More stories

  • in

    Ecological sensitivity and vulnerability of fishing fleet landings to climate change across regions

    Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 1–8 (2020).Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the paris agreement to ocean life, economies, and people. Sci. Adv. 5, 1–10 (2019).Article 

    Google Scholar 
    Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619 (2019).
    Google Scholar 
    Finkbeiner, E. M. The role of diversification in dynamic small-scale fisheries: Lessons from Baja California Sur. Mexico. Glob. Environ. Chang. 32, 139–152 (2015).Article 

    Google Scholar 
    Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).Article 

    Google Scholar 
    IPCC. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. (2007).Johnson, J. E. & Welch, D. J. Climate change implications for Torres Strait fisheries: Assessing vulnerability to inform adaptation. Clim. Change 135, 611–624 (2016).ADS 
    Article 

    Google Scholar 
    IPCC. Annex I: Glossary. in IPCC special report on the ocean and cryosphere in a changing climate e [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)] 677–702 (Cambridge University Press, 2019). https://doi.org/10.1017/9781009157964.010Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).ADS 
    Article 

    Google Scholar 
    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 80(279), 860 (1998).ADS 
    Article 

    Google Scholar 
    Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Rashid Sumaila, U. Projected change in global fisheries revenues under climate change. Sci. Rep. 6(6), 13 (2016).
    Google Scholar 
    Heck, N. et al. Fisheries at risk: Vulnerability of fisheries to climate change (Nat. Conserv. Tech. Rep, 2020).
    Google Scholar 
    Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).Article 

    Google Scholar 
    DuFour, M. R. et al. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations. Ecosphere 6(12), 1 (2015).Article 

    Google Scholar 
    Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. U. S. A. 110, 2076–2081 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bahri, T. et al. Adaptive management of fisheries in response to climate change. FAO Fisheries and Aquaculture Technical Paper 667, (FAO, 2021).Barker, M. J. & Schluessel, V. Managing global shark fisheries: Suggestions for prioritizing management strategies. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 325–347 (2005).Article 

    Google Scholar 
    Fletcher, W. J. F. & Fletcher, W. J. The application of qualitative risk assessment methodology to prioritize issues for fisheries management. ICES J. Mar. Sci. 62, 1576–1587 (2005).Article 

    Google Scholar 
    Cheung, W. W. L. The future of fishes and fisheries in the changing oceans. J. Fish Biol. 92, 790–803 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS ONE 8(9), e74321 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colburn, L. L. et al. Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Mar. Policy 74, 323–333 (2016).Article 

    Google Scholar 
    Pinnegar, J. K. et al. Assessing vulnerability and adaptive capacity of the fisheries sector in Dominica: Long-term climate change and catastrophic hurricanes. ICES J. Mar. Sci. 76, 1353–1367 (2019).
    Google Scholar 
    Aragão, G. M. et al. The importance of regional differences in vulnerability to climate change for demersal fisheries. ICES J. Mar. Sci. 1, 1–13 (2021).
    Google Scholar 
    Payne, M. R., Kudahl, M., Engelhard, G. H., Peck, M. A. & Pinnegar, J. K. Climate risk to European fisheries and coastal communities. Proc. Natl. Acad. Sci. U. S. A. 118, e2018086118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baptista, V., Silva, P. L., Relvas, P., Teodósio, M. A. & Leitão, F. Sea surface temperature variability along the Portuguese coast since 1950. Int. J. Climatol. 38, 1145–1160 (2018).Article 

    Google Scholar 
    Leitão, F. et al. (2019) A 60-year time series analyses of the upwelling along the Portuguese coast. Water 11(11), 1285 (2019).Article 

    Google Scholar 
    Leitão, F., Relvas, P., Cánovas, F., Baptista, V. & Teodósio, A. Northerly wind trends along the Portuguese marine coast since 1950. Theor. Appl. Climatol. 137(1), 19 (2018).
    Google Scholar 
    Bueno-Pardo, J. et al. Trends and drivers of marine fish landings in Portugal since its entrance in the European Union. ICES J. Mar. Sci. 77, 988–1001 (2020).Article 

    Google Scholar 
    Leitão, F., Maharaj, R. R., Vieira, V. M. N. C. S., Teodósio, A. & Cheung, W. W. L. The effect of regional sea surface temperature rise on fisheries along the Portuguese Iberian Atlantic coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1351–1359 (2018).Article 

    Google Scholar 
    Leitão, F., Alms, V. & Erzini, K. A multi-model approach to evaluate the role of environmental variability and fishing pressure in sardine fisheries. J. Mar. Syst. 139, 128–138 (2014).Article 

    Google Scholar 
    Ullah, H., Leitão, F., Baptista, V. & Chícharo, L. An analysis of the impacts of climatic variability and hydrology on the coastal fisheries, Engraulis encrasicolus and Sepia officinalis, of Portugal. Ecohydrol. Hydrobiol. 12, 337–352 (2012).Article 

    Google Scholar 
    EUMOFA. The EU Fish Market – Highlights the EU in the world market supply consumption import-export landings in the EU aquaculture (2021) https://doi.org/10.2771/563899DGPM. Relatório de Monitorização da Estratégia Nacional para o Mar 2013–2020, Documento de Suporte às Políticas do Mar. (2020).Almeida, C., Karadzic, V. & Vaz, S. The seafood market in Portugal: Driving forces and consequences. Mar. Policy 61, 87–94 (2015).Article 

    Google Scholar 
    Pita, C. & Gaspar, M. (2020) Small-Scale Fisheries in Portugal: Current Situation, Challenges and Opportunities for the Future. In Small-Scale Fisheries in Europe: Status, Resilience and Governance. Springer, Cham 283–305https://doi.org/10.1007/978-3-030-37371-9_14Baeta, F., José Costa, M. & Cabral, H. Changes in the trophic level of Portuguese landings and fish market price variation in the last decades. Fish. Res. 97, 216–222 (2009).Article 

    Google Scholar 
    Leitão, F. Landing profiles of Portuguese fisheries: Assessing the state of stocks. Fish. Manag. Ecol. 22, 152–163 (2015).Article 

    Google Scholar 
    Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal. Sci. Rep. 11, 2958 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Szynaka, M. J., Erzini, K., Gonçalves, J. M. S. & Campos, A. Identifying métiers using landings profiles: An octopus-driven multi-gear coastal fleet. J. Mar. Sci. Eng. 9, 1022 (2021).Article 

    Google Scholar 
    Gamito, R., Teixeira, C. M., Costa, M. J. & Cabral, H. N. Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Reg. Environ. Chang. 13, 413–421 (2013).Article 

    Google Scholar 
    Leitão, F., Baptista, V., Zeller, D. & Erzini, K. Reconstructed catches and trends for mainland Portugal fisheries between 1938 and 2009: Implications for sustainability, domestic fish supply and imports. Fish. Res. 155, 33–50 (2014).Article 

