More stories

  • in

    Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia

    Fauna, culture and chronology datasetsA geo-referenced dataset of chronometric dates covering the late MIS 3 (55–30 kyr cal bp) was compiled from the literature (dataset 1). The dataset included 363 radiocarbon, thermoluminescence, optically stimulated luminescence and uranium series dates obtained from 62 archaeological sites and seven palaeontological sites. These chronological determinations were obtained from ten palaeontological levels and 138 archaeological levels. The archaeological levels were culturally attributed to the Mousterian (n = 75), Châtelperronian (n = 6) and Aurignacian (n = 57) technocomplexes. A number of issues can potentially hamper the chronological assessment of Palaeolithic technocomplexes from radiocarbon dates, such as pretreatment protocols that do not remove sufficient contaminants or the quality of the bone collagen extracted. Moreover, discrepancies in cultural attributions or stratigraphic inconsistencies are commonly detected in Palaeolithic archaeology. Information regarding the quality of date determinations and cultural attribution or stratigraphic issues is provided in the Supplementary Information.Our dataset also included the presence of herbivore species recovered from each archaeo-palaeontological site (hereafter referred to as local faunal assemblages (LFAs)), their body masses and their chronology. The mean body mass of both sexes, for each species, was obtained from the PHYLACINE database53 and used in the macroecological modelling approach described below (see ‘Carrying capacity of herbivores’). For visual representation purposes, the herbivore species were grouped into four weight categories: small (500 kg). The chronology of the occurrence of each herbivore species was assumed to be the same as the dated archaeo-palaeontological layer where the species remains were recovered. Thus, to estimate the chronological range of each species in each region, all radiocarbon determinations were calibrated with the IntCal20 calibration curve54 and OxCAL4.2 software55. The BAMs were run to compute the upper and lower chronological boundaries at a CI of 95.4% of each LFA (see ‘Chronological assessment’ for more details). One of the purposes of the current study was to estimate the potential fluctuations in herbivore biomass during the stadial and interstadial periods of the late MIS 3. Accordingly, the time spans of the LFAs were classified into the discrete GS and GI phases provided by Rasmussen et al.51.Geographic settingsThe Iberian Peninsula locates at the southwestern edge of Europe (Fig. 1). It constitutes a large geographic area that exhibits a remarkable diversity of ecosystems, climates and landscapes. Both now and in the past, altitudinal, latitudinal and oceanic gradients affected the conformation of two biogeographical macroregions with different flora and fauna species pools: the Eurosiberian and Mediterranean regions13,46. In the north, along the Pyrenees and Cantabrian strip, the Eurosiberian region is characterized by oceanic influence and mild temperatures in the present day, whereas the Mediterranean region features drier summers and milder winters (Fig. 1). Between the Eurosiberian and Mediterranean regions, there is a transitional area termed Submediterranean or Supramediterranean. Lastly, the Mediterranean region is divided into two distinctive bioclimatic belts: (1) the Thermomediterranean region, located at lower latitudes, with high evapotranspiration rates and affected by its proximity to the coast; and (2) the Mesomediterranean region, with lower temperatures and wetter conditions (Fig. 1).Previous studies have shown that zoocoenosis and phytocenosis differed between these macroregions in the Pleistocene13,46. However, flora and fauna distributions changed during the stadial–interstadial cycles in the Iberian Peninsula, which suggests potential alterations in the boundaries of these biogeographical regions. The modelling approach used in this study to estimate the biomass of primary consumers is dependent on the reconstructed NPP and the herbivore guild structure in each biogeographical region. To test the suitability of the present-day biogeographical demarcations of the Iberian Peninsula during MIS 3, we assessed whether the temporal trends of NPP and the composition of each herbivore palaeocommunity differed between these biogeographical regions during the MUPT.Chouakria and Nagabhusan56 proposed a dissimilarity index to compare time series data by taking into consideration the proximity of values and the temporal correlation of the time series:$${rm{CORT}}(S_1,S_2) = frac{{mathop {sum}nolimits_{i = 1}^{p – 1} {left( {u_{left( {i + 1} right)} – u_i} right)} (v_{(i + 1)} – v_i)}}{{sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(u_{(i + 1)} – u_i)^2} } sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(v_{(i + 1)} – v)^2} } }}$$
    (1)
    where S1 and S2 are the time series of data, u and v represent the values of S1 and S2, respectively, and p is the length of values of each time series. CORT(S1, S2) belongs to the interval (−1,1). The value CORT(S1, S2) = 1 indicates that in any observed period (ti, ti+1), the values of the sequence S1 and those of S2 increase or decrease at the same rate, whereas CORT = −1 indicates that when S1 increases, S2 decreases or vice versa. Lastly, CORT(S1, S2) = 0 indicates that the observed trends in S1 are independent of those observed in S2. To complement this approach by considering not only the temporal correlation between each pair of time series but also the proximity between the raw values, these authors proposed an adaptive tuning function defined as follows:$$d{rm{CORT}}left( {S_1,S_2} right) = fleft({{rm{CORT}}left( {S_1,S_2} right)} right)times dleft( {S_1,S_2} right)$$
    (2)
    where$$fleft( x right) = frac{2}{{1 + exp left( {k,x} right)}},k ge 0$$
    (3)
    In this study, k was 2, meaning that the behaviour contribution was 76% and the contribution of the proximity between values was 24%57. Hence, f(x) modulates a conventional pairwise raw data distance (d(S1,S2)) according to the observed temporal correlation56. Consequently, dCORT adjusts the degree of similarity between each pair of observations according to the temporal correlation and the proximity between values. This function was used to compare the reconstructed NPP between biogeographical regions during MIS 3 in the Iberian Peninsula. However, two different biogeographical regions could have experienced similar evolutionary trends in their NPP, even though their biota composition was different. Therefore, this analysis was complemented with a JSI to assess whether the reconstructed herbivore species composition in each palaeocommunity differed among biogeographical regions during the late MIS 3. The JSI was based on presence–absence data and was calculated as follows:$${rm{JSI}} = frac{c}{{(a + b + c)}}$$
    (4)
    where c is the number of shared species in both regions and a and b are the numbers of species that were only present in one of the biogeographical regions. Therefore, the higher the value the more similar the palaeocommunities of both regions were.Chronological assessmentPivotal to any hypothesis of Neanderthal replacement patterns by AMHs is the chronology of that population turnover. To this end, we used three different approaches to provide greater confidence in the results: BAMs, the OLE model and SPD of archaeological assemblages. As detailed below, each of these approaches provides complementary information about the MUPT.First, we built a set of BAMs for the Mousterian, Châtelperronian and Aurignacian technocomplexes in each region during the MIS 3. As stated above, we compiled the available radiocarbon dates for Iberia between 55 and 30 kyr cal bp. However, not all dates or levels were included in the Bayesian chronology models. Radiocarbon determinations obtained from shell remains were incorporated in the dataset (dataset 1); however, the local variation of the reservoir age was unknown from 55 to 30 kyr bp. Because of uncertainties related to marine reservoir offsets, all BAMs that incorporated dates from marine shells were run twice: including and excluding these dates. All of the archaeological levels with cultural attribution issues or stratigraphic inconsistencies were excluded. The Supplementary Note provides a detailed description of the sites, levels and dates excluded and their justification. All BAMs were built for each technocomplex using the OxCAL4.2 software55 and IntCal20 calibration curve54.Bayesian chronology models were built for each archaeological and palaeontological level. Then, the dates associated with each technocomplex were grouped within a single phase to determine each culture’s regional appearance or disappearance. Our interest was not focused on the chronological duration of the Mousterian, Châtelperronian and Aurignacian cultures, but on the probability distribution function of the temporal boundaries of these cultures in each region. Thus, this chronological assessment aims to provide an updated chronological frame for Neanderthal replacement by AMHs in Iberia. For this reason, we did not differentiate between proto- and early Aurignacian cultures, since both are attributed to AMHs.In each BAM, we inserted into the same sequence the radiocarbon dates associated with a given technocomplex within a start and end boundary to bracket each culture, which allowed us to determine the probability distribution function for the beginning and end moment of each cultural phase6. The resolution of all models was set at 20 years. We used a t-type outlier model with an initial 5% probability for each determination, but when more than one radiocarbon date was obtained from the same bone remain, we used an s-type outlier model and the combine function. The thermoluminescence dating likelihoods were included in the models, together with their associated 1σ uncertainty ranges. When dates with low agreement ( More

