Genotyping-by-sequencing reveals range expansion of Adonis vernalis (Ranunculaceae) from Southeastern Europe into the zonal Euro-Siberian steppe
Wesche, K. et al. The Palaearctic steppe biome: A new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).
Google Scholar
Hurka, H. et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia 22, 5–71 (2019).
Google Scholar
Willner, W. et al. Formalized classification of semi-dry grasslands in central and eastern Europe. Preslia 91, 25–49 (2019).
Google Scholar
Willis, K. J. & McElwain, J. C. The Evolution Of Plants (Oxford University Press, Oxford, 2002).Suc, J.-P. et al. Reconstruction of Mediterranean flora, vegetation and climate for the last 23 million years based on an extensive pollen dataset. Ecol. Mediterr. 44, 53–85 (2018).
Google Scholar
Strani, F. Impact of Early and Middle Pleistocene major climatic events on the palaeoecology of Southern European ungulates. Hist. Biol. 33, 2260–2275 (2021).
Google Scholar
Chytrý, M. et al. A modern analogue of the Pleistocene steppe-tundra ecosystem in southern Siberia. Boreas 48, 36–56 (2019).
Google Scholar
Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the orient: The Irano–Turanian region from classical botany to evolutionary studies. Biol. Rev. 92, 1365–1388 (2017).PubMed
Google Scholar
Seregin, A. P., Anačkov, G. & Friesen, N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): Geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67–101 (2015).
Google Scholar
Friesen, N. et al. Dated phylogenies and historical biogeography of Dontostemon and Clausia (Brassicaceae) mirror the palaeogeographical history of the Eurasian steppe. J. Biogeogr. 43, 738–749 (2016).
Google Scholar
Seidl, A. et al. Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi-desert goosefoot plant. Krascheninnikovia ceratoides. Flora 262, 151504 (2020).
Google Scholar
Seidl, A. et al. The phylogeographic history of Krascheninnikovia reflects the development of dry steppes and semi-deserts in Eurasia. Sci. Rep. 11, 6645 (2021).ADS
CAS
PubMed
PubMed Central
Google Scholar
Žerdoner Čalasan, A., Seregin, A. P., Hurka, H., Hofford, N. P. & Neuffer, B. The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora 260, 151477 (2019).
Google Scholar
Žerdoner Čalasan, A. et al. Pleistocene dynamics of the Eurasian steppe as a driving force of evolution: Phylogenetic history of the genus Capsella (Brassicaceae). Ecol. Evol. 11, 12697–12713 (2021).PubMed
PubMed Central
Google Scholar
Žerdoner Čalasan, A., German, D. A., Hurka, H. & Neuffer, B. A story from the Miocene: Clock-dated phylogeny of Sisymbrium L. (Sisymbrieae, Brassicaceae). Ecol. Evol. 11, 2573–2595 (2021).PubMed
PubMed Central
Google Scholar
Zaveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. 139, 106572 (2019).PubMed
Google Scholar
Franzke, A. et al. Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol. Ecol. 13, 2789–2795 (2004).CAS
PubMed
Google Scholar
Friesen, N. et al. Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives. Flora 268, 151602 (2020).
Google Scholar
Walter, H. & Straka, H. Arealkunde (Floristisch-Historische Geobotanik), second edition (Ulmer, 1970).Zimmermann, W. 50c. Familie Ranunculáceae in Gustav Hegi, Illustrierte Flora Von Mitteleuropa, Band III, Teil 3, second edition (eds. Rechinger, K. H. & Damboldt, J.) 53–341 (Parey, 1965–1974).Meusel, H., Jäger, E. & Weinert, E. Vergleichende Chorologie Der Zentraleuropäischen Flora, Band I (Gustav Fischer, 1965).Hoffmann, M. H. Ecogeographical differentiation patterns in Adonis sect. Consiligo (Ranunculaceae). Plant Syst. Evol. 211, 43–56 (1998).