    Google Scholar 
    Teixeira, C. M. et al. Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg. Environ. Chang. 14, 657–669 (2014).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 3–900051–07–0 (2020).Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685 (2003).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Smith, G. M. (2007) Analysing Ecological Data. https://doi.org/10.1007/978-0-387-45972-1Anderson, M., Gorley, R. & Clarke, K. PERMANOVA for PRIMER: Guide to software and statistical methods. (PRIMER-E Ltd., 2008).Heppell, S. S., Heppell, S. a, Read, A. J. & Crowder, L. B. Effects of fishing on long-lived marine organisms. In Marine conservation biology: The science of maintaining the sea’s biodiversity (eds. Norse, E. & Crowder, L.) 211–231 (Island Press, 2005).Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean sea based on fishers’ perceptions. PLoS ONE 6, e21818 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rolland, V., Barbraud, C. & Weimerskirch, H. Combined effects of fisheries and climate on a migratory long-lived marine predator. J. Appl. Ecol. 45, 4–13 (2008).Article 

    Google Scholar 
    Alves, L. M. F., Correia, J. P. S., Lemos, M. F. L., Novais, S. C. & Cabral, H. Assessment of trends in the Portuguese elasmobranch commercial landings over three decades (1986–2017). Fish. Res. 230, 105648 (2020).Article 

    Google Scholar 
    Correia, J. P., Morgado, F., Erzini, K. & Soares, A. M. V. M. Elasmobranch landings for the Portuguese commercial fishery from 1986 to 2009. Arquipel. Life Mar. Sci. 33, 81–109 (2016).
    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’ phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    Moura, T. et al. Assessing spatio-temporal changes in marine communities along the Portuguese continental shelf and upper slope based on 25 years of bottom trawl surveys. Mar. Environ. Res. 160, 105044 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martins, M. M., Skagen, D., Marques, V., Zwolinski, J. & Silva, A. Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fisheries off Portugal. Sci. Mar. 77, 551–563 (2013).Article 

    Google Scholar 
    Bordalo-Machado, P. & Figueiredo, I. The fishery for black scabbardfish (Aphanopus carbo Lowe, 1839) in the Portuguese continental slope. Rev. Fish Biol. Fish. 19, 49–67 (2009).Article 

    Google Scholar 
    Gordo, L. S. Black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern Northeast Atlantic: Considerations on its fishery. Sci. Mar. 73, 11–16 (2009).Article 

    Google Scholar 
    Campos, A., Fonseca, P., Fonseca, T. & Parente, J. Definition of fleet components in the Portuguese bottom trawl fishery. Fish. Res. 83, 185–191 (2007).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Deep-sea crustacean trawling fisheries in Portugal: Quantification of effort and assessment of landings per unit effort using a Vessel Monitoring System (VMS). Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    Gamito, R., Pita, C., Teixeira, C., Costa, M. J. & Cabral, H. N. Trends in landings and vulnerability to climate change in different fleet components in the Portuguese coast. Fish. Res. 181, 93–101 (2016).Article 

    Google Scholar 
    García-Seoane, E., Marques, V., Silva, A. & Angélico, M. M. Spatial and temporal variation in pelagic community of the western and southern Iberian Atlantic waters. Estuar. Coast. Shelf Sci. 221, 147–155 (2019).ADS 
    Article 

    Google Scholar 
    Vinagre, C., Duarte, F., Cabral, H. & Jose, M. Impact of climate warming upon the fish assemblages of the Portuguese coast under different scenarios. Reg. Environ. Change 11(4), 779. https://doi.org/10.1007/s10113-011-0215-z (2011).Article 

    Google Scholar 
    Goulart, P., Veiga, F. J. & Grilo, C. The evolution of fisheries in Portugal: A methodological reappraisal with insights from economics. Fish. Res. 199, 76–80 (2018).Article 

    Google Scholar 
    Pita, C., Pereira, J., Lourenço, S., Sonderblohm, C. & Pierce, G. J. (2015) The Traditional Small-Scale Octopus Fishery in Portugal: Framing Its Governability. 117–132. https://doi.org/10.1007/978-3-319-17034-3_7Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).Article 

    Google Scholar 
    Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).ADS 
    Article 

    Google Scholar 
    Sbrana, M. et al. Spatiotemporal abundance pattern of deep-water rose shrimp, parapenaeus longirostris, and Norway lobster, nephrops norvegicus, in european mediterranean waters. Sci. Mar. 83, 71–80 (2019).Article 

    Google Scholar 
    Quattrocchi, F., Fiorentino, F., Lauria, V. & Garofalo, G. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158, 101871 (2020).Article 

    Google Scholar 
    Colloca, F., Mastrantonio, G., Lasinio, G. J., Ligas, A. & Sartor, P. Parapenaeus longirostris (Lucas, 1846) an early warning indicator species of global warming in the central Mediterranean Sea. J. Mar. Syst. 138, 29–39 (2014).Article 

    Google Scholar 
    Woods, P. J. et al. (2021) A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change. ICES J. Mar. Sci. fsab146Gonzalez-Mon, B. et al. Spatial diversification as a mechanism to adapt to environmental changes in small-scale fisheries. Environ. Sci. Policy 116, 246–257 (2021).Article 

    Google Scholar 
    Garza-Gil, M. D., Torralba-Cano, J. & Varela-Lafuente, M. M. Evaluating the economic effects of climate change on the European sardine fishery. Reg. Environ. Chang. 11, 87–95 (2011).Article 

    Google Scholar 
    Borges, M. F., Santos, A. M. P., Crato, N., Mendes, H. & Mota, B. Sardine regime shifts off Portugal: A time series analysis of catches and wind conditions. Sci. Mar. 67, 235–244 (2003).Article 

    Google Scholar 
    Garrido, S. et al. Temperature and food-mediated variability of European Atlantic sardine recruitment. Prog. Oceanogr. 159, 267–275 (2017).ADS 
    Article 

    Google Scholar 
    ICES. Report of the working group on southern horse mackerel, anchovy and sardine (WGHANSA). (2018).Szalaj, D. et al. Food-web dynamics in the Portuguese continental shelf ecosystem between 1986 and 2017: Unravelling drivers of sardine decline. Estuar. Coast. Shelf Sci. 251, 107259 (2021).Article 

    Google Scholar 
    Feijó, D. et al. Catch and yield trends of the Portuguese purse seine fishery (2006–2018). Front. Mar. Sci. https://doi.org/10.3389/conf.fmars.2019.08.00013 (2019).Article 

    Google Scholar 
    Schickele, A., Francour, P. & Raybaud, V. European cephalopods distribution under climate-change scenarios. Sci. Rep. 11, 3930 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purcell, S. W., Crona, B. I., Lalavanua, W. & Eriksson, H. Distribution of economic returns in small-scale fisheries for international markets: A value-chain analysis. Mar. Policy 86, 9–16 (2017).Article 

    Google Scholar 
    Thiao, D., Leport, J., Ndiaye, B. & Mbaye, A. Need for adaptive solutions to food vulnerability induced by fish scarcity and unaffordability in Senegal. Aquat. Living Resour. 31, 25 (2018).Article 

    Google Scholar 
    Education, A. & Variability, H. Cardoso, C., Lourenço, H., Costa, S., Gonçalves, S. & Leonor Nunes, M. Survey Into the Seafood Consumption Preferences and Patterns in the Portuguese Population. J. Food Prod. Mark. 22, 421–435 (2016).Article 

    Google Scholar 
    Holsten, A. & Kropp, J. P. An integrated and transferable climate change vulnerability assessment for regional application. Nat. Hazards 64, 1977–1999 (2012).Article 

    Google Scholar 
    Umweltbundesamt guidelines for climate impact and vulnerability assessments recommendations of the interministerial working group on adaptation to climate change of the German federal government for our environment. More

