South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail
Lucas, S. G. Permian tetrapod extinction events. Earth Sci. Rev. 170, 31â60 (2017).
Google ScholarÂ
Rampino, M. R. & Shen, S.-Z. The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? Hist. Biol. 33, 716â722 (2019).
Google ScholarÂ
Day, M. O. & Rubidge, B. S. The late capitanian mass extinction of terrestrial vertebrates in the Karoo Basin of South Africa. Front. Earth Sci. 9, 631198 (2021).
Google ScholarÂ
Bordy, E. M. & Paiva, F. Stratigraphic architecture of the karoo river channels at the end-capitanian. Front. Earth Sci. 8, 521766 (2021).
Google ScholarÂ
Erwin, D. H., Bowring, S. A. & Yugan, J. In Catastrophic events and mass extinctions: impacts and beyond (eds. Koeberl, C. & MacLeod, K. G.) 363â383 (Geological Society of America, 2002).Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Rubidge, B. S. Did mammals originate in Africa? South African fossils and the Russian connection. Syd. Haughton Meml. Lect. 4, 1â14 (1995).
Google ScholarÂ
Day, M. O. & Rubidge, B. S. A brief lithostratigraphic review of the Abrahamskraal and Koonap formations of the Beaufort Group, South Africa: towards a basin-wide stratigraphic scheme for the Middle Permian Karoo. J. Afr. Earth Sci. 100, 227â242 (2014).
Google ScholarÂ
Day, M., Ramezani, J., Frazer, R. & Rubidge, B. U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa. J. Afr. Earth Sci. 186, 104435 (2022).CASÂ
Google ScholarÂ
Koch, N. M., Garwood, R. & Parry, L. Fossils improve phylogenetic analyses of morphological characters. Proc. R. Soc. B Biol. Sci. 288, 1â8 (2021).
Google ScholarÂ
McLoughlin, S. Glossopteris: insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93â106 (2011).
Google ScholarÂ
Slater, B. J., McLoughlin, S. & Hilton, J. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res. 27, 1446â1473 (2015).
Google ScholarÂ
Plumstead, E. P. Three thousand million years of plant life in Africa. (Geological Society of South Africa, 1969).Lacey, W. S., van Dijk, D. E. & Gordon-Gray, K. D. Fossil plants from the Upper Permian in the Mooi River district of Natal, South Africa. Ann. Natal. Mus. 22, 349â420 (1975).
Google ScholarÂ
Anderson, J. M. & Anderson, H. M. Palaeoflora of Southern Africa. Prodomus of South African megafloras. Devonian to Lower Cretaceous. (Balkema, 1985).Bordy, E. M. & Prevec, R. Sedimentology, palaeontology and palaeo-environments of the Middle (?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South Afr. J. Geol. 111, 429â458 (2008).Prevec, R. et al. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156, 454â493 (2009).
Google ScholarÂ
Mcloughlin, S. & Prevec, R. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa Australas. J. Palaeontol. 43, 480â510 (2019).
Google ScholarÂ
McLoughlin, S. & Prevec, R. The reproductive biology of glossopterid gymnospermsâa review. Rev. Palaeobot. Palynol. 295, 104527 (2021).
Google ScholarÂ
Riek, E. F. New Upper Permian insects from Natal, South Africa. Ann. Natal. Mus. 22, 755â789 (1976).
Google ScholarÂ
Riek, E. F. Fossil insects from the Middle Ecca (Lower Permian) of southern Africa. Palaeontol. Afr. 19, 145â148 (1976).
Google ScholarÂ
Riek, E. F. An entomobryid collembolan (Hexapoda: Collembola) from the Lower Permian of Southern Africa. Palaeontol. Afr. 19, 141â143 (1976).
Google ScholarÂ
McLachlan, I. R. & Anderson, A. M. Fossil insect wings from the Early Permian White Band Formation, South Africa. Palaeontol. Afr. 20, 83â86 (1977).
