More stories

  • in

    Device for automatic measurement of light pollution of the night sky

    For several years, systematic research has been carried out on the pollution of the night sky by artificial light in the city of Toruń11,36,38. The main objective is to monitor this phenomenon, including its spatial and temporal variability and the most important factors affecting it. Based on previous experience, an in-house measurement device was constructed to automate the process of data acquisition.Genesis of the projectThe first measurements pertaining to the phenomenon of night sky pollution in Toruń were made in autumn 2017, followed by regular observations using a handheld SQM photometer (Unihedron, Canada) as part of a project implemented in 2017–2018. To this end, a permanent measurement network distributed throughout the city was established, consisting of 24 locations. During a one night measurement session taking place during the astronomical night (there is no such period at the latitude of Toruń in the summer), sky brightness was measured at all sites. The results of spot monitoring were plotted using interpolation methods and visualisation tools available in GIS systems11,39, which helped to determine the spatial distribution and extent of night sky light pollution. The intensity of this phenomenon at each of the surveyed points was also explored in relation to the distinguished landcover categories and types of urban development.Repeatable measurements performed regularly over such a long period of time were characterised by significant limitations. One measurement session was very time-consuming, as it lasted about two hours, during which time all measurement locations were visited, covering a distance of almost 50 km each night by car. Despite the observance of all time frames and sticking to the plan of fieldwork, measurements were not carried out simultaneously at all the locations, which affected the results, especially during the night with changing cloud cover. Although the measurements were carried out with great consistency and care, they were performed in a spatial buffer of about 5 m, which could unintentionally slightly affect the obtained results. An additional limitation was also a one-time night measurement at one point, instead of a whole series of measurements at specific time intervals. Inaccuracies in the readings within a single session could have been caused by sudden changes in meteorological parameters. In the adopted procedure, it was not possible to carry out simultaneous measurements in identical time and weather conditions at all the locations, not to mention the involvement of the personnel in each tour of the measurement network points.Using the experience gained and after an analysis of the identified constraints and the technical capabilities at hand, work began in 2019 on developing a network for automatic remote monitoring of light pollution of the night sky in Toruń, based on designed in-house recording devices.Design, functional and utility features of the deviceTo enhance the research on light pollution in urban space, work has begun on the construction of a device that would perform automatic measurements, would be mobile, battery-powered and use long-range wireless communication. All the aforementioned features are in line with the strategy of Industry 4.0 and modern solutions proposed as part of the Smart City concept.The concept of Industry 4.0 assumes the more and more common use of process automation as well as the processing and exchange of data with the use of new transmission technologies26. LoRaWAN is one of the solutions used for communication of Internet of Things (IoT) devices, which supports the development of Smart Cities in the Smart Environment area. As a result, the interactivity, frequency, and scope of measurements carried out in urbanized areas are increased40,41.According to the developed project, the device was to serve as a meter of very low intensity light observed in the night sky. In this respect, it was necessary to use a sensor with technical parameters suitable for very accurate measurements of light intensity. To locally verify the weather conditions occurring during the operation of the device, it was decided to carry out additional simultaneous measurements of other environmental parameters—temperature and moisture content. The analysis of the spatial coverage of the study area indicated that 36 measurement devices should be deployed to provide full coverage of Toruń. The concept of creating an urban measurement network assumes the selection of points covering the whole city relatively evenly and representing different types of housing development and elements of land cover. It was assumed that measurements will be made only at night, between 21 p.m. and 6 a.m. on the following day, at 15 min intervals, and in addition, weather conditions will be recorded twice a day.Construction and technical parameters of the device, and selected characteristics of its componentsA prototype device meeting all the predefined functionalities was constructed based on available electronic modules. The B-L072Z-LRWAN Discovery developmental board from STMicroelectronics42 was selected as the main electronic component providing wireless communication. This board has an integrated LoRa communication module, enabling low-power wireless messaging, and also allows the board to enter a low-power state during hibernation, and thus target long-term battery-powered operation. This module is fully programmable, which enables future expansion of the set with other functionalities. The TSL2591 light sensor from AMS, which has high sensitivity and registration accuracy, was selected as a component implementing the light intensity measurement. Its great advantage is a wide measurement range of 188 μlx to 88 000 lx, sensitivity reaching 0.000377 lx, and a wide dynamic range (WDR) of 600 M:143. The sensor used has two diodes with different spectral properties. One of them registers visible light together with infrared (in the range from 400 to 1 100 nm), while the other is responsible for the registration of infrared light (between 500 and 1 100 nm). Thanks to this solution, we can use the results in various ways. The use of the formula provided by the manufacturer allows us to obtain spectral characteristics similar to the human eye. The presence of a compensating diode makes a difference compared to the sensor used in the SQM device, so the results obtained in the measurements may be slightly different.To measure additional environmental parameters, the X-NUCLEO-IKS01A2 development board from STMicroelectronics was used, which is connected to the STM32 microcontroller via the I2C interface44. This board enables the recording of a number of parameters, however, in the constructed device it is only responsible for reading the temperature and humidity of the environment. This results from the necessity to limit the size of the message packets sent, while at the same time improving the operating range and reducing the power consumption of the device.Once all the components had been selected, tested and integrated, the process of final connection and programming was carried out. The base of the device, i.e. the B-L072Z-LRWAN development board was connected to the X-NUCLEO-IKS01A2 environmental sensor board, using Arduino connectors. Using standard wires, a TSL2591 light sensor was added by connecting the corresponding I2C (SCL and SDA), power supply (VIN), sensor ground (GND) pins and the X-NUCLEO-IKS01A2 board.All components used were placed in a standard external casing with dimensions of 8.0 × 5.4 × 15.8 cm. In its lower part an opening was made for an external antenna, while in the upper part a specifically selected opening was cut out, protected with a glass pane, through which measurements are performed by the light sensor (Fig. 2).Figure 2(photo by Dominika Karpińska).Constructed device viewFull size imageFollowing the above steps, an automatic device was constructed to record light intensity in the lower troposphere, i.e. to measure the pollution of the night sky by artificial light coming from the Earth’s surface. Selected technical parameters of the device are presented in Table 1.Table 1 Selected technical parameters of the device for measuring light pollution of the night sky.Full size tableFlowchart of the system operationAfter constructing the device and writing the control software, the construction of the entire measurement system was started. Each of the measuring instruments is ultimately connected to the communication gateway using LoRa technology. A MultiTech communication gateway with a LoRaWAN module was used as an access device. To successfully connect the gateway to the measuring device, it was necessary to configure the communication gateway software. To this end, the information about the unique device number (Dev EUI) and the application key and its number (App EUI and App Key) was used. Once the unit is configured, it is possible to send data to the communication gateway and read them using NodeRED, a programming tool where data are redirected to a selected server, which stores all measurement results. Figure 3 shows a schematic representation of the constructed measurement system.Figure 3Schematic diagram of the measurement system.Full size image More

  • in

    Wolf risk fails to inspire fear in two mesocarnivores suggesting facilitation prevails

    Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).PubMed 
    Article 

    Google Scholar 
    Newsome, T. M. et al. Top predators constrain mesopredator distributions. Nat. Commun. 8, 15469 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prugh, L. R. & Sivy, K. J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 23, 902–918 (2020).PubMed 
    Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).PubMed 
    Article 

    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).Article 

    Google Scholar 
    McArthur, C., Banks, P. B., Boonstra, R. & Forbey, J. S. The dilemma of foraging herbivores: Dealing with food and fear. Oecologia 176, 667–689 (2014).ADS 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 
    Article 

    Google Scholar 
    Kuijper, D. P. J. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B Biol. Sci. 283, 20161625 (2016).Article 

    Google Scholar 
    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolfes, elk, and bison: Reestablishing the ‘landscape of fear’ in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409 (2001).Article 

    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 
    Article 

    Google Scholar 
    Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).PubMed 
    Article 

