More stories

  • in

    Ancient DNA provides insights into 4,000 years of resource economy across Greenland

    Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345, 1255832 (2014).Meldgaard, M. Ancient Harp Seal Hunters of Disko Bay (Museum Tusculanum Press, 2004).Grønnow, B. & Jensen, J. F. The Northernmost Ruins of the Globe: Eigil Knuth’s Archaeological Investigations in Peary Land and Adjacent Areas of High Arctic Greenland (Museum Tusculanum Press, 2003).Jensen, J. F. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, T. M. & Mason, O.) 673–691 (Oxford Univ. Press, 2016). https://doi.org/10.1093/oxfordhb/9780199766956.013.56Buckland, P. C., Ski, A. M. A. Y. E. W., Mcgovern, T. H. & Ogilvie, A. E. J. Bioarchaeological and climatological evidence for the fate of Norse farmers in medieval Greenland. Antiquity 70, 88–96 (1996).Article 

    Google Scholar 
    Gulløv, H. C. Grønlands Forhistorie (Gyldendal, 2004).Friesen, T. M. & Arnold, C. D. The timing of the Thule migration: new dates from the Western Canadian. Soc. Am. Archaeol. 73, 527–538 (2008).
    Google Scholar 
    Moltke, I. et al. Uncovering the genetic history of the present-day Greenlandic population. Am. J. Hum. Genet. 96, 54–69 (2015).CAS 
    Article 

    Google Scholar 
    Gulløv, H. C. From Middle Ages to Colonial Times: Archaeological and Ethnohistorical Studies of the Thule Culture in South West Greenland 1300–1800 AD (Dansk Polar Center, 1997).Gulløv, H. C. et al. Danmark og Kolonierne: Grønland (Gads Forlag, 2017).Ameen, C. et al. Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic. Proc. R. Soc. B 286, 20191929 (2019).Grønnow, B. et al. At the edge: High Arctic Walrus hunters during the Little Ice Age. Antiquity 85, 960–977 (2011).Article 

    Google Scholar 
    Fitzhugh, B. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) 253–278 (Oxford Univ. Press, 2016).Lyman, R. L. Vertebrate Taphonomy (Cambridge Univ. Press, 1994).Seersholm, F. V. et al. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4000 years ago. Nat. Commun. 7, 13389 (2016). https://doi.org/10.1038/ncomms13389Betts, M. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) 81–108 (Oxford Univ. Press, 2016). https://doi.org/10.1093/oxfordhb/9780199766956.013.8Szpak, P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011).Article 

    Google Scholar 
    Murray, D. C. et al. Scrapheap challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Sci. Rep. 3, 3371 (2013).Article 

    Google Scholar 
    Møhl, J. in From Middle Ages to Colonial Times (ed. Gulløv, H. C.) 495–501 (Kommissionen for videnskabelige undersøgelser i Grønland, 1980).Møhl, U. Animal Bones from Itivnera, West Greenland: A Reindeer Hunting Site of the Sarqaq Culture (C. A. Reitzels Forlag, 1972).Stat, M. et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 12240 (2017).Article 

    Google Scholar 
    Arneborg, J. et al. Norse Greenland Dietary Economy ca. AD 980–ca. AD 1450: introduction. J. North Atl. S3, 1–39 (2012).
    Google Scholar 
    Whitridge, P. Zen fish: a consideration of the discordance between artifactual and zooarchaeological indicators of Thule Inuit fish use. J. Anthropol. Archaeol. 20, 3–72 (2001).Article 

    Google Scholar 
    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).Seersholm, F. V. et al. Ancient DNA preserved in small bone fragments from the P.W. Lund collection. Ecol. Evol. 11, 2064–2071 (2021).Article 

    Google Scholar 
    Wheeler, A. & Jones, A. K. J. Fishes (Cambridge Manuals in Archaeology) (Cambridge Univ. Press, 1989).Gotfredsen, A. B. Former occurrences of geese (Genera Anser and Branta) in ancient West Greenland: morphological and biometric approaches. Acta Zool. 45, 179–204 (2002).
    Google Scholar 
    Gotfredsen, A. B. & Møbjerg, T. Nipisat—A Saqqaq Culture Site in Sissimut, Central West Greenland (Museum Tusculanum Press, 2004).Bockstoce, J. R. On the development of whaling in the western Thule culture. Folk 18, 41–45 (1976).
    Google Scholar 
    Ferguson, S. H., Higdon, J. W., Hall, P. A., Hansen, R. G. & Doniol-Valcroze, T. Developing a precautionary management approach for the eastern Canada–west Greenland population of bowhead whales (Balaena mysticetus). Front. Mar. Sci. 8, 709989 (2021).Eschricht, D. F. Undersögelser over Hvaldyrene (Bianco Lunos Bogtrykkeri, 1846).Mikkelsen, N. et al. European trading, whaling and climate history of west Greenland documented by historical records, drones and marine sediments. Geol. Surv. Den. Greenl. Bull. 41, 67–70 (2018).
    Google Scholar 
    Borge, T., Bachmann, L., Bjørnstad, G. & Wiig, Ø. Genetic variation in Holocene bowhead whales from Svalbard. Mol. Ecol. 16, 2223–2235 (2007).CAS 
    Article 

    Google Scholar 
    LeDuc, R. G. Mitochondrial genetic variation in bowhead whales in the western Arctic. J. Cetacean Res. Manag. 10, 93–97 (2008).
    Google Scholar 
    McLeod, B. A. Examination of ten thousand years of mitochondrial DNA diversity and population demographics in bowhead whales (Balaena mysticetus) of the Central Canadian Arctic. Mar. Mammal. Sci. 28, 426–443 (2012).Article 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1677 (2013).Article 

    Google Scholar 
    Meldgaard, M. The Greenland Caribou—Zoogeography, Taxonomy, and Population Dynamics (Museum Tusculanum Press, 1986).Meldgaard, M. New perspectives on the zoogeography of the Greenlandic caribou (Rangifer tarandus). In Proc. 4th North American Caribou Workshop (eds Butler, C. & Mahoney, S. P.) 37–63 (Newfoundland and Labrador Wildlife Division, 1991).Solazzo, C., Fitzhugh, W., Kaplan, S., Potter, C. & Dyer, J. M. Molecular markers in keratins from Mysticeti whales for species identification of baleen in museum and archaeological collections. PLoS ONE 12, e0183053 (2017).Article 

    Google Scholar 
    Nowacek, D. P. et al. Buoyant balaenids: the ups and downs of buoyancy in right whales. Proc. R. Soc. B 268, 1811–1816 (2001).CAS 
    Article 

    Google Scholar 
    Hollesen, J. et al. Climate change and the deteriorating archaeological and environmental archives of the Arctic. Antiquity 92, 573–586 (2018).Article 

    Google Scholar 
    Hollesen, J. et al. Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Sci. Rep. 9, 9097 (2019).Matthiesen, H., Høier Eriksen, A. M., Hollesen, J. & Collins, M. Bone degradation at five Arctic archaeological sites: quantifying the importance of burial environment and bone characteristics. J. Archaeol. Sci. 125, 105296 (2021).Seersholm, F. V. et al. Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1803573115 (2018).Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–63 (2013).CAS 
    Article 

    Google Scholar 
    Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    Dyke, A., Moore, A. & Robertson, L. Deglaciation of North America (Geological Survey of Canada, 2003).Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. Dev. Quat. Sci. 2, 373–424 (2004).
    Google Scholar 
    Gansauge, M. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).Grealy, A. et al. Eggshell palaeogenomics: palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol. Phylogenet. Evol. 109, 151–163 (2017).CAS 
    Article 

    Google Scholar 
    Lindgreen, S. AdapterRemoval: easy cleaning of next generation sequencing reads. BMC Res. Notes 5, 337 (2012).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Saving the Amazon: how science is helping Indigenous people protect their homelands

    One thing that the team at Los Amigos did not do is peer deeper into the reserve to try to determine where the Mashco Piro are camped out. Gutiérrez says the decision on whether to establish some kind of monitoring system for isolated communities rests with governments and Indigenous groups, but few doubt that it is possible.
    Some researchers worry about the implications of this kind of work. Greg Asner, an ecologist at Arizona State University in Tempe, regularly captured evidence of encampments of isolated groups more than a decade ago, when his team was surveying the Peruvian Amazon in a plane equipped with a powerful laser-based system that provides 3D images of the forest. He flagged the images to his sources at Peru’s environment ministry, but never saw the groups themselves as a legitimate research topic. Even today, he doesn’t see the value in actively tracking them.
    “It’s creepy, like describing the home range of jaguars, but human rights are different than jaguar rights,” says Asner. “If we know they are in there, why do we need to know exactly where they are sleeping at night?”
    Despite the ethical worries about monitoring, some Indigenous leaders are open to the idea. Knowing where isolated groups are could help surrounding Indigenous communities to prevent unintended and dangerous contact, but “it is the Indigenous organizations that should implement and execute any system of control and surveillance of the Indigenous peoples in isolation,” says Julio Cusurichi, president of FENAMAD, which has worked with the Peruvian government to prevent contact and conflict since the Mashco Piro began to emerge.
    FENAMAD was also instrumental in pushing for the creation of the Madre de Dios reserve in 2002. Twenty years later, however, the reserve’s borders have yet to be finalized, and the Indigenous organization is still pushing to expand the eastern boundary to cover areas where the Mashco Piro are known to roam. The problem is that these same areas are currently occupied by logging concessions, which would be costly for the government to cancel.

