Subalpine woody vegetation in the Eastern Carpathians after release from agropastoral pressure
Bolliger, J., Kienast, F. & Zimmermann, N. E. Risk of global warming on montane and subalpine forests in Switzerland—A modeling study. Reg. Environ. Change 1, 99–111 (2000).
Google Scholar
Bugmann, H. & Pfister, Ch. Impacts of interannual climate variability on past and future forest composition. Reg. Environ. Change 1, 112–125 (2000).
Google Scholar
Becker, A. & Bugmann, H. (eds.) Global change and mountain regions: The Mountain Research Initiative. IHDP Report 13, GTOS Report 28 and IGBP Report 49, Stockholm (2001).Kullman, L. 20th Century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio 30, 72–80. https://doi.org/10.1579/0044-7447-30.2.72 (2001).CAS
PubMed
Google Scholar
Körner, Ch. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x (2004).
Google Scholar
Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 20, 582–596. https://doi.org/10.1111/j.1466-8238.2010.00622.x (2011).
Google Scholar
Tokarczyk, N. Forest encroachment on temperate mountain meadows: scale, drivers, and current research directions. Geogr. Pol. 90, 463–480 (2017).
Google Scholar
Vitali, A. et al. Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. For. Ecol. Manag. 435, 28–37. https://doi.org/10.1016/j.foreco.2018.12.039 (2019).
Google Scholar
Heikkinen, O., Obrębska-Starkel, B. & Tuhkanen, S. Introduction: the timberline—A changing battlefront. Prace Geograficzne UJ 98, 7–16 (1995).
Google Scholar
Mattson, J. Human impact on the timberline in the far North of Europe. Zeszyty Naukowe UJ, Prace Geogr. 98, 41–56 (1995).
Google Scholar
Stanisci, A., Lavieri, D., Acosta, A. & Blasi, C. Structure and diversity trends at Fagus timberline in central Italy. Community Ecol. 1, 133–138 (2000).
Google Scholar
Gehrig-Fasel, J., Guisan, A. & Zimmermann, N. E. Tree line shifts in the Swiss Alps: Climate change or land abandonment?. J. Veg. Sci. 18, 571–582 (2007).
Google Scholar
Feurdean, A. et al. Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images. Reg. Environ. Change 17, 2193–2207. https://doi.org/10.1007/s10113-016-1063-7 (2017).
Google Scholar
Burga, C. A., Bührer, S. & Klötzli, F. Mountain ash (Sorbus aucuparia) forests of the Central and Southern Alps (Grisons and Ticino, Switzerland-Prov. Verbano-Cusio-Ossola, N-Italy): Plant ecological and phytosociological aspects. Tuexenia 39, 121–138 (2019).
Google Scholar
Slayter, R. O. & Noble, I. R. Dynamics of Montane Treelines. In Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 346–359 (Springer-Verlag, 1992).
Google Scholar
Bryn, A. Recent forest limit changes in south-east Norway: Effects of climate change or regrowth after abandoned utilisation?. Nor. Geogr. Tidsskr. 62(4), 251–270. https://doi.org/10.1080/00291950802517551 (2008).
Google Scholar
Lu, X., Liang, E., Wang, Y., Babst, F. & Camarero, J. J. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 30(1), 305–315. https://doi.org/10.1111/geb.13214 (2021).
Google Scholar
Armand, A. D. Sharp and Gradual Mountain Timberlines as Result of species Interaction. Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. In Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 360–377 (Springer-Verlag, 1992).
Google Scholar
Kucharzyk, S. Ekologiczne znaczenie drzewostanów w strefie górnej granicy lasu w Karpatach Wschodnich i ich wrażliwość na zmiany antropogeniczne [Ecological importance of stands at the upper forest limit in the Eastern Carpathians and their sensibility to anthropogenic changes]. Roczn. Bieszcz. 14, 15–43 (2006) (in Polish with English summary).
Google Scholar
Surina, B. & Rakaj, M. Subalpine beech forest with Hairy alpenrose (Polysticho lonchitis-Fagetum Rhododendretosum hirsuti subass. nova) on Mt. Snežnik (Liburnian Karst, Dinaric Mts). Hacquetia 6, 195–208 (2007).
Google Scholar
Kucharzyk, S. Zmiany przebiegu górnej granicy lasu w pasmie Szerokiego Wierchu w Bieszczadzkim Parku Narodowym [Changes of upper forest limit in the Szeroki Wierch range (Bieszczady National Park)]. Roczn. Bieszcz. 12, 81–102 (2004) (in Polish with English summary).
Google Scholar
Kucharzyk, S. & Augustyn, M. Dynamika górnej granicy lasu w Bieszczadach Zachodnich – zmiany w ciągu półtora wieku [The upper forest limit dynamics in the Western Bieszczady Mts.—Changes over a century and a half]. Stud. Nat. 54, 133–156 (2008) (in Polish with English summary).