  • in

    Global decline of pelagic fauna in a warmer ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 

    Google Scholar 
    Choy, C., Wabnitz, C., Weijerman, M., Woodworth-Jefcoats, P. & Polovina, J. Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol. Prog. Ser. 549, 9–25 (2016).
    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).CAS 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24, R1074–R1076 (2014).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 

    Google Scholar 
    Angel, M. V. & de C. Baker, A. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 2, 1–30 (1982).
    Google Scholar 
    Cook, A. B., Sutton, T. T., Galbraith, J. K. & Vecchione, M. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep Sea Res. 2 98, 279–291 (2013).
    Google Scholar 
    Hidaka, K., Kawaguchi, K., Murakami, M. & Takahashi, M. Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance. Deep Sea Res. 1 48, 1923–1939 (2001).Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342 (2015).
    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1639–1664 (2021).CAS 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 

    Google Scholar 
    Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
    Google Scholar 
    Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).
    Google Scholar 
    Kwiatkowski, L., Aumont, O. & Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25, 218–229 (2019).
    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
    Google Scholar 
    Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).
    Google Scholar 
    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).
    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. PICES Scientific Report 38 (North Pacific Marine Science Organization, 2010).Kaartvedt, S., Staby, A. & Aksnes, D. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 456, 1–6 (2012).
    Google Scholar 
    Gjøsaeter, J. & Kawaguchi, K. A Review of the World Resources of Mesopelagic Fish Fisheries Technical Paper 193 (FAO, 1980).Catul, V., Gauns, M. & Karuppasamy, P. K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21, 339–354 (2011).
    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).
    Google Scholar 
    Annasawmy, P. et al. Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the south west Indian Ocean: insight from acoustics and stable isotopes. Deep Sea Res. 1 138, 85–97 (2018).CAS 

    Google Scholar 
    Haris, K. et al. Sounding out life in the deep using acoustic data from ships of opportunity. Sci. Data 8, 23 (2021).CAS 

    Google Scholar 
    Irigoien, X. et al. The Simrad EK60 echosounder dataset from the Malaspina circumnavigation. Sci. Data 8, 259 (2021).
    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    Google Scholar 
    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).CAS 

    Google Scholar 
    Proud, R., Cox, M., Le Guen, C. & Brierley, A. Fine-scale depth structure of pelagic communities throughout the global ocean based on acoustic sound scattering layers. Mar. Ecol. Prog. Ser. 598, 35–48 (2018).
    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119 (2017).CAS 

    Google Scholar 
    Ramsay, J. O. & Silverman, B. W. Functional Data Analysis (Springer, 2005).Moriarty, R. & O’Brien, T. D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).
    Google Scholar 
    Aksnes, D. L. et al. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3, e1602468 (2017).
    Google Scholar 
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5, e10330 (2010).
    Google Scholar 
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).CAS 

    Google Scholar 
    Godø, O. R., Patel, R. & Pedersen, G. Diel migration and swimbladder resonance of small fish: some implications for analyses of multifrequency echo data. ICES J. Mar. Sci. 66, 1143–1148 (2009).
    Google Scholar 
    Agersted, M. D. et al. Mass estimates of individual gas-bearing mesopelagic fish from in situ wideband acoustic measurements ground-truthed by biological net sampling. ICES J. Mar. Sci. 78, 3658–3673 (2021).
    Google Scholar 
    Backus, R. & Craddock, J. in Oceanic Sound Scattering Prediction (eds Anderson, N. R. & Zahuranec, B. J.) 529–547 (Springer, 1977).Longhurst, A. Ecological Geography of the Sea (Elsevier, 2010).Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: A biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).
    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge Univ. Press, 2010).Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
    Google Scholar 
    Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J. & Brierley, A. S. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES J. Mar. Sci. 76, 718–733 (2019).
    Google Scholar 
    Chapman, R. P., Bluy, O. Z., Adlington, R. H. & Robison, A. E. Deep scattering layer spectra in the Atlantic and Pacific oceans and adjacent seas. J. Acoust. Soc. Am. 56, 1722–1734 (1974).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proc. R. Soc. B 286, 20190353 (2019).
    Google Scholar 
    Escobar-Flores, P. C., O’Driscoll, R. L., Montgomery, J. C., Ladroit, Y. & Jendersie, S. Estimates of density of mesopelagic fish in the Southern Ocean derived from bulk acoustic data collected by ships of opportunity. Polar Biol. 43, 43–61 (2020).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties. Proc. R. Soc. B 289, 20211781 (2022).
    Google Scholar 
    Reygondeau, G. et al. Climate change-induced emergence of novel biogeochemical provinces. Front. Mar. Sci. 7, 657 (2020).
    Google Scholar 
    Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).
    Google Scholar 
    Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J. & DeVries, T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7, eabd7554 (2021).
    Google Scholar 
    Grimaldo, E. et al. Investigating the potential for a commercial fishery in the northeast Atlantic utilizing mesopelagic species. ICES J. Mar. Sci. 77, 2541–2556 (2020).
    Google Scholar 
    Olsen, R. E. et al. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Sea Res. 2 180, 104722 (2020).CAS 

