More stories

  • in

    Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains

    Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chape, S., Harrison, J., Spalding, M. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. B Biol. Sci. 360, 443–455 (2005).Article 
    CAS 

    Google Scholar 
    Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2007).Article 
    PubMed 

    Google Scholar 
    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: Leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).Article 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 1–6 (2015).Article 

    Google Scholar 
    Larson, C. L., Reed, S. E., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systematic review. PLoS ONE 11, 1–21 (2016).Article 

    Google Scholar 
    Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 92, 216–233 (2017).Article 
    PubMed 

    Google Scholar 
    Timko, J. A. & Innes, J. L. Evaluating ecological integrity in national parks: Case studies from Canada and South Africa. Biol. Conserv. 142, 676–688 (2009).Article 

    Google Scholar 
    Nagendra, H. et al. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 33, 45–59 (2013).Article 

    Google Scholar 
    Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).Article 
    PubMed 

    Google Scholar 
    Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).
    Google Scholar 
    Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, 2014).
    Google Scholar 
    Steenweg, R., Hebblewhite, M., Whittington, J. & McKelvey, K. Species-specific differences in detection and occupancy probabilities help drive ability to detect trends in occupancy. Ecosphere 10, e02639 (2019).Article 

    Google Scholar 
    Chen, C. et al. Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conserv. Lett. 15, 1–14 (2022).Article 
    CAS 

    Google Scholar 
    Besbeas, P., Freeman, S., Morgan, B. & Catchpole, E. Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58, 540–547 (2002).Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Sun, C. C., Royle, J. A. & Fuller, A. K. Incorporating citizen science data in spatially explicit integrated population models. Ecology 100, 1–12 (2019).Article 

    Google Scholar 
    Doran-Myers, D. et al. Density estimates for Canada lynx vary among estimation methods. Ecosphere 12, 3774 (2021).Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).Article 

    Google Scholar 
    Weaver, J. L., Paquet, P. C. & Ruggiero, L. F. Resilience and conservation of large carnivores in the Rocky Mountains. Conserv. Biol. 10, 964–976 (1996).Article 

    Google Scholar 
    Fisher, J. T. et al. Wolverines (Gulo gulo) in a changing landscape and warming climate: A decadal synthesis of global conservation ecology research. Glob. Ecol. Conserv. 34, e02019 (2022).Article 

    Google Scholar 
    Persson, J., Ericsson, G. & Segerström, P. Human caused mortality in the endangered Scandinavian wolverine population. Biol. Conserv. 142, 325–331 (2009).Article 

    Google Scholar 
    Mowat, G. et al. The sustainability of wolverine trapping mortality in Southern Canada. J. Wildl. Manag. 84, 213–226 (2020).Article 

    Google Scholar 
    Bowman, J., Ray, J. C., Magoun, A. J., Johnson, D. S. & Dawson, F. N. Roads, logging, and the large-mammal community of an eastern Canadian boreal forest. Can. J. Zool. 88, 454–467 (2010).Article 

    Google Scholar 
    Heinemeyer, K. et al. Wolverines in winter: Indirect habitat loss and functional responses to backcountry recreation. Ecosphere 10, 2611 (2019).Article 

    Google Scholar 
    Fisher, J. T. et al. Wolverines (Gulo gulo Luscus) on the Rocky Mountain slopes: Natural heterogeneity and landscape alteration as predictors of distribution. Can. J. Zool. 91, 706–716 (2013).Article 

    Google Scholar 
    Magoun, A. J. et al. Integrating motion-detection cameras and hair snags for wolverine identification. J. Wildl. Manag. 75, 731–739 (2011).Article 

    Google Scholar 
    Bischof, R. et al. Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring. Proc. Natl. Acad. Sci. U.S.A. 117, 30531–30538 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronsson, M. & Persson, J. Mismatch between goals and the scale of actions constrains adaptive carnivore management: The case of the wolverine in Sweden. Anim. Conserv. 20, 261–269 (2017).Article 

    Google Scholar 
    Newmark, W. D. Extinction of mammal populations in Western North American National Parks. Conserv. Biol. 9, 512–526 (1995).Article 

    Google Scholar 
    Barrueto, M., Sawaya, M. A. & Clevenger, A. P. Low wolverine (Gulo gulo) density in a national park complex of the Canadian Rocky Mountains. Can. J. Zool. 98, 287–298 (2020).Article 

    Google Scholar 
    Heim, N., Fisher, J. T., Clevenger, A., Paczkowski, J. & Volpe, J. Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (Gulo gulo L.). Ecol. Evol. 7, 8903–8914 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steenweg, R. et al. Camera-based occupancy monitoring at large scales: Power to detect trends in grizzly bears across the Canadian Rockies. Biol. Conserv. 201, 192–200 (2016).Article 

    Google Scholar 
    Tourani, M., Dupont, P., Nawaz, M. A. & Bischof, R. Multiple observation processes in spatial capture–recapture models: How much do we gain? Ecology 101, 1–8 (2020).Article 

    Google Scholar 
    Kukka, P. M., Jung, T. S. & Schmiegelow, F. K. A. Spatiotemporal patterns of wolverine (Gulo gulo) harvest: The potential role of refugia in a quota-free system. Eur. J. Wildl. Res. 68, 1566 (2022).Article 

    Google Scholar 
    Krebs, J. et al. Synthesis of survival rates and causes of mortality in North American wolverines. J. Wildl. Manag. 68, 493–502 (2004).Article 

    Google Scholar 
    Stewart, F. E. C. et al. Wolverine behavior varies spatially with anthropogenic footprint: Implications for conservation and inferences about declines. Ecol. Evol. 6, 1493–1503 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sawaya, M. A., Clevenger, A. P. & Schwartz, M. K. Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biol. Conserv. 236, 616–625 (2019).Article 

    Google Scholar 
    Gooliaff, T. The Sustainable Annual Take of Canada lynx in the Okanagan Region of British Columbia (2021).Clevenger, A. P. Mitigating highways for a ghost: Data collection challenges and implications for managing wolverines and transportation corridors. Northwest Sci. 87, 257–264 (2013).Article 

    Google Scholar 
    Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).Article 
    PubMed 

    Google Scholar 
    Gervasi, V. et al. Compensatory immigration counteracts contrasting conservation strategies of wolverines (Gulo gulo) within Scandinavia. Biol. Conserv. 191, 632–639 (2015).Article 

    Google Scholar 
    Rich, L. N. et al. Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys. Glob. Ecol. Biogeogr. 26, 918–929 (2017).Article 

    Google Scholar 
    Decesare, N. J. et al. The role of translocation in recovery of Woodland Caribou populations. Conserv. Biol. 25, 365–373 (2010).PubMed 

    Google Scholar 
    Morris, W. & Doak, D. Quantitative Conservation Biology (Sinauer Associates, 2002).
    Google Scholar 
    Squires, J. R. et al. Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery. Biol. Conserv. 157, 187–195 (2013).Article 

    Google Scholar 
    Hebblewhite, M. & Whittington, J. Wolves without borders: Transboundary survival of wolves in Banff National Park over three decades. Glob. Ecol. Conserv. 24, e01293 (2020).Article 

    Google Scholar 
    Ministry of Forests Lands Natural Resource Operations and Rural Development. 2020–2022 Hunting and Trapping Regulations Synopsis, 96 (2020) https://www2.gov.bc.ca/assets/gov/sports-recreation-arts-and-culture/outdoor-recreation/fishing-and-hunting/hunting/regulations/2020-2022/hunting-trapping-synopsis-2020-2022.pdf (Accessed 15 Dec 2021).Persson, J., Landa, A., Andersen, R. & Segerström, P. Reproductive characteristics of female wolverines (Gulo gulo) in Scandinavia. J. Mammal. 87, 75–79 (2006).Article 

    Google Scholar 
    Persson, J. Female wolverine (Gulo gulo) reproduction: Reproductive costs and winter food availability. Can. J. Zool. 83, 1453–1459 (2005).Article 

    Google Scholar 
    Persson, J., Rauset, G. R. & Chapron, G. Paying for an endangered predator leads to population recovery. Conserv. Lett. 8, 345–350 (2015).Article 

    Google Scholar 
    Seip, D. R., Johnson, C. J. & Watts, G. S. Displacement of mountain caribou from winter habitat by snowmobiles. J. Wildl. Manag. 71, 1539–1544 (2007).Article 

    Google Scholar 
    Arlettaz, R. et al. Disturbance of wildlife by outdoor winter recreation: Allostatic stress response and altered activity-energy budgets. Ecol. Appl. 25, 1197–1212 (2015).Article 
    PubMed 

    Google Scholar 
    Olson, L. E., Squires, J. R., Roberts, E. K., Ivan, J. S. & Hebblewhite, M. Sharing the same slope: Behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation. Ecol. Evol. 8, 8555–8572 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ciuti, S. et al. Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS ONE 7, e50611 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, G. E. & Alldredge, A. W. Reproductive success of elk following disturbance by humans during calving season. J. Wildl. Manag. 64, 521 (2000).Article 

    Google Scholar 
    Strasser, E. H. & Heath, J. A. Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. J. Appl. Ecol. 50, 912–919 (2013).Article 

    Google Scholar 
    Rauset, G. R., Low, M. & Persson, J. Reproductive patterns result from age-related sensitivity to resources and reproductive costs in a mammalian carnivore. Ecology 96, 3153–3164 (2015).Article 
    PubMed 

    Google Scholar 
    Inman, R. M., Magoun, A. J., Persson, J. & Mattisson, J. The wolverine’s niche: Linking reproductive chronology, caching, competition, and climate. J. Mammal. 93, 634–644 (2012).Article 