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    For Cusurichi, the killing of the logger in August is yet another reminder of the precarious situation along the border of the reserve and the risks to both outsiders and the Mashco Piro. Too often, he contends, the government is more concerned with protecting economic interests than the rights of isolated peoples.
    Tauli-Corpuz, the former UN rapporteur, has little doubt that scientists mean well, but she worries about any efforts to document the precise location of isolated groups. “If this information falls into the wrong hands, these people will be disturbed in ways they could never imagine,” she says.
    Officials from the culture ministry acknowledged these dangers in discussions with Nature, and said they were looking at potential regulations to control the flow of information and restrict who can peer into the reserves.
    Although Forsyth says the ministry is full of people who want to do the right thing, he is wary of assuming that government officials always mean well. In Brazil, critics have accused President Bolsonaro, a right-wing populist, of sidelining scientists at FUNAI and attempting to appoint a former Christian missionary to head the division that handles isolated peoples. In the Madre de Dios region, the former governor, Luis Hidalgo Okimura, disappeared in February just before he was to be jailed in connection with an investigation into an illegal logging ring.
    “In some cases, the government may not be trustworthy,” Forsyth warns. He places more faith in Indigenous organizations and their advocates. “Giving them access to whatever information they would like or can’t generate themselves ought to be the priority.” More

  • in

    The evolution of parental care in salamanders

    Wilson, E. O. Sociobiology: The New Synthesis (Harvard University Press, 1975).
    Google Scholar 
    Székely, T., Remeš, V., Freckleton, R. P. & Liker, A. Why care? Inferring the evolution of complex social behaviour. J. Evol. Biol. 26, 1381–1391 (2013).PubMed 
    Article 

    Google Scholar 
    Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).Book 

    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    Székely, T., Webb, J. N., Houston, A. I. & McNamara, J. M. An evolutionary approach to offspring desertion in birds. In Current Ornithology Vol. 13 (eds Nolan, V. & Ketterson, E. D.) (Springer, 1996).
    Google Scholar 
    McGraw, L., Székely, T. & Young, L. J. Pair bonds and parental behaviour. In Social Behaviour: Genes, Ecology and Evolution (eds Székely, T. et al.) (Cambridge University Press, 2010).
    Google Scholar 
    Smiseth, P. T., Kölliker, M. & Royle, N. J. What is parental care? In The Evolution of Parental Care (eds Royle, N. J. et al.) 1–17 (Oxford Univ. Press, 2012).
    Google Scholar 
    Mank, J. E., Promislow, D. E. L. & Avise, J. C. Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59, 1570–1578 (2005).PubMed 
    Article 

    Google Scholar 
    Benun Sutton, F. & Wilson, A. B. Where are all the moms? External fertilization predicts the rise of male parental care in bony fishes. Evolution 73, 2451–2460 (2019).PubMed 
    Article 

    Google Scholar 
    Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 4709 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Terrestriality and the evolution of parental care in frogs. Proc. R. Soc. Lond. B. 286, 20182737 (2019).
    Google Scholar 
    Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Climate and mating systems as drivers of global diversity of parental care in frogs. Glob. Ecol. Biogeogr. 29, 1373–1386 (2020).Article 

    Google Scholar 
    Gilbert, J. D. J. & Manica, A. Parental care trade-offs and life-history relationships in insects. Am. Nat. 176, 212–226 (2010).PubMed 
    Article 

    Google Scholar 
    Gilbert, J. D. & Manica, A. The evolution of parental care in insects: A test of current hypotheses. Evolution 69, 1255–1270 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reynolds, J. D., Goodwin, N. B. & Freckleton, R. P. Evolutionary transitions in parental care and live bearing in vertebrates. Philos. Trans. R. Soc. Lond. B. 357, 269–281 (2002).Article 

    Google Scholar 
    AlRashidi, M., Kosztolányi, A., Shobrak, M., Küpper, C. & Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 82, 235–243 (2011).Article 

    Google Scholar 
    Vincze, O. et al. Parental cooperation in a changing climate: Fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–385 (2017).Article 

    Google Scholar 
    Martin, K. L. & Carter, A. L. Brave new propagules: Terrestrial embryos in anamniotic eggs. Integr. Comp. Biol. 53, 233–247 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ishimatsu, A., Mai, H. V. & Martin, K. L. Patterns of fish reproduction at the interface between air and water. Integr. Comp. Biol. 58, 1064–1085 (2018).CAS 
    PubMed 

    Google Scholar 
    Bickford, D. P. Differential parental care behaviors of arboreal and terrestrial microhylid frogs from Papua New Guinea. Behav. Ecol. Sociobiol. 55, 402–409 (2004).Article 

    Google Scholar 
    Poo, S. & Bickford, D. P. The adaptive significance of egg attendance in a South-East Asian tree frog. Ethology 119, 1–9 (2013).Article 

    Google Scholar 
    Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 
    Article 

    Google Scholar 
    Wells, K. D. The Ecology and Behaviour of Amphibians (University of Chicago Press, 2007).Salthe, S. N. Reproductive modes and the number and sizes of ova in Urodeles. Am. Midl. Nat. 81, 467–490 (1969).Article 

    Google Scholar 
    Nussbaum, R. A. The Evolution of Parental Care in Salamanders. (University of Michigan Press, 1985).Nussbaum, R. A. Parental care and egg size in salamanders: An examination of the safe harbor hypothesis. Res. Popul. Ecol. 29, 27–44 (1987).Article 

    Google Scholar 
    Furness, A. I., Venditti, C. & Capellini, I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and numbers across amphibians. PLoS Biol. 20, e3001495 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beck, C. W. Mode of fertilization and parental care in anurans. Anim. Behav. 55, 439–449 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kahn, A. T., Schwanz, L. E. & Kokko, H. Paternity protection can provide a kick-start for the evolution of male-only parental care. Evolution 67, 2207–2217 (2013).PubMed 
    Article 

    Google Scholar 
    Summers, K., McKeon, C. S. & Heying, H. The evolution of parental care and egg size: A comparative analysis in frogs. Proc. R. Soc. B 273, 687–692 (2006).PubMed 
    Article 

    Google Scholar 
    Lack, D. L. Ecological Adaptations for Breeding in Birds (Methuen, 1968).Suski, C. D. & Ridgway, M. S. Climate and body size influence nest survival in a fish with parental care. J. Anim. Ecol. 76, 730–739 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. Posthatching parental care in salamanders revealed by infrared video surveillance. J. Herpetol. 44, 649–653 (2010).Article 

    Google Scholar 
    Reinhard, S., Voitel, S. & Kupfer, A. External fertilisation and paternal care in the paedomorphic salamander Siren intermedia Barnes, 1826. Zool. Anz. 253, 1–5 (2013).Article 

    Google Scholar 
    Amphibiaweb. University of California. https://amphibiaweb.org (2021).Vial, J. L. The ecology of the tropical salamander, Bolitoglossa pesrubra Costa Rica. Rev. Biol. Trop. 15, 13–115 (1968).
    Google Scholar 
    Han, X. & Fu, J. Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evol. Biol. 13, 27 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prado, C. P. A. & Haddad, C. F. B. Size-fecundity relationships and reproductive investment in female frogs in the Pantanal, South-Western Brasil. Herpetol. J. 15, 181–189 (2005).
    Google Scholar 
    Kupfer, A., Maxwell, E., Reinhard, S. & Kuehnel, S. The evolution of parental investment in caecilian amphibians: A comparative approach. Biol. J. Linn. Soc. 119, 4–14 (2016).Article 

    Google Scholar 
    Smith, R. J. Statistics of sexual size dimorphism. J. Hum. Evol. 36, 423–458 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fairbairn, D. J. Introduction: The enigma of sexual size dimorphism. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) (Oxford University Press, 2007).Chapter 

    Google Scholar 
    Lhotka, O., Kyselý, J. & Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Climatol. 131, 1043–1054 (2018).ADS 
    Article 

    Google Scholar 
    Lion, M. B. et al. Global patterns of terrestriality in amphibian reproduction. Glob. Ecol. Biogeogr. 28, 744–756 (2019).Article 

    Google Scholar 
    Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R Package Version 0.9-9. https://CRAN.R-project.org/package=maptools (2019).Hijmans, R. J. raster: Geographic Data Analysis and Modelling. R Package Version 3.0-7. R package. https://CRAN.R-project.org/package=raster (2015).Bivand, R. et al. Package ‘rgdal’. Bindings for the Geospatial Data Abstraction Library. https://cran.r-project.org/web/packages/rgdal/index.html (2017).IUCN. The IUCN Red List of threatened species. https://www.iucnredlist.org (2021).WorldClim. Maps, Graphs, Tables and Data of the Global Climate. https://www.worldclim.org (2021).Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 

    Google Scholar 
    Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).Article 

    Google Scholar 
    Ho, L. S. T. et al. Package ‘Phylolm’. https://cran.r-project.org/web/packages/phylolm (2018).Jetz, W. et al. VertLife. https://vertlife.org (2021).R-Core-Team R. Version 4.0.4. A Language and Environment for Statistical Computing. http://www.r-project.org/ (2021).Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775–793 (1981).PubMed 
    Article 

    Google Scholar 
    Ridley, M. & Rechten, C. Female sticklebacks prefer to spawn with males whose nests contain eggs. Behaviour 76, 152–161 (1981).Article 

    Google Scholar 
    Jackson, M. E., Scott, D. E. & Estes, R. A. Determinants of nest success in the marbled salamander (Ambystoma opacum). Can. J. Zool. 67, 2277–2281 (1989).Article 

    Google Scholar 
    Petranka, J. W. Observations on nest site selection, nest desertion and embryonic survival in marbled salamanders. J. Herpetol. 24, 229–234 (1990).Article 

    Google Scholar 
    Croshaw, A. & Scott, D. E. Experimental evidence that nest attendance benefits female marbled salamanders (Ambystoma opacum) by reducing egg mortality. Am. Midl. Nat. 154, 398–411 (2005).Article 

    Google Scholar 
    Knapp, R. A. & Sargent, R. C. Egg mimicry as a mating strategy in the fantail darter, Ethiostoma flabellare: Females prefer males with eggs. Behav. Ecol. Sociobiol. 25, 321–326 (1989).Article 