  • in

    Global distribution of soil fauna functional groups and their estimated litter consumption across biomes

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).Article 
    PubMed 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hicks Pries, C. E., Castanha, C., Porras, R., Phillips, C. & Torn, M. S. Response to comment on “The whole-soil carbon flux in response to warming”. Science 359, 1420–1423 (2018).Article 

    Google Scholar 
    Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Fričová, K. & Bartuška, M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 78, 58–64 (2014).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 25, 130–150 (2016).
    Google Scholar 
    Lavelle, P. et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 34, 26–41 (1998).
    Google Scholar 
    Lavelle, P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 33, 3–16 (1996).
    Google Scholar 
    Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).Xiong, W. et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12, 634–638 (2018).PubMed 
    Article 

    Google Scholar 
    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).PubMed 
    Article 

    Google Scholar 
    Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).Article 

    Google Scholar 
    Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2014.04.012 (2014).Article 

    Google Scholar 
    McCay, T. S., Cardelus, C. L. & Neatrour, M. A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 304, 254–260 (2013).Article 

    Google Scholar 
    Slade, E. M. & Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 13, 423–431 (2012).Article 

    Google Scholar 
    Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.13178 (2018).Article 

    Google Scholar 
    Hättenschwiler, S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. https://doi.org/10.1046/j.1365-2486.2001.00402.x (2015).Article 

    Google Scholar 
    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 
    Article 

    Google Scholar 
    Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A. & Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 50, 447–462 (2007).Article 

    Google Scholar 
    Frouz, J., Elhottová, D., Kuráž, V. & Šourková, M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 33, 308–320 (2006).Article 

    Google Scholar 
    García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melguizo-Ruiz, N. et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346 (2020).PubMed 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13492 (2022).Article 

    Google Scholar 
    Coq, S. et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma 422, 115940 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 105, 103561 (2020).Article 

    Google Scholar 
    Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1–9 (2020).MathSciNet 
    Article 

    Google Scholar 
    Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 68, 18 (2015).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Spain, A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150 (1993).Article 

    Google Scholar 
    Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).Article 

    Google Scholar 
    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    Tordoff, G. M., Boddy, L. & Jones, T. H. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 40, 434–442 (2008).CAS 
    Article 

    Google Scholar 
    Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frouz, J., Moradi, J., Püschel, D. & Rydlová, J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 10, e02736 (2019).Article 

    Google Scholar 
    Marichal, R. et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 83, 177–185 (2014).Article 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).Article 

    Google Scholar 
    Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 84, 375–389 (2009).PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108, 17720–17725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    James, S. W. et al. Comment on Global distribution of earthworm diversity. Science 371, 4629 (2021).Article 

    Google Scholar 
    Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 62, 36–45 (2013).CAS 
    Article 

    Google Scholar 
    Eppinga, M. B., Kaproth, M. A., Collins, A. R. & Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 99, 503–514 (2011).
    Google Scholar 
    Harrison, K. A., Bol, R. & Bardgett, R. D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 40, 228–237 (2008).CAS 
    Article 

    Google Scholar 
    Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38, 1052–1062 (2006).CAS 
    Article 

    Google Scholar 
    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).Article 

    Google Scholar 
    Preston, C. M. & Trofymow, J. A. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany 78, 1269–1287 (2000).Article 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. PNAS 115, 6506–6511 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, D. C. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 62, 261–286 (1987).Article 

    Google Scholar 
    Cepáková, S. & Frouz, J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 15, 805–815 (2015).
    Google Scholar 
    Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 57, 1048–1060 (2013).CAS 
    Article 

    Google Scholar 
    Salmon, S., Mantel, J., Frizzera, L. & Zanella, A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 237, 47–56 (2006).Article 

    Google Scholar 
    Desie, E. et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 34, 2598–2610 (2020).Article 

    Google Scholar 
    Samson, F. B. & Knopf, F. L. (eds) Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings 130–147 (Springer, 1996).
    Google Scholar 
    Araujo, P. I., Yahdjian, L. & Austin, A. T. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168, 221–230 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 67, 212–225 (2013).CAS 
    Article 

    Google Scholar 
    Hattenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 1–69 (2020).Article 

    Google Scholar 
    Héry, M. et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2, 92–104 (2008).
    Google Scholar 
    Roubickova, A., Mudrak, O. & Frouz, J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils 45, 769–774 (2009).Article 

    Google Scholar 
    Bodine, M. C. & Ueckert, D. N. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 28, 353–358 (1975).Article 

    Google Scholar 
    Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).Article 

    Google Scholar 
    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).Article 

    Google Scholar 
    Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, 0029616 (2012).ADS 
    Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Coq, S. & Ibanez, S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. https://doi.org/10.25674/so91iss3pp107 (2019).Article 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 91, 23–31 (2015).CAS 
    Article 

    Google Scholar 
    Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).Frouz, J., Jedlička, P., Šimáčková, H. & Lhotáková, Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 71, 21–27 (2015).Article 

    Google Scholar 
    Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Buis, G. M. et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems 12, 982–995 (2009).CAS 
    Article 

    Google Scholar 
    O’Neill, D. W. & Abson, D. J. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69, 319–327 (2009).Article 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Yanai, R. D. et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 43, 279–287 (1999).
    Google Scholar 
    Shchelchkova, M., Davydov, S., Fyodorov-Davydov, D., Davydova, A. & Boeskorov, G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area). IOP Conf. Ser. Earth Environ. Sci. 438, 012025 (2020).Article 

    Google Scholar 
    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62 (2011).Article 

    Google Scholar 
    Blanchart, E. et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 72, 81–87 (2007).
    Google Scholar 
    Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 94, 94–106 (2016).CAS 
    Article 

    Google Scholar 
    Frouz, J., Pizl, V., Cienciala, E. & Kalcik, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94, 111–121 (2009).CAS 
    Article 

    Google Scholar 
    Milton, Y. & Kaspari, M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153, 163–172 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Portela, M. B. et al. Do ecological corridors increase the abundance of soil fauna? Écoscience 27, 45–57 (2020).Article 

    Google Scholar 
    Prieto, I., Almagro, M., Bastida, F. & Querejeta, J. I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382 (2019).CAS 
    Article 

    Google Scholar 
    Van der Putten, W. H. et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Artz, R. et al. European atlas of soil. Biodiversity. https://doi.org/10.13140/RG.2.1.3178.2880 (2010).Article 

    Google Scholar 
    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Soil Data Centre, 2016).
    Google Scholar 
    Peng, Y. et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407, 115570 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 255 (Oxford University Press, 2005).Book 

    Google Scholar 
    Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, R. B., Mooney, H. A. & Schulze, E.-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94, 7362–7366 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sanchez, G. PLS Path Modeling with R, 235 (2013).Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).Palpurina, S. et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 107, 1038–1050 (2019).CAS 
    Article 

    Google Scholar 
    Green, C. & Byrne, K. A. Biomass: Impact on carbon cycle and greenhouse gas emissions. In Encyclopedia of Energy (ed. Cleveland, C. J.) 223–236 (Elsevier, 2004).Chapter 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).ADS 
    Article 

    Google Scholar 
    Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 115, 1–11 (2010).
    Google Scholar 
    Ni, J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 20, 415–426 (2000).Article 

    Google Scholar 
    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Reeves, M. C., Moreno, A. L., Bagne, K. E. & Running, S. W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 126, 429–442 (2014).ADS 
    Article 