    Google Scholar 
    Persson, J., Willebrand, T., Landa, A., Andersen, R. & Segerström, P. The role of intraspecific predation in the survival of juvenile wolverines Gulo gulo. Wildl. Biol. 9, 21–28 (2003).Article 

    Google Scholar 
    Krebs, J., Lofroth, E. C. & Parfitt, I. Multiscale habitat use by wolverines in British Columbia, Canada. J. Wildl. Manag. 71, 2180–2192 (2007).Article 

    Google Scholar 
    Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 108818 (2021).Article 

    Google Scholar 
    Goodbody, T. R. H. et al. Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling. Ecol. Modell. 440, 109377 (2021).Article 

    Google Scholar 
    May, R., Landa, A., Van Dijk, J., Linnell, J. D. C. & Andersen, R. Impact of infrastructure on habitat selection of wolverines Gulo gulo. Wildl. Biol. 12, 285–295 (2006).Article 

    Google Scholar 
    Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542 (2018).Article 

    Google Scholar 
    Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 7, 1–9 (2020).Article 

    Google Scholar 
    Lofroth, E. C., Krebs, J. A., Harrower, W. L. & Lewis, D. Food habits of wolverine Gulo gulo in montane ecosystems of British Columbia, Canada. Wildl. Biol. 13, 31–37 (2007).Article 

    Google Scholar 
    Hebblewhite, M., White, C. A. & Musiani, M. Revisiting extinction in national parks: Mountain Caribou in Banff. Conserv. Biol. 24, 341–344 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Poole, K. G. Kootenay Region Mountain Goat Population Assessment 2013–2015 (2015).Wasstrom, H. E., Cottell, C., Lofroth, E. C. & Larsen, K. W. Has the porcupine population waned in British Columbia? Trends in questionnaires and road-mortality data. Northwest. Nat. 101, 168–179 (2020).Article 

    Google Scholar 
    Hunt, W. A. Banff National Park State of the Park Report—Resource Conservation Technical Summaries 2008 to 2017 (2018).Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
    Google Scholar 
    Kortello, A., Hausleitner, D. & Mowat, G. Mechanisms influencing the winter distribution of wolverine Gulo gulo Luscus in the southern Columbia Mountains, Canada. Wildl. Biol. 2019, 480 (2019).Article 

    Google Scholar 
    Copeland, J. P. et al. The bioclimatic envelope of the wolverine (Gulo gulo): Do climatic constraints limit its geographic distribution? Can. J. Zool. 88, 233–246 (2010).Article 

    Google Scholar 
    Magoun, A. J., Robards, M. D., Packila, M. L. & Glass, T. W. Detecting snow at the den-site scale in wolverine denning habitat. Wildl. Soc. Bull. 41, 381–387 (2017).Article 

    Google Scholar 
    Webb, S. M. et al. Distribution of female wolverines relative to snow cover, Alberta, Canada. J. Wildl. Manag. 80, 1461–1470 (2016).Article 

    Google Scholar 
    SARA Species at Risk Act. Order amending schedule 1 to the species at risk act. SOR/2018-112. Canada Gazette 152 (12), 18 June 2018. (2018) www.canada.ca/en/environment-%0Aclimate-change/services/species-risk-public-registry/%0Aorders/amend-schedule-1-volume-152-number-12-june-2018.%0Ahtml (Accessed on 15 December 2021).Holland, W. D. & Coen, G. M. Ecological (biophysical) land classification of Banff and Jasper National Parks (1983).open.canada.ca. https://open.canada.ca (Accessed on 15 December 2021).den Hartog, J. & Reijns, R. I3S Pattern+ (2016).Greenberg, S. Timelapse: An Image Classifer for Camera Traps (2020).Tobler, M. Camera Base Version (2007).Whittington, J., Hebblewhite, M. & Chandler, R. B. Generalized spatial mark–resight models with an application to grizzly bears. J. Appl. Ecol. 55, 157–168 (2018).Article 

    Google Scholar 
    Gowan, T. A., Crum, N. J. & Roberts, J. J. An open spatial capture–recapture model for estimating density, movement, and population dynamics from line-transect surveys. Ecol. Evol. 11, 7354–7365 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Royle, J. A., Fuller, A. K. & Sutherland, C. Spatial capture–recapture models allowing Markovian transience or dispersal. Popul. Ecol. 58, 53–62 (2016).Article 

    Google Scholar 
    Milleret, C. et al. Estimating abundance with interruptions in data collection using open population spatial capture–recapture models. Ecosphere 11, 1–14 (2020).Article 

    Google Scholar 
    Royle, J. A., Magoun, A. J., Gardner, B., Valkenburg, P. & Lowell, R. E. Density estimation in a wolverine population using spatial capture-recapture models. J. Wildl. Manag. 75, 604–611 (2011).Article 

    Google Scholar 
    Royle, J. A., Chandler, R. B., Sun, C. C. & Fuller, A. K. Reply to efford on ‘Integrating resource selection information with spatial capture–recapture’. Methods Ecol. Evol. 5, 603–605 (2014).Article 

    Google Scholar 
    Kendall, K. C. et al. Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Sci. Rep. 9, 5 (2019).Article 

    Google Scholar 
    Royle, J. A. & Young, K. V. A hierarchical model for spatial capture-recapture data. Ecology 89, 2281–2289 (2008).Article 
    PubMed 

    Google Scholar 
    Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).MathSciNet 
    MATH 

    Google Scholar 
    Royle, J. A. & Kéry, M. A Bayesian state-space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (2022) https://www.r-project.org/ (Accessed on 20 June 2022).de Valpine, P. et al. Programming with models: Writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).Article 
    MathSciNet 

    Google Scholar 
    Barrueto, M., Forshner, A., Whittington, J., Clevenger, A. P. & Musiani, M. Data from: Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains. Dryad. https://doi.org/10.5061/dryad.z34tmpghh (2022).Article 

    Google Scholar  More

  • in

    Old trees have much to teach us

    Elderflora: A Modern History of Ancient Trees Jared Farmer Basic (2022)About 45 million years ago, when the Arctic was ice-free, the world’s earliest known mummified trees flourished on what is now Axel Heiberg Island in Canada’s Qikiqtaaluk Region. In 1986, palaeobotanists identified the megaflora as members of Metasequoia occidentalis, an extinct redwood species. They had been buried in silt, then frozen, their wood preserved.The lead palaeontologist “celebrated his eureka by kindling a fire with 45-million-year-old twigs and boiling water for tea time,” writes historian Jared Farmer in Elderflora, his expansive global history of grand and venerable trees. Granted, these plants had been dead since the Eocene epoch. Nevertheless, as the author describes, the incident is part of a troubling pattern in which scientists rejoice at their discovery of the ‘oldest’ tree of their time — and then destroy it.In 1957, for example, Edmund Schulman at the University of Arizona in Tucson spent the summer seeking ancient bristlecone pines in California’s White Mountains. He found three more than 4,000 years old, and named them Alpha, Beta and Gamma. Then, in the interests of tree-ring science, he chose to “sacrifice” Alpha, taking snapshots as his nephew and a colleague sawed it down. When the University of Arizona issued a press release titled ‘UA Finds Oldest Living Thing’, Farmer writes, “they say nothing about the thing being dead”.Schulman’s aim was dendroclimatology — the reconstruction of climates using tree-ring data. That lofty motive cannot be ascribed to those who, in 1881, bored a tunnel into the 2,000-year-old Wawona tree in Yosemite National Park, allowing tourists to drive their cars through the 71.3-metre-high giant sequoia (Sequoiadendron giganteum), since toppled.Arboreal legendsAs Elderflora shows, big, old trees are objects of veneration and vandalism, appearing “in the oldest surviving mythologies and the earliest extant texts”. They were associated with gods and heroes, prophets and gurus: they had pivotal roles in the Mesopotamian Epic of Gilgamesh and in the Polynesian legend of Rātā, who fells a noble tree to carve a canoe. In more recent times, European settlers “dispossessed Indigenous peoples and cleared forests with abandon”. Research shows that, for 8,000 years after the glaciers of the last ice age retreated, forests in the Midwestern United States doubled in biomass (A. M. Raiho et al. Science 376, 1491–1495; 2022). Just 150 years of industrial logging and agriculture erased this carbon accumulation.
    It takes a wood to raise a tree: a memoir
    “Imperial conquests and industrial revolutions relied on timber,” Farmer writes. “Wood-stock long guns for capturing lands and peoples; naval vessels with mighty masts for transporting the enslaved and the harvests of their labor.” In New Zealand, European settlers decimated the majestic kauri trees, which can live for up to 2,000 years and that once covered 1.2 million hectares of land. The trees’ 50-metre-trunks became ships’ masts; their resin was made into varnish and linoleum.Like pines, firs, spruces, cedars, cypresses and redwoods, kauri (Agathis australis) is a gymnosperm. These flowerless plants with naked seeds tend to grow slower and live longer than angiosperms, flowering plants that bear fruit. About 25 plant species — most of them conifers — can live for more than a millennium without human assistance, surviving in restricted, vulnerable habitats.Farmer also offers a global survey of ancient trees that have been protected and exalted. They include olive trees of the Levant (Olea europaea); research published this year shows that these were domesticated about 7,000 years ago for their fruit and oil (D. Langgut and Y. Garfinkel Sci. Rep. 12, 7463; 2022). In Africa, the baobab (Adansonia sp.) is both the longest-lived tree and the largest, offering shade and shelter, foods, medicines and textiles. Enslaved Africans planted baobabs in the Caribbean; some survive still. Ginkgo biloba, a species that dates back 390,000 years, survived only in China, whence it was spread around the world in the past millennium. A grove of ginkgo trees survived the atomic bombing of Hiroshima in Japan in August 1945, pushing out new buds the following spring.The planet’s current tree cover, Farmer writes, includes 3 trillion large plants covering about 30% of all land. It is, in fact, expanding. But the new cover consists mostly of shelter belts (trees planted to protect crops or animals), temperate-zone timber crops and tropical plantations of eucalyptus and palm oil. A shrinking proportion of tree cover is made up of species-rich old-growth communities.Epic loss“What would humans and nonhumans stand to lose if these survivors all died prematurely? A world of things,” Farmer writes. “Old trees sustain forest communities” with their seeds and litter. Other plants grow on them, and animals live in them. Their roots share nutrients with other organisms via underground fungi. Groups of “Old Ones” are carbon sinks. Large-scale monocultures are shorter-lived and take less greenhouse gas out of circulation.But even bygone trees of the once-tropical Arctic might offer lessons for a warming world. Palaeobotanist Hope Jahren, in her 2016 memoir Lab Girl, describes how she spent three summers on Axel Heiberg Island, digging “through a hundred vertical feet of time”. Fir, cypress, larch, redwood, spruce, pine and hemlock trees populated this lush conifer forest, with an understory of angiosperms: maple, alder, birch, hickory, chestnut, beech, ash, holly, walnut, sweetgum, sycamore, oak, willow and elm. These plants thrived even through three months of winter darkness and three of constant summer light.“Here stood one of the great forests of all time,” Farmer writes. Today, as the Arctic warms nearly four times as fast as any other place on Earth, the genomes of species related to the trees of this mummified forest might be adaptable enough for the trees to flourish in a rewarmed planet, he says. Old trees have much to teach us: we would be wise to listen. More