    Google Scholar 
    Okada, S., Fukuda, Y. & Takahashi, M. K. Paternal care behaviors of Japanese giant salamander Andrias japonicus in natural populations. J. Ethol. 33, 1–7 (2015).Article 

    Google Scholar 
    Browne, R. K. et al. The giant salamanders (Cryptobranchidae): Part B. Biogeography, ecology and reproduction. Amphib. Reptile Conserv. 5, 30–50 (2014).
    Google Scholar 
    Taborsky, M. Sperm competition in fish: ‘Bourgeois’ males and parasitic spawning. Trends Ecol. Evol. 13, 222–227 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieites, D. R. et al. Post-mating clutch-piracy in an amphibian. Nature 431, 305–308 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Balshine, S. & Abate, M. E. Parental care in cichlid fishes. In The Behavior, Ecology and Evolution of Cichlid Fishes (eds Abate, M. E. & Noakes, D. L. G.) (Springer, 2021).
    Google Scholar 
    Ota, K., Kohda, M. & Sato, T. Unusual allometry of sexual size dimorphism in a cichlid where males are extremely larger than females. J. Biosci. 35, 257–265 (2010).PubMed 
    Article 

    Google Scholar 
    Mokos, J., Scheuring, I., Liker, A., Freckleton, R. P. & Székely, T. Degree of anisogamy is unrelated to the intensity of sexual selection. Sci. Rep. 11, 19424 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourne, G. R. Amphisexual parental behaviour of a terrestrial breeding frog Eleutherodactylus johnstonei in Guyana. Behav. Ecol. 9, 1–7 (1998).Article 

    Google Scholar 
    Beal, C. A. & Tallamy, D. W. A new record of amphisexual care in an insect with extensive parental care: Rhynocoris tristis (Heteroptera: Reduviidae). J. Ethol. 24, 305–307 (2006).Article 

    Google Scholar 
    Ringler, E. et al. Flexible compensation of uniparental care: Female poison frogs take over when males disappear. Behav. Ecol. 26, 1219–1225 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tumulty, J., Morales, V. & Summers, K. The biparental care hypothesis for the evolution of monogamy: Experimental evidence in an amphibian. Behav. Ecol. 25, 262–270 (2014).Article 

    Google Scholar 
    Remeš, V., Freckleton, R. P., Tökölyi, J., Liker, A. & Székely, T. The evolution of parental cooperation in birds. Proc. Natl. Acad. Sci. USA 112, 12603–13608 (2015).Article 

    Google Scholar 
    Guex, G.-D. & Chen, P. S. Epitheliophagy: Intrauterine cell nourishment in the viviparous alpine salamander, Salamandra atra (Laur.). Experientia 42, 1205–1218 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goycoechea, O., Garrido, O. & Jorquera, B. Evidence for a trophic paternal-larval relationship in the frog Rhinoderma darwinii. J. Herpetol. 20, 168–178 (1986).Article 

    Google Scholar 
    Hansen, R. W. About our cover: Ecnomyohyla rabborum. Herpetol. Rev. 42, 3 (2012).
    Google Scholar 
    Brown, J. L., Morales, V. & Summers, K. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am. Nat. 175, 436–446 (2010).PubMed 
    Article 

    Google Scholar 
    Dugas, M. B., Moore, M. P., Martin, R. A., Richards-Zawacki, C. L. & Sprehn, Z. G. The pay-offs of maternal care increase as offspring develop, favouring extended provisioning in an egg-feeding frog. J. Evol. Biol. 29, 1977–1985 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kupfer, A. et al. Parental investment by skin feeding in a caecilian amphibian. Nature 440, 926–929 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shine, R. Propagule size and parental care: The “safe harbour” hypothesis. J. Theor. Biol. 75, 417–424 (1978).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Székely, T., Webb, J. N. & Cuthill, I. C. Mating patterns, sexual selection and parental care: An integrative approach. In Vertebrate Mating Systems (eds Apollonio, M. et al.) (World Scientific Press, 2000).
    Google Scholar 
    Ah-King, M., Kvarnemo, C. & Tullberg, B. S. The influence of territoriality and mating system on the evolution of parental care: A phylogenetic study on fish. J. Evol. Biol. 18, 371–382 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zamudio, K. R., Bell, R. C., Nali, R. C., Haddad, C. F. B. & Prado, C. P. A. Polyandry, predation and the evolution of frog reproductive modes. Am. Nat. 188, S41–S61 (2016).PubMed 
    Article 

    Google Scholar 
    Graham, S. P., Kline, R., Steen, D. A. & Kelehear, C. Description of an extant salamander from the Gulf Coastal Plain of North America: The Reticulated Siren, Siren reticulata. PLoS ONE 13, e0207460 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan, F. et al. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Curr. Biol. 28, R590–R592 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaramillo, A. F. et al. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Mol. Phylogenet. Evol. 149, 106841 (2020).PubMed 
    Article 

    Google Scholar 
    Parra-Olea, G. et al. Biology of tiny animals: Three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico. PeerJ 4, e2694 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balázs, G., Lewarne, B. & Herczeg, G. Extreme site fidelity of the olm (Proteus anguinus) revealed by a long-term capture-mark-recapture study. J. Zool. 311, 99–105 (2020).Article 

    Google Scholar  More

  • in

    Tracing the oomycete pathogen Saprolegnia parasitica in aquaculture and the environment

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 16, 13–19 (2008).CAS 
    PubMed 

    Google Scholar 
    van den Berg, A. H., McLaggan, D., Diéguez-Uribeondo, J. & van West, P. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biol. Rev. 27, 33–42 (2013).
    Google Scholar 
    van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist 20, 99–104 (2006).
    Google Scholar 
    Hussein, M. M. A., Hatai, K. & Nomura, T. Saprolegniosis in salmonids and their eggs in Japan. J. Wildl. Dis. 37, 204–207 (2001).CAS 
    PubMed 

    Google Scholar 
    Pavić, D. et al. Identification and molecular characterization of oomycete isolates from trout farms in Croatia, and their upstream and downstream water environments. Aquaculture 540, 736652 (2021).
    Google Scholar 
    Tedesco, P. et al. Evaluation of potential transfer of the pathogen Saprolegnia parasitica between farmed salmonids and wild fish. Pathogens 10, 926 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diéguez-Uribeondo, J., Cerenius, L. & Söderhäll, K. Physiological characterization of Saprolegnia parasitica isolates from brown trout. Aquaculture 140, 247–257 (1996).
    Google Scholar 
    Ravasi, D., De Respinis, S. & Wahli, T. Multilocus sequence typing reveals clonality in Saprolegnia parasitica outbreaks. J. Fish Dis. 41, 1653–1665 (2018).CAS 
    PubMed 

    Google Scholar 
    Bly, J. E., Lawson, L. A., Szalai, A. J. & Clem, L. W. Environmental factors affecting outbreaks of winter saprolegniosis in channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Dis. 16, 541–549 (1993).
    Google Scholar 
    Rezinciuc, S., Sandoval-Sierra, J. V., Ruiz-León, Y., Van West, P. & Diéguez-Uribeondo, J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS ONE 13, 1–17 (2018).
    Google Scholar 
    Tandel, R. S. et al. Morphological and molecular characterization of Saprolegnia spp. from Himalayan snow trout, Schizothorax richardsonii: A case study report. Aquaculture 531, 735824 (2021).CAS 

    Google Scholar 
    Howe, G. E. & Stehly, G. R. Experimental infection of rainbow trout with Saprolegnia parasitica experimental infection of rainbow trout. J. Aquat. Anim. Health 10, 397–404 (1998).
    Google Scholar 
    Dieguez-Uribeondo, J. Adaptation to parasitism of some animal pathogenic Saprolegniaceae. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 122. Acta Universitatis Upsalienis (1995).Kitancharoen, N., Yuasa, K. & Hatai, K. Effects of pH and temperature on growth of Saprolegnia diclina and S. parasitica isolated from various sources. Mycoscience 37, 385–390 (1996).
    Google Scholar 
    Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103 (2007).CAS 
    PubMed 

    Google Scholar 
    Burr, A. W. & Beakes, G. W. Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists). Protoplasma 181, 142–163 (1994).
    Google Scholar 
    Elameen, A. et al. Genetic analyses of saprolegnia strains isolated from salmonid fish of different geographic origin document the connection between pathogenicity and molecular diversity. J. Fungi 7, 1–13 (2021).
    Google Scholar 
    Masigol, H. et al. Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran. Aquat. Ecol. 51, 323–336 (2020).
    Google Scholar 
    Singer, D. et al. High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol. 23, 42–47 (2016).
    Google Scholar 
    Hatai, K. & Hoshiai, G. Mass mortality in cultured coho salmon (Oncorhynchus kisutch) due to Saprolegnia parasitica Coker. J. Wildl. Dis. 28, 532–536 (1992).CAS 
    PubMed 

    Google Scholar 
    Sarowar, M. N., Cusack, R. & Duston, J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. J. Fish Dis. 42, 1745–1760 (2019).CAS 
    PubMed 

    Google Scholar 
    Sakaguchi, S. O. et al. Molecular identification of water molds (oomycetes) associated with chum salmon eggs from hatcheries in Japan and possible sources of their infection. Aquac. Int. 27, 1739–1749 (2019).
    Google Scholar 
    Sandoval-Sierra, J. V., Latif-Eugenin, F., Martín, M. P., Zaror, L. & Diéguez-Uribeondo, J. Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish developmental stage. Aquaculture 434, 462–469 (2014).
    Google Scholar 
    Amarasiri, M., Furukawa, T., Nakajima, F. & Sei, K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. Sci. Total Environ. 796, 148810 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pavić, D. et al. Non-destructive method for detecting Aphanomyces astaci, the causative agent of crayfish plague, on the individual level. J. Invertebr. Pathol. 169, 107274 (2020).PubMed 