    Google Scholar 
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Google Scholar 
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Google Scholar 
    Perrot, Y. et al. Matecho: an open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).
    Google Scholar 
    Stanton, T. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J. Mar. Sci. 57, 793–807 (2000).
    Google Scholar 
    GEBCO: A Continuous Terrain Model of the Global Oceans and Land (British Oceanographic Data Centre, 2019).EchoPY v.1.1: Fisheries Acoustic Data Processing in Python (Python, 2020); https://pypi.org/project/echopyde Boor, C. A Practical Guide to Splines (Springer, 1978).Clustering (SciKit Learn, 2021); https://scikit-learn.org/stable/modules/clusteringEyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 
    Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological complexity: unsupervised learning determines global marine eco-provinces. Sci. Adv. 6, eaay4740 (2020).
    Google Scholar 
    Sonnewald, M. & Lguensat, R. Revealing the impact of global heating on North Atlantic circulation using transparent machine learning. J. Adv. Model. Earth Syst. 13, e2021MS002496 (2021).
    Google Scholar 
    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    Google Scholar 
    Locarnini, R. et al. World Ocean Atlas 2018, Volume 1: Temperature NOAA Atlas NESDIS 81 (NOAA, 2018).García, H. et al. World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation NOAA Atlas NESDIS 83 (NOAA, 2018).Sathyendranath, S. et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis, 19 May 2021; http://www.esa-oceancolour-cci.org More

  • in

    Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic

    Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995).
    Google Scholar 
    Karl, D. M. et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep Res. Part II Top. Stud. Oceanogr. 43, 539–568 (1996).CAS 

    Google Scholar 
    Yang, B., Emerson, S. R. & Quay, P. D. The subtropical ocean’s biological carbon pump determined from O2 and DIC/DI13C tracers. Geophys. Res. Lett. 46, 5361–5368 (2019).
    Google Scholar 
    Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, 1–22 (2022).
    Google Scholar 
    Chávez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, 2–6 (2008).
    Google Scholar 
    Irwin, A. J. & Oliver, M. J. Are ocean deserts getting larger? Geophys. Res. Lett. 36, 1–5 (2009).
    Google Scholar 
    Signorini, S. R., Franz, B. A. & McClain, C. R. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front. Mar. Sci. 2, 1–11 (2015).
    Google Scholar 
    Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).CAS 

    Google Scholar 
    Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).CAS 

    Google Scholar 
    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).
    Google Scholar 
    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).CAS 

    Google Scholar 
    Behrenfeld, M. Uncertain future for ocean algae. Nat. Clim. Chang. 1, 33–34 (2011).CAS 

    Google Scholar 
    Flombaum, P. & Martiny, A. C. Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnol. Oceanogr. 66, 4171–4181 (2021).
    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 10, 1063–1085 (1972).
    Google Scholar 
    Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton. Nature. Rev. Microbiol. 5, 813–819 (2007).CAS 

    Google Scholar 
    van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. B Biol. Sci. 375, 1–8 (2020).
    Google Scholar 
    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
    Google Scholar 
    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Chang. Biol. 21, 1025–1040 (2015).PubMed 

    Google Scholar 
    Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Skau, L. F., Andersen, T., Thrane, J.-E. & Hessen, D. O. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ 5, e3743 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fernández‐González, C. et al. Effects of temperature and nutrient supply on resource allocation, photosynthetic strategy and metabolic rates of Synechococcus sp. J. Phycol. 56, 818–829 (2020).PubMed 

    Google Scholar 
    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2020).
    Google Scholar 
    Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Chang. Biol. 26, 4800–4811 (2020).PubMed 

    Google Scholar 
    Davey, M. et al. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol. Oceanogr. 53, 1722–1733 (2008).CAS 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 

    Google Scholar 
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).CAS 
    PubMed 

    Google Scholar 
    Ustick, L. J. et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 372, 287–291 (2021).CAS 
    PubMed 

    Google Scholar 
    Zubkov, M. V., Sleigh, M. A., Tarran, G. A., Burkill, P. H. & Leakey, R. J. G. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Res. Part I Oceanogr. Res. Pap. 45, 1339–1355 (1998).
    Google Scholar 
    Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B. & Zubkov, M. V. High variability of primary production in oligotrophic waters of the Atlantic Ocean: Uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257, 1–11 (2003).
    Google Scholar 
    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).
    Google Scholar 
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).CAS 

    Google Scholar 
    Visintini, N., Martiny, A. C. & Flombaum, P. Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnol. Oceanogr. Lett. 6, 207–215 (2021).
    Google Scholar 
    Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
    Google Scholar 
    Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
    Google Scholar 
    Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).PubMed 

    Google Scholar 
    Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).CAS 

    Google Scholar 
    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).CAS 
    PubMed 

    Google Scholar 
    Berthelot, H., Duhamel, S., L’Helguen, S., Maguer, J. F. & Cassar, N. Inorganic and organic carbon and nitrogen uptake strategies of picoplankton groups in the northwestern Atlantic Ocean. Limnol. Oceanogr. 66, 3682–3696 (2021).CAS 

    Google Scholar 
    Marañón, E. et al. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55, 2339–2352 (2010).
    Google Scholar 
    Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
    Google Scholar 
    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).PubMed 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    PubMed 

    Google Scholar 
    Babin, S. M., Carton, J. A., Dickey, T. D. & Wiggert, J. D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans 109, 1–21 (2004).
    Google Scholar 
    Walker, N. D., Leben, R. R. & Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 32, 1–5 (2005).
    Google Scholar 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Chang. Biol. 24, 2239–2261 (2018).PubMed 

    Google Scholar 
    Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).CAS 
    PubMed 

    Google Scholar 
    Marañón, E. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr. 50, 299–310 (2005).
    Google Scholar 
    Halsey, K. H. & Jones, B. M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 7, 265–297 (2015).
    Google Scholar 
    Quevedo, M. & Anadón, R. Protist control of phytoplankton growth in the subtropical north-east Atlantic. Mar. Ecol. Prog. Ser. 221, 29–38 (2001).
    Google Scholar 
    Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
    Google Scholar 
    Landry, M. R. & Hassett, R. P. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283–288 (1982).
    Google Scholar 
    Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
    Google Scholar 
    Cermeño, P. et al. Marine primary productivity is driven by a selection effect. Front. Mar. Sci. 3, 1–10 (2016).Browning, T. J. et al. Nutrient co-limitation in the subtropical Northwest Pacific. Limnol. Oceanogr. Lett. 7, 52–61 (2022).
    Google Scholar 
    Klausmeier, C. A., Litchman, E. & Levin, S. A. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004).
    Google Scholar 
    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
    Google Scholar 
    Geider, R. J. Light and temperature dependence of the carnon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. N. Phytol. 106, 1–34 (1987).CAS 

    Google Scholar 
    Maxwell, D. P., Laudenbach, D. E. & Huner, N. P. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol. 109, 787–795 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, H. J., Sui, Y., Tang, D. L. & Afanasyev, Y. D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 128, 138–145 (2013).
    Google Scholar 
    Zhang, H., He, H., Zhang, W. Z. & Tian, D. Upper ocean response to tropical cyclones: a review. Geosci. Lett. 8, 1–12 (2021).
    Google Scholar 
    Lin, I. et al. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 30, 1–4 (2003).Chai, F. et al. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 18, 849–859 (2021).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    PubMed 

    Google Scholar 
    Somero, G. N. Adaptation of enzymes to temperature: Searching for basic ‘strategies’. Comp. Biochem. Physiol.—B Biochem. Mol. Biol. 139, 321–333 (2004).PubMed 

