Consistent diel activity patterns of forest mammals among tropical regions
Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).
Google Scholar
Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: Environmental factors. Prog. Brain Res. 199, 281–304 (2012).PubMed
Google Scholar
Cox, D., Gardner, A. & Gaston, K. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1–10 (2021).
Google Scholar
Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).PubMed
Google Scholar
Baker, J. & Venditti, C. Rapid change in mammalian eye shape is explained by activity pattern. Curr. Biol. 29, 1082–1088. e1083 (2019).PubMed
Google Scholar
Crompton, A., Taylor, C. R. & Jagger, J. A. Evolution of homeothermy in mammals. Nature 272, 333–336 (1978).ADS
PubMed
Google Scholar
Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed
Google Scholar
Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).ADS
PubMed
PubMed Central
Google Scholar
Mccain, C. M. & King, S. R. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).ADS
Google Scholar
Veldhuis, M. P. et al. Predation risk constrains herbivores’ adaptive capacity to warming. Nat. Ecol. Evol. 4, 1069–1074 (2020).PubMed
Google Scholar
Riede, S. J., van der Vinne, V. & Hut, R. A. The flexible clock: Predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. J. Exp. Biol. 220, 738–749 (2017).PubMed
Google Scholar
van der Vinne, V. et al. Maximising survival by shifting the daily timing of activity. Ecol. Lett. 22, 2097–2102 (2019).PubMed
PubMed Central
Google Scholar
Harper, G. & Bunbury, N. Invasive rats on tropical islands: Their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).
Google Scholar
Sovie, A. R., Greene, D. U., Frock, C. F., Potash, A. D. & McCleery, R. A. Ephemeral temporal partitioning may facilitate coexistence in competing species. Anim. Behav. 150, 87–96 (2019).
Google Scholar
Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).ADS
PubMed
Google Scholar
Richards, S. A. Temporal partitioning and aggression among foragers: Modeling the effects of stochasticity and individual state. Behav. Ecol. 13, 427–438 (2002).
Google Scholar
Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol., Evol., Syst. 34, 153–181 (2003).
Google Scholar
Sunarto, S., Kelly, M., Parakkasi, K. & Hutajulu, M. Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. J. Zool. 296, 104–115 (2015).
Google Scholar
Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Naturalist 153, 649–659 (1999).
Google Scholar
Beschta, R. L. & Ripple, W. J. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol. Conserv. 142, 2401–2414 (2009).
Google Scholar
Duffy, J. E. Biodiversity and ecosystem function: The consumer connection. Oikos 99, 201–219 (2002).
Google Scholar
Sinclair, A., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).ADS
PubMed
Google Scholar
Cunningham, C. X., Scoleri, V., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Temporal partitioning of activity: Rising and falling top‐predator abundance triggers community‐wide shifts in diel activity. Ecography 42, 2157–2168 (2019).
Google Scholar
Hayward, M. W. & Slotow, R. Temporal partitioning of activity in large African carnivores: Tests of multiple hypotheses. South Afr. J. Wildl. Res. 39, 109–125 (2009).
Google Scholar
Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: Diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).
Google Scholar
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
Google Scholar
Rovero, F. et al. A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography 43, 75–84 (2020).
Google Scholar
Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2703–2711 (2011).
Google Scholar
Zhang, J. et al. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. R. Soc. B: Biol. Sci. 285, 20180949 (2018).
Google Scholar
Beaudrot, L. et al. Local temperature and ecological similarity drive distributional dynamics of tropical mammals worldwide. Glob. Ecol. Biogeogr. 28, 976–991 (2019).
Google Scholar
Janzen, D. H. Why mountain passes are higher in the tropics. Am. Naturalist 101, 233–249 (1967).
Google Scholar
Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B: Biol. Sci. 281, 20141097 (2014).
Google Scholar
Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (John Wiley & Sons, 2009).Cruz, P., Paviolo, A., Bó, R. F., Thompson, J. J. & Di Bitetti, M. S. Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm. Biol. 79, 376–383 (2014).
Google Scholar
Taylor, W. & Skinner, J. Adaptations of the aardvark for survival in the Karoo: A review. Trans. R. Soc. South Afr. 59, 105–108 (2004).
Google Scholar
Levy, O., Dayan, T., Porter, W. P. & Kronfeld‐Schor, N. Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).