    Google Scholar 
    Leo, V., Reading, R. P. & Letnic, M. Interference competition: Odours of an apex predator and conspecifics influence resource acquisition by red foxes. Oecologia 179, 1033–1040 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27, 1826–1832 (2016).
    Google Scholar 
    Haswell, P. M., Jones, K. A., Kusak, J. & Hayward, M. W. Fear, foraging and olfaction: how mesopredators avoid costly interactions with apex predators. Oecologia 187, 573–583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Switalski, T. A. Coyote foraging ecology and vigilance in response to gray wolf reintroduction in Yellowstone National Park. Can. J. Zool. 81, 985–993 (2003).Article 

    Google Scholar 
    Wikenros, C., Jarnemo, A., Frisén, M., Kuijper, D. P. J. & Schmidt, K. Mesopredator behavioral response to olfactory signals of an apex predator. J. Ethol. 35, 161–168 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palomares, F., Ferreras, P., Fedriani, J. M. & Delibes, M. Spatial relationships between Iberian Lynx and other carnivores in an area of south-western Spain. J. Appl. Ecol. 33, 5–13 (1996).Article 

    Google Scholar 
    Salo, P., Nordström, M., Thomson, R. L. & Korpimäki, E. Risk induced by a native top predator reduces alien mink movements. J. Anim. Ecol. 77, 1092–1098 (2008).PubMed 
    Article 

    Google Scholar 
    Haswell, P. M., Kusak, J. & Hayward, M. W. Large carnivore impacts are context-dependent. Food Webs 12, 3–13 (2017).Article 

    Google Scholar 
    Parsons, M. H. et al. Biologically meaningful scents: A framework for understanding predator–prey research across disciplines. Biol. Rev. 93, 98–114 (2018).PubMed 
    Article 

    Google Scholar 
    Sivy, K. J., Pozzanghera, C. B., Grace, J. B. & Prugh, L. R. Fatal attraction? Intraguild facilitation and suppression among predators. Am. Nat. 190, 663–679 (2017).PubMed 
    Article 

    Google Scholar 
    Ruprecht, J. et al. Variable strategies to solve risk-reward tradeoffs in carnivore communities. Proc. Natl. Acad. Sci. USA. 118, e2101614118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jędrzejewska, B. & Jędrzejewski, W. Predation in Vertebrate Communities Vol. 135 (Springer, 1998).Book 

    Google Scholar 
    Jȩdrzejewski, W. et al. Kill rates and predation by wolves on ungulate populations in Białowieża primeval forest (Poland). Ecology 83, 1341–1356 (2002).
    Google Scholar 
    Selva, N. The role of scavenging in the predator community of Białowieża Primeval Forest (Poland). PhD Thesis. (University of Sevilla, 2004).Kowalczyk, R., Zalewski, A., Jędrzejewska, B., Ansorge, H. & Bunevich, A. N. Reproduction and mortality of invasive raccoon dogs (Nyctereutes procyonoides) in the Biatowieža Primeval Forest (eastern Poland). Ann. Zool. Fennici 46, 291–303 (2009).Article 

    Google Scholar 
    Ballard, W. B., Carbyn, L. N. & Smith, D. W. Wolf interactions with non-prey. In Wolves: Behavior, Ecology, and Conservation (eds Mech, D. & Boitani, L.) 259–271 (University of Chicago Press, 2003).
    Google Scholar 
    Brown, J. S. Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22, 37–47 (1988).Article 

    Google Scholar 
    Bedoya-Perez, M. A., Carthey, A. J. R., Mella, V. S. A., McArthur, C. & Banks, P. B. A practical guide to avoid giving up on giving-up densities. Behav. Ecol. Sociobiol. 67, 1541–1553 (2013).Article 

    Google Scholar 
    Kwiatkowski, W. Vegetation landscapes of Białowieża Forest. Phytocoen. Suppl. Cart. Geobot 6, 35–87 (1994).
    Google Scholar 
    European Court of Justice Judgment of the Court (Grand Chamber) of 17 April 2018. European Commission vs. Republic of Poland. Case C-441/17. https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-04/cp180048en.pdf.Bubnicki, J. W., Churski, M., Schmidt, K., Diserens, T. A. & Kuijper, D. P. J. Linking spatial patterns of terrestrial herbivore community structure to trophic interactions. Elife 8, e44937 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kowalczyk, R., Bunevich, A. N. & Jędrzejewska, B. Badger density and distribution of setts in Bialowieza Primeval Forest (Poland and Belarus) compared to other Eurasian populations. Acta Theriol. 45, 395–408 (2000).Article 

    Google Scholar 
    Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B. & Kowalczyk, R. Territory size of wolves Canis lupus: Linking local (Białowieża Primeval Forest, Poland) and holarctic-scale patterns. Ecography 30, 66–67 (2007).
    Google Scholar 
    Schmidt, K., Jędrzejewski, W., Okarma, H. & Kowalczyk, R. Spatial interactions between grey wolves and Eurasian lynx in Białowieża Primeval Forest, Poland. Ecol. Res. 24, 207–214 (2009).Article 

    Google Scholar 
    Bytheway, J. P., Carthey, A. J. R. & Banks, P. B. Risk vs reward: How predators and prey respond to aging olfactory cues. Behav. Ecol. Sociobiol. 67, 715–725 (2013).Article 

    Google Scholar 
    Carthey, A. J. R. & Banks, P. B. Naiveté is not forever: responses of a vulnerable native rodent to its long term alien predators. Oikos 125, 918–926 (2016).Article 

    Google Scholar 
    Blanchard, C. D. & Blanchard, R. J. Antipredator DEFENSE. In The Behavior of the Laboratory Rat: A Handbook with Tests (eds Whishaw, I. Q. & Kolb, B.) 335–343 (Oxford University Press, 2004).Chapter 

    Google Scholar 
    Masini, C. V., Sauer, S. & Campeau, S. Ferret odor as a processive stress model in rats: Neurochemical, behavioral, and endocrine evidence. Behav. Neurosci. 119, 280–292 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bubnicki, J. W., Churski, M. & Kuijper, D. P. J. Trapper: An open source web-based application to manage camera trapping projects. Methods Ecol. Evol. 7, 1209–1216 (2016).Article 

    Google Scholar 
    Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B. & Okarma, H. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza Primeval Forest in Poland. Can. J. Zool. 79, 1993–2004 (2001).Article 

    Google Scholar 
    Theuerkauf, J., Jędrzejewski, W., Schmidt, K. & Gula, R. Spatiotemporal segregation of wolves from humans in the Bialowieza Forest (Poland). J. Wildl. Manage. 67, 706–716 (2003).Article 

    Google Scholar 
    Theuerkauf, J., Rouys, S. & Jędrzejewski, W. Selection of den, rendezvous, and resting sites by wolves in the Bialowieza Forest, Poland. Can. J. Zool. 81, 163–167 (2003).Article 

    Google Scholar 
    Miller, B. J., Harlow, H. J., Harlow, T. S., Biggins, D. & Ripple, W. J. Trophic cascades linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals. Can. J. Zool. 90, 70–78 (2012).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Zoller, H. & Drygala, F. Activity patterns of the invasive raccoon dog (Nyctereutes procyonoides) in North East Germany. Folia Zool. 62, 290–296 (2013).Article 

    Google Scholar 
    Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).Article 

    Google Scholar 
    Mukherjee, S., Zelcer, M. & Kotler, B. P. Patch use in time and space for a meso-predator in a risky world. Oecologia 159, 661–668 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Tredennick, A. T., Hooker, G., Ellner, S. P. & Adler, P. B. A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology 102, e03336 (2021).PubMed 
    Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Magnusson, A. et al. R Package ‘glmmTMB’. (2020).Hartig, F. R Package ‘DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models’ (2021).Fox, J. et al. R Package ‘effects’. (2020).Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).PubMed 
    Article 

    Google Scholar 
    Diserens, T. A. et al. Fossoriality in a risky landscape: Badger sett use varies with perceived wolf risk. J. Zool. 313, 76–85 (2021).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Scheinin, S., Yom-Tov, Y., Motro, U. & Geffen, E. Behavioural responses of red foxes to an increase in the presence of golden jackals: A field experiment. Anim. Behav. 71, 577 (2006).Article 

