Javanese Homo erectus on the move in SE Asia circa 1.8 Ma
Dubois, E. On Pithecanthropus Erectus: a transitional form between man and the apes. J. Anthropol. Inst. G. B. Irel. 25, 240–255 (1896).
Google Scholar
von Koenigswald, G. H. R. Neue Pithecanthropus-funde, 1936-1938 : ein beitrag zur Kenntnis der Praehominiden Wetenschappelijke Mededeelingen ; no. 28 (Landsdrukkerij, Batavia, 1940).Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quatern. Sci. Rev. 144, 145–154 (2016).ADS
Google Scholar
Bettis, E. A. et al. Way out of Africa: Early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56(1), 11–24 (2009).PubMed
Google Scholar
Huffman, O. Geologic context and age of the Perning/Mojokerto Homo erectus, East Java. J. Hum. Evol. 40(4), 353–362 (2001).PubMed
Google Scholar
Sarr, A.-C. et al. Subsiding Sundaland. Geology (Boulder) 47(2), 119–122 (2019).ADS
Google Scholar
Salles, T. et al. Quaternary landscape dynamics boosted species dispersal across Southeast Asia. Commun. Earth Environ. 2(1), 1–12 (2021).MathSciNet
Google Scholar
Husson, L., Boucher, F. C., Sarr, A., Sepulchre, P. & Cahyarini, S. Y. Evidence of Sundaland’s subsidence requires revisiting its biogeography. J. Biogeogr. 47(4), 843–853 (2020).Winder, I. C. et al. Evolution and dispersal of the genus Homo: A landscape approach. J. Hum. Evol. 87, 48–65 (2015).PubMed
Google Scholar
Carotenuto, F. et al. Venturing out safely: The biogeography of Homo erectus dispersal out of Africa. J. Hum. Evol. 95, 1–12 (2016).PubMed
Google Scholar
Larick, R. et al. Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia. Proc. Natl. Acad. Sci. PNAS 98(9), 4866–4871 (2001).ADS
PubMed
Google Scholar
Swisher, C. C., Curtis, G. H., Jacob, T., Getty, A. G. & Suprijo, A. Age of the earliest known hominids in Java, Indonesia. Science 263(5150), 1118–1121 (1994).ADS
PubMed
Google Scholar
Sémah, F., Saleki, H., Falguŕes, C., Féraud, G. & Djubiantono, T. Did early man reach Java during the Late Pliocene?. J. Archaeol. Sci. 27(9), 763–769 (2000).
Google Scholar
Bettis, E. et al. Landscape development preceding Homo erectus immigration into Central Java, Indonesia: The Sangiran Formation Lower Lahar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206(1), 115–131 (2004).
Google Scholar
Matsu’ura, S. et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 367(6474), 210–214 (2020).ADS
PubMed
Google Scholar
Granger, D. E. & Muzikar, P. F. Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations. Earth Planet. Sci. Lett. 188(1), 269–281 (2001).ADS
Google Scholar
Shen, G., Gao, X., Gao, B. & Granger, D. E. Age of Zhoukoudian Homo erectus determined with 26Al/10Be burial dating. Nature 458(7235), 198–200 (2009).ADS
PubMed
Google Scholar
Pappu, S. et al. Early Pleistocene presence of Acheulian Hominins in South India. Science 331(6024), 1596–1599 (2011).ADS
PubMed
Google Scholar
Lebatard, A.-E. et al. Dating the Homo erectus bearing travertine from Kocabaş (Denizli, Turkey) at at least 1.1 Ma. Earth Planet. Sci. Lett.390, 8–18 (2014).Lebatard, A.-E., Bourlès, D. L. & Braucher, R. Absolute dating of an Early Paleolithic site in Western Africa based on the radioactive decay of in situ-produced 10Be and 26Al. Nucl. Instrum. Methods Phys. Res. Sect. B 456, 169–179 (2019).ADS
Google Scholar
Braucher, R., Oslisly, R., Mesfin, I., Ntoutoume Mba, P. P. & Team, A. In situ-produced 10 Be and 26 Al indirect dating of Elarmékora Earlier Stone Age artifacts: First attempt in a savannah forest mosaic in the middle Ogooué valley, Gabon. Philos. Trans. Biol. Sci. (2021) .Grimaud-Hervé, D. et al. Position of the posterior skullcap fragment from Sendang Klampok (Sangiran Dome, Java, Indonesia) among the Javanese Homo erectus record. Quatern. Int. 416, 193–209 (2016).
