More stories

  • in

    Industrial energy development decouples ungulate migration from the green wave

    Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).PubMed 

    Google Scholar 
    Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).Article 

    Google Scholar 
    Holdo, R. M., Holt, R. D., Sinclair, A. R., Godley, B. J. & Thirgood, S. in Animal Migration: A Synthesis (eds Milner-Gulland, E. J. et al.) 131–143 (Oxford Univ. Press, 2011).Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Middleton, A. D. et al. Conserving transboundary wildlife migrations: recent insights from the Greater Yellowstone Ecosystem. Front. Ecol. Environ. 18, 83–91 (2020).Article 

    Google Scholar 
    Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Fryxell, J. M. Forage quality and aggregation by large herbivores. Am. Nat. 138, 478–498 (1991).Article 

    Google Scholar 
    Drent, R., Ebbinge, B. & Weijand, B. Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report. Verh. Ornithol. Ges. Bayern 23, 239–264 (1978).
    Google Scholar 
    van der Graaf, S. A. J., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94, 567–577 (2006).
    Google Scholar 
    Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. R. Soc. B. 283, 20160456 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).PubMed 
    Article 

    Google Scholar 
    Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos https://doi.org/10.1111/oik.05227 (2018).Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sawyer, H. et al. A framework for understanding semi‐permeable barrier effects on migratory ungulates. J. Appl. Ecol. 50, 68–78 (2013).Article 

    Google Scholar 
    Kauffman, M. J. et al. Mapping out a future for ungulate migrations. Science 372, 566–569 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).PubMed 
    Article 

    Google Scholar 
    Berry, J. Aspects of wildebeest Connochaetes taurinus ecology in the Etosha National Park—a synthesis for future management. Madoqua 1997, 137–148 (1997).
    Google Scholar 
    Williamson, D. & Williamson, J. Botswana’s fences and the depletion of Kalahari wildlife. Oryx 18, 218–222 (1984).Article 

    Google Scholar 
    Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).PubMed 
    Article 

    Google Scholar 
    Kauffman, M. J., Meacham, J. E., Sawyer, H., Rudd, W. & Ostlind, E. Wild Migrations: Atlas of Wyoming’s Ungulates (Oregon State Univ. Press, 2018).Wyckoff, T. B., Sawyer, H., Albeke, S. E., Garman, S. L. & Kauffman, M. J. Evaluating the influence of energy and residential development on the migratory behavior of mule deer. Ecosphere 9, e02113 (2018).Article 

    Google Scholar 
    Lendrum, P. E., Anderson, C. R. Jr., Monteith, K. L., Jenks, J. A. & Bowyer, R. T. Migrating mule deer: effects of anthropogenically altered landscapes. PLoS ONE 8, e64548 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lendrum, P. E., Anderson, C. R. Jr, Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural‐gas development. Ecosphere 3, 82 (2012).Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).PubMed 
    Article 

    Google Scholar 
    Sawyer, H., LeBeau, C. W., McDonald, T. L., Xu, W. & Middleton, A. D. All routes are not created equal: an ungulate’s choice of migration route can influence its survival. J. Appl. Ecol. 56, 1860–1869 (2019).
    Google Scholar 
    Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).PubMed 
    Article 

    Google Scholar 
    Skarin, A., Nellemann, C., Rönnegård, L., Sandström, P. & Lundqvist, H. Wind farm construction impacts reindeer migration and movement corridors. Landsc. Ecol. 30, 1527–1540 (2015).Article 

    Google Scholar 
    Mysterud, A., Langvatn, R., Yoccoz, N. G. & Stenseth, N. C. Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J. Anim. Ecol. 70, 915–923 (2001).Article 

    Google Scholar 
    Johnson, H. E. et al. Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Glob. Change Biol. 23, 578–591 (2017).Article 

    Google Scholar 
    Sawyer, H., Korfanta, N. M., Nielson, R. M., Monteith, K. L. & Strickland, D. Mule deer and energy development—long-term trends of habituation and abundance. Glob. Change Biol. 23, 4521–4529 (2017).Article 

    Google Scholar 
    Sawyer, H., Lambert, M. S. & Merkle, J. A. Migratory disturbance thresholds with mule deer and energy development. J. Wildl. Manag. 84, 930–937 (2020).Article 

    Google Scholar 
    Uezu, A., Metzger, J. P. & Vielliard, J. M. E. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol. Conserv. 123, 507–519 (2005).Article 

    Google Scholar 
    Keeley, A. T. H., Beier, P. & Jenness, J. S. Connectivity metrics for conservation planning and monitoring. Biol. Conserv. 255, 109008 (2021).Article 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Migration distance and maternal resource allocation determine timing of birth in a large herbivore. Ecology 102, e03334 (2021).PubMed 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate. Glob. Change Biol. 26, 4215–4225 (2020).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).PubMed 

    Google Scholar 
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).Article 

    Google Scholar 
    Delibes, M., Gaona, P. & Ferreras, P. Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat. 158, 277–285 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).PubMed 
    Article 

    Google Scholar 
    Sawyer, H., Hayes, M., Rudd, B. & Kauffman, M. J. The Red Desert to Hoback Mule Deer Migration Assessment (Univ. Wyoming, 2014).Berger, J., Young, J. K. & Berger, K. M. Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biol. 6, e165 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Article 

    Google Scholar 
    Vermote, E. MOD09A1 Surface Reflectance 8-day L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).Pettorelli, N., Mysterud, A., Yoccoz, N. G., Langvatn, R. & Stenseth, N. C. Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proc. R. Soc. B. 272, 2357–2364 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 
    Article 

    Google Scholar 
    Hamel, S., Garel, M., Festa-Bianchet, M., Gaillard, J. M. & Cote, S. D. Spring normalized difference vegetation index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J. Appl. Ecol. 46, 582–589 (2009).Article 

    Google Scholar 
    Geremia, C. et al. Migrating bison engineer the green wave. Proc. Natl Acad. Sci. USA 116, 25707–25713 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Ancient DNA provides insights into 4,000 years of resource economy across Greenland

    Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345, 1255832 (2014).Meldgaard, M. Ancient Harp Seal Hunters of Disko Bay (Museum Tusculanum Press, 2004).Grønnow, B. & Jensen, J. F. The Northernmost Ruins of the Globe: Eigil Knuth’s Archaeological Investigations in Peary Land and Adjacent Areas of High Arctic Greenland (Museum Tusculanum Press, 2003).Jensen, J. F. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, T. M. & Mason, O.) 673–691 (Oxford Univ. Press, 2016). https://doi.org/10.1093/oxfordhb/9780199766956.013.56Buckland, P. C., Ski, A. M. A. Y. E. W., Mcgovern, T. H. & Ogilvie, A. E. J. Bioarchaeological and climatological evidence for the fate of Norse farmers in medieval Greenland. Antiquity 70, 88–96 (1996).Article 

    Google Scholar 
    Gulløv, H. C. Grønlands Forhistorie (Gyldendal, 2004).Friesen, T. M. & Arnold, C. D. The timing of the Thule migration: new dates from the Western Canadian. Soc. Am. Archaeol. 73, 527–538 (2008).
    Google Scholar 
    Moltke, I. et al. Uncovering the genetic history of the present-day Greenlandic population. Am. J. Hum. Genet. 96, 54–69 (2015).CAS 
    Article 

    Google Scholar 
    Gulløv, H. C. From Middle Ages to Colonial Times: Archaeological and Ethnohistorical Studies of the Thule Culture in South West Greenland 1300–1800 AD (Dansk Polar Center, 1997).Gulløv, H. C. et al. Danmark og Kolonierne: Grønland (Gads Forlag, 2017).Ameen, C. et al. Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic. Proc. R. Soc. B 286, 20191929 (2019).Grønnow, B. et al. At the edge: High Arctic Walrus hunters during the Little Ice Age. Antiquity 85, 960–977 (2011).Article 

    Google Scholar 
    Fitzhugh, B. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) 253–278 (Oxford Univ. Press, 2016).Lyman, R. L. Vertebrate Taphonomy (Cambridge Univ. Press, 1994).Seersholm, F. V. et al. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4000 years ago. Nat. Commun. 7, 13389 (2016). https://doi.org/10.1038/ncomms13389Betts, M. in The Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) 81–108 (Oxford Univ. Press, 2016). https://doi.org/10.1093/oxfordhb/9780199766956.013.8Szpak, P. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011).Article 

    Google Scholar 
    Murray, D. C. et al. Scrapheap challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Sci. Rep. 3, 3371 (2013).Article 

    Google Scholar 
    Møhl, J. in From Middle Ages to Colonial Times (ed. Gulløv, H. C.) 495–501 (Kommissionen for videnskabelige undersøgelser i Grønland, 1980).Møhl, U. Animal Bones from Itivnera, West Greenland: A Reindeer Hunting Site of the Sarqaq Culture (C. A. Reitzels Forlag, 1972).Stat, M. et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 12240 (2017).Article 

    Google Scholar 
    Arneborg, J. et al. Norse Greenland Dietary Economy ca. AD 980–ca. AD 1450: introduction. J. North Atl. S3, 1–39 (2012).
    Google Scholar 
    Whitridge, P. Zen fish: a consideration of the discordance between artifactual and zooarchaeological indicators of Thule Inuit fish use. J. Anthropol. Archaeol. 20, 3–72 (2001).Article 

    Google Scholar 
    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).Seersholm, F. V. et al. Ancient DNA preserved in small bone fragments from the P.W. Lund collection. Ecol. Evol. 11, 2064–2071 (2021).Article 

    Google Scholar 
    Wheeler, A. & Jones, A. K. J. Fishes (Cambridge Manuals in Archaeology) (Cambridge Univ. Press, 1989).Gotfredsen, A. B. Former occurrences of geese (Genera Anser and Branta) in ancient West Greenland: morphological and biometric approaches. Acta Zool. 45, 179–204 (2002).
    Google Scholar 
    Gotfredsen, A. B. & Møbjerg, T. Nipisat—A Saqqaq Culture Site in Sissimut, Central West Greenland (Museum Tusculanum Press, 2004).Bockstoce, J. R. On the development of whaling in the western Thule culture. Folk 18, 41–45 (1976).
    Google Scholar 
    Ferguson, S. H., Higdon, J. W., Hall, P. A., Hansen, R. G. & Doniol-Valcroze, T. Developing a precautionary management approach for the eastern Canada–west Greenland population of bowhead whales (Balaena mysticetus). Front. Mar. Sci. 8, 709989 (2021).Eschricht, D. F. Undersögelser over Hvaldyrene (Bianco Lunos Bogtrykkeri, 1846).Mikkelsen, N. et al. European trading, whaling and climate history of west Greenland documented by historical records, drones and marine sediments. Geol. Surv. Den. Greenl. Bull. 41, 67–70 (2018).
    Google Scholar 
    Borge, T., Bachmann, L., Bjørnstad, G. & Wiig, Ø. Genetic variation in Holocene bowhead whales from Svalbard. Mol. Ecol. 16, 2223–2235 (2007).CAS 
    Article 