    Google Scholar 
    Sapkota, R. & Nicolaisen, M. An improved high throughput sequencing method for studying oomycete communities. J. Microbiol. Methods 110, 33–39 (2015).CAS 
    PubMed 

    Google Scholar 
    Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).CAS 

    Google Scholar 
    Ghosh, S., Straus, D. L., Good, C. & Phuntumart, V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS ONE 16, 1–17 (2021).
    Google Scholar 
    Blaya, J., Lloret, E., Santísima-Trinidad, A. B., Ros, M. & Pascual, J. A. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Manag. Sci. 72, 747–753 (2016).CAS 
    PubMed 

    Google Scholar 
    Davison, P. I., Copp, G. H., Créach, V., Vilizzi, L. & Britton, J. R. Application of environmental DNA analysis to inform invasive fish eradication operations. Sci. Nat. 104, 1–7 (2017).CAS 

    Google Scholar 
    Tuffs, S. & Oidtmann, B. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Vet. Microbiol. 153, 343–353 (2011).CAS 
    PubMed 

    Google Scholar 
    Rusch, J. C. et al. Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe. NeoBiota 58, 1–32 (2020).
    Google Scholar 
    Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoshino, T. & Inagaki, F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst. Appl. Microbiol. 35, 390–395 (2012).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, L. B. et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011 (2012).CAS 
    PubMed 

    Google Scholar 
    Rocchi, S. et al. Quantification of Saprolegnia parasitica in river water using real-time quantitative PCR: From massive fish mortality to tap drinking water. Int. J. Environ. Health Res. 27, 1–10 (2017).CAS 
    PubMed 

    Google Scholar 
    Gibert, S. et al. Risk assessment of Aphanomyces euteiches root rot disease: Quantification of low inoculum densities in field soils using droplet digital PCR. Eur. J. Plant Pathol. 161, 503–528 (2021).CAS 

    Google Scholar 
    Ristaino, J. B., Saville, A. C., Paul, R., Cooper, D. C. & Wei, Q. Detection of Phytophthora infestans by loop-mediated isothermal amplification, real-time LAMP, and droplet digital PCR. Plant Dis. 104, 708–716 (2020).CAS 
    PubMed 

    Google Scholar 
    Lévesque, C. A. & De Cock, A. W. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108, 1363–1383 (2004).PubMed 

    Google Scholar 
    Oidtmann, B., Geiger, S., Steinbauer, P., Culas, A. & Hoffmann, R. W. Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Dis. Aquat. Organ. 72, 53–64 (2006).CAS 
    PubMed 

    Google Scholar 
    Sandoval-Sierra, J. V., Martín, M. P. & Diéguez-Uribeondo, J. Species identification in the genus Saprolegnia (Oomycetes): Defining DNA-based molecular operational taxonomic units. Fungal Biol. 118, 559–578 (2013).PubMed 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).
    Google Scholar 
    Jain, P. et al. A multivariate approach to investigate the combined biological effects of multiple exposures. J. Epidemiol. Community Health 72, 564–571 (2018).PubMed 

    Google Scholar 
    Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, e0224441 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montalva, C. et al. First report of Leptolegnia chapmanii (Peronosporomycetes: Saprolegniales) affecting mosquitoes in central Brazil. J. Invertebr. Pathol. 136, 109–116 (2016).PubMed 

    Google Scholar 
    Robideau, G. P. et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 11, 1002–1011 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catal, M., Erler, F., Fulbright, D. W. & Adams, G. C. Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur. J. Plant Pathol. 137, 859–869 (2013).CAS 

    Google Scholar 
    Jiang, R. H. Y. et al. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet. 9, e1003272 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieguez-Uribeondo, J., Cerenius, L. & Soderhall, K. Saprolegnia parasitica and its virulence on three different species of freshwater crayfish. Aquaculture 120, 219–228 (1994).
    Google Scholar 
    Söderhäll, K., Dick, M. W., Clark, G., Fürst, M. & Constantinescu, O. Isolation of Saprolegnia parasitica from the crayfish Astacus leptodactylus. Aquaculture 92, 121–125 (1991).
    Google Scholar 
    Bly, J. E. et al. Winter saprolegniosis in channel catfish. Dis. Aquat. Organ. 13, 155–164 (1992).
    Google Scholar 
    Gozlan, R. E. et al. Current ecological understanding of fungal-like pathogens of fish: What lies beneath?. Front. Microbiol. 5, 1–16 (2014).
    Google Scholar 
    Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).ADS 
    CAS 

    Google Scholar 
    Deacon, J. W. & Donaldson, S. P. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171 (1993).CAS 

    Google Scholar 
    Ford, D. C. & Williams, P. W. Karst Hydrogeology and Geomorphology (Wiley, 2007).
    Google Scholar 
    Baldisserotto, B., Chowdhury, M. J. & Wood, C. M. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout. Aquat. Toxicol. 72, 99–117 (2005).CAS 
    PubMed 

    Google Scholar 
    Barszcz, A. A., Siemianowska, E., Sidoruk, M. & Skibniewska, K. A. Influence of farming technology on bioaccumulation of calcium, magnesium and sodium in muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum). Environ. Prot. Nat. Resour. 25, 15–19 (2014).
    Google Scholar 
    Ali, E. H. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia 159, 231–243 (2005).CAS 
    PubMed 

    Google Scholar 
    Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. B 374, 20180019 (2019).CAS 

    Google Scholar 
    Boisen, A. M. Z., Amstrup, J., Novak, I. & Grosell, M. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim. Biophys. Acta 1618, 207–218 (2003).CAS 
    PubMed 

    Google Scholar 
    Marquis, R. E., Clock, S. A. & Mota-Meira, M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 26, 493–510 (2003).CAS 
    PubMed 

    Google Scholar 
    Mendes, G. et al. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl. Environ. Microbiol. 80, 3081–3085 (2014).ADS 
    PubMed Central 

    Google Scholar 
    Camargo, J. A. Fluoride toxicity to aquatic organisms: A review. Chemosphere 50, 251–264 (2003).ADS 
    PubMed 

    Google Scholar 
    Min, H., Hatai, K. & Bai, S. Some inhibitory effects of chitosan on fish-pathogenic oomycete, Saprolegnia parasitica. Fish Pathol. 29, 73–77 (1998).
    Google Scholar 
    Liu, Y. et al. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME J. 8, 2002–2014 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    ‘Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes’. Off. J. Eur. Union L276, 33 (2010).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).CAS 
    PubMed 

    Google Scholar 
    Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
    Google Scholar  More

  • in

    Author Correction: Causal networks of phytoplankton diversity and biomass are modulated by environmental context

    National Center for Theoretical Sciences, Taipei, 10617, TaiwanChun-Wei Chang & Chih-hao HsiehResearch Center for Environmental Changes, Academia Sinica, Taipei, 11529, TaiwanChun-Wei Chang, Fuh-Kwo Shiah & Chih-hao HsiehFaculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiInstitute of Oceanography, National Taiwan University, Taipei, 10617, TaiwanTakeshi Miki, Fuh-Kwo Shiah & Chih-hao HsiehCenter for Biodiversity Science, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiHealth Science Center Libraries, University of Florida, Gainesville, FL, 32611, USAHao YeUniv. Lille, CNRS, Univ, Littoral Côte D’Opale, IRD, UMR 8187, LOG— Laboratoire D’Océanologie et de Géosciences, Station Marine de Wimereux, F- 59000, Lille, FranceSami SouissiLeibniz Institute of Freshwater Ecology and Inland Fisheries, IGB, 12587, Berlin, GermanyRita AdrianFreie Universität Berlin, Department of Biology, Chemistry and Pharmacy, 14195, Berlin, GermanyRita AdrianNational Research Institute for Agriculture, Food and Environment (INRAE), CARRTEL, Université Savoie Mont Blanc, 74200, Thonon les Bains, FranceOrlane AnnevilleCentre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5D, 51014, Tartu, EstoniaHelen Agasild & Peeter NõgesDepartment of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, Hikone, 522-8533, Shiga, JapanSyuhei Ban & Xin LiuKinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, P.O. Box 447, 14950, Migdal, IsraelYaron Be’eri-Shlevin, Gideon Gal & Tamar ZoharyBiodiversity Research Center, Academia Sinica, Taipei, 11529, TaiwanYin-Ru Chiang & Jiunn-Tzong WuUK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire, LA1 4AP, UKHeidrun Feuchtmayr & Stephen J. ThackerayLake Biwa Environmental Research Institute, Otsu, 520-0022, JapanSatoshi Ichise & Michio KumagaiFaculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8502, Kanagawa, JapanMaiko KagamiDepartment of Environmental Science, Faculty of Science, Toho University, Funabashi, Chiba, 274-8510, JapanMaiko KagamiResearch Center for Lake Biwa & Environmental Innovation, Ritsumeikan University, Kusatsu, 525-0058, Shiga, JapanMichio KumagaiBiodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanShin-Ichiro S. MatsuzakiCNR Water Research Institute (IRSA), L.go Tonolli 50, 28922, Verbania, Pallanza, ItalyMarina M. Manca, Roberta Piscia & Michela RogoraPlymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UKClaire E. WiddicombeInstitute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, 10617, TaiwanChih-hao Hsieh More

  • in

    Intraspecies characterization of bacteria via evolutionary modeling of protein domains