    Google Scholar 
    Cappai, C. et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma 304, 59–67 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Clark, D. A. et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).Article 

    Google Scholar 
    Yanai, R. D., Arthur, M. A., Acker, M., Levine, C. R. & Park, B. B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 42, 1597–1610 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Colonialism shaped today’s biodiversity

    IPCC Climate Change 2022: Summary for Policymakers. (eds Pörtner, H. et al.) (Cambridge Univ. Press, 2022).Lewis, S. L. & Maslin, M. A. The human planet: How we created the Anthropocene. (Yale University Press, 2018).Lenzner, B. et al. Nat. Ecol. Evol. https://doi.org/s41559-022-01865-1 (2022).van Kleunen, M. et al. Nature 525, 100–103 (2015).Article 

    Google Scholar 
    Dawson, W. et al. Nat. Ecol. Evol. 1, 0186 (2017).Article 

    Google Scholar 
    Dyer, E. E. et al. PLoS Biol. 15, e2000942 (2017).Article 

    Google Scholar 
    Mohammed, R. S. et al. Am. Nat. 200, 140–155 (2022).Article 

    Google Scholar 
    Rodrigues, A. S. L. et al. Phil. Trans. R. Soc. Lond. B 374, 20190220 (2019).Article 

    Google Scholar 
    Reddin, C. J., Aberhan, M., Raja, N. B. & Kocsis, Á. T. Glob. Change Biol. 28, 5793–5807 (2022).CAS 
    Article 

    Google Scholar 
    Elton, C. S. The Ecology of Invasions by Animals and Plants. (University of Chicago Press, 1958).Goode, E. Invasive Species Aren’t Always Unwanted. The New York Times https://www.nytimes.com/2016/03/01/science/invasive-species.html (2016).Reo, N. J. & Ogden, L. A. Sustain. Sci. 13, 1443–1452 (2018).Article 

    Google Scholar 
    Simberloff, D. Nature 475, 36 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Enhanced dust emission following large wildfires due to vegetation disturbance

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).Article 

    Google Scholar 
    Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Ann. Rev. Mar. Sci. 14, 303–330 (2022).Article 

    Google Scholar 
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).Article 

    Google Scholar 
    Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).Article 

    Google Scholar 
    Wagner, R., Schepanski, K. & Klose, M. The dust emission potential of agricultural-like fires—theoretical estimates from two conceptually different dust emission parameterizations. J. Geophys. Res. Atmos. 126, e2020JD034355 (2017).
    Google Scholar 
    Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).Article 

    Google Scholar 
    Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).Article 

    Google Scholar 
    Raupach, M. R. Drag and drag partition on rough surfaces. Boundary Layer Meteorol. 60, 375–395 (1992).Article 

    Google Scholar 
    Webb, N. P. et al. Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangel. Ecol. Manag. 76, 78–83 (2021).Article 

    Google Scholar 
    Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).Article 

    Google Scholar 
    Ravi, S. et al. Aeolian processes and the biosphere. Rev. Geophys. 49, RG3001 (2011).Article 

    Google Scholar 
    Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R. & Foltz, R. B. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux. Aeolian Res. 10, 25–36 (2013).Article 

    Google Scholar 
    Wagenbrenner, N. S. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes. Elementa 5, 2 (2017).
    Google Scholar 
    Jeanneau, A. C., Ostendorf, B. & Herrmann, T. Relative spatial differences in sediment transport in fire-affected agricultural landscapes: a field study. Aeolian Res. 39, 13–22 (2019).Article 

    Google Scholar 
    Deb, P. et al. Causes of the widespread 2019–2020 Australian bushfire season. Earths Future 8, e2020EF001671 (2020).Article 

    Google Scholar 
    Nogrady, B. & Nicky, B. The climate link to Australia’s fires. Nature 577, 610–612 (2020).Yu, Y. & Ginoux, P. Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmos. Chem. Phys. 21, 8511–8530 (2021).Article 

    Google Scholar 
    Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).Article 

    Google Scholar 
    Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H. & Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 45, 6690–6701 (2018).Article 

    Google Scholar 
    Brianne, P., Rebecca, H. & David, L. The fate of biological soil crusts after fire: a meta-analysis. Glob. Ecol. Conserv. 24, e01380 (2020).Article 

    Google Scholar 
    Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 15, 458–463 (2022).Article 

    Google Scholar 
    Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).Ginoux, P. Atmospheric chemistry: warming or cooling dust? Nat. Geosci. 10, 246–247 (2017).Article 

    Google Scholar 
    DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).Article 

    Google Scholar 
    Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from cloud–aerosol lidar and infrared Pathfinder satellite observations. Geophys. Res. Lett. 42, 1984–1991 (2015).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).Article 

    Google Scholar 
    Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat. Clim. Change 10, 1045–1051 (2020).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).Article 

    Google Scholar 
    Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17 (2021).Article 

    Google Scholar 
    Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat. Commun. 13, 1250 (2022).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmos. Chem. Phys. 18, 4201–4215 (2018).Article 

    Google Scholar 
    Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).Article 

    Google Scholar 
    NCAR Command Language v.6.6.2 (NCAR, 2019); https://doi.org/10.5065/D6WD3XH5Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).Article 

    Google Scholar 
    Diner, D. J. et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998).Article 

    Google Scholar 
    Pu, B. et al. Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 20, 55–81 (2020).Article 

    Google Scholar 
    Sayer, A. M., Hsu, N. C., Bettenhausen, C. & Jeong, M. J. Validation and uncertainty estimates for MODIS collection 6 ‘Deep Blue’ aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872 (2013).Article 

    Google Scholar 
    Hsu, N. C. et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118, 9296–9315 (2013).Article 

    Google Scholar 
    Ginoux, P., Garbuzov, D. & Hsu, N. C. Identification of anthropogenic and natural dust sources using moderate resolution imaging spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 115, D05204 (2010).Article 

    Google Scholar 
    Eck, T. F. et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999).Article 

    Google Scholar 
    Anderson, T. L. et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 110, 1–16 (2005).Article 

    Google Scholar 
    Baddock, M. C., Bullard, J. E. & Bryant, R. G. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 113, 1511–1528 (2009).Article 

    Google Scholar 
    Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 7, 5553 (2017).Article 

    Google Scholar 
    Pu, B., Ginoux, P., Kapnick, S. B. & Yang, X. Seasonal prediction potential for springtime dustiness in the United States. Geophys. Res. Lett. 46, 9163–9173 (2019).Article 

    Google Scholar 
    Garay, M. J. et al. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628 (2020).Article 

    Google Scholar 
    Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W.-H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J. Geophys. Res. 110, D18S14 (2005).Article 

    Google Scholar 
    Yu, Y. et al. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 118, 13253–13264 (2013).Article 

    Google Scholar 
    Yu, Y., Notaro, M., Kalashnikova, O. V. & Garay, M. J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 121, 289–305 (2016).Article 

    Google Scholar 
    Yu, Y. et al. Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon rainforest. Geophys. Res. Lett. 47, e2020GL088020 (2020).Article 

    Google Scholar 
    Giles, D. M. et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 12, 169–209 (2019).Article 

    Google Scholar 
    O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N. & Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 108, 1–15 (2003).
    Google Scholar 
    Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).Article 