    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).
    Google Scholar 
    Harvey, B. P., Marshall, K. E., Harley, C. D. G. & Russell, B. D. Predicting responses to marine heatwaves using functional traits. Trends Ecol. Evol. 37, 20–29 (2022).PubMed 

    Google Scholar 
    Staehr, P. A. & Birkeland, M. J. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycologia 45, 648–656 (2006).
    Google Scholar 
    Morán, X. A. G., Calvo-Díaz, A., Arandia-Gorostidi, N. & Huete-Stauffer, T. M. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ. Microbiol. 20, 3798–3810 (2018).PubMed 

    Google Scholar 
    Courboulès, J. et al. Effects of experimental warming on small phytoplankton, bacteria and viruses in autumn in the Mediterranean coastal Thau Lagoon. Aquat. Ecol. 55, 647–666 (2021).
    Google Scholar 
    López-Sandoval, D. C., Duarte, C. M. & Agustí, S. Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. Limnol. Oceanogr. 66, 2923–2935 (2021).
    Google Scholar 
    Landry, M. R., Selph, K. E., Hood, R. R., Davies, C. H. & Beckley, L. E. Low temperature sensitivity of picophytoplankton P:B ratios and growth rates across a natural 10 °C temperature gradient in the oligotrophic Indian Ocean. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10224 (2021)Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).CAS 

    Google Scholar 
    Fernández-González, C. & Marañón, E. Effect of temperature on the unimodal size scaling of phytoplankton growth. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Marañón, E. et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43–56 (2001).
    Google Scholar 
    Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
    Google Scholar 
    Hillebrand, H. et al. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 1–18 https://doi.org/10.1111/1365-2435.13986 (2021).Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Annu. Rev. Mar. Sci. 2, 305–331 (2010).
    Google Scholar 
    Landry, M. R. et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27–42 (2000).CAS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).
    Google Scholar 
    Fofonoff, N. P. & Millard, R. C. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. 44, 1–53 (1983).
    Google Scholar 
    Becker, S. et al. GO-SHIP repeat hydrography nutrient manual: the precise and accurate determination of dissolved inorganic nutrients in seawater, using continuous flow analysis methods. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.581790 (2020).Marañón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
    Google Scholar 
    Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. 8, 1–24 (2021).Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Climate change impacts the vertical structure of marine ecosystem thermal ranges

    Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS 
    Article 

    Google Scholar 
    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 

    Google Scholar 
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article 

    Google Scholar 
    Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article 

    Google Scholar 
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS 
    Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS 
    Article 

    Google Scholar 
    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article 

    Google Scholar 
    Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article 

    Google Scholar 
    Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article 

    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS 
    Article 

    Google Scholar 
    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS 
    Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    CAS 

    Google Scholar 
    Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS 
    Article 

    Google Scholar 
    Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS 
    Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 
    Article 

    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article 
    CAS 

    Google Scholar 
    Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article 

    Google Scholar 
    Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS 
    Article 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article 

    Google Scholar 
    Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS 
    Article 

    Google Scholar 
    Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article 

    Google Scholar 
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article 

    Google Scholar 
    Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article 

    Google Scholar 
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 

    Google Scholar 
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article 
    CAS 

    Google Scholar 
    Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article 

    Google Scholar 
    Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article 

    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS 
    Article 

    Google Scholar 
    Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS 
    Article 

    Google Scholar 
    Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS 
    Article 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    Article 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS 
    Article 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    Article 

    Google Scholar 
    Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article 

    Google Scholar 
    Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article 

    Google Scholar 
    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article 

    Google Scholar 
    Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS 
    Article 

    Google Scholar 
    Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS 
    Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Behaviour dominates impacts

    The impacts of climate change on host–parasite dynamics are particularly complex to predict, as they involve an interplay of both physiological and behavioural factors, from both host and parasite. For example, while warming may increase parasite developmental rates and thus increase transmission, excessive heat may instead exceed thermal limits, leading to higher parasite mortality. Transmission also relates to both the distribution and abundance of host species, which may also shift under changing climates. More

  • in

    A deeper understanding of system interactions can explain contradictory field results on pesticide impact on honey bees