    Google Scholar 
    LeDuc, R. G. Mitochondrial genetic variation in bowhead whales in the western Arctic. J. Cetacean Res. Manag. 10, 93–97 (2008).
    Google Scholar 
    McLeod, B. A. Examination of ten thousand years of mitochondrial DNA diversity and population demographics in bowhead whales (Balaena mysticetus) of the Central Canadian Arctic. Mar. Mammal. Sci. 28, 426–443 (2012).Article 

    Google Scholar 
    Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1677 (2013).Article 

    Google Scholar 
    Meldgaard, M. The Greenland Caribou—Zoogeography, Taxonomy, and Population Dynamics (Museum Tusculanum Press, 1986).Meldgaard, M. New perspectives on the zoogeography of the Greenlandic caribou (Rangifer tarandus). In Proc. 4th North American Caribou Workshop (eds Butler, C. & Mahoney, S. P.) 37–63 (Newfoundland and Labrador Wildlife Division, 1991).Solazzo, C., Fitzhugh, W., Kaplan, S., Potter, C. & Dyer, J. M. Molecular markers in keratins from Mysticeti whales for species identification of baleen in museum and archaeological collections. PLoS ONE 12, e0183053 (2017).Article 

    Google Scholar 
    Nowacek, D. P. et al. Buoyant balaenids: the ups and downs of buoyancy in right whales. Proc. R. Soc. B 268, 1811–1816 (2001).CAS 
    Article 

    Google Scholar 
    Hollesen, J. et al. Climate change and the deteriorating archaeological and environmental archives of the Arctic. Antiquity 92, 573–586 (2018).Article 

    Google Scholar 
    Hollesen, J. et al. Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Sci. Rep. 9, 9097 (2019).Matthiesen, H., Høier Eriksen, A. M., Hollesen, J. & Collins, M. Bone degradation at five Arctic archaeological sites: quantifying the importance of burial environment and bone characteristics. J. Archaeol. Sci. 125, 105296 (2021).Seersholm, F. V. et al. Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1803573115 (2018).Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–63 (2013).CAS 
    Article 

    Google Scholar 
    Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    Dyke, A., Moore, A. & Robertson, L. Deglaciation of North America (Geological Survey of Canada, 2003).Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. Dev. Quat. Sci. 2, 373–424 (2004).
    Google Scholar 
    Gansauge, M. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).Grealy, A. et al. Eggshell palaeogenomics: palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol. Phylogenet. Evol. 109, 151–163 (2017).CAS 
    Article 

    Google Scholar 
    Lindgreen, S. AdapterRemoval: easy cleaning of next generation sequencing reads. BMC Res. Notes 5, 337 (2012).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611 (2012).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fitt, W., Brown, B., Warner, M. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65. https://doi.org/10.1007/s003380100146 (2001).Article 

    Google Scholar 
    Fujise, L., Yamashita, H., Suzuki, G. & Koike, K. Expulsion of zooxanthellae (Symbiodinium) from several species of scleractinian corals: comparison under non-stress conditions and thermal stress conditions. Galaxea, JCRS 15, 29–36. https://doi.org/10.3755/galaxea.15.29 (2013).Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. PNAS USA https://doi.org/10.1073/pnas.2022653118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6. https://doi.org/10.1016/j.cub.2018.07.008 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wooldridge, S. A. Breakdown of the coral-algae symbiosis. Towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10, 1647–1658 (2013).ADS 
    Article 

    Google Scholar 
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Peña-García, D., Ladwig, N., Turki, A. J. & Mudarris, M. S. Input and dispersion of nutrients from the Jeddah Metropolitan Area, Red Sea. Mar. Pollut. Bull. 80, 41–51. https://doi.org/10.1016/j.marpolbul.2014.01.052 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrier-Pagés, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113. https://doi.org/10.1007/s003380000078 (2000).Article 

    Google Scholar 
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187. https://doi.org/10.1016/j.marpolbul.2017.02.044 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, K. et al. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 33, 1486–1501 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH 4+ and NO 3− supply. Proc. R. Soc. B. 282, 20150610 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, Y., Hohn, S., Wild, C. & Merico, A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob. Change Biol. 26, 5646–5660 (2020).ADS 
    Article 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6, e54 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fabricius, K. E., Cséke, S., Humphrey, C. & De’ath, G. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PloS one 8, e54399 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cardini, U. et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. Biol. Sci. 282, 20152257 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930. https://doi.org/10.1038/s41396-018-0046-8 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Barros, F. et al. Unravelling the different causes of nitrate and ammonium effects on coral bleaching. Sci. Rep. 10, 11975 (2020).ADS 
    Article 

    Google Scholar 
    Steinberg, R. K., Dafforn, K. A., Ainsworth, T. & Johnston, E. L. Know thy anemone. A review of threats to octocorals and anemones and opportunities for their restoration. Front. Mar. Sci. 7, 590 (2020).Article 

    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs. Beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).ADS 
    Article 

    Google Scholar 
    van de Water, J. A. J. M., Allemand, D. & Ferrier-Pagès, C. Host-microbe interactions in octocoral holobionts—recent advances and perspectives. Microbiome 6, 64 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Syms, C. & Jones, G. P. Dysturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81, 2714–2729 (2000).Article 

    Google Scholar 
    Syms, C. & Jones, G. P. Soft corals exert no direct effects on coral reef fish assemblages. Oecologia 127, 560–571. https://doi.org/10.1007/s004420000617 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fishes 102, 479–497 (2019).Article 

    Google Scholar 
    Janes, M. P. Distribution and diversity of the soft coral family Xeniidae (Coelenterata: Octocorallia) in Lembeh Strait, Indonesia. Galaxea, JCRS 15, 195–200 (2013).Article 

    Google Scholar 
    Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields. Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Sofyani, A. A. & Niaz, G. R. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev. Biol. Mar. Oceanogr. 42, 207–219 (2007).Article 

    Google Scholar 
    Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. PNAS USA 110, 8978–8983 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swart, P. K., Saied, A. & Lamb, K. Temporal and spatial variation in the δ 15 N and δ 13 C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol. Oceanogr. 50, 1049–1058 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 215 (2017).Article 

    Google Scholar 
    Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T. & Ogawa, H. Imbalanced coral growth between organic tissue and carbonate skeleton caused by nutrient enrichment. Limnol. Oceanogr. 52, 1139–1146 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).CAS 
    Article 

    Google Scholar 
    Dagenais-Bellefeuille, S. & Morse, D. Putting the N in dinoflagellates. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00369 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wooldridge, S. A. A new conceptual model for the warm-water breakdown of the coral—algae endosymbiosis. Mar. Freshwater Res. 60, 483 (2009).CAS 
    Article 

    Google Scholar 
    Moed, J. R. & Hallegraeff, G. M. Some problems in the estimation of chlorophyll-a and phaeopigments from pre- and post-acidification spectrophotometrie measurements. Int. Revue Ges. Hydrobiol. Hydrogr. 63, 787–800 (1978).CAS 
    Article 

    Google Scholar 
    Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, A221-230A (1958).
    Google Scholar 
    Pupier, C. A., Bednarz, V. N. & Ferrier-Pagès, C. Studies with soft corals—recommendations on sample processing and normalization metrics. Front. Mar. Sci. 5, 2620 (2018).Article 

    Google Scholar 
    Pupier, C. A. et al. Dissolved nitrogen acquisition in the symbioses of soft and hard corals with Symbiodiniaceae: A key to understanding their different nutritional strategies?. Front. Microbiol. 12, 657759 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bednarz, V. N., Naumann, M. S., Niggl, W. & Wild, C. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J. Exp. Biol. 215, 3672–3679 (2012).CAS 
    PubMed 

    Google Scholar 
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).PubMed 

    Google Scholar 
    Ezzat, L., Towle, E., Irisson, J.-O., Langdon, C. & Ferrier-Pagès, C. The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limnol. Oceanogr. 61, 89–102 (2016).ADS 
    Article 

    Google Scholar 
    Dobson, K. L. et al. Moderate nutrient concentrations are not detrimental to corals under future ocean conditions. Mar. Biol. https://doi.org/10.1007/s00227-021-03901-3 (2021).Article 

    Google Scholar 
    Strychar, K. B., Coates, M., Sammarco, P. W., Piva, T. J. & Scott, P. T. Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp.. J. Exp. Mar. Biol. Ecol. 320, 159–177. https://doi.org/10.1016/j.jembe.2004.12.039 (2005).Article 

    Google Scholar 
    Sammarco, P. W. & Strychar, K. B. Responses to high seawater temperatures in zooxanthellate octocorals. PloS one 8, e54989 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Change Biol. 24, e474–e484. https://doi.org/10.1111/gcb.13895 (2018).Article 

    Google Scholar 
    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Change Biol. 19, 3640–3647 (2013).ADS 
    Article 

    Google Scholar 
    Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. 66, 1718–1729 (2021).ADS 
    Article 

    Google Scholar 
    Sawall, Y. et al. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci. Rep. 5, 8940 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carpenter, E. J., Harvey, H., Fry, B. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. I: Oceanogr. Res. Pap. 44, 27–38 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Kürten, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J. Sea Res. 85, 379–394 (2014).ADS 
    Article 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).Tilstra, A. et al. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ 5, e3802 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).ADS 
    Article 

    Google Scholar 
    Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubinsky, Z. V. Y. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B.: Biol. Sci. 239, 231–246 (1990).ADS 

    Google Scholar 
    Fabricius, K. E. Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching?. Limnol. Oceanogr. 51, 30–37 (2006).ADS 
    Article 

    Google Scholar 
    Nordemar, I., Nyström, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).CAS 
    Article 

    Google Scholar 
    Lewis, J. B. Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). J. Zool. 196, 371–384 (1982).Article 

    Google Scholar 
    Studivan, M. S., Hatch, W. I. & Mitchelmore, C. L. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant. SpringerPlus 4, 80 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parrin, A. P. et al. Symbiodinium migration mitigates bleaching in three octocoral species. J. Exp. Mar. Biol. Ecol. 474, 73–80 (2016).Article 

    Google Scholar 
    Parrin, A. P. et al. Within-colony migration of symbionts during bleaching of octocorals. Biol. Bull. 223, 245–256 (2012).PubMed 
    Article 

    Google Scholar 
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome. Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Furnas, M., Mitchell, A., Skuza, M. & Brodie, J. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51, 253–265 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).Article 
    PubMed 

    Google Scholar 
    Gruber, R. et al. Marine monitoring program: Annual report for inshore water quality monitoring 2018–19. Report for the Great Barrier Reef Marine Park Authority. GBRMPA, Townsville (2020).Dinesen, Z. D. Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1, 229–236. https://doi.org/10.1007/BF00304420 (1983).ADS 
    Article 

