Temporal variation in the prokaryotic community of a nearshore marine environment
Bunse, C. & Pinhassi, J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 25, 494–505. https://doi.org/10.1016/j.tim.2016.12.013 (2017).CAS
Article
PubMed
Google Scholar
Mestre, M., Höfer, J., Sala, M. M. & Gasol, J. M. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front. Microbiol. 11, 1590. https://doi.org/10.3389/fmicb.2020.01590 (2020).Article
PubMed
PubMed Central
Google Scholar
Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611. https://doi.org/10.1126/science.1218344 (2012).ADS
CAS
Article
PubMed
Google Scholar
Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139. https://doi.org/10.1111/j.1462-2920.2009.02017.x (2009).CAS
Article
PubMed
Google Scholar
Sintes, E., Witte, H., Stodderegger, K., Steiner, P. & Herndl, G. J. Temporal dynamics in the free-living bacterial community composition in the coastal North Sea. FEMS Microbiol. Ecol. 83, 413–424. https://doi.org/10.1111/1574-6941.12003 (2013).CAS
Article
PubMed
Google Scholar
Lindh, M. V. et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ. Microbiol. 17, 2459–2476. https://doi.org/10.1111/1462-2920.12720 (2015).Article
PubMed
Google Scholar
El-Swais, H., Dunn, K. A., Bielawski, J. P., Li, W. K. W. & Walsh, D. A. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ. Microbiol. 17, 3642–3661. https://doi.org/10.1111/1462-2920.12629 (2015).CAS
Article
PubMed
Google Scholar
Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422. https://doi.org/10.1038/ismej.2017.4 (2017).Article
PubMed
PubMed Central
Google Scholar
Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife 5, e11888. https://doi.org/10.7554/eLife.11888 (2016).Article
PubMed
PubMed Central
Google Scholar
Tinta, T. et al. Bacterial community shift is induced by dynamic environmental parameters in a changing coastal ecosystem (northern Adriatic, northeastern Mediterranean Sea) – a 2-year time-series study. Environ. Microbiol. 17, 3581–3596. https://doi.org/10.1111/1462-2920.12519 (2015).CAS
Article
PubMed
Google Scholar
Salter, I. et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 9, 347–360. https://doi.org/10.1038/ismej.2014.129 (2015).CAS
Article
PubMed
Google Scholar
Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308. https://doi.org/10.1038/ismej.2011.107 (2012).CAS
Article
PubMed
Google Scholar
Alonso-Sáez, L. et al. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: Assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol. Ecol. 60, 98–112. https://doi.org/10.1111/j.1574-6941.2006.00276.x (2007).CAS
Article
PubMed
Google Scholar
Alonso-Sáez, L., Díaz-Pérez, L. & Morán, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780. https://doi.org/10.1111/1462-2920.12801 (2015).Article
PubMed
Google Scholar
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 1–7. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).CAS
Article
Google Scholar
Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146. https://doi.org/10.1038/nrmicro3417 (2015).CAS
Article
PubMed
Google Scholar
Najdek, M. et al. Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow. Biogeosciences 17, 3299–3315. https://doi.org/10.5194/bg-17-3299-2020 (2020).ADS
CAS
Article
Google Scholar
Najdek, M. et al. Effects of the invasion of Caulerpa cylindracea in a Cymodocea nodosa meadow in the Northern Adriatic Sea. Front. Mar. Sci. 7, 602055. https://doi.org/10.3389/fmars.2020.602055 (2020).Article
Google Scholar
Ladau, J. et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 7, 1669–1677. https://doi.org/10.1038/ismej.2013.37 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
García, F. C., Alonso-Sáez, L., Morén, X. A. G. & López-Urrutia, Á. Seasonality in molecular and cytometric diversity of marine bacterioplankton: The re-shuffling of bacterial taxa by vertical mixing. Environ. Microbiol. 17, 4133–4142. https://doi.org/10.1111/1462-2920.12984 (2015).Article
