More stories

  • in

    Quantifying thermal cues that initiate mass emigrations in juvenile white sharks

    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024–1026. https://doi.org/10.1126/SCIENCE.1206432 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newton, I. Migration within the annual cycle: Species, sex and age differences. J. Ornithol. 152, 169–185. https://doi.org/10.1007/S10336-011-0689-Y/TABLES/1 (2011).Article 

    Google Scholar 
    Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Model. 432, 109225. https://doi.org/10.1016/J.ECOLMODEL.2020.109225 (2020).Article 

    Google Scholar 
    Lehikoinen, A. et al. Sex-specific timing of autumn migration in birds: the role of sexual size dimorphism, migration distance and differences in breeding investment. Ornis Fennica 94, 53–65 (2017).
    Google Scholar 
    Stewart, B. S. Ontogeny of differential migration and sexual segregation in northern elephant seals. J. Mammol. 78(4), 1101–1116 (1997).Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24(6), 664–674. https://doi.org/10.1111/geb.12298 (2015).Article 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15(4), 1228–1245. https://doi.org/10.1111/J.1748-7692.1999.TB00887.X (1999).Article 

    Google Scholar 
    Mourier, J., Mills, S. C. & Planes, S. Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus. J. Fish Biol. 82(3), 979–993. https://doi.org/10.1111/JFB.12039 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Avgar, T., Mosser, A., Brown, G. S. & Fryxell, J. M. Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J. Anim. Ecol. 82, 96–106. https://doi.org/10.1111/j.1365-2656.2012.02035.x (2013).Article 
    PubMed 

    Google Scholar 
    Crawshaw, L. I. Physiological and behavioral reactions of fishes to temperature change. J. Fish. Res. Board Can. 34(5), 730–734. https://doi.org/10.1139/f77-113 (1977).Article 

    Google Scholar 
    Heithaus, M., Dill, L., Marshall, G. J. & Buhleier, B. Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Mar. Biol. 140, 337–348. https://doi.org/10.1007/s00227-001-0711-7 (2002).Article 

    Google Scholar 
    Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Comp. Biol. 19(1), 331–343. https://doi.org/10.1093/icb/19.1.331 (1979).Article 

    Google Scholar 
    Matern, S. A., Cech, J. J. & Hopkins, T. E. Diel movements of bat rays, Myliobatis californica, in Tomales Bay, California: Evidence for behavioral thermoregulation?. Environ. Biol. Fishes 58(2), 173–182. https://doi.org/10.1023/A:1007625212099 (2000).Article 

    Google Scholar 
    Speed, C. W., Meekan, M. G., Field, I. C., McMahon, C. R. & Bradshaw, C. J. A. Heat-seeking sharks: Support for behavioural thermoregulation in reef sharks. Mar. Ecol. Prog. Ser. 463, 231–244. https://doi.org/10.3354/meps09864 (2012).Article 
    ADS 

    Google Scholar 
    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes https://doi.org/10.1023/B:EBFI.0000029343.54027.6a.pdf (2004).Article 

    Google Scholar 
    Hertz, P. E., Huey, R. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms. Am. Nat. 142, 796–818 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Estimation of shark home ranges using passive monitoring techniques. Environ. Biol. Fishes 71(2), 135–142. https://doi.org/10.1023/b:ebfi.0000045710.18997.f7 (2004).Article 

    Google Scholar 
    Topping, D. T., Lowe, C. G. & Caselle, J. E. Site fidelity and seasonal movement patterns of adult California sheephead Semicossyphus pulcher (Labridae): An acoustic monitoring study. Mar. Ecol. Progr. Ser. 326, 257–267 (2006).Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224. https://doi.org/10.3354/meps338211 (2007).Article 
    ADS 

    Google Scholar 
    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and -dependent methods. Fish. Res. 147, 370–380. https://doi.org/10.1016/J.FISHRES.2013.07.009 (2013).Article 
    ADS 

    Google Scholar 
    Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS ONE. https://doi.org/10.1371/journal.pone.0127807 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adolph, S. C. Influence of behavioral thermoregulation on microhabitat use by two sceloporus lizards. Ecology 71(1), 315–327. https://doi.org/10.2307/1940271 (1990).Article 

    Google Scholar 
    Heithaus, M. R. The biology of tiger sharks, Galeocerdo cuvier, in Shark Bay, Western Australia: sex ratio, size distribution, diet, and seasonal changes in catch rates. Environ. Biol. Fishes 61, 25–36 (2001).Article 

    Google Scholar 
    Vaudo, J. J. & Lowe, C. G. Movement patterns of the round stingray Urobatis halleri(Cooper) near a thermal outfall. J. Fish Biol. 68(6), 1756–1766. https://doi.org/10.1111/j.0022-1112.2006.01054.x (2006).Article 

    Google Scholar 
    Vaudo, J. J. & Heithaus, M. R. Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: Behavioral thermoregulation or avoiding predation risk?. PLoS ONE. 8(4), e61907. https://doi.org/10.1371/journal.pone.0061907 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weng, K. C. et al. Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152(4), 877–894. https://doi.org/10.1007/s00227-007-0739-4 (2007).Article 

    Google Scholar 
    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14(5), e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Curtis, T. H. et al. First insights into the movements of young-of-the-year white sharks (Carcharodon carcharias) in the western North Atlantic Ocean. Sci. Rep. 8(1), 1–8. https://doi.org/10.1038/s41598-018-29180-5 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bruce, B. D., Harasti, D., Lee, K., Gallen, C. & Bradford, R. Broad-scale movements of juvenile white sharks Carcharodon carcharias in eastern Australia from acoustic and satellite telemetry. Mar. Ecol. Prog. Ser. 619, 1–15. https://doi.org/10.3354/MEPS12969 (2019).Article 
    ADS 