    Google Scholar 
    Benayahu, Y. et al. Octocorals of the Indo-Pacific. In Mesophotic Coral Ecosystems Vol. 12 (eds Loya, Y. et al.) 709–728 (Springer International Publishing, Cham, 2019).Chapter 

    Google Scholar 
    Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: Influence of natural and anthropogenic factors. Aquat. Conserv. 18, 1109–1126 (2008).Article 

    Google Scholar 
    D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs. New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article 

    Google Scholar 
    Wooldridge, S. A. & Done, T. J. Improved water quality can ameliorate effects of climate change on corals. Ecol. Appl. 19, 1492–1499 (2009).PubMed 
    Article 

    Google Scholar 
    Nugues, M. M. & Roberts, C. M. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs. Mar. Pollut. Bull. 46, 314–323 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton analysis – haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, edited by B. Karlson, C. Cusack & E. Bresnan (IOC UNESCO, Paris, France, 2010), pp. 25–30.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).CAS 
    Article 

    Google Scholar 
    D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).ADS 
    Article 

    Google Scholar 
    Feys, J. Nonparametric tests for the interaction in two-way factorial designs using R. R J. 8, 367 (2016).Article 

    Google Scholar 
    Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Soft. 50, 1–23 (2012).Article 

    Google Scholar 
    Schlöder, C. & D’Croz, L. Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment. J. Exp. Mar. Biol. Ecol. 313, 255–268 (2004).Article 

    Google Scholar 
    Faxneld, S., Jörgensen, T. L. & Tedengren, M. Effects of elevated water temperature, reduced salinity and nutrient enrichment on the metabolism of the coral Turbinaria mesenterina. Estuar. Coast. Shelf Sci. 88, 482–487 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Chumun, P. K. et al. High nitrate levels exacerbate thermal photo-physiological stress of zooxanthellae in the reef-building coral Pocillopora damicornis. Eco-Eng. 25, 1–9 (2013).
    Google Scholar 
    Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. Stud. Mar. Sci. 2, 27–31 (2015).
    Google Scholar  More

  • in

    Genetic and particle modelling approaches to assessing population connectivity in a deep sea lobster

    Farmery, A. K., Hendrie, G. A., O’Kane, G., McManus, A. & Green, B. S. Sociodemographic variation in consumption patterns of sustainable and nutritious seafood in Australia. Front. Nutr. 5, 118. https://doi.org/10.3389/fnut.2018.00118 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillen, J. et al. Global seafood consumption footprint. Ambio 48, 111–122. https://doi.org/10.1007/s13280-018-1060-9 (2019).Article 
    PubMed 

    Google Scholar 
    Norse, E. A. et al. Sustainability of deep-sea fisheries. Mar. Policy 36, 307–320. https://doi.org/10.1016/j.marpol.2011.06.008 (2012).Article 

    Google Scholar 
    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298. https://doi.org/10.1111/mec.13689 (2016).Article 
    PubMed 

    Google Scholar 
    Victorero, L., Watling, L., Deng Palomares, M. L. & Nouvian, C. Out of sight, but within reach: A global history of bottom-trawled deep-sea fisheries from > 400 m depth. Front. Mar. Sci. 5, 98. https://doi.org/10.3389/fmars.2018.00098 (2018).Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466. https://doi.org/10.1146/annurev.marine.010908.163757 (2009).Article 
    PubMed 

    Google Scholar 
    Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: The deep-sea floor. Mol. Ecol. 26, 4872–4896. https://doi.org/10.1111/mec.14237 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. https://doi.org/10.1016/j.tree.2008.02.008 (2008).Article 
    PubMed 

    Google Scholar 
    Carreras, C. et al. Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Sci. Rep. 7, 43417. https://doi.org/10.1038/srep43417 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman, F. C. & Williams, S. L. Overexploiting marine ecosystem engineers: Potential consequences for biodiversity. Trends Ecol. Evol. 17, 40–44. https://doi.org/10.1016/S0169-5347(01)02330-8 (2002).Article 

    Google Scholar 
    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349. https://doi.org/10.1126/science.1230441 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 16, 125–159. https://doi.org/10.1111/faf.12052 (2015).Article 

    Google Scholar 
    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39. https://doi.org/10.1111/mec.12509 (2014).Article 
    PubMed 

    Google Scholar 
    Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475. https://doi.org/10.1002/ece3.2096 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples, R. S. et al. Guidelines for genetic data analysis. J. Cetac. Res. Manag. 18, 33–80 (2018).ADS 

    Google Scholar 
    Hauser, L., Adcock, G. J., Smith, P. J., Bernal Ramírez, J. H. & Carvalho, G. R. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Natl. Acad. Sci. 99, 11742–11747. https://doi.org/10.1073/pnas.172242899 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laikre, L., Palm, S. & Ryman, N. Genetic population structure of fishes: Implications for coastal zone management. AMBIO A J. Hum. Environ. 34, 111–119. https://doi.org/10.1579/0044-7447-34.2.111 (2005).Article 

    Google Scholar 
    Gaggiotti, O. E. Population genetic models of source–sink metapopulations. Theor. Popul. Biol. 50, 178–208. https://doi.org/10.1006/tpbi.1996.0028 (1996).CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x (2008).Article 
    PubMed 

    Google Scholar 
    Bracco, A., Liu, G., Galaska, M. P., Quattrini, A. M. & Herrera, S. Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J. Mar. Syst. 198, 103189. https://doi.org/10.1016/j.jmarsys.2019.103189 (2019).Article 

    Google Scholar 
    Liu, S.-Y.V., Hsin, Y.-C. & Cheng, Y.-R. Using particle tracking and genetic approaches to infer population connectivity in the deep-sea scleractinian coral Deltocyathus magnificus in the South China sea. Deep Sea Res. Part I 161, 103297. https://doi.org/10.1016/j.dsr.2020.103297 (2020).Article 

    Google Scholar 
    Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344. https://doi.org/10.1111/maec.12343 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Selkoe, K. A., Henzler, C. M. & Gaines, S. D. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 9, 363–377. https://doi.org/10.1111/j.1467-2979.2008.00300.x (2008).Article 

    Google Scholar 
    Yan, R.-J., Schnabel, K. E., Rowden, A. A., Guo, X.-Z. & Gardner, J. P. A. Population structure and genetic connectivity of squat lobsters (Munida Leach, 1820) associated with vulnerable marine ecosystems in the southwest Pacific Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00791 (2020).Article 

    Google Scholar 
    Breusing, C. et al. Biophysical and population genetic models predict the presence of “phantom” stepping stones connecting Mid-Atlantic Ridge vent ecosystems. Curr. Biol. 26, 2257–2267. https://doi.org/10.1016/j.cub.2016.06.062 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fisheries New Zealand. Fisheries Assessment: Scampi (SCI). https://fs.fish.govt.nz/Page.aspx?pk=113&dk=24443 (2017).Botsford, L. W. et al. Connectivity, sustainability, and yield: Bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fish. 19, 69–95. https://doi.org/10.1007/s11160-008-9092-z (2009).Article 

    Google Scholar 
    NIWA. Annual Distribution of Scampi. Ministry for Primary Industries, New Zealand. https://mpi.maps.arcgis.com/home/item.html?id=97da6c1a912b45a8855bf741211f5911 (2016).Heasman, K. G. & Jeffs, A. G. Fecundity and potential juvenile production for aquaculture of the New Zealand scampi, Metanephrops challengeri (Balss, 1914) (Decapoda: Nephropidae). Aquaculture 511, 634184. https://doi.org/10.1016/j.aquaculture.2019.05.069 (2019).Article 

    Google Scholar 
    Smith, P. J. Allozyme variation in scampi (Metanephrops challengeri) fisheries around New Zealand. NZ J. Mar. Freshw. Res. 33, 491–497. https://doi.org/10.1080/00288330.1999.9516894 (1999).Article 

    Google Scholar 
    Berry, P. The biology of Nephrops andamanicus Wood-Mason (Decapoda, Reptantia). Report No. 22, 1–55 (South African Association for Marine Biological Research, Oceanographic Research Institute, Durban, South Africa, 1969).Major, R. N. & Jeffs, A. G. Orientation and food search behaviour of a deep sea lobster in turbulent versus laminar odour plumes. Helgol. Mar. Res. 71, 9. https://doi.org/10.1186/s10152-017-0489-8 (2017).Article 

    Google Scholar 
    Tuck, I. D., Parsons, D. M., Hartill, B. W. & Chiswell, S. M. Scampi (Metanephrops challengeri) emergence patterns and catchability. ICES J. Mar. Sci. 72, i199–i210. https://doi.org/10.1093/icesjms/fsu244 (2015).Article 

    Google Scholar 
    Chiswell, S. M. & Booth, J. D. Sources and sinks of larval settlement in Jasus edwardsii around New Zealand: Where do larvae come from and where do they go?. Mar. Ecol. Prog. Ser. 354, 201–217. https://doi.org/10.3354/meps07217 (2008).ADS 
    Article 

    Google Scholar 
    Silva, C. N. S., Macdonald, H. S., Hadfield, M. G., Cryer, M. & Gardner, J. P. A. Ocean currents predict fine-scale genetic structure and source-sink dynamics in a marine invertebrate coastal fishery. ICES J. Mar. Sci. 76, 1007–1018. https://doi.org/10.1093/icesjms/fsy201 (2019).Article 

    Google Scholar 
    Singh, S. P., Groeneveld, J. C., Hart-Davis, M. G., Backeberg, B. C. & Willows-Munro, S. Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: Understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol. Evol. 8, 12221–12237. https://doi.org/10.1002/ece3.4684 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, S. P., Groeneveld, J. C. & Willows-Munro, S. Between the current and the coast: Genetic connectivity in the spiny lobster Panulirus homarus rubellus, despite potential barriers to gene flow. Mar. Biol. 166, 36. https://doi.org/10.1007/s00227-019-3486-4 (2019).Article 

    Google Scholar 
    Thomas, L. & Bell, J. J. Testing the consistency of connectivity patterns for a widely dispersing marine species. Heredity 111, 345–354. https://doi.org/10.1038/hdy.2013.58 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baeza, J. A., Holstein, D., Umaña-Castro, R. & Mejía-Ortíz, L. M. Population genetics and biophysical modeling inform metapopulation connectivity of the Caribbean king crab Maguimithrax spinosissimus. Mar. Ecol. Prog. Ser. 610, 83–97 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Hedgecock, D., Barber, P. H. & Edmands, S. Genetic approaches to measuring connectivity. Oceanography 20, 70–79 (2007).Article 

    Google Scholar 
    Jahnke, M. & Jonsson, P. R. Biophysical models of dispersal contribute to seascape genetic analyses. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210024. https://doi.org/10.1098/rstb.2021.0024 (2022).Article 