  • in

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

    Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40:732–7.
    Google Scholar 
    Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons. Environ Res Lett. 2018;13:103001.
    Google Scholar 
    Macdonald RW, Kuzyk ZZA. The Hudson Bay system: a northern inland sea in transition. J Mar Syst. 2011;88:337–40.
    Google Scholar 
    Serreze MC, Barry RG. Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change. 2011;77:85–96.
    Google Scholar 
    Hochheim KP, Barber DG. An update on the ice climatology of the Hudson Bay system. Arctic, Antarctic, and Alpine Research. 2014;46:66–83.
    Google Scholar 
    Gagnon AS, Gough WA. Climate change scenarios for the Hudson Bay region: an intermodel comparison. Climatic Change. 2005;69:269–97.
    Google Scholar 
    Bring A, Shiklomanov A, Lammers RB. Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots. Earths Future. 2017;5:72–92.
    Google Scholar 
    Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 2011;6:e27492.PubMed 
    PubMed Central 

    Google Scholar 
    Li W, McLaughlin F, Lovejoy C, Carmack E. Smallest algae thrive as the Arctic Ocean freshens. Science. 2009;326:539.PubMed 

    Google Scholar 
    Ji R, Jin M, Varpe Ø. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol. 2013;19:734–41.
    Google Scholar 
    Ardyna M, Mundy C, Mills M, Oziel L, Lacour L, Verin G, et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem Sci Anthr. 2020;8:e30.
    Google Scholar 
    Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG. Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol. 2011;17:1733–9.
    Google Scholar 
    Barbedo L, Bélanger S, Tremblay J. Climate control of sea-ice edge phytoplankton blooms in the Hudson Bay system. Elem Sci Anthr. 2020;8:1.
    Google Scholar 
    Matthes LC, Ehn JK, Dalman LA, Babb DG, Peeken I, Harasyn M, et al. Environmental drivers of spring primary production in Hudson Bay. Elem Sci Anthr. 2021;9:00160.
    Google Scholar 
    Harvey M, Therriault JC, Simard N. Late-summer distribution of phytoplankton in relation to water mass characteristics in Hudson Bay and Hudson Strait (Canada). Can J Fish Aquat Sci. 1997;54:1937–52.
    Google Scholar 
    Ferland J, Gosselin M, Starr M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J Mar Syst. 2011;88:385–400.
    Google Scholar 
    Raven JA. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct Ecol. 1998;12:503–13.
    Google Scholar 
    Tilman D, Kilham SS, Kilham P. Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst. 1982;13:349–72.
    Google Scholar 
    Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci. 2017;4:16.
    Google Scholar 
    Campbell K, Mundy CJ, Belzile C, Delaforge A, Rysgaard S. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol. 2018;41:41–58.
    Google Scholar 
    Forest A, Tremblay JÉ, Gratton Y, Martin J, Gagnon J, Darnis G, et al. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr. 2011;91:410–36.
    Google Scholar 
    Buchan A, Lecleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.PubMed 

    Google Scholar 
    Cole JJ, Likens GE, Strayer DL. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr. 1982;27:1080–90.
    Google Scholar 
    Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol. 2017;19:4519–35.PubMed 

    Google Scholar 
    Šimek K, Kasalický V, Zapomělová E, Horňák K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol. 2011;77:7307–15.PubMed 
    PubMed Central 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.PubMed 
    PubMed Central 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, Demaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrechet A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.PubMed 

    Google Scholar 
    Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep. 2019;9:1–19.
    Google Scholar 
    Joly S, Senneville S, Caya D, Saucier FJ. Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing. Clim Dyn. 2011;36:1835–49.
    Google Scholar 
    Kirillov S, Babb D, Dmitrenko I, Landy D, Lukovich JV, Ehn J, et al. Atmospheric forcing drives the winter sea ice thickness asymmetry of Hudson Bay. Geophys Res Oceans. 2020;125:1–12.
    Google Scholar 
    Tivy A, Howell SEL, Alt B, McCourt S, Chagnon R, Crocker G, et al. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960-2008 and 1968-2008. J Geophys Res Oceans. 2011;116:C03007.
    Google Scholar 
    Barber D, Landry D, Babb D, Kirillov S, Aubry C, Schembri S, et al. Bay-Wide Survey Program Cruise Report – CCGS Amundsen (LEG-1). In: Hudson Bay System Study (BaySys) Phase 1 Report: Hudson Bay Field Program and Data Collection. Landry, DL & Candlish, LM. (Eds). 2019. p. 131–222.Jacquemot L, Kalenitchenko D, Matthes LC, Vigneron A, Mundy CJ, Tremblay JE, et al. Protist communities along freshwater-marine transition zones in Hudson Bay (Canada). Elem Sci Anthr. 2021;9:00111.
    Google Scholar 
    Grasshoff K, Kremling K, Ehrhardt M. Determination of nutrients. In: Methods of Seawater Analysis: Third, Completely Revised and Extended Edition. 1999. p. 159–228.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22.PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data. Nat Publ Group. 2010;7:335–6.
    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.
    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version 2(9). 2013;1-295.Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1–14.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMed 
    PubMed Central 

    Google Scholar 
    Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 1926;118:558–60.
    Google Scholar 
    Joli N, Monier A, Logares R, Lovejoy C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 2017;11:1372–85.PubMed 
    PubMed Central 

    Google Scholar 
    Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay JE, et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog Oceanogr. 2015;139:122–50.
    Google Scholar 
    Tremblay JÉ, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog Oceanogr. 2015;139:171–96.
    Google Scholar 
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:1–7.
    Google Scholar 
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5.Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.PubMed 

    Google Scholar 
    Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett. 2016;19:926–36.PubMed 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.PubMed 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;10:1–10.
    Google Scholar 
    Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci Adv. 2021;7:eabg1921.PubMed 
    PubMed Central 

    Google Scholar 
    Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.PubMed 

    Google Scholar 
    Not F, del Campo J, Balagué V, de Vargas C, Massana R. New insights into the diversity of marine picoeukaryotes. PLoS One. 2009;4:e7143.PubMed 
    PubMed Central 

    Google Scholar 
    Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends Parasitol. 2015;31:499–513.PubMed 

    Google Scholar 
    Kellogg CTE, Mcclelland JW, Dunton KH, Crump BC. Strong seasonality in arctic estuarine microbial food webs. Front Microbiol. 2019;10:2628.PubMed 
    PubMed Central 

    Google Scholar 
    Nitsche F, Weittere M, Scheckenbach F, Hausmann K, Wylezich C, Ardnt H. Deep sea records of choanoflagellates with a description of two new species. Acta Protozool. 2007;46:99–106.
    Google Scholar 
    Thaler M, Lovejoy C. Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol. 2015;81:2137–48.PubMed 
    PubMed Central 

    Google Scholar 
    Thomsen HA, Østergaard JB, Hansen LE. Loricate choanoflagellates from West Greenland (August 1988) including the description of Spinoeca buckii gen. et sp. nov. Eur J Protistol. 1995;31:38–44.
    Google Scholar 
    Thomsen HA, Østergaard JB. Acanthoecid choanoflagellates from the Atlantic Arctic Region − a baseline study. Heliyon. 2017;3:e00345.PubMed 
    PubMed Central 

    Google Scholar 
    Buck KR, Garrison DL, Cruz S. Distribution and abundance of choanoflagellates (Acanthoecidae) across the ice-edge zone in the Weddell Sea, Antarctica. Mar Biol. 1988;98:263–9.
    Google Scholar 
    Escalera L, Mangoni O, Bolinesi F, Saggiomo M. Austral summer bloom of loricate choanoflagellates in the central Ross Sea polynya. J Eukaryot Microbiol. 2019;66:849–52.PubMed 

    Google Scholar 
    Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:1–13.
    Google Scholar 
    Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.PubMed 

    Google Scholar 
    Abell GCJ, Bowman JP. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol. 2005;51:265–77.PubMed 

