Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.CAS
PubMed
Google Scholar
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS
PubMed
Google Scholar
Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. Ecology and evolution of plant microbiomes. Annu Rev Microbiol. 2019;73:69–88.CAS
PubMed
Google Scholar
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS
PubMed
Google Scholar
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: From ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:81–100.CAS
PubMed
Google Scholar
Schmidt R, Ulanova D, Wick LY, Bode HB, Garbeva P. Microbe-driven chemical ecology: past, present and future. ISME J. 2019;13:2656–63.PubMed
PubMed Central
Google Scholar
Tyc O, Song C, Dickschat JS, Vos M, Garbeva P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 2017;25:280–92.CAS
PubMed
Google Scholar
Romero D, Traxler MF, López D, Kolter R. Antibiotics as signal molecules. Chem Rev. 2011;111:5492–505.CAS
PubMed
PubMed Central
Google Scholar
Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol. 2012;86:628–44.CAS
PubMed
PubMed Central
Google Scholar
Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol. 2018;20:1–15.PubMed
Google Scholar
Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev. 2017;41:19–33.CAS
PubMed
Google Scholar
Zhang C, Straight PD. Antibiotic discovery through microbial interactions. Curr Opin Microbiol. 2019;51:64–71.CAS
PubMed
Google Scholar
Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.CAS
PubMed
Google Scholar
Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota: systems-level insights and perspectives. Annu Rev Genet. 2016;50:211–34.PubMed
Google Scholar
Anckaert A, Arias AA, Hoff G, Calonne-Salmon M, Declerck S, Ongena M. The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. In: Köhl J, Ravensberg W, editors. Microbial bioprotectants for plant disease management. Cambridge, UK: Burleigh Dodds Science Publishing; 2022. p. 1–54.Dunlap CA. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biol Control. 2019;134:82–86.
Google Scholar
Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem Biol. 2018;13:500–5.CAS
PubMed
Google Scholar
Grubbs KJ, Bleich RM, Santa Maria KC, Allen SE, Farag S, Shank EA, et al. Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2017;2:e00040–17.CAS
PubMed
PubMed Central
Google Scholar
Harwood CR, Mouillon J-MM, Pohl S, Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev. 2018;42:721–38.CAS
PubMed
PubMed Central
Google Scholar
Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci. 2019;10:1–19.
Google Scholar
Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem. 2020;295:34–54.Andrić S, Meyer T, Ongena M. Bacillus responses to plant-associated fungal and bacterial communities. Front Microbiol. 2020;11:1350.PubMed
PubMed Central
Google Scholar
Zhang L, Sun C. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol. 2018;84:e00445–18.CAS
PubMed
PubMed Central
Google Scholar
Molina-Santiago C, Vela-Corcía D, Petras D, Díaz-Martínez L, Pérez-Lorente AI, Sopeña-Torres S, et al. Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Rep. 2021;36:109449.CAS
PubMed
PubMed Central
Google Scholar
Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun. 2019;10:1919.PubMed
PubMed Central
Google Scholar
Almoneafy AA, Kakar KU, Nawaz Z, Li B, Saand MA, Chun-lan Y, et al. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 2014;63:59–70.CAS
Google Scholar
Kakar KU, Duan Y-P, Nawaz Z, Sun G, Almoneafy AA, Hassan MA, et al. A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused by Pseudomonas fuscovaginae and its mode of action. Eur J Plant Pathol. 2014;138:819–34.
Google Scholar
Raynaud X, Nunan N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE. 2014;9:e87217.PubMed
PubMed Central
Google Scholar
Girard L, Lood C, Höfte M, Vandamme P, Rokni-Zadeh H, van Noort V, et al. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms. 2021;9:1–24.
Google Scholar
Hua GKH, Höfte M. The involvement of phenazines and cyclic lipopeptide sessilin in biocontrol of Rhizoctonia root rot on bean (Phaseolus vulgaris) by Pseudomonas sp. CMR12a is influenced by substrate composition. Plant Soil. 2015;388:243–53.CAS
Google Scholar
Ma Z, Hoang Hua GKH, Ongena M, Höfte M. Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ Microbiol Rep. 2016;8:896–904.PubMed
Google Scholar
Olorunleke FE, Hua GKH, Kieu NP, Ma Z, Höfte M. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ Microbiol Rep. 2015;7:774–81.CAS
PubMed
Google Scholar
van Gestel J, Vlamakis H, Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 2015;13:1–29.
Google Scholar
Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol. 2012;79:176–91.CAS
PubMed
Google Scholar
Hoff G, Arias AA, Boubsi F, Pršić J, Meyer T, Ibrahim HMM, et al. Surfactin stimulated by pectin molecular patterns and root exudates acts as a key driver of the Bacillus-plant mutualistic interaction. MBio 2021;12:e01774–21.CAS
PubMed Central
Google Scholar
Andrić S, Meyer T, Rigolet A, Prigent-Combaret C, Höfte M, Balleux G, et al. Lipopeptide interplay mediates molecular interactions between soil bacilli and pseudomonads. Microbiol Spectr. 2021;9:e0203821.PubMed
Google Scholar
Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11:395.
