) and mosquito-to-human (({varphi }_{H})) ratios with their dynamic counterparts, ({N}_{M}/{N}_{B}) and ({N}_{M}/{N}_{H}), respectively (Fig. 3). We used the May–October period for the 12 years that were considered, because this is the part of the year when Culex pipiens mosquitoes are reproductively active and the majority of human WNV cases are reported. In each year of the 12-year period, ({p}_{M}) started from 0.02, reached its peak—ranging from 0.16 to 0.25—in midsummer, and then decreased to the initial values (in the original model, ({p}_{M}=0.9)). Similarly, ({p}_{B}) started from 0.28, peaked in the same time interval—with maximal values ranging from 0.51 to 0.56—and then returned to the initial values (in the original model, ({p}_{B}=0.125)). Additionally, the dynamic specifications of ({varphi }_{B}) and ({varphi }_{H}) were shown to play an important role. Whereas in MIMESIS ({varphi }_{B}=30), in MIMESIS-2 the values started at approximately 8.6 and peaked in late summer when more human WNV cases are reported, reaching values of approximately 57, before decreasing to values ranging from 31.15 to 41.60 in late October. In MIMESIS, ({varphi }_{H}) was calibrated at the municipality level, and for Pellas municipality, it was 0.0001, whereas the dynamic counterpart in MIMESIS-2 showed a temporal evolution with a shape (but different scale) similar to that of ({varphi }_{B}), starting from values of approximately 1, peaking in late summer to values of approximately 7, and then decreasing to values of approximately 4 in late October.Figure 3The temporal evolution during May to October of the (a) mosquito-to-bird probability of transmission, ({p}_{M}), (b) bird-to-mosquito probability of transmission, ({p}_{B},) (c) mosquito-to-bird ratio, ({varphi }_{B},) and (d) mosquito-to-human ratio, ({varphi }_{H},) for both MIMESIS-2 across different years and MIMESIS for each of the 12 years from 2010 to 2021. The plots refer to the simulations for the municipality of Pella.Full size imageChanges in these parameters enter into the expression for the forces of infection. It is of major practical interest to investigate how the values for the forces of infection resulting from MIMESIS-2 may vary for different values of the relative abundance of the vectors with respect to the corresponding carrying capacity and the temperature in different months (Fig. 4). As expected, all forces of infection increased with both the temperature and the relative abundance of the infectious vertebrate hosts. It is worth noting the importance of day length, as this affects the fraction of nondiapausing mosquitoes, ({delta }_{M}), and causes the forces of infection, all other things being equal, to be potentially higher in June and July than in the other months. However, in these two months, the modelled forces of infection tend to be smaller than those in August due to the lower abundance of infectious hosts.Figure 4Contour plots of the forces of infection for May to September for different values of the relative abundance of infected hosts/vectors with respect to the carrying capacity and the temperature. All the other quantities were fixed to the amounts obtained in the simulations for Pellas municipality for 2021 at the end of the corresponding month. (a) Bird-to-mosquito force of infection (({lambda }_{BM})) as a function of the relative abundance of infected birds (({I}_{B})) with respect to the bird carrying capacity (({K}_{B})) and temperature. (b) Mosquito-to-bird force of infection (({lambda }_{MB})) as a function of the relative abundance of infected mosquitoes (({I}_{M})) with respect to the mosquito carrying capacity (({K}_{M})) and temperature. (c) Mosquito-to-human force of infection (({lambda }_{MH})) as a function of the relative abundance of infected mosquitoes (({I}_{M})) with respect to the mosquito carrying capacity (({K}_{M})) and temperature. The ranges for ({I}_{B}/{K}_{B}) and ({I}_{M}/{K}_{M}) were fixed, increasing the maximum modelled value by 20% for the considered period, while the range for the temperature was chosen considering that in the period of interest, the average daily temperature ranged from 16.6 to 27.1 degrees Celsius. Black crosses represent the modelled values for 2021.Full size imageThe bird-to-mosquito force of infection, ({uplambda }_{BM}), took values on the order of 10–4, with possible peaks of approximately 7 × 10–4 in the case of high temperature and high prevalence of birds in June and July, which were nevertheless not reached due to a low abundance of infected birds in that period. Considering the months of July and August 2021 for illustrative purposes, the resulting modelled values were 1.20 × 10–4 and 2.19 × 10–4, respectively, with the increase in August explained by a higher abundance of infected birds in that period. It is worth noting that if the infection across birds had a lead period of two weeks, the resulting ({uplambda }_{BM}) in July would become 3.91 × 10–4 (+ 226%), while an increase in the average temperature in August by 1 °C would result in ({uplambda }_{BM})= 2.36 × 10–4 (+ 8%). The mosquito-to-bird, ({uplambda }_{MB}), and