    Google Scholar 
    Delmont TO, Murat Eren A, Vineis JH, Post AF. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front Microbiol. 2015;6:e1090.
    Google Scholar 
    Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol. 2007;73:2290–6.PubMed 
    PubMed Central 

    Google Scholar 
    de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, et al. Diversity and composition of pelagic prokaryotic and protist communities in a thin Arctic sea-ice regime. Microb Ecol. 2019;78:388–408.PubMed 

    Google Scholar 
    Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 2018;9:1035.PubMed 
    PubMed Central 

    Google Scholar 
    Wemheuer B, Güllert S, Billerbeck S, Giebel HA, Voget S, Simon M, et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol Ecol. 2014;87:378–89.PubMed 

    Google Scholar 
    Jain A, Krishnan KP. Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J Basic Microbiol. 2017;57:827–38.PubMed 

    Google Scholar 
    Granskog MA, Kuzyk ZZA, Azetsu-Scott K, Macdonald RW. Distributions of runoff, sea-ice melt and brine using δ18o and salinity data – a new view on freshwater cycling in Hudson Bay. J Mar Syst. 2011;88:362–74.
    Google Scholar 
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.PubMed 
    PubMed Central 

    Google Scholar 
    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.PubMed 
    PubMed Central 

    Google Scholar 
    Gutierrez-Rodriguez A, Stukel MR, Lopes dos Santos A, Biard T, Scharek R, Vaulot D, et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 2019;13:964–76.PubMed 

    Google Scholar 
    Bråte J, Krabberød AK, Dolven JK, Ose RF, Kristensen T, Bjørklund KR, et al. Radiolaria associated with large diversity of marine alveolates. Protist. 2012;163:767–77.PubMed 

    Google Scholar 
    Dolven JK, Lindqvist C, Albert VA, Bjørklund KR, Yuasa T, Takahashi O, et al. Molecular diversity of alveolates associated with neritic North Atlantic radiolarians. Protist. 2007;158:65–76.PubMed 

    Google Scholar 
    Decelle J, Martin P, Paborstava K, Pond DW, Tarling G, Mahé F, et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS One. 2013;8:e53598.PubMed 
    PubMed Central 

    Google Scholar 
    Fernandes GL, Shenoy BD, Damare SR. Diversity of bacterial community in the oxygen minimum zones of Arabian Sea and Bay of Bengal as deduced by illumina sequencing. Front Microbiol. 2020;10:e3153.
    Google Scholar 
    Vigneron A, Cruaud P, Culley A, Couture RM, Lovejoy C, Vincent W. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. Microbiome. 2020;9:e46.
    Google Scholar 
    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Publ Group. 2012;10:381–94.
    Google Scholar 
    Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–68.
    Google Scholar 
    Michel C, Legendre L, Therriault JC, Demers S, Vandevelde T. Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol. 1993;13:441–9.
    Google Scholar 
    Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernández-méndez M, et al. Export of algal biomass from the metling Arctic sea ice. Science. 2013;339:1430–2.PubMed 

    Google Scholar 
    Vigneron A, Lovejoy C, Cruaud P, Kalenitchenko D, Culley A, Vincent WF. Contrasting winter versus summer microbial communities and metabolic functions in a permafrost thaw lake. Front Microbiol. 2019;10:e1656.
    Google Scholar 
    Tremblay JÉ, Lee J-H, Gosselin M, Belanger S. Nutrient dynamic and marine biological productivity in the greater Hudson Bay marine region. In: An integrated regional impact study (IRIS) Arcticnet University of Manitoba and ArcticNet. 2019. p. 225–44.Wassmann P, Reigstad M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography. 2011;24:220–31.
    Google Scholar  More