    Google Scholar 
    Sebastian, W. et al. Genomic investigations provide insights into the mechanisms of resilience to heterogeneous habitats of the Indian Ocean in a pelagic fish. Sci. Rep. 11, 20690. https://doi.org/10.1038/s41598-021-00129-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lal, M. M., Southgate, P. C., Jerry, D. R., Bosserelle, C. & Zenger, K. R. A parallel population genomic and hydrodynamic approach to fishery management of highly-dispersive marine invertebrates: The case of the Fijian black-lip pearl oyster Pinctada margaritifera. PLoS ONE 11, e0161390. https://doi.org/10.1371/journal.pone.0161390 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, T. et al. Hidden historical habitat-linked population divergence and contemporary gene flow of a deep-sea patellogastropod limpet. Mol. Biol. Evol. 38, 5640–5654. https://doi.org/10.1093/molbev/msab278 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Souza, J. M. A. C. et al. Moana Ocean Hindcast—A 25+ years simulation for New Zealand Waters using the ROMS v3.9 model. EGUsphere https://doi.org/10.5194/egusphere-2022-41 (2022).Norrie, C., Dunphy, B., Roughan, M., Weppe, S. & Lundquist, C. Spill-over from aquaculture may provide a larval subsidy for the restoration of mussel reefs. Aquac. Environ. Interact. 12, 231–249 (2020).Article 

    Google Scholar 
    Larsson, J. et al. Regional genetic differentiation in the blue mussel from the Baltic Sea area. Estuar. Coast. Shelf Sci. 195, 98–109. https://doi.org/10.1016/j.ecss.2016.06.016 (2017).ADS 
    Article 

    Google Scholar 
    Nicolle, A. et al. Modelling larval dispersal of Pecten maximus in the English Channel: A tool for the spatial management of the stocks. ICES J. Mar. Sci. 74, 1812–1825. https://doi.org/10.1093/icesjms/fsw207 (2017).Article 

    Google Scholar 
    Hold, N. et al. Using biophysical modelling and population genetics for conservation and management of an exploited species, Pecten maximus L. Fish. Oceanogr. 30, 740–756. https://doi.org/10.1111/fog.12556 (2021).Article 

    Google Scholar 
    Truelove, N. K. et al. Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs 36, 233–244. https://doi.org/10.1007/s00338-016-1516-y (2017).ADS 
    Article 

    Google Scholar 
    Busch, K. et al. Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep Sea Res. Part I 167, 103427. https://doi.org/10.1016/j.dsr.2020.103427 (2021).Article 

    Google Scholar 
    Ross, P. M., Hogg, I. D., Pilditch, C. A. & Lundquist, C. J. Phylogeography of New Zealand’s coastal benthos. NZ J. Mar. Freshw. Res. 43, 1009–1027. https://doi.org/10.1080/00288330.2009.9626525 (2009).Article 

    Google Scholar 
    Tuck, I. D. Characterisation and a length-based assessment model for scampi (Metanephrops challengeri) at the Auckland Islands (SCI 6A). Report No. 2015/21, 160 (Ministry for Primary Industries, Wellington, 2015).Verry, A. J. F., Walton, K., Tuck, I. D. & Ritchie, P. A. Genetic structure and recent population expansion in the commercially harvested deepsea decapod, Metanephrops challengeri (Crustacea: Decapoda). NZ J. Mar. Freshw. Res. 54, 251–270. https://doi.org/10.1080/00288330.2019.1707696 (2020).CAS 
    Article 

    Google Scholar 
    Selkoe, K. A. et al. A decade of seascape genetics: Contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19. https://doi.org/10.3354/meps11792 (2016).ADS 
    Article 

    Google Scholar 
    Hare, M. P. et al. Understanding and estimating effective population size for practical application in marine species management. Conserv. Biol. 25, 438–449. https://doi.org/10.1111/j.1523-1739.2010.01637.x (2011).Article 
    PubMed 

    Google Scholar 
    Ashry, N. A. Plant biodiversity and biotechnology. In From Plant Genomics to Plant Biotechnology (eds Poltronieri, P. et al.) 205–222 (Woodhead Publishing, 2013).Chapter 

    Google Scholar 
    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337. https://doi.org/10.1111/j.1752-4571.2010.00157.x (2011).Article 
    PubMed 

    Google Scholar 
    Kerr, L. A., Cadrin, S. X. & Secor, D. H. Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics. ICES J. Mar. Sci. 67, 1631–1639. https://doi.org/10.1093/icesjms/fsq053 (2010).Article 

    Google Scholar 
    Carroll, E. L. et al. Perturbation drives changing metapopulation dynamics in a top marine predator. Proc. R. Soc. B Biol. Sci. 287, 20200318. https://doi.org/10.1098/rspb.2020.0318 (2020).Article 

    Google Scholar 
    Chiswell, S. M., Bostock, H. C., Sutton, P. J. H. & Williams, M. J. M. Physical oceanography of the deep seas around New Zealand: A review. NZ J. Mar. Freshw. Res. 49, 286–317. https://doi.org/10.1080/00288330.2014.992918 (2015).Article 

    Google Scholar 
    Chiswell, S. M. & Roemmich, D. The East Cape Current and two eddies: A mechanism for larval retention?. NZ J. Mar. Freshw. Res. 32, 385–397. https://doi.org/10.1080/00288330.1998.9516833 (1998).Article 

    Google Scholar 
    Condie, S. & Condie, R. Retention of plankton within ocean eddies. Glob. Ecol. Biogeogr. 25, 1264–1277. https://doi.org/10.1111/geb.12485 (2016).Article 

    Google Scholar 
    Lesser, J. H. R. Phyllosoma larvae of Jasus edwardsii (Hutton) (Crustacea: Decapoda: Palinuridae) and their distribution off the east coast of the North Island, New Zealand. NZ J. Mar. Freshw. Res. 12, 357–370. https://doi.org/10.1080/00288330.1978.9515763 (1978).Article 

    Google Scholar 
    Kawecki, T. J. Ecological and evolutionary consequences of source-sink population dynamics. In Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 387–414 (Academic Press, 2004).Chapter 

    Google Scholar 
    Figueira, W. F. & Crowder, L. B. Defining patch contribution in source-sink metapopulations: the importance of including dispersal and its relevance to marine systems. Popul. Ecol. 48, 215–224. https://doi.org/10.1007/s10144-006-0265-0 (2006).Article 

    Google Scholar 
    Heinrichs, J. A. et al. Recent advances and current challenges in applying source-sink theory to species conservation. Curr. Landsc. Ecol. Rep. 4, 51–60. https://doi.org/10.1007/s40823-019-00039-3 (2019).Article 

    Google Scholar 
    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. 103, 6067–6072. https://doi.org/10.1073/pnas.0506651103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heinrichs, J. A., Lawler, J. J. & Schumaker, N. H. Intrinsic and extrinsic drivers of source-sink dynamics. Ecol. Evol. 6, 892–904. https://doi.org/10.1002/ece3.2029 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilroy, J. J. & Edwards, D. P. Source-sink dynamics: A neglected problem for landscape-scale biodiversity conservation in the Tropics. Curr. Landsc. Ecol. Rep. 2, 51–60. https://doi.org/10.1007/s40823-017-0023-3 (2017).Article 

    Google Scholar 
    Lal, M. M., Bosserelle, C., Kishore, P. & Southgate, P. C. Understanding marine larval dispersal in a broadcast-spawning invertebrate: A dispersal modelling approach for optimising spat collection of the Fijian black-lip pearl oyster Pinctada margaritifera. PLoS ONE 15, e0234605. https://doi.org/10.1371/journal.pone.0234605 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chassé, J. & Miller, R. J. Lobster larval transport in the southern Gulf of St. Lawrence. Fish. Oceanogr. 19, 319–338. https://doi.org/10.1111/j.1365-2419.2010.00548.x (2010).Article 

    Google Scholar 
    Lindegren, M., Andersen, K. H., Casini, M. & Neuenfeldt, S. A metacommunity perspective on source–sink dynamics and management: the Baltic Sea as a case study. Ecol. Appl. 24, 1820–1832. https://doi.org/10.1890/13-0566.1 (2014).Article 
    PubMed 

    Google Scholar 
    Tuck, I. D. et al. Estimating the abundance of scampi in SCI 6A (Auckland Islands) in 2013. Report No. 2015/10, 48 (Ministry for Primary Industries, 2015).Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614. https://doi.org/10.1016/j.cub.2009.05.046 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196. https://doi.org/10.1038/s41586-018-0006-5 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230. https://doi.org/10.1038/s41586-018-0007-4 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    van Gennip, S. J. et al. Going with the flow: The role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617. https://doi.org/10.1111/gcb.13586 (2017).ADS 
    Article 

    Google Scholar 
    Bashevkin, S. M. et al. Larval dispersal in a changing ocean with an emphasis on upwelling regions. Ecosphere 11, e03015. https://doi.org/10.1002/ecs2.3015 (2020).Article 

    Google Scholar 
    Gerber, L. R., Mancha-Cisneros, M. D. M., O’Connor, M. I. & Selig, E. R. Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5, 1–18. https://doi.org/10.1890/es13-00336.1 (2014).Article 

    Google Scholar 
    Hoegh-Gulderg, O. & Pearse, J. Temperature, food availability, and the development of marine invertebrate larvae. Am. Zool. 35, 415–425. https://doi.org/10.1093/icb/35.4.415 (1995).Article 

    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA 104, 1266–1271. https://doi.org/10.1073/pnas.0603422104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cetina-Heredia, P., Roughan, M., van Sebille, E., Feng, M. & Coleman, M. A. Strengthened currents override the effect of warming on lobster larval dispersal and survival. Glob. Change Biol. 21, 4377–4386. https://doi.org/10.1111/gcb.13063 (2015).ADS 
    Article 

    Google Scholar 
    Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00362 (2020).Article 

    Google Scholar 
    Ogilvie, S. et al. Mātauranga Māori driving innovation in the New Zealand scampi fishery. NZ J. Mar. Freshw. Res. 52, 590–602. https://doi.org/10.1080/00288330.2018.1532441 (2018).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data v. 0.11.7 (Babraham Bioinformatics, 2010). http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754. https://doi.org/10.1111/mec.15253 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing v. 4.1.0 (R Studio v1.4.1106) (R Foundation for Statistical Computing, Vienna, Austria, 2021). https://www.R-project.org/.Díaz-Arce, N. & Rodríguez-Ezpeleta, N. Selecting RAD-seq data analysis parameters for population genetics: The more the better?. Front. Genet. 10, 533. https://doi.org/10.3389/fgene.2019.00533 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potapov, V. & Ong, J. L. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE 12, e0169774. https://doi.org/10.1371/journal.pone.0169774 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goudet, J. & Jombart, T. hierfstat: Estimation and Tests of Hierarchical F-Statistics v. 0.04-22 (Comprehensive R Archive Network (CRAN), 2015). https://CRAN.R-project.org/package=hierfstat.Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Book 