Google Scholar
Willner, W. et al. A higher-level classification of the Pannonian and western Pontic steppe grasslands (Central and Eastern Europe). Appl. Veg. Sci. 20, 143–158 (2017).PubMed
Google Scholar
Lange, D. Conservation and Sustainable Use of Adonis vernalis, a Medicinal Plant in International Trade (Landwirtschaftsverlag, Münster, 2000).Denisow, B., Wrzesień, M. & Cwener, A. Pollination and floral biology of Adonis vernalis L. (Ranunculaceae)—A case study of threatened species. Acta Soc. Bot. Pol. 83, 29–37 (2014).
Google Scholar
Mitrenina, E. Y. et al. Karyotype and genome size in Adonis vernalis and Adonis volgensis. Turczaninowia 25, 5–15 (2022).
Google Scholar
Zhai, W. et al. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol. Phylogenet. Evol. 135, 12–21 (2019).CAS
PubMed
Google Scholar
Bobrov, E. G. Genus 540. ADONIS L. In Flora Of The U.S.S.R., Volume VII, Ranales And Rhoeadales (ed. Komarov, V. L.) pp. 403–411 (Academy of Sciences of the U.S.S.R., 1970).Pisareva, V. V. et al. Changes in the landscape and climate of Eastern Europe in the Early Pleistocene. Stratigr. Geol. Correl. 27, 475–497 (2019).ADS
Google Scholar
Vislobokova, I., Tesakov, A. Early And Middle Pleistocene Of Northern Eurasia. In Encyclopedia Of Quaternary Science, Vol 4, 2nd edn (ed. Elias, S. A.) pp. 605–614 (Elsevier, Amsterdam, 2013).Hirsch, H. et al. High genetic diversity declines towards the geographic range periphery of Adonis vernalis, a Eurasian dry grassland plant. Plant Biol. 17, 1233–1241 (2015).CAS
PubMed
Google Scholar
Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1968 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
Willner, W. et al. Long-term continuity of steppe grasslands in eastern Central Europe: Evidence from species distribution patterns and chloroplast haplotypes. J. Biogeogr. 48, 3104–3117 (2021).
Google Scholar
Molnár, Z., Biró, M., Bartha, S. & Fekete, G. Past trends, present state and future prospects of Hungarian forest-steppes. In Eurasian Steppes. Ecological Problems And Livelihoods In A Changing World (eds Werger, M. J. A. & van Staalduinen, M. A.) pp. 209–252 (Springer, Dordrecht, 2012).
Google Scholar
Liedtke, H. Die Nordischen Vereisungen in Mitteleuropa, 2nd edn. (Zentralausschuß für deutsche Landeskunde, Trier, 1981).Sizikova, A. O. & Zykina, V. S. The dynamics of the Late Pleistocene loess formation, Lozhok section, Ob loess Plateau, SW Siberia. Quat. Int. 365, 4–14 (2015).
Google Scholar
Zykina, V. S. & Zykin, V. S. Pleistocene warming stages in Southern West Siberia: Soils, environment, and climate evolution. Quat. Int. 106–107, 233–243 (2003).
Google Scholar
Shumilovskikh, L., Sannikov, P., Efimik, E., Shestakov, I. & Mingalev, V. V. Long-term ecology and conservation of the Kungur forest-steppe (pre-Urals, Russia): Case study Spasskaya Gora. Biodivers. Conserv. 30, 4061–4087 (2021).
Google Scholar
Markova, A. & Puzachenko, A. Vertebrate records/Late Pleistocene of Northern Asia. In Encyclopedia of Quaternary Science Vol. 4 (ed. Elias, S. A.) 3158–3175 (Elsevier, Amsterdam, 2007).Gómez, C. & Espadaler, X. An update of the world survey of myrmecochorous dispersal distances. Ecography 36, 1193–1201 (2013).
