More stories

  • in

    Detection parameters for managing invasive rats in urban environments

    Study areaWe conducted our study in two suburbs in Wellington, New Zealand (Fig. 1). The 4.7-hectare site in the suburb of Kelburn (-41.285°S, 174.770°E) was situated on the grounds of student accommodation for Victoria University of Wellington. The site comprised bungalow houses, two accommodation halls, and access roads and paths. About half of the vegetation at the Kelburn site was a mix of tended grass lawns and gardens containing a variety of native New Zealand plant species, e.g., flax (Phormium spp.), longwood tussock (Carex comans), and cabbage tree (Cordyline australis). The other half was a mix of dense ground cover dominated by invasive weed species and native and exotic trees and shrubs, e.g., pōhutukawa (Metrosideros excelsa), common oak (Quercus robur), kawakawa (Piper excelsum), and taupata (Coprosma repens). The second suburb was Roseneath (−41.292°S, 174.801°E) on a small peninsula on the north-eastern side of Mount Victoria. The site was 8.5 hectares comprising 76 residential properties, public thoroughfares, and footpaths. We conducted fieldwork in the gardens of 25 of these properties. The vegetation varied considerably between gardens, comprising native and introduced garden plants and invasive weeds, especially blackberry (Rubus fruticosus).Figure 1(A) The study was conducted in the suburbs of Kelburn (left yellow dot) and Roseneath (right yellow dot) in the city of Wellington, New Zealand. The black polygon represents the 1475 ha area that will be targeted for ship rat (Rattus rattus) eradication in Wellington city, New Zealand. In each suburb, we radio-collared ship rats and deployed three types of devices (bait stations, chew cards, and WaxTags) to estimate home range and detection parameters. (B) In Kelburn, we radio-collared 14 rats and deployed eight devices. (C) In Roseneath, we radio-collared 16 rats and deployed 30 devices. The yellow circles indicate home range centers of individual rats, the red triangles indicate the location of bait stations and detection devices, and the small black dots indicate the telemetry locations of rats.Full size imageRat capture, radio-collaring, and field methodologyWe set 100 live-capture cage traps (custom-made, spring-loaded traps) in Kelburn from 12 July to 15 August 2020, and another 100 in Roseneath from 20 August to 20 October 2020. We baited cage traps with apple coated in chocolate spread and checked them at least once every 24 h. We set cage traps in areas with complex vegetative groundcover and understorey to maximize capture rates of ship rats (see35), and to provide shelter from inclement weather. We provided additional shelter by inserting bedding inside a tin can placed in the cage traps, along with a plastic cover over the traps to limit exposure to wind and rain. Cage traps were active for 5 days per week on average. We released all non-target species (house mice Mus musculus, European hedgehogs Erinaceus europaeus, and Eurasian blackbirds Turdus merula).We transferred any trap containing a captured rat into a sealed plastic container. Depending on the estimated size of the captured rat, we placed between one and three cotton balls soaked in isoflurane (99.9%, Attane, Piramal Critical Care Inc., Bethlehem, Pennsylvania, USA) inside the plastic container. A rat was anesthetized when it lost balance and was unable to regain balance when we gently rotated the container. We then removed the rat from the cage trap and placed it next to a heat pad with its head close to the cotton balls soaked in isoflurane to maintain anaesthesia while handling them. We fitted all rats weighing  > 110 g with a V1C 118B VHF radio-collar (Lotek, Havelock North, New Zealand). We marked each collared rat with a unique pelage code using a permanent blonde hair dye60. We also recorded biometrics, including sex, weight, and length. When processing was finished, we placed the rat into another container to recover. This container had a heating pad for warmth and an apple for food to avoid a drop in body temperature and hypoglycemia, which are common problems with anaesthesia62. When the rat appeared mobile, energetic, and behaving normally, we released it at the point of capture.We monitored radio-collared rats using a Yagi antenna (Lotek, Havelock North, New Zealand) and a Telonics R-1000 receiver (Telonics Inc., Mesa, Arizona, USA). We conducted radio-telemetry work during August–November 2020, with fixes taken during the day and night. We recorded a total of three fixes per rat per night, taken at two-hour intervals between the hours of sunset (2200 h) and sunrise (0500 h). We mostly attempted one day-time fix (1200 h); however, if a tracked rat was active (determined by a VHF signal that was moving or changing amplitude), we attempted a second fix in the afternoon. To minimize location error, we used the close approach radio-tracking method described by63. Once a successful fix was made, we used a handheld GPS unit to record the location, date, and time. Telemetry fixes were collected for each radio-collared rat for 18–97 days.After approximately one week of radiotracking an animal, we obtained an initial crude estimate of the center of each rat’s home range as the mean of all eastings and northings (based on a minimum of 15 telemetry points per rat). A bait station baited with non-toxic pellets (Protecta Sidekick bait stations, Bell Laboratories Inc., Windsor, Wisconsin, USA), a WaxTag with a peanut butter odor incorporated into the wax (PCR WaxTags, Traps.co.nz, Rolleston, New Zealand), and a chew card (a corflute card baited with peanut butter) were deployed at varying distances (max. 50 m) and cardinal directions from the estimated home range center of each individual rat. This layout maximized the likelihood of encounters with devices, compared with a regular grid-type deployment where some of the devices could fall outside a collared rat’s home range and thus never be encountered. Note that the crude estimate of the location of the home range center for each rat was only used to guide device placement, i.e., it was not used in any statistical analyses, or to describe rat home range sizes. Further, to avoid a choice-type experiment (i.e., all three devices set immediately next to each other), we randomly assigned a distance and cardinal direction to each device type within each rat’s home range but ensured all devices were deployed  > 15 m apart. The three device types were chosen because they are used by Predator Free Wellington to conduct their eradication operations.Every deployed device had a trail camera (Browning Strike Force HD Pro Micro Series, Morgan, Utah, USA) taking video of rats encountering and interacting with the device. We set cameras to take 20 s of video footage when triggered, followed by a 1 s re-trigger interval. We fixed trail cameras to trees at a height of 50 cm above ground level and placed the devices 1.5 m in front of the camera (after64). This strategy allowed accurate identification of pelage codes on marked rats. We cleared vegetation in front of and immediately behind the trail cameras to avoid accidental triggers. We used pegs to mark a 30-cm-radius circle around each device and considered a rat–device encounter when a rat entered that circle. We serviced trail camera–device pairs at least once every three days. This included adding more non-lethal bait to bait stations and peanut butter to monitoring devices, installing new WaxTags or chew cards if they had been destroyed, and replacing batteries and SD cards in trail cameras. We set up 54 trail camera–device pairs. However, due to trail camera malfunctions, we were able to retrieve footage from only 38 cameras, 8 in Kelburn and 30 in Roseneath. Trail camera–device pairs were active for 20–70 days, but we retained data from only the first 20 days for the analyses.Video processingAll video footage was viewed and interpreted by the same individual (HRM) for consistency. We extracted the following information: date and time of rat sightings, rat ID (according to the pelage code, or designated as ‘R’ for unmarked rats), the duration of the visit to a device, whether or not an encounter occurred (as defined above), and whether or not an interaction occurred. We defined an interaction as a rat either gnawing on a chew card or WaxTag or entering a bait station.Data analysisWe combined all ship rat telemetry data with the device encounter and interaction data, and developed a hierarchical Bayesian model to infer factors influencing the key parameters σ, ε0, and θ. The analytical approach builds on that described in65. For the purpose of estimating ε0 and θ, multiple encounters or interactions by the same individual with the same device on the same night were counted as a single encounter or interaction.The VHF telemetry data Zij were composed of xij (eastings) and yij (northings) locations for each individual rat i at site j (either Kelburn or Roseneath). To simplify the notation, we drop the j subscript from all subsequent equations. We modelled the probability of observing Zi as a symmetric bivariate normal variable$$P({Z}_{i})= prod_{i=1}^{{L}_{i}}Normal(Delta {x}_{i}|0,{sigma }_{i}^{2})Normal(Delta {y}_{i}|0,{sigma }_{i}^{2})$$
    (1)
    where σi is the standard deviation of a normal distribution with zero mean, Li is the number of location fixes for individual i, and Δxi and Δyi are the straight-line distances from the home range center of individual i to xi and yi, respectively.Home range centers can be estimated using various methods, all of which have underlying assumptions (e.g.,66,67). We calculated the home range center for each individual as the mean of all xi and yi, i.e., the centroid of all locations that we recorded for each individual ( > 30 VHF fixes in all instances). Under this formulation, the home range center is assumed to be perfectly observed, an assumption that is supported by the sample size of telemetry locations that we obtained for each individual (see Supplementary Table 266).We modelled σi as a log-normal variable with mean ln(μi), which was a function of the sex of the individual:$$lnleft({sigma }_{i}right)sim Normal(mathit{ln}left({mu }_{i}right), V)$$
    (2)
    $$lnleft({mu }_{i}right)= {beta }_{0}+ {beta }_{1}{sex}_{i}$$
    (3)
    where V is the variance of ln(σi), and ln(μi) is a linear function of a categorical variable indicating whether rat i is a male (0) or a female (1). The priors on the β coefficients and V were Normal(0, 10) and InverseGamma(0.01, 0.01), respectively.The encounter data (Eimt) across all devices m and nights t was modelled as a Bernoulli process:$${E}_{imt}sim Bernoulli({gamma }_{imt})$$
    (4)
    $$logitleft({gamma }_{imt}right)sim MultivariateNormal(logitleft({P}_{imt}right), varSigma )$$
    (5)
    where γimt is a latent variable representing the degree to which the nightly probability of rat i encountering a given device is not independent of the encounter outcomes of nearby devices, i.e., we assumed there is spatial autocorrelation in the nightly probability of encountering a device. To account for the spatial autocorrelation not explained by the covariates explicitly modelled (i.e., σ and device type, see below), we included an exponential spatial covariance error structure (Σ) as follows:$$varSigma = {nu }^{2}{e}^{-varphi r}$$
    (6)
    where ν2 is the variance, φ is a correlation distance parameter, and r is the distance (in m) between pairs of devices68,69. Further, because not all devices were available on all nights, Σ was calculated iteratively for each night considering only those devices that were available. We used moderately informative log-normal priors for the covariance parameters to obtain proper posteriors69: ν2 ~ logN(3,1) and φ ~ logN(1,1).The nightly probability of encounter of device m by individual i on night t (Pimt) was calculated using a half-normal detection function70:$${P}_{imt}= {{left({varepsilon }_{0, im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{{tau E}_{it}^{*}}}times {{left({varepsilon }_{0,im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{1-{E}_{it}^{*}}}$$
    (7)
    where ε0,im is the maximum nightly probability of encounter for device m, or the probability if device m was placed at the center of the home range of rat i. The variable σi is the standard deviation from Eq. (1) (i.e., σi is estimated jointly from the telemetry and encounter data) and dim is the distance (in m) between the home range center of rat i and device m; only devices within a distance of 3.72σi from the home range center were considered in the calculation in Eq. (7)70. Finally, τ is a strictly positive parameter (i.e., τ  > 0), measuring the degree of device-shyness, which is multiplied by an indicator variable (left({E}_{it}^{*}right)) which takes a value of 0 when individual i has not encountered a device (of any type) on nights prior to night t, or a value of 1 if it had previously encountered one, regardless of the type of device it encountered. If τ  1 then rats are ‘device-shy’ and thus more likely to avoid devices on nights following an initial encounter. ({E}_{it}^{*}) was reset to 0 after 20 days of no encounters with a device. Following65 we set the prior on τ as Gamma(0.933, 8.33) (shape and rate parameters, respectively).Values of ε0,im were predicted as a function of σi, device type, and individual effects using the following equation:$$logitleft({varepsilon }_{0, im}right)={alpha }_{0}+ {alpha }_{1}mathrm{ln}left({sigma }_{i}right)+ {alpha }_{2}{chewcard}_{m}+{alpha }_{3}{waxtag}_{m}+{delta }_{i}$$
    (8)
    where α2 and α3 quantify the increase or decrease in the maximal probability of encountering a chew card or a WaxTag relative to a bait station (which is the reference category). The δi parameters account for individual differences in ε0. Finally, we allowed ε0 to be a function of ln(σi) because we assumed encounter probability at home range center will decrease with increasing home range size (as suggested by71 and shown by65). The priors on the α coefficients and δ were Normal(0, 10) and Normal(0, 1), respectively.The interaction data (Iimn) across all devices m and nights n when encounters occurred was modelled as a Bernoulli process with probability θ, which was a function of device type and individual effects:$${mathrm{I}}_{imn}sim Bernoullileft({theta }_{imn}right)$$
    (9)
    $$logitleft({theta }_{imn}right)={lambda }_{0}+ {lambda }_{1}{chewcard}_{m}+{lambda }_{2}{waxtag}_{m}+{lambda }_{3}{I}_{in}^{*}+{rho }_{i}$$
    (10)
    where θimn is the probability of rat i interacting with device m given that it has encountered it on night n, and λ1 and λ2 quantify the increase or decrease in the conditional probability of interaction for a chew card or a WaxTag relative to a bait station. The λ3 parameter is analogous to τ in Eq. (7) but for the process of interaction given encounter with a device. However, by incorporating λ3 directly into a linear equation, this parameter can take negative values and thus should be interpreted differently to τ: if λ3  0 indicates that individuals become ‘device-happy’ after an initial interaction. This parameter is multiplied by an indicator variable ({(I}_{in}^{*})) which takes a value of 0 when individual i has not interacted with a device (of any type) on nights prior to night n, or a value of 1 when it has interacted with one previously, regardless of the type of device it interacted with. If a rat had not interacted with a device for 20 days, ({I}_{in}^{*}) was reset to 0. Finally, the ρi parameters account for individual differences in θ. The priors on the λ coefficients and ρ were Normal(0, 10) and Normal(0, 1), respectively. Although we explicitly modelled spatial autocorrelation in the probability of encountering a device, we did not do so for the probability of interaction given an encounter. In this instance we assumed that whether an animal chose to interact with an encountered device would depend on its previous experience (as quantified by λ3) rather than the spatial location of nearby devices.We used Markov Chain Monte Carlo (MCMC) simulation to estimate model parameters using Python programming language. The variance parameter V was sampled from the full conditional posteriors, but all other parameters were estimated using the Metropolis algorithm69. Posterior summaries were taken from four chains containing 3000 samples each (with a burn-in of 2000 and a thinning rate of 30). Convergence on posteriors was assessed by visual inspection and a scale reduction factor  More