    Google Scholar 
    Carey, F. G. et al. Temperature and activities of a white shark Carcharodon carcharias. Copeia 2, 254–260. https://doi.org/10.2307/1444603 (1982).Article 

    Google Scholar 
    Klimley, A. P., Beavers, S. C., Curtis, T. H. & Jorgensen, S. J. Movements and swimming behavior of three species of sharks in La Jolla Canyon, California. Environ. Biol. Fish. 63, 117–135. https://doi.org/10.1023/A:1014200301213.pdf (2002).Article 

    Google Scholar 
    Towner, A. V., Underhill, L. G., Jewell, O. J. D. & Smale, M. J. Environmental Influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa. PLoS ONE. 8(8), e71197. https://doi.org/10.1371/journal.pone.0071197 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. High-resolution acoustic telemetry reveals swim speeds and inferred field metabolic rates in juvenile white sharks (Carcharodon carcharias). PLoS ONE 17(6), e0268914. https://doi.org/10.1371/JOURNAL.PONE.0268914 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. M. et al. Interannual nearshore habitat use of young of the year white sharks off Southern California. Front. Mar. Sci. 8, 238. https://doi.org/10.3389/fmars.2021.645142 (2021).Article 

    Google Scholar 
    Domeier, M. L. & Nasby-Lucas, N. Two-year migration of adult female white sharks (Carcharodon carcharias) reveals widely separated nursery areas and conservation concerns. Anim. Biotelemet. 1(1), 1–10. https://doi.org/10.1186/2050-3385-1-2/FIGURES/3 (2013).Article 

    Google Scholar 
    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: A fishery dependent analysis. Fish. Res. 188, 125–137. https://doi.org/10.1016/J.FISHRES.2016.12.014 (2017).Article 

    Google Scholar 
    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Glob. Perspect. Biol. Life Hist. White Shark 14, 169–190 (2012).
    Google Scholar 
    Anderson, J. M. et al. Non-random Co-occurrence of Juvenile White Sharks (Carcharodon carcharias) at Seasonal Aggregation Sites in Southern California. Front. Mar. Sci. 8, 1–14. https://doi.org/10.3389/fmars.2021.688505 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897. https://doi.org/10.1111/1365-2664.13158 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020) http://www.rstudio.com/.Derrick, T., & Thomas, J. Time Series Analysis: The Cross-Correlation Function. Innovative Analyses of Human Movement, Chapter 7. https://lib.dr.iastate.edu/kin_pubs/46 (2004).Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598. https://doi.org/10.1080/01621459.2012.737745 (2012).Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Bakun, A. Coastal Upwelling Indices, West Coast of North America. US Department of Commerce. NOAA Technical Report, NMFS SSRF-671 (1973).Di Lorenzo, E. Seasonal dynamics of the surface circulation in the Southern California Current System. Deep-Sea Res. Part II 50(14–16), 2371–2388. https://doi.org/10.1016/S0967-0645(03)00125-5 (2003).Article 
    ADS 

    Google Scholar 
    Lynn, R. J. & Simpson, J. J. The California Current System: The seasonal variability of its physical characteristics. J. Geophys. Res. 92(C12), 12947. https://doi.org/10.1029/jc092ic12p12947 (1987).Article 
    ADS 

    Google Scholar 
    Sinnett, G. & Feddersen, F. The surf zone heat budget: The effect of wave heating. Geophys. Res. Lett. 41(20), 7217–7226. https://doi.org/10.1002/2014GL061398 (2014).Article 
    ADS 

    Google Scholar 
    Wei, X., Li, K.-Y., Kilpatrick, T., Wang, M. & Xie, S.-P. Large-scale conditions for the record-setting Southern California marine heatwave of August 2018. Geophys. Res. Lett. 48(7), e2020GL091803 (2021).Article 
    ADS 

    Google Scholar 
    Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-77885-3 (2020).Article 
    CAS 

    Google Scholar 
    Heupel, M. R., Simpfendorfer, C. A. & Hueter, R. E. Running before the storm: blacktip sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. J. Fish Biol. 63(5), 1357–1363. https://doi.org/10.1046/J.1095-8649.2003.00250.X (2003).Article 

    Google Scholar 
    Guttridge, T. L. et al. Deep danger: Intra-specific predation risk influences habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris. Mar. Ecol. Progr. Ser. 445, 279–291 (2012).Article 
    ADS 

    Google Scholar 
    Grainger, R. et al. Diet composition and nutritional niche breadth variability in juvenile white sharks (Carcharodon carcharias). Front. Mar. Sci. 7, 422 (2020).Article 

    Google Scholar 
    Hussey, N. E., Christiansen, H. M. & Dudley, S. F. J. Size-based analysis of diet and trophic position of the white shark, carcharodon carcharias, in South African waters. Glob. Perspect. Biol. Life Hist. White Shark 3, 27–49. https://doi.org/10.1201/b11532-5 (2012).Article 

    Google Scholar 
    Kim, S. L., Tinker, M. T., Estes, J. A. & Koch, P. L. Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis. PLoS ONE 7(9), e45068. https://doi.org/10.1371/JOURNAL.PONE.0045068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tinker, M. T. et al. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mamm. Sci. 32(1), 309–326. https://doi.org/10.1111/mms.12261 (2015).Article 

    Google Scholar  More

  • in

    As elephant poaching falls in Africa, instate more ivory bans

    The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) last month released its annual report on elephant poaching. It reveals a downward trend across African range states, based on data from its Monitoring the Illegal Killing of Elephants programme. The decline correlates with reduced ivory trading over the period, particularly in the Chinese market.
    Competing Interests
    The author declares no competing interests. More