  • in

    Environmental RNA as a Tool for Marine Community Biodiversity Assessments

    The current study is the first to directly compare the differences in eukaryotic community diversity by metabarcoding eRNA and eDNA from an estuarine benthic ecosystem. This is also the first study to compare the diversity of environmental RNA and DNA using two of the most common loci examined in metabarcoding applications: COI and 18S. Only a handful of studies have used eRNA to assess diversity through metabarcoding and have demonstrated some differences in detected diversity between eRNA and eDNA in metabarcoding19,29,38. Environmental DNA has many useful applications, but one of the downfalls of DNA is that it can be detected long after an organism has inhabited an area, such as from dead organisms and even significant distances away from the source1. While the persistence of eDNA may be useful in detecting the presence of endangered, rare, or invasive species in marine systems, the persistence of eDNA, such as legacy DNA, may skew the accurate representation of community structure immediately after a disturbance event or during the exact moment of sampling21. Environmental RNA proves to be a useful tool because it is far less persistent in marine environments2,27. In the current study, RNA provides a snapshot of living organisms present in the mesocosms at the time of sampling, compared to DNA which detects past and present organisms in the sample.Benthic ecosystems often have high biodiversity because they are dynamic environments with various substrates favorable for hosting communities39. To date, there is no one loci and associated primer pair that will effectively detect all eukaryotic organisms, and in particular metazoans, so it is beneficial to use multiple loci when looking for a variety of taxa6. Previous marine eDNA studies have demonstrated the preferred method of using two loci to achieve comprehensive metabarcoding for taxonomically diverse environments5,30,40. The current study further demonstrates the need to use at least two different loci for targeted PCR and sequencing to truly capture the wide diversity in rich systems, such as the top oxygenated layer of the marine benthos. Our results demonstrate the types of organisms detected using the 18S loci vary widely from the organisms detected by COI. The 18S loci also detected a higher number of organisms than using the COI loci. The 18S allowed greater detection of metazoans whereas COI was useful in the detection of Oomycota (i.e., a eukaryotic microorganism that resembles fungi) protozoa. Protozoa are often food sources for meiofauna41; therefore, using COI for protozoan detection and 18S for metazoan detection showcases multiple trophic levels present in the mesocosms of the current study. Utilizing multiple loci not only broadens taxonomic diversity detection but can also highlight multiple trophic levels for understanding food webs originating in benthic environments15.A study evaluating arctic benthic diversity similarly found that COI detected fewer taxa than 18S using eDNA metabarcoding, and there was only ~ 40% taxa overlap between markers at the class level42. In the current study, the COI marker using both nucleic acid templates yielded a higher percentage of unassigned taxa after filtering for presence in the majority of mesocosms compared to 18S. A possible explanation for the low metazoan detection by COI may be that the unassigned taxa are metazoans rather than more SAR organisms. Additionally, singly detected metazoans were filtered out of the analysis if they were not detected in at least 4 mesocosms. For example, one type of amphipod was detected in only 3 mesocosm by RNA using the COI marker, but was not detected in any mesocosms using DNA. Therefore, the amphipod observation was excluded from the COI results in Fig. 3 and Table S3 because it was not found in at least 4 mesocosms.Overall, RNA provides a broader assessment of benthic community structure than DNA, particularly when using two loci/ markers for sequencing. In the current study, we used nuclear 18S ribosomal RNA and DNA and mitochondrial COI RNA and DNA sequences as markers for metabarcoding. The number of copies of ribosomal RNA per cell is higher than the copies of ribosomal DNA, and the ratio of RNA: DNA is higher in single-cell organisms, such as protists43. The higher number of unique ASVs detected using eRNA is likely attributed to the higher number of RNA copies of each marker in small, single-cell organisms successfully amplified during PCR, therefore making rare organisms easier to detect. The DNA of highly abundant or higher biomass organisms may “drown out” (i.e., mask) the sequences from lower abundance and biomass organisms during PCR amplification, thus resulting in lower detected α-diversity. The increased detection of ciliates and protozoa using eRNA are consistent with other recent eRNA metabarcoding results that found higher ciliate and protozoan diversity compared to eDNA using the same Uni18S primers19. Positive correlations between organism biomass and sequence copy numbers have been demonstrated for DNA metabarcoding conducted on invertebrate species44. In the current study, RNA allowed for the detected of both larger meiofauna and smaller microfauna, which is optimal for assessing true biodiversity with molecular assays. Chaetonotida, a type of gastrotrich, was the only taxa detected in 4 of the mesocosms using DNA that was not found with RNA. It is possible the chaetonotida may have died during the experiment due to sensitivities to new environmental conditions, and therefore were not detected with RNA. The temperature of the flowing seawater in the mesocosms was approximately 18 °C, and many marine chaetonotida prefer 23–28 °C and high organic matter substrate45.Previous studies have compared the accuracy of conventional morphological identification to molecular metabarcoding methods for assessing biodiversity. In estuarine-specific studies, metabarcoding methods are able to detect the majority of taxa identified with traditional methods and often detected higher species richness, or higher numbers of unique organisms, that was not found conventionally10,46,47. The limiting factor for higher resolution of taxonomic identification is the availability of species-specific sequences in barcoding databases48. However, barcoding databases are becoming more robust as an increasing number of researchers contribute high quality sequencing data to databases7. Therefore, eRNA metabarcoding techniques perform similarly to conventional morphological methods, and may even uncover higher biodiversity in systems like estuaries where meiofauna have been historically understudied and identified.Although eRNA α-diversity is higher compared to eDNA, there is some overlap between ASVs detected with eRNA and eDNA. The higher percentage of overlap between eDNA and eRNA ASVs is predominantly seen in the ASVs detected in all 7 of the mesocosms. The increased overlap in ASVs detected in all 7 mesocosms compared to the relatively lower overlap of ASVs found in only 1 of the 7 mesocosms is due to the filtering of random organisms found in only 1 mesocosm. Detection of a unique organism in a single mesocosm is likely not representative of the sample community and filters potential artifacts that may be introduced during cDNA synthesis from eRNA. However, all uniquely identified ASVs are used in the β-diversity analysis, so the higher number of unique ASVs detected from eRNA are likely driving the significant differences observed between eRNA and eDNA β-diversity. It is possible that using eRNA could increase the statistical power of a study design compared to eDNA because eRNA detects a higher number of ASVs. It is unlikely that a higher number of RNA ASVs could be due to splice variants contributing to unique sequences because the amplified regions of both markers do not contain introns. Therefore, no splicing of transcripts would be expected. Thus, the detected DNA ASVs are from living organisms in the mesocosms and the higher diversity of ASVs detected from RNA demonstrate that RNA is a more suitable option for assessing diversity of living organisms.It is evident that the mesocosms in the current study were rich with meio- and microfauna due to the number of unique organisms and broad diversity of different taxa. It is likely that collecting samples for nucleic acid extraction directly from the field site may result in higher diversity because there is no mechanical disturbance during the laboratory acclimation period and the presence of other organisms in the system, such as fish, macroinvertebrates, or birds. eDNA molecular abundance in samples has been shown to correlate to actual organismal abundance in laboratory environments, but the same correlation is not as apparent in field samples, which is likely due to a variety of collection and processing methods49. eRNA may be the better nucleic acid template for field collection once flash frozen, especially for the detection of protozoans. Future studies will compare the diversity of eukaryotic communities detected using eDNA and eRNA collected directly from the field rather than from sediment core mesocosms. Repeated sampling from a field site may help reduce transient eRNA detection when establishing accurate baseline community composition in field-based biomonitoring studies.Recently, meiofaunal organisms and communities are being explored as bioindicators, which are organisms whose presence are indicators for environmental stress and pollution17. For example, lower meiofaunal diversity and abundance is associated with higher pollution in harbors, and the presence of some genera of nematodes are correlated with higher concentrations of polycyclic aromatic hydrocarbons because they are more tolerant to pollution50. A previous study that used field-collected mesocosms from the same location as our current study found similar phyla detected with a metabarcoding approach; the majority of the sequences detected in benthic communities were from nematodes, arthropods, and the microfaunal SAR clade10. Similarly, the majority of the ASVs detected from the current study also corresponded with nematodes, arthropods, and the SAR clade, as well as other commonly detected meiobenthic organisms, such as polychaetes and Homalorhagida (i.e., mud dragons). A recent study exposed a benthic foraminiferal community to chromium, and found that eRNA metabarcoding was more robust for detecting changes in diversity at lower chromium concentrations compared to eDNA51. The eRNA metabarcoding method used in the current study detected meiofaunal taxa typical of marine or estuarine environments. Therefore, eRNA metabarcoding may be useful for efficiently identifying bioindicator species or taxa impacted by exposures to different contaminants and environmental stressors to aid with management of aquatic systems. Another advantage of eRNA is that RNA provides functional information about how organisms response to stress through altered transcription of activated pathways. eRNA will likely be a more powerful tool than eDNA because it allows for the detection of both bioindicator species and, in the future with increase development of genetic databases, environmental detection of biomarkers of stress through increased transcription of response genes.Many academic researchers are adopting molecular methods using High Throughput Sequencing as the future of biomonitoring surveys; however, few regulatory and environmental management organizations/ agencies have adopted metabarcoding into their routine biomonitoring practices for regulatory purposes. In marine benthic communities, metabarcoding provides a comprehensive assessment of diversity and is useful for detecting a broader array of organisms in biomonitoring surveys especially when using two markers47. eDNA is also useful for monitoring discrete communities (i.e., benthic versus pelagic)52, so it is possible that using eRNA could provide vital information about living organisms in specific environments compared to eDNA. Metabarcoding sequencing and bioinformatic approaches for benthic environments vary among studies, thus requiring some standardization between methods to further advance the use of metabarcoding in conservation and regulatory applications30,53.Like eDNA, some advancements must be made with eRNA to be used as a quantitative tool in molecular ecology. Validation of eDNA metabarcoding for assessing relative abundance of species is rapidly progressing by correlating laboratory studies of DNA shedding with field experiments1,54. Similar validation techniques can be used to develop eRNA metabarcoding as a quantitative or semi-quantitative method. There is growing interest in optimizing eRNA extraction protocols from different types of environmental media to standardize the use of eRNA in downstream molecular applications55. Thus, standardizing eRNA protocols will help with integration into environmental management toolkits for regulatory purposes.RNA poses unique barcoding challenges compared to DNA because the number of RNA transcripts from a gene are not always present in the same proportion compared to the gene copy number per genome (i.e., one DNA copy per cell), especially for differentially expressed genes. However, one possible way to work around this issue is to utilize constitutively expressed marker loci where transcription is generally stable and unaffected by environmental stressors, such as those used as reference genes for quantitative real-time PCR49. Fortunately, many loci chosen for metabarcoding purposes fit this criterium; the transcription of 18S and COI remain steady within the cell regardless of environmental stress.Collecting sediment cores from the environment and bringing them into controlled laboratory settings for community analysis through eRNA metabarcoding is a powerful tool that opens opportunities for this method to be used in a broad range of fields. For instance, field-collected mesocosms could be used in controlled settings to investigate the effects of individual or mixtures of toxicants on entire community and population-level outcomes. Marine sediments are often the ultimate sink for environmental contaminants, such as organic pollutants , heavy metals56, and plastic particles57, yet few studies investigate actual community-level changes in contaminant exposures. Marine benthic environments have high biodiversity, but the breadth of diversity in micro- and meiofaunal organisms is often understudied because traditional morphological methods are immensely time consuming. Sediment core mesocosms could also be used to understand the effects of global climate change stressors, such as fluctuating temperatures, surface water salinity and pH, on communities as well as conventional and emerging contaminants in combination with climate change stressors. Additionally, this method could also be used to understand how communities respond to a significant disturbance event or smaller series of stressors, which are often difficult to measure in environmental settings32,58. In these applications, eRNA is favorable for constructing community composition at a specific moment of the experiment to better regulate anthropogenic causes of environmental stress. More

  • in

    Effects of mine water on growth characteristics of ryegrass and soil matrix properties