  • in

    Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Wolfe, K. et al. Priority species to support the functional integrity of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 58, 179–318 (2020).Article 

    Google Scholar 
    Ip, Y. K. & Chew, S. F. Light-dependent phenomena and related molecular mechanisms in giant clam-dinoflagellate associations: A review. Front. Mar. Sci. 8, 627722 (2021).Article 

    Google Scholar 
    Rossbach, S. et al. Flexibility in Red Sea Tridacna maxima-symbiodiniaceae associations supports environmental niche adaption. Ecol. Evol. 11, 3393–3406 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr. Mar. Biol. Annu. Rev. 55, 87–388 (2017).Article 

    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Lokier, S., Al-Suwaidi, A. E. & Steuber, T. Stable isotope sclerochronology of Pleistocene shells of the ‘Giant Clam’ Tridacna from Abu Dhabi. Tribulus 20, 21–23 (2012).
    Google Scholar 
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Biogeography of butterflyfishes: A global model for reef fishes? In Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 70–106 (CRC Press, 2013).Chapter 

    Google Scholar 
    DiBattista, J. D. et al. On the origin of endemic species in the Red Sea. J. Biogeogr. 43, 13–30 (2016).Article 

    Google Scholar 
    Kemp, J. M. Zoogeography of the coral reef fishes of the north-eastern Gulf of Aden, with eight new records of coral reef fishes from Arabia. Fauna Arabia 18, 293–321 (2000).
    Google Scholar 
    Sheppard, C. R. C. & Salm, R. V. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). J. Nat. Hist. 22, 263–279 (1988).Article 

    Google Scholar 
    Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).Article 

    Google Scholar 
    Torquato, F. & Møller, P. R. Physical-biological interactions underlying the connectivity patterns of coral-dependent fishes around the Arabian Peninsula. J. Biogeogr. 49, 483–496 (2022).Article 

    Google Scholar 
    Watanabe, T., Suzuki, A., Kawahata, H., Kan, H. & Ogawa, S. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: Physiological and paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 343–354 (2004).Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimatic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 123–142 (2009).Article 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Hori, M. et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Sci. Rep. 5, 8734 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A. & Uematu, M. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan. J. Geophys. Res. Biogeosci. 123, 1460–1474 (2018).CAS 
    Article 

    Google Scholar 
    Yuan, Y., Kusky, T. M. & Rajendran, S. Tertiary and Quaternary marine terraces and planation surfaces of northern Oman: Interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. J. Earth Sci. 27, 955–970 (2016).CAS 
    Article 

    Google Scholar 
    Louis, V., Besseau, L. & Lartaud, F. Step in time: Biomineralisation of bivalve’s shell. Front. Mar. Sci. 9, 906085 (2022).Article 

    Google Scholar 
    Mossadegh, Z. K. et al. Palaeoecology of well-preserved coral communities in a siliciclastic environment from the Late Pleistocene (MIS 7), Kish Island, Persian Gulf (Iran): The development of low-relief reef frameworks (biostromes) in increasingly restricted environments. Int. J. Earth Sci. 102, 545–570 (2013).Article 

    Google Scholar 
    Pico, T., Creveling, J. R. & Mitrovica, J. X. Sea-level records from the U.S. mid-Atlantic constrain laurentide ice sheet extent during marine isotope stage 3. Nat. Commun. 8, 15612 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, G. et al. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 350, 106870 (2020).Article 

    Google Scholar 
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, S. J., Matter, A., Frank, N. & Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499–502 (1998).ADS 
    Article 

    Google Scholar 
    Hoffmann, G., Rupprechter, M., Rahn, M. & Preusser, F. Fluvio-lacustrine deposits reveal precipitation pattern in SE Arabia during early MIS 3. Quat. Int. 382, 145–153 (2015).Article 

    Google Scholar 
    Kobashi, T. & Grossman, E. J. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontol. Res. 7, 343–355 (2003).Article 