  • in

    The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets

    Tsai, C.-W., Lai, C.-F., Chao, H.-C. & Vasilakos, A. V. Big data analytics: a survey. J. Big Data 2, 21 (2015).
    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).ADS 
    CAS 

    Google Scholar 
    Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).CAS 

    Google Scholar 
    Lichtman, J. W., Pfister, H. & Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 17, 1448–1454 (2014).CAS 

    Google Scholar 
    Altaf-Ul-Amin, M., Afendi, F. M., Kiboi, S. K. & Kanaya, S. Systems biology in the context of big data and networks. Biomed. Res. Int. 2014, 428570 (2014).
    Google Scholar 
    Xia, J., Wang, J. & Niu, S. Research challenges and opportunities for using big data in global change biology. Glob. Change Biol. 26, 6040–6061 (2020).ADS 

    Google Scholar 
    Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).ADS 
    CAS 

    Google Scholar 
    Hussey, N. E. et al. Ecology. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642 (2015).
    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
    Google Scholar 
    Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 531–542 (2017).
    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).CAS 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172 (2020).
    Google Scholar 
    Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S. & Elliott, K. A comparison of techniques for classifying behavior from accelerometers for two species of seabird. Ecol. Evol. 9, 3030–3045 (2019).
    Google Scholar 
    Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov. Ecol. 9, 24 (2021).
    Google Scholar 
    Shepard, E. L. C. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312 (2013).
    Google Scholar 
    Elliott, K. H., Le Vaillant, M., Kato, A., Speakman, J. R. & Ropert-Coudert, Y. Accelerometry predicts daily energy expenditure in a bird with high activity levels. Biol. Lett. 9, 20120919 (2013).
    Google Scholar 
    Nickel, B. A., Suraci, J. P., Nisi, A. C. & Wilmers, C. C. Energetics and fear of humans constrain the spatial ecology of pumas. Proc. Natl. Acad. Sci. USA 118, e2004592118 (2021).
    Eisaguirre, J. M., Booms, T. L., Barger, C. P., Lewis, S. B. & Breed, G. A. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds. J. Anim. Ecol. 89, 2567–2583 (2020).
    Google Scholar 
    Wittemyer, G., Northrup, J. M. & Bastille-Rousseau, G. Behavioural valuation of landscapes using movement data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180046 (2019).
    Google Scholar 
    Chimienti, M. et al. The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecol. Evol. 6, 727–741 (2016).
    Google Scholar 
    Hounslow, J. L. et al. Assessing the effects of sampling frequency on behavioural classification of accelerometer data. J. Exp. Mar. Bio. Ecol. 512, 22–30 (2019).
    Google Scholar 
    Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T. & Kielland, K. Accounting for unknown behaviors of free-living animals in accelerometer-based classification models: Demonstration on a wide-ranging mesopredator. Ecol. Inf. 60, 101152 (2020).
    Google Scholar 
    Wang, Y. et al. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 3, 2 (2015).
    Google Scholar 
    Chakravarty, P., Cozzi, G., Ozgul, A. & Aminian, K. A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13172 (2019).Article 

    Google Scholar 
    Clarke, T. M. et al. Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Mov. Ecol. 9, 26 (2021).
    Google Scholar 
    Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A. & Dennis, T. E. Extending the functionality of behavioural change-point analysis with k-Means clustering: a case study with the little penguin (Eudyptula minor). PLoS ONE 10, e0122811 (2015).
    Google Scholar 
    Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 633 (2020).
    Google Scholar 
    Jeantet, L. et al. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7, 200139 (2020).ADS 

    Google Scholar 
    Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inf. 49, 69–76 (2019).
    Google Scholar 
    Dunford, C. E. et al. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions (Puma concolor). Mov. Ecol. 8, 34 (2020).
    Google Scholar 
    Jeanniard-du-Dot, T., Guinet, C., Arnould, J. P. Y., Speakman, J. R. & Trites, A. W. Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets. Funct. Ecol. 31, 377–386 (2017).
    Google Scholar 
    Hicks, O. et al. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci. Rep. 10, 21493 (2020).ADS 
    CAS 

    Google Scholar 
    Dentinger, J. E. et al. A probabilistic framework for behavioral identification from animal-borne accelerometers. Ecol. Model. 464, 109818 (2022).
    Google Scholar 
    Chakravarty, P., Maalberg, M., Cozzi, G., Ozgul, A. & Aminian, K. Behavioural compass: animal behaviour recognition using magnetometers. Mov. Ecol. 7, 28 (2019).
    Google Scholar 
    Hammond, T. T., Palme, R. & Lacey, E. A. Ecological specialization, variability in activity patterns and response to environmental change. Biol. Lett. 14, 20180115 (2018).
    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie Penguin. Auk 131, 457–466 (2014).
    Google Scholar 
    Riaz, J., Bestley, S., Wotherspoon, S., Freyer, J. & Emmerson, L. From trips to bouts to dives: temporal patterns in the diving behaviour of chick-rearing Adélie penguins East Antarctica. Mar. Ecol. Prog. Ser. 654, 177–194 (2020).ADS 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar. Biol. 154, 813–821 (2008).
    Google Scholar 
    Little Penguin (Eudyptula minor) – BirdLife species factsheet. at Carroll, G., Harcourt, R., Pitcher, B. J., Slip, D. & Jonsen, I. Recent prey capture experience and dynamic habitat quality mediate short-term foraging site fidelity in a seabird. Proc. Biol. Sci. 285, 20180788 (2018).
    Google Scholar 
    Meyer, X. et al. Oceanic thermal structure mediates dive sequences in a foraging seabird. Ecol. Evol. 10, 6610–6622 (2020).
    Google Scholar 
    Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Funct. Ecol. https://doi.org/10.1111/1365-2435.13605 (2020).Article 