mosquito-to-human, ({uplambda }_{MH}), forces of infection showed similar qualitative behaviours, albeit at different scales, and in this case, they were higher in August due to a higher prevalence of infected Culex mosquitoes in that month. More specifically, ({uplambda }_{MB}) equalled 1.06 × 10–3 and 1.22 × 10–3 at the end of July and August, respectively, and an expected two weeks for the infection of mosquitoes would result in ({uplambda }_{MB})=4.15 × 10–3 (+ 292%) at the end of July, while an increase in the average temperature in August by 1 °C would result in ({uplambda }_{MB})= 1.31 × 10–3 (+ 7%) at the end of August. Finally, ({uplambda }_{MH})=2.86 × 10–6 at the end of July, while ({uplambda }_{MH})=3.26 × 10–6 at the end of August, with the anticipation of the infection among mosquitoes by two weeks resulting in ({uplambda }_{MH})=1.12 × 10–5 (+ 290%) and an increase in the average August temperature by 1 °C leading to ({uplambda }_{MH})=3.51 × 10–6 (+ 8%). It is worth recalling that since we calibrated the model on the number of reported laboratory-confirmed human WNV cases, ({uplambda }_{MH}) represents the rate at which susceptible humans contract infection and become symptomatic leading to a recorded human WNV case.We explored changes in the populations of infectious hosts and the total population number for both mosquitoes and birds over 2010–2021 for the period spanning from May to October (Figs. 5 and 6). The population of infected mosquitoes (({I}_{M})) was initialised by calibration (see the Methods section). Each year, after a short period in which the population of infected mosquitoes slightly decreased due to a very small number of infectious birds (({I}_{B})) that prevented the infection from spreading, it started growing substantially during summer, reaching its peak in late summer, coinciding with the period when most human cases were recorded. The observed increase in ({I}_{M}) was combined with the growth ({I}_{B}) at approximately the same time (with a slightly anticipated peak), which had an amplification effect on the spread of the infection. Both ({I}_{M}) and ({I}_{B}) showed significant yearly variation, with higher modelled numbers in years where more human WNV cases were reported. The modelled total population of mosquitoes (({N}_{M})) did not show significant interannual variability, always peaking in late summer. Finally, the overall population of birds (({N}_{B})) did not show any variability in the first part of the year, when an increase due to immigration and offspring generation was observed, whereas it had a moderate interannual variability in the second half of the year. These differences may be due to heterogeneous numbers of observed infected, dead and immune birds.Figure 5The temporal evolution during May to October of (a) the number of infected mosquitoes modelled by MIMESIS-2 (({I}_{M})), (b) the total number of mosquitoes modelled by MIMESIS-2 (({N}_{M}))(,) (c) the number of infected birds modelled by MIMESIS-2 (({I}_{B}))(,) and (d) the total number of birds modelled by MIMESIS-2 (({N}_{B})) for each of the 12 years from 2010 to 2021. The plots refer to the simulations for the municipality of Pella.Full size imageFigure 6The temporal evolution during May to October of (a) the ratio between the number of WNV-infected mosquitoes modelled by MIMESIS-2 (({I}_{M,MIM-2})) and the ratio modelled by MIMESIS (({I}_{M,MIM})), (b) the ratio between the total number of mosquitoes modelled by MIMESIS-2 (({N}_{M,MIM-2})) and the ratio modelled by MIMESIS (({N}_{M,MIM}))(,) (c) the ratio between the number of infected birds modelled by MIMESIS-2 (({I}_{B,MIM-2})) and the ratio modelled by MIMESIS (({I}_{B,MIM}))(,) and (d) the ratio between the total number of birds modelled by MIMESIS-2 (({N}_{B,MIM-2})) and the ratio modelled by MIMESIS (({N}_{B,MIM})) for each of the years from 2010 to 2021. The plots refer to the simulations for the municipality of Pella.Full size imageComparison of these population dynamics with those of MIMESIS revealed interesting patterns (Fig. 6). Considering the relative number of mosquitoes in MIMESIS-2 with respect to MIMESIS, the populations in MIMESIS tended to grow faster due to a higher mosquito carrying capacity (({K}_{M})) in the original model (({K}_{M}) ≈ 8.3 × 105 in MIMESIS versus ({K}_{M}) ≈ 2.4 × 105 in MIMESIS-2), resulting in a decrease in the ratio between the amounts modelled by MIMESIS-2 and the ones modelled by MIMESIS. Significant interannual variability could be seen in the first part of the year for infectious mosquitoes, where different initial calibration values played an important role. For the populations of birds, until midsummer, the overall number modelled by MIMESIS-2 tended to be approximately 1/4 that of MIMESIS, while as of July, different patterns were observed due to the higher mortality of birds in the original MIMESIS model. In years with higher virus spread, higher mortality was reflected in a sharper decrease in bird populations; therefore, the ratio between the population modelled by MIMESIS-2 and that modelled by MIMESIS increased up to approximately 0.6 (2010). More