    Google Scholar 
    Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. 7, 4568 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaram, C. et al. Analysis of gap-free chlorophyll-α data from MODIS in Arabian Sea, reconstructed using DINEOF. Int. J. Remote Sens. 39, 7506–7522 (2018).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, J. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Ayouche, A. et al. Structure and dynamics of the Ras al Hadd oceanic dipole in the Arabian Sea. Oceans 2, 105–125 (2021).Article 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Santos, G. M. et al. Δ14C and δ13C of seawater DIC as tracers of coastal upwelling: A 5-year time series from Southern California. Radiocarbon 53, 669–677 (2011).CAS 
    Article 

    Google Scholar 
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).Article 

    Google Scholar 
    Zhang, X. & Prange, M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev. 242, 106443 (2020).Article 

    Google Scholar 
    Schulte, S. & Müller, P. J. Variations of sea surface temperature and primary productivity during Heinrich and Dansgaard-Oeschger events in the northeastern Arabian Sea. Geo-Mar. Lett. 21, 168–175 (2001).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography 29, 99–114 (2014).ADS 
    Article 

    Google Scholar 
    Duprey, N. et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data. Coral Reefs 34, 437–450 (2015).ADS 
    Article 

    Google Scholar 
    Govil, P. & Naidu, P. D. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability. Paleoceanography 25, 1210 (2010).ADS 
    Article 

    Google Scholar 
    Watanabe, T. K. et al. Corals reveal an unprecedented decrease of Arabian Sea upwelling during the current warming era. Geophys. Res. Lett. 48, e2021GL092432 (2021).ADS 
    Article 

    Google Scholar 
    Gaye, B. et al. Glacial−interglacial changes and Holocene variations in Arabian Sea denitrification. Biogeosciences 15, 507–527 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 9658 (2018).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: Where do we draw the line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Abram, N. J., Webster, J. M., Davies, P. J. & Dullo, W. C. Biological response of coral reefs to sea surface temperature variation: Evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan). Coral Reefs 20, 221–234 (2001).Article 

    Google Scholar 
    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).ADS 
    Article 

    Google Scholar 
    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Banakar, V. K., Mahesh, B. S., Burr, G. & Chondankar, A. R. Climatology of the Eastern Arabian Sea during the last glacial cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca. Quat. Res. 73, 535–540 (2010).CAS 
    Article 

    Google Scholar 
    Mattern, F. et al. Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). J. Afr. Earth Sci. 138, 192–200 (2018).Article 

    Google Scholar 
    Hoffmann, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).ADS 
    Article 

    Google Scholar 
    van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 1245 (2011).
    Google Scholar 
    Nicholl, J. A. L. et al. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tzedenakis, P. C. et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat. Commun. 9, 4235 (2018).ADS 
    Article 

    Google Scholar 
    Sandeep, N. et al. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Clim. Dyn. 54, 3507–3524 (2020).Article 

    Google Scholar 
    Rao, S. A. et al. Why is Indian Ocean warming consistently? Clim. Change 110, 709–719 (2012).ADS 
    Article 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming ocean. Mar. Ecol. Prog. Ser. 416, 47–56 (2010).ADS 
    Article 

    Google Scholar 
    Praveen, V., Ajayamohan, R. S., Valsala, V. & Sandeep, S. Intensification of upwelling along Oman coast in a warming scenario. Geophys. Res. Lett. 43, 7581–7589 (2016).ADS 
    Article 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the East Australian Shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, 636 (2019).Article 

    Google Scholar 
    Southon, J., Kashgarian, M., Fontugne, M., Metivier, B. & Yim, W.W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).Article 

    Google Scholar 
    Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 22, 112–121 (2007).CAS 
    Article 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. Termite: An R script for fast reduction laser ablation inductivity coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 31, 1079–1087 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. & Herwig, K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29, 285–302 (2005).CAS 
    Article 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newslett. 26, 95–99 (2002).CAS 
    Article 

    Google Scholar 
    Sekimoto, S. et al. Neutron activation analysis of carbonate reference materials: Coral (JCp-1) and giant clam (JCt-1). J. Radioanal. Nucl. Chem. 322, 1579–1583 (2019).CAS 
    Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).ADS 
    Article 

    Google Scholar  More

  • in

    Fish community structure and dynamics are insufficient to mediate coral resilience

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity. A hierarchy of pattern and process. Trends Ecol. Evol. 5, 149–155 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis, S. M. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol. Monogr. 56, 183–200 (1986).Article 

    Google Scholar 
    Carpenter, R. C. Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56, 345–364 (1986).Article 

    Google Scholar 
    McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).Article 

    Google Scholar 
    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).Article 

    Google Scholar 
    Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).PubMed 
    Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).Article 

    Google Scholar 
    Holbrook, S. J., Schmitt, R. J., Adam, T. C. & Brooks, A. J. Coral reef resilience, tipping points and the strength of herbivory. Sci. Rep. 6, 35817 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, A. L. & Bellwood, D. R. Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience. A Practical Guide for Coral reef Managers in the Asia Pacific Region (IUCN, 2009).Bozec, Y. M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bruno, J. F., Cote, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected sreas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Mora, C. A clear human footprint in the coral reefs of the Caribbean. Proc. Biol. Sci. 275, 767–773 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecol. Monogr. 85, 117–132 (2015).Article 

    Google Scholar 
    Mellin, C., Bradshaw, C. J., Fordham, D. A. & Caley, M. J. Strong but opposing beta-diversity–stability relationships in coral reef fish communities. Proc. Biol. Sci. 281, 20131993 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nash, K. L. et al. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Thibaut, L. M., Connolly, S. R. & Sweatman, H. P. Diversity and stability of herbivorous fishes on coral reefs. Ecology 93, 891–901 (2012).PubMed 
    Article 

    Google Scholar 
    Zhang, S. Y. et al. Is coral richness related to community resistance to and recovery from disturbance? PeerJ 2, e308 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clements, C. S. & Hay, M. E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat. Ecol. Evol. 3, 178–182 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).Article 

    Google Scholar 
    Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).Article 

    Google Scholar 
    Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I. & Sweatman, H. Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol. Appl. 23, 174–188 (2013).PubMed 
    Article 

    Google Scholar 
    Cheal, A. J. et al. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steneck, R. S., Mumby, P. J., Macdonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).Article 

    Google Scholar 
    Harvey, C. J. et al. The importance of long-term ecological time series for integrated ecosystem assessment and ecosystem-based management. Prog. Oceanogr. 188, 102418 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627 (2019).PubMed 
    Article 

    Google Scholar 
    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).Article 

    Google Scholar 
    Adam, T. C. et al. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176, 285–296 (2014).PubMed 
    Article 

    Google Scholar 
    Munsterman, K. S., Allgeier, J. E., Peters, J. R. & Burkepile, D. E. A view from both ends: shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems 24, 1702–1715 (2021).Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchley, A., McField, M. D. & Alvarez-Filip, L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 4, e2084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Hoey, A. S. & Wilson, S. K. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).Article 

    Google Scholar 
    Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl Acad. Sci. USA 117, 5351–5357 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doropoulos, C. et al. Characterising the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    Russ, G. R., Questel, S. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045 (2015).Article 

    Google Scholar 
    Chung, A. E. et al. Building coral reef resilience through spatial herbivore management. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00098 (2019).Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).Article 

    Google Scholar 
    Edwards, A. J. Reef Rehabilitation Manual (Coral Reef Targeted Research & Capacity Building for Management Program, 2010).Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schindler, D. E. & Hilborn, R. Sustainability. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).Article 

    Google Scholar 
    Cote, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling, E. S. & Cote, I. M. Seeking resilience in marine ecosystems. Science 359, 986–987 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rassweiler, A. et al. Perceptions and responses of Pacific Island fishers to changing coral reefs. Ambio 49, 130–143 (2020).PubMed 
    Article 

    Google Scholar 
    Moorea Coral Reef LTER & Carpenter, R. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Benthic Algae and Other Community Components (Environmental Data Initiative, accessed 2019); https://doi.org/10.6073/pasta/37d9c451a908e4a6f8e7ab914b93f44fBrooks, A. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Fishes (MCR, 2018).de Loma, T. L. et al. A framework for assessing impacts of marine protected areas in Moorea (French Polynesia). Pac. Sci. 62, 431–441 (2008).Article 

    Google Scholar 
    Nicholson, M. D. & Jennings, S. Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES J. Mar. Sci. 61, 35–42 (2004).Article 

    Google Scholar 
    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Latitudinal and temporal variation in injury and its impacts in the invasive Asian shore crab Hemigrapsus sanguineus

    Bryant, S. V., Endo, T. & Gardiner, D. M. Vertebrate limb regeneration and the origin of limb stem cells. Int. J. Dev. Biol. 46, 887–896 (2004).
    Google Scholar 
    Fleming, P. A., Muller, D. & Bateman, P. W. Leave it all behind: A taxonomic perspective of autotomy in invertebrates. Biol. Rev. 82, 481–510 (2007).PubMed 
    Article 

    Google Scholar 
    Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 
    Article 

    Google Scholar 
    Lindsay, S. M. Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr. Comp. Biol. 50, 479–493 (2010).PubMed 
    Article 

    Google Scholar 
    Wilson, B. S. Tail injuries increase the risk of mortality in free-living lizards (Uta stansburiana). Oecologia 92, 145–152 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chapple, D. G. & Swain, R. Inter-populational variation in the cost of autotomy in the metallic skink (Niveoscincus metallicus). J. Zool. 264, 411–418 (2004).Article 