    Google Scholar 
    Ropert-Coudert, Y., Chiaradia, A. & Kato, A. An exceptionally deep dive by a Little Penguin Eudyptula minor. Mar. Ornithol 34, 71–74 (2006).
    Google Scholar 
    Ropert-Coudert, Y., Kato, A., Wilson, R. P. & Cannell, B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar. Biol. 149, 139–148 (2006).
    Google Scholar 
    Rodríguez, A., Chiaradia, A., Wasiak, P., Renwick, L. & Dann, P. Waddling on the dark side: ambient light affects attendance behavior of little penguins. J. Biol. Rhythms 31, 194–204 (2016).
    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? the future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).
    Google Scholar 
    Shuert, C. R., Pomeroy, P. P. & Twiss, S. D. Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal. Anim. Biotelemetry 6, 14 (2018).
    Google Scholar 
    Dickinson, E. R. et al. Limitations of using surrogates for behaviour classification of accelerometer data: refining methods using random forest models in Caprids. Mov. Ecol. 9, 28 (2021).
    Google Scholar 
    Conway, A. M., Durbach, I. N., McInnes, A. & Harris, R. N. Frame-by-frame annotation of video recordings using deep neural networks. Ecosphere 12, e03384 (2021).
    Google Scholar 
    Ravindran, S. Five ways deep learning has transformed image analysis. Nature 609, 864–866 (2022).ADS 
    CAS 

    Google Scholar 
    Del Caño, M. et al. Fine-scale body and head movements allow to determine prey capture events in the Magellanic Penguin (Spheniscus magellanicus). Mar. Biol. 168, 84 (2021).
    Google Scholar 
    Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. J. Big Data 6, 27 (2019).
    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).
    Google Scholar 
    Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).ADS 

    Google Scholar 
    Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. https://doi.org/10.1111/gcb.15735 (2021).Article 

    Google Scholar 
    Bonar, M. et al. Geometry of the ideal free distribution: individual behavioural variation and annual reproductive success in aggregations of a social ungulate. Ecol. Lett. 23, 1360–1369 (2020).
    Google Scholar 
    Michelot, C., Kato, A., Raclot, T. & Ropert-Coudert, Y. Adélie penguins foraging consistency and site fidelity are conditioned by breeding status and environmental conditions. PLoS ONE 16, e0244298 (2021).CAS 

    Google Scholar 
    Mahoney, P. J. et al. Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties. Ecol. Appl. 28, 1715–1729 (2018).
    Google Scholar 
    Watanabe, Y. Y., Ito, K., Kokubun, N. & Takahashi, A. Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci. Adv. 6, eaba4828 (2020).ADS 

    Google Scholar 
    Lescroël, A. et al. Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91, 2044–2055 (2010).
    Google Scholar 
    Zimmer, I., Ropert-Coudert, Y., Kato, A., Ancel, A. & Chiaradia, A. Does foraging performance change with age in female little penguins (Eudyptula minor)?. PLoS ONE 6, e16098 (2011).ADS 
    CAS 

    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Dickinson, E. R., Stephens, P. A., Marks, N. J., Wilson, R. P. & Scantlebury, D. M. Best practice for collar deployment of tri-axial accelerometers on a terrestrial quadruped to provide accurate measurement of body acceleration. Anim. Biotelemetry 8, 9 (2020).
    Google Scholar 
    Garde, B. et al. Ecological inference using data from accelerometers needs careful protocols. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13804 (2022).Article 

    Google Scholar 
    Watanabe, Y. Y., Ito, M. & Takahashi, A. Testing optimal foraging theory in a penguin-krill system. Proc. Biol. Sci. 281, 20132376 (2014).
    Google Scholar 
    Grémillet, D. et al. Energetic fitness: Field metabolic rates assessed via 3D accelerometry complement conventional fitness metrics. Funct. Ecol. 32, 1203–1213 (2018).
    Google Scholar 
    Chimienti, M. et al. Quantifying behavior and life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere 12, e03565 (2021).
    Google Scholar 
    Sutton, G. J., Botha, J. A., Speakman, J. R. & Arnould, J. P. Y. Validating accelerometry-derived proxies of energy expenditure using the doubly-labelled water method in the smallest penguin species. Biol. Open 10, bio055475 (2021).
    Google Scholar 
    Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).
    Google Scholar 
    Ballance, L. T., Ainley, D. G., Ballard, G. & Barton, K. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J. Avian Biol. 40, 279–288 (2009).
    Google Scholar 
    Wilson, R. P. et al. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 25, 101–106 (1997).
    Google Scholar 
    Shepard, E. L. C. et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47–60 (2008).ADS 

    Google Scholar 
    Kato, A., Ropert-Coudert, Y., Grémillet, D. & Cannell, B. Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar. Ecol. Prog. Ser. 308, 293–301 (2006).ADS 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://url.org/www.R-project.org/ (2021).
    Ainley, D. The Adélie Penguin: Bellwether of Climate Change (New York: Columbia University Press) (2006).Langrognet, F. et al. Rmixmod: Classification with Mixture Modelling. (2020).Bishop, C. M. Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New
    York, NY. (2006).Amélineau, F. et al. Intra- and inter-individual changes in little penguin diving and isotopic composition over the breeding season. Mar. Biol. 168, 62 (2021).
    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org (2020).Wright, M. N. & Ziegler, A. Ranger : A fast implementation of random forests for high dimensional data in C++ andR. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar  More