    Google Scholar 
    Vanak, A. T., Thaker, M. & Gompper, M. E. Experimental examination of behavioural interactions between free-ranging wild and domestic canids. Behav. Ecol. Sociobiol. 64, 279–287 (2009).Article 

    Google Scholar 
    Creel, S., Winnie, J. A., Christianson, D. & Liley, S. Time and space in general models of antipredator response: Tests with wolves and elk. Anim. Behav. 76, 1139–1146 (2008).Article 

    Google Scholar 
    Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128 (2017).PubMed 
    Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Soil meso- and micro-fauna community in response to bamboo-fungus agroforestry management

    Jiang, Z. H. Bamboo and Rattan in the World (China Forest Publishing House, 2007).
    Google Scholar 
    Zhao, J., Wang, B., Li, Q., Yang, H. & Xu, K. Analysis of soil degradation causes in Phyllostachys edulis forests with different mulching years. Forests 9(3), 149 (2018).Article 

    Google Scholar 
    Su, W., Fan, S., Zhao, J. & Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 453, 117632 (2019).Article 

    Google Scholar 
    Zhao, J. et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests under different fertilization practices. Can. J. For. Res. 49(3), 213–220 (2019).CAS 
    Article 

    Google Scholar 
    Yin, J. et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests. For. Ecol. Manag. 449, 117449 (2019).Article 

    Google Scholar 
    Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 21, e00787 (2020).Article 

    Google Scholar 
    Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S. & Rachmawati, R. Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. J. Degrade. Min. Land Manage. 6(3), 1727–1736 (2019).Article 

    Google Scholar 
    Coleman, B. R., Martin, A. R., Thevathasan, N. V., Gordon, A. M. & Isaac, M. E. Leaf trait variation and decomposition in short-rotation woody biomass crops under agroforestry management. Agric. Ecosyst. Environ. 298, 106971 (2020).CAS 
    Article 

    Google Scholar 
    Cai, C. J., Fan, S. H., Liu, G. L., Wang, S. M. & Feng, Y. Research and development advance of compound management of bamboo forests. World Bamboo Rattan 16(5), 47–52 (2018) (in Chinese).
    Google Scholar 
    Song, Z. et al. Characteristics of Se-enriched mycelia by Stropharia rugoso-annulata and its antioxidant activities in vivo. Biol. Trace Elem. Res. 113(1), 81–89 (2009).Article 

    Google Scholar 
    Wang, Q. et al. Effects of drying on the structural characteristics and antioxidant activities of polysaccharides from Stropharia rugosoannulata. J. Food Sci. Technol. 58, 3622–3631 (2021).CAS 
    Article 

    Google Scholar 
    Yan, P., Jiang, J. & Cui, W. Characterization of protoplasts prepared from the edible fungus, Stropharia rugoso-annulata. World J. Microbiol. Biotechnol. 20(2), 173–177 (2004).CAS 
    Article 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilition. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).CAS 
    Article 

    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).Article 

    Google Scholar 
    Tan, B. et al. Soil fauna show different degradation patterns of lignin and cellulose along an elevational gradient. Appl. Soil Ecol. 155, 103673 (2020).Article 

    Google Scholar 
    John, K., Zaitsev, A. S. & Wolters, V. Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia 84, 150703 (2021).Article 

    Google Scholar 
    Qin, Z. et al. Changes in the soil meso- and micro-fauna community under the impacts of exotic Ambrosia artemisiifolia. Ecol. Res. 34(2), 265–276 (2019).Article 

    Google Scholar 
    Chauvat, M., Titsch, D., Zaytesev, A. S. & Wolters, V. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For. Ecol. Manag. 262(3), 317–324 (2011).Article 

    Google Scholar 
    Yan, S. et al. A soil fauna index for assessing soil quality. Soil Biol. Biochem. 47(2), 158–165 (2012).CAS 
    Article 

    Google Scholar 
    Reeve, J. R. et al. Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J. 4, 1099–1107 (2010).Article 

    Google Scholar 
    Lavelle, P., Bignell, D. & Lepage, M. Soil function in a changing world: The role of invertebrate engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).Article 

    Google Scholar 
    Zhang, L., Wang, G. & Cao, F. The effect of ginkgo agroforestry patterns on soil fauna diversity. J. Nanjing For. Univ. 39(2), 27–32 (2015) (in Chinese).
    Google Scholar 
    Liu, P. et al. Impact of straw returning on cropland soil mesofauna community in the western part of black soil area. Chin. J. Ecol. 37(1), 139–146 (2018) (in Chinese).
    Google Scholar 
    Liu, M. Study on the model of interplanting edible fungi under bamboo (Phyllostachys edulis) forest and comprehensive benefit comparative. Master’s Thesis, Chinese Academy of Forestry (2021) (in Chinese).Wang, B., Shen, Q., Zhu, W., Shen, X. & Li, Q. Effects of interplanting Dictyophora echinovolvata on physicochemical properties, phospholipid fatty acids characters and enzyme activities in soil of Phyllostachy heterocycla cv. pubescens. For. Environ. Sci. 32(4), 28–32 (2016) (in Chinese).Article 

    Google Scholar 
    Ying, G. H. et al. Effect of cultivation of Dictyophora echinovolvata on shoot yield and soil under Phyllostachy heterocycla cv. pubescens stand. J. Zhejiang For. Sci. Technol. 34(6), 65–67 (2014) (in Chinese).
    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).CAS 
    Article 

    Google Scholar 
    Fujii, K., Hayakawa, C., Inagaki, Y. & Kosaki, T. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446(1), 425–439 (2020).CAS 
    Article 

    Google Scholar 
    Fujii, K. & Toma, T. Comparison of soil acidification rates under different land uses in Indonesia. Plant Soil 465(1–2), 1–17 (2021).CAS 
    Article 

    Google Scholar 
    Poss, R., Smith, C. J., Dunin, F. X. & Angus, J. F. Rate of soil acidification under wheat in a semi-arid environment. Plant Soil 177, 85–100 (1995).CAS 
    Article 

    Google Scholar 
    Yin, X. et al. Distribution and diversity partterns of soil fauna in different salinization habitats of Songnen Grasslands, China. Appl. Soil Ecol. 123, 375–383 (2018).Article 

    Google Scholar 
    Luo, M. L. et al. Effects of different rice straw returning quantities on soil fauna community structure. J. Zhejiang A&F Univ. 37(1), 85–92 (2020) (in Chinese).
    Google Scholar 
    Peng, C. Y. et al. Community structure characteristics of medium- and small-sized soil faunas in typical artificial plantation in the upper reaches of Yangtze River. J. Zhejiang Univ. 45(5), 585–595 (2019) (in Chinese).
    Google Scholar 
    Carmen, M. U., Edmond, R. Z. & Michelle, M. W. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biol. Biochem. 64, 103–113 (2013).Article 

    Google Scholar 
    Kamau, S., Karanja, N. K., Ayuke, F. O. & Lehmann, J. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biol. Fertil. Soils 55(7), 661–673 (2019).CAS 
    Article 

    Google Scholar 
    Fu, X., Shao, M., Wei, X. & Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155(1–2), 31–35 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Guan, F., Tang, X., Fan, S., Zhao, J. & Peng, C. Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and Moso bamboo plantations. Catena 133, 455–460 (2015).CAS 
    Article 

    Google Scholar 
    Liu, Y. et al. Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep. 9, 10561 (2019).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Complex effects of chytrid parasites on the growth of the cyanobacterium Planktothrix rubescens across interacting temperature and light gradients

    Díez B, Ininbergs K. Ecological importance of cyanobacteria. In Cyanobacteria (pp. 41–63). John Wiley & Sons, Ltd. (2013) https://doi.org/10.1002/9781118402238.ch3Fristachi A, Sinclair JL, Hall S, Berkman JAH, Boyer G, Burkholder J, et al. Occurrence of cyanobacterial harmful algal blooms workgroup report. Adv Experimental Med Biol. 2008;619:45–103. https://doi.org/10.1007/978-0-387-75865-7_3CAS 
    Article 

    Google Scholar 
    Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83. https://doi.org/10.1038/s41579-018-0040-1CAS 
    Article 
    PubMed 