    Google Scholar 
    Tyler, R. K., Winchell, K. M. & Revell, L. J. Tails of the city: Caudal autotomy in the tropical lizard, Anolis cristatellus, in urban and natural areas of Puerto Rico. J. Herpetol. 50, 435–441 (2016).Article 

    Google Scholar 
    Griffen, B. D., Cannizzo, Z. J., Carver, J. & Meidell, M. Reproductive and energetic costs of injury in the mangrove tree crab. Mar. Ecol. Prog. Ser. 640, 127–137 (2020).ADS 
    Article 

    Google Scholar 
    Smith, L. D. & Hines, A. H. Autotomy in blue crab (Callinectes sapidus Rathbun) populations: Geographic, temporal, and ontogenetic variation. Biol. Bull. 180, 416–431 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872 (2006).Article 

    Google Scholar 
    Suma Gupta, N. V., Kurup, K. N. P., Adiyodi, R. G. & Adiyodi, K. G. The antagonism between somatic growth and testicular activity during different phases in intermoult (stage C4) in sexually mature freshwater crab, Paratelphusa hydrodromous. Invertebr. Reprod. Dev. 16, 195–203 (1989).Article 

    Google Scholar 
    Devi, S. & Adiyodi, R. G. Effect of multiple limb autotomy on oogenesis and somatic growth in Paratelphusa hydromous. Trop. Freshw. Biol. 9, 43–56 (2000).
    Google Scholar 
    Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).Article 

    Google Scholar 
    Cheng, J. H. & Chang, E. S. Determinants of postmolt size in the American lobster (Homarus americanus). I. D13 is the critical stage. Can. J. Fish. Aquat. Sci. 50, 2106–2111 (1993).Article 

    Google Scholar 
    Kuris, A. M. & Mager, M. Effect of limb regeneration on size increase at molt of the shore crabs Hemigrapsus oregonensis and Pachygrapsus crassipes. J. Exp. Zool. 193, 353–359 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ballinger, R. E. & Tinkle, D. W. On the cost of tail regeneration to body growth in lizards. J. Herpetol. 13, 374–375 (1979).Article 

    Google Scholar 
    Hopkins, P. M. & Das, S. Regeneration in crustaceans. Nat. Hist. Crustacea 4, 168–198 (2015).
    Google Scholar 
    Lai, A. G. & Aboobaker, A. A. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev. Biol. 433, 118–131 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    Bondad-Reantaso, M. G., Subasinghe, R. P., Josupeit, H., Cai, J. & Zhou, X. The role of crustacean fisheries and aquaculture in global food security: Past, present and future. J. Invertebr. Pathol. 110, 158–165 (2012).PubMed 
    Article 

    Google Scholar 
    Galil, B. S., Clark, P. F. & Carleton, J. T. In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology, and Impacts (Springer, 2011).Book 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS One 13, e0193085 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffen, B. D., van den Akker, D., DiNuzzo, E. R., Anderson, L. & Vernier, A. Comparing methods for predicting the impacts of invasive species. Biol. Invasions 23, 491–505 (2021).Article 

    Google Scholar 
    Williams, A. B. & McDermott, J. J. An eastern United States record for the western Indo-Pacific crab, Hemigrapsus sanguineus (Crustacea: Decapoda: Grapsidae). Proc. Biol. Soc. Wash. 103, 108–109 (1990).
    Google Scholar 
    Blakeslee, A. M. et al. Reconstructing the invasion history of the Asian shorecrab, Hemigrapsus sanguineus (De Haan 1835) in the Western Atlantic. Mar. Biol. 164, 1–19 (2017).
    Google Scholar 
    Griffen, B. D. & Delaney, D. G. Species invasion shifts the importance of predator dependence. Ecology 88, 3012–3021 (2007).PubMed 
    Article 

    Google Scholar 
    Epifanio, C. E. Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. J. Exp. Mar. Biol. Ecol. 441, 33–49 (2013).Article 

    Google Scholar 
    Gerard, V. A., Cerrato, R. M. & Larson, A. A. Potential impacts of a western Pacific grapsid crab on intertidal communities of the northwestern Atlantic Ocean. Biol. Invasions 1, 353–361 (1999).Article 

    Google Scholar 
    Kraemer, G. P., Sellberg, M., Gordon, A. & Main, J. Eight-year record of Hemigrapsus sanguineus (Asian shore crab) invasion in western Long Island Sound estuary. Northeast. Nat. 14, 207–224 (2007).Article 

    Google Scholar 
    Davis, J. L. et al. Autotomy in the Asian shore crab (Hemigrapsus sanguineus) in a non-native area of its range. J. Crust. Biol. 25, 655–660 (2005).Article 

    Google Scholar 
    Delaney, D. G., Griffen, B. D. & Leung, B. Does consumer injury modify invasion impact?. Biol. Invasions 13, 2935–2945 (2011).Article 

    Google Scholar 
    Jensen, G. C., McDonald, P. S. & Armstrong, D. A. East meets west: Competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).ADS 
    Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Interactions among aliens: Apparent replacement of one exotic species by another. Ecology 83, 719–732 (2002).Article 

    Google Scholar 
    Griffen, B. D. & Williamson, T. Influence of predator density on nonindependent effects of multiple predator species. Oecologia 155, 151–159 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Vernier, A. & Griffen, B. D. Physiological effects of limb loss on the Asian shore crab Hemigrapsus sanguineus. Northeast. Nat. 26, 761–771 (2019).Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Mar. Ecol. Prog. Ser. 227, 135–144 (2002).ADS 
    Article 

    Google Scholar 
    Goldstein, J. S. & Carloni, J. T. Assessing the implications of live claw removal on Jonah crab (Cancer borealis), an emerging fishery in the Northwest Atlantic. Fish. Res. 243, 106046 (2021).Article 

    Google Scholar 
    Hines, A. H. Allometric constraints and variables of reproductive effort in brachyuran crabs. Mar. Biol. 69, 309–320 (1982).Article 

    Google Scholar 
    Pörtner, H. O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).PubMed 
    Article 

    Google Scholar 
    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).PubMed 
    Article 

    Google Scholar 
    Prestholdt, T. et al. Tradeoffs associated with autotomy and regeneration and their potential role in the evolution of regenerative abilities. Behav. Ecol. 33, 518–525 (2022).Article 

    Google Scholar 
    McDermott, J. J. The western Pacific brachyuran Hemigrapsus sanguineus (Grapsidae) in its new habitat along the Atlantic coast of the United States: Reproduction. J. Crustac. Biol. 18, 308–316 (1998).Article 

    Google Scholar 
    Depledge, M. H. Hemigrapsus sanguineus (De Haan). Asian Mar. Biol. 1, 115–123 (1984).
    Google Scholar 
    Saigusa, M. & Kawagoye, O. Circatidal rhythm of an intertidal crab, Hemigrapsus sanguineus: Synchrony with unequal tide height and involvement of a light-response mechanism. Mar. Biol. 129, 87–96 (1997).Article 

    Google Scholar 
    Choy, S. C. A rapid method for removing and counting eggs from fresh and preserved decapod crustaceans. Aquaculture 48, 369–372 (1985).Article 

    Google Scholar 
    Rosa, R., Calado, R., Narciso, L. & Nunes, M. L. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: A fatty acid approach. Mar. Biol. 151, 935–947 (2007).Article 

    Google Scholar 
    Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).PubMed 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Zero-truncated and zero-inflated models for count data. In Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).MATH 
    Chapter 

    Google Scholar 
    Griffen, B. D. Linking individual diet variation and fecundity in an omnivorous marine consumer. Oecologia 174, 121–130 (2014).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Safeguarding nutrients from coral reefs under climate change

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resource Institute, 2011).Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).Article 

    Google Scholar 
    Gillett, R. Fisheries in the Economies of the Pacific Island Countries and Territories (Asian Development Bank, 2016).The Regional State of the Coast Report: Western Indian Ocean (UNEP, Nairobi Convention & WIOMSA, 2015).Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change and reef fish consumption in Palau: benefits, trade-offs and adaptation strategies. Mar. Policy 88, 323–332 (2018).Article 

    Google Scholar 
    Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).Article 

    Google Scholar 
    Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).Article 

    Google Scholar 
    Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. & Hijmans, R. J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851, 469–484 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddad, L. et al. A new global research agenda for food. Nature 540, 30–32 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    MacNeil, M. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crona, B. I., Van Holt, T., Petersson, M., Daw, T. M. & Buchary, E. Using social–ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Glob. Environ. Change 35, 162–175 (2015).Article 

    Google Scholar 
    Okemwa, G. M., Kaunda-Arara, B., Kimani, E. N. & Ogutu, B. Catch composition and sustainability of the marine aquarium fishery in Kenya. Fish. Res. 183, 19–31 (2016).Article 

    Google Scholar 
    Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Glob. Environ. Change 21, 7–12 (2011).Article 

    Google Scholar 
    Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth 4, 1214–1216 (2021).Article 

    Google Scholar 
    Albert, J. et al. Malnutrition in rural Solomon Islands: an analysis of the problem and its drivers. Matern. Child Nutr. 16, e12921 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Golden, C. D. et al. Social–ecological traps link food systems to nutritional outcomes. Glob. Food Security 30, 100561 (2021).Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morais, R. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).Article 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).Article 