  • in

    Influence of tillage systems and sowing dates on the incidence of leaf spot disease in Telfairia occidentalis caused by Phoma sorghina in Cameroon

    ResultsSoil physiochemical propertiesThe preliminary status of the soil analyzed before the commencement of the field preparatory activities revealed that the soil was subtlety fertile with regard to the physical and chemical properties (Table 1).Table 1 Physicochemical properties of the soil.Full size tableAssessment of disease incidence at sowing dates during each year in the trial studyIn the trial study, very low and statistically significant (p  More

  • in

    Influence of urbanisation on phytodiversity and some soil properties in riverine wetlands of Bamenda municipality, Cameroon

    Description of the study areaThe study covers urban, peri-urban and rural wetlands in the Bamenda Municipality of the North West Region of Cameroon that have evolved concomitantly with different stages of urbanization (Fig. 1). In this study, urbanisation is considered a loose term that is aimed at giving a geographical expression to the variation in the economic, social and cultural practices in the milieu. The central town with many economic activities is termed the urban, the fringe area with sprawls is termed peri-urban while the rural has typical peasant activities and make-shift structures. From the variation of human activities in the three sub-zones, a variety of chemical substances are discharged into drains, playing a substantial role in soil quality, and therefore plant macrophyte diversity. The Plants studied were ubiquitous in the area and verification of their IUCN conservation status in the red data book of plants of Cameroon confirmed their abundance14. Information on protected sites in Cameroon does not place the study area under conservation status. In line with that, permits are not required to undertake academic and research studies as well as do a responsible collection of plants in the study area. The urbanization rate of Bamenda is 42%, and the population grew from 48,111 inhabitants in 1976 to 488,883 inhabitants in 201015, with 150–200 inhabitants/km2.Figure 1Relief Map of Bamenda showing the Bamenda escarpment, topography and the location for quadrat sites.Full size imageThe study area is part of the Bamenda escarpment that is located between latitudes 5° 55″ N and 6° 30″ N and longitudes 10° 25″ E and 10° 67″ E. The town shows an altitudinal range of 1200–1700 m and is divided into two parts by escarpments—a low-lying and gently undulating part with altitudes ranging from 1200 to 1400 m, with many flat areas that are usually inundated for most parts of the year, and an elevated part that range from 1400 to 1700 m altitude. Most of the streams take their rise from this elevated part (Fig. 1).This area experiences two seasons—a rainy season (mid-March to mid-October) and a short dry season (mid-October to mid-March). The thermic and hyperthermic temperature regimes dominate in the area. The mean annual temperature stands at 19.9 °C. January and February are the hottest months with mean monthly temperatures of 29.1 and 29.7 °C, respectively. This area is dominated by the Ustic and Udic moisture regimes with the Udic extending to the south9. Annual rainfall ranges from 1300 to 3000 mm16. The area has a rich hydrographical network with intense human activities and a dense population along different water courses in the watershed. The area is bounded on the West, North and East by the Cameroon Volcanic Line (made up of basalts, trachytes, rhyolites and numerous salt springs). The geologic history of this area originates from the Precambrian era when there was a vast formation of geosynclinal complexes, which became filled with clay-calcareous, and sandstone sediments9. These materials, crossed by intrusions of crystalline rocks, were folded in a generally NE-SW direction and underwent variable metamorphism9. The Rocks in the area are thus of igneous (granitic and volcanic) and metamorphic (migmatites) origin17, which gives rise to ferralitic soils18.Agriculture is the principal human activity in and around this region18. The area equally harbours the commercial center that has factories ranging from soap production, and mechanic workshops to metallurgy, which may be potential sources of pollutants that can influence wetland Geochemistry. Raffia farinifera bush, which is largely limited to the wetlands, is an important vegetation type in this area. R. farinifera provides raffia wine, a vital economic resource to the inhabitants who are fighting against the cultivation of these wetlands by vegetable farmers.Methods of the studyMacrophyte diversity studyThe plant diversity of the wetlands was evaluated using quadrats in the dry season for accessibility reasons. For each of the three wetlands (the urban, peri-urban and rural areas), three transects were established on which representative quadrats, each measuring 10 m × 10 m, were mapped out in uncultivated areas for the determination of plant species cover-abundance and diversity. It is perceived that the different zones receive different mixtures of chemical substances and thus influence macrophyte diversity differently.According to a publication by14 on the vascular plants of Cameroon and a taxonomic checklist with IUCN assessment, the plants of the area are placed under the Least Concern Category(LC), and therefore not in the risky category. Diversity studies involved the identification of a specific area called “relevé” by progressively increasing test quadrat size and sampling for specific diversity until the smallest area with adequate species representation was reached. The relevé size determined here was 1 m2, making a total of 300 sub-quadrats (relevé) in the entire study ie. 100 in each main quadrat). For each site (main quadrat), 10 representative relevés were sampled and all plant species were enumerated. Most plant species in each of them were identified in the field by the Botanist, Dr Ndam Lawrence Monah using visual observation of the morphology of the leaves and flowers, a self-made field guide, the Flora of West Africa and the Flora of Cameroon. 