Minimal climate change impacts on the geographic distribution of Nepeta glomerulosa, medicinal species endemic to southwestern and central Asia
Mahmoodi, S. et al. The current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. Ecol. Indic. 137, 108752 (2022).
Google Scholar
Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F. & Mesdaghi, M. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss.(Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE 15, e0237527 (2020).CAS
PubMed
PubMed Central
Google Scholar
Khanal, S. et al. Potential impact of climate change on the distribution and conservation status of Pterocarpus marsupium, a Near Threatened South Asian medicinal tree species. Ecol. Inform. 70, 101722 (2022).
Google Scholar
Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24, 1150–1163 (2018).ADS
Google Scholar
Sanjerehei, M. M. & Rundel, P. W. The impact of climate change on habitat suitability for Artemisia sieberi and Artemisia aucheri (Asteraceae)—A modeling approach. Pol. J. Ecol. 65, 97–109 (2017).
Google Scholar
Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 1–13 (2021).
Google Scholar
Zhang, J. M. et al. Effects of climate change on the distribution of wild Akebia trifoliata. Ecol. Evol. 12, e8714 (2022).PubMed
PubMed Central
Google Scholar
Li, J., Fan, G. & He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 698, 134141 (2020).ADS
CAS
PubMed
Google Scholar
Yang, X.-Q., Kushwaha, S., Saran, S., Xu, J. & Roy, P. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).CAS
Google Scholar
Greiser, C., Hylander, K., Meineri, E., Luoto, M. & Ehrlén, J. Climate limitation at the cold edge: Contrasting perspectives from species distribution modelling and a transplant experiment. Ecography 43, 637–647 (2020).
Google Scholar
Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).PubMed
Google Scholar
Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: Future challenges. Plant Ecol. Evol. Syst. 9, 137–152 (2008).
Google Scholar
Menke, S., Holway, D., Fisher, R. & Jetz, W. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder. Glob. Ecol. Biogeogr. 18, 50–63 (2009).
Google Scholar
Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed
Google Scholar
Celenk, S., Dirmenci, T., Malyer, H. & Bicakci, A. A palynological study of the genus Nepeta L.(Lamiaceae). Plant Syst. Evol. 276, 105–123 (2008).
Google Scholar
Zargari, A. Medicinal Plants Vol. 2 (University of Tehran Pub, 1990).
Google Scholar
Javidnia, K., Miri, R., Rezazadeh, S. R., Soltani, M. & Khosravi, A. R. Essential oil composition of two subspecies of Nepeta glomerulosa Boiss. from Iran. Nat. Prod. Commun. 3, 1934578X0800300530 (2008).
Google Scholar
Jamzad, Z. Flora of Iran, no 76, Lamiaceae. Res. Inst. For. Rangel. Tehran 76, 542–544 (2012).
Google Scholar
Talebi, S. M., Nohooji, M. G., Yarmohammadi, M., Azizi, N. & Matsyura, A. Trichomes morphology and density analysis in some Nepeta species of Iran. Mediterr. Bot. 39, 51–62 (2018).
Google Scholar
Amirmohammadi, F., Azizi, M., Nemati, S. H., Memariani, F. & Murphy, R. Nutlet micro‐morphology of selected species of Nepeta (Lamiaceae) in Iran. Nord. J. Bot. (2019).Jamzad, Z., Chase, M. W., Ingrouille, M., Simmonds, M. S. & Jalili, A. Phylogenetic relationships in Nepeta L.(Lamiaceae) and related genera based on ITS sequence data. Taxon 52, 21–32 (2003).
Google Scholar
Emami, S. A., Yazdian, R., Arab, A., Sadeghi, M. & Tayarani-Najaran, Z. Anti-melanogenic activity of different extracts from aerial parts of Nepeta glomeruloasin on murine melanoma B16F10 cells. Iran. J. Pharm. Sci. 13, 61–74 (2017).
Google Scholar
Narimani, R., Moghaddam, M., Ghasemi Pirbalouti, A. & Mojarab, S. Essential oil composition of seven populations belonging to two Nepeta species from Northwestern Iran. Int. J. Food Prop. 20, 2272–2279 (2017).CAS
Google Scholar
Hosseini, A., Forouzanfar, F. & Rakhshandeh, H. Hypnotic effect of Nepeta glomerulosa on pentobarbital-induced sleep in mice. Jundishapur J. Nat. Pharm. Prod. https://doi.org/10.17795/jjnpp-25063 (2016).Article
Google Scholar
Layeghhaghighi, M., Hassanpour Asil, M., Abbaszadeh, B., Sefidkon, F. & Matinizadeh, M. Investigation of altitude on morphological traits and essential oil composition of Nepeta pogonosperma Jamzad and Assadi from Alamut region. J. Med. Plants Prod. 6, 35–40 (2017).