Google Scholar
Kubijowicz, W. Życie pasterskie w Beskidach Wschodnich [La Vie Pastorale dans les Beskides Orientales]. Prace Instytutu Geograficznego UJ 5, 3–30 (1926) (in Polish).
Google Scholar
Zarzycki, K. Lasy Bieszczadów Zachodnich [The forests of the Western Bieszczady Mts (Polish Eastern Carpathians)]. Acta Agr. et Silv. Ser. Leśna 3, 1–131 (1963) (in Polish with English summary).
Google Scholar
Augustyn, M. Połoniny w Bieszczadach Zachodnich [Almen im westlichen Bieszczady-Gebirge]. Materiały Muzeum Budownictwa Ludowego w Sanoku 31, 88–98 (1993) (in Polish with German summary).
Google Scholar
Winnicki, T. Zbiorowiska roślinne połonin Bieszczadzkiego Parku Narodowego (Bieszczady Zachodnie, Karpaty Wschodnie) [Plant communities of subalpine poloninas in the Bieszczady National Park (Western Bieszczady Mts, Eastern Carpathians)]. Monogr. Bieszczadzkie 4, 1–215 (1999) (in Polish with English summary).
Google Scholar
Mróz, W. Zróżnicowanie szaty roślinnej przy górnej granicy lasu w Bieszczadach Wschodnich i Zachodnich [The diversity of vegetation near the upper timberline in the Eastern and the Western Bieszczady Mts]. Roczn. Bieszcz. 14, 45–62 (2006) (in Polish with English summary).
Google Scholar
Augustyn, M. & Kucharzyk, S. Górna granica lasu na terenie wsi Ustrzyki Górne i Wołosate w końcu XVIII wieku [Timberline in the Western Bieszczady Mts.]. Roczn. Bieszcz. 20, 15–27 (2012) (in Polish with English summary).
Google Scholar
Jeník, J. Succession on the Połonina Balds in the Western Bieszczady, the Eastern Carpathians. Tuexenia 3, 207–216 (1983).
Google Scholar
Michalik, S. & Szary, A. Zbiorowiska leśne Bieszczadzkiego Parku Narodowego [The forest communities of the Bieszczady National Park]. Monogr. Bieszcz. 1, 1–175 (1997).
Google Scholar
Zemanek, B. & Winnicki, T. Rośliny naczyniowe Bieszczadzkiego Parku Narodowego [Vascular plants of the Bieszczady National Park]. Monogr. Bieszcz. 3, 1–249 (1999) (in Polish with English summary).
Google Scholar
Kucharzyk, S. & Augustyn, M. Trwałość polan reglowych w Bieszczadzkim Parku Narodowym [Stability of mountain glades in the Bieszczady National Park]. Roczn. Bieszcz. 18, 45–58 (2010) (in Polish with English summary).
Google Scholar
Durak, T., Żywiec, M. & Ortyl, B. Rozprzestrzenianie się zarośli drzewiastych w piętrze połonin Bieszczad Zachodnich [Expansion of brushwood in the subalpine zone of the Western Bieszczady Mts]. Sylwan 157, 130–138 (2013) (in Polish with English summary).
Google Scholar
Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Impact of land use and climate changes on expansion of woody species on subalpine meadows in the Eastern Carpathians. For. Ecol. Manag. 339, 127–135. https://doi.org/10.1016/j.foreco.2014.12.014 (2015).
Google Scholar
Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Rapid spread of a fleshy-fruited species in abandoned subalpine meadows—Formation of an unusual forest belt in the eastern Carpathians. iForest – Biogeosci. For. 9, 337–343. https://doi.org/10.3832/ifor1470-008 (2015).
Google Scholar
Wężyk, P. & Hawryło, P. Analiza struktury 3D drzewostanów Bieszczadzkiego PN na podstawie danych lotniczego skanowania laserowego oraz ortofotomap lotniczych CIR [3D structure analysis of stands of the Bieszczady National Park on the basis of airborne laser scanning data and CIR aerial ortho-photomaps] (ProGea Consulting, 2015) (in Polish).Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 27, 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x (1995).
Google Scholar
Scott, L. M. & Janikas, M. V. Spatial Statistics in ArcGIS. In Handbook of Applied Spatial Analysis (eds Fischer, M. M. & Getis, A.) 27–41 (Springer, 2010).
Google Scholar
Cui, H., Wu, L., Hu, S., Lu, R. & Wang, S. Research on the driving forces of urban hot spots based on exploratory analysis and binary logistic regression model. Trans. GIS 25(3), 1522–1541. https://doi.org/10.1111/tgis.12739 (2021).