    The bee health modelThe conceptual model of the interactions of various stressors with honey bee health is described by the following system of ordinary differential equations (ODEs)$${{tau }_{{HB}}dot{x}}_{{HB}}= {-{delta }_{{HB}}x}_{{HB}}+{g}_{{TC}}left({x}_{{TC}}right)+{g}_{{VA}}left({x}_{{VA}}right)+{g}_{{VI}}left({x}_{{VI}}right) \ +{bar{f}}_{S,C}left({u}_{S},{u}_{C},{x}_{{TC}},{x}_{{VA}}right)+{bar{f}}_{P}left({u}_{P},{x}_{{TC}}right)+{underline{f}}_{{HB}}left({u}_{T}right)$$
    (1)
    $${{tau }_{{TC}}dot{x}}_{{TC}}={-{delta }_{{TC}}x}_{{TC}}+{g}_{{HB}}left({x}_{{HB}}right)$$
    (2)
    $${{tau }_{{VA}}dot{x}}_{{VA}}={-{delta }_{{VA}}x}_{{VA}}+{h}_{{VA}}left({{x}_{{HB}},x}_{{TC}},varepsilon {x}_{{VI}}right)+{underline{f}}_{{VA}}left({u}_{T}right)$$
    (3)
    $${{tau }_{{VI}}dot{x}}_{{VI}}={-{delta }_{{VI}}x}_{{VI}}+{h}_{{VI}}left({{x}_{{HB}},x}_{{TC}},{varepsilon x}_{{VI}}right)$$
    (4)
    for the state variables ({x}_{{HB}}) representing honey bee health, ({x}_{{TC}}) the stress due to toxic compounds (e.g., neonicotinoid insecticides), ({x}_{{VA}}) the stress due to parasites (e.g., V. destructor) and ({x}_{{VI}}) the stress due to pathogens (e.g., DWV). The system includes the effects of external inputs as sugar ({u}_{S}), pollen ({u}_{P}), absolute deviation from desired temperature ({u}_{T}) and sub-optimal temperature ({u}_{C}). All the inputs and possible parameters are non-negative; the coefficients (tau) denote the time constants; the coefficients (delta) denote the self-regulation parameters; (varepsilon) in the last two equations allows to account for pathogens that can ((varepsilon , > , 0)) or cannot ((varepsilon=0)) impair the immune system (through link m in Fig. 1). We assume that the functions (g) are smooth, bounded, positive, convex and decreasing to 0; the functions (bar{f}) are smooth, bounded, non-negative, concave and increasing with respect to (w.r.t.) (u) arguments (vanishing only when the first (u) argument vanishes) while convex and decreasing to 0 w.r.t. (x) arguments; the functions ({underline{f}}) are smooth, bounded, non-positive and decreasing (vanishing only when (u=0)); the functions (h) are smooth, bounded, positive, convex and decreasing to 0 w.r.t. the first argument while concave and increasing w.r.t. all the other arguments. For a detailed description of the various functions, together with a summary of the biological effects they account for and a reference to the conceptual model in Fig. 1, see Supplementary Table 3.Structural analysis of the bee health modelWe describe here the structural considerations and computations that yield the structural influence matrix for the honey bee health system.The structural influence matrix (M) is defined as follows. (M) is a symbolic matrix with entries ({M}_{{ij}}) chosen among: +,−,0,?, according to the criteria described below. Consider an equilibrium point (bar{x}) and a constant perturbation (u) applied on the (j)-th system variable (small enough not to compromise the stability of the equilibrium). The equilibrium value will be modified as (bar{x}+delta bar{x}). Consider the sign of the perturbation of the (i)-th variable, (delta bar{{x}_{i}}). Then ({M}_{{ij}}) = + if (delta bar{{x}_{i}}) always has the same sign as (u); ({M}_{{ij}}=) − if (delta bar{{x}_{i}}) always has the opposite sign as (u); ({M}_{{ij}}) = 0 if always (delta bar{{x}_{i}}=0); regardless of the system parameters. Conversely, if the sign does depend on the system parameters, we set ({M}_{{ij}}) = ?.In this section we prove that the influence matrix of the honey bee health system is structurally determined, i.e., there are no “?”‘ entries in (M).We start with the following proposition.
    Proposition 1
    Assume that a matrix
    (J)
    is Hurwitz stable (i.e., all its eigenvalues have negative real part) and has the sign pattern
    $${sign}left(Jright)=left[begin{array}{cccc}- & – & – & -\ – & – & 0 & 0\ – &+& – &+\ – &+& 0 & -end{array}right]$$
    Then, the sign pattern of
    ({adj}left(-Jright))
    , the adjoint of
    (-J)
    , is
    $${sign}left({adj}left(-Jright)right)=left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$
    Proof To prove the statement, we just change the sign of the first variable, hence we change sign to the first row and column of matrix (J). The resulting matrix (M) is such that$${sign}left(Mright)=left[begin{array}{cccc}- &+&+&+\+& – & 0 & 0\+&+& – &+\+&+& 0 & -end{array}right]$$We observe that (M) is a Metzler matrix, namely, all its off-diagonal entries are non-negative. Moreover, the matrix is Hurwitz stable. Then, we can proceed as in the proof of Proposition 4 in a previous report16. Given a Metzler matrix that is Hurwitz stable, its inverse has non-positive entries; hence, the inverse of (-M) has non-negative entries: ({left(-Mright)}^{-1}ge 0) elementwise. Moreover, we observe that(,M) is an irreducible matrix, i.e., there is no variable permutation that brings the matrix in a block (either upper or lower) triangular form. This implies that the inverse of (-M) has strictly positive entries: ({left(-Mright)}^{-1} , > , 0) elementwise. Also, stability implies that the determinant of (-M) is positive: ({det }left(-Mright) , > , 0). Then, ({adj}left(-Mright)={left(-Mright)}^{-1}{det }left(-Mright) > 0), hence the adjoint of (-M) is also positive elementwise. To consider again the original sign of the variables, we change sign to the first row and column of ({adj}left(-Mright)), and we get the signature above for ({adj}left(-Jright)).The next step is the characterization of the structural influence matrix, which corresponds to the sign pattern of the adjoint of the negative Jacobian matrix in Proposition 1.To this aim, we first consider the linearized system and write it in a matrix-vector form$$dot{x}left(tright)={Jx}left(tright)+{e}_{j}u$$where (dot{x}left(tright)) is the time derivative of the four-dimensional vector (xleft(tright)) and ({e}_{k}), (k={{{{mathrm{1,2,3,4}}}}}), is an input vector, constant in time, with a single non-zero component, the (k)-th, equal to 1, while the scalar (u , > , 0) is the magnitude of the input. We wish to assess the (i)-th component of (xleft(tright)), ({x}_{i}left(tright)={e}_{i}^{T}xleft(tright)). If (J) is Hurwitz, as assumed, the steady-state value of variable ({x}_{i}left(tright)) due to the input perturbation ({e}_{k}) applied to the equation of variable ({x}_{k}left(tright)) is achieved for$$0=Jbar{x}+{e}_{k}u,$$namely$${x}_{i}=-{e}_{i}^{T}{J}^{-1}{e}_{k}u,$$which implies that the sign of the steady-state value ({bar{x}}_{i}) of variable ({x}_{i}) due to a persistent positive input acting on the (k)-th equation has the same sign as ({(-{J}^{-1})}_{{ik}}), the (left(i,kright)) entry of matrix ({left(-Jright)}^{-1}). Since we assume Hurwitz stability, we have that ({det }left(-Jright)) is positive, hence the sign pattern of the inverse ({left(-Jright)}^{-1}) corresponds to the sign pattern of the adjoint, ({adj}left(-Jright)). In fact, ({adj}left(-Jright)={left(-Jright)}^{-1}{det }left(-Jright)).We next consider the nonlinear system under investigation, which we write in the form$$dot{x}left(tright)=fleft(xleft(tright)right)$$and without restriction we assume that the zero vector is an equilibrium point: (0=fleft(0right)). This condition can be always achieved, without loss of generality, by a translation of coordinates. We also consider a stable equilibrium: we assume that the linearized system at the equilibrium is asymptotically stable, namely its Jacobian (J), which has the sign pattern considered in Proposition 1 above, is Hurwitz. We also assume that a constant input perturbation of magnitude (u) is applied to the system, affecting the (k)-th equation, i.e.,$$dot{x}left(tright)=fleft(xleft(tright)right)+{e}_{k}u,$$and that the perturbation is small enough to keep the state in the domain of attraction of the considered equilibrium. Due to this perturbation, a new steady state (bar{x}left(uright)) is reached that satisfies the condition$$0=fleft(bar{x}left(uright)right)+{e}_{k}u$$To determine the sign of the new equilibrium components (bar{x}left(uright)), we consider this new equilibrium vector as a function of (u) in a small interval (left[0,{x}_{{MAX}}right]). Adopting the implicit function theorem yields$$frac{d}{{dx}}bar{x}left(uright)=-J{left(uright)}^{-1}{e}_{k}u,$$where we have denoted by (Jleft(uright)) the Jacobian matrix computed at the perturbed equilibrium (bar{x}left(uright)). Hence, for (u) small enough, the sign of the derivatives of the entries of the new, perturbed equilibrium are, structurally, the same as those in the (k)-th column of matrix (-{J}^{-1}). Since, by construction, (xleft(0right)=0), this is also the sign of the elements of vector (bar{x}left(uright)), for (u) in the interval (left[0,{x}_{{MAX}}right]).We have therefore proved that the original nonlinear system describing honey bee health admits the following structural influence matrix:$$left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$System equilibriaThe results concerning the system equilibria were obtained through a standard analytical treatment of the nonlinear equations describing the equilibrium conditions of the system of differential Eqs. (1), (2), (3), (4). A detailed description of methods is reported in Supplementary Methods.Laboratory experiments using honey beesTo confirm the bistability of the system representing honey bee health as affected by multiple stressors, we used data from several survival experiments, carried out in a laboratory environment according to the same standardized method, over a 6-year period (Source data file).All experiments involved Apis mellifera worker bees, sampled at the larval stage or before eclosion, from the hives of the experimental apiary of the University of Udine (46°04′54.2″N, 13°12′34.2″E). Previous studies indicated that the local bee population consists of hybrids between A. mellifera ligustica and A.m. carnica62,63. Ethical approval was not required for this study.We considered experiments on the effect of the following stressors: infection with 1000 DWV genome copies administered through the diet before pupation, feeding with a 50 ppm nicotine in a sugar solution at the adult stage, exposition to a sub-optimal temperature of 32 °C at the adult stage. All experiments were replicated 3 to 13 times, using, in total, the number of bees reported in Table 1.For the artificial infection with DWV, we collected with soft forceps individual L4 larvae from the brood cells of several combs. Groups of 20–30 of such larvae were placed in Petri dishes with an artificial diet made of 50% royal jelly, 37% distilled water, 6% glucose, 6% fructose, and 1% yeast. 