    Protein domains show a Gompertzian growthThe protein domain RSA distributions of 3368 bacterial genomes were obtained as detailed in the “Materials and methods” section. Briefly, for each bacterial genome we retrieved all the identifiable protein domains. Then, we computed the RSA by counting the number of protein domains belonging to each protein domain family.Three evolutionary hypotheses were tested by fitting the empirical RSAs with the Log-Series [Eq. (7)], the Negative Binomial (Eq. (6)) and the Poisson Log-Normal (Eq. (4)) distribution (Fig. 1a). According to the Akaike Information Criterion (AIC)30, in (99.97%) of bacteria the selected model was the Poisson Log-Normal (Fig. 1b). This model performed better than both the Log-Series and the Negative Binomial and described the data well, with an average (R^2) of 0.97 (minimum (R^2)=0.86). The selection of the Poisson Log-Normal model instead of the Negative Binomial or the Log-Series, implies that the protein domains evolution process is characterized by a Gompertzian density regulation function ((g(x)=gamma ln (x+epsilon ))) rather than a linear one ((g(x)=eta x)). This suggests an asymmetric process in which the proliferation rate for low abundant protein domains is faster than for the high abundant ones.Figure 1Fit of protein domains RSA. (a) Example of protein domains Preston plot fitted with three different distributions: the Poisson Log-Normal, the Negative Binomial and the Log-Series. Results refer to the bacterial genome (text {GCA}_000717515). The Negative Binomial and the Log-Series fit overlap. This implies that the dispersion parameter (alpha) of the Negative Binomial distribution (see Eq. (6)) is close to zero. The mean and the median of the dispersion parameter obtained for the 3368 bacterial genomes are ({2.67times 10^{-4}}) and ({2.62times 10^{-7}}), in agreement with the observed overlap. (b) Distribution of the difference between the AIC obtained with the Poisson Log-Normal model (PL) and the Log-Series (LS) or the Negative Binomial (NB) model, considering all the 3368 bacterial genomes.Full size imageProtein domains deactivation is faster than duplicationThe examination of the Poisson Log-Normal scale ((mu)) and location ((sigma ^2)) parameters (see Eq. (4) and Supplementary Material) estimated by the fitting procedure for each bacterial genome, allows us to reveal further features of the evolutionary process of protein domains.First of all, Fig. 2 shows that (mu) has negative values in all bacterial genomes. Recalling that (mu =r/gamma), where r is the growth rate and (gamma) is the multiplicative constant of the Gompertzian function, which must be positive, this implies that the growth rate of protein domains, r, is also negative. Notice that the growth rate can be expressed as the difference between the birth and the death rate, (r=b-d). Hence, a negative r means that the death rate is greater than the birth rate ((d > b)). In the evolutionary model of protein domains, the birth rate b has the meaning of duplication rate, while the death rate d is the rate at which protein domains are deactivated. A negative r hence implies that protein domain deactivation, which is related to the accumulation of events which disrupt the coding sequence of protein domains, happens at a faster rate than the duplication of the whole protein domain sequence within the genome.Figure 2Distribution of species according to the model parameters. Scatter plot of Poisson Log-Normal parameters (mu) versus (sigma ^2) obtained fitting the protein domains RSAs. Only species represented by at least 10 different strains were included in the plot, for a total of 1173 bacterial genomes which belong to 48 different species. Different colors represent different species as indicated in the legend.Full size imageFurthermore, the plot of (mu) as a function of (sigma ^2) (Fig. 2) highlights the negative linear relationship between (mu) and (sigma ^2). Such relationship can also be deduced mathematically.Starting from the expressions (mu =r/gamma) and (sigma ^2=sigma _e^2 / 2gamma), and after simple algebraic manipulation, we can in fact obtain that (mu = 2rsigma ^2 / sigma _e^2), which explains the negative linear relationship between the two parameters.Besides the negative relationship, the plot of (mu) versus (sigma ^2) also highlights the presence of clusters of bacterial genomes with similar ecological features, which are pictured in the plot as roughly parallel stripes (Fig. 2). When we depict bacterial strains belonging to the same species using the same color, it emerges that the stripes are related to the bacterial taxonomy. This result motivates us to introduce a new approach to bacterial phylogeny based on the ecological modeling of protein domains and the consequent estimation of the parameters (mu) and (sigma ^2).Protein domain RSA and evolutionary distanceWe propose to calculate the pairwise evolutionary distances between bacteria based on three parameters: the Poisson Log-Normal scale and location parameters discussed above ((mu) and (sigma)), and the density of protein domains in the bacterial genome. Such density describes to which extend the whole bacterial genome is populated with protein domains and it hence constitutes an additional feature of the protein domain ecological dynamics. As detailed in the Materials and Methods, the distance between bacteria is specifically computed as the 3D euclidean distance in the scaled space of (mu), (sigma), and protein domain density. In the following, we refer to such distance as ‘RSA distance’.To evaluate the bacterial interrelationships derived from the RSA distances, we compared our results with both the bacterial taxonomic classification and the 16S rRNA gene-based phylogeny. Specifically, starting from the RSA distance matrix we computed a hierarchical clustering of bacteria and we compared the resulting clusters with those obtained from the 16S rRNA gene-based distance matrix. Both clustering results were then compared with the bacterial taxonomic classification.Notice that the usage of both 16S rRNA phylogeny and bacterial taxonomic classification allows us to exploit the complementary information that these two approaches provide, despite their intrinsic connection. Namely, modern microbial taxonomy is mostly based on 16S rRNA gene6 and, on the other hand, the cutoffs commonly used in 16S rRNA phylogeny originated from phenotype-based taxonomy31. However, while taxonomy allows us to assign human interpretable names to bacteria, to associate such names with phenotypic properties, and to classify bacteria into a predefined hierarchy, 16S rRNA phylogeny provides a quantitative measurement of the evolutionary distance between bacteria that can be compared with the RSA distance without setting any pre-defined threshold. Moreover, the usage of 16S rRNA phylogeny allows us to investigate the bacterial relationships at the intraspecies level, for which the taxonomic classification is not available.As detailed in the Materials and Methods, 16S rRNA distances were calculated based on the bacterial 16S rRNA gene reference sequences, following the standard procedure32. Taxonomic classification, instead, was retrieved from NCBI and included the following levels: phylum, class, order, family, genus and species. In order to obtain a comparable number of clusters from all three methods, we considered separately each taxonomic level and we cut the 16S rRNA and the RSA -based hierarchical trees so as to get a number of clusters equivalent to the number of taxa available at the selected taxonomic level.At each taxonomic level, the Normalized Mutual Information (NMI) was used as a measurement of agreement between different clustering solutions33. Notice that, while the theoretical range of the NMI score is the interval (left[ 0,1right]), NMI is biased towards clustering solutions with more clusters and fewer data points34. Consequently, the baseline of NMI score in practise is not zero and relatively high NMI scores can be an artifact caused by the low ratio between number of bacteria and number of taxonomic groups. To make the comparison fair, we used simulations to calculate the baseline NMI for each taxonomic level (box plots of Fig. 3).As expected by their intrinsic relationship, taxonomy and 16S rRNA phylogeny show high agreement (red dots in Fig. 3). RSA-based clusters, instead, show a certain deviation from both taxonomy (blue dots in Fig. 3) and phylogeny (green dots in Fig. 3). For both comparisons, however, the NMI scores are still evidently higher than the baseline, signifying that the RSA model captures phylogenetic signals to a certain degree. Comparing the obtained NMI scores with the baseline, we notice that the agreement between RSA-based clusters and both taxonomy and phylogeny increases at lower taxonomic levels, reaching the maximum at species level. Taking as ground truth the taxonomic classification, the total purity of the RSA-based clusters at species level is 0.65, signifying that 65% of bacteria are correctly classified.Figure 3Comparison between the three clustering results at different taxonomic levels. NMI scores (y-axis) are calculated as a measurement of agreement between clusters based on: RSA method and taxonomy (blue), 16S rRNA gene and taxonomy (red), RSA method and 16S rRNA gene (green). Different taxonomic levels are considered for the comparison: phylum, class, order, family, genus and species (x-axis). The box plots represent the baselines of NMI score and are based on simulations.Full size imageTo assess the robustness and stability of the RSA-based phylogeny, with regard to the choice of protein domains, we randomly selected subsamples of protein domains in different proportions (from (10%) to 90% of all protein domains). The reconstructed phylogenetic trees were then compared with the phylogenetic tree obtained using all protein domains (see Materials and Methods for details), and the correlation between the trees was calculated (see Supplementary Fig. S6). As expected, with larger proportions of protein domains taken into account, the correlation between subsample-based phylogeny and base phylogeny increases. For larger subsampling proportions, the compared phylogenetic trees are in good agreement: for a subsample with 90% of protein domains, the mean cophenetic correlation is equal to 0.74, and the mean common-nodes-correlation is equal to 0.68. We notice that the common-nodes-correlation is more stable compared to the cophenetic correlation, as expected since cophenetic correlation is affected by the height of the phylogenetic trees. The results suggest that the overall structure of the phylogenies is stable even for smaller subsampling proportions, while subsampling height of the branches correlates with the full-data height only at larger subsampling proportions.To evaluate the intraspecies composition obtained from the RSA-based clustering, we selected the subset of species for which at least 10 different strains were present in our data (48 species). Among them, we selected the species where hierarchical clustering showed a clear separation of clusters (including outliers) and for which published literature characterizing at least some of the strains was available (6 out of 48 species). For these 6 species, we again assessed the robustness and stability of RSA phylogenies, as detailed in the “Materials and methods” section. Our results suggest (see Supplementary Fig. S7) that the subsample-based phylogenies are in good agreement with the full-data phylogenies, especially for larger subsampling proportions. We notice the correlations is larger than in the case of phylogenetic trees for randomly selected 100 bacteria (Supplementary Fig. S6), especially for certain species (i.e., Xanthomonas citri). This could be attributed to the smaller size of the phylogenetic tree. However, the species with similar phylogenetic tree size still show differences in correlation (i.e., Xanthomonas citri and Francisella tularensis), suggesting that the RSA-based distance matrix between the strains of Xanthomonas citri carries stronger phylogenetic signal. Comparing 6 observed species with the randomly sampled subsets of 100 bacteria, we can analogously conclude that the RSA-captured phylogenetic signal is stronger within the species. In the following, we discuss the results obtained for the 6 selected bacterial species in more details.Figure 4(Previous page.) Hierarchical clustering of bacteria at the intraspecies level, comparing solutions obtained by RSA and 16S rRNA method. Each subplot shows a tanglegram with RSA-based dendrogram on the left and 16S rRNA-based dendrogram on the right. Lines connect the same bacteria from two dendrograms. The color/type of the line represents the feature of the bacterium it connects. (a) 22 strains of Xanthomonas citri belong to two different pathovars: A (orange) and (hbox {A}^{mathrm{W}}) (purple). (b) 10 strains of Chlamydia pneumoniae are isolated from different tissues: conjuctival (yellow), respiratory (magenta) and vascular (violet). 9 strains represented with solid line are human (Homo sapiens) pathogens while the one strain represented by dashed line is koala (Phascolarctos cinereus) pathogen. (c) 14 strains of Vibrio cholerae are colored based on their karyotype. 11 strains have two circular chromosomes Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb) (magenta). 2 strains have one (sim)4 Mb long circular chromosome (yellow). One strain has three chromosomes Chr1 ((sim)3 Mb), Chr2 ((sim)1 Mb) and Chr3 ((sim)1 Mb) (violet).Full size imageRSA-based method distinguishes subspecies infecting different hostsXanthomonas citri subsp. citri (XCC) and Chlamydia pneumoniae (Cpn) are two species whose subspecies can infect different hosts. Here we show that the RSA-based method correctly discriminates such subspecies even when their divergence is not detected comparing the 16S rRNA gene sequences.Xanthomonas citri subsp. citri (XCC) is a causal agent of citrus canker type A, a bacterial disease affecting different plants from the genus Citrus. While citrus canker A infects most citrus species, two of its variants, A* and (hbox {A}^{mathrm{W}}), have a much more limited host range with XCC pathotype (hbox {A}^{mathrm{W}}) infecting only Key lime (C. aurantifolia) and alemow (C. macrophylla)2. Our data set includes 17 strains of XCC pathotype A and 5 strains of XCC pathotype (hbox {A}^{mathrm{W}})2. RSA-based clustering of the 22 XCC strains identifies two separated clusters (Fig. 4a, left) which coincide with the two XCC pathotypes. Concurrently, clustering based on 16S rRNA gene fails to identify the two pathotypes of XCC (Fig. 4a, right). This suggests that even though pathotypes A and (hbox {A}^{mathrm{W}}) have different hosts, their diversification is not reflected in the variability of the 16S rRNA gene. On the other hand, modeling the protein domain RSA of the two pathotypes succesfully captures the different functions of their proteomes.Another important aspect of the citrus canker is the geographical spread of the disease. The 22 strains of XCC included in our data set have diverse geographical origin. While all (hbox {A}^{mathrm{W}}) strains were sampled from USA, strains of pathotype A originate from USA, Brazil and China. RSA clustering of 17 A-type strains colored by their sampling location shows a geographical pattern (Supplementary Fig. S2) similar to the one obtained by Patané et al.2 using a maximum likelihood tree based on 1785 concatenated unicopy genes, with the only exception of strain jx-6 ((text {GCA}_001028285)) coming from China.For what concerns Chlamydia pneumoniae (Cpn), this is an obligate intercellular parasite which is widespread in human population and causes acute respiratory disease. Besides humans, different animal species can be infected with Chlamydia pneumoniae. Our data set includes 9 strains which infect humans (Homo sapiens) and 1 strain isolated from koala (Phascolarctos cinereus). RSA-based clustering clearly separates such isolate from the group of highly similar human isolates (Fig. 4b, left). This result is confirmed by 16S rRNA-based clustering (Fig. 4b, right) and is in agreeement with previous results in which the comparison of four human-derived isolates and the koala strain LPCoLN ((text {GCA}_000024145)) through whole-genome sequencing showed a much higher variation between human and koala-derived strains than within the human-derived strains35.Another peculiarity of Chlamydia pneumoniae is tissue tropism. The human-derived strains of Chlamydia pneumoniae can in fact be divided into conjuctival, raspiratory and vascular based on their tissue of origin. Cpn tissue tropism was the focus of the study conducted by Weinmaier et al., where whole-genome sequences of multiple Cpn strains isolated from different human anatomical sites were compared and animal isolates were used as outgroup3. Weinmaier et al. found a good agreement between the anatomical origin of strains and the maximum likelihood phylogenetic tree based on all SNPs. However, they could not obtain a clear separation between anatomical subgroups of Cpn. Our results show that the RSA-based method partially succeeds in separating subspecies related to different tissues (Fig. 4b, left). The RSA-based dendrogram, in fact, shows a cluster of four respiratory bacteria. However, it does not separate the other subspecies by infection site, suggesting that tissue tropism is not entirely captured by our method.RSA-based method discriminates subspecies with different genome compositionIn some cases, subspecies of the same species are characterized by global differences in the genome composition. This is, for example, the case of Vibrio cholerae and Buchnera aphidicola. Here, we show that the RSA-based model is able to capture such differences and to discriminate subspecies with known different genomic peculiarities.Vibrio cholerae is the causative agent of cholera disease. Its genome is normally composed of two chromosomes: Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb). However, some strains show a different karyotype. The two strains (1154text {-}74) ((text {GCA}_000969235)) and (10432text {-}62) ((text {GCA}_000969265)), for instance, underwent the process of chromosomal fusion and possess only one (sim 4) Mb long circular chromosome, which shows a high degree of synteny with the two chromosomes of the more common strains36. The strain (text {TSY}216) ((text {GCA}001045415)), on the other hand, besides having the original two chromosomes, also contains an additional (sim 1) Mb long replicon, which does not share any conserved region with Chr1 and Chr237. For these reasons, we expect the single- and two-chromosome strains to be phylogenetically closer to each other than to the three-chromosome strain, which contains the extra replicon. The 16S rRNA gene-based clustering, however, does not identify any clear separation between the three types of strains (Fig. 4c, right). As a matter of fact, all the 16S rRNA gene copies of all the Vibrio cholerae strains included in our data set are located on (sim 3) Mb long chromosome, which shows high synteny across all strains. It is therefore not surprising that the comparison of the 16S rRNA genes does not capture the global genomic differences that exist between the considered strains. On the other hand, the results obtained with the RSA-based clustering show a clear distinction of the strains with different genomic structure (Fig. 4c, left). The reason for the success of the RSA-based method lies in the theoretical definition of RSA-based distance. In fact, the RSA-based distance depends on the Poisson Log-Normal location parameter (sigma ^2), which increases with the genome length (Supplementary Fig. S1): by definition, (sigma ^2 = sigma _e^2 / 2gamma), and, while the environmental noise (sigma _e^2) can be reasonably considered independent of the genome length, the density regulation (gamma) is expected to be stronger for smaller genomes, which repesent a scarcer environment with less resources.Buchnera aphidicola is a bacterial species in mutualistic endosymbiotic relationship with different aphids (members of superfamily Aphidoidea). As many endosymbionts, Buchnera aphidicola underwent the process of genome reduction as an adaptation to the host-associated lifestyle and has a genome with length ( More