    Our findings indicated that mine water had a certain inhibitory effect on ryegrass seed germination, and the intensity of this inhibitory effect increased with increased mine water proportion. These effects were mainly reflected as changes in germination potential. Concretely, irrigation with mine water prolonged the germination of ryegrass seeds but had no significant effect on germination rate. Min Zhu et al. found that recycled water inhibited the seed germination of turfgrass, and this effect became more notorious when the concentration of reclaimed water increased. This was likely because the water contained salt ions, heavy metal ions, and E. coli, all of which are known to affect seed germination22. The mine water was taken from the Laohutai mining area, where the water composition and quality are good. Therefore, mine water did not significantly affect seed germination and the seeds maybe germinate normally if given sufficient time.The physiological and photosynthetic characteristics of ryegrass were impacted by the mine water, and the intensity of inhibition increased with higher mine water proportions. When the ratio of mine water to clean water reached a certain proportion (1:2, A1 and B1), the physiological and growth characteristics of ryegrass were improved to a certain extent. When only mine water was used for irrigation, the indices were significantly suppressed. In contrast, mixing clear water with mine water for irrigation promoted the physiological characteristics of the plants, as well as photosynthesis. This was likely because the mineral content of mine water is higher. However, mine water not only contains elements needed for plant growth but also some elements and ions that have inhibitory effects on plant growth. Therefore, the quality of ryegrass growth were suppressed when irrigating only with mine water. In contrast, after mixing the mine water with clean water, the concentrations of certain substances that produce adverse effects are diluted, and the mixed irrigation water promoted ryegrass growth in appropriate proportion.A certain concentration of heavy metal elements will affect the absorption of essential elements by plants and produce antagonism, and high concentration can directly lead to plant death. Heavy metal stress affects chlorophyll content through two aspects: Heavy metal destroys enzymes needed for chlorophyll synthesis, affects plant chlorophyll synthesis, and then inhibits plant photosynthesis23. The second is the destruction of chloroplast structure and cell membrane24,25,26. In the treatment of high concentrations of heavy metals, the chlorophyll content of plants is significantly reduced due to the inhibition of chlorophylase or aminolevulinic acid dehydrase, thus inhibiting plant photosynthesis27. The heavy metal threat forcing stimulates the formation of reactive oxygen species that convert fatty acids into toxic lipid peroxides, which damage to plant cells28,29,30. Heavy metal stress can induce a lot of activity in plants sexual oxygen and inhibit the normal metabolism of plants, causing membrane lipid peroxidation and increased plasma membrane permeability31, 32. Low concentration of heavy metal stress will stimulate the protective mechanism of plants, so low concentration of stimulation will not damage plants, on the contrary, may help plant growth. Heavy metal stress causes water loss in plants, and a certain amount of proline can be produced to regulate the water balance of plant cells and reduce the damage degree of plant cells33. SOD, POD and CATT are important antioxidant enzymes in plants, which can scavenge excessive free radicals. The synergistic action of three enzymes can protect plants from free radical damage. When the concentration of heavy metals was low, the activity of protective enzymes increased under the induction of reactive oxygen radicals. However, with the increase of stress degree, the activities of SOD, POD and CAT decreased, which eventually led to the persecution of plant cells34. These conclusions are consistent with the results of this paper. When mine water was mixed with clear water at a ratio of 1:2, heavy metal stress stimulated the protective mechanism of ryegrass most appropriately, and improved plant quality and resistance. On the contrary, when the proportion of mine water increased, the physiological characteristics and quality of ryegrass plants were inhibited to different degrees.Precious Nneka Amori et al. studied physiological traits of leaves and Silverbeet using treated wastewater, the results show that the biomass of plants watered with only the treated wastewater were more than 50% higher than the yield in tap water control and plants exhibited high degree of root foraging1. Libutti et al. irrigated tomato and broccoli with purified agro-industrial effluent and reported that yield and quality traits of agricultural products were not affected35. Radish was grown using a reclaimed synthetic textile wastewater treated in an anoxic-aerobic photobioreactor, and the dry weight, leaf number and leaf area of plant harvest were 49, 19.2 and 62% higher than the growth performance in freshwater irrigation36. FU et al. studied four native Chenopodiaceae plants of Halogeton glomeratus, Kochia scoparia, Suaeda glauca and Chenopodium glaucum in Jinchang area northwest China, from their changes of net photosynthetic rate (Pn), Stomatal conductance (Gs), transpiration rate (Tr). chlorophyll content (Chl), malondialdehyde (MDA), soluble protein (SP), proline (Pro) and antioxidant enzymes activity under the treatment of farmland soil (T1) and sedendary soil mixed with tailing (1:1, T2), they concluded that under T2 treatment, Pn, Gs, and Tr of Halogeton glomeratus and Kochia scoparia were decreased , the other six indexes were increased significantly. Gs, Tr, MDA, Pro, and SOD increased, yet CAT, Chl and Pn of Suaeda glauca decreased significantly, respectively. Pn, Gs, and Tr of Chenopodium glaucum decreased significantly, while SP, POD increased significantly37. Our results also indicated that mine water irrigation had significant effects on soil characteristics. At higher mine water ratios, the soil conductivity increased exponentially, the pH decreased gradually, the content of K+, Na+, Ca2+ and Mg2+ increased, and the content of N, P and K also increased gradually. In contrast, the clean water and mine water mixture had little effect on the soil properties. This was because the salt and metal ions in mine water migrate to the soil during the irrigation process, which significantly changes the soil properties. As a result, the concentration of salt in the soil increased and soil acidity also increased. After mixing with clean water, the concentration of salt decreases, and the influence on the soil matrix weakened. These results also indicated that the growth, physiological, and photosynthetic effects of ryegrass in the pot experiments were better than those in soilless culture, because there were many other organic materials and inorganic ions in soil that could promote growth, whereas the plants in the hydroponic system lacked other nutrients that benefit plant growth. Many existing studies have shown that mine drainage or other wastewater can improve the quality and yield of one or more kinds of plants to different degrees after certain treatment, but some studies also show that the reclaimed water used for irrigation will cause harm to plants, soil and even human health.Jinfang Yang et al. reported that long-term irrigation with mine water significantly reduced the soil respiration rate and soil enzyme activity. Mine water irrigation also significantly inhibited wheat plant height, leaf area, chlorophyll content, and photosynthetic rate, and wheat production was also markedly reduced38. Jianjun Cha found that acidic mining waste water can reduce the pH of the soil profile and increase its electrical conductivity39. Junhao Qin et al. found that if treated mine water is used as an irrigation water source, acidic substances may still be introduced into the soil. This inhibits plant growth and may also enhance leaching of some trace elements in the soil to shallow aquifers, resulting in groundwater pollution40, 41. The results of this study are consistent with the above conclusions, that is, directly irrigating with mine water can significantly inhibit plant growth and photosynthesis, thus affecting the quality of ryegrass plants. MA et al. studied the effects of irrigation with mine wastewater on the physiological characters and heavy metals accumulation of winter wheat. It shows that irrigation with mine wastewater had negative effects on the winter wheat growth and grain yield. At anthesis stage, the leaf area, dry mass per stem, root activity and net photosynthetic rate of winter wheat in treatments were significantly lower and the plant height and leaf chlorophyll content was decreased. In addition, the heavy metals (Cr, Pb, Cu and Zn) contents in the grain of winter wheat under mine wastewater irrigation were significantly higher than those in control, it suggested that the irrigation with mine water could result in the heavy metals accumulation in wheat grain42. A large number of studies have shown that direct use of mine water for irrigation will have a negative impact on soil and plants, but this study found that after a certain processing of mine water (mine water was mixed with clear water in a ratio of 1:2) used for irrigation does not significantly alter soil properties, but can increase plant yield and quality, it will be meaningful to mine water reuse, soil utilization around the mining area and the agriculture.The conclusions of this study are based on mine water from Fushun mining area in Northeast China, but the effects of mine water on plants from other mining areas are uncertain. At the same time, ryegrass, a cold-season turfgrass, is only selected in this study. If it is other kinds of plants, how they respond to mine water irrigation needs further study. What are the effects of mine water irrigation on plants other than ryegrass that need further study. Moreover, this study was only a short-term experiment, and the effects of mine water on the properties of the soil matrix cannot be generalized. Indoor experiments can be regularly watered to maintain moisture, indoor temperature is relatively fixed, while the natural environment is a lot of uncertainty and uncontrollable. Would the results of a small-scale pot experiment in a controlled environment be different if it were applied to a field where there are many uncertainties about soil properties and atmospheric conditions? Long-term field experiments must also be conducted to confirm our findings in more realistic conditions. The use of mine water resources not only has environmental and social benefits but could also bring economic benefits43. This study demonstrated that mine water can be used in ecological restoration and agricultural irrigation in mining areas, and is therefore of great significance to environmental restoration. More

  • in

    Effects of plastic fragments on plant performance are mediated by soil properties and drought

    Peñuelas, J. et al. Assessment of the impacts of climate change on mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 152, 49–59 (2018).
    Google Scholar 
    Pugnaire, F. I. et al. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baho, D. L., Bundschuh, M. & Futter, M. N. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Glob. Change Biol. 27, 3969–3986 (2021).CAS 

    Google Scholar 
    Rillig, M. C., Kim, S. W., Kim, T.-Y. & Waldman, W. R. The global plastic toxicity debt. Environ. Sci. Technol. 55, 2717–2719 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin?. (2016).Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 1985–1998 (2009).CAS 

    Google Scholar 
    Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. (2012).de Souza Machado, A. A. et al. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53, 6044–6052 (2019).ADS 
    PubMed 

    Google Scholar 
    Büks, F. & Kaupenjohann, M. Global concentrations of microplastics in soils–A review. Soil 6, 649–662 (2020).ADS 

    Google Scholar 
    Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 1–11 (2020).
    Google Scholar 
    Steinmetz, Z. et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Sci. Total Environ. 550, 690–705 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    Qi, Y. et al. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4, eaap8060 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).ADS 
    CAS 

    Google Scholar 
    Kiyama, Y., Miyahara, K. & Ohshima, Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans. J. Exp. Biol. 215, 1178–1183 (2012).PubMed 

    Google Scholar 
    Helmberger, M. S., Tiemann, L. K. & Grieshop, M. J. Towards an ecology of soil microplastics. Funct. Ecol. 34, 550–560 (2020).
    Google Scholar 
    Liu, M. et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 242, 855–862 (2018).CAS 
    PubMed 

    Google Scholar 
    Lehmann, A., Fitschen, K. & Rillig, M. C. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Syst. 3, 21 (2019).CAS 

    Google Scholar 
    de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S. W. & Rillig, M. C. Research trends of microplastics in the soil environment: Comprehensive screening of effects. Soil Ecol. Lett. 4, 109–118 (2022).CAS 

    Google Scholar 
    Lehmann, A., Leifheit, E. F., Gerdawischke, M. & Rillig, M. C. Microplastics have shape-and polymer-dependent effects on soil aggregation and organic matter loss–An experimental and meta-analytical approach. Microplast. Nanoplast. 1, 1–14 (2021).
    Google Scholar 
    Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liang, Y., Lehmann, A., Yang, G., Leifheit, E. F. & Rillig, M. C. Effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. Front. Environ. Sci. 9, 97 (2021).
    Google Scholar 
    Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A. & Rillig, M. C. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front. Plant Sci. 12, 169 (2021).
    Google Scholar 
    Kemper, W. Aggregate stability. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 9, 511–519 (1965).
    Google Scholar 
    Rose, C. W. & Rose, C. W. An Introduction to the Environmental Physics of Soil, Water and Watersheds (Cambridge University Press, 2004).
    Google Scholar 
    Horn, R., Taubner, H., Wuttke, M. & Baumgartl, T. Soil physical properties related to soil structure. Soil Tillage Res. 30, 187–216 (1994).
    Google Scholar 
    Beven, K. & Germann, P. Macropores and water flow in soils. Water Resour. Res. 18, 1311–1325 (1982).ADS 

    Google Scholar 
    De Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).PubMed 

    Google Scholar 
    Kaisermann, A., de Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. 215, 1413–1424 (2017).CAS 
    PubMed 

    Google Scholar 
    Martorell, C., MartÍnez-Blancas, A. & GarcíaMeza, D. Plant–soil feedbacks depend on drought stress, functional group, and evolutionary relatedness in a semiarid grassland. Ecology 102, e03499 (2021).PubMed 

    Google Scholar 
    Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).PubMed 

    Google Scholar 
    Lozano, Y. M. & Rillig, M. C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 54, 6166–6173 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).CAS 

    Google Scholar 
    Ochoa-Hueso, R. et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob. Change Biol. 24, 2818–2827 (2018).ADS 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Fu, W. et al. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytol. 234, 2003–2017 (2022).PubMed 

    Google Scholar 
    Lin, D. et al. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc. R. Soc. B 287, 20201268 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boots, B., Russell, C. W. & Green, D. S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 53, 11496–11506 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P. & Vijver, M. G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zimmerman, R. & Kardos, L. Effect of bulk density on root growth. Soil Sci. 91, 280–288 (1961).ADS 