Google ScholarÂ
Pinto, I. D. & Pinto De Ornellas, L. New fossil insects from the White Band Formation (Permian), South Africa. Pesqui. Zool. 10, 96â104 (1978).
Google ScholarÂ
van Dijk, D. E. & Geertsema, H. Permian insects from the Beaufort Group of Natal, South Africa. Ann. Natal. Mus. 40, 137â171 (1999).
Google ScholarÂ
Geertsema, H., van Dijk, D. E. & van den Heever, A. J. Palaeozoic insects of southern Africa: a review. Palaeontol. Afr. 38, 19â25 (2002).
Google ScholarÂ
Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363â366 (2013).CASÂ
Google ScholarÂ
Mcloughlin, S., Prevec, R. & Slater, B. J. Arthropod interactions with the Permian Glossopteris flora. J. Palaeosciences 70, 43â133 (2021).
Google ScholarÂ
Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15â31 (2008).
Google ScholarÂ
Nel, A. et al. The earliest known holometabolous insects. Nature 503, 257â261 (2013).CASÂ
PubMedÂ
Google ScholarÂ
Nicholson, D. B., Mayhew, P. J. & Ross, A. J. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE 10, 1421â1435 (2015).
Google ScholarÂ
Glenister, B. F., Wardlaw, B. R., Lambert, L. L., Spinosa, C. & Bowring, S. A. Proposal of Guadalupian and component Roadian. Wordian Capitanian Stages Int. Stand. middle Permian Ser. Permophiles 34, 3â11 (1999).
Google ScholarÂ
Allison, P. A. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331â344 (1988).
Google ScholarÂ
Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).Tian, Q. et al. Experimental investigation of insect deposition in lentic environments and implications for formation of Konservat Lagerstätten. Palaeontology 63, 565â578 (2020).
Google ScholarÂ
McCurry, M. R. et al. A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems. Sci. Adv. 8, 1â11 (2022).
Google ScholarÂ
Beckemeyer, R. J. & Hall, J. D. The entomofauna of the Lower Permian fossil insect beds of Kansas and Oklahoma, USA. Afr. Invertebr. 48, 17 (2007).
Google ScholarÂ
Jell, P. A. The fossil insects of Australia. Mem. Qld. Mus. 50, 1â124 (2004).
Google ScholarÂ
Wickens, H., de, V. & Cole, D. I. Lithostratigraphy of the Skoorsteenberg Formation (Ecca Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 120, 433â446 (2017).
Google ScholarÂ
Rubidge, B. S., Hancox, P. J. & Catuneaunu, O. Sequence analysis of the EccaâBeaufort contact in the southern Karoo of South Africa. South Afr. J. Geol. 103, 81â96 (2000).
Google ScholarÂ
Lanci, L., Tohver, E., Wilson, A. & Flint, S. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth Planet. Sci. Lett. 375, 123â134 (2013).CASÂ
Google ScholarÂ
Belica, M. E. et al. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an early Permian age for the Ecca Group. Geophys. J. Int. 211, 1354â1374 (2017).CASÂ
Google ScholarÂ
Rubidge, B. S. & Day, M. O. Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 123, 141â148 (2020).
Google ScholarÂ
Nel, A., Garrouste, R. & Prevec, R. The first Permian Gondwanan damselfly-like Protozygoptera (Insecta, Odonatoptera). Hist. Biol. https://doi.org/10.1080/08912963.2022.2067996 (2022).Cawood, R. et al. The first âGrylloblattidaâ of the family Liomopteridae from the Middle Permian in the Onder Karoo, South Africa (Insecta: Polyneoptera). Comptes Rendus Palevol. https://doi.org/10.5852/cr-palevol2022v21a22 (2022).Surange, K. R. & Chandra, S. Morphology of the gymnospermous fructifications of the Glossopteris flora and their relationships. Palaeontogr. B 149, 153â180 (1975).
Google ScholarÂ
White, M. E. Reproductive structures of the Glossopteridales in the plant fossil collection of the Australian Museum. Rec. Aust. Mus. 31, 473â504 (1978).