Google Scholar
Sefidkon, F. Essential oil of Nepeta glomerulosa Boiss. from Iran. J. Essent. Oil Res. 13, 422–423 (2001).CAS
Google Scholar
Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).
Google Scholar
Djamali, M., Brewer, S., Breckle, S. W. & Jackson, S. T. Climatic determinism in phytogeographic regionalization: a test from the Irano-Turanian region, SW and Central Asia. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 237–249 (2012).
Google Scholar
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
Google Scholar
Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G. & Peterson, A. T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 9, 221–229 (2014).PubMed
Google Scholar
Valencia-Rodríguez, D., Jiménez-Segura, L., Rogéliz, C. A. & Parra, J. L. Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16, e0247876 (2021).PubMed
PubMed Central
Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Google Scholar
Peterson, A. T., Cobos, M. E. & Jiménez-García, D. Major challenges for correlational ecological niche model projections to future climate conditions. Ann. N. Y. Acad. Sci. 1429, 66–77 (2018).ADS
PubMed
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
Raghavan, R. K., Peterson, A. T., Cobos, M. E., Ganta, R. & Foley, D. Current and future distribution of the lone star tick, Amblyomma americanum (L.)(Acari: Ixodidae) in North America. PLoS ONE 14, e0209082 (2019).CAS
PubMed
PubMed Central
Google Scholar
Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
Google Scholar
Ramírez Villegas, J. & Jarvis, A. Downscaling global circulation model outputs: The delta method decision and policy analysis Working Paper No. 1 (2010).Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).PubMed
Google Scholar
Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 200, 1–19 (2007).
Google Scholar
Rahmanian, S., Pouyan, S., Karami, S. & Pourghasemi, H. R. In Computers in Earth and Environmental Sciences 245–254 (Elsevier, 2022).Rahmanian, S., Pourghasemi, H. R., Pouyan, S. & Karami, S. Habitat potential modelling and mapping of Teucrium polium using machine learning techniques. Environ. Monit. Assess. 193, 1–21 (2021).
Google Scholar
Domroes, M., Kaviani, M. & Schaefer, D. An analysis of regional and intra-annual precipitation variability over Iran using multivariate statistical methods. Theor. Appl. Climatol. 61, 151–159 (1998).ADS
Google Scholar
Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Glob. Change Biol. 23, 2660–2671 (2017).ADS
Google Scholar
Rousta, I. et al. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sens. 12, 2433 (2020).ADS
Google Scholar
Wang, Y. et al. Contrasting effects of temperature and precipitation on vegetation greenness along elevation gradients of the Tibetan Plateau. Remote Sens. 12, 2751 (2020).ADS
Google Scholar
Zhang, Y. et al. Vegetation change and its relationship with climate factors and elevation on the Tibetan plateau. Int. J. Environ. Res. Public Health 16, 4709 (2019).PubMed Central
Google Scholar
Vanneste, T. et al. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32, 579–593 (2017).
Google Scholar
Rodriguez, C., Navarro, T. & El-Keblawy, A. Covariation in diaspore mass and dispersal patterns in three Mediterranean coastal dunes in southern Spain. Turk. J. Bot. 41, 161–170 (2017).
Google Scholar
Zona, S. Fruit and seed dispersal of Salvia L.(Lamiaceae): A review of the evidence. Bot. Rev. 83, 195–212 (2017).
Google Scholar
Ryding, O. Myxocarpy in the Nepetoideae (Lamiaceae) with notes on myxodiaspory in general. Syst. Geogr. Plants 71, 503–514 (2001).
Google Scholar
Tanaka, K., Ogata, K., Mukai, H., Yamawo, A. & Tokuda, M. Adaptive advantage of myrmecochory in the ant-dispersed herb Lamium amplexicaule (Lamiaceae): Predation avoidance through the deterrence of post-dispersal seed predators. PLoS ONE 10, e0133677 (2015).PubMed
PubMed Central
Google Scholar
Ferreira, P. M. et al. Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities. PLoS ONE 15, e0227706 (2020).CAS
PubMed
PubMed Central
Google Scholar More