  • in

    Endangered animals and plants are positively or neutrally related to wild boar (Sus scrofa) soil disturbance in urban grasslands

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189, 320–334 (2019).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).Article 

    Google Scholar 
    Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).PubMed 
    Article 

    Google Scholar 
    Hegglin, D. et al. Baiting red foxes in an urban area: A camera trap study. J. Wildl. Manag. 68, 1010–1017 (2004).Article 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 773, 145593 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabaneros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar 
    Csokas, A. et al. Space use of wild boar (Sus Scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Futura 71, 39–51 (2020).CAS 
    Article 

    Google Scholar 
    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 54, 272–281 (2017).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 440 (2017).Article 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).Article 

    Google Scholar 
    Herrero, J., Garcia-Serrano, A., Couto, S., Ortuno, V. M. & Garcia-Gonzalez, R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur. J. Wildl. Res. 52, 245–250 (2006).Article 

    Google Scholar 
    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).Article 

    Google Scholar 
    Horčičková, E., Brůna, J. & Vojta, J. Wild boar (Sus scrofa) increases species diversity of semidry grassland: Field experiment with simulated soil disturbances. Ecol. Evol. 9, 2765–2774 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massei, G. & Genov, P. V. The environmental impact of wild boar. Galemys Bol. Inf. Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 135–145 (2004).
    Google Scholar 
    Sandom, C. J., Hughes, J. & Macdonald, D. W. Rewilding the scottish highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 21, 336–343 (2013).Article 

    Google Scholar 
    Wirthner, S. et al. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can. J. For. Res.-Rev. Can. Rech. For. 42, 585–592 (2012).CAS 
    Article 

    Google Scholar 
    Bankovich, B., Boughton, E., Boughton, R., Avery, M. L. & Wisely, S. M. Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agric. Ecosyst. Environ. 220, 45–54 (2016).Article 

    Google Scholar 
    Felix, R. K., Orzell, S. L., Tillman, E. A., Engeman, R. M. & Avery, M. L. Fine-scale, spatial and temporal assessment methods for feral swine disturbances to sensitive plant communities in south-central Florida. Environ. Sci. Pollut. Res. 21, 10399–10406 (2014).Article 

    Google Scholar 
    Boonman-Berson, S., Driessen, C. & Turnhout, E. Managing wild minds: From control by numbers to a multinatural approach in wild boar management in the Veluwe, the Netherlands. Trans. Inst. Br. Geogr. 44, 2–15 (2019).Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!-Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brunet, J., Hedwall, P. O., Holmstrom, E. & Wahlgren, E. Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nord. J. Bot. 34, 120–128 (2016).Article 