  • in

    Influence of short and long term processes on SAR11 communities in open ocean and coastal systems

    Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep. 2011;1:9.
    Google Scholar 
    Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One. 2013;8:e83383.
    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sci. 2017;9:231–55.
    Google Scholar 
    Zhao X, Schwartz CL, Pierson J, Giovannoni SJ, McIntosh RJ, Nicastro D. Three-dimensional structure of the ultraoligotrophic marine bacterium “Candidatus pelagibacter ubique”. Appl Environ Microbiol. 2017;83:807–16.
    Google Scholar 
    Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol. 1990;56:4.
    Google Scholar 
    Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature. 2002;420:806–10.CAS 

    Google Scholar 
    Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature. 2002;418:630–3.
    Google Scholar 
    Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.CAS 

    Google Scholar 
    Field KG, Gordon D, Wright T, Rappé M, Urback E, Vergin K, et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl Environ Microbiol. 1997;63:63–70.CAS 

    Google Scholar 
    Suzuki MT, Beja O, Taylor LT, DeLong EF. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ Microbiol. 2001;3:323–31.CAS 

    Google Scholar 
    Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 2009;3:283–95.CAS 

    Google Scholar 
    Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, et al. Global biogeography of SAR11 marine bacteria. Mol Syst Biol. 2012;8:595.
    Google Scholar 
    Haro‐Moreno JM, Rodriguez‐Valera F, Rosselli R, Martinez‐Hernandez F, Roda‐Garcia JJ, Gomez ML, et al. Ecogenomics of the SAR11 clade. Environ Microbiol. 2020;22:1748–63.
    Google Scholar 
    Carini P, White AE, Campbell EO, Giovannoni SJ. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun. 2014;5:4346.CAS 

    Google Scholar 
    Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, et al. One carbon metabolism in SAR11 Pelagic marine bacteria. PLoS One. 2011;6:e23973.CAS 

    Google Scholar 
    Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol. 2010;12:490–500.CAS 