    Google Scholar 
    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).PubMed 
    Article 

    Google Scholar 
    Soliño, L. & Costa, P. R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. Environ. Res. 182, 109111 (2020).PubMed 
    Article 

    Google Scholar 
    Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).Article 

    Google Scholar 
    Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network & International Coral Reef Initiative, 2021).Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).Article 

    Google Scholar 
    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61, 91–125 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fraser, K. M. et al. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc. R. Soc. B Biol. Sci. 287, 20201798 (2020).CAS 
    Article 

    Google Scholar 
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang, J. X. Omega-3: a link between global climate change and human health. Biotechnol. Adv. 29, 388–390 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).Article 

    Google Scholar 
    Tan, K., Zhang, H. & Zheng, H. Climate change and n-3 LC-PUFA availability. Prog. Lipid Res. 86, 101161 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pethybridge, H. R. et al. Spatial patterns and temperature predictions of tuna fatty acids: tracing essential nutrients and changes in primary producers. PLoS ONE 10, e0131598 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Bodin, N. & Wilson, S. K. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct. Ecol. 32, 820–830 (2018).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).PubMed 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. Habitat loss and range shifts contribute to ecological generalization amongst reef fishes. Nat. Ecol. Evol. 5, 656–662 (2021).PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Du Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W. W. L. Climate change undermines the global functioning of marine food webs. Glob. Change Biol. 26, 1306–1318 (2020).Article 

    Google Scholar 
    Jones, J. et al. The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish. Front. Microbiol. 9, 2000 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651–660 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth 5, 98–108 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (FishBase, 2021); www.fishbase.orgMacNeil, M. A. NutrientFishbase dataset. GitHub https://github.com/mamacneil/NutrientFishbase (2021).Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 

    Google Scholar 
    Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).Article 

    Google Scholar 
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16, 478–490 (2013).Article 

    Google Scholar 
    Pratchett, M. S. et al. in Oceanography and Marine Biology: An Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (CRC Press, 2008).Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).Article 

    Google Scholar 
    Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).PubMed 
    Article 

    Google Scholar 
    Hempson, T., Graham, N., Macneil, A., Hoey, A. & Wilson, S. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl. 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).Article 

    Google Scholar 
    McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 
    Article 

    Google Scholar 
    Edgar, G. J. et al. Reef Life Survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Pauly, D. & Zeller, D. Accurate catches and the sustainability of coral reef fisheries. Curr. Opin. Environ. Sustain. 7, 44–51 (2014).Article 

    Google Scholar 
    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).Article 

    Google Scholar 
    Graham, N. A. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinsky Malin, L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21, 237–251 (2020).Article 

    Google Scholar 
    Ahern, M. B. et al. Locally-procured fish is essential in school feeding programmes in sub-Saharan Africa. Foods 10, 2080 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC, WorldFish Centre, WRI & TNC. Global Distribution of Coral Reefs. Version 4.1. Ocean Data Viewer https://doi.org/10.34892/t2wk-5t34 (UN Environment World Conservation Monitoring Centre, 2021).Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, M. et al. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 23, 797–810 (2011).CAS 
    Article 

    Google Scholar 
    Coleman, M. A. et al. Climate change does not affect the seafood quality of a commonly targeted fish. Glob. Change Biol. 25, 699–707 (2019).Article 

    Google Scholar 
    Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).PubMed 
    Article 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).PubMed 
    Article 

    Google Scholar 
    McMahon, K., Hamady, L. L. & Thorrold, S. Ocean ecogeochemistry—a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).
    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS 
    Article 

    Google Scholar 
    Bowes, R. E. & Thorp, J. H. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6, 14 (2015).Article 

    Google Scholar 
    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
    Article 

    Google Scholar 
    Kleiber, D., Harris, L. M. & Vincent, A. C. J. Gender and small-scale fisheries: a case for counting women and beyond. Fish Fish. 16, 547–562 (2015).Article 

    Google Scholar  More

  • in

    Revealing the uncharacterised diversity of amphibian and reptile viruses

    Benton MJ, Donoghue PCJ. Paleontological evidence to date the tree of life. Mol Biol Evol. 2006;24:26–53.PubMed 

    Google Scholar 
    Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol. 2017;1:1677–82.PubMed 

    Google Scholar 
    IUCN, The IUCN Red List of Threatened Species. Version 2021-3. 2021.Medicine, N.L.o., NCBI Genome. 2022, National Center for Biotechnology Information.Hotaling S, Kelley JL, Frandsen PB. Toward a genome sequence for every animal: Where are we now? Proc Natl Acad Sci. 2021;118:e2109019118.PubMed 
    PubMed Central 

    Google Scholar 
    Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018;556:197–202.PubMed 

    Google Scholar 
    Parry R, Wille M, Turnbull OMH, Geoghegan JL, Holmes EC. Divergent influenzalike viruses of amphibians and fish support an ancient evolutionary association. Viruses. 2020;12:1042.PubMed Central 

    Google Scholar 
    Peck KM, Lauring AS, Christopher S, Complexities of viral mutation rates. J Virol. 92: e01031-17.Latney LV, Klaphake E. Selected emerging infectious diseases of amphibians. Vet Clin N Am—Exotic Animal Pract. 2020;23:397–412.
    Google Scholar 
    Zhang J, Finlaison DS, Frost MJ, Gestier S, Gu X, Hall J, et al. Identification of a novel nidovirus as a potential cause of large scale mortalities in the endangered Bellinger River snapping turtle (Myuchelys georgesi). PLOS ONE. 2018;13:e0205209.PubMed 
    PubMed Central 

    Google Scholar 
    Parrish K, Kirkland PD, Skerratt LF, Ariel E. Nidoviruses in reptiles: a review. Front Vet Sci. 2021;8:733404.PubMed 
    PubMed Central 

    Google Scholar 
    Chang WS, Li CX, Hall J, Eden JS, Hyndman TH, Holmes EC, et al. Metatranscriptomic discovery of a divergent circovirus and a chaphamaparvovirus in captive reptiles with proliferative respiratory syndrome. Viruses. 2020;12:1073.PubMed Central 

    Google Scholar 
    Mendoza-Roldan JA, Mendoza-Roldan MA, Otranto D. Reptile vector-borne diseases of zoonotic concern. Int J Parasitol: Parasites Wildl. 2021;15:132–42.
    Google Scholar 
    Essbauer S, Ahne W. Viruses of lower vertebrates. J Vet Med Ser B. 2001;48:403–75.
    Google Scholar 
    Mercer LK, Harding EF, Yan GJH, White PA. Novel viruses discovered in the transcriptomes of agnathan fish. J Fish Dis. 2022;45:931–8.PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat biotechnol. 2011;29:644–52.PubMed 
    PubMed Central 

    Google Scholar 
    Harding EF, Russo AG, Yan GJH, Waters PD, White PA. Ancient viral integrations in marsupials: a potential antiviral defence. Virus Evol. 2021;7:veab076.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.PubMed 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Kelly AG, Netzler NE, White PA. Ancient recombination events and the origins of hepatitis E virus. BMC Evol Biol. 2016;16:210.PubMed 
    PubMed Central 

    Google Scholar 
    Rector A, Van, Ranst M. Animal papillomaviruses. Virology. 2013;445:213–23.PubMed 

    Google Scholar 
    Blahak S, Jenckel M, Höper D, Beer M, Hoffmann B, Schlottau K. Investigations into the presence of nidoviruses in pythons. Virol J. 2020;17:6.PubMed 
    PubMed Central 

    Google Scholar 
    Marschang RE. Viruses infecting reptiles. Viruses. 2011;3:2087–126.PubMed 
    PubMed Central 

    Google Scholar 
    Horie M, Akashi H, Kawata M, Tomonaga K. Identification of a reptile lyssavirus in Anolis allogus provided novel insights into lyssavirus evolution. Virus Genes. 2021;57:40–49.PubMed 

    Google Scholar 
    Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, Reavill DR, et al. Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. mBio. 2012;3:e00180–12.PubMed 
    PubMed Central 

    Google Scholar 
    Garver KA, Leskisenoja K, Macrae R, Hawley LM, Subramaniam K, Waltzek TB, et al. An alloherpesvirus infection of european perch perca fluviatilis in Finland. Dis Aquat Org. 2018;128:175–85.
    Google Scholar 
    Hellebuyck T, Couck L, Ducatelle R, Broeck WV, Marschang RE. Cheilitis associated with a novel herpesvirus in two panther chameleons (Furcifer pardalis). J Comp Pathol. 2021;182:58–66.PubMed 

    Google Scholar 
    Altan E, Kubiski SV, Burchell J, Bicknese E, Deng X, Delwart E. The first reptilian circovirus identified infects gut and liver tissues of black-headed pythons. Vet Res. 2019;50:35.PubMed 
    PubMed Central 

    Google Scholar 
    Russo AG, Harding EF, Yan GJH, Selechnik D, Ducatez S, DeVore JL, et al. Discovery of novel viruses associated with the invasive cane toad (Rhinella marina) in its native and introduced ranges. Front Microbiol. 2021;12:733631.PubMed 
    PubMed Central 

    Google Scholar 
    Chen X-X, Wu W-C, Shi M. Discovery and characterization of actively replicating DNA and retro-transcribing viruses in lower vertebrate hosts based on RNA sequencing. Viruses. 2021;13:1042.PubMed 
    PubMed Central 