25 DWV copies per mg of diet were added or not to the diet according to the experimental group (note that a bee larva at this stage consumes about 40 mg of larval food per day, thus the viral infection per bee was 1000 viral copies). After 24 h larvae were transferred onto a piece of filter paper to remove the residues of the diet and then into a clean Petri dish, where they were maintained until eclosion. At the day of emergence, bees were transferred to plastic cages in a thermostatic cabinet, where they were kept until death. The DWV extract was prepared according to previously described protocols64 and quantified according to standard methods.For the treatment with nicotine, 10 µL of pure nicotine were added to 200 g of the sugar solution used for the feeding of the caged bees, to reach the concentration of 50 ppm.Finally, to expose bees to a 32 °C temperature, the plastic cages with the adult bees were kept in a thermostatic cabinet whose temperature was set accordingly.To monitor the survival of the adult bees treated as above, they were maintained from eclosion until death in plastic cages in a dark incubator at 34.5 °C (or 32 °C, according to the experiment), 75% R.H.; two syringes were used to supply a sugar solution made of 2.4 mol/L of glucose and fructose (61% and 31%, respectively) and water, respectively; dead bees were counted daily.All the results of these experiments are reported in Source data file.All experiments were carried out during the summer months, from June to September for 6 consecutive years. Previous data indicated that, in this region, virus prevalence increases along the active season starting from very low levels in spring and reaching 100% of virus-infected honey bees by the end of the summer; virus abundance in infected honey bees follows a similar trend28. For this reason, it can be assumed that bees sampled early in the season are either uninfected or they bear only a very low viral infection level, whereas bees sampled later in the season are likely to be virus-infected, bearing moderate to high viral infections. To confirm this assumption and identify a method for filtering our data according to viral infection, we assessed viral infection in a sample of bees from the untreated control group of each experiment, by means of qRT-PCR. According to standard practice, we assumed that Ct values below 30 are indicative of an effective viral infection, whereas Ct above that threshold are more likely in virus negative bees. As expected, we found that virus prevalence increases from June to September (Supplementary Figure 1a), in such a way that up to mid July only the minority of bees can be considered as viral infected (Supplementary Figure 1b). Therefore, we classified as “early” all the samples collected up to mid July and assumed that viral infection in those samples was low; on the other hand, samples collected from mid July till September were classified as “late” and we assumed that viral infection in those samples was high.qRT-PCR analysis of viral infection was carried out as follows. At the beginning of every experiment (i.e., at day 0), two to five bees for each replication were sampled in liquid nitrogen and transferred in a −80 °C refrigerator. After defrosting of samples in RNA later, the gut of each honey bee was eliminated to avoid the clogging of the mini spin column used after. The whole body of sampled bees was homogenized using a TissueLyser (Qiagen®, Germany). Total RNA was extracted from each bee according to the procedure provided with the RNeasy Plus mini kit (Qiagen®, Germany). The amount of RNA in each sample was quantified with a NanoDrop® spectrophotomer (ThermoFisher™, USA). cDNA was synthetized starting from 500 ng of RNA following the manufacturer specifications (PROMEGA, Italy). Additional negative control samples containing no RT enzyme were included. DWV presence was verified by qRT-PCR considering as positive all samples with a Ct value lower than 30. The following primers were adopted: DWV (F: GGTAAGCGATGGTTGTTTG, R: CCGTGAATATAGTGTGAGG65). 10 ng of cDNA from each sample were analyzed using SYBR®green dye (Ambion®) according to the manufacturer specifications, on a BioRad CFX96 Touch™ Real time PCR Detector. Primer efficiency was calculated according to the formula (E={10}^{left(-1/{{{{{{rm{slope}}}}}}}-1right)*100}). The following thermal cycling profiles were adopted: one cycle at 95 °C for 10 min, 40 cycles at 95 °C for 15 s and 60 °C for 1 min, and one cycle at 68 °C for 7 min.Individual survival and colony stabilityTo investigate how the death rate of forager bees affects colony growth, a compartment model of honey bee colony population dynamics was proposed50. This model showed that death rates over a critical threshold led to colony failure. Here we modified this model to include premature death of bees at younger age, as predicted by our model of individual bee health in the presence of an immuno-suppressive virus. We show that the critical threshold found in the previously published model50 becomes a decreasing function of the death rate of the younger individuals, so that premature death (and, in turn, immune-suppression) favors colony collapse.In more details, we first summarize the results of the previously published model50 where two populations (F) (forager) and (H) (hive) of bees are considered and where conditions are provided on the mortality (m) of (F) under which the whole population collapses: namely, mathematically stated, the system admits the zero equilibrium only. Here we extend the model partitioning (H) in two categories, (Y) (younger hive bees) and (O) (older hive bees), asintroducing an early mortality factor (n) for the young population, showing how such a factor worsens the collapsing condition.The previously published model50 concerns the interaction between hive bees (H) and forager bees (F) and is described by the ODEs$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Above, (L) is the queen’s eggs laying rate, (w) is the rate at which (L) is reached as the total population (H+F) gets large, (alpha) is the maximum rate at which hive bees become forager bees in the absence of the latter, (sigma) measures the reduction of recruitment of hive bees in the presence of forager bees and, finally, (m) is the death rate of forager bees (while the death rate of hive bees is assumed to be negligible).We first summarize the main results in terms of a threshold value for (m) in view of colony collapse, as our further analysis will follow a similar approach. All the parameters are assumed to be positive.The search for the equilibria of the above ODEs leads to the unique nontrivial equilibrium (beyond the trivial one)$$bar{H}=frac{L}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for$$J=Jleft(mright):=frac{alpha -sigma -m+sqrt{{left(alpha -sigma -mright)}^{2}+4malpha }}{2m}.$$Note that (J) is alway positive (and, moreover, it is independent of (L) and (w)). It follows that (bar{F}) and (bar{H}) have the same sign, so that the existence of the nontrivial equilibrium is equivalent to (bar{F}+bar{H} , > , 0). It is not difficult to recover that$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)$$where (l:=L/w) is introduced for brevity. Then if (alpha le l) we get$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)ge frac{w}{m}left(alpha frac{1+J}{J}-mright)=frac{w}{m}left(sigma+{mJ}right) , > , 0,$$with the last equality following from$$alpha -sigma frac{J}{1+J}-{mJ}=0,$$which in turn comes from annihilating the right-hand side of the second ODE and from using (J=bar{F}/bar{H}) while searching for equilibria. We conclude that, independently of (m), the colony never collapses if the recruitment rate (alpha) of forager bees is sufficiently low.Hence, we assume (alpha , > , l). Observe that$$bar{F}+bar{H}iff l , > , Jleft(m-lright)$$guarantees existence whenever (m) is sufficiently small, viz. (mle l). Assume then (m , > , l), so that the above condition reads$$J , < , frac{l}{m-l}$$leading to the threshold condition$$m , < , bar{m}:=frac{l}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma l}}{alpha -l}$$by using the definition of (J), see Eq. (2) the previously published model50.A standard stability analysis shows that, assuming (alpha,m , > , l), the nontrivial equilibrium is (globally) asymptotically stable whenever it exists (positive), i.e., whenever (m , < , bar{m}). Otherwise, the only (globally) attracting equilibrium is the trivial one, corresponding to colony collapse (see Fig. 5 for the previously published model50 or Fig. 4 for (n=0)). In the mathematical jargon, the disappearance of the positive equilibrium, for (m) exceeding (bar{m}), is referred to as a transcritical bifurcation43.Now, in view of the outcome of the analysis of our model of individual bee health, we introduce a mortality term for the younger bees. As forager bees are recruited from adult hive bees, we divide the class of hive bees (H) in younger (Y) and older (O), assuming that the former die at a rate (n), while the death rate of the latter remains negligible according to the previously published model50. Obviously, (H=Y+O). The original ODEs are consequently modified as$$dot{Y}=Lfrac{H+F}{w+H+F}-Y$$$$dot{O}=left(1-nright)Y-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Note that the sum of the first two equations above gives$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)-{nY}.$$The new negative mortality term for younger hive bees, (-{nY}), models the fact that only the younger hive bees die prematurely while the rest of the dynamics is unchanged with respect to the original model.The search for equilibria soon gives$$bar{Y}=Lfrac{bar{H}+bar{F}}{w+bar{H}+bar{F}}$$from the first ODE above, so that the remaining two equilibrium conditions lead to$$bar{H}=frac{{L}_{n}}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for the same (J) originally defined and ({L}_{n}:=Lleft(1-nright)) (note that (nin left({{{{mathrm{0,1}}}}}right)), and the case (n=0) brings us back to the original model). From this point on the analysis is the same as that previously summarized for the original model, but for replacing (L) with ({L}_{n}) and (l) with (l:=lleft(1-nright)). Consequently, by assuming (alpha,m , > , {l}_{n}) (which is less restrictive when (n , > , 0)), the threshold condition (m < bar{m}) becomes$$m , < , bar{m}left(nright):=frac{{l}_{n}}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma {l}_{n}}}{alpha -{l}_{n}},$$which clearly returns the original threshold condition when (n=0). Since$$frac{dbar{m}}{{dn}}left(nright) , < , 0$$as it can be immediately verified, it follows that the critical value for (m), (bar{m}left(nright)), beyond which the colony system admits only the zero equilibrium, i.e., the transcritical bifurcation value, decreases with (n) (Fig. 4). We thus conclude that colony collapse is favored by the premature death of younger hive bees, possibly caused by a virus impairing the immune system as shown by the analysis of our model of individual bee health.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Effects of different water management and fertilizer methods on soil temperature, radiation and rice growth