    Google Scholar 
    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259. https://doi.org/10.1111/j.1469-1809.1983.tb00993.x (1983).CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An R package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11. https://doi.org/10.1111/1755-0998.12559 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. https://doi.org/10.3389/fgene.2015.00208 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, J. M., Cullingham, C. I. & Peery, R. M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity 125, 269–280. https://doi.org/10.1038/s41437-020-0348-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788. https://doi.org/10.1111/2041-210x.12067 (2013).Article 

    Google Scholar 
    Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321–3323. https://doi.org/10.1073/pnas.70.12.3321 (1973).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Dagestad, K. F., Röhrs, J., Breivik, Ø. & Ådlandsvik, B. OpenDrift v1.0: A generic framework for trajectory modelling. Geosci. Model Dev. 11, 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018 (2018).ADS 
    Article 

    Google Scholar 
    Jeffs, A., Daniels, C. & Heasman, K. In Fisheries and Aquaculture: Natural History of Crustacea, Vol. 9 (eds Lovrich, G. & Thiel, M.) 285–311 (Oxford University Press, 2020).Lundquist, C. J., Oldman, J. W. & Lewis, M. J. Predicting suitability of cockle Austrovenus stutchburyi restoration sites using hydrodynamic models of larval dispersal. NZ J. Mar. Freshw. Res. 43, 735–748. https://doi.org/10.1080/00288330909510038 (2009).Article 

    Google Scholar 
    Lundquist, C. J., Thrush, S. F., Oldman, J. W. & Senior, A. K. Limited transport and recolonization potential in shallow tidal estuaries. Limnol. Oceanogr. 49, 386–395. https://doi.org/10.4319/lo.2004.49.2.0386 (2004).ADS 
    Article 

    Google Scholar 
    Okubo, A. & Ebbesmeyer, C. C. Determination of vorticity, divergence, and deformation rates from analysis of drogue observations. Deep-Sea Res. Oceanogr. Abstr. 23, 349–352. https://doi.org/10.1016/0011-7471(76)90875-5 (1976).ADS 
    Article 

    Google Scholar 
    Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files v. 1.17 (Comprehensive R Archive Network (CRAN), 2019). https://CRAN.R-project.org/package=ncdf4.Coelho, S. C. C., Gherardi, D. F. M., Gouveia, M. B. & Kitahara, M. V. Western boundary currents drive sun-coral (Tubastraea spp.) coastal invasion from oil platforms. Sci. Rep. 12, 5286. https://doi.org/10.1038/s41598-022-09269-8 (2022).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demmer, J. et al. The role of wind in controlling the connectivity of blue mussels (Mytilus edulis L.) populations. Mov. Ecol. 10, 3. https://doi.org/10.1186/s40462-022-00301-0 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Atalah, J., South, P. M., Briscoe, D. K. & Vennell, R. Inferring parental areas of juvenile mussels using hydrodynamic modelling. Aquaculture 555, 738227. https://doi.org/10.1016/j.aquaculture.2022.738227 (2022).Article 

    Google Scholar 
    McGeady, R., Lordan, C. & Power, A. M. Long-term interannual variability in larval dispersal and connectivity of the Norway lobster (Nephrops norvegicus) around Ireland: When supply-side matters. Fish. Oceanogr. 31, 255–270. https://doi.org/10.1111/fog.12576 (2022).Article 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    Becker, R. A., Wilks, A. R. & Brownrigg, R. mapdata: Extra Map Databases v. 2.3.0 (Comprehensive R Archive Network (CRAN), 2018). https://CRAN.R-project.org/package=mapdata.McIlroy, D., Brownrigg, R., Minka, T. P. & Bivan, R. mapproj: Map Projections v. 1.2.7 (Comprehensive R Archive Network (CRAN), 2020). https://CRAN.R-project.org/package=mapproj.South, A. rnaturalearth: World Map Data from Natural Earth v. 0.1.0 (Comprehensive R Archive Network (CRAN), 2017). https://CRAN.R-project.org/package=rnaturalearth. More

  • in

    Saving the Amazon: how science is helping Indigenous people protect their homelands

    One thing that the team at Los Amigos did not do is peer deeper into the reserve to try to determine where the Mashco Piro are camped out. Gutiérrez says the decision on whether to establish some kind of monitoring system for isolated communities rests with governments and Indigenous groups, but few doubt that it is possible.
    Some researchers worry about the implications of this kind of work. Greg Asner, an ecologist at Arizona State University in Tempe, regularly captured evidence of encampments of isolated groups more than a decade ago, when his team was surveying the Peruvian Amazon in a plane equipped with a powerful laser-based system that provides 3D images of the forest. He flagged the images to his sources at Peru’s environment ministry, but never saw the groups themselves as a legitimate research topic. Even today, he doesn’t see the value in actively tracking them.
    “It’s creepy, like describing the home range of jaguars, but human rights are different than jaguar rights,” says Asner. “If we know they are in there, why do we need to know exactly where they are sleeping at night?”
    Despite the ethical worries about monitoring, some Indigenous leaders are open to the idea. Knowing where isolated groups are could help surrounding Indigenous communities to prevent unintended and dangerous contact, but “it is the Indigenous organizations that should implement and execute any system of control and surveillance of the Indigenous peoples in isolation,” says Julio Cusurichi, president of FENAMAD, which has worked with the Peruvian government to prevent contact and conflict since the Mashco Piro began to emerge.
    FENAMAD was also instrumental in pushing for the creation of the Madre de Dios reserve in 2002. Twenty years later, however, the reserve’s borders have yet to be finalized, and the Indigenous organization is still pushing to expand the eastern boundary to cover areas where the Mashco Piro are known to roam. The problem is that these same areas are currently occupied by logging concessions, which would be costly for the government to cancel.

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    For Cusurichi, the killing of the logger in August is yet another reminder of the precarious situation along the border of the reserve and the risks to both outsiders and the Mashco Piro. Too often, he contends, the government is more concerned with protecting economic interests than the rights of isolated peoples.
    Tauli-Corpuz, the former UN rapporteur, has little doubt that scientists mean well, but she worries about any efforts to document the precise location of isolated groups. “If this information falls into the wrong hands, these people will be disturbed in ways they could never imagine,” she says.
    Officials from the culture ministry acknowledged these dangers in discussions with Nature, and said they were looking at potential regulations to control the flow of information and restrict who can peer into the reserves.
    Although Forsyth says the ministry is full of people who want to do the right thing, he is wary of assuming that government officials always mean well. In Brazil, critics have accused President Bolsonaro, a right-wing populist, of sidelining scientists at FUNAI and attempting to appoint a former Christian missionary to head the division that handles isolated peoples. In the Madre de Dios region, the former governor, Luis Hidalgo Okimura, disappeared in February just before he was to be jailed in connection with an investigation into an illegal logging ring.
    “In some cases, the government may not be trustworthy,” Forsyth warns. He places more faith in Indigenous organizations and their advocates. “Giving them access to whatever information they would like or can’t generate themselves ought to be the priority.” More

  • in

    Tracing the oomycete pathogen Saprolegnia parasitica in aquaculture and the environment

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 16, 13–19 (2008).CAS 
    PubMed 

    Google Scholar 
    van den Berg, A. H., McLaggan, D., Diéguez-Uribeondo, J. & van West, P. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biol. Rev. 27, 33–42 (2013).
    Google Scholar 
    van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist 20, 99–104 (2006).
    Google Scholar 
    Hussein, M. M. A., Hatai, K. & Nomura, T. Saprolegniosis in salmonids and their eggs in Japan. J. Wildl. Dis. 37, 204–207 (2001).CAS 
    PubMed 

    Google Scholar 
    Pavić, D. et al. Identification and molecular characterization of oomycete isolates from trout farms in Croatia, and their upstream and downstream water environments. Aquaculture 540, 736652 (2021).
    Google Scholar 
    Tedesco, P. et al. Evaluation of potential transfer of the pathogen Saprolegnia parasitica between farmed salmonids and wild fish. Pathogens 10, 926 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diéguez-Uribeondo, J., Cerenius, L. & Söderhäll, K. Physiological characterization of Saprolegnia parasitica isolates from brown trout. Aquaculture 140, 247–257 (1996).
    Google Scholar 
    Ravasi, D., De Respinis, S. & Wahli, T. Multilocus sequence typing reveals clonality in Saprolegnia parasitica outbreaks. J. Fish Dis. 41, 1653–1665 (2018).CAS 
    PubMed 

    Google Scholar 
    Bly, J. E., Lawson, L. A., Szalai, A. J. & Clem, L. W. Environmental factors affecting outbreaks of winter saprolegniosis in channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Dis. 16, 541–549 (1993).
    Google Scholar 
    Rezinciuc, S., Sandoval-Sierra, J. V., Ruiz-León, Y., Van West, P. & Diéguez-Uribeondo, J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS ONE 13, 1–17 (2018).
    Google Scholar 
    Tandel, R. S. et al. Morphological and molecular characterization of Saprolegnia spp. from Himalayan snow trout, Schizothorax richardsonii: A case study report. Aquaculture 531, 735824 (2021).CAS 

    Google Scholar 
    Howe, G. E. & Stehly, G. R. Experimental infection of rainbow trout with Saprolegnia parasitica experimental infection of rainbow trout. J. Aquat. Anim. Health 10, 397–404 (1998).
    Google Scholar 
    Dieguez-Uribeondo, J. Adaptation to parasitism of some animal pathogenic Saprolegniaceae. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 122. Acta Universitatis Upsalienis (1995).Kitancharoen, N., Yuasa, K. & Hatai, K. Effects of pH and temperature on growth of Saprolegnia diclina and S. parasitica isolated from various sources. Mycoscience 37, 385–390 (1996).
    Google Scholar 
    Meinelt, T. et al. Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat. Toxicol. 83, 93–103 (2007).CAS 
    PubMed 

    Google Scholar 
    Burr, A. W. & Beakes, G. W. Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists). Protoplasma 181, 142–163 (1994).
    Google Scholar 
    Elameen, A. et al. Genetic analyses of saprolegnia strains isolated from salmonid fish of different geographic origin document the connection between pathogenicity and molecular diversity. J. Fungi 7, 1–13 (2021).
    Google Scholar 
    Masigol, H. et al. Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran. Aquat. Ecol. 51, 323–336 (2020).
    Google Scholar 
    Singer, D. et al. High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol. 23, 42–47 (2016).
    Google Scholar 
    Hatai, K. & Hoshiai, G. Mass mortality in cultured coho salmon (Oncorhynchus kisutch) due to Saprolegnia parasitica Coker. J. Wildl. Dis. 28, 532–536 (1992).CAS 
    PubMed 