Google Scholar
Pierce, K. B., Lookingbill, T. & Urban, D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landsc. Ecol. 20, 137–147 (2005).
Google Scholar
Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Int. J. Sc. 5, 23–27 (1999).
Google Scholar
Böhner, J. & Antonić, O. Land-surface parameters specific to topo-climatology. Geomorphometry – Concepts, Softw. Appl. Dev. Soil Sci. 33, 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1 (2009).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2021).
Google Scholar
Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley & Sons Inc., 2007).MATH
Google Scholar
Cottrell, A. Gnu Regression, Econometrics and Time-series Library gretl. http://gretl.sourceforge.net/(2020).Hellevik, O. Linear versus logistic regression when the dependent variable is a dichotomy. Qual. Quant. 43, 59–74 (2009).
Google Scholar
Azen, R. & Traxel, N. Using dominance analysis to determine predictor importance in logistic regression. J. Educ. Behav. Stat. 34, 319–347. https://doi.org/10.3102/1076998609332754 (2009).
Google Scholar
Borcard, P., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).
Google Scholar
Przybylska, K. & Kucharzyk, S. Skład gatunkowy i struktura lasów Bieszczadzkiego Parku Narodowego [Species composition and structure of forest of the Bieszczady National Park. Monogr. Bieszcz. 6, 1–159 (1999) (in Polish with English summary).
Google Scholar
Bader, M. Y. et al. A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 44(2), 265–292. https://doi.org/10.1111/ecog.05285 (2021).
Google Scholar
Nowosad, M. Zarys klimatu Bieszczadzkiego Parku Narodowego i jego otuliny w świetle dotychczasowych badań [Outlines of climate of the Bieszczady National Park and its bufferzone in the light of previous studies]. Roczn. Bieszcz. 4, 163–183 (1995) (in Polish with English summary).
Google Scholar
Nowosad, M. & Wereski, S. Warunki klimatyczne. Bieszczadzki Park Narodowy–40 lat ochrony [Climatic conditions. Bieszczady National Park–40 years of protection]. In Bieszczadzki Park Narodowy [The Bieszczady National Park] (eds Górecki, A. & Zemanek, B.) 31–38 (Wyd. Bieszczadzki Park Narodowy, 2016) (in Polish with English summary).
Google Scholar
Kukulak, J. Neotectonics and planation surfaces in the High Bieszczady Mountains (Outer Carpathians, Poland). Ann. Soc. Geol. Pol. 74, 339–350 (2004).
Google Scholar
Haczewski, G., Kukulak, J. & Bąk, K. Budowa geologiczna i rzeźba Bieszczadzkiego Parku Narodowego [Geology and relief of the Bieszczady National Park]. Prace monograficzne (Akademia Pedagogiczna im. Komisji Edukacji Narodowej w Krakowie) 468, 1–156 (2007) (in Polish with English summary).
Google Scholar
Skiba, S., Drewnik, M., Kacprzak, A. & Kołodziejczyk, M. Gleby litogeniczne Bieszczadów i Beskidu Niskiego [Lithogenous soils of the Bieszczady and Beskid Niski Mts (Polish Carpathians)]. Roczn. Bieszcz. 7, 387–396 (1998) (in Polish with English summary).
Google Scholar
Skiba, S. & Winnicki, T. Gleby zbiorowisk roślinnych bieszczadzkich połonin [Soils of the subalpine meadows plant communities in the Bieszczady Mts]. Roczn. Bieszcz. 4, 97–109 (1995) (in Polish with English summary).
Google Scholar
Musielok, Ł, Drewnik, M., Szymański, W. & Stolarczyk, M. Classification of mountain soils in a subalpine zone—A case study from the Bieszczady Mountains (SE Poland). Soil Sci. Annu. 70, 170–177. https://doi.org/10.2478/ssa-2019-0015 (2019).CAS
Google Scholar
Spatz, G. Succession patterns on mountain pastures. Vegetatio 43, 39–41 (1980).
Google Scholar
Kozak, J. Zmiany powierzchni lasów w Karpatach Polskich na tle innych gór świata [Changes in the Land Cover in the Polish Carpathians at the Turn of the 20th and 21st Century in Relation to Local Development Level]. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków (2005) (in Polish with English summary).Vitali, A., Urbinati, C., Weisberg, P. J., Urza, A. K. & Garbarino, M. Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J. Veg. Sci. 29(2), 189–199. https://doi.org/10.1111/jvs.12598 (2018).
Google Scholar
Micu, D. M., Dumitrescu, A., Cheval, S., Nita, I.-A. & Birsan, M.-V. Temperature changes and elevation-warming relationships in the Carpathian Mountains. Int. J. Climatol. 41, 2154–2172. https://doi.org/10.1002/joc.6952 (2020).