    General description of the experimental areaThe experiment was performed for two years at the National Key Irrigation Experimental Station located on the Songnen Plain in Heping town, Qing’an County, Suihua, Heilongjiang, China, with a geographical location of 45° 63′ N and 125° 44′ E at an elevation of 450 m above sea level (Fig. 1). This region consists of plain topography and has a semiarid cold temperate continental monsoon climate, i.e., a typical cold region with a black soil distribution area. The average annual temperature is 2.5 °C, the average annual precipitation is 550 mm, the precipitation is concentrated from June to September of each year, and the average annual surface evaporation is 750 mm. The growth period of crops is 156–171 days, and there is a frost-free period of approximately 128 days year−122. The soil at the study site is albic paddy soil with a mean bulk density of 1.01 g/cm3 and a porosity of 61.8% prevails. The basic physicochemical properties of the soil were as follows: the mass ratio of organic matter was 41.8 g/kg, pH value was 6.45, total nitrogen mass ratio was 15.06 g/kg, total phosphorus mass ratio was 15.23 g/kg, total potassium mass ratio was 20.11 g/kg, mass ratio of alkaline hydrolysis nitrogen was 198.29 mg/kg, available phosphorus mass ratio was 36.22 mg/kg and available potassium mass ratio was 112.06 mg/kg.Figure 1Location of the study area. The map and inset map in this image were drawn by the authors using ArcGIS software. The software version used was ArcGIS software v.10.2, and its URL is http://www.esri.com/.Full size imageHumic acid fertilizerHumic acid fertilizer was produced by Yunnan Kunming Grey Environmental Protection Engineering Co., Ltd., China (Fig. 2). The organic matter was ≥ 61.4%, and the total nutrients (nitrogen, phosphorus and potassium) were ≥ 18.23%, of which N ≥ 3.63%, P2O5 ≥ 2.03%, and K2O ≥ 12.57%. The moisture content was ≤ 2.51%, the pH value was 5.7, the worm egg mortality rate was ≥ 95%, and the amount of faecal colibacillosis was ≤ 3%. The fertilizer contained numerous elements necessary for plants. The contents of harmful elements, including arsenic, mercury, lead, cadmium and chromium, were ≤ 2.8%, 0.01%, 7.6%, 0.1% and 4.7%, respectively; these were lower than the test standard.Figure 2Humic acid fertilizer in powder form.Full size imageExperimental design and observation methodsIrrigationIn this experiment, three irrigation practices, namely, control irrigation (C), wet irrigation (W) and flood irrigation (F), were designed (Table 1).Table 1 Different irrigation methods.Full size tableControl irrigation (C) of rice had no water layer in the rest of the growing stages, except for the shallow water layer at the regreen stage of rice, which was maintained at 0–30 mm, and the natural dryness in the yellow stage. The irrigation time and irrigation quota were determined by the root soil moisture content as the control index. The upper limit of irrigation was the saturated moisture content of the soil, the lower limit of soil moisture at each growth stage was the percentage of saturated moisture content, and the TPIME-PICO64/32 soil moisture analyser was used to determine the soil moisture content at 7:00 a.m. and 18:00 p.m., respectively. When the soil moisture content was close to or lower than the lower limit of irrigation, artificial irrigation occurred until the upper irrigation limit was reached. The soil moisture content was maintained between the upper irrigation limit and the lower irrigation limit of the corresponding fertility stage. Under the wet irrigation (W) and flood irrigation (F) conditions, it was necessary to read the depth of the water layer through bricks and a vertical ruler embedded in the field before and after 8:00 am every day to determine if irrigation was needed. If irrigation was needed, then the water metre was recorded before and after each irrigation. The difference between before and after was the amount of irrigation23.FertilizationIn our research, five fertilization methods were applied, as shown in Table 2. In this experiment, the rice cultivar “Suijing No. 18” was selected. Urea and humic acid fertilizer were applied according to the proportion of base fertilizer:tillering fertilizer:heading fertilizer (5:3:2). The amounts of phosphorus and potassium fertilizers were the same for all treatments, and P2O5 (45 kg ha−1) and K2O (80 kg ha−1) were used. Phosphorus was applied once as a basal application. Potassium fertilizer was applied twice: once as a basal fertilizer and at 8.5 leaf age (panicle primordium differentiation stage) at a 1:1 ratio22.Table 2 The fertilizer methods.Full size tableThis study was performed with a randomized complete block design with three replications. Three irrigation practices and five fertilizer methods were applied, for a total of 15 treatments as follows: CT1, CT2, CT3, CT4, CT5; WT1, WT2, WT3, WT4, WT5; FT1, FT2, FT3, FT4, and FT5 (C, W, and F represent control irrigation, wet irrigation, and flood irrigation; T represents fertilizer treatment).Measurements of the samplesA soil temperature sensor (HZTJ1-1) was buried in each experimental plot to monitor the temperature of each soil layer (5 cm, 10 cm, 15 cm, 20 cm and 25 cm depth). The transmission of photosynthetically active radiation was measured from 11:00 to 13:00 by using a SunScan Canopy Analysis System (Delta T Devices, Ltd., Cambridge, UK), and data during the crop-growing season were recorded every day24.Plant measurements were taken during the periods of tillering to ripening on days with no wind and good light. The fluorescence parameters were measured by a portable fluorescence measurement system (Li-6400XT, America). The detection light intensity was 1500 μmol m−2 s−1, and the saturated pulsed light intensity was 7200 μmolm−2 s−1. The functional leaves were dark adapted for 30 min, and then the maximum photosynthetic efficiency of PSII (Fv/Fm) was measured. Photochemical quenching (QP) and nonphotochemical quenching (NPQ) were measured with natural light. Simultaneously, the leaf chlorophyll relative content (SPAD) was monitored using SPAD 502 (Konica Minolta, Inc., Tokyo, Japan). For plant agronomic characteristics, the distance from the stem base to the stem tip was measured with a straight ruler to quantify plant height24.Statistical analysisExperimental data obtained for different parameters were analysed statistically using the analysis of variance technique as applicable to randomized complete block design. Duncan’s multiple range test was employed to assess differences between the treatment means at a 5% probability level. All statistical analyses were performed using SPSS 22.0 for Windows24.
    Ethics approvalExperimental research and field studies on plants, including the collection of plant material, comply with relevant institutional, national, and international guidelines and legislation. We had appropriate permissions/licences to perform the experiment in the study area. More