    Google Scholar 
    Esselborn, M. et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus B 61, 131–143 (2009).Article 

    Google Scholar 
    Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (Collection 6) (Univ. Arizona, 2015).Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).Article 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).Article 

    Google Scholar 
    Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M. & McNamara, D. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. Atmos. 103, 31879–31891 (1998).Article 

    Google Scholar 
    Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 (1996).Article 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product 6 (USGS, 2018).Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI Soil Moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).Article 

    Google Scholar 
    Minola, L. et al. Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim. Dyn. 55, 887–907 (2020).Article 

    Google Scholar 
    Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).Article 

    Google Scholar 
    Klose, M. et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 14, 6403–6444 (2021).Article 

    Google Scholar 
    Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack District, Orissa. Int. J. Geol. Earth Environ. Sci. 2, 2277–208170 (2012).
    Google Scholar 
    Yu, Y. & Ginoux, P. Dust emission following large wildfires. figshare. 2022. https://doi.org/10.6084/m9.figshare.20648055.v2 More

  • in

    Naturalized alien floras still carry the legacy of European colonialism

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
    Google Scholar 
    Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).
    Google Scholar 
    Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 7290 (2021).van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).PubMed 

    Google Scholar 
    Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).Pyšek, P. & Richardson, D. M. The biogeography of naturalization in alien plants. J. Biogeogr. 33, 2040–2050 (2006).
    Google Scholar 
    Moser, D. et al. Remoteness promotes biological invasions on islands worldwide. Proc. Natl Acad. Sci. USA 115, 9270–9275 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Q. et al. Latitudinal patterns of alien plant invasions. J. Biogeogr. 48, 253–262 (2021).
    Google Scholar 
    Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).CAS 
    PubMed 

    Google Scholar 
    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).CAS 
    PubMed 

    Google Scholar 
    di Castri, F. in Biological Invasions: A Global Perspective (ed. Drake, J. et al.), Ch. 1 (Wiley, 1989).Crosby, A. W. Ecological Imperialism: The Biological Expansion of Europe, 900–1900 2nd edn (Cambridge Univ. Press, 2004).Diamond, J. M. Guns, Germs, and Steel: The Fates of Human Societies (Norton, 2005).Nunn, N. & Qian, N. The Columbian exchange: a history of disease, food, and ideas. J. Econ. Perspect. 24, 163–188 (2010).
    Google Scholar 
    Beinart, W. & Middleton, K. Plant transfers in historical perspective: a review article. Environ. Hist. Camb. 10, 3–29 (2004).
    Google Scholar 
    Mrozowski, S. A. in Historical Archaeology (eds Hall, M. & Silliman, S. W.) Ch. 2 (Blackwell, 2006).Brockway, L. H. Science and colonial expansion: the role of the British Royal Botanic Gardens. Am. Ethnol. 6, 449–465 (1979).
    Google Scholar 
    Hulme, P. E. Addressing the threat to biodiversity from botanic gardens. Trends Ecol. Evol. 26, 168–174 (2011).PubMed 

    Google Scholar 
    Baas, P. The golden age of Dutch colonial botany and its impact on garden and herbarium collections. In Proc. Int. Symp. held by The Royal Danish Academy of Sciences and Letters in Copenhagen (eds Friis, I. & Balselv, H.), 53–62 (2017).Anderson, W. Climates of opinion: acclimatization in nineteenth-century France and England. Vic. Stud. 35, 135–157 (1992).CAS 
    PubMed 

    Google Scholar 
    Osborne, M. A. Acclimatizing the world: a history of the paradigmatic colonial science. Osiris 15, 135–151 (2000).CAS 
    PubMed 

    Google Scholar 
    Musgrave, T., Gardner, C. & Musgrave, W. The Plant Hunters Two Hundred Years of Adventure and Discovery (Seven Dials, 1999).Stoner, A. & Hummer, K. 19th and 20th century plant hunters. HortScience 42, 197–199 (2007).
    Google Scholar 
    Williams, K. A. An overview of the U.S. National Plant Germplasm System’s Exploration Program. HortScience 40, 297–301 (2005).
    Google Scholar 
    McCracken, D. P. Gardens of Empire: Botanical Institutions of the Victorian British Empire Garden History Vol. 26 (Leicester Univ. Press, 1997).Mitchener, K. J. & Weidenmier, M. Trade and empire. Econ. J. 118, 1805–1834 (2008).
    Google Scholar 
    World Trade Report 2007: Six Decades of Multilateral Trade Cooperation: What Have We Learnt? (World Trade Organization, 2007).Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Essl, F. et al. Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers. Distrib. 21, 534–547 (2015).
    Google Scholar 
    van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).PubMed 

    Google Scholar 
    Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).
    Google Scholar 
    Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: a meta-analysis of the propagule pressure effect. PLoS Biol. 16, e2005987 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blackburn, T. M., Cassey, P. & Duncan, R. P. Colonization pressure: a second null model for invasion biology. Biol. Invasions 22, 1221–1233 (2020).
    Google Scholar 
    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. USA 117, 23643–23651 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Panton, K. J. Historical Dictionary of the British Empire (Rowman & Littlefield, 2015).Brendon, P. The Decline and Fall of the British Empire, 1781–1997 (Cape, 2007).Hulme, P. E. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).
    Google Scholar 
    Levinson, M. The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger (Princeton Univ. Press, 2010).Liebhold, A. M., Brockerhoff, E. G. & Kimberley, M. Depletion of heterogeneous source species pools predicts future invasion rates. J. Appl. Ecol. 54, 1968–1977 (2017).
    Google Scholar 
    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273 (2007).PubMed 

    Google Scholar 
    Maltby, W. S. The Rise and Fall of the Spanish Empire (Palgrave Macmillan, 2008).Disdier, A. C. & Head, K. The puzzling persistence of the distance effect on bilateral trade. Rev. Econ. Stat. 90, 37–48 (2008).
    Google Scholar 
    Jiménez, A., Pauchard, A., Cavieres, L. A., Marticorena, A. & Bustamante, R. O. Do climatically similar regions contain similar alien floras? A comparison between the Mediterranean areas of central Chile and California. J. Biogeogr. 35, 614–624 (2008).
    Google Scholar 
    Epanchin-Niell, R., McAusland, C., Liebhold, A., Mwebaze, P. & Springborn, M. R. Biological invasions and international trade: managing a moving target. Rev. Environ. Econ. Policy 15, 180–190 (2021).
    Google Scholar 
    Bakewell, P. A History of Latin America (Wiley-Blackwell, 2003).Disney, A. R. A History of Portugal and the Portuguese Empire (Cambridge Univ. Press, 2009).De Zwart, P. Globalization in the early modern era: new evidence from the Dutch-Asiatic Trade, c. 1600–1800. J. Econ. Hist. 76, 520–558 (2016).
    Google Scholar 
    Emmer, P. C. & Gommans, J. J. L. The Dutch Overseas Empire, 1600–1800 (Cambridge Univ. Press, 2021).Melitz, J. & Toubal, F. Native language, spoken language, translation and trade. J. Int. Econ. 93, 351–363 (2014).
    Google Scholar 
    Becker, B. Introducing COLDAT: the colonial dates dataset. Preprint at OSF https://doi.org/10.31219/osf.io/apvqm (2019).Pyšek, P., Richardson, D. M. & Williamson, M. Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers. Distrib. 10, 179–187 (2004).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Hui, C. & McGeoch, M. A. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).PubMed 