    Google Scholar 
    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).Article 

    Google Scholar 
    Fagiani, S. et al. Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix Ital. J. Mamm. 25, 31–38 (2014).
    Google Scholar 
    Bruinderink, G. W. T. A. G. & Hazebroek, E. Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For. Ecol. Manag. 88, 71–80 (1996).Article 

    Google Scholar 
    Pankova, N. L., Markov, N. I. & Vasina, A. L. Effect of the rooting activity of wild boar Sus scrofa on plant communities in the middle Taiga of Western Siberia. Russ. J. Biol. Invasions 11, 363–371 (2020).Article 

    Google Scholar 
    Carpio, A. J. et al. Effect of wild ungulate density on invertebrates in a Mediterranean ecosystem. Anim. Biodivers. Conserv. 37, 115–125 (2014).Article 

    Google Scholar 
    Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojeda, R. A. Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J. Arid Environ. 74, 1582–1585 (2010).ADS 
    Article 

    Google Scholar 
    Kenyeres, Z., Szabo, S. & Bauer, N. Conservation possibilities of the rare grasshopper Stenobothrus eurasius Zubovski, 1898 are hampered by wild game in its fragmented western outposts. J. Insect Conserv. 24, 115–124 (2020).Article 

    Google Scholar 
    Reading, C. J. & Jofre, G. M. Habitat use by grass snakes and three sympatric lizard species on lowland heath managed using ‘conservation grazing’. Herpetol. J. 26, 131–138 (2016).
    Google Scholar 
    de Schaetzen, F., van Langevelde, F. & WallisDeVries, M. F. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands. J. Insect Conserv. 22, 51–59 (2018).Article 

    Google Scholar 
    Albrecht, H. & Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 22, 2243–2267 (2013).Article 

    Google Scholar 
    Cilliers, S. S., Müller, N. & Drewes, E. Overview on urban nature conservation: Situation in the western-grassland biome of South Africa. Urban For. Urban Green. 3, 49–62 (2004).Article 

    Google Scholar 
    Becker, M. & Buchholz, S. The sand lizard moves downtown-habitat analogues for an endangered species in a metropolitan area. Urban Ecosyst. 19, 361–372 (2016).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Impervious Soil Coverage (Sealing of Soil Surface). (2016).Fischer, L. K., von der Lippe, M., Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 30 (2020).
    Google Scholar 
    LUA. Brandenburg State Environmental Office. Brandenburg State Environmental Office. Catalogue of Natural Habitats and Species of Appendices I and II of the Habitats Directive in Brandenburg: German Institute for Standardization. (2002).Leuschner, C. & Ellenberg, H. Ecology of central European non-forest vegetation: Coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Volume II. (Springer, 2017).Kotanen, P. M. Responses of vegetation to a changing regime of disturbance-effects of feral pigs in a Californian Coastal Prairie. Ecography 18, 190–199 (1995).Article 

    Google Scholar 
    Dovrat, G., Perevolotsky, A. & Ne’eman, G. The response of mediterranean herbaceous community to soil disturbance by native wild boars. Plant Ecol. 215, 531–541 (2014).Article 

    Google Scholar 
    Haaverstad, O., Hjeljord, O. & Wam, H. K. Wild boar rooting in a northern coniferous forest-minor silviculture impact. Scand. J. For. Res. 29, 90–95 (2014).Article 

    Google Scholar 
    van der Maarel, E. & Franklin, J. (Eds. ). Vegetation Ecology. (2nd edition. Wiley, 2012).Hennekens, S. M. & Schaminee, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Seitz, B., Ristow, M., Meißner, J., Machatzi, B. & Sukopp, H. Rote Liste und Gesamtartenliste der etablierten Farn- und Blütenpflanzen von Berlin. in Der Landesbeauftragte für Naturschutzt und Landschaftspflege, Senatsverwaltung für Umwelt, Klima und Verkehr (Hrsg): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von 118 (2018). doi:https://doi.org/10.14279/depositonce-6689.Jäger, E. J. Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband (W. Rothmaler, founder). (Spektrum, 2011).Landeck, I. Kartieranleitung Heuschrecken für das Naturschutzfachliche Monitoring im Naturparadies Grünhaus und im “Revier 55”. (Forschungsinstitut für Bergbaufolgelandschaften, Finsterwalde, 2007).Fischer, J. et al. Die Heuschrecken Deutschlands und Nordtirols-Bestimmen-Beobachten-Schützen. (Quelle & Meyer, 2020).Machatzi, B., Ratsch, A., Prasse, R. & Ristow, M. Rote Liste und Gesamtartenliste der Heuschrecken und Grillen (Saltatoria: Ensifera et Caelifera) von Berlin. (2005).Doerpinghaus, A. et al. Methoden zur Erfassung von Arten der Anhänge IV und V der FFH-Richtlinie. Naturschutz Biol. Vielfalt 20, 454 (2005).
    Google Scholar 
    Beery, S., Morris, D. & Yang, S. Efficient Pipeline for Camera Trap Image Review. ArXiv Prepr. arXiv:190706772 (2019).Greco, I. et al. Guest or pest? Spatio-temporal occurrence and effects on soil and vegetation of the wild boar on Elba island. Mamm. Biol. https://doi.org/10.1007/s42991-020-00083-1 (2020).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Zhang, D. Coefficients of Determination for Mixed-Effects Models. arXiv:200708675 (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://CRAN.R-project.org/package=vegan (2019).Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human-Wildlife Interact. 5, 5008 (2011).
    Google Scholar 
    Bueno, C. G., Alados, C. L., Gomez-Garcia, D., Barrio, I. C. & Garcia-Gonzalez, R. Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. J. Zool. 279, 195–202 (2009).Article 

    Google Scholar 
    Cuevas, M. F., Mastrantonio, L., Ojeda, R. A. & Jaksic, F. M. Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert. Argentina. Mamm. Biol. 77, 299–306 (2012).Article 

    Google Scholar 
    Cushman, J. H., Tierney, T. A. & Hinds, J. M. Variable effects of feral pig disturbances on native and exotic plants in a California grassland. Ecol. Appl. 14, 1746–1756 (2004).Article 

    Google Scholar 
    Cuevas, M. F., Campos, C. M., Ojeda, R. A. & Jaksic, F. M. Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina. Biol. Invasions 22, 1607–1621 (2020).Article 

    Google Scholar 
    Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tierney, T. A. & Cushman, J. H. Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biol. Invasions 8, 1073–1089 (2006).Article 

    Google Scholar 
    Buchholz, S., Seitz, B., Hiller, A., von der Lippe, M. & Kowarik, I. Impacts of dogs on urban grassland ecosystems. Landsc. Urban Plan. 215, 104201 (2021).Article 

    Google Scholar 
    Heinken, T., Schmidt, M., von Oheimb, G., Kriebitzsch, W. U. & Ellenberg, H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl. Ecol. 7, 31–44 (2006).Article 

    Google Scholar 
    Heinken, T. Dispersal of plants by a dog in a deciduous forest. Bot. Jahrb Syst. 122, 449–467 (2000).
    Google Scholar 
    Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).Article 

    Google Scholar 
    Gardiner, T. & Hassall, M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 13, 97–102 (2009).Article 

    Google Scholar 
    Willott, S. J. Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct. Ecol. 11, 705–713 (1997).Article 

    Google Scholar 
    Wouters, B. et al. The effects of shifting vegetation mosaics on habitat suitability for coastal dune fauna-a case study on sand lizards (Lacerta agilis). J. Coast. Conserv. 16, 89–99 (2012).Article 

    Google Scholar 
    De Bruyn, GJ. Animal communities in Dutch dunes. in Van der Maarel E (ed) Dry coastal ecosystems: General aspects. (ed. Elsevier, A.) 361–386 (1997).Seidling, W. Recent changes in forest vegetation in an area on the outskirts of Berlin. in H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the urban environment 223 (1990). More

  • in

    The impact of restoration methods for Solidago-invaded land on soil invertebrates

    Bauer, T., Bäte, D. A., Kempfer, F. & Schirmel, J. Differing impacts of two major plant invaders on urban plant-dwelling spiders (Araneae) during flowering season. Biol. Invasions 23(5), 1473–1485. https://doi.org/10.1007/s10530-020-02452-w (2021).Article 

    Google Scholar 
    Ustinova, E. N., Schepetov, D. M., Lysenkov, S. N. & Tiunov, A. V. Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses. Soil Biol. Biochem. 159, 108288. https://doi.org/10.1016/j.soilbio.2021.108288 (2021).CAS 
    Article 

    Google Scholar 
    Tanner, R. A. et al. Impacts of an Invasive Non-Native Annual Weed, Impatiens glandulifera, on Above- and Below-Ground Invertebrate Communities in the United Kingdom. PLoS ONE 8(6), e67271. https://doi.org/10.1371/journal.pone.0067271 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982. https://doi.org/10.1016/j.scitotenv.2021.147982 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Species Biol. 30(4), 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).Article 

    Google Scholar 
    Bobuľská, L., Demková, L., Čerevková, A. & Renčo, M. Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8), 134. https://doi.org/10.3390/d11080134 (2019).CAS 
    Article 

    Google Scholar 
    Sterzyńska, M., Shrubovych, J. & Nicia, P. Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows. Pedobiologia 64, 1–7. https://doi.org/10.1016/j.pedobi.2017.07.004 (2017).Article 

    Google Scholar 
    Zubek, S. et al. Solidago canadensis invasion in abandoned arable fields induces minor changes in soil properties and does not affect the performance of subsequent crops. Land Degrad. Dev. 31(3), 1–12. https://doi.org/10.1002/ldr.3452 (2019).Article 

    Google Scholar 
    Čerevková, A., Miklisová, D., Bobul’ská, L. & Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 94, 1–14. https://doi.org/10.1017/S0022149X19000324 (2020).Article 