10 unidentified plants were appropriately collected where there were in abundance, placed onto a conventional plant press and dried in the field. Voucher specimens were tagged and transported to the Limbe Botanic Gardens (SCA: Southern Cameroon, the code of the Limbe Botanic Gardens Herbarium) for identification. Mr Elias Ndive, the Taxonomist of the Limbe Botanic Gardens compared unidentified specimens with authentic herbarium specimens and other taxonomic guides and finally identified them. Voucher specimens of the 10 plants were given identification numbers and deposited in the Herbarium of the Limbe Botanic Gardens.The Braun–Banquet method was used19 for the assessment of species cover abundance. Relative abundance and abundance ratings were determined using the Braun–Banquet rating scheme (Table 1).Table 1 Braun-Blanquet rating scheme for vegetation cover-abundance, Source19.Full size tableSimpson’s diversity indexSpecies richness was evaluated using Simpson’s diversity index (D), which takes into account both species richness and the Braun-Blanquet rating scheme for vegetation cover abundance and evenness of abundance among the species present. In essence, D measures the probability that two individuals that are randomly selected from an area will belong to the same species. The formula for calculating D is presented as:$${text{D}} = frac{{sum {{text{n}}_{i} left( {{text{n}}_{i} – 1} right)} }}{{{text{N}}({text{N}} – 1)}}$$where ni = the total number of each species; N = the total number of individuals of all species.The value of D ranges from 0 to 1. With this index, 0 represents infinite diversity and 1 represents no diversity. That is, the larger the value the lower the diversity.Alternatively, Simpson’s Diversity Index, = 1–D,1-D was used as a measure of diversity because it is more logical and less likely to cause confusion. The scale then gives a score from 0 to 1 with higher scores showing higher diversity (instead of being associated with low scores).The Simpson index is a dominance index because it gives more weight to common or dominant species. In this case, a few rare species with only a few representatives will not affect the diversity.
    Soil sampling and analysisSoil sampling was done in and around the three quadrats laid in the urban, peri-urban and rural wetlands for macrophytes sampling. Twenty-one (21) composite samples (0–25 cm) were randomly collected (Fig. 2) and taken to the laboratory in black plastic bags. Each composite sample was a collection of 5 dried core soil samples. Due to the observed greater heterogeneity in the urban sector, the sampling density was intensified. The soil samples were air-dried and screened through a 2-mm sieve. They were analyzed in duplicate for their physicochemical properties in the Environmental and Analytical Chemistry Laboratory of the University of Dschang, Cameroon. Particle size distribution, cation exchange capacity (CEC), exchangeable bases, electrical conductivity (EC) and pH were determined by standard procedures20. Soil pH was measured both in water and KCl (1:2.5 soil/water mixture) using a glass electrode pH meter. Part of the soil was ball-milled for organic carbon (Walkley–Black method) and total nitrogen (Macro-Kjeldahl method) as largely described by20. Available phosphorus (P) was determined by Bray I method. Exchangeable cations were extracted using 1 N ammonium acetate at pH 7. Potassium (K) and sodium (Na) in the extract were determined using a flame photometer and magnesium (Mg) and calcium (Ca) were determined by complexiometric titration. Exchange acidity was extracted with 1 M KCl followed by quantification of Al and H by titration20. Effective cation exchange capacity (ECEC) was determined as the sum of bases and exchanged acidity.Figure 2Adapted from the 1980 land use map of the Bamenda City Area showing soil sampling points: Source Bamenda City Council.Map of the study area in freshwater wetlands of Bamenda Municipality.Full size imageApparent CEC (CEC at pH 7) was determined directly as outlined by20. Based on critical values of nutrients established for vegetables, nutrients were declared sufficient or deficient.
    Statistical analysisThe data were subjected to statistical analysis using Microsoft Excel 2007 and SPSS statistical package 20.0. Soil properties were assessed for their variability using the coefficient of variation (CV) and compared with variability classes (Table 2).$$CV=frac{Sd}{X}X 100$$where: Sd = standard deviation; = X arithmetic mean of soil properties.Table 2 Grouping coefficient of variation into variability classes.Full size tableThe hierarchical cluster analysis (HCA) was used to group the area under managing units. The main goal of the hierarchical agglomerative cluster analysis is to spontaneously classify the data into groups of similarity (clusters). This is done by searching objects in the n-dimensional space that is located in the closest neighborhood and separating a stable cluster from other clusters. The sampling sites were considered objects for classification. Each object was determined by a set of variables (chemical concentrations of the soils in this case). More

