Modelling the Mediterranean Sea ecosystem at high spatial resolution to inform the ecosystem-based management in the region
Barbier, E. B. Marine ecosystem services. Curr. Biol. 27, R507–R510 (2017).CAS
PubMed
Google Scholar
Liquete, C., Piroddi, C., Macías, D., Druon, J.-N. & Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: Assessment of status and trends using multiple modelling approaches. Sci. Rep. 6, 34162 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS
Google Scholar
Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS
CAS
PubMed
Google Scholar
Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).
Google Scholar
Link, J. S. & Browman, H. I. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74, 379–381 (2017).
Google Scholar
EC. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Brussels: European Commission. (2020).EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, “Pathway to a healthy planet for all” with the sub-title “EU action Plan: ’Towards zero pollution for air, water and soil, COM (2021) 400. (2021).EC. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the Regions, COM (2019) 640. (2019).Alexander, K. & Haward, M. The human side of marine ecosystem-based management (EBM): ‘Sectoral interplay’ as a challenge to implementing EBM. Mar. Policy 101, 33–38 (2019).
Google Scholar
EC. The EU Blue Economy Report 2021. (2021).Ostlaender, N. et al. Modelling Inventory and Knowledge Man-agement System of the European Commission (MIDAS) (Publications Office of the European Union, 2019).
Google Scholar
Friedland, R. et al. Effects of nutrient management scenarios on marine eutrophication indicators: A Pan-European, multi-model assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 596126 (2021).
Google Scholar
Piroddi, C. et al. Effects of nutrient management scenarios on marine food webs: A Pan-European Assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 179 (2021).
Google Scholar
Corrales, X. et al. Multi-zone marine protected areas: Assessment of ecosystem and fisheries benefits using multiple ecosystem models. Ocean Coast. Manag. 193, 105232 (2020).
Google Scholar
Bentley, J. W. et al. Refining fisheries advice with stock-specific ecosystem information. Front. Mar. Sci. 8, 602072 (2021).
Google Scholar
Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209 (2021).PubMed
PubMed Central
Google Scholar
Heymans, J. J. et al. The ocean decade: A true ecosystem modelling challenge. Front. Mar. Sci. 7, 554573 (2020).
Google Scholar
Hernvann, P.-Y. et al. The Celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018 (2020).
Google Scholar
Christensen, V. & Walters, C. J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).
Google Scholar
Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).
Google Scholar
Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).CAS
Google Scholar
de Mutsert, K., Lewis, K., Milroy, S., Buszowski, J. & Steenbeek, J. Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries. Ecol. Model. 360, 14–26 (2017).
Google Scholar
Serpetti, N. et al. Modelling small scale impacts of Multi-Purpose Platforms: An ecosystem approach. Front. Mar. Sci. 8, 778 (2021).
Google Scholar
DFO. Technical review of Roberts Bank Terminal 2 environmental assessment: section 10.3—assessing ecosystem productivity. DFO Can. Sci. Advis. Sec. Sci. Resp. 2016/050 (2016).Coll, M., Pennino, M. G., Steenbeek, J., Solé, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).
Google Scholar
Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, e11842 (2010).ADS
PubMed
PubMed Central
Google Scholar
Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).
Google Scholar
Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS One 8, e79889 (2013).ADS
PubMed
PubMed Central
Google Scholar
Piroddi, C., Colloca, F. & Tsikliras, A. C. The living marine resources in the Mediterranean Sea large marine ecosystem. Environ. Dev. 36, 100555 (2020).PubMed
PubMed Central
Google Scholar
Barale, V. & Gade, M. Remote Sensing of the European Seas. (Springer, 2008).Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).ADS
Google Scholar
Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
Google Scholar
Bianchi, C. N. et al. In Life in the Mediterranean Sea: A Look at Habitat Changes, vol. 1 55 (2012).Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: The known, the unknown, and the unknowable. PLoS One 5, e11832 (2010).ADS
PubMed
PubMed Central
Google Scholar
Moullec, F. et al. Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Prog. Oceanogr. 178, 102179 (2019).
Google Scholar
Macias, D., Garcia-Gorriz, E., Piroddi, C. & Stips, A. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Glob. Biogeochem. Cycles 28, 897–907 (2014).ADS
CAS
Google Scholar
Piroddi, C. et al. Historical changes of the Mediterranean Sea ecosystem: Modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7, 44491 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS
CAS
PubMed
Google Scholar
Lotze, H. K., Coll, M. & Dunne, J. A. Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea, Mediterranean. Ecosystems 14, 198–222 (2011).
Google Scholar
Macias, D., Huertas, I. E., Garcia-Gorriz, E. & Stips, A. Non-Redfieldian dynamics driven by phytoplankton phosphate frugality explain nutrient and chlorophyll patterns in model simulations for the Mediterranean Sea. Prog. Oceanogr. 173, 37–50 (2019).ADS
PubMed
PubMed Central
Google Scholar
Spedicato, M. T. et al. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83, 9–20 (2019).
Google Scholar
Corrales, X. et al. Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors. Mar. Ecol. Prog. Ser. 580, 17–36 (2017).ADS
Google Scholar
FAO. The State of the Mediterranean and Black Sea fisheries (General Fisheries Commission for the Mediterranean (GFCM), 2020).Ferrà, C. et al. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 94, 275–281 (2018).
Google Scholar
Russo, T. et al. Trends in effort and yield of trawl fisheries: A case study from the Mediterranean Sea. Front. Mar. Sci. 6, 153 (2019).ADS
Google Scholar
Ramírez, F., Coll, M., Navarro, J., Bustamante, J. & Green, A. J. Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Sci. Rep. 8, 1–8 (2018).