    Google Scholar 
    Plaas HE, Paerl HW. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. In Environmental Science and Technology (Vol. 55, Issue 1, pp. 44–64). American Chem Soc. 2021. https://doi.org/10.1021/acs.est.0c06653Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae. 2016;54:69–86. https://doi.org/10.1016/j.hal.2016.01.004CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohrlack T, Christiansen G, Kurmayer R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus planktothrix. Appl Environ Microbiol. 2013;79:2642–7. https://doi.org/10.1128/AEM.03499-12CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Legnani E, Copetti D, Oggioni A, Tartari G, Palumbo MT, Morabito G. Planktothrix rubescens’ seasonal dynamics and vertical distribution. J Limnol. 2005;64:61–73.Article 

    Google Scholar 
    Walsby A, Ng G, Dunn C, Davis PA. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. New Phytologist. 2004;162:133–45. https://doi.org/10.1111/j.1469-8137.2004.01020.xArticle 

    Google Scholar 
    Bruning K. Effects of temperature and light on the population dynamics of the Asterionella-Rhizophydium association. J Plankton Res. 1991a;13:707–19. https://doi.org/10.1093/plankt/13.4.707Article 

    Google Scholar 
    Rohrlack T, Haande S, Molversmyr Å, Kyle M. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis. 2015;1–17. https://doi.org/10.1371/journal.pone.0145559Tao Y, Wolinska J, Hölker F, Agha R. Light intensity and spectral distribution affect chytrid infection of cyanobacteria via modulation of host fitness. Parasitology. 2020;147:1206–15. https://doi.org/10.1017/S0031182020000931CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis PA, Walsby A. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District. New Phytologist. 2002;156:225–39. https://doi.org/10.1046/j.1469-8137.2002.00495.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens 1. J Phycol. 2007;43:1191–9. https://doi.org/10.1111/j.1529-8817.2007.00414.xCAS 
    Article 

    Google Scholar 
    Reynolds CS Growth and replication of phytoplankton. In The Ecology of Phytoplankton (pp. 145–77). Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511542145.005Litchman E, Klausmeier CA . Trait-based community ecology of phytoplankton. Ann Rev Ecol, Evol, Syst. 2008;39:615–39.Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol Oceanography. 2016;61:1232–44.Article 

    Google Scholar 
    Thomas MK, Kremer CT, Litchman E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Global Ecol Biogeog. 2016;25:75–86. https://doi.org/10.1111/geb.12387Article 

    Google Scholar 
    Bright DI, Walsby A. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytologist. 2000;146:301–16. https://doi.org/10.1046/j.1469-8137.2000.00640.xArticle 
    PubMed 

    Google Scholar 
    Jann-Para G, Schwob I, Feuillade M. Occurrence of toxic Planktothrix rubescens blooms in lake Nantua, France. Toxicon. 2004;43:279–85.CAS 
    Article 

    Google Scholar 
    Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, et al. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae. 2005;4:651–72.Article 

    Google Scholar 
    Lenard T. Metalimnetic bloom of Planktothrix rubescens in relation to environmental conditions. Oceanological Hydrobiological Studies. 2009;38:45–53.
    Google Scholar 
    Van den Wyngaert S, Salcher MM, Pernthaler J, Zeder M, Posch T. Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol Oceanogr. 2011;56:97–109.Article 

    Google Scholar 
    Walsby A. Stratification by cyanobacteria in lakes: A dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist. 2005;168:365–76. https://doi.org/10.1111/j.1469-8137.2005.01508.xArticle 
    PubMed 

    Google Scholar 
    Conroy JD, Kane DD, Quinlan EL, Edwards WJ, Culver DA. Abiotic and biotic controls of phytoplankton biomass dynamics in a freshwater tributary, estuary, and large lake ecosystem: Sandusky bay (lake erie) chemostat. Inland Waters. 2017;7:473–92. https://doi.org/10.1080/20442041.2017.1395142CAS 
    Article 

    Google Scholar 
    Sommer U, Maciej Gliwics Z, Lampert W, Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie. 1986;106:433–71.
    Google Scholar 
    Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Ann Rev Ecol, Evol, Syst. 2012;43:429–48. https://doi.org/10.1146/annurev-ecolsys-110411-160251Article 

    Google Scholar 
    Hatcher MJ, Dunn AM Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press (2011).Marcogliese DJ. Parasites: Small Players with Crucial Roles in the Ecological Theater. EcoHealth. 2004;1:151–64. https://doi.org/10.1007/s10393-004-0028-3Article 

    Google Scholar 
    Sime-Ngando T, Lafferty KD, Biron DG. Roles and Mechanisms of Parasitism in Aquatic Microbial Communities. 2007. https://doi.org/10.3389/978-2-88919-588-6Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology. 2017;19:3802–22. https://doi.org/10.1111/1462-2920.13827Article 
    PubMed 

    Google Scholar 
    Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74. https://doi.org/10.1016/j.hal.2004.12.015Article 

    Google Scholar 
    Gerphagnon M, Macarthur DJ, Gachon C, Van Ogtrop F, Latour D, et al. The biological factors affecting the dynamics of cyanobacterial blooms. 2009.Gleason FH, Jephcott TG, Küpper FC, Gerphagnon M, Sime-Ngando T, Karpov SA, et al. Potential roles for recently discovered chytrid parasites in the dynamics of harmful algal blooms. Fungal Biol Rev. 2015;29:20–33. https://doi.org/10.1016/j.fbr.2015.03.002Article 

    Google Scholar 
    Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biol. 2011;56:754–66. https://doi.org/10.1111/j.1365-2427.2010.02565.xArticle 

    Google Scholar 
    Kagami M, De Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: Their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–29. https://doi.org/10.1007/s10750-006-0438-zArticle 

    Google Scholar 
    Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS. 2005;103:3165–70.Article 

    Google Scholar 
    McKenzie VJ, Peterson AC. Pathogen pollution and the emergence of a deadly amphibian pathogen. Molecular Ecol. 2012;21:5151–4. https://doi.org/10.1111/mec.12013Article 

    Google Scholar 
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 2007;4:125–34. https://doi.org/10.1007/s10393-007-0093-5Article 

    Google Scholar 
    Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol. 2004;40:437–53.Article 

    Google Scholar 
    Bosch J, Martínez-Solano I, García-París. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conserv. 2001;97:331–7. https://doi.org/10.1016/S0006-3207(00)00132-4Article 

    Google Scholar 
    Bruning K, Lingeman R, Ringelberg J. Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr. 1992;37:252–60. https://doi.org/10.4319/lo.1992.37.2.0252Article 

    Google Scholar 
    Paterson RA. Infestation of Chytridiaceous Fungi on Phytoplankton in Relation to Certain Environmental Factors. Ecology. 1960;41:416–24. https://doi.org/10.2307/1933316Article 

    Google Scholar 
    Ṣen B. Fungal parasitism of planktonic algae in Shearwater. IV: Parasitic occurrence of a new chytrid species on the blue-green alga Microcystis aeruginosa Kuetz. emend. Elenkin. 1998.van Donk E, Ringelberg J. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I. Netherlands Freshwater Biol. 1983;13:241–51. https://doi.org/10.1111/j.1365-2427.1983.tb00674.xArticle 

    Google Scholar 
    Agha R, Saebelfeld M, Manthey C, Rohrlack T, Wolinska J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Scientific Rep. 2016;6. https://doi.org/10.1038/srep35039Frenken T, Wierenga J, van Donk E, Declerck SAJ, de Senerpont Domis LN, Rohrlack T, et al. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol Oceanogr. 2018;63:2384–93. https://doi.org/10.1002/lno.10945Article 

    Google Scholar 
    Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Biological Sci/ Royal Soc. 2007;274:1561–6. https://doi.org/10.1098/rspb.2007.0425Article 

    Google Scholar 
    Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW. Temperature alters host genotype-specific susceptibility to chytrid infection. PLoS One. 2013;8:e71737. https://doi.org/10.1371/journal.pone.0071737CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKindles KM, Manes MA, McKay RM, Davis TW, Bullerjahn GS. Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii. J Plankton Res. 2021a;43:658–72.Article 