    Google Scholar 
    Sun J, Todd JD, Thrash JC, Qian Y, Qian MC, Temperton B, et al. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat Microbiol. 2016;1:16065.CAS 

    Google Scholar 
    Halsey KH, Giovannoni SJ, Graus M, Zhao Y, Landry Z, Thrash JC, et al. Biological cycling of volatile organic carbon by phytoplankton and bacterioplankton: VOC cycling by marine plankton. Limnol Oceanogr. 2017;62:2650–61.CAS 

    Google Scholar 
    Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Vergin K. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol Oceanogr. 2004;49:1073–83.CAS 

    Google Scholar 
    Wagner S, Schubotz F, Kaiser K, Hallmann C, Waska H, Rossel PE, et al. Soothsaying DOM: a current perspective on the future of oceanic dissolved organic carbon. Front Mar Sci. 2020;7:341.
    Google Scholar 
    Quinn PK, Bates TS. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature. 2011;480:51–6.CAS 

    Google Scholar 
    Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni S. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:624164.
    Google Scholar 
    Tucker SJ, Freel KC, Monaghan EA, Sullivan CES, Ramfelt O, Rii YM, et al. Spatial and temporal dynamics of SAR11 marine bacteria across a nearshore to offshore transect in the tropical Pacific Ocean. PeerJ. 2021;9:e12274.
    Google Scholar 
    Giovannoni SJ, Vergin KL. Seasonality in ocean microbial communities. Science. 2012;335:671–6.CAS 

    Google Scholar 
    Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S RRNA gene data. Methods Ecol Evol. 2013;4:1111–9.
    Google Scholar 
    Vergin K, Done B, Carlson C, Giovannoni S. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat Microb Ecol. 2013;71:1–13.
    Google Scholar 
    Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 2015;9:347–60.CAS 

    Google Scholar 
    Ortmann AC, Santos TTL. Spatial and temporal patterns in the Pelagibacteraceae across an estuarine gradient. FEMS Microbiol Ecol. 2016;92:fiw133.
    Google Scholar 
    Vergin KL, Beszteri B, Monier A, Cameron Thrash J, Temperton B, Treusch AH, et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 2013;7:1322–32.CAS 

    Google Scholar 
    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.CAS 

    Google Scholar 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;12:6–393.
    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 

    Google Scholar 
    Southward AJ, Langmead O, Hardman-Mountford NJ, Aiken J, Boalch GT, Dando PR, et al. Long-term oceanographic and ecological research in the Western English Channel. In: Advances in marine biology. Elsevier. 2005;47:1–105.Gilbert JA, Field D, Swift P, Newbold L, Oliver A, Smyth T, et al. The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol. 2009;11:3132–9.CAS 

    Google Scholar 
    Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 

    Google Scholar 
    Caporaso JG, Paszkiewicz K, Field D, Knight R, Gilbert JA. The Western English Channel contains a persistent microbial seed bank. ISME J. 2012;6:1089–93.CAS 

    Google Scholar 
    Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.
    Google Scholar 
    Vergin KL, Done B, Carlson CA, Giovannoni SJ. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat Microb Ecol. 2013;71:1–3.
    Google Scholar 
    Choi CJ, Jimenez V, Needham DM, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:542372.
    Google Scholar 
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1663–74.
    Google Scholar 
    Matsen FA, Kodner RB, Armbrust E. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:1–6.
    Google Scholar 
    Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, et al. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 2009;3:1148–63.
    Google Scholar 
    Giovannoni SJ, Rappe MS, Vergin KL, Adair NL. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc Natl Acad Sci. 1996;93:7979–84.CAS 

    Google Scholar 
    Morris RM, Vergin KL, Cho J-C, Rappé MS, Carlson CA, Giovannoni SJ. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr. 2005;50:1687–96.CAS 