Google Scholar
Coll, M., Steenbeek, J., Ben Rais Lasram, F., Mouillot, D. & Cury, P. ‘Low-hanging fruit’ for conservation of marine vertebrate species at risk in the Mediterranean Sea. Glob. Ecol. Biogeogr. 24, 226–239 (2015).
Google Scholar
Ruiz, J. et al. “Strengthening regional cooperation in the area of large pelagic fishery data collection (RECOLAPE)”, Annex III “Biological data collection for fisheries on highly migratory species” (2019).Boerder, K., Schiller, L. & Worm, B. Not all who wander are lost: Improving spatial protection for large pelagic fishes. Mar. Policy 105, 80–90 (2019).
Google Scholar
Giakoumi, S. et al. Conserving European biodiversity across realms. Conserv. Lett. 12, e12586 (2019).
Google Scholar
Gascuel, D. & Cheung, W. W. In Predicting Future Oceans 79–85 (Elsevier, 2019).Macias, D., Garcia-Gorriz, E. & Stips, A. Major fertilization sources and mechanisms for Mediterranean Sea coastal ecosystems. Limnol. Oceanogr. 63, 897–914 (2018).ADS
CAS
Google Scholar
Alvarez-Berastegui, D., Tugores, M., Ottmann, D., Martín-Quetglas, M. & Reglero, P. Bluefin tuna larval indices in the Western Mediterranean, ecological and analytical sources of uncertainty. Collect. Vol. Sci. Pap. ICCAT. 77, 289–311 (2020).
Google Scholar
ICCAT. 2020 SCRS Advice to the Commission (Madrid, Spain, 2020).Clavel-Henry, M., Piroddi, C., Quattrocchi, F., Macias, D. & Christensen, V. Spatial distribution and abundance of mesopelagic fish biomass in the Mediterranean Sea. Front. Mar. Sci. 7, 1136 (2020).
Google Scholar
García-Ruiz, C. et al. Spatio-temporal patterns of macrourid fish species in the northern Mediterranean Sea. Sci. Mar. 83, 117–127 (2019).
Google Scholar
Ainsworth, C. Quantifying species abundance trends in the Northern Gulf of California using local ecological knowledge. Mar. Coast. Fish. 3, 190–218 (2011).
Google Scholar
Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed
PubMed Central
Google Scholar
Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Ind. 60, 947–962 (2016).
Google Scholar
Swartz, W., Sala, E., Tracey, S., Watson, R. & Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5, e15143 (2010).ADS
CAS
PubMed
PubMed Central
Google Scholar
Damasio, L. M., Peninno, M. G. & Lopes, P. F. Small changes, big impacts: Geographic expansion in small-scale fisheries. Fish. Res. 226, 105533 (2020).
Google Scholar
Coll, M. et al. Assessing fishing and marine biodiversity changes using fishers’ perceptions: The Spanish Mediterranean and Gulf of Cadiz case study. PLoS One 9, e85670 (2014).ADS
PubMed
PubMed Central
Google Scholar
Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z. & Tsalkou, E. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE 10, e0121188 (2015).PubMed
PubMed Central
Google Scholar
Pittman, S. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29 (2021).ADS
Google Scholar
Kritzer, J. P. & Liu, O. R. In Stock Identification Methods 29–57 (Elsevier, 2014).Piroddi, C., Heymans, J. J., Macias, D., Gregoire, M. & Townsend, H. Editorial: Using ecological models to support and shape environmental policy decisions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.815313 (2021).
Google Scholar
Macias, D. et al. JRC marine modelling framework in support of the marine strategy framework directive: Inventory of models, basin configurations and datasets. Update 2018. (2018).Piante, C. & Ody, D. Blue Growth in the Mediterranean Sea: The Challenge of Good Environmental Status. 192 (France, 2015).Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).
Google Scholar
Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).ADS
Google Scholar
Piroddi, C., Coll, M., Steenbeek, J., Moy, D. M. & Christensen, V. Modelling the Mediterranean marine ecosystem as a whole: Addressing the challenge of complexity. Mar. Ecol. Prog. Ser. 533, 47–65 (2015).ADS
Google Scholar
Walters, C., Pauly, D. & Christensen, V. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).
Google Scholar
Christensen, V., Walters, C., Pauly, D. & Forrest, R. Ecopath with Ecosim 6: A User’s Guide (University of British Columbia, 2008).
Google Scholar
Kaschner, K. et al. AquaMaps: Predicted range maps for aquatic species. In World Wide Web Electronic Publication, www.aquamaps.org, Version, vol. 8, 2016 (2016).De Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-End modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104 (2021).
Google Scholar
Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 741, 567877 (2020).
Google Scholar
Shannon, C. & Weaver, W. (Univ. Illinois Press, 1949).Ainsworth, C. H. & Pitcher, T. J. Modifying Kempton’s species diversity index for use with ecosystem simulation models. Ecol. Ind. 6, 623–630 (2006).
Google Scholar
Coll, M. & Steenbeek, J. Standardized ecological indicators to assess aquatic food webs: The ECOIND software plug-in for Ecopath with Ecosim models. Environ. Model. Softw. 89, 120–130 (2017).
Google Scholar
Taconet, M., Kroodsma, D. & Fernandes, J. Global Atlas of AIS-Based Fishing Activity—Challenges and Opportunities (2021). More