    Google Scholar 
    Fallowfield HJ, Daft MJ. The extracellular release of dissolved organic carbon by freshwater cyanobacteria and algae and the interaction with Lysobacter CP-1. Br Phycol J. 1988;1617:317–26. https://doi.org/10.1080/00071618800650351Article 

    Google Scholar 
    Mueller B, den Haan J, Visser PM, Vermeij MJA, van Duyl FC. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Rep. 2016;6:1–9. https://doi.org/10.1038/srep23248CAS 
    Article 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. II. Effects of light on survival and epidemic development of the parasite. J Plankton Res. 1991c;13:119–29. https://doi.org/10.1093/plankt/13.1.119Article 

    Google Scholar 
    Van den Wyngaert S, Gsell AS, Spaak P, Ibelings BW. Herbicides in the environment alter infection dynamics in a microbial host-parasite system. Environ Microbiol. 2013;15:837–47. https://doi.org/10.1111/j.1462-2920.2012.02874.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Almocera AES, Hsu SB, Sy PW. Extinction and uniform persistence in a microbial food web with mycoloop: Limiting behavior of a population model with parasitic fungi. Mathematical Biosci Eng. 2019;16:516–37.Article 

    Google Scholar 
    Frenken T, Miki T, Kagami M, Van de Waal DB, Van Donk E, Rohrlack T, et al. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology. 2020;101. https://doi.org/10.1002/ecy.2900Gerla DJ, Gsell AS, Kooi BW, Ibelings BW, Van Donk E, Mooij WM. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts. FMeier, M. H. et al. (2015) Neuropsychological Decline in Schizophrenia from the Premorbid to Post-Onset Period: Evidence from a Population-Representative Longitudinal Study. American J Psychiatry. 2013;58:538–51. https://doi.org/10.1111/fwb.12010Article 

    Google Scholar 
    Miki T, Takimoto G, Kagami M. Roles of parasitic fungi in aquatic food webs: A theoretical approach. Freshwater Biol. 2011;56:1173–83. https://doi.org/10.1111/j.1365-2427.2010.02562.xArticle 

    Google Scholar 
    Guillard RRL, Lorenzen CJ. Yellow-green algae with chlorophyllid C. In Phycology. 1972;8:10–14.CAS 

    Google Scholar 
    McKindles KM, Jorge AN, McKay RM, Davis TW, Bullerjahn GS. Isolation and characterization of Rhizophydiales (Chytridiomycota), obligate parasites of Planktothrix agardhii in a Laurentian Great Lakes embayment. Appl Environ Microbiol. 2021b;87:e02308–20.CAS 
    Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and Environment for Statistical Computing.RStudio Team. (2021). RStudio: Integrated Development Environment for R (1.4.1106).Wickham, H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the {tidyverse}. J Open Source Software. 2019;4:1686. https://doi.org/10.21105/joss.01686Article 

    Google Scholar 
    Champely, S (2018). PairedData (1.1.1).Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in {R}: Package deSolve. J Statistical Software. 2010;33:1–25. https://doi.org/10.18637/jss.v033.i09Article 

    Google Scholar 
    Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R, Kosten S, et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biol. 2016;22:299–309. https://doi.org/10.1111/gcb.13095Article 

    Google Scholar 
    Scholz B, Vyverman W, Küpper FC, Ólafsson HG, Karsten U. Effects of environmental parameters on chytrid infection prevalence of four marine diatoms: A laboratory case study. Botanica Marina. 2017;60:419–31. https://doi.org/10.1515/bot-2016-0105CAS 
    Article 

    Google Scholar 
    Sønstebø JH, Rohrlack T. Possible implications of Chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol. 2011;77:1344–51. https://doi.org/10.1128/AEM.02153-10CAS 
    Article 
    PubMed 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J Plankton Res. 1991b;13:103–17. https://doi.org/10.1093/plankt/13.1.103Article 

    Google Scholar 
    Muehlstein LK, Amon JP, Leffler DL. Chemotaxis in the Marine Fungus Rhizophydium littoreum. Appl Environ Microbiol. 1988;54:1668–72. https://doi.org/10.1128/aem.54.7.1668-1672.1988CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esch GW, Fernández JC. Introduction. In A Functional Biology of Parasitism (pp. 1–25). Springer Netherlands (1993). https://doi.org/10.1007/978-94-011-2352-5_1Gerphagnon M, Colombet J, Latour D, Sime-Ngando T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Scientific Rep. 2017;7:6056. https://doi.org/10.1038/s41598-017-06273-1CAS 
    Article 

    Google Scholar 
    Maier MA, Peterson TD. Prevalence of chytrid parasitism among diatom populations in the lower Columbia River (2009–2013). Freshwater Biol. 2017;62:414–28. https://doi.org/10.1111/fwb.12876CAS 
    Article 

    Google Scholar 
    Sime-Ngando T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol. 2012;3:361. https://doi.org/10.3389/fmicb.2012.00361Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagami M, Urabe J. Mortality of the planktonic desmid, Staurastrum dorsidentiferum, due to interplay of fungal parasitism and low light conditions. SIL Proceed. 2002;28:1001–5. https://doi.org/10.1080/03680770.2001.11901868Article 

    Google Scholar  More

  • in

    Holistic tool for ecosystem services and disservices assessment in the urban forests of the Real Bosco di Capodimonte, Naples

    Berghauser Pont, M. Y., Perg, P. G., Haupt, P. A. & Heyman, A. A systematic review of the scientifically demonstrated effects of densification. IOP Conf. Ser. Earth Environ. Sci. 588, 052031 (2020).
    Google Scholar 
    Cimburova, Z. & Berghauser Pont, M. Location matters: A systematic review of spatial contextual factors mediating ecosystem services of urban trees. Ecosyst. Serv. 50, 101296 (2021).
    Google Scholar 
    De Valck, J. et al. Valuing urban ecosystem services in sustainable brownfield redevelopment. Ecosyst. Serv. 35, 139–149 (2019).
    Google Scholar 
    Zuzolo, D. et al. Divide et disperda: Thirty years of fragmentation and impacts on the eco-mosaic in the case study of the metropolitan city of Naples. Land 10, 485 (2021).
    Google Scholar 
    Nelson, E. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations , edited by Pushpam Kumar, London, Earthscan Publications, United Nations Environment Programme, 2010, xxxix + 410 pp., US$76.95 (hardback), ISBN 978-1-84971-212-5. J. Nat. Resour. Policy Res. 5, 68–70 (2013).
    Google Scholar 
    Duraiappah, A. K. et al. Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Synthesis. World Resources Institute vol. 5 http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf (2005).Cariñanos, P., Casares-Porcel, M. & Quesada-Rubio, J. M. Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landsc. Urban Plan. 123, 134–144 (2014).
    Google Scholar 
    Haase, D. et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 43, 413–433 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Mexia, T. et al. Ecosystem services: Urban parks under a magnifying glass. Environ. Res. 160, 469–478 (2018).CAS 
    PubMed 

    Google Scholar 
    Brzoska, P., Grunewald, K. & Bastian, O. A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts. Ecosyst. Serv. 49, 101268 (2021).
    Google Scholar 
    Zulian, G. et al. Practical application of spatial ecosystem service models to aid decision support. Ecosyst. Serv. 29, 465–480 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Balmford, A. et al. Ecology: Economic reasons for conserving wild nature. Science (80-). 297, 950–953 (2002).ADS 
    CAS 

    Google Scholar 
    Koulov, B., Ivanova, E., Borisova, B., Assenov, A. & Ravnachka, A. GIS-based valuation of ecosystem services in mountain regions: A case study of the Karlovo municipality in Bulgaria. One Ecosyst. 2, e14062 (2017).
    Google Scholar 
    Robertson, G. P. & Swinton, S. M. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 3, 38–46 (2005).
    Google Scholar 
    Sandhu, H. S., Wratten, S. D., Cullen, R. & Case, B. The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol. Econ. 64, 835–848 (2008).
    Google Scholar 
    Berglihn, E. C. & Gómez-Baggethun, E. Ecosystem services from urban forests: The case of Oslomarka, Norway. Ecosyst. Serv. 51, 101358 (2021).
    Google Scholar 
    Nowak, D. J. Understanding i-Tree. (2020). https://doi.org/10.2737/NRS-GTR-200.Selvakumaran, S., Plank, S., Geiß, C., Rossi, C. & Middleton, C. Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. Int. J. Appl. Earth Obs. Geoinf. 73, 463–470 (2018).ADS 