Google Scholar
Rehman, A. Ziemie dawnej Polski. Cz. I. Karpaty [The lands of ancient Poland. Part I. The Carpathians]. (Gubrynowicz i Schmidt, Lwów) (1895) (in Polish).Frey, W. The influence of snow on growth and survival of planted trees. Arct. Alp. Res. 15, 241–251 (1983).
Google Scholar
Malanson, G. P. et al. Alpine treeline of Western North America: Linking organism-to-landscape dynamics. Phys. Geogr. 28, 378–396. https://doi.org/10.2747/0272-3646.28.5.378 (2007).
Google Scholar
Holtmeier, F. K. & Broll, G. Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys. Geogr. 31, 203–233. https://doi.org/10.2747/0272-3646.31.3.203 (2010).
Google Scholar
Barclay, A. M. & Crawford, R. M. M. Winter desiccation stress and resting bud viability in relation to high altitude survival in Sorbus aucuparia L. Flora 172, 21–34 (1982).
Google Scholar
Raspé, O., Findlay, C. & Jacquemart, A. L. Sorbus aucuparia L. J. Ecol. 88, 910–930 (2000).
Google Scholar
Zerbe, S. On the ecology of Sorbus aucuparia (Rosaceae) with special regard to germination, establishment and growth. Pol. Bot. J. 46, 229–239 (2001).
Google Scholar
Smith, W. K., Germino, M. J., Hancock, T. E. & Johnson, D. M. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 23, 1101–1112 (2003).PubMed
Google Scholar
Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698. https://doi.org/10.1038/s41598-020-66277-2 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
Barbeito, I., Dawes, M. A., Rixen, C., Senn, J. & Bebi, P. Factors driving mortality and growth at treeline: A 30-year experiment of 92 000 conifers. Ecology 93(2), 389–401 (2012).PubMed
Google Scholar
Kullman, L. A 25-year survey of geoecological change in the scandes mountains of Sweden. Geogr. Ann. Ser. B 79, 139–165 (1997).
Google Scholar
Pękala, K. Rzeźba Bieszczadzkiego Parku Narodowego [Relief of the Bieszczady National Park]. Roczn. Bieszcz. 6, 19–38 (1997) (in Polish with English summary).
Google Scholar
Kullman, L. Temporal and spatial aspects of subalpine populations of Sorbus aucuparia in Sweden. Ann. Bot. Fenn. 23, 267–275 (1986).
Google Scholar
Hoersch, B. Modelling the spatial distribution of montane and subalpine forests in the Central Alps using digital elevation models. Ecol. Model. 168, 267–282 (2003).
Google Scholar
Resler, L. M., Butler, D. R. & Malanson, G. P. Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Phys. Geogr. 26, 112–125 (2005).
Google Scholar
Kollmann, J. Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience 2, 213–222 (1995).
Google Scholar
Lediuk, K. D., Damascos, M. A., Puntieri, J. G. & de Torres Curth, M. I. Population dynamics of an invasive tree, Sorbus aucuparia, in the understory of a Patagonian forest. Plant Ecol. 217, 899–911 (2016).
Google Scholar
McCutchan, M. H. & Fox, D. G. Effect of elevation and aspect on wind, temperature and humidity. J. Appl. Meteorol. Climatol. 25(12), 1996–2013 (1986).ADS
Google Scholar
Stage, A. R. & Salas, C. Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For. Sci. 53, 486–492 (2007).
Google Scholar
Pocewicz, A. L., Gessler, P. & Robinson, A. P. The relationship between effective plant area index and Landsat spectral response across elevation, solar insolation, and spatial scales in a northern Idaho forest. Can. J. For. Res. 34, 465–480 (2004).
Google Scholar
Kucharzyk, S. & Sugiero, D. Zróżnicowanie dynamiki procesów lasotwórczych w buczynach bieszczadzkich w zależności od wystawy i wzniesienia [Variability of the dynamics of forest development processes in the Bieszczady beech forests in relation to exposition and altitude]. Sylwan 7, 29–38 (2007) (in Polish with English summary).
Google Scholar
Drewnik, M., Musielok, Ł, Stolarczyk, M., Mitka, J. & Gus, M. Effects of exposure and vegetation type on organic matter stock in the soils of subalpine meadows in the Eastern Carpathians. CATENA 147, 167–176. https://doi.org/10.1016/j.catena.2016.07.014 (2016).CAS
Google Scholar
Zheng, L. et al. Tree regeneration patterns on contrasting slopes at treeline ecotones in Eastern Tibet. Forests 12, 1605. https://doi.org/10.3390/f12111605 (2021).
Google Scholar More