    Google Scholar 
    Russo AG, Eden JS, Tuipulotu DE, Shi M, Selechnik D, Shine R, et al. Viral discovery in the invasive Australian cane toad (Rhinella marina) using metatranscriptomic and genomic approaches. J Virol. 2018;92:e00768–18.PubMed 
    PubMed Central 

    Google Scholar 
    López-Bueno A, Mavian C, Labella AM, Castro D, Borrego JJ, Alcami A, et al. Concurrence of Iridovirus, Polyomavirus, and a unique member of a new group of fish Papillomaviruses in Lymphocystis disease-affected gilthead sea bream. Journal of virology. 2016;90:8768–79.PubMed 
    PubMed Central 

    Google Scholar 
    Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol. 2018;99:1345–56.PubMed 

    Google Scholar 
    Diemer GS, Stedman KM. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct. 2012;7:13.PubMed 
    PubMed Central 

    Google Scholar 
    Welch, NL, MJ Tisza, GJ Starrett, AK Belford, DV Pastrana, Y-YS Pang, et al. Identification of Adomavirus Virion proteins. bioRxiv. 2020:341131. https://doi.org/10.1101/341131Dill JA, Camus AC, Leary JH, Ng TFF, Zheng Z-M, Meng X-J. Microscopic and Molecular Evidence of the First Elasmobranch Adomavirus, the Cause of Skin Disease in a Giant Guitarfish, Rhynchobatus djiddensis. mBio. 2018;9:e00185–18.PubMed 
    PubMed Central 

    Google Scholar 
    Yang J-X, Chen X, Li Y-Y, Song T-Y, Ge J-Q. Isolation of a novel adomavirus from cultured American eels, Anguilla rostrata, with haemorrhagic gill necrosis disease. J Fish Dis. 2021;44:1811–8.PubMed 

    Google Scholar 
    King AMQ, Adams MJ, Carstens EB & Lefkowitz EJ, Order – Nidovirales, in virus taxonomy: classification and nomenclature of viruses. 2012, Elsevier/Academic Press: San Diego.Lyu S, Yuan X, Zhang H, Shi W, Hang X, Liu L, et al. Complete genome sequence and analysis of a new lethal arterivirus, Trionyx sinensis hemorrhagic syndrome virus (TSHSV), amplified from an infected Chinese softshell turtle. Arch Virol. 2019;164:2593–7.PubMed 
    PubMed Central 

    Google Scholar 
    Sinzelle L, Carradec Q, Paillard E, Bronchain OJ, Pollet N. Characterization of a Xenopus tropicalis endogenous retrovirus with developmental and stress-dependent expression. J Virol. 2011;85:2167–79.PubMed 

    Google Scholar 
    Wei X, Chen Y, Duan G, Holmes EC, Cui J. A reptilian endogenous foamy virus sheds light on the early evolution of retroviruses. Virus Evol. 2019;5:vez001.PubMed 
    PubMed Central 

    Google Scholar 
    Debat HJ, Ng TFF. Complete genome sequence of a divergent strain of Tibetan frog hepatitis B virus associated with a concave-eared torrent frog (Odorrana tormota). Arch Virol. 2019;164:1727–32.PubMed 

    Google Scholar 
    Reuter G, Boros Á, Tóth Z, Gia Phan T, Delwart E, Pankovics P. A highly divergent picornavirus in an amphibian, the smooth newt (Lissotriton vulgaris). J Gen Virol. 2015;96:2607–13.PubMed 
    PubMed Central 

    Google Scholar 
    ICTV. Subfamily: Secondpapillomavirinae. 2021 [cited 2022 15/06/2022]; Virus Taxonomy: 2021 Release:[Available from: https://talk.ictvonline.org/ictv-reports/ictv_online_report/dsdna-viruses/w/papillomaviridae/894/subfamilysecondpapillomavirinae.Willemsen A, Bravo IG. Origin and evolution of papillomavirus (onco)genes and genomes. Philos Trans R Soc B: Biol Sci. 2019;374:20180303.
    Google Scholar 
    Agius JE, Phalen DN, Rose K, Eden J-S. New insights into Sauropsid Papillomaviridae evolution and epizootiology: discovery of two novel papillomaviruses in native and invasive Island geckos. Virus Evol. 2019;5:vez051.PubMed 
    PubMed Central 

    Google Scholar 
    Bienentreu J-F, Lesbarrères D. Amphibian disease ecology: are we just scratching the surface? Herpetologica. 2020;76:153–66.
    Google Scholar 
    Mashkour N, Jones K, Wirth W, Burgess G, Ariel E. The concurrent detection of Chelonid Alphaherpesvirus 5 and Chelonia mydas Papillomavirus 1 in tumoured and non-tumoured green turtles. Animals. 2021;11:697.PubMed 
    PubMed Central 

    Google Scholar 
    Hoon-Hanks LL, Layton ML, Ossiboff RJ, Parker JSL, Dubovi EJ, Stenglein MD. Respiratory disease in ball pythons (Python regius) experimentally infected with ball python nidovirus. Virology. 2018;517:77–87.PubMed 

    Google Scholar 
    Dervas E, Hepojoki J, Smura T, Prähauser B, Windbichler K, Blümich S, et al. Serpentoviruses: More than respiratory pathogens. J Virol. 2020;94:e00649–20.PubMed 
    PubMed Central 

    Google Scholar 
    O’Dea MA, Jackson B, Jackson C, Xavier P, Warren K. Discovery and Partial Genomic Characterisation of a Novel Nidovirus Associated with Respiratory Disease in Wild Shingleback Lizards (Tiliqua rugosa). PloS One. 2016;11:e0165209.PubMed 
    PubMed Central 

    Google Scholar 
    Dervas E, Hepojoki J, Laimbacher A, Romero-Palomo F, Jelinek C, Keller S, et al. Nidovirus-associated proliferative pneumonia in the green tree python (Morelia viridis). J Virol. 2017;91:e00718–17.PubMed 
    PubMed Central 

    Google Scholar 
    Oberhuber M, Schopf A, Hennrich AA, Santos-Mandujano R, Huhn AG, Seitz S, et al. Glycoproteins of predicted amphibian and reptile lyssaviruses can mediate infection of mammalian and reptile cells. Viruses. 2021;13:1726.PubMed 
    PubMed Central 

    Google Scholar 
    Ritchie BW, Niagro FD, Lukert PD, Steffens WL, Latimer KS. Characterization of a new virus from cockatoos with psittacine beak and feather disease. Virology. 1989;171:83–88.PubMed 

    Google Scholar 
    Eleni C, Corteggio A, Altamura G, Meoli R, Cocumelli C, Rossi G, et al. Detection of Papillomavirus DNA in cutaneous squamous cell carcinoma and multiple papillomas in captive reptiles. J Comp Pathol. 2017;157:23–26.PubMed 

    Google Scholar 
    Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour. Virus Res. 2021;12:200225.
    Google Scholar 
    Chen XX, Wu WC, Shi M. Discovery and characterization of actively replicating dna and retro-transcribing viruses in lower vertebrate hosts based on rna sequencing. Viruses. 2021;13:1042.PubMed 
    PubMed Central 