  • in

    Nasal microbiome disruption and recovery after mupirocin treatment in Staphylococcus aureus carriers and noncarriers

    Study population and study designThis is a prospective interventional cohort study of healthy S. aureus carriers and noncarriers in the Netherlands. All experiments were performed in accordance with the Dutch Medical Research Involving Human Subjects Act (WMO). The study protocol was approved by the local Medical Ethical Committee of the Erasmus University Medical Centre Rotterdam, The Netherlands (MEC-2018-091). Written informed consent was obtained for all participants. Participants were recruited through advertisements at Dutch universities and the research teams social networks. Exclusion criteria were age  8 CFU/mL for each culture. Noncarriers were defined as 2 S. aureus-negative cultures. Intermittent S. aureus carriers were excluded from further participation in the study. Eligible volunteers were enrolled on a first-come, first-served basis.Eligible participants were asked to fill out a questionnaire regarding risk factors for S. aureus acquisition. All participants received decolonization treatment. Decolonization consisted of mupirocin nasal ointment (2%, GlaxoSmithKline BV, Zeist, the Netherlands) twice daily and chlorhexidine gluconate cutaneous solution (4%w/v, Regent Medical Overseas Limited, Oldham, UK) once daily, both for 5 days.Nasal samples were taken 1 day before decolonization (D0) and 2 days (D7), 1 month (M1), 3 months (M3) and 6 months (M6) after decolonization. All participants received a personal demonstration for nasal sampling by the executive researcher. Thereafter, all specimens were taken by the participants by inserting a swab (ESwab, 490CE.A, Copan Italia, Brescia, Italy) into one nostril and rotating 5 times, repeating this in the second nostril using the same swab. Swabs were collected in a container filled with 1 ml modified Liquid Amies, a collection and transport solution, and sent through regular mail service (non-temperature controlled) or deposited at the laboratory personally.
    Staphylococcus aureus quantitative cultureQuantitative S. aureus cultures were conducted to examine the dynamics of S. aureus carriage over the 6-month follow-up period after decolonization. Swab containers were vortexed for 20 s before plating. Serial dilutions of Amies medium were plated onto phenol mannitol salt agar (PHMA) and incubated for 2 days at 37 °C. Swabs were placed in phenol mannitol salt broth (PHMB) and incubated for 7 days at 37 °C for enrichment. S. aureus growth was confirmed by a latex agglutination test (Staph Plus Latex Kit, Diamondial, Vienna, Austria). Morphologically different S. aureus colonies were selected for spa typing and methicillin resistance screening using BBL CHROMagar MRSA II agar (BD, Breda, The Netherlands).
    Spa typingMolecular typing of S. aureus isolates was performed to infer whether recolonization with S. aureus in decolonized carriers involved the same spa-type. Typing was limited to the last S. aureus positive culture moment and the last S. aureus positive culture moment after decolonization in recolonised carriers. S. aureus DNA lysates were prepared by boiling in 10 mM Tris–HCl, 1 mM disodium EDTA, pH 8.0 or extraction with the QIAamp DNA Mini Kit (QIAGEN, Venlo, The Netherlands) according to the manufacturer’s instructions. Amplification of the S. aureus protein A (spa) repeat region was performed by PCR with 2 sets of primers. One set consisted of forward primer spa-1113, 5′-TAAAGACGATCCTTCGGTGAGC-3′ and reverse primer spa-1514, 5′-CAGCAGTAGTGCCGTTTGCTT-3′24. The other set consisted of forward primers spa-F1, 5′-AACAACGTAACGGCTTCATCC-3′ and spa-F2 5′-AGACGATCCTTCAGTGAGC-3′ and reverse primer spa-R1 5′-GCTTTTGCAATGTCATTTACTG-3′. Amplicons were purified with ExoSAP-IT (Applied Biosystems) according to the manufacturer’s instructions and sent for sequence analysis (Baseclear, Leiden, The Netherlands). Resulting sequences were analysed using BioNumerics v7.6 (Applied Maths NV, Sint-Martens-Latem, Belgium) and the spa types were assigned by use of the RidomStaphType database (Ridom GmbH, Würzburg, Germany).16S ribosomal RNA sequencing of nasal microbiotaThe impact of decolonization on the nasal microbiome and the recovery of the microbiome structure after decolonization were examined by means of 16S rRNA metabarcoding. Amies medium from each nasal swab container was stored at − 80 °C on the day of receipt at the study laboratory in Rotterdam, NL, then sent at − 80 °C to the microbiome analysis laboratory in Lyon, FR. To properly capture the impact of decolonization on the living microbiota, metabarcoding used RNA-based 16S ribosomal RNA (rRNA, which is preserved in living cells but quickly cleared after cell death or lysis) rather than the DNA coding sequence, as DNA can persist for prolonged time periods after cell death25,26,27,28. RNA was extracted using the Mag Bind® Total RNA 96 Kit (Omega Bio-tek) tissue protocol from 150 µL of samples’ material. Cell lysis was performed using beads (Disruptor plate C plus—Omega Bio-tek) and proteinase K for 15 min at 2600 rpm, followed by 10 min at room temperature without agitation, and finished with a DNase I digestion of 20 min at room temperature. RNA was quantified using QuantiFluor RNA kit on Tecan Safire (TECAN). 10 ng total RNA was used for reverse transcription using FIREScript RT cDNA synthesis kit (Solis Biodyne) with random primers, then cDNA was purified with SPRIselect reagent (Beckman coulter) and quantified.The rRNA V1–V3 region was PCR amplified using the 5× HOT BIOAmp® BlendMaster Mix 12,5 mM MgCl 2 (Biofidal), 10× GC rich Enhancer (Biofidal) and BSA 20 mg/mL. The PCR reaction consisted of 30 cycles at 56 °C using the forward primer 27F, 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG AGAGTTTGATCCTGGCTCAG-3′ and reverse primer 534R, 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTACCGCGGCTGCTGG-3′ in 25 µL of solution. PCR products were purified using SPRIselect beads (Beckman Coulter) in 20 µL nuclease-free water and quantified using QuantiFluor dsDNA (Promega). Samples were indexed with lllumina’s barcodes with the same PCR reagents during a 12 cycles PCR, then purified and quantified as previously mentioned. Samples were normalized and pooled, then sequenced using Illumina MiSeq V3 Flow Cell following the constructor’s recommendations for a 2 × 300 bp paired-end application. A mean of 130 k proofread reads per sample was obtained.Experiment buffers were used as negative controls to detect contamination by out-of-sample bacterial RNA. RNA extraction was controlled using an in-house mix of live Staphylococcus aureus ATCC29213 and Escherichia coli ATCC25922 in equal proportions, allowing for assessing extraction bias in Gram-positive and -negative bacteria. PCR amplification bias was controlled using a commercial DNA mix of 8 bacterial species (ZymoBIOMICS™ Microbial Community DNA Standard).Bioinformatics and statistical analysesSequencing reads were quality checked and trimmed. Paired-ended read pairs were merged using BBMap version 38.49 (available at https://sourceforge.net/projects/bbmap/), with default options besides a minimum single size of 150 bp with an average Phred quality score higher than 10, and a total pair size of minimum 400 bp. PCR adapters were removed with cutadapt v.2.1 (Martin 2011) then dereplicated using vsearch v.2.12.029 with the sizeout option. For species assignment, reads were aligned to sequences of NCBI blast 16S_ribosomal_RNA database (version date 03.12.2020) using Blastn v.2.11.0+30,31, keeping a maximum of 20 reference targets. Read counts per bacterial species were normalized to account for taxon-specific variations of the copy number of 16S rRNA genes using NCBI rrnDB-5.5 database based on the mean gene copy number in the taxon.To optimize the resolution of sequencing read taxonomic assignment, we used in-house bioinformatic software publicly available at https://github.com/rasigadelab/taxonresolve. Briefly, when a read matches sequences from several species with identical alignment scores, taxonomic assignment pipelines typically output the higher taxonomic level such as the genus (e.g., Staphylococcus spp. when a read matches S. aureus and S. epidermidis). This loss of information can be problematic when species-level discrimination is important. To prevent losing species-level information, the taxonresolve software assigns reads with uncertain species to groups of species rather than to genera.Bacterial species deemed present from contaminating sources such as kits reagents and found in negative controls, mostly from the Bacillus genera, were removed. A total of 1376 species or group of species were retained. The rarefaction curves corresponding to the sequencing effort to assess the species richness within samples are shown in Supplementary Fig. 3. Most samples reached a plateau after 40,000 sequences.Given the small sample size compared to the number of variables and species considered in this study, no hypothesis testing was performed, and we provide a descriptive assessment of the results. In figures, 95% confidence intervals of the means were computed based on normal approximation, after log transformation for CFU/mL and log odds transformation for quantities restricted to the [0, 1] interval, such as proportions.In microbial diversity analyses, we retained the 9 most prevalent bacterial species and pooled the other species into an ‘Others’ category. To assess the disruption and possible recovery of the microbiota, the divergence of sampled microbiota relative to the initial, pre-treatment microbiota (D0) was assessed using the Bray–Curtis dissimilarity at each sampling time point relative to the first sample of the same patient.Software code of the analyses are available at https://github.com/rasigadelab/macotra-metabarcoding. Data are available at https://zenodo.org/record/6382657. Analyses and figures used R software v3.6.032 with packages dplyr33, ggplot234, vegan35, and MicrobiomAnalyst available at https://www.microbiomeanalyst.ca36,37. More