PubMed
Google Scholar
Reinthaler, T., Winter, C. & Herndl, G. J. Relationship between bacterioplankton richness, respiration, and production in the southern North Sea. Appl. Environ. Microbiol. 71, 2260–2266. https://doi.org/10.1128/AEM.71.5.2260-2266.2005 (2005).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Mozetič, P. et al. Recent trends towards oligotrophication of the Northern Adriatic: Evidence from chlorophyll a time series. Estuaries Coast 33, 362–375. https://doi.org/10.1007/s12237-009-9191-7 (2010).CAS
Article
Google Scholar
Manna, V., De Vittor, C., Giani, M., Del Negro, P. & Celussi, M. Long-term patterns and drivers of microbial organic matter utilization in the northernmost basin of the Mediterranean Sea. Mar. Environ. Res. 164, 105245. https://doi.org/10.1016/j.marenvres.2020.105245 (2021).CAS
Article
PubMed
Google Scholar
Ivančić, I. et al. Long-term changes in heterotrophic prokaryotes abundance and growth characteristics in the northern Adriatic Sea. J. Mar. Syst. 82, 206–216. https://doi.org/10.1016/j.jmarsys.2010.05.008 (2010).Article
Google Scholar
Bowman, J. P. The family Cryomorphaceae. In The Prokaryotes: Other Major Lineages of Bacteria and the Archaea (eds Rosenberg, E. et al.) (Springer, New York, 2014). https://doi.org/10.1007/978-3-642-38954-2_135.Chapter
Google Scholar
Ngugi, D. K. & Stingl, U. High-quality draft single-cell genome sequence of the NS5 marine group from the coastal Red Sea. Genome Announc. 6, e00565-18. https://doi.org/10.1128/genomeA.00565-18 (2018).Article
PubMed
PubMed Central
Google Scholar
Korlević, M., Pop Ristova, P., Garić, R., Amann, R. & Orlić, S. Bacterial diversity in the South Adriatic Sea during a strong, deep winter convection year. Appl. Environ. Microbiol. 81, 1715–1726; https://doi.org/10.1128/AEM.03410-14 (2015).Korlević, M. et al. Bacterial diversity across a highly stratified ecosystem: A salt-wedge Mediterranean estuary. Syst. Appl. Microbiol. 39, 398–408. https://doi.org/10.1016/j.syapm.2016.06.006 (2016).Article
PubMed
Google Scholar
Hoarfrost, A. et al. Global ecotypes in the ubiquitous marine clade SAR86. ISME J. 14, 178–188. https://doi.org/10.1038/s41396-019-0516-7 (2020).CAS
Article
PubMed
Google Scholar
Šilović, T., Balagué, V., Orlić, S. & Pedrós-Alió, C. Picoplankton seasonal variation and community structure in the northeast Adriatic coastal zone. FEMS Microbiol. Ecol. 82, 678–691. https://doi.org/10.1111/j.1574-6941.2012.01438.x (2012).CAS
Article
PubMed
Google Scholar
Palenik, B. et al. The genome of a motile marine Synechococcus. Nature 424, 1037–1042. https://doi.org/10.1038/nature01943 (2003).ADS
CAS
Article
PubMed
Google Scholar
Spring, S. & Riedel, T. Mixotrophic growth of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the type of carbon source and oxygen availability. BMC Microbiol. 13, 117. https://doi.org/10.1186/1471-2180-13-117 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand. Genomic Sci. 9, 632–645. https://doi.org/10.4056/sigs.4998989 (2014).Article
PubMed
PubMed Central
Google Scholar
Carlson, C. A. et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 3, 283–295. https://doi.org/10.1038/ismej.2008.117 (2009).CAS
Article
PubMed
Google Scholar
Vergin, K. L. et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series study site by phylogenetic placement of pyrosequences. ISME J. 7, 1322–1332. https://doi.org/10.1038/ismej.2013.32 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
Kim, J.-G. et al. Distinct temporal dynamics of planktonic archaeal and bacterial assemblages in the bays of the Yellow Sea. PLoS One 14, e0221408. https://doi.org/10.1371/journal.pone.0221408 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Bayer, B. et al. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int. J. Syst. Evol. Microbiol. 69, 1892–1902. https://doi.org/10.1099/ijsem.0.003360 (2019).CAS