Google Scholar
Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.CAS
PubMed
Google Scholar
Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S. msa: an R package for multiple sequence alignment. Bioinformatics. 2015;31:3997–9.CAS
PubMed
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004;20:289–90.CAS
PubMed
Google Scholar
Ivica Letunic PB. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296.PubMed
PubMed Central
Google Scholar
R Core Team (2020). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.Steinke K, Mohite OS, Weber T, Kovács ÁT. Phylogenetic distribution of secondary metabolites in the Bacillus subtilis species complex. mSystems. 2021;6:2–10.
Google Scholar
Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, et al. Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol. 2016;238:56–59.CAS
PubMed
Google Scholar
Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol. 2018;9:3389.
Google Scholar
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614–29.PubMed
PubMed Central
Google Scholar
Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;196:1842–52.PubMed
PubMed Central
Google Scholar
Lembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, Kemppinen J, et al. Global maps of soil temperature. Glob Chang Biol. 2022;28:3110–44.CAS
PubMed
PubMed Central
Google Scholar
Blake C, Christensen MN, Kovacs AT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant-Microbe Interact. 2021;34:15–25.CAS
PubMed
Google Scholar
Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19:600–14.CAS
PubMed
Google Scholar
D’aes J, Hua GKH, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, et al. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology. 2011;101:996–1004.PubMed
Google Scholar
Grandchamp GM, Caro L, Shank EA. Pirated siderophores promote sporulation in Bacillus subtilis. Appl Environ Microbiol. 2017;83:e03293–16.CAS
PubMed
PubMed Central
Google Scholar
Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol. 2006;61:1413–27.CAS
PubMed
Google Scholar
Pi H, Helmann JD. Genome-wide characterization of the fur regulatory network reveals a link between catechol degradation and bacillibactin metabolism in Bacillus subtilis. MBio. 2018;9:1–15.
Google Scholar
Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, et al. Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS ONE. 2012;7:e46754.CAS
PubMed
PubMed Central
Google Scholar
Trottmann F, Franke J, Ishida K, García-Altares M, Hertweck C. A pair of bacterial siderophores releases and traps an intercellular signal molecule: an unusual case of natural nitrone bioconjugation. Angew Chem. 2019;58:200–4.CAS
Google Scholar
Mongkolsuk S, Helmann JD. Regulation of inducible peroxide stress responses. Mol Microbiol. 2002;45:9–15.CAS
PubMed
Google Scholar
Cox CD, Rinehart KL, Moore ML, Cook JC. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1981;78:4256–60.CAS
PubMed
PubMed Central
Google Scholar
Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem. 2007;282:35546–53.CAS
PubMed
Google Scholar
Ronnebaum TA, Lamb AL. Nonribosomal peptides for iron acquisition: pyochelin biosynthesis as a case study. Curr Opini Struct Biol. 2018;53:1–11.CAS
Google Scholar
Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, et al. The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology. 2011;157:2681–93.CAS
PubMed
Google Scholar
Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5:1002–10.CAS
PubMed
PubMed Central
Google Scholar
Komaki H, Ichikawa N, Hosoyama A, Hamada M, Igarashi Y. In silico analysis of PKS and NRPS gene clusters in arisostatin-and kosinostatin-producers and description of Micromonospora okii sp. nov. Antibiotics. 2021;10:1447.CAS
PubMed
PubMed Central
Google Scholar
Engelbrecht A, Saad H, Gross H, Kaysser L. Natural products from Nocardia and their role in pathogenicity. Micro Physiol. 2021;31:217–32.
Google Scholar
Inahashi Y, Zhou S, Bibb MJ, Song L, Al-Bassam MM, Bibb MJ, et al. Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chem Sci. 2017;8:2823–31.CAS
PubMed
PubMed Central
Google Scholar
Song J, Qiu S, Zhao J, Han C, Wang Y, Sun X, et al. Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Nat Microbiol. 2019;12:470–80.
Google Scholar
Sayed AM, Abdel-Wahab NM, Hassan HM, Abdelmohsen UR. Saccharopolyspora: an underexplored source for bioactive natural products. J Appl Microbiol. 2020;128:314–29.CAS
PubMed
Google Scholar
Nordstedt NP, Jones ML. Genomic analysis of Serratia plymuthica MBSA-MJ1: A plant growth promoting rhizobacteria that improves water stress tolerance in greenhouse ornamentals. Front Microbiol. 2021;12:653556.PubMed
PubMed Central
Google Scholar
Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.CAS
PubMed
Google Scholar
Takahashi Y, Malisorn K, Kanchanasin P, Phongsopitanun W, Tanasupawat S, Spain AM, et al. Actinomadura rhizosphaerae sp. nov., isolated from rhizosphere soil of the plant Azadirachta indica. ISME J 2018;68:3012–6.