    Google Scholar 
    Ruser, R., Sehy, U., Weber, A., Gutser, R. & Munch, J. Main driving variables and effect of soil management on climate or ecosystem-relevant trace gas fluxes from fields of the FAM. In Perspectives for agroecosystem
    management Chp 2.2, 79–120. ISBN 9780444519054 Elsevier, (2008).Huang, Y. et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 254, 112983 (2019).CAS 
    PubMed 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).PubMed 

    Google Scholar 
    Hortal, S. et al. Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. Soil Biol. Biochem. 64, 139–146 (2013).CAS 

    Google Scholar 
    Scheurer, M. & Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fuller, S. & Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50, 5774–5780 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schloerke, B. et al. GGally: Extension to ‘ggplot2’. R package version 2.1. 2. (2021).Venables, W. & Ripley, B. Modern applied statistics with S fourth edition. Publisher Springer-Verlag, New York. (2002).Lenth, R. V. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.3 (2021).R Core Team et al. R: A language and environment for statistical computing. (2013).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 

    Google Scholar 
    Pedersen, T. L. Patchwork: The composer of plots. R package version 1, 182 (2020).Neuwirth, E. RColorBrewer: ColorBrewer palettes. R package version 1.1-2. (2014). More

  • in

    Basin-scale biogeography of Prochlorococcus and SAR11 ecotype replication

    Fuhrman JA, Campbell L. Marine ecology – microbial microdiversity. Nature. 1998;393:410–1.CAS 

    Google Scholar 
    Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, et al. Genotypic diversity within a natural coastal bacterioplankton population. Science. 2005;307:1311–3.CAS 
    PubMed 

    Google Scholar 
    Oh S, Buddenborg S, Yoder-Himes DR, Tiedje JM, Konstantinidis KT. Genomic diversity of Escherichia isolates from diverse habitats. PLoS ONE. 2012;7:e47005.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA. 2008;105:7774–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 

    Google Scholar 
    Raes EJ, Bodrossy L, van de Kamp J, Bissett A, Ostrowski M, Brown MV, et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc Natl Acad Sci USA. 2018;115:EB266–EB75.
    Google Scholar 
    Brown MV, Fuhrman JA. Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol. 2005;41:15–23.
    Google Scholar 
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.CAS 
    PubMed 

    Google Scholar 
    Larkin AA, Blinebry SK, Howes C, Chandler J, Zinser ER, Johnson ZI. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J. 2016;10:1555–67.PubMed 
    PubMed Central 

    Google Scholar 
    Zinser ER, Johnson ZI, Coe A, Karaca E, Veneziano D, Chisholm SW. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol Oceanogr. 2007;52:2205–20.
    Google Scholar 
    Carlson M, Ribalet F, Maidanik I, Durham BP, Hulata Y, Ferrón S, et al. Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol. 2022;7:570–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Follett CL, Dutkiewicz S, Ribalet F, Zakem E, Caron D, Armbrust EV, et al. Trophic interactions with heterotrophic bacteria limit the range of Prochlorococcus. Proc Natl Acad Sci USA. 2022;119:e2110993118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature. 1998;393:464–7.CAS 
    PubMed 

    Google Scholar 
    Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol. 2008;10:147–61.PubMed 

    Google Scholar 
    Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 2009;3:283–95.CAS 
    PubMed 

    Google Scholar 
    Ribalet F, Swalwell J, Clayton S, Jimenez V, Sudek S, Lin YJ, et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci USA. 2015;112:8008–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernthaler A, Pernthaler J, Schattenhofer M, Amann R. Identification of DNA-synthesizing bacterial cells in coastal North Sea plankton. Appl Environ Microbiol. 2002;68:5728–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Del Giorgio PA, Gasol JM. Physiological structure and single-cell activity in marine bacterioplankton. In: Kirchman DL, editor. Microbial ecology of the oceans. 2nd ed. New Jersey:John Wiley & Sons, Inc.; 2008. p. 243–298.Lin Y, Gazsi K, Lance VP, Larkin A, Chandler J, Zinser ER, et al. In situ activity of a dominant Prochlorococcus ecotype (eHL-II) from rRNA content and cell size. Environ Microbiol. 2013;15:2736–47.CAS 
    PubMed 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:285–309.
    Google Scholar 
    Landry MR, Selph KE, Yang EJ. Decoupled phytoplankton growth and microzooplankton grazing in the deep euphotic zone of the eastern equatorial Pacific. Mar Ecol Prog Ser. 2011;421:13–24.
    Google Scholar 
    Selph KE, Landry MR, Taylor AG, Yang E-J, Measures CI, Yang J, et al. Spatially-resolved taxon-specific phytoplankton production and grazing dynamics in relation to iron distributions in the Equatorial Pacific between 110 and 140 degrees W. Deep Sea Res Part II Top Stud Oceanogr. 2011;58:358–77.CAS 

    Google Scholar 
    Hunt DE, Lin Y, Church MJ, Karl DM, Tringe SG, Izzo LK, et al. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl Environ Microbiol. 2013;79:177–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sintes E, Herndl GJ. Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Appl Environ Microbiol. 2006;72:7022–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hall E, Maixner F, Franklin O, Daims H, Richter A, Battin T. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches. Ecosystems. 2011;14:261–73.
    Google Scholar 
    Musat N, Foster R, Vagner T, Adam B, Kuypers MM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.CAS 
    PubMed 

    Google Scholar 
    Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián M, Gasol JM. Visualization is crucial for understanding microbial processes in the ocean. Philos Trans R Soc Lond B. 2019;374:20190083.
    Google Scholar 
    Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 2015;349:1101–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotech. 2016;34:1256–63.CAS 

    Google Scholar 
    Gao Y, Li H. Quantifying and comparing bacterial growth dynamics in multiple metagenomic samples. Nat Methods. 2018;15:1041–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emiola A, Zhou W, Oh J. Metagenomic growth rate inferences of strains in situ. Sci Adv. 2020;6:eaaz2299.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Long ANM, Hou SW, Ignacio-Espinoza JC, Fuhrman JA. Benchmarking microbial growth rate predictions from metagenomes. ISME J. 2020;15:183–195.PubMed 
    PubMed Central 

    Google Scholar 
    Carroll J, Van Oostende N, Ward BB. Evaluation of genomic sequence-based growth rate methods for synchronized Synechococcus cultures. Appl Environ Microbiol. 2021;01743-21.Vaulot D, Marie D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res Oceans. 1999;104:3297–310.CAS 

    Google Scholar 
    Hunter-Cevera KR, Neubert MG, Olson RJ, Shalapyonok A, Solow AR, Sosik HM. Seasons of Syn. Limnol Oceanogr. 2020;65:1085–102.PubMed 

    Google Scholar 
    Baer SE, Rauschenberg S, Garcia CA, Garcia NS, Martiny AC, Twining BS, et al. Carbon and nitrogen productivity during spring in the oligotrophic Indian Ocean along the GO-SHIP IO9N transect. Deep Sea Res Part II Top Stud Oceanogr. 2019;161:81–91.CAS 

    Google Scholar 
    Larkin AA, Garcia CA, Ingoglia KA, Garcia NS, Baer SE, Twining BS, et al. Subtle biogeochemical regimes in the Indian Ocean revealed by spatial and diel frequency of Prochlorococcus haplotypes. Limnol Oceanogr. 2020;65:S220–S32.CAS 

    Google Scholar 
    Larkin AA, Garcia CA, Garcia N, Brock ML, Lee JA, Ustick LJ, et al. High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. Sci Data. 2021;8:1–6.
    Google Scholar 
    Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE. 2015;10:e0128036.PubMed 
    PubMed Central 

    Google Scholar 
    Wandro S, Oliver A, Gallagher T, Weihe C, England W, Martiny JBH, et al. Predictable molecular adaptation of coevolving Enterococcus faecium and lytic phage EfV12-phi1. Front Microbiol. 2019;9:3192.PubMed 
    PubMed Central 

    Google Scholar 
    Oliver A, LaMere B, Weihe C, Wandro S, Lindsay KL, Wadhwa PD, et al. Cervicovaginal microbiome composition is associated with metabolic profiles in healthy pregnancy. mBio. 2020;11:e01851–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 

    Google Scholar 
    van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from networks. In: van Helden J, Toussaint A, Thieffry D, editors. Bacterial molecular networks: methods and protocol. New Jersey:Humana Totowa; 2012. p. 281–295.Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrangements. In: Proceeding of the International Workshop on Algorithms in Bioinformatics. Berlin, Heidelberg: Springer; 2006. p. 163–73.Hilker R, Sickinger C, Pedersen CNS, Stoye J. UniMoG-a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics. 2012;28:2509–11.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gelman A, Carlin JB, Stern HS, Dunson D, Vehtari A, Rubin DB. Bayesian data analysis: 3rd ed. Boca Raton:Chapman and Hall/CRC; 2013.Martiny AC, Ustick L, Garcia CA, Lomas MW. Genomic adaptation of marine phytoplankton populations regulates phosphate uptake. Limnol Oceanogr. 2020;65:S340–S50.CAS 

    Google Scholar 
    Garcia CA, Hagstrom GI, Larkin AA, Ustick LJ, Levin SA, Lomas MW, et al. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos Trans R Soc Lond, B. 2020;375:20190254.CAS 

    Google Scholar 
    Ustick LJ, Larkin AA, Garcia CA, Garcia NS, Brock ML, Lee JA, et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science. 2021;372:287–291.CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 2018;6:e4320.PubMed 
    PubMed Central 