Article
PubMed
Google Scholar
Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis vol. 167 (Fisheries Research Board of Canada, 1972).Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15. https://doi.org/10.1093/icesjms/30.1.3 (1965).CAS
Article
Google Scholar
Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948. https://doi.org/10.4319/lo.1980.25.5.0943 (1980).ADS
Article
Google Scholar
Massana, R., Murray, A. E., Preston, C. M. & DeLong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56. https://doi.org/10.1128/aem.63.1.50-56.1997 (1997).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Korlević, M., Markovski, M., Zhao, Z., Herndl, G. J. & Najdek, M. Selective DNA and protein isolation from marine macrophyte surfaces. Front. Microbiol. 12, 665999. https://doi.org/10.3389/fmicb.2021.665999 (2021).Article
PubMed
PubMed Central
Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. https://doi.org/10.3354/ame01753 (2015).Article
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS
Article
PubMed
Google Scholar
Korlević, M., Markovski, M., Zhao, Z., Herndl, G. J. & Najdek, M. Seasonal dynamics of epiphytic microbial communities on marine macrophyte surfaces. Front. Microbiol. 12, 671342. https://doi.org/10.3389/fmicb.2021.671342 (2021).Article
PubMed
PubMed Central
Google Scholar
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09 (2009).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120. https://doi.org/10.1128/AEM.01043-13 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).CAS
Article
PubMed
Google Scholar
Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648. https://doi.org/10.1093/nar/gkt1209 (2014).CAS
Article
PubMed
Google Scholar
Schloss, P. D., Jenior, M. L., Koumpouras, C. C., Westcott, S. L. & Highlander, S. K. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4, e1869. https://doi.org/10.7717/peerj.1869 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).Oksanen, J. et al. vegan: Community ecology package (2020).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686; https://doi.org/10.21105/joss.01686 (2019)McKinnon Edwards, S. lemon: Freshing up your ’ggplot2’ plots (2020).Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ’ggplot2’ (2020).Neuwirth, E. RColorBrewer: ColorBrewer palettes (2014).Zhu, H. kableExtra: Construct complex table with ’kable’ and pipe syntax (2021).Allaire, J. et al. rmarkdown: Dynamic documents for R (2021).Xie, Y., Allaire, J. J. & Grolemund, G. R Markdown: The Definitive Guide (Chapman and Hall/CRC, New York, 2018).Book
Google Scholar
Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook (Chapman and Hall/CRC, New York, 2020).Book
Google Scholar
Xie, Y. knitr: A general-purpose package for dynamic report generation in R (2021).Xie, Y. & knitr, A comprehensive tool for reproducible research in R. In Implementing Reproducible Computational Research (eds Stodden, V. et al.) (Chapman and Hall/CRC, New York, 2014).Xie, Y. Dynamic Documents with R and knitr (Chapman and Hall/CRC, New York, 2015).
Google Scholar
Xie, Y. tinytex: Helper functions to install and maintain TeX Live, and compile LaTeX documents (2021).Xie, Y. TinyTeX: A lightweight, cross-platform, and easy-to-maintain LaTeX distribution based on TeX Live. TUGboat 40, 30–32 (2019).CAS
Google Scholar
Jost, L. Entropy and diversity. Oikos 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x (2006).Article
Google Scholar
Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, New York, 2018). https://doi.org/10.1007/978-3-319-71404-2.Book
MATH
Google Scholar
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).MATH
Google Scholar More