Google Scholar
Albert, A. et al. Seed dispersal by ungulates as an ecological filter: A trait-based meta-analysis. Oikos 124, 1109–1120 (2015).
Google Scholar
Albert, A., Mårell, A., Picard, M. & Baltzinger, C. Using basic plant traits to predict ungulate seed dispersal potential. Ecography 38, 440–449 (2015).
Google Scholar
Popescu, S.-M. et al. Late Quaternary vegetation and climate of SE Europe–NW Asia according to pollen records in three offshore cores from the Black and Marmara seas. Paleobiodivers. Paleoenviron. 101, 197–212 (2021).
Google Scholar
Markova, A. K., Simakova, A. N. & Puzachenko, A. Y. Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24–18 kyr BP) inferred from data on plant communities and mammal assemblages. Quat. Int. 201, 53–59 (2009).
Google Scholar
Kajtoch, Ł et al. Phylogeographic patterns of steppe species in Eastern Central Europe: A review and the implications for conservation. Biodivers. Conserv. 25, 2309–2339 (2016).
Google Scholar
Kropf, M., Bardy, K., Höhn, M. & Plenk, K. Phylogeographical structure and genetic diversity of Adonis vernalis L. (Ranunculaceae) across and beyond the Pannonian region. Flora 262, 151497 (2020).
Google Scholar
Plenk, K., Bardy, K., Höhn, M., Thiv, M. & Kropf, M. No obvious genetic erosion, but evident relict status at the westernmost range edge of the Pontic-Pannonian steppe plant Linum flavum L. (Linaceae) in Central Europe. Ecol. Evol. 7, 6527–6539 (2017).PubMed
PubMed Central
Google Scholar
Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia? Quat. Sci. Rev. 95, 60–79 (2014).ADS
Google Scholar
Doležel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).PubMed
Google Scholar
Shaw, J., Lickey, E. B., Schilling, E. E. & Small, R. L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 94, 275–288 (2007).CAS
PubMed
Google Scholar
Shaw, J. et al. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92, 142–166 (2005).CAS
PubMed
Google Scholar
Heckenhauer, J., Barfuss, M. H. J. & Samuel, R. Universal multiplexable matK primers for DNA barcoding of angiosperms. Appl. Plant Sci. 4, 1500137 (2016).
Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) pp. 315–322 (Academic Press, Cambridge, 1990).
Google Scholar
Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS
PubMed
Google Scholar
Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinformat. 4, 65–69 (2005).
Google Scholar
Swofford, D. L. PAUP*. Software. https://paup.phylosolutions.com/.Kozlov, A., Darriba, D., Flouri, T., Morel, B. & A.,. Stamatakis RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS
PubMed
PubMed Central
Google Scholar
Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).CAS
PubMed
PubMed Central
Google Scholar
Heled, J. & Drummond, A. J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61, 138–149 (2012).PubMed
Google Scholar
Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).PubMed
PubMed Central
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS
PubMed
PubMed Central
Google Scholar
Rambaut, A. FigTree. Software. http://tree.bio.ed.ac.uk/software/figtree/.Wendler, N. et al. Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol. J. 12, 1122–1131 (2014).ADS
CAS
PubMed
Google Scholar
Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).CAS
PubMed
Google Scholar
Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: A statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).
Google Scholar
Corrêa dos Santos, R. A., Goldman, G. H. & Riaño-Pachón, D. M. ploidyNGS: Visually exploring ploidy with next generation sequencing data. Bioinformatics 33, 2575–2576 (2017).
Google Scholar
Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Google Scholar
R Core Team. R. A language and environment for statistical computing. Software. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartR: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).PubMed
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS
PubMed
PubMed Central
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS
PubMed
PubMed Central
Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS
PubMed
Google Scholar
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS
PubMed
PubMed Central
Google Scholar
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).PubMed
Google Scholar
Kalinowski, S. T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS
Google Scholar More