  • in

    Record-breaking fires in the Brazilian Amazon associated with uncontrolled deforestation

    G.M., L.O.A., L.V.G. and L.E.O.C.A. thank the São Paulo Research Foundation (FAPESP) for funding (grants 2019/25701-8, 2020/08916-8, 2016/02018-2 and 2020/15230-5, respectively). L.O.A. and L.E.O.C.A. thank the National Council for Scientific and Technological Development (CNPq) for funding (grants 314473/2020-3 and 314416/2020-0, respectively). G.d.O. thanks the University of South Alabama Faculty Development Council Grant for funding (grant 279600-2022). More

  • in

    Aquaculture rearing systems induce no legacy effects in Atlantic cod larvae or their rearing water bacterial communities

    Bacterial density and growth potential in the rearing water were related to the microbial carrying capacityQuantifying the bacterial density in each tank verified that we obtained a higher bacterial load in the systems with added organic material. The bacterial density was, on average, 7.8× higher in the systems with high compared to low bacterial carrying capacity. This difference was particularly evident at 2 (34.8×, Kruskal–Wallis p = 0.0008) and 9 DPH (9.1×, Kruskal–Wallis p = 0.0007) (Fig. 1). The bacterial density increased throughout the experiment for the tanks with low microbial carrying capacity (treatment group MMS−, FTS−), reflecting increased larval feeding and defecation. Contrastingly, the bacterial density was relatively stable over time in the MMS+ treatment and even decreased over time in the FTS+ treatment. When averaging the densities at 11 and 15 DPH within each rearing treatment, we observed that the ‘MMS+ to FTS+’ had a considerable difference in the bacterial density between incoming and rearing water (24.2×). In contrast, this difference was below 8.2× in all other treatment tanks. Such differences in density indicated that some communities were below the microbial carrying capacity of the systems. We thus investigated the growth potential to determine if carrying capacity was reached in the rearing water.Figure 1Bacterial density (million bacterial cells mL−1) at various days post-hatching (DPH) in incoming and rearing tank water. Note that the y-axis is log scaled. Colours indicate the rearing treatment, and shape signifies rearing (filled circle) and incoming water (filled triangle).Full size imageThe bacterial net growth potential in the intake and rearing water was quantified as the number of cell doublings after incubation for 3 days11. Generally, the FTS− and MMS− rearing water had net growth potential with an average of 0.2 and 0.1, respectively (Supplementary Fig. 2). In contrast, the rearing water of the FTS+ and MMS+ had a negative net growth potential with averages of −0.2 and −0.06, respectively. In the case of negative net growth potential, the bacterial density decreased during the incubation. A negative net growth potential suggested that the rearing water bacterial communities were at the tank’s microbial carrying capacity at the time of sampling. Thus, the bacterial communities were at the carrying capacity of the high (+) carrying capacity systems and below in the low (−) systems. To gain a deeper understanding of the bacterial community characteristics the 16S rRNA gene of the bacterial community was sequenced at 1 and 9 DPH.Initial rearing condition did not leave a legacy effect on bacterial α-diversityThe bacterial α-diversity of the rearing water was investigated at 1 and 12 DPH (Fig. 2). At 1 DPH, the richness was comparable between the FTS−, FTS+ and MMS+ treatments, but on average, 1.5× higher for the MMS− treatment (307 vs 205 ASVs, Tukey’s test p  More