Google Scholar
Sartono, S. Observations on a new skull of Pithecanthropus erectus (Pithecanthropus VIII), from Sangiran, Central Java. Koninklijke Akademie Wetenschappen te Amsterdam 74, 185–194 (1971).
Google Scholar
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: Improved version released. EOS Trans. Am. Geophys. Union 94(45), 409–410. https://doi.org/10.1002/2013EO450001 (2013).Article
ADS
Google Scholar
Antón, S., Potts, R. & Aiello, L. Evolution of Early Homo: An integrated biological perspective. Science (New York, N.Y.)345 (2014). https://doi.org/10.1126/science.1236828.Luo, L. et al. The first radiometric age by isochron 26Al/10Be burial dating for the Early Pleistocene Yuanmou hominin site, southern China. Quat. Geochronol. 55, 101022. https://doi.org/10.1016/j.quageo.2019.101022 (2019).Article
Google Scholar
Zaim, Y. et al. New 1.5 million-year-old Homo erectus maxilla from Sangiran (Central Java, Indonesia). J. Hum. Evol.61(4), 363–376 (2011).Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577(7790), 381–385 (2020).PubMed
Google Scholar
McRae, B. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 104, 19885–90. https://doi.org/10.1073/pnas.0706568104 (2008).Article
ADS
Google Scholar
Quaglietta, L. & Porto, M. SiMRiv: An R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias. Mov. Ecol. https://doi.org/10.1186/s40462-019-0154-8 (2019).Article
PubMed
PubMed Central
Google Scholar
Landau, V. A., Shah, V. B., Anantharaman, R. & Hall, K. R. Omniscape.jl: Software to compute omnidirectional landscape connectivity. J. Open Source Softw.6(57), 2829 (2021). https://doi.org/10.21105/joss.02829.Salles, T., Mallard, C. & Zahirovic, S. gospl: Global Scalable Paleo Landscape Evolution. J. Open Source Softw.5(56), 2804 (2020). https://doi.org/10.21105/joss.02804.Husson, L. et al. Slow geodynamics and fast morphotectonics in the far East Tethys. Geochem. Geophys. Geosyst. 23(1), n/a (2022).Valdes, P., Scotese, C. & Lunt, D. Deep ocean temperatures through time. Climate Past 17, 1483–1506. https://doi.org/10.5194/cp-17-1483-2021 (2021).Article
ADS
Google Scholar
Hyodo, M. et al. High-resolution record of the Matuyama–Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia. Proc. Natl. Acad. Sci. PNAS 108(49), 19563–19568 (2011).ADS
PubMed
Google Scholar
Brasseur, B., Sémah, F., Sémah, A.-M. & Djubiantono, T. Pedo-sedimentary dynamics of the Sangiran dome hominid bearing layers (Early to Middle Pleistocene, central Java, Indonesia): A palaeopedological approach for reconstructing ‘Pithecanthropus’ (Javanese Homo erectus) palaeoenvironment. Quatern. Int. 376, 84–100 (2015).
Google Scholar
Falguéres, C. et al. Geochronology of early human settlements in Java: What is at stake?. Quatern. Int. 416, 5–11 (2016).
Google Scholar
Roach, N. et al. Pleistocene footprints show intensive use of lake margin habitats by Homo erectus groups. Sci. Rep. 121 (2016). https://doi.org/10.1038/srep26374.Simandjuntak, T. O. & Barber, A. J. Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. Geol. Soc. Spec. Pub. 106(1), 185–201 (1996).
Google Scholar
Clements, B., Hall, R., Smyth, H. R. & Cottam, M. A. Thrusting of a volcanic arc; a new structural model for Java. Pet. Geosci. 15(2), 159–174 (2009).
Google Scholar
Joordens, J., Wesselingh, F., de Vos, J., Vonhof, H. & Kroon, D. Relevance of aquatic environments for hominins: A case study from Trinil (Java, Indonesia). J. Hum. Evol. 57(6), 656–671 (2009).PubMed
Google Scholar
Berghuis, H. et al. Hominin homelands of East Java: Revised stratigraphy and landscape reconstructions for Plio-Pleistocene Trinil. Quatern. Sci. Rev. 260, 106912 (2021).