Google ScholarÂ
Nishida, H., Pigg, K. B. & DeVore, M. L. In Transformative Paleobotany, Ch. 8 (eds. Krings, M., Harper, C. J., CĂşneo, N. R. & Rothwell, G. W.) 145â154 (Academic Press, 2018).McLoughlin, S. New records of Bergiopteris and glossopterid fructifications from the Permian of Western Australia and Queensland. Alcheringa Australas. J. Palaeontol. 19, 175â192 (1995).
Google ScholarÂ
McLoughlin, S. In Gondwana Eight (eds. Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.) 253â264 (Balkema, 1993).Nishida, H., Pigg, K. B., Kudo, K. & Rigby, J. F. New evidence of the reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. II: pollen-bearing organ Ediea gen. nov. J. Plant Res. 127, 233â240 (2014).PubMedÂ
Google ScholarÂ
Tomescu, A. M. F., Bomfleur, B., Bippus, A. C. & Savoretti, A. In Transformative Paleobotany (eds. Krings, M., Harper, C. J., Cuneo, N. R. & Rothwell, G. W.) 375â416 (Elsevier Academic Press, 2018).Bomfleur, B. et al. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47, 120â132 (2014).
Google ScholarÂ
Nel, A., Bechly, G., Prokop, J., BĂŠthoux, O. & Fleck, G. Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the âprotozygopteranâ grade. J. Paleontol. 86, 81â104 (2012).
Google ScholarÂ
Riek, E. F. Fossil insects from the Upper Permian of Natal, South Africa. Ann. Natal. Mus. 21, 513â532 (1973).
Google ScholarÂ
Gallego, O. F. et al. The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. Ameghiniana 48, 447â461 (2011).
Google ScholarÂ
Martins-Neto, R. G., Gallego, O. F. & Melchor, R. N. The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta Zool. Cracoviensia 46, 229â256 (2003).
Google ScholarÂ
van Dijk, D. E. & Geertsema, H. A new genus of Permian Plecoptera (Afroperla) from KwaZulu-Natal, South Africa. Palaeontogr. B 12, 268â270 (2004).
Google ScholarÂ
BĂŠthoux, O., Cui, Y., Kondratieff, B., Stark, B. & Ren, D. At last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evol. Biol. 11, 248 (2011).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A. Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: âExopterygotaâ). Alcheringa Australas. J. Palaeontol. 43, 1â6 (2019).
Google ScholarÂ
Sharov, A. G. In Fundamentals of Paleontology: Arthropoda, Tracheata, Chelicerata. (eds. Rohdendorf, B. B. & Davis, D. R.) vol. 9 173â179 (Smithsonian Institution Libraries and NSCF, 1991).Sinitshenkova, N. D. In History of insects. (eds. Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 3.3, 388â426 (Kluwer Academic Publishers, 2002).Hayes, P. A. & Collinson, M. E. The Flora of the insect limestone (latest Eocene) from the Isle of Wight, southern England. Earth Environ. Sci. Trans. R. Soc. Edinb. 104, 245â261 (2014).
Google ScholarÂ
Zhang, Q. et al. Mayflies as resource pulses in Jurassic lacustrine ecosystems. Geology 50, 1043â1047 (2022).CASÂ
Google ScholarÂ
Prokop, J. et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 6, 190460 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Prokop, J., Nel, A., Engel, M. S., PecharovĂĄ, M. & HĂśrnschemeyer, T. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41, 178â190 (2016).
Google ScholarÂ
Dos Santos, T. B., de Souza Pinheiro, E. R. & Iannuzzi, R. First evidence of seed predation by arthropods from Gondwana and its early Paleozoic history (Rio Bonito Formation, ParanĂĄ Basin, Brazil). PALAIOS 35, 292â301 (2020).
Google ScholarÂ
Nel, A., Garrouste, R. & Prokop, J. The first African Anthracoptilidae (Insecta: Paoliida) near the PermianâTriassic boundary in Kenya. Zootaxa 3925, 145 (2015).PubMedÂ
Google ScholarÂ
Riek, E. F. An unusual immature insect from the Upper Permian of Natal. Ann. Natal. Mus. 22, 271â274 (1974).
