Defensive functions and potential ecological conflicts of floral stickiness
Gorb, E. V. & Gorb, S. N. Anti-adhesive effects of plant wax coverage on insect attachment. J. Exp. Bot. 68, 5323–5337 (2017).CAS
PubMed
Google Scholar
Agrawal, A. A. & Konno, K. Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 40, 311–331 (2009).
Google Scholar
Langenheim, J. H. Plant resins. Am. Sci. 78, 16–24 (1990).
Google Scholar
Ben-Mahmoud, S. et al. Acylsugar amount and fatty acid profile differentially suppress oviposition by western flower thrips, Frankliniella occidentalis, on tomato and interspecific hybrid flowers. PLoS ONE 13, 1–20 (2018).
Google Scholar
LoPresti, E. F., Pearse, I. S. & Charles, G. K. The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects. Ecology 96, 2862–2869 (2015).CAS
PubMed
Google Scholar
Weinhold, A. & Baldwin, I. T. Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proc. Natl. Acad. Sci. 108, 7855–7859 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
Krimmel, B. A. & Wheeler, A. G. Host-plant stickiness disrupts novel ant–mealybug association. Arthropod. Plant. Interact. 9, 187–195 (2015).
Google Scholar
Simmons, A. T., Gurr, G. M., McGrath, D., Martin, P. M. & Nicol, H. I. Entrapment of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on glandular trichomes of Lycopersicon species. Aust. J. Entomol. 43, 196–200 (2004).
Google Scholar
Carter, C. D., Gianfagna, T. J. & Sacalis, J. N. Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the colorado potato beetle. J. Agric. Food Chem. 37, 1425–1428 (1989).CAS
Google Scholar
Van Dam, N. M. & Hare, J. D. Biological activity of Datura wrightii glandular trichome exudate against Manduca sexta larvae. J. Chem. Ecol. 24, 1529–1549 (1998).
Google Scholar
Kessler, A. & Heil, M. The multiple faces of indirect defences and their agents of natural selection. Funct. Ecol. 25, 348–357 (2011).
Google Scholar
Karban, R., LoPresti, E., Pepi, A. & Grof-Tisza, P. Induction of the sticky plant defense syndrome in wild tobacco. Ecology 100, 1–9 (2019).
Google Scholar
Krimmel, B. A. & Pearse, I. S. Sticky plant traps insects to enhance indirect defence. Ecol. Lett. 16, 219–224 (2013).CAS
PubMed
Google Scholar
Eisner, T. & Aneshansley, D. J. Adhesive strength of the insect-trapping glue of a plant (Befaria racemosa). Ann. Entomol. Soc. Am. 76, 295–298 (1983).
Google Scholar
Spomer, G. G. Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. Int. J. Plant Sci. 160, 98–101 (1999).
Google Scholar
Darnowski, D. W., Carroll, D. M., Płachno, B., Kabanoff, E. & Cinnamon, E. Evidence of protocarnivory in triggerplants (Stylidium spp.; Stylidiaceae). Plant Biol. 8, 805–812 (2006).CAS
PubMed
Google Scholar
Givnish, T. J., Burkhardt, E. L., Happel, R. E. & Weintraub, J. D. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist nutrient-poor habitats. Am. Nat. 124, 479–497 (1984).
Google Scholar
Jürgens, N. Psammophorous plants and other adaptations to desert ecosystems with high incidence of sandstorms. Feddes Repert. 107, 345–359 (1996).
Google Scholar
Lopresti, E. F. & Karban, R. Chewing sandpaper: Grit, plant apparency, and plant defense in sand-entrapping plants. Ecology 97, 826–833 (2016).PubMed
Google Scholar
Krupnick, G. A. & Weis, A. E. The effect of floral herbivory on male and female reproductive success in Isomeris arborea. Ecology 80, 135–149 (1999).
Google Scholar
McCall, A. C. Florivory affects pollinator visitation and female fitness in Nemophila menziesii. Oecologia 155, 729–737 (2008).ADS
PubMed
Google Scholar
Bandeili, B. & Müller, C. Folivory versus florivory-adaptiveness of flower feeding. Naturwissenschaften 97, 79–88 (2010).ADS
CAS
PubMed
Google Scholar
Lai, D. et al. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs. Plant Mol. Biol. 89, 21–34 (2015).CAS
PubMed
Google Scholar
Kessler, A. & Halitschke, R. Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: Predictions and case study. Funct. Ecol. 23, 901–912 (2009).