Google Scholar
Fort, J., Pujol, T. & Cavalli-Sforza, L. Palaeolithic populations and waves of advance. Camb. Archaeol. J. 14, 53–61. https://doi.org/10.1017/S0959774304000046 (2004).Article
Google Scholar
Hamilton, M. & Buchanan, B. Spatial gradients in Clovis-age radiocarbon dates across North America suggest rapid colonization from the north. Proc. Natl. Acad. Sci. USA 104, 15625–30. https://doi.org/10.1073/pnas.0704215104 (2007).Article
ADS
PubMed
PubMed Central
Google Scholar
Hazelwood, L. & Steele, J. Spatial dynamics of human dispersals: Constraints on modelling and archaeological validation. J. Archaeol. Sci. 31, 669–679. https://doi.org/10.1016/j.jas.2003.11.009 (2004).Article
Google Scholar
Bae, C., Li, F., Liuling, C., Wang, W. & Hanlie, H. Hominin distribution and density patterns in pleistocene China: Climatic influences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512 (2018). https://doi.org/10.1016/j.palaeo.2018.03.015.Timmermann, A. et al. Climate effects on archaic human habitats and species successions. Nature 604, 1–7. https://doi.org/10.1038/s41586-022-04600-9 (2022).Article
Google Scholar
Bailey, G. N., Reynolds, S. C. & King, G. C. Landscapes of human evolution: Models and methods of tectonic geomorphology and the reconstruction of hominin landscapes. J. Hum. Evol. 60(3), 257–280 (2011).PubMed
Google Scholar
Sarr, A., Sepulchre, P. & Husson, L. Impact of the Sunda Shelf on the Climate of the Maritime Continent. J. Geophys. Res. Atmos. 124(5), 2574–2588 (2019).ADS
Google Scholar
Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586(7829), 402–406 (2020).ADS
PubMed
Google Scholar
Raia, P. et al. Past extinctions of homo species coincided with increased vulnerability to climatic change. One Earth 3(4), 480–490 (2020).ADS
Google Scholar
Zhu, Z. et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature 559(7715), 608–612 (2018).Gabunia, L. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting, and age. Science 288, 1019–1025. https://doi.org/10.1126/science.288.5468.1019 (2000).Article
ADS
PubMed
Google Scholar
Lordkipanidze, D. et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early homo. Science 342(6156), 326–331 (2013).ADS
PubMed
Google Scholar
Baba, H. et al. Homo erectus calvarium from the pleistocene of java. Sci. (Am. Assoc. Adv. Sci.) 299 (5611), 1384–1388 (2003) .Ciochon, R. L. & Bettis, E. A. III. Asian Homo erectus converges in time. Nature 458(7235), 153–154 (2009).ADS
PubMed
Google Scholar
Dennell, R. & Roebroeks, W. An Asian perspective on early human dispersal from Africa. Nature 438(7071), 1099–1104 (2005).ADS
PubMed
Google Scholar
Martinon-Torres, M. et al. Dental evidence on the hominin dispersals during the Pleistocene. Proc. Natl. Acad. Sci. PNAS 104(33), 13279–13282 (2007).ADS
PubMed
Google Scholar
Wood, B. Did early Homo migrate “out of’’ or “in to’’ Africa?. Proc. Natl. Acad. Sci. PNAS 108(26), 10375–10376 (2011).ADS
PubMed
Google Scholar
Shen, G. et al. Isochron 26Al/10Be burial dating of Xihoudu: Evidence for the earliest human settlement in northern China. Anthropologie 124, 102790. https://doi.org/10.1016/j.anthro.2020.102790 (2020).Article
Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms268(2), 192–199 (2010).Korschinek, G. et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268(2), 187–191 (2010) .Nishiizumi, K. Preparation of 26Al AMS standards. Nucl. Inst. and Meth. in Phys. Res. 223-224, 388–392 (2004).Norris, T. L., Gancarz, A. J., Rokop, D. J. & Thomas, K. W. Half-life of 26Al. J. Geophys. Res. Solid Earth 88(S01), B331–B333 (1983).ADS
Google Scholar
Braucher, R., Merchel, S., Borgomano, J. & Bourlès, D. Production of cosmogenic radionuclides at great depth: A multi element approach. Earth Planet. Sci. Lett. 309(1), 1–9 (2011).ADS
Google Scholar
Braucher, R. et al. Preparation of ASTER in-house 10Be/9Be standard solutions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms361, 335–340 (2015) .Merchel, S. & Bremser, W. First international 26Al interlaboratory comparison—Part I. Nucl. Instrum. Methods Phys. Res. 223–224, 393–400 (2004).ADS
Google Scholar
Arnold, M. et al. The French accelerator mass spectrometry facility ASTER: Improved performance and developments. Nucl. Instrum. Methods Phys. Res. 268(11), 1954–1959 (2010).ADS
Google Scholar
Borchers, B. et al. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 31, 188–198 (2016).