    Google Scholar 
    Liu W, Zhang Y, Ma J, Jiang N, Fan Y, Zhou Y, et al. Determination of a novel parvovirus pathogen associated with massive mortality in adult tilapia. PLOS Pathogens. 2020;16:e1008765.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Sampling location and sediment coringSamples were collected during IODP Exp. 382 ‘Iceberg Alley and Subantarctic Ice and Ocean Dynamics’ on-board RV Joides Resolution between 20 March and 20 May 2019. Specifically, we collected samples at Site U1534 (Falkland Plateau, 606 m water depth), U1536 (Dove Basin, Scotia Sea, 3220 m water depth), and Site U1538 (Pirie Basin, Scotia Sea, 3130 m water depth) (Fig. 1). Site U1534 is located at the Subantarctic Front on a contourite drift at the northern limit of the Scotia Sea. This setting is ideal to study the poorly understood role of Antarctic Intermediate Water (AAIC) and its impact on the Atlantic Meridional Overturning Circulation (AMOC) along the so-called ‘cold water route’ that connects to the Pacific Ocean through the Drake Passage, as opposed to the ‘warm water route’ that connects to the Indian Ocean via the Agulhas Current42. Sites U1536 and U1538 are located in the southern and central Scotia Sea, respectively, and were drilled to study the Neogene flux of icebergs through ‘Iceberg Alley’, the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC)23. sedaDNA samples collected at Site U1534 were from Hole C, at Site U1536 from Hole B, and at Site U1538 from Holes C and D (Table 1), and in the following we refer to site names only. IODP Expedition proposals undergo a rigorous environmental protection and safety review, which is approved by the IODP’s Environmental Protection and Safety Panel (EPSP) and/or the Safety Panel. The same procedure was applied to IODP Exp. 382 and approval was provided by the EPSP. Sediment samples for sedaDNA analyses were imported to Australia under Import Permit number 0002658554 provided by the Australian Government Department for Agriculture and Water Resources (date of issue: 19 September 2018), and were stored and extracted at a quarantine approved facility (AA Site No. S1253, Australian Centre for Ancient DNA). No ethical approval was required for this study.Table 1 Sampling location and sample detailsFull size tableSample age determinationAge control for Site U1534 is based on tuning of benthic foraminifera δ18O to the LR04 stack43. Wherever present specimens of Uvigerina bifurcata were picked from samples at 10 cm intervals. During warmer periods when U. bifurcata was not present, Melonis affinis and/or Hoeglundina elegans were analysed. Sedimentation rates over the intervals sampled for sedaDNA typically range between 6 and 30 cm/kyr, with rates exceeding 100 cm/kyr during the Last Glacial Maximum ~20,000 years ago (20 ka). For our deepest sample, U1534C-10H-6_115cm (90.95 mbsf), we only have biostratigraphically assigned ages available (shipboard data), which date this sample as early Pleistocene (~2.5–0.7 million years ago, Ma44).Low-resolution age control for both Sites U1536 and U1538 was established using shipboard magneto- and biostratigraphy21,23. Average sedimentation rates are ~10 cm/kyr for Site U1536, with elevated values (up to 20 cm/kyr) in the upper ~80 mbsf (the last ~400 ka). Site U1538 average sedimentation rates are twice as high, averaging ~20 cm/kyr. Especially in the upper ~430 mbsf (the last 1.8 Ma), rates are up to 40 cm/kyr. Higher resolution age models are based on dust climate couplings, correlating sedimentary dust proxy records such as magnetic susceptibility and sedimentary Ca and Fe records to ice-core dust proxy records over the last 800 ka45 and to a benthic isotopic stack26 before that. These age models were established for Site U1537 (adjacent to Site U1536) and provide orbital to millennial scale resolution. For this study we correlated sedimentary cycles of Sites U1536 and U1538 to U1537 to achieve similar resolution and to be able to determine if a sample originates from a glacial or interglacial period (Table 1).Sampling of sedaDNAA detailed description of sedaDNA sampling methods can be found in ref. 24. In brief, we used advanced piston coring (APC) to acquire sediment cores, which recovers the least disturbed sediments46,47,48 and is thus the preferred technique for sedaDNA sampling. All samples were taken on the ship’s ‘catwalk’, where, once the core was on deck, the core liners were wiped clean twice (3% sodium hypochlorite, ‘bleach’) at each cutting point. Core cutting tools were sterilised before each cut (3% bleach and 80% ethanol) of the core in 1 m sections. The outer ~3 mm of surface material were removed from the bottom of each core section to be sampled, using sterilised scrapers (~4 cm wide; bleach and ethanol treated). A cylindrical sample was taken from the core centre using a sterile (autoclaved) 10 mL cut-tip syringe, providing ~5 cm3 of sediment material. The syringe was placed in a sterile plastic bag (Whirl-Pak) and immediately frozen at −80 °C. The mudline (sediment/seawater interface) was transferred from the core liner into a sterile bucket (3% bleach treated), and 10 mL sample was retained in a sterile 15 mL centrifuge tube (Falcon) and frozen at −80 °C. Samples were collected at various depth intervals depending on the site to span the Holocene up to ~1 million years (Table 1). This lower depth/age limit was determined by switching coring system from APC to the extended core barrel (XCB) system.To test for potential airborne contamination, at least one air control was taken during the sedaDNA sampling process per site. For this, an empty syringe was held for a few seconds in the sampling area and then transferred into a sterile plastic bag and frozen at −80 °C. The air controls were processed, sequenced and analysed alongside the sediment samples.Contamination control using perfluoromethyldecalin tracersAs part of the APC process, drill fluid (basically, seawater) is pumped into the borehole to trigger the hydraulic coring system, therefore, the potential for contamination exists due to drill fluid making contact with the core liner. To assess the latter, we added the non-toxic chemical tracer perfluoromethyldecalin (PFMD) to the drill fluid at a rate of ~0.55 mL min−1 for cores collected at Sites U1534 and U153649. As we found that PFMD concentrations were very low at these sites (Results section), the infusion rate was doubled prior to sedaDNA sampling at Site U1538 to ensure low PFMD concentrations represent low contamination and not delivery failure of PFMD to the core. At each sedaDNA sampling depth, one PFMD sample was taken from the periphery of the core (prior to scraping, to test whether drill fluid reached the core pipe), and one next to the sedaDNA sample in the centre of the core (after scraping, to minimise differences to the sedaDNA sample, and testing if drill fluid had reached the core centre). We transferred ~3 cm3 of sediment using a disposable, autoclaved 5 mL cut-tip syringe into a 20 mL headspace vial with metal caps and Teflon seals. We also collected a sample of the tracer-infused drill fluid at each site, by transferring ~10 mL of the fluid collected at the injection pipe on the rig floor via a sterile plastic bottle into a 15 mL centrifuge tube (inside a sterile plastic bag) and freezing it at −80 °C. These drill fluid controls were processed and analysed in the same way as the sedaDNA samples including sequencing. Samples were analysed using gas chromatography (GC-µECD; Hewlett-Packard 6890).A detailed description of the PFMD GC measurements is provided in ref. 24. Briefly, PFMD measurements were undertaken in batches per site for U1534, U1536 and U1538. This included the analyses of PFMD samples collected at two additional holes at these sites, U1534D and U1536C, from which we also collected sedaDNA samples but that are not part of this study. PFMD is categorised as the stereoisomers of PFMD (C11F20), which add up to 87-88% (and with the remaining 12% being additional perfluoro compounds unable to be separated by the manufacturer). We exclusively refer to the first and measurable PFMD category, calibrating for the 88% in bottle concentrations during concentration calculations. Each GC analysis run included the measurement of duplicate blanks and duplicate PFMD standards. Due to a large sample number, PFMD at Site U1538 was measured in three separate runs, with the first and last run including triplicate blank and triplicate PFMD standards (duplicates in the second run), and the last run also containing a drill-fluid sample. To blank-correct PFMD concentrations, we subtracted the average PFMD concentration of all blanks per run from PFMD measurements in that run. To determine the detection limit of PFMD, we used three times the standard deviation of the average blank PFMD values per run; due to all blank values for the U1538 runs being 0, we used three times the standard deviation of the lowest PFMD standard for this site in this calculation. This provided us with a PFMD detection limit of 0.2338 ng mL−1. Any PFMD measurements of samples below this limit were rejected.
    sedaDNA extractions and metagenomic library preparationsA total of 80 sedaDNA extracts and metagenomic shotgun libraries (Table 1) were prepared following8,10. For the sedaDNA extractions, we randomised our samples and controls and extracted sedaDNA in batches of 16 extracts/libraries at a time, with each batch including at least one air control and one extraction blank control (EBC), and the last batch including mudline and PFMD samples to avoid contamination of the sedaDNA samples. In brief, we used 20 µL sedaDNA extracts in a repair reaction (using T4 DNA polymerase, New England Biolabs, USA; 15 min, 25 °C), then purified the sedaDNA (MinElute Reaction Cleanup Kit, Qiagen, Germany), ligated adaptors (T4 DNA ligase, Fermentas, USA, where truncated Illumina-adaptor sequences containing two unique 7 base-pair (bp) barcodes were attached to the double-stranded DNA; 60 min, 22 °C), purified the sedaDNA again (MinElute Reaction Cleanup Kit, Qiagen), and then added a fill-in reaction with adaptor sequences (Bst DNA polymerase, New England Biolabs, USA; 30 min, 37 °C, with polymerase deactivation for 10 min, 80 °C). We amplified the barcoded libraries using IS7/IS8 primers50 (8 replicates per sample, where each replicate was a 25 µL reaction containing 3 µL DNA template; using 22 cycles), purified (AxyPrep magnetic beads, Axygen Biosciences, USA; 1:1.8 library:beads) and quantified them (Qubit dsDNA HS Assay, Invitrogen, Molecular Probes, USA). We amplified the libraries (8 replicates per sample, 13 amplification cycles) using IS4 and GAII Indexing Primers50, purified (AxyPrep magnetic beads, at a ratio of 1:1.1 library:beads), quantified and quality-checked using Qubit (dsDNA HS Assay, Invitrogen, USA) and TapeStation (Agilent Technologies, USA). We combined the libraries into an equimolar pool (volume of 68 µL in total), diluted this pool with nuclease-free H2O to 100 µL, and performed a ‘reverse’ AxyPrep clean-up to retain only the small DNA fragments typical for ancient DNA (≤ 500 bp; initial library:beads ratio of 1:0.6, followed by 1:1.1, and double-eluted in 30 µL nuclease-free H2O8,51). We added one more AxyPrep clean-up to remove primer-dimer (library:beads ratio of 1:1.05) and checked sedaDNA quantity and quality via TapeStation and qPCR (QuantStudio, Applied Biosystems, USA). The libraries sequenced at the Garvan Institute for Medical Research, Sydney, Australia (Illumina NovaSeq 2 × 100 bp).
    sedaDNA data processingThe sequencing data was processed and filtered as described in detail in refs. 8, 10. Briefly, data filtering involved the removal of sequences More

  • in

    Wolf risk fails to inspire fear in two mesocarnivores suggesting facilitation prevails

    Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).PubMed 
    Article 

    Google Scholar 
    Newsome, T. M. et al. Top predators constrain mesopredator distributions. Nat. Commun. 8, 15469 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prugh, L. R. & Sivy, K. J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 23, 902–918 (2020).PubMed 
    Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).PubMed 
    Article 