Google Scholar
Kessler, D., Diezel, C., Clark, D. G., Colquhoun, T. A. & Baldwin, I. T. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol. Lett. 16, 299–306 (2013).PubMed
Google Scholar
Li, J. et al. Defense of pyrethrum flowers: Repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytol. 223, 1607–1620 (2019).CAS
PubMed
PubMed Central
Google Scholar
Kennedy, G. G. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu. Rev. Entomol. 48, 51–72 (2003).CAS
PubMed
Google Scholar
McCarren, S., Coetzee, A. & Midgley, J. Corolla stickiness prevents nectar robbing in Erica. J. Plant Res. https://doi.org/10.1007/s10265-021-01299-z (2021).Article
PubMed
Google Scholar
Matulevich Peláez, J. A., Gil Archila, E. & Ospina Giraldo, L. F. Estudio fitoquímico de hojas, flores y frutos de Bejaria resinosa mutis ex linné filius (ericaceae) y evaluación de su actividad antiinflamatoria. Rev. Cuba. Plantas Med. 21, 332–345 (2016).
Google Scholar
Kraemer, M. On the pollination of Bejaria resinosa Mutis ex Linne f. ( Ericaceae ), an ornithophilous Andean paramo shrub. Flora 196, 59–62 (2001).
Google Scholar
Melampy, A. M. N. Flowering phenology, pollen flow and fruit production in the Andean Shrub Befaria resinosa. Oecologia 73, 293–300 (1987).ADS
CAS
PubMed
Google Scholar
LoPresti, E. F., Robinson, M. L., Krimmel, B. A. & Charles, G. K. The sticky fruit of manzanita: potential functions beyond epizoochory. Ecology 99, 2128–2130 (2018).PubMed
Google Scholar
Kessler, A. & Chautá, A. The ecological consequences of herbivore-induced plant responses on plant-pollinator interactions. Emerg. Topics Life Sci. 4, 33–43 (2020).
Google Scholar
Lucas-Barbosa, D. Integrating studies on plant-pollinator and plant-herbivore interactions. Trends Plant Sci. 21, 125–133 (2016).CAS
PubMed
Google Scholar
Leckie, B. M. et al. Differential and synergistic functionality of acylsugars in suppressing oviposition by insect herbivores. PLoS ONE 11, 1–19 (2016).
Google Scholar
Monteiro, R. F. & Macedo, M. V. First report on the diversity of insects trapped by a sticky exudate of the inflorescences of Vriesea bituminosa Wawra (Bromeliaceae: Tillandsioideae). Arthropod. Plant. Interact. 8, 519–523 (2014).
Google Scholar
Chatzivasileiadis, E. A. & Sabelis, M. W. Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Exp. Appl. Acarol. 21, 473–484 (1997).CAS
Google Scholar
Avé, D. A., Gregory, P. & Tingey, W. M. Aphid repellent sesquiterpenes in glandular trichomes of Solanum berthaultii and S. tuberosum. Entomol. Exp. Appl. 44, 131–138 (1987).
Google Scholar
LoPresti, E. Columbine pollination success not determined by a proteinaceous reward to hummingbird pollinators. J. Pollinat. Ecol. 20, 35–39 (2017).
Google Scholar
Krimmel, B. A. & Pearse, I. S. Generalist and sticky plant specialist predators suppress herbivores on a sticky plant. Arthropod. Plant. Interact. 8, 403–410 (2014).
Google Scholar
Adlassnig, W., Lendl, T., Peroutka, M. & Lang, I. Deadly glue- Adhesive traps of carnivorous plants. in Biological Adhesive Systems (eds. von Byren, J. & Grunwald, I.) 15–28 (2010).Ellison, A. M. & Gotelli, N. J. Evolutionary ecology of carnivorous plants. Trends Ecol. Evol. 16, 623–629 (2001).
Google Scholar
Maloof, J. E. & Inouye, D. W. Are nectar robbers cheaters or mutualists?. Ecology 81, 2651–2661 (2000).