    Google Scholar 
    Worden AZ, Binder BJ. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb Ecol. 2003;30:159–74.
    Google Scholar 
    Casey JR, Boiteau RM, Engqvist MKM, Finkel ZV, Li G, Liefer J, et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Sci Adv. 2022;8:eabl4930.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife. 2019;8:e41043.PubMed 
    PubMed Central 

    Google Scholar 
    Luo HW, Benner R, Long RA, Hu JJ. Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci USA. 2009;106:21219–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schapiro JM, Libby SJ, Fang FC. Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci USA. 2003;100:8496–501.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hantke K. Bacterial zinc uptake and regulators. Curr Opin Microbiol. 2005;8:196–202.CAS 
    PubMed 

    Google Scholar 
    Glass JB, Axler RP, Chandra S, Goldman CR. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front Microbiol. 2012;3:331.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMed 
    PubMed Central 

    Google Scholar 
    Noell SE, Barrell GE, Suffridge C, Morré J, Gable KP, Graff JR, et al. SAR11 cells rely on enzyme multifunctionality to transport and metabolize a range of polyamine compounds. 2021. https://www.biorxiv.org/content/10.1101/2021.05.13.444117v1.Binder BJ, Chisholm SW. Cell-cycle regulation in marine Synechcococcus sp strains. Appl Environ Microbiol. 1995;61:708–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, et al. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS ONE. 2009;4:e5135.PubMed 
    PubMed Central 

    Google Scholar 
    Hynes AM, Rhodes KL, Binder BJ. Assessing cell cycle-based methods of measuring Prochlorococcus division rates using an individual-based model. Limnol Oceanogr-Meth. 2015;13:640–50.
    Google Scholar 
    Vieira-Silva S, Rocha EP. The systemic imprint of growth and its uses in ecological (meta) genomics. PLoS Genet. 2010;6:e1000808.PubMed 
    PubMed Central 

    Google Scholar 
    Weissman JL, Hou SW, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci USA. 2021;118:e2016810118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase AB, Karaoz U, Brodie EL, Gomez-Lunar Z, Martiny AC, Martiny JB. Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in ecologically relevant traits. mBio. 2017;8:e01809–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield JF. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat Biotechnol. 2021;39:727–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, et al. Global biogeography of SAR11 marine bacteria. Mol Sys Biol. 2012;8:595.
    Google Scholar  More

  • in

    Hunting and persecution drive mammal declines in Iran

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Environ. Sci. 1, 615469. https://doi.org/10.3389/fcosc.2020.615419 (2021).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland. http://www.iucnredlist.org (2020).Murray, K. A., Verde Arregoitia, L. D., Davidson, A., Di Marco, M. & Di Fonzo, M. M. I. Threat to the point: Improving the value of comparative extinction risk analysis for conservation action. Glob. Chang. Biol. 20, 483–494 (2014).Article 
    ADS 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 
    ADS 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open. Sci. 3, 160498. https://doi.org/10.1098/rsos.160498 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, M. et al. The changing fates of the world’s mammals. Phil. Trans. R. Soc. B. 366, 2598–2610 (2011).Article 

    Google Scholar 
    Verde Arregoitia, L. D. Biases, gaps, and opportunities in mammalian extinction risk research. Mammal. Rev. 46, 17–29 (2016).Article 

    Google Scholar 
    Di Marco, M. et al. Drivers of extinction risk in African mammals: The interplay of distribution state, human pressure, conservation response and species biology. Philos. Trans. R. Soc. Lond. B. 369, 1–12 (2014).Article 

    Google Scholar 
    Di Marco, M., Collen, B., Rondinini, C. & Mace, G. M. Historical drivers of extinction risk: Using past evidence to direct future monitoring. Proc. R. Soc. B. 282, 20150928. https://doi.org/10.1098/rspb.2015.0928 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bogoni, J. A., Ferraz, K. M. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635. https://doi.org/10.1016/j.biocon.2022.109635 (2022).Article 

    Google Scholar 
    Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).Article 

    Google Scholar 
    Keil, P. et al. Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Glob. Ecol. Biogeogr. 27, 2–13 (2018).Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, J. P. The difference conservation can make: integrating knowledge to reduce extinction risk. Oryx 51, 1–2 (2017).Article 

    Google Scholar 
    Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation?. Trends Ecol. Evol. 27, 167–171 (2012).Article 

    Google Scholar 
    Davidson, A. D. et al. Geography of current and future global mammal extinction risk. PLoS ONE 12, e0186934. https://doi.org/10.1371/journal.pone.0186934 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collen, B., Bykova, E., Ling, S., Milner-Gulland, E. J. & Purvis, A. Extinction risk: A comparative analysis of central Asian vertebrates. Biodivers. Conserv. 15, 1859–1871 (2006).Article 

    Google Scholar 
    Peñaranda, D. A. & Simonetti, J. A. Predicting and setting conservation priorities for Bolivian mammals based on biological correlates of the risk of decline. Conserv. Biol. 29, 834–843 (2015).Article 

    Google Scholar 
    Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).Article 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, 909–914 (2004).Article 
    CAS 

    Google Scholar 
    Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. B. 275, 1441–1448 (2008).Article 

    Google Scholar 
    Yackulic, C. B., Sanderson, E. W. & Uriat, M. Anthropogenic and environmental drivers of modern range loss in large mammals. Proc. Natl. Acad. Sci. USA 108, 4024–4029 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv Lett 12, e12627. https://doi.org/10.1111/conl.12627 (2019).Article 

    Google Scholar 
    Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. PNAS https://doi.org/10.1073/pnas.1702078114 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodmer, R. E., Eisenberg, J. E. & Redford, K. H. Hunting and the likelihood of extinction of Amazonian mammals. Conserv. Biol. 11, 460–466 (1997).Article 

    Google Scholar 
    Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. R. Soc. B. 278, 1329–1338 (2011).Article 

    Google Scholar 
    Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. Roy. Soc Open Sci 3, 160252. https://doi.org/10.1098/rsos.160252 (2016).Article 
    ADS 

    Google Scholar 
    Firouz, E. The complete fauna of Iran. I. B. (Tauris and Co Ltd, London, 2005).Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. & Ceballos, G. Multiple ecological pathways to extinction in mammals. Proc. Natl. Acad. Sci. USA 106, 10702–10705 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Hill, J., DeVault, T. & Belant, J. Comparative influence of anthropogenic landscape pressures on cause-specific mortality of mammals. Perspect. Ecol. Conserv. 20, 38–44 (2022).
    Google Scholar 
    DOE-GIS. Areas under protection by the Department of Environment of Iran. Department of the Environment of Iran: GIS and Remote Sensing Section (2016).Kolahi, M., Sakai, T., Moriya, K. & Makhdoum, M. F. Challenges to the future development of Iran’s protected areas system. Environ. Manage. 50, 750–765 (2012).Article 
    ADS 

    Google Scholar 
    Morrison, J. M., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. L. Persistence of large mammal faunas as indicators of human impact. J. Mammal. 88, 1363–1380 (2007).Article 

    Google Scholar 
    Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53, 151–158 (2017).Article 

    Google Scholar 
    Soofi, M. et al. Assessing the relationship between illegal hunting of ungulates, wild prey occurrence and livestock depredation rate by large carnivores. J. Appl. Ecol. 56, 365–374 (2019).Article 

    Google Scholar 
    Khalatbari, L., Yusefi, G. H., Martinez-Freiria, F., Jowkar, H. & Brito, J. C. Availability of prey and natural habitats are related with temporal dynamics in range and habitat suitability for Asiatic cheetah. Hystrix Ital. J. Mammal. 29, 145–151 (2018).
    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).Article 
    ADS 

    Google Scholar 
    Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).Article 

    Google Scholar 
    Yusefi, G. H. Conservation biogeography of terrestrial mammals in Iran diversity distribution and vulnerability to extinction. Front Biogeogr 13(2), 49765. https://doi.org/10.21425/F5FBG49765 (2021).Article 

    Google Scholar 
    Faurby, S. & Svenning, J.-C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).Article 

    Google Scholar 
    R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2021).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 

    Google Scholar 
    Jones, K. et al. PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648. https://doi.org/10.1890/08-1494.1 (2009).Article 

    Google Scholar 
    González-Suárez, M., Lucas, P. M. & Revilla, E. Biases in comparative analyses of extinction risk: Mind the gap. J. Anim. Ecol. 81, 1211–1222 (2012).Article 

    Google Scholar 
    Wang, Y. et al. Ecological correlates of extinction risk in Chinese birds. Ecography 41, 782–794 (2018).Article 

    Google Scholar 
    Wildlife Conservation Society-WCS, and Center for International Earth Science Information Network-CIESIN, Columbia University. Last of the wild project, Version 2, 2005 (LWP-2): Global human influence index (HII) Dataset. https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic (2005).ESRI ArcGIS Desktop10.6. Redlands, CA: Environmental Systems Research Institute (2017).Hijmans, R. J. et al. raster: geographic data analysis and modeling. https://cran.r-project.org/web/packages/raster/index.html (2018).Pebesma, E. et al. rgdal: bindings for the geospatial data abstraction library. https://cran.r-project.org/web/packages/rgdal/index.html (2018).Bivand, R. et al. maptools: tools for reading and handling spatial objects. https://cran.r-project.org/web/packages/maptools/ index.html (2018).Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern applied statistics with S (Springer, 2002).Book 

    Google Scholar 
    Gittleman, J. L. & Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodal inference in ecology and solution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).Article 
    CAS 

    Google Scholar 
    Bartón, K. MuMIn: multi-model inference R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020). More