    Google Scholar 
    Sarowar, M. N., Cusack, R. & Duston, J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. J. Fish Dis. 42, 1745–1760 (2019).CAS 
    PubMed 

    Google Scholar 
    Sakaguchi, S. O. et al. Molecular identification of water molds (oomycetes) associated with chum salmon eggs from hatcheries in Japan and possible sources of their infection. Aquac. Int. 27, 1739–1749 (2019).
    Google Scholar 
    Sandoval-Sierra, J. V., Latif-Eugenin, F., Martín, M. P., Zaror, L. & Diéguez-Uribeondo, J. Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish developmental stage. Aquaculture 434, 462–469 (2014).
    Google Scholar 
    Amarasiri, M., Furukawa, T., Nakajima, F. & Sei, K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. Sci. Total Environ. 796, 148810 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pavić, D. et al. Non-destructive method for detecting Aphanomyces astaci, the causative agent of crayfish plague, on the individual level. J. Invertebr. Pathol. 169, 107274 (2020).PubMed 

    Google Scholar 
    Sapkota, R. & Nicolaisen, M. An improved high throughput sequencing method for studying oomycete communities. J. Microbiol. Methods 110, 33–39 (2015).CAS 
    PubMed 

    Google Scholar 
    Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).CAS 

    Google Scholar 
    Ghosh, S., Straus, D. L., Good, C. & Phuntumart, V. Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS ONE 16, 1–17 (2021).
    Google Scholar 
    Blaya, J., Lloret, E., Santísima-Trinidad, A. B., Ros, M. & Pascual, J. A. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Manag. Sci. 72, 747–753 (2016).CAS 
    PubMed 

    Google Scholar 
    Davison, P. I., Copp, G. H., Créach, V., Vilizzi, L. & Britton, J. R. Application of environmental DNA analysis to inform invasive fish eradication operations. Sci. Nat. 104, 1–7 (2017).CAS 

    Google Scholar 
    Tuffs, S. & Oidtmann, B. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Vet. Microbiol. 153, 343–353 (2011).CAS 
    PubMed 

    Google Scholar 
    Rusch, J. C. et al. Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe. NeoBiota 58, 1–32 (2020).
    Google Scholar 
    Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoshino, T. & Inagaki, F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst. Appl. Microbiol. 35, 390–395 (2012).CAS 
    PubMed 

    Google Scholar 
    Pinheiro, L. B. et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011 (2012).CAS 
    PubMed 

    Google Scholar 
    Rocchi, S. et al. Quantification of Saprolegnia parasitica in river water using real-time quantitative PCR: From massive fish mortality to tap drinking water. Int. J. Environ. Health Res. 27, 1–10 (2017).CAS 
    PubMed 

    Google Scholar 
    Gibert, S. et al. Risk assessment of Aphanomyces euteiches root rot disease: Quantification of low inoculum densities in field soils using droplet digital PCR. Eur. J. Plant Pathol. 161, 503–528 (2021).CAS 

    Google Scholar 
    Ristaino, J. B., Saville, A. C., Paul, R., Cooper, D. C. & Wei, Q. Detection of Phytophthora infestans by loop-mediated isothermal amplification, real-time LAMP, and droplet digital PCR. Plant Dis. 104, 708–716 (2020).CAS 
    PubMed 

    Google Scholar 
    Lévesque, C. A. & De Cock, A. W. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108, 1363–1383 (2004).PubMed 

    Google Scholar 
    Oidtmann, B., Geiger, S., Steinbauer, P., Culas, A. & Hoffmann, R. W. Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Dis. Aquat. Organ. 72, 53–64 (2006).CAS 
    PubMed 

    Google Scholar 
    Sandoval-Sierra, J. V., Martín, M. P. & Diéguez-Uribeondo, J. Species identification in the genus Saprolegnia (Oomycetes): Defining DNA-based molecular operational taxonomic units. Fungal Biol. 118, 559–578 (2013).PubMed 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).
    Google Scholar 
    Jain, P. et al. A multivariate approach to investigate the combined biological effects of multiple exposures. J. Epidemiol. Community Health 72, 564–571 (2018).PubMed 

    Google Scholar 
    Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, e0224441 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montalva, C. et al. First report of Leptolegnia chapmanii (Peronosporomycetes: Saprolegniales) affecting mosquitoes in central Brazil. J. Invertebr. Pathol. 136, 109–116 (2016).PubMed 

    Google Scholar 
    Robideau, G. P. et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 11, 1002–1011 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catal, M., Erler, F., Fulbright, D. W. & Adams, G. C. Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur. J. Plant Pathol. 137, 859–869 (2013).CAS 

    Google Scholar 
    Jiang, R. H. Y. et al. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet. 9, e1003272 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieguez-Uribeondo, J., Cerenius, L. & Soderhall, K. Saprolegnia parasitica and its virulence on three different species of freshwater crayfish. Aquaculture 120, 219–228 (1994).
    Google Scholar 
    Söderhäll, K., Dick, M. W., Clark, G., Fürst, M. & Constantinescu, O. Isolation of Saprolegnia parasitica from the crayfish Astacus leptodactylus. Aquaculture 92, 121–125 (1991).
    Google Scholar 
    Bly, J. E. et al. Winter saprolegniosis in channel catfish. Dis. Aquat. Organ. 13, 155–164 (1992).
    Google Scholar 
    Gozlan, R. E. et al. Current ecological understanding of fungal-like pathogens of fish: What lies beneath?. Front. Microbiol. 5, 1–16 (2014).
    Google Scholar 
    Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).ADS 
    CAS 

    Google Scholar 
    Deacon, J. W. & Donaldson, S. P. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171 (1993).CAS 

    Google Scholar 
    Ford, D. C. & Williams, P. W. Karst Hydrogeology and Geomorphology (Wiley, 2007).
    Google Scholar 
    Baldisserotto, B., Chowdhury, M. J. & Wood, C. M. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from the water, and their interactions in juvenile rainbow trout. Aquat. Toxicol. 72, 99–117 (2005).CAS 
    PubMed 

    Google Scholar 
    Barszcz, A. A., Siemianowska, E., Sidoruk, M. & Skibniewska, K. A. Influence of farming technology on bioaccumulation of calcium, magnesium and sodium in muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum). Environ. Prot. Nat. Resour. 25, 15–19 (2014).
    Google Scholar 
    Ali, E. H. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia 159, 231–243 (2005).CAS 
    PubMed 

    Google Scholar 
    Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. B 374, 20180019 (2019).CAS 

    Google Scholar 
    Boisen, A. M. Z., Amstrup, J., Novak, I. & Grosell, M. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim. Biophys. Acta 1618, 207–218 (2003).CAS 
    PubMed 

    Google Scholar 
    Marquis, R. E., Clock, S. A. & Mota-Meira, M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev. 26, 493–510 (2003).CAS 
    PubMed 

    Google Scholar 
    Mendes, G. et al. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Appl. Environ. Microbiol. 80, 3081–3085 (2014).ADS 
    PubMed Central 

    Google Scholar 
    Camargo, J. A. Fluoride toxicity to aquatic organisms: A review. Chemosphere 50, 251–264 (2003).ADS 
    PubMed 

    Google Scholar 
    Min, H., Hatai, K. & Bai, S. Some inhibitory effects of chitosan on fish-pathogenic oomycete, Saprolegnia parasitica. Fish Pathol. 29, 73–77 (1998).
    Google Scholar 
    Liu, Y. et al. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME J. 8, 2002–2014 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    ‘Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes’. Off. J. Eur. Union L276, 33 (2010).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).CAS 
    PubMed 

    Google Scholar 
    Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
    Google Scholar  More

  • in

    The evolution of parental care in salamanders

    Wilson, E. O. Sociobiology: The New Synthesis (Harvard University Press, 1975).
    Google Scholar 
    Székely, T., Remeš, V., Freckleton, R. P. & Liker, A. Why care? Inferring the evolution of complex social behaviour. J. Evol. Biol. 26, 1381–1391 (2013).PubMed 
    Article 

    Google Scholar 
    Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).Book 

    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    Székely, T., Webb, J. N., Houston, A. I. & McNamara, J. M. An evolutionary approach to offspring desertion in birds. In Current Ornithology Vol. 13 (eds Nolan, V. & Ketterson, E. D.) (Springer, 1996).
    Google Scholar 
    McGraw, L., Székely, T. & Young, L. J. Pair bonds and parental behaviour. In Social Behaviour: Genes, Ecology and Evolution (eds Székely, T. et al.) (Cambridge University Press, 2010).
    Google Scholar 
    Smiseth, P. T., Kölliker, M. & Royle, N. J. What is parental care? In The Evolution of Parental Care (eds Royle, N. J. et al.) 1–17 (Oxford Univ. Press, 2012).
    Google Scholar 
    Mank, J. E., Promislow, D. E. L. & Avise, J. C. Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59, 1570–1578 (2005).PubMed 
    Article 

    Google Scholar 
    Benun Sutton, F. & Wilson, A. B. Where are all the moms? External fertilization predicts the rise of male parental care in bony fishes. Evolution 73, 2451–2460 (2019).PubMed 
    Article 

    Google Scholar 
    Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 4709 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Terrestriality and the evolution of parental care in frogs. Proc. R. Soc. Lond. B. 286, 20182737 (2019).
    Google Scholar 
    Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Climate and mating systems as drivers of global diversity of parental care in frogs. Glob. Ecol. Biogeogr. 29, 1373–1386 (2020).Article 

    Google Scholar 
    Gilbert, J. D. J. & Manica, A. Parental care trade-offs and life-history relationships in insects. Am. Nat. 176, 212–226 (2010).PubMed 
    Article 

    Google Scholar 
    Gilbert, J. D. & Manica, A. The evolution of parental care in insects: A test of current hypotheses. Evolution 69, 1255–1270 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reynolds, J. D., Goodwin, N. B. & Freckleton, R. P. Evolutionary transitions in parental care and live bearing in vertebrates. Philos. Trans. R. Soc. Lond. B. 357, 269–281 (2002).Article 

    Google Scholar 
    AlRashidi, M., Kosztolányi, A., Shobrak, M., Küpper, C. & Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 82, 235–243 (2011).Article 

    Google Scholar 
    Vincze, O. et al. Parental cooperation in a changing climate: Fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–385 (2017).Article 

    Google Scholar 
    Martin, K. L. & Carter, A. L. Brave new propagules: Terrestrial embryos in anamniotic eggs. Integr. Comp. Biol. 53, 233–247 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ishimatsu, A., Mai, H. V. & Martin, K. L. Patterns of fish reproduction at the interface between air and water. Integr. Comp. Biol. 58, 1064–1085 (2018).CAS 
    PubMed 

    Google Scholar 
    Bickford, D. P. Differential parental care behaviors of arboreal and terrestrial microhylid frogs from Papua New Guinea. Behav. Ecol. Sociobiol. 55, 402–409 (2004).Article 