    Google Scholar 
    McGeoch, M. A. et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100, e02832 (2019).Latombe, G., Richardson, D. M., Pyšek, P., Kučera, T. & Hui, C. Drivers of species turnover vary with species commonness for native and alien plants with different residence times. Ecology 99, 2763–2775 (2018).PubMed 

    Google Scholar 
    Latombe, G., McGeoch, M. A., Nipperess, D. A. & Hui, C. zetadiv: an R package for computing compositional change across multiple sites, assemblages or cases. Preprint at bioRxiv https://doi.org/10.1101/324897 (2018).Latombe, G., McGeoch, M. A., Nipperess, D. A. & Hui, C. zetadiv: Functions to compute compositional turnover using zeta diversity. R package version 1.2.0 (2020).Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 
    Latombe, G., Hui, C. & McGeoch, M. A. Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol. Evol. 8, 431–442 (2017).
    Google Scholar 
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).
    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems, 1695 (2006).Bonacich, P. Power and centrality: a family of neasures. Am. J. Sociol. 92, 1170–1182 (1987).
    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).
    Google Scholar  More

  • in

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations

    All procedures accorded to administrative provision of animal welfare of the Fisheries Research Education Agency Japan. All statistical tests used in this study are two-sided.Otolith samplesFrom the western North Pacific, age-0 JP sardine were collected from samples taken during acoustic and sub-surface trawl surveys in the offshore Oyashio region conducted during 2006–2010 and 2014–2015. The surveys were conducted by Japan Fisheries Research and Education Agency every autumn since 2005 which aim to estimate the abundance of small pelagic species. The abundance of young-of-the-year sardine in the region in the season, approximately 10–15 cm in standard length (SL), is considered a proxy for the abundance of recruits of the Pacific stock and used to tune the cohort analysis in stock assessment4. As representatives of the young-of-the-year population in the region, 2–6 trawl stations each year that had relatively larger catch-per-unit-effort were selected (Supplementary Fig. 1), and 9–20 individuals were randomly selected from each station for otolith analyses (Supplementary Table 1). Age of fish was initially judged by SL (10–15 cm) and later confirmed by the counts of otolith daily increments.From the eastern North Pacific, archived otoliths of CA sardine captured in cruise surveys and in the pelagic fishery of the Southern California Bight during 1987, 1991–1998, and 2005–2007 were collected. Fish in the size range of 10–16 cm SL were regarded as age-1 individuals born in the previous year, following Takahashi and Checkley56. The number of individuals varied between year classes in the range of 4–20 (Supplementary Table 2).Otolith processing, microstructure and somatic growth analysisSagittal otoliths were cleaned to remove the attached tissue in freshwater and then air-dried. Otoliths of JP sardine were embedded in epoxy resin (Petropoxy 154, Burnham Petrographics LLC) on slide-glass, while those of CA were glued to slide-glass using enamel resin and then ground and polished with sandpaper to expose the core. For some otoliths of CA sardine, the polished surface was coated with additional resin to facilitate identification of the daily increment width. Using an otolith measurement system (RATOC System Engineering Co. Ltd.), the number and location of daily increments were examined along the axis in the postrostrum from the core. Although daily increments were clearly observed until the otolith edge for JP sardine, it was difficult to do this for CA sardine probably because they had experienced winter when otolith growth slowed down. Therefore, the rings were counted as far as possible for CA sardine, which typically resulted in more than 150 counts. The first daily increment was assumed to form after 3 days post hatch (dph) for JP and 8 dph for CA sardine following Takahashi et al.26 and Takahashi and Checkley56. The otolith radius at each age was calculated by adding all the increment widths up to that age. Standard lengths at each age were back-calculated assuming a linear relationship between otolith radius and standard length using the biological intercept method34 as follows:$${SL}_{n}=left({{SL}}_{{catch}}-{{SL}}_{{first}}right)times left({{OR}}_{n}-{{OR}}_{{first}}right)/left({OR}_{catch}-{{OR}}_{{first}}right)+{{SL}}_{{first}}$$
    (1)
    where SLn is the standard length at age n, SLcatch is the standard length at catch, SLfirst is the standard length at the age of first daily increment deposition fixed at 5.9 mm for JP sardine and 5.5 mm for CA sardine following the previous studies26,56, ORn is the otolith radius at age n, ORfirst is the otolith radius at the age of first daily increment deposition, and ORcatch is the otolith radius at catch. Based on rearing experiments of field collected eggs, Lasker57 showed the SL of CA sardine at 6–8 dph ranged between 3.8 to 6.5 mm, and Matsuoka and Mitani58 showed the total length at 2–4 dph ranged between 4.8 to 6.2 mm, corresponding to 4.7 to 6.1 mm in SL. To deal with these uncertainties regarding the size at the age of first daily increment deposition, we conducted Monte Carlo simulations (10,000 times) to estimate the uncertainties of back-calculated SL, assuming that the initial SLs fall between 3.8 to 6.5 mm for both sardines. Standard deviations of the temporal back-calculated SL at each age were presented as the uncertainty of each SLn estimation, which varied between 0.51 and 0.73 at the end of larval stage (JP: 45 dph, CA: 60 dph), between 0.34 and 0.64 at the end of early juvenile stage (JP: 75 dph, CA: 90 dph) and between 0.20 and 0.53 at the end of late juvenile stage (JP: 105 dph, CA: 120 dph). These values were significantly smaller than the variability of estimated SL among individuals assuming initial sizes of 5.9 and 5.5 mm for JP and CA sardine, respectively (standard deviations: 4.2, 8.1 and 8.3 in JP sardine and 5.5, 9.1 and 10.3 in CA sardine for the end of larval, early juvenile and late juvenile stages, respectively), suggesting that the back-calculated SL is robust to variations of initial size. Nevertheless, the biological intercept method assumes a constant linear relationship between fish and otolith size within individual59, which can vary depending on physiological or environmental conditions60,61. Therefore, to examine the relationships between temperature and growth, we used both otolith growth, which contains fewer assumptions, and back-calculated somatic growth as growth proxies. Since the use of the two proxies did not show remarkable differences in the relationships between temperature and growth (Supplementary Figs. 11, 12), we mainly used the back-calculated SL in the discussion, which has a more direct ecological implication.To more generally test whether growth trajectories are different between the western and eastern boundary current systems, otolith growth data of JP and CA sardines were compared with those of sardines in the east to south and west coasts of South Africa. The biological intercept method to back-calculate standard length could not be used in sardine from South Africa because the size at