    Google Scholar 
    Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.CAS 

    Google Scholar 
    Lane DJ. Nucleic acid techniques in bacterial systematics. In: Nucleic acid techniques in bacterial systematics. New York: Wiley; p. 115–75.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 

    Google Scholar 
    Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci. 2014;111:E2875–84.CAS 

    Google Scholar 
    Buchholz HH, Michelsen ML, Bolaños LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus–host model systems for fastidious heterotrophic bacteria. ISME J. 2021;15:1585–98.CAS 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria; https://www.R-project.org/Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Package “vegan”.Wickham H. ggplot2: ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.
    Google Scholar 
    Wang W, Yan J. Shape-restricted regression splines with R package splines2. J Data Sci. 2021;19:498–517.
    Google Scholar 
    Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–87.CAS 

    Google Scholar 
    Ahdesmaki M, Fokianos K, Strimmer K, Ahdesmaki MM. Package ‘GeneCycle’ 2015.Roesch A, Schmidbauer H and Roesch MA. Package ‘WaveletComp.’ 2014.Lomas MW, Bates NR, Johnson RJ, Knap AH, Steinberg DK, Carlson CA. Two decades and counting: 24-years of sustained open ocean biogeochemical measurements in the Sargasso Sea. Deep Sea Res Part II Top Stud Oceanogr. 2013;93:16–32.CAS 

    Google Scholar 
    Lomas MW, Bates NR, Johnson RJ, Steinberg DK, Tanioka T. Adaptive carbon export response to warming in the Sargasso Sea. Nature Commun. 2022;13:1–0.
    Google Scholar 
    Sargeant SL, Murrell JC, Nightingale PD, Dixon JL. Basin-scale variability of microbial methanol uptake in the Atlantic Ocean. Biogeosciences. 2018;15:5155–67.CAS 

    Google Scholar 
    Smyth TJ, Allen I, Atkinson A, Bruun JT, Harmer RA, Pingree RD, et al. Ocean net heat flux influences seasonal to interannual patterns of plankton abundance. PLoS One. 2014;9:e98709.
    Google Scholar 
    Van de Peer Y. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996;24:3381–91.
    Google Scholar 
    Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods. 2003;55:541–55.CAS 

    Google Scholar 
    Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS ONE. 2012;7:e42671.CAS 

    Google Scholar 
    Stingl U, Tripp HJ, Giovannoni SJ. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time-series study site. ISME J. 2007;1:361–71.CAS 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife. 2019;8:e46497.
    Google Scholar 
    Lévy M, Jahn O, Dutkiewicz S, Follows MJ, d’Ovidio F. The dynamical landscape of marine phytoplankton diversity. J R Soc Interface. 2015;12:20150481.
    Google Scholar 
    Hellweger FL, van Sebille E, Calfee BC, Chandler JW, Zinser ER, Swan BK, et al. The role of ocean currents in the temperature selection of plankton: insights from an individual-based model. PLoS ONE. 2016;11:e0167010.
    Google Scholar 
    Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science. 2005;309:1242–5.CAS 

    Google Scholar 
    Brown SN, Giovannoni S, Cho JC. Polyphasic taxonomy of marine bacteria from the SAR11 group Ia: Pelagibacter ubiquis (strain HTCC1062) & Pelagibacter bermudensis (strain HTCC7211). Oregon State University; 2012.Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. ISME J. 2022;16:178–89.CAS 

    Google Scholar 
    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.CAS 

    Google Scholar 
    Ruiz-Perez CA, Bertagnolli AD, Tsementzi D, Woyke T, Stewart FJ, Konstantinidis KT. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst Appl Microbiol. 2021;44:126185.CAS 

    Google Scholar 
    Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Commun. 2022;13:1–12.
    Google Scholar 
    McCarthy M, Spillane S, Walsh S, Kendon M. The meteorology of the exceptional winter of 2015/2016 across the UK and Ireland. Weather. 2016;71:305–13.
    Google Scholar 
    Met Office. UK Climate Projections: Headline Findings. 2021. More