    Google Scholar 
    Poo, S. & Bickford, D. P. The adaptive significance of egg attendance in a South-East Asian tree frog. Ethology 119, 1–9 (2013).Article 

    Google Scholar 
    Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 
    Article 

    Google Scholar 
    Wells, K. D. The Ecology and Behaviour of Amphibians (University of Chicago Press, 2007).Salthe, S. N. Reproductive modes and the number and sizes of ova in Urodeles. Am. Midl. Nat. 81, 467–490 (1969).Article 

    Google Scholar 
    Nussbaum, R. A. The Evolution of Parental Care in Salamanders. (University of Michigan Press, 1985).Nussbaum, R. A. Parental care and egg size in salamanders: An examination of the safe harbor hypothesis. Res. Popul. Ecol. 29, 27–44 (1987).Article 

    Google Scholar 
    Furness, A. I., Venditti, C. & Capellini, I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and numbers across amphibians. PLoS Biol. 20, e3001495 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beck, C. W. Mode of fertilization and parental care in anurans. Anim. Behav. 55, 439–449 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kahn, A. T., Schwanz, L. E. & Kokko, H. Paternity protection can provide a kick-start for the evolution of male-only parental care. Evolution 67, 2207–2217 (2013).PubMed 
    Article 

    Google Scholar 
    Summers, K., McKeon, C. S. & Heying, H. The evolution of parental care and egg size: A comparative analysis in frogs. Proc. R. Soc. B 273, 687–692 (2006).PubMed 
    Article 

    Google Scholar 
    Lack, D. L. Ecological Adaptations for Breeding in Birds (Methuen, 1968).Suski, C. D. & Ridgway, M. S. Climate and body size influence nest survival in a fish with parental care. J. Anim. Ecol. 76, 730–739 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. Posthatching parental care in salamanders revealed by infrared video surveillance. J. Herpetol. 44, 649–653 (2010).Article 

    Google Scholar 
    Reinhard, S., Voitel, S. & Kupfer, A. External fertilisation and paternal care in the paedomorphic salamander Siren intermedia Barnes, 1826. Zool. Anz. 253, 1–5 (2013).Article 

    Google Scholar 
    Amphibiaweb. University of California. https://amphibiaweb.org (2021).Vial, J. L. The ecology of the tropical salamander, Bolitoglossa pesrubra Costa Rica. Rev. Biol. Trop. 15, 13–115 (1968).
    Google Scholar 
    Han, X. & Fu, J. Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evol. Biol. 13, 27 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prado, C. P. A. & Haddad, C. F. B. Size-fecundity relationships and reproductive investment in female frogs in the Pantanal, South-Western Brasil. Herpetol. J. 15, 181–189 (2005).
    Google Scholar 
    Kupfer, A., Maxwell, E., Reinhard, S. & Kuehnel, S. The evolution of parental investment in caecilian amphibians: A comparative approach. Biol. J. Linn. Soc. 119, 4–14 (2016).Article 

    Google Scholar 
    Smith, R. J. Statistics of sexual size dimorphism. J. Hum. Evol. 36, 423–458 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fairbairn, D. J. Introduction: The enigma of sexual size dimorphism. In Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (eds Fairbairn, D. J. et al.) (Oxford University Press, 2007).Chapter 

    Google Scholar 
    Lhotka, O., Kyselý, J. & Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Climatol. 131, 1043–1054 (2018).ADS 
    Article 

    Google Scholar 
    Lion, M. B. et al. Global patterns of terrestriality in amphibian reproduction. Glob. Ecol. Biogeogr. 28, 744–756 (2019).Article 

    Google Scholar 
    Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R Package Version 0.9-9. https://CRAN.R-project.org/package=maptools (2019).Hijmans, R. J. raster: Geographic Data Analysis and Modelling. R Package Version 3.0-7. R package. https://CRAN.R-project.org/package=raster (2015).Bivand, R. et al. Package ‘rgdal’. Bindings for the Geospatial Data Abstraction Library. https://cran.r-project.org/web/packages/rgdal/index.html (2017).IUCN. The IUCN Red List of threatened species. https://www.iucnredlist.org (2021).WorldClim. Maps, Graphs, Tables and Data of the Global Climate. https://www.worldclim.org (2021).Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 

    Google Scholar 
    Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).Article 

    Google Scholar 
    Ho, L. S. T. et al. Package ‘Phylolm’. https://cran.r-project.org/web/packages/phylolm (2018).Jetz, W. et al. VertLife. https://vertlife.org (2021).R-Core-Team R. Version 4.0.4. A Language and Environment for Statistical Computing. http://www.r-project.org/ (2021).Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775–793 (1981).PubMed 
    Article 

    Google Scholar 
    Ridley, M. & Rechten, C. Female sticklebacks prefer to spawn with males whose nests contain eggs. Behaviour 76, 152–161 (1981).Article 

    Google Scholar 
    Jackson, M. E., Scott, D. E. & Estes, R. A. Determinants of nest success in the marbled salamander (Ambystoma opacum). Can. J. Zool. 67, 2277–2281 (1989).Article 

    Google Scholar 
    Petranka, J. W. Observations on nest site selection, nest desertion and embryonic survival in marbled salamanders. J. Herpetol. 24, 229–234 (1990).Article 

    Google Scholar 
    Croshaw, A. & Scott, D. E. Experimental evidence that nest attendance benefits female marbled salamanders (Ambystoma opacum) by reducing egg mortality. Am. Midl. Nat. 154, 398–411 (2005).Article 

    Google Scholar 
    Knapp, R. A. & Sargent, R. C. Egg mimicry as a mating strategy in the fantail darter, Ethiostoma flabellare: Females prefer males with eggs. Behav. Ecol. Sociobiol. 25, 321–326 (1989).Article 

    Google Scholar 
    Okada, S., Fukuda, Y. & Takahashi, M. K. Paternal care behaviors of Japanese giant salamander Andrias japonicus in natural populations. J. Ethol. 33, 1–7 (2015).Article 

    Google Scholar 
    Browne, R. K. et al. The giant salamanders (Cryptobranchidae): Part B. Biogeography, ecology and reproduction. Amphib. Reptile Conserv. 5, 30–50 (2014).
    Google Scholar 
    Taborsky, M. Sperm competition in fish: ‘Bourgeois’ males and parasitic spawning. Trends Ecol. Evol. 13, 222–227 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieites, D. R. et al. Post-mating clutch-piracy in an amphibian. Nature 431, 305–308 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Balshine, S. & Abate, M. E. Parental care in cichlid fishes. In The Behavior, Ecology and Evolution of Cichlid Fishes (eds Abate, M. E. & Noakes, D. L. G.) (Springer, 2021).
    Google Scholar 
    Ota, K., Kohda, M. & Sato, T. Unusual allometry of sexual size dimorphism in a cichlid where males are extremely larger than females. J. Biosci. 35, 257–265 (2010).PubMed 
    Article 

    Google Scholar 
    Mokos, J., Scheuring, I., Liker, A., Freckleton, R. P. & Székely, T. Degree of anisogamy is unrelated to the intensity of sexual selection. Sci. Rep. 11, 19424 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourne, G. R. Amphisexual parental behaviour of a terrestrial breeding frog Eleutherodactylus johnstonei in Guyana. Behav. Ecol. 9, 1–7 (1998).Article 

    Google Scholar 
    Beal, C. A. & Tallamy, D. W. A new record of amphisexual care in an insect with extensive parental care: Rhynocoris tristis (Heteroptera: Reduviidae). J. Ethol. 24, 305–307 (2006).Article 

    Google Scholar 
    Ringler, E. et al. Flexible compensation of uniparental care: Female poison frogs take over when males disappear. Behav. Ecol. 26, 1219–1225 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tumulty, J., Morales, V. & Summers, K. The biparental care hypothesis for the evolution of monogamy: Experimental evidence in an amphibian. Behav. Ecol. 25, 262–270 (2014).Article 

    Google Scholar 
    Remeš, V., Freckleton, R. P., Tökölyi, J., Liker, A. & Székely, T. The evolution of parental cooperation in birds. Proc. Natl. Acad. Sci. USA 112, 12603–13608 (2015).Article 

    Google Scholar 
    Guex, G.-D. & Chen, P. S. Epitheliophagy: Intrauterine cell nourishment in the viviparous alpine salamander, Salamandra atra (Laur.). Experientia 42, 1205–1218 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goycoechea, O., Garrido, O. & Jorquera, B. Evidence for a trophic paternal-larval relationship in the frog Rhinoderma darwinii. J. Herpetol. 20, 168–178 (1986).Article 

    Google Scholar 
    Hansen, R. W. About our cover: Ecnomyohyla rabborum. Herpetol. Rev. 42, 3 (2012).
    Google Scholar 
    Brown, J. L., Morales, V. & Summers, K. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am. Nat. 175, 436–446 (2010).PubMed 
    Article 

    Google Scholar 
    Dugas, M. B., Moore, M. P., Martin, R. A., Richards-Zawacki, C. L. & Sprehn, Z. G. The pay-offs of maternal care increase as offspring develop, favouring extended provisioning in an egg-feeding frog. J. Evol. Biol. 29, 1977–1985 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kupfer, A. et al. Parental investment by skin feeding in a caecilian amphibian. Nature 440, 926–929 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shine, R. Propagule size and parental care: The “safe harbour” hypothesis. J. Theor. Biol. 75, 417–424 (1978).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Székely, T., Webb, J. N. & Cuthill, I. C. Mating patterns, sexual selection and parental care: An integrative approach. In Vertebrate Mating Systems (eds Apollonio, M. et al.) (World Scientific Press, 2000).
    Google Scholar 
    Ah-King, M., Kvarnemo, C. & Tullberg, B. S. The influence of territoriality and mating system on the evolution of parental care: A phylogenetic study on fish. J. Evol. Biol. 18, 371–382 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zamudio, K. R., Bell, R. C., Nali, R. C., Haddad, C. F. B. & Prado, C. P. A. Polyandry, predation and the evolution of frog reproductive modes. Am. Nat. 188, S41–S61 (2016).PubMed 
    Article 

    Google Scholar 
    Graham, S. P., Kline, R., Steen, D. A. & Kelehear, C. Description of an extant salamander from the Gulf Coastal Plain of North America: The Reticulated Siren, Siren reticulata. PLoS ONE 13, e0207460 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan, F. et al. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Curr. Biol. 28, R590–R592 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaramillo, A. F. et al. Vastly underestimated species richness of Amazonian salamanders (Plethodontidae: Bolitoglossa) and implications about plethodontid diversification. Mol. Phylogenet. Evol. 149, 106841 (2020).PubMed 
    Article 