catch was large, some over 20 cm, and otolith radius and standard length were not linearly correlated for fish of this size. Therefore, the otolith radius and increment width were directly used as proxy for size and growth in this comparison, respectively. For visualisation (Fig. 2a), the means of year class mean otolith radii were estimated for JP and CA sardines. For CA sardine, otolith radii at ages were simply averaged within each year class. For JP sardine, to account for the variation in the number of individuals captured at the same station, otolith radii were first averaged within each station, and the station means were averaged within each year, weighted by catch-per-unit-effort. For South African sardine, data of otolith daily increment widths from hatch to 100 dph of 67 adults captured at six stations on the east to south coast ( >22oE), and 51 individuals captured at six stations on the west coast ( 0.05). Theoretically, the relationship between metabolism and temperature tends to show a linear trend after the metabolic rate is log-transformed79. Thus, we applied “identity (data without transformed)” and “log (data transformed)” links to evaluate if model shows a better linearity with data transformation. Based on AIC, however, the result showed Moto have a better linearity without data transformation (Supplementary Table 7). We, therefore, used “identity” links for the further model selection. Model selection base on AIC was performed for models including temperature, region (JP and CA sardines), life history stages (larvae, early juvenile and late juvenile) and interactions of these factors. The full model including all the interactions had the lowest AIC (Supplementary Table 7). As the diagnostic for the full model showed normality and homogeneity of residuals (Supplementary Fig. 9), we selected this model for interpretation. The CA sardine at the larval stage as the baseline, we found only JP sardine at early and late juvenile stages has relatively higher Moto values, and the temperature-dependent slope is significantly gentler in JP sardine at early and late juvenile stages (Supplementary Table 8).Next, the diversity of Moto across temperature range was assessed to estimate the optimal temperature in each stage. The relationship between the maximum metabolic rate and temperature is known to be parabolic, while that between the standard metabolic rate and temperature is logarithmic28,79. As the highest field metabolic rate would be constrained by maximum metabolic rate and the lowest field metabolic rate would be close to resting metabolic rate43, fish would have the most diverse metabolic performance at the optimal temperature with the widest aerobic scope. Thus, we modelled the highest and lowest Moto values in each 1 °C bin using a polynomial regression and a generalised linear model with Gaussian distribution and a log link for the 95th and 5th percentile values of each bin, respectively (Supplementary Fig. 10). The values of the bin that included less than four values were excluded from the regression analyses to reduce the uncertainty caused by under-sampled temperature bins. The gap between the two regression lines was considered as a proxy for the aerobic scope, and the temperature at which the gap reached the maximum was regarded as the optimal temperature.Statistical analyses for the relationships between temperature and growthTo understand how variation in ambient water temperature affects early life growth of sardines, we compared back-calculated standard length at around the end of the larval stage (hatch–35 mm; JP: 45 dph, CA: 60 dph), the end of the early juvenile stage (35–60 mm; JP: 75 dph, CA: 90 dph), and the end of the late juvenile stage (60–85 mm; JP: 105 dph, CA: 120 dph) and the mean seawater temperature from hatch to the ages. Median of each sampling batch were used as minimal data unit. Pearson’s r and p-values were first calculated for each comparison (Supplementary Table 9). As the relationship between mean temperature and standard length of JP at 75 dph seemed to be dome-shaped rather than linear, we introduced quadratic term of temperature and tested whether the term increased explanatory power using a linear model and stepwise model selection based on AIC. The model selection showed that the full model (Standard length ∼ Temperature2 + Temperature) was the best model, and the coefficients of the quadratic and linear terms were both significant (Supplementary Table 10). To account for these multiple tests, we corrected the p-values of the coefficients of the quadratic term in the linear model for JP sardine at 75 dph and of the Pearson’s r for the rest using the Benjamini-Hochberg procedure with α = 0.05, and selected the null hypotheses that could be rejected (Supplementary Table 9). To compare the temperature that allow maximisation of growth rate and optimal temperature derived from the analysis of Moto for each stage, median somatic growth rate and otolith increment width in each 1 °C bin was calculated together with its 3-window running mean (Supplementary Figs. 11, 12).Statistical analyses for the relationships between sea surface temperature and survival indexTo test whether habitat temperatures during the first 4 months after hatch affect the survival of sardines in the first year of life on a multidecadal scale, satellite-derived sea surface temperature (SST) since 1982 and survival of JP and CA sardines were compared. The log recruitment residuals from Ricker recruitment models (LNRR)13, representing early life survivals taking into account the effect of population density, were calculated based on the stock assessment data for JP and CA sardines as follows:$${LNR}{R}_{t}={ln}({R}_{t}/{S}_{t}) , – , (a+btimes {S}_{t})$$
    (6)
    where LNRRt is the LNRR at year t, Rt is the recruitment of year-class t, St is the spawning stock biomass in year t, and a and b are the coefficients of linear regression of ln(Rt/St) on St. Pearson’s r between the LNRR and the mean SST values from March to June for JP and from April to July for CA sardine was calculated for each grid points in the western and eastern boundaries of the North Pacific basin, derived from a SST product based on satellite and in situ observations80 (Global Ocean OSTIA Sea Surface Temperature and Sea Ice Reprocessed (https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/INFORMATION), accessed on 11th August and 28th October 2021). The correlations were generally negative and positive in the western and eastern regions, respectively (Supplementary Fig 13a, b). In particular, mean SST values in the area where eggs, larvae and juveniles of JP or CA sardines are mainly found in the months26,39,49,56,78,81,82 (dotted areas in Supplementary Fig 13a, b) were compared with LNRR values to test the relationship between habitat temperature and survival in the early life stages (Supplementary Fig 13c). It should be noted that the mean SST values were not significantly correlated with otolith-derived year-class mean temperatures of JP and CA sardines during the larval to late juvenile stages (JP: r = 0.01, p = 0.98, n = 7, CA: r = 0.29, p = 0.38, n = 11), likely due to the short periods analysed, patchy distribution and inter annual variation in larval and juvenile dispersal and migration patterns. Nevertheless, the regions included areas where SST showed weak to significant (p  More