  • in

    Diving in

    Nearly two years into the United Nations Decade of Ocean Science, research, including some featured in this month’s issue, shows that there is still a wealth of scientific secrets to uncover in the ocean depths.
    In many ways, considering the ocean as a single unit is overly broad. The global ocean covers 71% of the planet’s surface, reaches down to depths of over 10 kilometres, includes about 1.35 billion cubic kilometres of water and houses an approximated 2.2 million eukaryotic species. There are distinct regions, with distinct physical properties, and, in turn, there are distinct species. Yet, the world’s oceans do have a level of physical and thematic connectivity.
    Credit: Daria Zaseda / DigitalVision Vectors / GettyPhysically, a large part of the connection is related to the presence of large rotating ocean currents that transfer heat across latitudes and contribute to ocean mixing (thermohaline circulation). Some of these currents are warming at alarming rates — up to three times faster than the rest of the ocean, leading to questions about the underlying mechanisms of the warming and expectations for change.Focusing on western boundary currents (WBCs) in the Southern Hemisphere, in an Article in this issue of Nature Climate Change, Li and colleagues answer a long-debated question on the mechanisms of change, showing that temperature-gradient-related instabilities, rather than flow-speed-related instabilities are behind the shifts. In another Article, focusing on the global future changes of eddies (including eddy-rich WBCs), Beech and colleagues report the development of a flexible method that maximizes local model resolution while minimizing computational costs, to reveal the long-term geographical specificities and nonlinear temperature increases expected to 2100 (see also the News and Views article by Yang on these papers).A recent paper1 has demonstrated the important role of large ocean currents in defining plankton biogeography and dynamics, and WBC warming has previously been linked to impacts such as fishery collapses. The tight link between physical processes and biological responses is an underscoring theme of climate change ecology, but is perhaps more apparent in the open ocean, where physical processes can be easily (if imperfectly) linked to primary productivity using remotely sensed phytoplankton pigment absorption, and where life is generally less impacted by geographical, political or disturbance-based boundaries compared with land and freshwater systems. These aspects may facilitate modelling of current and future communities, while also allowing broader assumptions to be made about biological movement and connectivity.Despite these benefits, understanding ocean change comes with its own difficulties. Biological sampling, while easy enough in the surface waters, becomes increasingly difficult at depth. Although future habitats for various organisms have been projected on the basis of their thermal limits in the ocean, these predictions often still rely on temperatures at the surface of the sea. Addressing this, Santana-Falcón and colleagues report in an Article the global mapping of ocean temperature changes to depths of 1,000 metres, and reveal the complex depth-dependent changes in thermal upper and lower bounds that marine organisms will soon be subjected to. In another Article, Ariza and colleagues neatly address the issue of directly monitoring deep-ocean change by compiling a large database of sound-based observations, and subsequently classifying the ocean’s ‘echobiomes’, defined as sound-scattering communities with comparable structural and functional properties (see also the accompanying News and Views article by Hazen). Sound-based methods are also increasingly being used on land2, and represent an exciting tool for monitoring change, particularly in hard-to-reach places such as deep forests, high mountaintops or underground. While the sound reflection method used in the study by Ariza and colleagues has limits in its ability to identify organisms at the individual or species levels, it does provide a community-level focus on change, which remains much needed in the field of global change ecology.At the other end of the spatial spectrum, research by Lee and colleagues reported in an Article also in this issue dives deep into the DNA of a keystone ocean organism (a copepod), to understand the mechanisms that may allow longer-term adaptation to warming and pH stress. The work reveals remarkable adaptation over just a few short generations, which is linked to epigenetic changes. As climate change impacts continue to escalate, the ability of organisms to invoke both shorter- and longer-term adaptations has become an increasingly relevant area of research. Epigenetics has previously been reported as a quick-response method to cope with environmental stress, and may be particularly relevant in defining the adaptation of short-lived animals such as insects and the resilience of the communities they uphold.The five research pieces linked to the oceans in this issue reveal just some of the diversity of topics, methods and scales relevant to understanding global change. Also increasingly relevant are works on ocean conservation3 and on the social and economic impacts of ocean change4,5. Like climate change science, the topic of ocean change is less of a field, and more of a cross-disciplinary theme. More