    Google Scholar 
    Gómez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).
    Google Scholar 
    Gren, Å. & Andersson, E. Being efficient and green by rethinking the urban-rural divide—Combining urban expansion and food production by integrating an ecosystem service perspective into urban planning. Sustain. Cities Soc. 40, 75–82 (2018).
    Google Scholar 
    Grêt-Regamey, A., Celio, E., Klein, T. M. & Wissen Hayek, U. Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 109, 107–116 (2013).
    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).PubMed 

    Google Scholar 
    Bradford, J. B. & D’Amato, A. W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 10, 210–216 (2012).
    Google Scholar 
    Cueva, J. et al. Synergies and trade-offs in ecosystem services from urban and peri-urban forests and their implication to sustainable city design and planning. Sustain. Cities Soc. 82, 103903 (2022).
    Google Scholar 
    Allocca, V., Coda, S., Calcaterra, D. & De Vita, P. Groundwater rebound and flooding in the Naples’ periurban area (Italy). J. Flood Risk Manag. 15, e12775 (2022).
    Google Scholar 
    Padulano, R. et al. Using the present to estimate the future: A simplified approach for the quantification of climate change effects on urban flooding by scenario analysis. Hydrol. Process. 35, e14436 (2021).
    Google Scholar 
    D’Amato, G. et al. Allergenic pollen and pollen allergy in Europe. Allergy 62, 976–990 (2007).PubMed 

    Google Scholar 
    Prigioniero, A., Zuzolo, D., Sciarrillo, R. & Guarino, C. Assessing pollinosis risk in the Vesuvius National Park: A novel approach for Index of Urban Green Zones Allergenicity. Environ. Res. 197, 111063 (2021).CAS 
    PubMed 

    Google Scholar 
    AgCult 2020 Classifica visitatori 2019: Capodimonte rientra nella classifica dei primi 30 musei d’Italia.La Valva, V., Guarino, C., De Natale, A., Cuozzo, V., Menale, B. La flora del Parco di Capodimonte di Napoli. in 33–34: 143–177. (Delpinoa, 1992).Stevens, P. F. Angiosperm Phylogeny Website. 2001. http://www.mobot.org/MOBOT/research/APweb/. (2017).James Barth, B., Ian FitzGibbon, S. & Stuart Wilson, R. New urban developments that retain more remnant trees have greater bird diversity. Landsc. Urban Plan. 136, 122–129 (2015).
    Google Scholar 
    Heckmann, K. E., Manley, P. N. & Schlesinger, M. D. Ecological integrity of remnant montane forests along an urban gradient in the Sierra Nevada. For. Ecol. Manage. 255, 2453–2466 (2008).
    Google Scholar 
    Prigioniero, A. et al. Role of historic gardens in biodiversity-conservation strategy: the example of the Giardino Inglese of Reggia di Caserta (UNESCO) (Italy). Plant Biosyst. 155, 983–993 (2021).
    Google Scholar 
    Song, Q., Wang, B., Wang, J. & Niu, X. Endangered and endemic species increase forest conservation values of species diversity based on the Shannon-Wiener index. IForest 9, 469–474 (2016).
    Google Scholar 
    Hess, M. C. M., Mesléard, F. & Buisson, E. Priority effects: Emerging principles for invasive plant species management. Ecol. Eng. 127, 48–57 (2019).
    Google Scholar 
    Carli, E. et al. Using vegetation dynamics to face the challenge of the conservation status assessment in semi-natural habitats. Rend. Lincei. Sci. Fis. e Nat. 29, 363–374 (2018).
    Google Scholar 
    Canedoli, C. et al. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Serv. 44, 101135 (2020).
    Google Scholar 
    FAO. Global Forest Resources Assessment 2010. Main report. (2010).Lindén, L., Riikonen, A., Setälä, H. & Yli-Pelkonen, V. Quantifying carbon stocks in urban parks under cold climate conditions. Urban For. Urban Green. 49, 126633 (2020).
    Google Scholar 
    Nowak, D. J., Hirabayashi, S., Bodine, A. & Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 193, 119–129 (2014).CAS 
    PubMed 

    Google Scholar 
    Nowak, D. J., Crane, D. E. & Stevens, J. C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 4, 115–123 (2006).
    Google Scholar 
    Nowak, D. J. & Crane, D. E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 116, 381–389 (2002).CAS 
    PubMed 

    Google Scholar 
    Kocić, K., Spasić, T., Urošević, M. A. & Tomašević, M. Trees as natural barriers against heavy metal pollution and their role in the protection of cultural heritage. J. Cult. Herit. 15, 227–233 (2014).
    Google Scholar 
    Yang, J., McBride, J., Zhou, J. & Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 3, 65–78 (2005).
    Google Scholar 
    Zupancic, T., Westmacott, C., Bulthuis, M. The impact of green space on heat and air pollution in urban communities: A meta-narrative systematic review (2015).Cariñanos, P., Adinolfi, C., Díaz de la Guardia, C., De Linares, C. & Casares-Porcel, M. Characterization of Allergen Emission Sources in Urban Areas. J. Environ. Qual. 45, 244–252 (2016).PubMed 

    Google Scholar 
    D’Auria, A., De Toro, P., Fierro, N. & Montone, E. Integration between GIS and multi-criteria analysis for ecosystem services assessment: A methodological proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy). Sustain 10, 3329 (2018).
    Google Scholar 
    Prigioniero, A., Zuzolo, D., Niinemets, Ü. & Guarino, C. Nature-based solutions as tools for air phytoremediation: A review of the current knowledge and gaps. Environ. Pollut. 277, 116817 (2021).CAS 
    PubMed 

    Google Scholar 
    Szkop, Z. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban For. Urban Green. 55, 126859 (2020).
    Google Scholar 
    Tao, J. et al. Elevation-dependent effects of growing season length on carbon sequestration in Xizang Plateau grassland. Ecol. Indic. 110, 105880 (2020).CAS 

    Google Scholar 
    Chen, Y. et al. Grassland carbon sequestration ability in China: A new perspective from Terrestrial Aridity Zones. Rangel. Ecol. Manag. 69, 84–94 (2016).
    Google Scholar 
    Gopalakrishnan, V., Hirabayashi, S., Ziv, G. & Bakshi, B. R. Air quality and human health impacts of grasslands and shrublands in the United States. Atmos. Environ. 182, 193–199 (2018).ADS 
    CAS 

    Google Scholar 
    Pace, R. et al. Comparing i-Tree eco estimates of particulate matter deposition with leaf and canopy measurements in an urban mediterranean Holm Oak Forest. Environ. Sci. Technol. 55, 6613–6622 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Losos, J. B., Walton, B. M. & Bennett, A. F. Trade-offs between sprinting and clinging ability in Kenyan Chameleons. Funct. Ecol. 7, 281 (1993).
    Google Scholar 
    Pretzsch, H., Moser-Reischl, A., Rahman, M. A., Pauleit, S. & Rötzer, T. Towards sustainable management of the stock and ecosystem services of urban trees. From theory to model and application. Trees – Struct. Funct. (2021). https://doi.org/10.1007/s00468-021-02100-3.Grunewald, K. et al. Lessons learned from implementing the ecosystem services concept in urban planning. Ecosyst. Serv. 49, 101273 (2021).
    Google Scholar 
    Baldacchini, C., Sgrigna, G., Clarke, W., Tallis, M. & Calfapietra, C. An ultra-spatially resolved method to quali-quantitative monitor particulate matter in urban environment. Environ. Sci. Pollut. Res. 26, 18719–18729 (2019).CAS 