  • in

    Intra-specific variation in sensitivity of Bombus terrestris and Osmia bicornis to three pesticides

    Model substancesWe used the sulfoximine insecticide sulfoxaflor, the methoxy-acrylate fungicide Amistar (azoxystrobin 250 g/l, Suspension Concentrate, see supplementary methods, S1) and the glycine herbicide glyphosate (as active substance, RoundUp ProActive or RoundUp FL, see supplementary methods, S1) as model substances. Our choice was justified by their widespread use, regulatory status and systemic uptake in plants. Because of these characteristics, the likelihood of bees being exposed in the field was considered similarly plausible across model substances. Additionally, we are not aware of published evidence of the acute toxicity of these substances across castes and sexes of B. terrestris and O. bicornis.Sulfoxaflor is a relatively novel insecticide55,56,57, developed to replace or complement the use of older chemical classes against which insect pest populations had developed resistance57. However, because of its risks to bees58, its uses have been recently restricted in the EU to indoor growing conditions. As a nicotinic acetylcholine receptor (nAChR) competitive modulator, sulfoxaflor targets the same neural receptor as the bee-harming neonicotinoid insecticides55,56,57. Despite evidence that sulfoxaflor may target the nAChR in a distinct way compared to recently banned neonicotinoids55,56,57, these substances were shown to be similarly lethal in acute exposure laboratory settings for individuals of Apis mellifera, B. terrestris and O. bicornis38. Additionally, sulfoxaflor was shown to reduce reproduction59,60,61 (but not learning62,63) in bumble bees under field-realistic laboratory settings. When applied pre-flowering in a semi-field study design, sulfoxaflor impacted colony growth, colony size and foraging in bumble bees64 but not honey bees65. Azoxystrobin is a broad-spectrum, systemic fungicide, which has been widely used in agriculture since its first marketing authorisation in 199666. Azoxystrobin shows low acute toxicity to honey bees67. Azoxystrobin residues were found in nectar and pollen from treated crops68,69 and subsequently in the bodies of wild bees70. In a semi-field experimental setting, foraging, but not colony growth, was significantly impaired in B. terrestris exposed to Amistar (azoxystrobin 250 g/L SC)64, while no lethal or sublethal effects could be observed in honey bees65 or in O. bicornis71. However, a recent study showed that, when formulated as Amistar this pesticide induced acute mortality in bumble bees at high doses, which was attributed to the dietary toxicity of the co-formulant C16-18 alcohol ethoxylates50.Glyphosate is a broad-spectrum systemic herbicide and the most widely used pesticide in the world72. Products containing glyphosate may be applied to flowering weeds73 and contaminate their pollen and nectar54, thus driving bee contact and oral exposure. Glyphosate showed low lethal hazards in regulatory-ready laboratory74 and semi-field designs when dosed as pure active substance or as MON 52276 (SL formulation containing 360 g glyphosate/L)75. A recent study found ready-to-use consumer products containing glyphosate to be lethally hazardous to bumble bees73. However, this toxicity was attributed to co-formulants, rather than the active substance itself.We characterised the acute oral and contact toxicity to B. terrestris and O. bicornis of sulfoxaflor, azoxystrobin and glyphosate as either pure active substances or formulation (see supplementary material S2 Table S1). Each test was repeated across castes and sexes of these two species. For bumble bees we used workers, males and gynes (i.e., unmated queens), hereby referred to as queens, whereas for O. bicornis we used males and females. Bumble bee experiments were designed following OECD protocols30,31, while O. bicornis was tested following published76 and ring-tested protocols32, as an OECD protocol for this latter species is not yet available.We used a dose response design whenever the test item was found to drive significant mortality in the tested species. In all other cases, a limit test design using a single, high pesticide dose was used. Details on the methods and results of the limit tests are reported in the supplementary materials (S2 and S4).Pesticide treatmentsAll dose response tests were performed with pure sulfoxaflor, while azoxystrobin was tested as a plant protection product (Amistar 250 g a.s./l, SC, Syngenta, UK) in all oral tests, as its solubility in water was insufficient (6.7 mg a.s./L, see EFSA, 2010) to achieve the desired concentrations. Amistar contains co-formulants with hazard classification (54 C16-18 alcohols, ethoxylated  More

  • in

    Marine heatwaves of different magnitudes have contrasting effects on herbivore behaviour

    Abram, P. K., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biol. Rev. 92, 1859–1876 (2017).Article 

    Google Scholar 
    Horwitz, R. et al. Near-future ocean warming and acidification alter foraging behaviour, locomotion, and metabolic rate in a keystone marine mollusc. Sci. Rep. 10, 5461 (2020).ADS 
    Article 

    Google Scholar 
    Minuti, J. J., Byrne, M., Hemraj, D. A. & Russell, B. D. Capacity of an ecologically key urchin to recover from extreme events: Physiological impacts of heatwaves and the road to recovery. Sci. Total Environ. 785, 147281 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Angilletta Jr., M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis. (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780198570875.001.1.Mertens, N. L., Russell, B. D. & Connell, S. D. Escaping herbivory: Ocean warming as a refuge for primary producers where consumer metabolism and consumption cannot pursue. Oecologia 179, 1223–1229 (2015).ADS 
    Article 

    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).Article 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).Article 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Atkinson, J., King, N. G., Wilmes, S. B. & Moore, P. J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 56, 1591–1600 (2020).CAS 
    Article 

    Google Scholar 
    Hemraj, D. A., Posnett, N. C., Minuti, J. J., Firth, L. B. & Russell, B. D. Survived but not safe: Marine heatwave hinders metabolism in two gastropod survivors. Mar. Environ. Res. 162, 105117 (2020).CAS 
    Article 

    Google Scholar 
    Vinagre, C. et al. Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms. Ecol. Indic. 62, 317–327 (2016).Article 

    Google Scholar 
    Vinagre, C. et al. Ecological traps in shallow coastal waters—Potential effect of heat-waves in tropical and temperate organisms. PLoS ONE 13, e0192700 (2018).Article 

    Google Scholar 
    Falkenberg, L. J., Russell, B. D. & Connell, S. D. Future herbivory: The indirect effects of enriched CO2 may rival its direct effects. Mar. Ecol. Prog. Ser. 492, 85–95 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Lorda, J., Hechinger, R. F., Cooper, S. D., Kuris, A. M. & Lafferty, K. D. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails. Ecosphere 7, e01262 (2016).Article 

    Google Scholar 
    Falkenberg, L. J., Connell, S. D. & Russell, B. D. Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Mar. Ecol. Prog. Ser. 497, 87–92 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).Article 

    Google Scholar 
    Brothers, C. J. & McClintock, J. B. The effects of climate-induced elevated seawater temperature on the covering behavior, righting response, and Aristotle’s lantern reflex of the sea urchin Lytechinus variegatus. J. Exp. Mar. Biol. Ecol. 467, 33–38 (2015).Article 

    Google Scholar 
    DeWhatley, M. C. & Alexander, J. E. Impacts of elevated water temperatures on righting behavior and survival of two freshwater caenogastropod snails. Mar. Freshw. Behav. Physiol. 51, 251–262 (2018).Article 

    Google Scholar 
    Sokolova, I. M. & Pörtner, H.-O. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J. Exp. Biol. 206, 195–207 (2003).Article 

    Google Scholar 
    Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    Article 

    Google Scholar 
    Monaco, C. J., McQuaid, C. D. & Marshall, D. J. Decoupling of behavioural and physiological thermal performance curves in ectothermic animals: a critical adaptive trait. Oecologia 185, 583–593 (2017).ADS 
    Article 

    Google Scholar 
    Anderson, K. M. & Falkenberg, L. J. Variation in thermal performance curves for oxygen consumption and loss of critical behaviors in co-occurring species indicate the potential for ecosystem stability under ocean warming. Mar. Environ. Res. 172, 105487 (2021).CAS 
    Article 

    Google Scholar 
    Lemmnitz, G., Schuppe, H. & Wolff, H. G. Neuromotor bases of the escape behaviour of Nassa Mutabilis. J. Exp. Biol. 143, 493–507 (1989).Article 

    Google Scholar 
    Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922 (2012).Article 

    Google Scholar 
    Britton, D. et al. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C. Agardh. Glob. Change Biol. 26, 3512–3524 (2020).ADS 
    Article 

    Google Scholar 
    Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. 111, 5610–5615 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).ADS 
    Article 

    Google Scholar 
    Nguyen, H. M. et al. Stress memory in seagrasses: First insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant Sci. 11, 494 (2020).Article 

    Google Scholar 
    Xu, Y. et al. Impacts of marine heatwaves on pearl oysters are alleviated following repeated exposure. Mar. Pollut. Bull. 173, 112932 (2021).CAS 
    Article 

    Google Scholar 
    Schram, J. B., Schoenrock, K. M., McClintock, J. B., Amsler, C. D. & Angus, R. A. Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J. Exp. Mar. Biol. Ecol. 457, 90–96 (2014).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienne Austria (2020).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-16. (2020).Therneau, T. M. & Grambsch, P. M. The cox model. In Modeling Survival Data: Extending the Cox Model 39–77 (Springer, 2000).Fox, J. & Weisburg, S. An R Companion to Applied Regression. (Sage, 2011).Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.3. (2020). More