    Google Scholar 
    Parra-Olea, G. et al. Biology of tiny animals: Three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico. PeerJ 4, e2694 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balázs, G., Lewarne, B. & Herczeg, G. Extreme site fidelity of the olm (Proteus anguinus) revealed by a long-term capture-mark-recapture study. J. Zool. 311, 99–105 (2020).Article 

    Google Scholar  More

  • in

    Endangered animals and plants are positively or neutrally related to wild boar (Sus scrofa) soil disturbance in urban grasslands

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189, 320–334 (2019).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).Article 

    Google Scholar 
    Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).PubMed 
    Article 

    Google Scholar 
    Hegglin, D. et al. Baiting red foxes in an urban area: A camera trap study. J. Wildl. Manag. 68, 1010–1017 (2004).Article 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 773, 145593 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabaneros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar 
    Csokas, A. et al. Space use of wild boar (Sus Scrofa) in Budapest: Are they resident or transient city dwellers? Biol. Futura 71, 39–51 (2020).CAS 
    Article 

    Google Scholar 
    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 54, 272–281 (2017).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 440 (2017).Article 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).Article 

    Google Scholar 
    Herrero, J., Garcia-Serrano, A., Couto, S., Ortuno, V. M. & Garcia-Gonzalez, R. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur. J. Wildl. Res. 52, 245–250 (2006).Article 

    Google Scholar 
    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).Article 

    Google Scholar 
    Horčičková, E., Brůna, J. & Vojta, J. Wild boar (Sus scrofa) increases species diversity of semidry grassland: Field experiment with simulated soil disturbances. Ecol. Evol. 9, 2765–2774 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massei, G. & Genov, P. V. The environmental impact of wild boar. Galemys Bol. Inf. Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 135–145 (2004).
    Google Scholar 
    Sandom, C. J., Hughes, J. & Macdonald, D. W. Rewilding the scottish highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 21, 336–343 (2013).Article 

    Google Scholar 
    Wirthner, S. et al. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can. J. For. Res.-Rev. Can. Rech. For. 42, 585–592 (2012).CAS 
    Article 

    Google Scholar 
    Bankovich, B., Boughton, E., Boughton, R., Avery, M. L. & Wisely, S. M. Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agric. Ecosyst. Environ. 220, 45–54 (2016).Article 

    Google Scholar 
    Felix, R. K., Orzell, S. L., Tillman, E. A., Engeman, R. M. & Avery, M. L. Fine-scale, spatial and temporal assessment methods for feral swine disturbances to sensitive plant communities in south-central Florida. Environ. Sci. Pollut. Res. 21, 10399–10406 (2014).Article 

    Google Scholar 
    Boonman-Berson, S., Driessen, C. & Turnhout, E. Managing wild minds: From control by numbers to a multinatural approach in wild boar management in the Veluwe, the Netherlands. Trans. Inst. Br. Geogr. 44, 2–15 (2019).Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!-Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brunet, J., Hedwall, P. O., Holmstrom, E. & Wahlgren, E. Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nord. J. Bot. 34, 120–128 (2016).Article 

    Google Scholar 
    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).Article 

    Google Scholar 
    Fagiani, S. et al. Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix Ital. J. Mamm. 25, 31–38 (2014).
    Google Scholar 
    Bruinderink, G. W. T. A. G. & Hazebroek, E. Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For. Ecol. Manag. 88, 71–80 (1996).Article 

    Google Scholar 
    Pankova, N. L., Markov, N. I. & Vasina, A. L. Effect of the rooting activity of wild boar Sus scrofa on plant communities in the middle Taiga of Western Siberia. Russ. J. Biol. Invasions 11, 363–371 (2020).Article 

    Google Scholar 
    Carpio, A. J. et al. Effect of wild ungulate density on invertebrates in a Mediterranean ecosystem. Anim. Biodivers. Conserv. 37, 115–125 (2014).Article 

    Google Scholar 
    Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojeda, R. A. Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J. Arid Environ. 74, 1582–1585 (2010).ADS 
    Article 

    Google Scholar 
    Kenyeres, Z., Szabo, S. & Bauer, N. Conservation possibilities of the rare grasshopper Stenobothrus eurasius Zubovski, 1898 are hampered by wild game in its fragmented western outposts. J. Insect Conserv. 24, 115–124 (2020).Article 

    Google Scholar 
    Reading, C. J. & Jofre, G. M. Habitat use by grass snakes and three sympatric lizard species on lowland heath managed using ‘conservation grazing’. Herpetol. J. 26, 131–138 (2016).
    Google Scholar 
    de Schaetzen, F., van Langevelde, F. & WallisDeVries, M. F. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands. J. Insect Conserv. 22, 51–59 (2018).Article 

    Google Scholar 
    Albrecht, H. & Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 22, 2243–2267 (2013).Article 

    Google Scholar 
    Cilliers, S. S., Müller, N. & Drewes, E. Overview on urban nature conservation: Situation in the western-grassland biome of South Africa. Urban For. Urban Green. 3, 49–62 (2004).Article 

    Google Scholar 
    Becker, M. & Buchholz, S. The sand lizard moves downtown-habitat analogues for an endangered species in a metropolitan area. Urban Ecosyst. 19, 361–372 (2016).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Impervious Soil Coverage (Sealing of Soil Surface). (2016).Fischer, L. K., von der Lippe, M., Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 30 (2020).
    Google Scholar 
    LUA. Brandenburg State Environmental Office. Brandenburg State Environmental Office. Catalogue of Natural Habitats and Species of Appendices I and II of the Habitats Directive in Brandenburg: German Institute for Standardization. (2002).Leuschner, C. & Ellenberg, H. Ecology of central European non-forest vegetation: Coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Volume II. (Springer, 2017).Kotanen, P. M. Responses of vegetation to a changing regime of disturbance-effects of feral pigs in a Californian Coastal Prairie. Ecography 18, 190–199 (1995).Article 

    Google Scholar 
    Dovrat, G., Perevolotsky, A. & Ne’eman, G. The response of mediterranean herbaceous community to soil disturbance by native wild boars. Plant Ecol. 215, 531–541 (2014).Article 

    Google Scholar 
    Haaverstad, O., Hjeljord, O. & Wam, H. K. Wild boar rooting in a northern coniferous forest-minor silviculture impact. Scand. J. For. Res. 29, 90–95 (2014).Article 

    Google Scholar 
    van der Maarel, E. & Franklin, J. (Eds. ). Vegetation Ecology. (2nd edition. Wiley, 2012).Hennekens, S. M. & Schaminee, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Seitz, B., Ristow, M., Meißner, J., Machatzi, B. & Sukopp, H. Rote Liste und Gesamtartenliste der etablierten Farn- und Blütenpflanzen von Berlin. in Der Landesbeauftragte für Naturschutzt und Landschaftspflege, Senatsverwaltung für Umwelt, Klima und Verkehr (Hrsg): Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von 118 (2018). doi:https://doi.org/10.14279/depositonce-6689.Jäger, E. J. Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband (W. Rothmaler, founder). (Spektrum, 2011).Landeck, I. Kartieranleitung Heuschrecken für das Naturschutzfachliche Monitoring im Naturparadies Grünhaus und im “Revier 55”. (Forschungsinstitut für Bergbaufolgelandschaften, Finsterwalde, 2007).Fischer, J. et al. Die Heuschrecken Deutschlands und Nordtirols-Bestimmen-Beobachten-Schützen. (Quelle & Meyer, 2020).Machatzi, B., Ratsch, A., Prasse, R. & Ristow, M. Rote Liste und Gesamtartenliste der Heuschrecken und Grillen (Saltatoria: Ensifera et Caelifera) von Berlin. (2005).Doerpinghaus, A. et al. Methoden zur Erfassung von Arten der Anhänge IV und V der FFH-Richtlinie. Naturschutz Biol. Vielfalt 20, 454 (2005).
    Google Scholar 
    Beery, S., Morris, D. & Yang, S. Efficient Pipeline for Camera Trap Image Review. ArXiv Prepr. arXiv:190706772 (2019).Greco, I. et al. Guest or pest? Spatio-temporal occurrence and effects on soil and vegetation of the wild boar on Elba island. Mamm. Biol. https://doi.org/10.1007/s42991-020-00083-1 (2020).Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Zhang, D. Coefficients of Determination for Mixed-Effects Models. arXiv:200708675 (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://CRAN.R-project.org/package=vegan (2019).Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human-Wildlife Interact. 5, 5008 (2011).
    Google Scholar 
    Bueno, C. G., Alados, C. L., Gomez-Garcia, D., Barrio, I. C. & Garcia-Gonzalez, R. Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. J. Zool. 279, 195–202 (2009).Article 

    Google Scholar 
    Cuevas, M. F., Mastrantonio, L., Ojeda, R. A. & Jaksic, F. M. Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert. Argentina. Mamm. Biol. 77, 299–306 (2012).Article 

    Google Scholar 
    Cushman, J. H., Tierney, T. A. & Hinds, J. M. Variable effects of feral pig disturbances on native and exotic plants in a California grassland. Ecol. Appl. 14, 1746–1756 (2004).Article 

    Google Scholar 
    Cuevas, M. F., Campos, C. M., Ojeda, R. A. & Jaksic, F. M. Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina. Biol. Invasions 22, 1607–1621 (2020).Article 

    Google Scholar 
    Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tierney, T. A. & Cushman, J. H. Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biol. Invasions 8, 1073–1089 (2006).Article 

    Google Scholar 
    Buchholz, S., Seitz, B., Hiller, A., von der Lippe, M. & Kowarik, I. Impacts of dogs on urban grassland ecosystems. Landsc. Urban Plan. 215, 104201 (2021).Article 

    Google Scholar 
    Heinken, T., Schmidt, M., von Oheimb, G., Kriebitzsch, W. U. & Ellenberg, H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl. Ecol. 7, 31–44 (2006).Article 

    Google Scholar 
    Heinken, T. Dispersal of plants by a dog in a deciduous forest. Bot. Jahrb Syst. 122, 449–467 (2000).
    Google Scholar 
    Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).Article 

    Google Scholar 
    Gardiner, T. & Hassall, M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 13, 97–102 (2009).Article 

    Google Scholar 
    Willott, S. J. Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct. Ecol. 11, 705–713 (1997).Article 

    Google Scholar 
    Wouters, B. et al. The effects of shifting vegetation mosaics on habitat suitability for coastal dune fauna-a case study on sand lizards (Lacerta agilis). J. Coast. Conserv. 16, 89–99 (2012).Article 

    Google Scholar 
    De Bruyn, GJ. Animal communities in Dutch dunes. in Van der Maarel E (ed) Dry coastal ecosystems: General aspects. (ed. Elsevier, A.) 361–386 (1997).Seidling, W. Recent changes in forest vegetation in an area on the outskirts of Berlin. in H. Sukopp, S. Hejny, & I. Kowarik (Eds.), Plants and plant communities in the urban environment 223 (1990). More