    Google Scholar 
    De Luca, P., Guarino, C., Gullo, G., La Valva V., 1992. Il Parco di Capodimonte di Napoli: storia ed attualità. in 33–34: 143–177. (Delpinoa, 1992).Pignatti, S. Flora d’Italia vol.2. (2017).Braun-Blanquet, J. Plant Sociology (McGraw-Hill Book Company, 1932).
    Google Scholar 
    Catorci, A. et al. Reproductive traits variation in the herb layer of a submediterranean deciduous forest landscape. Plant Ecol. 214, 737–749 (2013).
    Google Scholar 
    Šumrada, T. et al. Are result-based schemes a superior approach to the conservation of High Nature Value grasslands? Evidence from Slovenia. Land Use Policy 111, 105749 (2021).
    Google Scholar 
    POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Board of Trustees of the Royal Botanic Gardens, Kew http://www.plantsoftheworldonline.org/ (2022).Bímová, K., Mandák, B. & Kašparová, I. How does Reynoutria invasion fit the various theories of invasibility?. J. Veg. Sci. 15, 495–504 (2004).
    Google Scholar 
    Wild, J., Neuhäuslová, Z. & Sofron, J. Changes of plant species composition in the Šumava spruce forests, SW Bohemia, since the 1970s. For. Ecol. Manag. 187, 117–132 (2004).
    Google Scholar 
    Damato, G. & Lobefalo, G. Allergenic pollens in the southern Mediterranean area. J. Allergy Clin. Immunol. 83, 116–122 (1989).CAS 

    Google Scholar 
    Cariñanos, P. et al. Assessing allergenicity in urban parks: A nature-based solution to reduce the impact on public health. Environ. Res. 155, 219–227 (2017).PubMed 

    Google Scholar 
    Cariñanos, P. et al. Estimation of the allergenic potential of urban trees and urban parks: Towards the healthy design of urban green spaces of the future. Int. J. Environ. Res. Public Health 16, 1357 (2019).PubMed Central 

    Google Scholar  More

  • in

    Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services

    DeVault, T. L., Rhodes, O. E. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10, 303–311 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054 (2014).PubMed 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
    Google Scholar 
    Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. Condor 88, 318–323 (1986).
    Google Scholar 
    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88 (2017).ADS 

    Google Scholar 
    Kane, A. & Kendall, C. J. Understanding how mammalian scavengers use information from avian scavengers: Cue from above. J. Anim. Ecol. 86, 837–846 (2017).PubMed 

    Google Scholar 
    Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology. https://doi.org/10.1002/ecy.3519 (2021).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    Bassi, E., Battocchio, D., Marcon, A., Stahlberg, S. & Apollonio, M. Scavenging on ungulate carcasses in a mountain forest area in Northern Italy. Mamm. Study 43, 1–11 (2018).
    Google Scholar 
    Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428 (2021).
    Google Scholar 
    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. 89, 2156–2167 (2020).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography (Cop.) 43, 1143–1155 (2020).
    Google Scholar 
    Cortés-Avizanda, A., Selva, N., Carrete, M. & Donázar, J. A. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl. Ecol. 10, 265–272 (2009).
    Google Scholar 
    Sebastián-González, E. et al. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97, 95–105 (2016).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & Devault, T. L. Carrion cycling in food webs: Comparisons among terrestrial and marine ecosystems. Oikos 121, 1021–1026 (2012).
    Google Scholar 
    Ray, R. R., Seibold, H. & Heurich, M. Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim. Biodivers. Conserv. 37, 77–88 (2014).
    Google Scholar 
    Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography (Cop.) 41, 1173–1183 (2018).
    Google Scholar 
    Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).
    Google Scholar 
    Putman, A. R. J. Patterns of carbon dioxide evolution from decaying carrion: Decomposition of small mammal carrion in temperate systems, Part 1. Oikos 31, 47–57 (1978).CAS 

    Google Scholar 
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Google Scholar 
    Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Pedro, P. O. et al.) 23–44 (Springer, 2019).
    Google Scholar 
    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).
    Google Scholar 
    Animal Care and Use Committee. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J. Mamm. 79, 1416–1431 (1998).
    Google Scholar 
    Committee of Reviewing Taxon Names and Specimen Collections. Guidelines for the Procedure of Obtaining Mammal Specimens as Approved by the Mammal Society of Japan (Revised in 2009) (Mammal Society of Japan, 2009).
    Google Scholar 
    Yoshino, M. Microclimate: New Edition (Chijin Shokan, 1986).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).Sokal, R. R. & Rohlf, F. J. Biometry 4th edn. (WH Freeman and Company, 2012).MATH 

    Google Scholar 
    Fisher, R. A. Statistical Methods for Research Workers (Oliver and Boyd, 1934).MATH 

    Google Scholar 
    Therneau, T. A Package for Survival Analysis in S. Version 2.38 (2015).Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. & Rhodes, O. E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar  More

  • in

    Spatial distribution characteristics and evaluation of soil pollution in coal mine areas in Loess Plateau of northern Shaanxi

    Analysis of contents of heavy metals in wasteland soilThe test results show (Table 5) that the contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu in the surface soil within Shigetai Coal Mine vary from 0.043 to 0.255, 0.44 to 2.23, 2.66 to 18.40, 11.80 to 42.80, 40.50 to 118.60, 18.90 to 70.10, 4.31 to 28.10, 4.96 to 46.25 mg/kg, respectively; the average contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu are 0.128, 1.03, 4.73, 23.08, 76.22, 46.94, 16.11 and 12.10 mg/kg, respectively. The average contents of Hg, Cd, Pb and Cr in soil within the research area are 2.03, 1.36, 1.11 and 1.23 times of the soil background values in Shaanxi Province, respectively. The average contents of As, Zn and Cu are lower than the soil background value in Shaanxi Province, but the maximum contents of these three elements are 1.65, 1.01 and 2.16 times of the soil background values in Shaanxi Province, respectively. It is reported that the average concentration of lead in agricultural soil affected by coal mines is relatively high (433 mg kg−1)38. Lead is usually related to minerals in coal and occurs mainly in the form of sulfide such as PbS and PbSe39. In addition, aluminosilicate and carbonate also contain lead40. Chromium is a non-volatile element, which is related to aluminosilicate minerals41. In the mining process, chromium may be accumulated in coal, gangue or other tailings, and then enter the soil or water body through rain leaching42.Table 5 Statistics of contents of heavy metals in wasteland soil (n = 79).Full size tableThe coefficient of variation (CV) of Hg and Cd contents in soil within the research area is 0.050 and 0.37, respectively, with moderate variation, indicating that the content of these two heavy metals is less affected by the external factors; the coefficient of variation (CV) of As, Pb, Cr, Zn, Ni and Cu contents is 2.81, 7.46, 18.00, 13.51, 5.44 and 5.64, respectively, with strong variation (CV  > 0.50)43, indicating that the content of these eight heavy metals may be affected by some local pollution sources. The skewness coefficient (SK) ranges from − 3 to 3, and the larger its absolute value, the greater its skewness. When SK  > 0, it is positive skewness; when SK  More

  • in

    Phylogeography and colonization pattern of subendemic round-leaved oxeye daisy from the Dinarides to the Carpathians

    Pax, F. Grundzüge der Pflanzenverbreitung in den Karpathen. 1–342 (W. Engelmann, 1898). https://doi.org/10.5962/bhl.title.20419.Popov [Попов], M. G. [М. Г.]. Ocherk rastitel’nosti i flory Karpat [Очерк растительности и флоры Карпат]. vol. 5 (XIII) (Izdatel’stvo Moskovskogo Obshchestva Ispytateley Prirody [Издательство Московского Общества Испытателей Природы], 1949).Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559 (2016).Article 

    Google Scholar 
    Breman, E. et al. Conserving the endemic flora of the Carpathian Region: An international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Syst. Evol. 306, 59 (2020).Article 

    Google Scholar 
    Bálint, M. et al. The Carpathians as a Major Diversity Hotspot in Europe. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds. Zachos, F. E. & Habel, J. C.) 189–205 (Springer, 2011). https://doi.org/10.1007/978-3-642-20992-5_11.Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hurdu, B. et al. Patterns of plant endemism in the Romanian Carpathians (South-Eastern Carpathians). Contrib. Bot. 47, 25–38 (2012).
    Google Scholar 
    Pawłowski, B. Remarques sur l’endemisme dans la flore des Alpes et des Carpates. Plant Ecol. 21, 181–243 (1970).Article 