Google Scholar
Asai, T., Hirayama, Y. & Fujimoto, Y. Epi-α-bisabolol 6-deoxy-β-d-gulopyranoside from the glandular trichome exudate of Brillantaisia owariensis. Phytochem. Lett. 5, 376–378 (2012).CAS
Google Scholar
Asai, T., Hara, N. & Fujimoto, Y. Fatty acid derivatives and dammarane triterpenes from the glandular trichome exudates of Ibicella lutea and Proboscidea louisiana. Phytochemistry 71, 877–894 (2010).CAS
PubMed
Google Scholar
Ohkawa, A., Sakai, T., Ohyama, K. & Fujimoto, Y. Malonylated glycerolipids from the glandular trichome exudate of Ceratotheca triloba. Chem. Biodivers. 9, 1611–1617 (2012).CAS
PubMed
Google Scholar
Omosa, L. K. et al. Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia. S. Afr. J. Bot. 91, 58–62 (2014).CAS
Google Scholar
Kessler, A. The information landscape of plant constitutive and induced secondary metabolite production. Curr. Opin. Insect Sci. 8, 47–53 (2015).PubMed
Google Scholar
Knudsen, J. T., Tollsten, L., Groth, I., Bergström, G. & Raguso, R. A. Trends in floral scent chemistry in pollination syndromes: Floral scent composition in hummingbird-pollinated taxa. Bot. J. Linn. Soc. 146, 191–199 (2004).
Google Scholar
Pearse, I. S., Gee, W. S. & Beck, J. J. Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense. J. Chem. Ecol. 39, 90–100 (2013).CAS
PubMed
Google Scholar
El-Sayed, A. M., Byers, J. A. & Suckling, D. M. Pollinator-prey conflicts in carnivorous plants: When flower and trap properties mean life or death. Sci. Rep. 6, 1–11 (2016).
Google Scholar
Greenaway, W., May, J. & Whatley, F. R. Analysis of phenolics of bud exudate of Populus tristis by GC/MS. Zeitschrift fur Naturforsch.. Sect C J. Biosci. 47, 512–515 (1992).
Google Scholar
Urzua, A. & Cuadra, P. Acylated flavonoid aglycones from Gnaphalium robustum. Phytochem. Divers. Redundancy Ecol. Interact. 29, 1342–1343 (1990).CAS
Google Scholar
Drewes, S. E., Mudau, K. E., Van Vuuren, S. F. & Viljoen, A. M. Antimicrobial monomeric and dimeric diterpenes from the leaves of Helichrysum tenax var tenax. Phytochemistry 67, 716–722 (2006).CAS
PubMed
Google Scholar
Midiwo, J. O. et al. Bioactive compounds from some Kenyan ethnomedicinal plants: Myrsinaceae, Polygonaceae and Psiadia punctulata. Phytochem. Rev. 1, 311–323 (2002).CAS
Google Scholar
Jiménez-Pomárico, A. et al. Chemical and morpho-functional aspects of the interaction between a Neotropical resin bug and a sticky plant. Rev. Biol. Trop. 67, 454–465 (2019).
Google Scholar
Linhart, Y. B., Thompson, J. D., Url, S. & John, D. Terpene-based selective herbivory by Helix aspersa (Mollusca) on Thymus vulgaris (Labiatae). Oecologia 102, 126–132 (2012).
Google Scholar
Kessler, A., Halitschke, R. & Poveda, K. Herbivory-mediated pollinator limitation: Negative impacts of induced volatiles on plant-pollinator interactions. Ecology 92, 1769–1780 (2011).PubMed
Google Scholar
Sletvold, N., Moritz, K. K. & Ågren, J. Additive effects of pollinators and herbivores result in both conflicting and reinforcing selection on floral traits. Ecology 96, 214–221 (2015).PubMed
Google Scholar
Ramos, S. E. & Schiestl, F. P. Rapid plant evolution driven by the interaction of pollination and herbivory. Science (80-). 364, 193–196 (2019).ADS
CAS
Google Scholar
Rojas-Nossa, S. V. Estrategias de extracción de néctar por pinchaflores (Aves: Diglossa y Diglossopis) y sus efectos sobre la polinización de plantas de los altos Andes. Ornitol. Colomb. 5, 21–39 (2007).
Google Scholar
R Team Core. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
Diaz-Uriarte, R. Package ‘ varSelRF ’. Compr. R Arch. Netw. 1–23 (2015). More