Google Scholar
Takahashi Y. Genus Kitasatospora, taxonomic features and diversity of secondary metabolites. J Antibiot. 2017;70:506–13.CAS
Google Scholar
Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res. 2015;174:33–47.PubMed
Google Scholar
Walterson AM, Stavrinides J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. J Basic Microbiol. 2015;39:33–47.
Google Scholar
Sungthong R, Nakaew N. The genus Nonomuraea: a review of a rare actinomycete taxon for novel metabolites. J Basic Microbiol. 2015;55:554–65.PubMed
Google Scholar
Müller S, Strack SN, Ryan SE, Kearns DB, Kirby JR. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl Environ Microbiol. 2015;81:203–10.PubMed
Google Scholar
Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R. A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci USA. 2007;104:305–10.CAS
PubMed
Google Scholar
Barger SR, Hoefler BC, Cubillos-Ruiz A, Russell WK, Russell DH, Straight PD. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis. Antonie van Leeuwenhoek. 2012;102:435–45.CAS
PubMed
Google Scholar
Ogran A, Yardeni EH, Keren-Paz A, Bucher T, Jain R, Gilhar O, et al. The plant host induces antibiotic production to select the most-beneficial colonizers. Appl Environ Microbiol. 2019;85:1–15.
Google Scholar
Rosenberg G, Steinberg N, Oppenheimer-Shaanan Y, Olender T, Doron S, Ben-Ari J, et al. Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. npj Biofilms Microbiomes. 2016;2:15027.PubMed
PubMed Central
Google Scholar
Straight PD, Willey JM, Kolter R. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures. J Bacteriol. 2006;188:4918–25.CAS
PubMed
PubMed Central
Google Scholar
Hoefler BC, Gorzelnik KV, Yang JY, Hendricks N, Dorrestein PC, Straight PD. Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Sci USA. 2012;109:13082–7.CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Kyle S, Straight PD. Antibiotic stimulation of a Bacillus subtilis migratory response. mSphere 2018;3:e00586–17.CAS
PubMed
PubMed Central
Google Scholar
Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, et al. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31:1978–86.CAS
PubMed
Google Scholar
McCully LM, Bitzer AS, Seaton SC, Smith LM, Silby MW. Interspecies social spreading: interaction between two sessile soil bacteria leads to emergence of surface motility. mSphere. 2019;4:e00696–18.CAS
PubMed
PubMed Central
Google Scholar
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.CAS
PubMed
Google Scholar
Townsley L, Shank EA. Natural-product antibiotics: cues for modulating bacterial biofilm formation. Trends Microbiol. 2017;25:1016–26.CAS
PubMed
PubMed Central
Google Scholar
Sun X, Xu Z, Xie J, Hesselberg-Thomsen V, Tan T, Zheng D, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 2022;16:774–87.CAS
PubMed
Google Scholar
Dumas Z, Ross-Gillespie A, Kümmerli R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc R Soc B Biol Sci. 2013;280:20131055.
Google Scholar
Lee N, Kim W, Chung J, Lee Y, Cho S, Jang KS, et al. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME J. 2020;14:1111–24.CAS
PubMed
PubMed Central
Google Scholar
Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18:152–63.CAS
PubMed
Google Scholar
Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR. The evolution of siderophore production as a competitive trait. Evolution. 2017;71:1443–55.CAS
PubMed
Google Scholar
Ho YN, Lee HJ, Hsieh CT, Peng CC, Yang YL. Chemistry and biology of salicyl-capped siderophores. Stud Nat Prod Chem. 2018;59:431–90.Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol. 2020;22:1447–66.PubMed
Google Scholar
Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, et al. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol. 2016;92:1–11.
Google Scholar
Jenul C, Keim K, Jens J, Zeiler MJ, Schilcher K, Schurr M, et al. Pyochelin biotransformation shapes bacterial competition. bioRxiv. 2022. https://doi.org/10.1101/2022.04.18.486787.Ho YN, Hoo SY, Wang BW, Hsieh CT, Lin CC, Sun CH, et al. Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen. ISME J. 2021;15:1858–61.CAS
PubMed
PubMed Central
Google Scholar
Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 2015;11:1–34.
Google Scholar
Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell. 2014;159:267–80.CAS
PubMed
PubMed Central
Google Scholar
Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed
PubMed Central
Google Scholar
Saad MM, Eida AA, Hirt H, Doerner P. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.CAS
PubMed
PubMed Central
Google Scholar
Ansari FA, Ahmad I. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. 2019;9:4547.PubMed
PubMed Central
Google Scholar
Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Mañero J. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl. 2006;51:245–58.CAS
Google Scholar
Powers MJ, Sanabria-Valentín E, Bowers AA, Shank EA. Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. J Bacteriol. 2015;197:2129–38.CAS
PubMed
PubMed Central
Google Scholar More