Google ScholarÂ
Dunlop, J. A., Penney, D., Tetlie, O. E. & Anderson, L. I. How many species of fossil arachnids are there? J. Arachnol. 36, 267â272 (2008).
Google ScholarÂ
Rasnitsyn, A. P. et al. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretac. Res. 61, 234â255 (2016).
Google ScholarÂ
Manum, S. B., Bose, M. N. & Sawyer, R. T. Clitellate cocoons in freshwater deposits since the Triassic. Zool. Scr. 20, 347â366 (1991).
Google ScholarÂ
Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95â98 (2011).CASÂ
PubMedÂ
Google ScholarÂ
Parry, L., Tanner, A. & Vinther, J. The origin of annelids. Palaeontology 57, 1091â1103 (2014).
Google ScholarÂ
Mikulic, D. G., Briggs, D. E. G. & Kluessendorf, J. A Silurian soft-bodied biota. Science 228, 715â717 (1985).CASÂ
PubMedÂ
Google ScholarÂ
Prokop, J., Szwedo, J., Lapeyrie, J., Garrouste, R. & Nel, A. New Middle Permian insects from Salagou Formation of the Lodève Basin in southern France (Insecta: Pterygota). Ann. Soci.ĂŠtĂŠ Entomol. Fr. NS 51, 14â51 (2015).
Google ScholarÂ
Cai, C. et al. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771 (2022).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Srivastava, A. K. & Agnihotri, D. Dilemma of late Palaeozoic mixed floras in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 54â69 (2010).
Google ScholarÂ
Raff, R. A. Written in stone: fossils, genes and evoâdevo. Nat. Rev. Genet. 8, 911â920 (2007).CASÂ
PubMedÂ
Google ScholarÂ
Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1â12 (2017).PubMedÂ
Google ScholarÂ
McCulloch, G. A., Wallis, G. P. & Waters, J. M. A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Mol. Phylogenet. Evol. 96, 150â160 (2016).PubMedÂ
Google ScholarÂ
Cui, Y. et al. Rhythms of Insect Evolution. (John Wiley & Sons, Ltd, 2019).Letsch, H. et al. Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Syst. Entomol. 46, 952â967 (2021).
Google ScholarÂ
Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145â154 (2022).PubMedÂ
Google ScholarÂ
Beattie, R. The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia. Afr. Invertebr. 48, 18 (2007).
Google ScholarÂ
Bernardi, M. et al. Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the low-latitude Bletterbach Biota. Earth Sci. Rev. 175, 18â43 (2017).
Google ScholarÂ
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ UâPb zircon geochronology. Chem. Geol. 211, 47â69 (2004).CASÂ
Google ScholarÂ
SlĂĄma, J. et al. PleĹĄovice zirconâa new natural reference material for UâPb and Hf isotopic microanalysis. Chem. Geol. 249, 1â35 (2008).
Google ScholarÂ
Wiedenbeck, M. et al. Three natural zircon standards for UâThâPb, LuâHf, trace element and REE analyses. Geostand. Newsl. 19, 1â23 (2007).
Google ScholarÂ
Horstwood, M. S. A. et al. Communityâderived standards for LA â ICP â MS Uâ(Thâ)Pb geochronologyâuncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40, 311â332 (2016).CASÂ
Google ScholarÂ
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508â2518 (2011).CASÂ
Google ScholarÂ
Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247â280 (2012).CASÂ
Google ScholarÂ
Rees, P. Mc. A., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891 (1999).
Google ScholarÂ
Walter, H. Vegetation of the Earth and ecological systems of the geo-biosphere. (Springer-Verlag, 1985).Lucas, S. G., Schneider, J. W. & Cassinis, G. Non-marine Permian biostratigraphy and biochronology: an introduction. Geol. Soc. Lond. Spec. Publ. 265, 1â14 (2006).
Google ScholarÂ
Scotese, C. In Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection), Maps 43â52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. (PALEOMAP Project, 2014). More