Google Scholar
Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals Vol. 11 (Yale University Press, 1980).Gutiérrez-González, C. E. & López-González, C. A. Jaguar interactions with pumas and prey at the northern edge of jaguars’ range. PeerJ 5, e2886 (2017).PubMed
PubMed Central
Google Scholar
Porfirio, G., Sarmento, P., Foster, V. & Fonseca, C. Activity patterns of jaguars and pumas and their relationship to those of their potential prey in the Brazilian Pantanal. Mammalia 81, 401–404 (2017).
Google Scholar
Foster, V. C. et al. Jaguar and puma activity patterns and predator‐prey interactions in four Brazilian biomes. Biotropica 45, 373–379 (2013).
Google Scholar
Ross, J., Hearn, A., Johnson, P. & Macdonald, D. Activity patterns and temporal avoidance by prey in response to S unda clouded leopard predation risk. J. Zool. 290, 96–106 (2013).
Google Scholar
Lima, S. L. Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48, 25–34 (1998).
Google Scholar
Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS One 14, e0213671 (2019).PubMed
PubMed Central
Google Scholar
Herrera, H. et al. Time partitioning among jaguar Panthera onca, puma Puma concolor and ocelot Leopardus pardalis (Carnivora: Felidae) in Costa Rica’s dry and rainforests. Rev. de. Biol.ía Tropical 66, 1559–1568 (2018).
Google Scholar
Pratas‐Santiago, L. P., Gonçalves, A. L. S., da Maia Soares, A. & Spironello, W. R. The moon cycle effect on the activity patterns of ocelots and their prey. J. Zool. 299, 275–283 (2016).
Google Scholar
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS
PubMed
Google Scholar
Espinosa, S. & Salvador, J. Hunters landscape accessibility and daily activity of ungulates in Yasuní Biosphere Reserve. Ecuad. Therya 8, 45–52 (2017).
Google Scholar
Butynski, T. M. Ecological survey of the impenetrable (Bwindi) forest, Uganda, and recommendations for its conservation and management. https://doi.org/10.13140/RG.2.1.1719.0487 (1984).Rovero, F. & Ahumada, J. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests. Sci. Total Environ. 574, 914–923 (2017).ADS
PubMed
Google Scholar
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS
PubMed
Google Scholar
Gorczynski, D. et al. Tropical mammal functional diversity increases with productivity but decreases with anthropogenic disturbance. Proc. R. Soc. B 288, 20202098 (2021).PubMed
PubMed Central
Google Scholar
Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera‐trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).
Google Scholar
Bivand, R. et al. Maptools: Tools for Handling Spatial Objects. R package version 1.1-4. http://maptools.r-forge.r-project.org/reference/index.html (2021).Ensing, E. P. et al. GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus): Indication for a weak circadian clock in ungulates. PLoS One 9, e106997 (2014).ADS
PubMed
PubMed Central
Google Scholar
Vazquez, C., Rowcliffe, J. M., Spoelstra, K. & Jansen, P. A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 10, 2057–2066 (2019).
Google Scholar
Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179 (2014).
Google Scholar
Rowcliffe, J. M. Activity: Animal Activity Statistics. R package version 1.3.2. https://cran.r-project.org/package=activity (2022).Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).PubMed
Google Scholar
Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Google Scholar
Elff, M., Heisig, J. P., Schaeffer, M. & Shikano, S. Multilevel analysis with few clusters: Improving likelihood-based methods to provide unbiased estimates and accurate inference. Br. J. Polit. Sci. 51, 412–426 (2020).Elff, M. Mclogit: mixed conditional logit models. R package version 0.5. 1. https://github.com/melff/mclogit/ (2018).Burnham, K & Anderson, D. Model Selection and Multi-model Inference 2nd edn, Vol. 63, 10 (Springer-Verlag 2004).Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).PubMed
PubMed Central
Google Scholar
Hopcraft, J. G. C., Olff, H. & Sinclair, A. Herbivores, resources, and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).PubMed
Google Scholar
Meredith, M. & Ridout, M. Overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.2. 4, https://cran.r-project.org/package=overlap (2014).Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric., Biol., Environ. Stat. 14, 322–337 (2009).MathSciNet
MATH
Google Scholar
RStudio Team. RStudio: Integrated Development for R (PBC, Boston, MA, 2020). More