    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).Article 

    Google Scholar 
    McArthur, C., Banks, P. B., Boonstra, R. & Forbey, J. S. The dilemma of foraging herbivores: Dealing with food and fear. Oecologia 176, 667–689 (2014).ADS 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 
    Article 

    Google Scholar 
    Kuijper, D. P. J. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B Biol. Sci. 283, 20161625 (2016).Article 

    Google Scholar 
    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolfes, elk, and bison: Reestablishing the ‘landscape of fear’ in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409 (2001).Article 

    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 
    Article 

    Google Scholar 
    Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).PubMed 
    Article 

    Google Scholar 
    Leo, V., Reading, R. P. & Letnic, M. Interference competition: Odours of an apex predator and conspecifics influence resource acquisition by red foxes. Oecologia 179, 1033–1040 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27, 1826–1832 (2016).
    Google Scholar 
    Haswell, P. M., Jones, K. A., Kusak, J. & Hayward, M. W. Fear, foraging and olfaction: how mesopredators avoid costly interactions with apex predators. Oecologia 187, 573–583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Switalski, T. A. Coyote foraging ecology and vigilance in response to gray wolf reintroduction in Yellowstone National Park. Can. J. Zool. 81, 985–993 (2003).Article 

    Google Scholar 
    Wikenros, C., Jarnemo, A., Frisén, M., Kuijper, D. P. J. & Schmidt, K. Mesopredator behavioral response to olfactory signals of an apex predator. J. Ethol. 35, 161–168 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palomares, F., Ferreras, P., Fedriani, J. M. & Delibes, M. Spatial relationships between Iberian Lynx and other carnivores in an area of south-western Spain. J. Appl. Ecol. 33, 5–13 (1996).Article 

    Google Scholar 
    Salo, P., Nordström, M., Thomson, R. L. & Korpimäki, E. Risk induced by a native top predator reduces alien mink movements. J. Anim. Ecol. 77, 1092–1098 (2008).PubMed 
    Article 

    Google Scholar 
    Haswell, P. M., Kusak, J. & Hayward, M. W. Large carnivore impacts are context-dependent. Food Webs 12, 3–13 (2017).Article 

    Google Scholar 
    Parsons, M. H. et al. Biologically meaningful scents: A framework for understanding predator–prey research across disciplines. Biol. Rev. 93, 98–114 (2018).PubMed 
    Article 

    Google Scholar 
    Sivy, K. J., Pozzanghera, C. B., Grace, J. B. & Prugh, L. R. Fatal attraction? Intraguild facilitation and suppression among predators. Am. Nat. 190, 663–679 (2017).PubMed 
    Article 

    Google Scholar 
    Ruprecht, J. et al. Variable strategies to solve risk-reward tradeoffs in carnivore communities. Proc. Natl. Acad. Sci. USA. 118, e2101614118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jędrzejewska, B. & Jędrzejewski, W. Predation in Vertebrate Communities Vol. 135 (Springer, 1998).Book 

    Google Scholar 
    Jȩdrzejewski, W. et al. Kill rates and predation by wolves on ungulate populations in Białowieża primeval forest (Poland). Ecology 83, 1341–1356 (2002).
    Google Scholar 
    Selva, N. The role of scavenging in the predator community of Białowieża Primeval Forest (Poland). PhD Thesis. (University of Sevilla, 2004).Kowalczyk, R., Zalewski, A., Jędrzejewska, B., Ansorge, H. & Bunevich, A. N. Reproduction and mortality of invasive raccoon dogs (Nyctereutes procyonoides) in the Biatowieža Primeval Forest (eastern Poland). Ann. Zool. Fennici 46, 291–303 (2009).Article 

    Google Scholar 
    Ballard, W. B., Carbyn, L. N. & Smith, D. W. Wolf interactions with non-prey. In Wolves: Behavior, Ecology, and Conservation (eds Mech, D. & Boitani, L.) 259–271 (University of Chicago Press, 2003).
    Google Scholar 
    Brown, J. S. Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22, 37–47 (1988).Article 

    Google Scholar 
    Bedoya-Perez, M. A., Carthey, A. J. R., Mella, V. S. A., McArthur, C. & Banks, P. B. A practical guide to avoid giving up on giving-up densities. Behav. Ecol. Sociobiol. 67, 1541–1553 (2013).Article 

    Google Scholar 
    Kwiatkowski, W. Vegetation landscapes of Białowieża Forest. Phytocoen. Suppl. Cart. Geobot 6, 35–87 (1994).
    Google Scholar 
    European Court of Justice Judgment of the Court (Grand Chamber) of 17 April 2018. European Commission vs. Republic of Poland. Case C-441/17. https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-04/cp180048en.pdf.Bubnicki, J. W., Churski, M., Schmidt, K., Diserens, T. A. & Kuijper, D. P. J. Linking spatial patterns of terrestrial herbivore community structure to trophic interactions. Elife 8, e44937 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kowalczyk, R., Bunevich, A. N. & Jędrzejewska, B. Badger density and distribution of setts in Bialowieza Primeval Forest (Poland and Belarus) compared to other Eurasian populations. Acta Theriol. 45, 395–408 (2000).Article 

    Google Scholar 
    Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B. & Kowalczyk, R. Territory size of wolves Canis lupus: Linking local (Białowieża Primeval Forest, Poland) and holarctic-scale patterns. Ecography 30, 66–67 (2007).
    Google Scholar 
    Schmidt, K., Jędrzejewski, W., Okarma, H. & Kowalczyk, R. Spatial interactions between grey wolves and Eurasian lynx in Białowieża Primeval Forest, Poland. Ecol. Res. 24, 207–214 (2009).Article 

    Google Scholar 
    Bytheway, J. P., Carthey, A. J. R. & Banks, P. B. Risk vs reward: How predators and prey respond to aging olfactory cues. Behav. Ecol. Sociobiol. 67, 715–725 (2013).Article 

    Google Scholar 
    Carthey, A. J. R. & Banks, P. B. Naiveté is not forever: responses of a vulnerable native rodent to its long term alien predators. Oikos 125, 918–926 (2016).Article 

    Google Scholar 
    Blanchard, C. D. & Blanchard, R. J. Antipredator DEFENSE. In The Behavior of the Laboratory Rat: A Handbook with Tests (eds Whishaw, I. Q. & Kolb, B.) 335–343 (Oxford University Press, 2004).Chapter 

    Google Scholar 
    Masini, C. V., Sauer, S. & Campeau, S. Ferret odor as a processive stress model in rats: Neurochemical, behavioral, and endocrine evidence. Behav. Neurosci. 119, 280–292 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bubnicki, J. W., Churski, M. & Kuijper, D. P. J. Trapper: An open source web-based application to manage camera trapping projects. Methods Ecol. Evol. 7, 1209–1216 (2016).Article 

    Google Scholar 
    Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B. & Okarma, H. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza Primeval Forest in Poland. Can. J. Zool. 79, 1993–2004 (2001).Article 

    Google Scholar 
    Theuerkauf, J., Jędrzejewski, W., Schmidt, K. & Gula, R. Spatiotemporal segregation of wolves from humans in the Bialowieza Forest (Poland). J. Wildl. Manage. 67, 706–716 (2003).Article 

    Google Scholar 
    Theuerkauf, J., Rouys, S. & Jędrzejewski, W. Selection of den, rendezvous, and resting sites by wolves in the Bialowieza Forest, Poland. Can. J. Zool. 81, 163–167 (2003).Article 

    Google Scholar 
    Miller, B. J., Harlow, H. J., Harlow, T. S., Biggins, D. & Ripple, W. J. Trophic cascades linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals. Can. J. Zool. 90, 70–78 (2012).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Zoller, H. & Drygala, F. Activity patterns of the invasive raccoon dog (Nyctereutes procyonoides) in North East Germany. Folia Zool. 62, 290–296 (2013).Article 

    Google Scholar 
    Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).Article 

    Google Scholar 
    Mukherjee, S., Zelcer, M. & Kotler, B. P. Patch use in time and space for a meso-predator in a risky world. Oecologia 159, 661–668 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Tredennick, A. T., Hooker, G., Ellner, S. P. & Adler, P. B. A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology 102, e03336 (2021).PubMed 
    Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Magnusson, A. et al. R Package ‘glmmTMB’. (2020).Hartig, F. R Package ‘DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models’ (2021).Fox, J. et al. R Package ‘effects’. (2020).Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).PubMed 
    Article 

    Google Scholar 
    Diserens, T. A. et al. Fossoriality in a risky landscape: Badger sett use varies with perceived wolf risk. J. Zool. 313, 76–85 (2021).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Scheinin, S., Yom-Tov, Y., Motro, U. & Geffen, E. Behavioural responses of red foxes to an increase in the presence of golden jackals: A field experiment. Anim. Behav. 71, 577 (2006).Article 

    Google Scholar 
    Vanak, A. T., Thaker, M. & Gompper, M. E. Experimental examination of behavioural interactions between free-ranging wild and domestic canids. Behav. Ecol. Sociobiol. 64, 279–287 (2009).Article 

    Google Scholar 
    Creel, S., Winnie, J. A., Christianson, D. & Liley, S. Time and space in general models of antipredator response: Tests with wolves and elk. Anim. Behav. 76, 1139–1146 (2008).Article 

    Google Scholar 
    Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128 (2017).PubMed 
    Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More