    Google Scholar 
    Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 373–389 (2011).Hendrych, R. Primula vulgaris in der Slowakei und in den umliegenden Gebieten. Preslia Praha 68, 135–156 (1996).
    Google Scholar 
    Hendrych, R. & Hendrychová, H. Preliminary report on the Dacian migroelement in the flora of Slovakia. Preslia Praha 51, 313–332 (1979).
    Google Scholar 
    Sramkó, G. „Dunántúli” közép-dunai flóraválasztós fajok a Matricum flórájában. KITAIBELIA 9, 31–56 (2004).
    Google Scholar 
    Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene 28, 583–594 (2018).Kliment, J., Turis, P. & Janišová, M. Taxa of vascular plants endemic to the Carpathian Mts. Preslia -Praha- 88, 19–76 (2016).
    Google Scholar 
    Konowalik, K. Reconstructing reticulate relationships in the polyploid complex of Leucanthemum Mill. (Compositae, Anthemideae). (Fakultät für Biologie und Vorklinische Medizin, Universität Regensburg, 2014).Konowalik, K., Wagner, F., Tomasello, S., Vogt, R. & Oberprieler, C. Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Mol. Phylogenet. Evol. 92, 308–328 (2015).Wagner, F. et al. ‘At the crossroads towards polyploidy’: Genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). New Phytol. 223, 2039–2053 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, F., Härtl, S., Vogt, R. & Oberprieler, C. “Fix Me Another Marguerite!”: Species delimitation in a group of intensively hybridizing lineages of ox-eye daisies (Leucanthemum Mill., Compositae-Anthemideae). Mol. Ecol. 26, 4260–4283 (2017).Piękoś-Mirkowa, H., Mirek, Z. & Miechowka, A. Endemic vascular plants in the Polish Tatra Mts. – distribution and ecology. Pol. Bot. Stud. 12, (1996).Zelený, V. Taxonomisch-chorologische Studie über die Art Leucanthemum rotundifolium (W. K.) DC. Folia Geobot. 5, 369–400 (1970).Piękoś, H. Nowy mieszaniec między Leucanthemum rotundifolium (W. et K.) DC. a L. vulgare Lam. var. alpicolum Gremli – Hybrida nova inter Leucanthemum rotundifolium (W. et K.) DC. et L. vulgare Lam. var. alpicolum Gremli. Fragm. Florist. Geobot. 16, 319–326 (1970).Rogalski, M., do Nascimento Vieira, L., Fraga, H. P. & Guerra, M. P. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front. Plant Sci. 6, (2015).Greiner, R., Vogt, R. & Oberprieler, C. Evolution of the polyploid north-west Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) based on plastid DNA sequence variation and AFLP fingerprinting. Ann. Bot. 111, 1109–1123 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberprieler, C., Konowalik, K., Fackelmann, A. & Vogt, R. Polyploid speciation across a suture zone: phylogeography and species delimitation in S French Leucanthemum Mill. representatives (Compositae–Anthemideae). Plant Syst. Evol. 304, 1141–1155 (2018).Oberprieler, C., Greiner, R., Konowalik, K. & Vogt, R. The reticulate evolutionary history of the polyploid NW Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) as inferred from nrDNA ETS sequence diversity and eco-climatological niche-modelling. Mol. Phylogenet. Evol. 70, 478–491 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alexander, P. J., Rajanikanth, G., Bacon, C. D. & Bailey, C. D. Recovery of plant DNA using a reciprocating saw and silica-based columns. Mol. Ecol. Notes 7, 5–9 (2007).CAS 
    Article 

    Google Scholar 
    Sang, T., Crawford, D. & Stuessy, T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheunert, A., Dorfner, M., Lingl, T. & Oberprieler, C. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS ONE 15, e0226234 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Timme, R. E., Kuehl, J. V., Boore, J. L. & Jansen, R. K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302–312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41, 95–98 (1999).CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinformatics 4, 65–69 (2005).PubMed 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012).CAS 
    Article 

    Google Scholar 
    Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 

    Google Scholar 
    Jukes, T. H. & Cantor, C. R. Evolution of Protein Molecules. in Mammalian Protein Metabolism 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K., Tao, Q. & Kumar, S. Theoretical foundation of the reltime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35, 1770–1782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. 109, 19333–19338 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tao, Q., Tamura, K., Mello, B. & Kumar, S. Reliable confidence intervals for reltime estimates of evolutionary divergence times. Mol. Biol. Evol. 37, 280–290 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).Mello, B., Tao, Q., Barba-Montoya, J. & Kumar, S. Molecular dating for phylogenies containing a mix of populations and species by using Bayesian and RelTime approaches. Mol. Ecol. Resour. 21, 122–136 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, wei-M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating Gene Genealogies. in Proceedings of the 16th International Parallel and Distributed Processing Symposium 311 (IEEE Computer Society, 2002).Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Y., Blair, C. & He, X. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ali, S. S., Yu, Y., Pfosser, M. & Wetschnig, W. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Ann. Bot. 109, 95–107 (2012).PubMed 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).Konowalik, K. & Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 11, 1482 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamner, B., Frasco, M. & LeDell, E. Metrics: Evaluation metrics for machine learning (2018).Ripley, B. & Venables, W. nnet: Feed-forward neural networks and multinomial log-linear models. (2020).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2020).Therneau, T., Atkinson, B., port, B. R. (producer of the initial R. & maintainer 1999–2017). rpart: Recursive Partitioning and Regression Trees. (2019).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. (2017).Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).Article 

    Google Scholar 
    Jasiewicz, A. Rośliny naczyniowe Bieszczadów Zachodnich [The Vascular Plants of the Western Bieszczady Mts. (East Carpathians)]. Monogr. Bot. 20, 1–340 (1965).Kornaś, J. Charakterystyka geobotaniczna Gorców [Caractéristique géobotanique des Gorces (Karpathes Occidentales Polonaises)]. Monogr. Bot. 3, 3–230 (1955).Article 

    Google Scholar 
    de Oliveira, G., Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C. & Diniz-Filho, J. A. F. Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37, 637–647 (2014).Article 

    Google Scholar 
    Sobral-Souza, T., Lima-Ribeiro, M. S. & Solferini, V. N. Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol. Ecol. 29, 643–655 (2015).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. 7266827510 bytes (2018) 10.5061/DRYAD.KD1D4.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Wing, M. K. C. from J. et al. caret: Classification and regression training. (2019).Smith, A. B. & Santos, M. J. Testing the ability of species distribution models to infer variable importance. Ecography 43, 1801–1813 (2020).Article 

    Google Scholar 
    Evans, J. S., Murphy, M. A. & Ram, K. spatialEco: Spatial analysis and modelling utilities. (2021).Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).Article 

    Google Scholar 
    Zhu, G., Fan, J. & Peterson, A. T. Cautions in weighting individual ecological niche models in ensemble forecasting. Ecol. Model. 448, 109502 (2021).Article 

    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. (2021).R Core Team. R: A language and environment for statistical computing. (2019).QGIS Development Team. QGIS geographic information system. (2019).Frajman, B. & Oxelman, B. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 43, 140–155 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ronikier, M., Cieślak, E. & Korbecka, G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol. Ecol. 17, 1763–1775 (2008).Ehrich, D. et al. Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol. Ecol. 16, 2542–2559 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Šrámková, G. et al. Phylogeography and taxonomic reassessment of Arabidopsis halleri—a montane species from Central Europe. Plant Syst. Evol. 305, 885–898 (2019).Article 

    Google Scholar 
    Birks & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).Jarčuška, B., Kaňuch, P., Naďo, L. & Krištín, A. Quantitative biogeography of Orthoptera does not support classical qualitative regionalization of the Carpathian Mountains. Biol. J. Linn. Soc. 128, 887–900 (2019).Article 

    Google Scholar 
    Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 71–76 (2014).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1 (2005).
    Google Scholar  More