Google Scholar
Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 105(B10), 23753–23759 (2000).
Google Scholar
Bintanja, R. & van de Wal, R. S. W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454, 869–872. https://doi.org/10.1038/nature07158 (2008).Article
ADS
PubMed
Google Scholar
Field, J. & Mirazon Lahr, M. Assessment of the Southern Dispersal: GIS-Based Analyses of Potential Routes at Oxygen Isotopic Stage 4. J. World Prehist. 19, 1–45 (2005). https://doi.org/10.1007/s10963-005-9000-6.Howey, M. Multiple pathways across past landscapes: Circuit theory as a complementary geospatial method to least cost path for modeling past movement. J. Archaeol. Sci. 38, 2523–2535. https://doi.org/10.1016/j.jas.2011.03.024 (2011).Article
Google Scholar
Tassi, F. et al. Early modern human dispersal from Africa: Genomic evidence for multiple waves of migration. Investig. Genet. 6, 13. https://doi.org/10.1186/s13323-015-0030-2 (2015).Article
PubMed
PubMed Central
Google Scholar
Kealy, S., Louys, J. & O’Connor, S. Least-cost pathway models indicate northern human dispersal from Sunda to Sahul. J. Hum. Evol. 125, 59–70. https://doi.org/10.1016/j.jhevol.2018.10.003 (2018).Article
PubMed
Google Scholar
Dennell, R. W., Rendell, H. M. & Hailwood, E. Late pliocene artefacts from northern Pakistan. Curr. Anthropol. 29(3), 495–498 (1988).
Google Scholar
Zhu, R. et al. Early evidence of the genus homo in east asia. J. Hum. Evol. 55(6), 1075–1085 (2008).PubMed
Google Scholar
Gowen, K. M. & de Smet, T. S. Testing least cost path (LCP) models for travel time and kilocalorie expenditure: Implications for landscape genomics. PLoS ONE 15(9), 1–20. https://doi.org/10.1371/journal.pone.0239387 (2020).Article
Google Scholar
Walt, S. et al. scikit-image: Image processing in Python. PeerJ 2, e453. https://doi.org/10.7287/peerj.preprints.336v2 (2014).Article
PubMed
PubMed Central
Google Scholar
Mueller, T. & Fagan, W. Search and navigation in dynamic environments—From individual behaviors to population distributions. Oikos 117, 654–664. https://doi.org/10.1111/j.0030-1299.2008.16291.x (2008).Article
Google Scholar
Bastille-Rousseau, G., Douglas-Hamilton, I., Blake, S., Northrup, J. & Wittemyer, G. Applying network theory to animal movements to identify properties of landscape space use. Ecol. Appl. 28 (2018). https://doi.org/10.1002/eap.1697.Michelot, T., Langrock, R. & Patterson, T. moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol. Evol. 7 (2016). https://doi.org/10.1111/2041-210X.12578 .Benhamou, S. How many animals really do the Lévy Walk. Ecology 88, 1962–9. https://doi.org/10.1890/06-1769.1 (2007).Article
PubMed
Google Scholar
Turchin, P. Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution of Plants and Animals (Sinauer Associates, Sunderland, 1998).
Google Scholar
Lieberman, D. E. The Story of the Human Body: Evolution, Health, and Disease (Pantheon Books, New York, 2013).
Google Scholar
Braun, D. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc. Natl. Acad. Sci. USA 107, 10002–7 (2010). https://doi.org/10.1073/pnas.1002181107.O’Connor, S., Louys, J., Kealy, S. & Samper Carro, S. C. Hominin dispersal and settlement east of huxley’s line: The role of sea level changes, island size, and subsistence behavior. Curr. Anthropol. 58(S17), S567–S582 (2017).Macaulay, V. et al. Single, rapid coastal settlement of asia revealed by analysis of complete mitochondrial genomes. Science (New York, N.Y.)308, 1034–6 (2005). https://doi.org/10.1126/science.1109792. More