    Google Scholar 
    de Groot, M., Kleijn, D. & Jogan, N. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136(4), 612–617. https://doi.org/10.1016/j.biocon.2007.01.005 (2007).Article 

    Google Scholar 
    Baranová, B., Manko, P. & Jászay, T. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect. Conserv. 18(4), 623–635. https://doi.org/10.1007/s10841-014-9666-0 (2014).Article 

    Google Scholar 
    Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15(11), 2403–2414. https://doi.org/10.1007/s10530-013-0461-8 (2013).Article 

    Google Scholar 
    Kajzer-Bonk, J., Szpiłyk, D. & Woyciechowski, M. Invasive goldenrods affect abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). J. Insect Conserv. 20(1), 99–105. https://doi.org/10.1007/s10841-016-9843-4 (2016).Article 

    Google Scholar 
    Trigos-Peral, G. et al. Ant communities and Solidago plant invasion: Environmental properties and food sources. Entomol. Sci. 21(3), 270–278. https://doi.org/10.1111/ens.12304 (2018).Article 

    Google Scholar 
    Fenesi, A. et al. Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl. Ecol. 16(4), 335–346. https://doi.org/10.1016/j.baae.2015.03.003 (2015).Article 

    Google Scholar 
    Sheley, R. L., Mangold, J. M. & Anderson, J. L. Potential for successional theory to guide restoration of invasive-plant-dominated rangeland. Ecol. Monogr. 76(3), 365–379. https://doi.org/10.1890/0012-9615(2006)076[0365:PFSTTG]2.0.CO;2 (2006).Article 

    Google Scholar 
    Byun, C., de Blois, S. & Brisson, J. Management of invasive plants through ecological resistance. Biol. Invasions 20(1), 13–27. https://doi.org/10.1007/s10530-017-1529-7 (2018).Article 

    Google Scholar 
    Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 57(9), 1806–1817. https://doi.org/10.1111/1365-2664.13656 (2020).Article 

    Google Scholar 
    Zaller, J. G. et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ. Sci. Eur. 33(1), 1–16. https://doi.org/10.1186/s12302-021-00492-0 (2021).CAS 
    Article 

    Google Scholar 
    Szymura, M., Świerszcz, S. & Szymura, T. H. Restoration of ecologically valuable grassland on sites degraded by invasive Solidago: Lessons from a six year experiment. Land Degrad. Dev. https://doi.org/10.1002/ldr.4278 (2022).Article 

    Google Scholar 
    Świerszcz, S., Szymura, M., Wolski, K. & Szymura, T. H. Comparison of methods for restoring meadows invaded by Solidago species. Pol. J. Environ. Stud. 26(3), 1251–1258. https://doi.org/10.15244/pjoes/67338 (2017).Article 

    Google Scholar 
    Nagy, D. U. et al. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 60(3), 232–240. https://doi.org/10.1111/wre.12417 (2020).Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. https://doi.org/10.1038/nature13855 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, Oxford, 2010).
    Google Scholar 
    Gruss, I. et al. Microarthropods and vegetation as biological indicators of soil quality studied in poor sandy sites at former military facilities. Land Degrad. Dev. 33(2), 358–367. https://doi.org/10.1002/ldr.4157 (2022).Article 

    Google Scholar 
    Sabais, A. C. W., Scheu, S. & Eisenhauer, N. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol. 37(3), 195–202. https://doi.org/10.1016/j.actao.2011.02.002 (2011).ADS 
    Article 

    Google Scholar 
    Kardol, P. & Wardle, D. A. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25(11), 670–679. https://doi.org/10.1016/j.tree.2010.09.001 (2010).Article 
    PubMed 

    Google Scholar 
    Eviner, V. T. & Hawkes, C. V. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 16(4), 713–729. https://doi.org/10.1111/j.1526-100X.2008.00482.x (2008).Article 

    Google Scholar 
    Zhao, J., Chen, J., Wu, H., Li, L. & Pan, F. Effects of mowing frequency on soil nematode diversity and community structure in a chinese meadow steppe. Sustainability 13, 5555. https://doi.org/10.3390/su13105555 (2021).Article 

    Google Scholar 
    Hyvönen, T. et al. Aboveground and belowground biodiversity responses to seed mixtures and mowing in a long-term set-aside experiment. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2021.107656 (2021).Article 

    Google Scholar 
    Gilmullina, A., Rumpel, C., Blagodatskaya, E. & Chabbi, A. Management of grasslands by mowing versus grazing – impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103701 (2020).Article 

    Google Scholar 
    Kladivko, E. J. Tillage systems and soil ecology. Soil Tillage Res. 61(1–2), 61–76. https://doi.org/10.1016/S0167-1987(01)00179-9 (2001).Article 

    Google Scholar 
    Bispo, A. et al. Indicators for monitoring soil biodiversity. Integr. Environ. Assess. Manag. 5(4), 717–719 (2009).CAS 
    Article 

    Google Scholar 
    Santorufo, L., van Gestel, C. A. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Boyce R. L. Life Under Your Feet: Measuring soil invertebrate diversity. Teaching Issues and Experiments in Ecology, Ecological Society of America, 3: Experiment #1. https://tiee.esa.org/vol/v3/experiments/soil/downloads.html (2005).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–656 (1948).MathSciNet 
    Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 (1966).ADS 
    Article 

    Google Scholar 
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    Jones, H. P. Impact of ecological restoration on ecosystem services. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 199–208 (Academic Press, New York, 2013).Chapter 

    Google Scholar 
    Menta, C. Soil fauna diversity – function, soil degradation, biological indices, soil restoration. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (IntechOpen, London, 2012).
    Google Scholar 
    Hoffland, E., Kuyper, T. W., Comans, R. N. & Creamer, R. E. Eco-functionality of organic matter in soils. Plant Soil 455(1), 1–22. https://doi.org/10.1007/s11104-020-04651-9 (2020).CAS 
    Article 

    Google Scholar 
    Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J. & Ruiz-Téllez, T. A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability 12(7), 3007. https://doi.org/10.3390/su12073007 (2020).Article 

    Google Scholar 
    van Eekeren, N. et al. Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agric. Ecosyst. Environ. 323, 107682. https://doi.org/10.1016/j.agee.2021.107682 (2022).Article 

    Google Scholar 
    Humbert, J. Y., Ghazoul, J., Sauter, G. J. & Walter, T. Impact of different meadow mowing techniques on field invertebrates. J. Appl. Entomol. 134(7), 592–599. https://doi.org/10.1111/j.1439-0418.2009.01503.x (2010).Article 

    Google Scholar 
    Steidle, J. L. M., Kimmich, T., Csader, M. & Betz, O. Negative impact of roadside mowing on arthropod fauna and its reduction with ‘arthropod-friendly’ mowing technique. J. Appl. Entomol. https://doi.org/10.1111/jen.12976 (2022).Article 

    Google Scholar 
    Briones, M. J. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).Article 

    Google Scholar 
    Shao, C., Chen, J., Li, L. & Zhang, L. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. J. Arid Environ. 82, 1–10. https://doi.org/10.1016/j.jaridenv.2012.02.019 (2012).ADS 
    Article 

    Google Scholar 
    de Almeida, T., Forey, E. & Chauvat, M. Alien invasive plant effect on soil fauna is habitat dependent. Diversity 14(2), 61. https://doi.org/10.3390/d14020061 (2022).CAS 
    Article 

    Google Scholar 
    Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107. https://doi.org/10.1016/j.soilbio.2012.02.025 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen, H. Collembolan communities in shrublands along climatic gradients in Europe and the effects of experimental warming and drought on population density, biomass and diversity. Soil Org. 83(3), 463–488 (2011).
    Google Scholar 
    Eisenhauer, N. et al. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41(12), 2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001 (2009).CAS 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6(1), 15–18. https://doi.org/10.1371/journal.pone.0016055 (2011).CAS 
    Article 

    Google Scholar 
    Gao, D., Wang, X., Fu, S. & Zhao, J. Legume plants enhance the resistance of soil to ecosystem disturbance. Front. Plant Sci. 8, 1295. https://doi.org/10.3389/fpls.2017.01295 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, G., Roy, J., Veresoglou, S. D. & Rillig, M. C. Soil biodiversity enhances the persistence of legumes under climate change. New Phytol. 229(5), 2945–2956. https://doi.org/10.1111/nph.17065 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, J., Zeng, Z., He, X., Chen, H. & Wang, K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. Eur. J. Soil Biol. 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008 (2015).CAS 
    Article 

    Google Scholar 
    Zhao, J., Wang, X., Wang, X. & Fu, S. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil 385(1), 273–286. https://doi.org/10.1007/s11104-014-2234-2 (2014).CAS 
    Article 

    Google Scholar 
    Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233. https://doi.org/10.1007/s11104-009-0013-2 (2009).CAS 
    Article 

    Google Scholar 
    Hector, A., Dobson, K., Minns, A., Bazeley-White, E. & Hartley Lawton, J. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol. Res. 16(5), 819–83. https://doi.org/10.1046/j.1440-1703.2001.00443.x (2001).Article 

    Google Scholar 
    Gastine, A., Scherer-Lorenzen, M. & Leadley, P. W. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl. Ecol. 24, 101–111. https://doi.org/10.1016/S0929-1393(02)00137-3 (2003).Article 

    Google Scholar 
    Scherber, C. et al. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147(3), 489–500. https://doi.org/10.1007/s00442-005-0281-3 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K. & Bengtsson, J. Plant species effects on soil nematode communities in experimental grasslands. Appl. Soil Ecol. 30(2), 90–103. https://doi.org/10.1016/j.apsoil.2005.02.007 (2005).Article 

    Google Scholar 
    Viketoft, M. et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1), 90–99. https://doi.org/10.1890/08-0382.1 (2009).Article 
    PubMed 

    Google Scholar  More