More stories

  • in

    Weather stressors correlate with Escherichia coli and Salmonella enterica persister formation rates in the phyllosphere: a mathematical modeling study

    Case studyThe experimental setup for the field studies that provided the bacterial population and weather data used here was previously described by Belias et al. [9]. Briefly, baby spinach and lettuce plants were spray-inoculated with E. coli and S. enterica (Salmonella) onto field plots established in Davis, CA (University of California, Plant Sciences Field Research Facility); Freeville, NY (Homer C. Thompson Research Farm, Cornell University); and Murcia, Spain (La Matanza Research Farm). The spinach and lettuce varieties were selected based on their suitability for baby leaf production: lettuce var. Tamarindo, and spinach var. Acadia F1 and Seaside F1. Four replicate trials at different times of the regional growing season were carried out per location. The plants were spray-inoculated with a 104 CFU/mL cocktail of rifampin-resistant strains of commensal E. coli and attenuated S. enterica serovar Typhimurium (Salmonella), and samples were collected for bacterial cell quantification by plate counts on selective and differential media at 0, 4, 8, 24, 48, 72 and 96 h post-inoculation. Concurrent with leaf sample collection, weather variables (temperature, relative humidity (RH), solar radiation intensity, and wind velocity) were recorded hourly for the respective field locations. The hourly dew point (DP) was calculated as a function of both the hourly temperature and RH.Model for persister formation on plantsMathematical modeling to characterize the switch rate from a non-persister bacterial cell (hereafter termed “normal cell”) to a persister cell in the phyllosphere under laboratory conditions was performed as described in our previously published study [24]. Briefly, persister cell fractions were quantified in culturable EcO157 populations after inoculation onto young lettuce plants cultivated in plant growth chambers. Persister cells recovered from the lettuce phyllosphere were identified using the antibiotic lysing method [23]. The greatest persister fraction in the EcO157 population on lettuce in our laboratory investigation above was observed during population decline on leaf surfaces of plants left to dry after inoculation. Using mathematical modeling, we calculated the switch rate from an EcO157 normal to persister cell on dry lettuce plants based on these data [24]. Importantly, our laboratory conditions mimicked inoculation conditions in which E. coli arrived via water on leaves, the surfaces of which progressively dried like under prevailing weather conditions in the field.Based on the main dynamic observed in the field study data [9] and building on our previous study [24], we assumed that the total enteric pathogen population is composed of (i) non-persister (normal) cells consisting of two sub-populations, characterized by fast (n1) (CFU/100g) and slow (n2) (CFU/100g) decay, and (ii) the persister population, leading to the following model from Munther et al. [24]:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1 + beta _dleft( {1 – sigma } right)hat p,$$
    (1a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2 – alpha _dn_2 + beta _dsigma hat p,$$
    (1b)
    $$frac{{dhat p}}{{dt}} = – mu _{hat p}hat p – beta _dhat p + alpha _dleft( {n_1 + n_2} right),$$
    (1c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (1d)
    where (theta _{n_i})(1/h) is the death rate of the normal cells (subscript i = 1 for fast and i = 2 for slow), (hat p) (CFU/100 g) represents the persister cell population at time t (h), (mu _{hat p}) (1/h) reflects the persister population inactivation rate, αd (1/h) is the switch rate from normal to persister state, βd (1/h) is the switch rate from persister to the normal state, and σ ∈ (0,1) is a constant, describing the fraction of persister cells switching back to the normal, slowly decaying state. Equation (1a) and (1b) reflect the assumption that times between switching states are exponentially distributed, using the expected values (frac{1}{{alpha _d}}) (h) and (frac{1}{{beta _d}}) (h) of the respective distributions.Lacking data for potential persister populations from the field trials, we assumed the persister population is a fraction 1  > k  > 0 of the tail population, as observed in Munther et al. [24]. Regarding the model above, this implies that (hat p approx kn_2) for (t ge t^ ast), where (t^ ast approx frac{1}{{theta _{n_1}}}) (the time scale of survival for the fast-decaying population (n1)). In accord with bi-phasic decay, for (t ge t^ ast), the main dynamics for slow decaying population (n2) is dictated by (- theta _{n_2}n_2) in Eq. (1b). This suggests that the effective switch rates from n2 to (hat p) and from (hat p) back to n2 balance, so that (beta _dsigma hat p approx alpha _dn_2) in Eq. (1b). Following these ideas, we simplified the model in Eq. (1a)–(1d) to:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1,$$
    (2a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2,$$
    (2b)
    $$frac{{dhat p}}{{dt}} = – theta _{hat p}hat p + alpha _dn_1,$$
    (2c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (2d)
    where we ignored (beta _dleft( {1 – sigma } right)hat p) in (1a) since the decay rate ((theta _{n_1})) dominates. Also, by setting (theta _{hat p} = mu _{hat p} + beta _d(1 – sigma )), and using (beta _dsigma hat p approx alpha _dn_2), we obtained Eq. (2c). Furthermore, because (hat p approx kn_2) for (t ge t^ ast), (theta _{hat p} approx) (theta _{n_2}).In particular, the assumption that (hat p approx kn_2) for (t ge t^ ast) characterizes the switch rate from normal to persister cells, αd, as (alpha _d approx kalpha), where α is a hypothetical switch rate assuming that the population is composed only of fast decaying normal cells (n1) and a hypothetical persister cell population (p). In this case, the hypothetical population p starts small at (widehat {p_0}), initially increases due to switching from population n1 and then slowly decays as the n1 population is effectively inactivated (i.e., the tail of the total population is comprised entirely of p). From this perspective we utilized the following equations:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha n_1,$$
    (3a)
    $$frac{{dp}}{{dt}} = alpha n_1 – theta _pp.$$
    (3b)
    $$n_1left( 0 right) = n_0,, pleft( 0 right) = widehat {p_0},$$
    (3c)
    For mathematical justification regarding the relationship (alpha _d approx kalpha), please see the appendix (Supplementary Information).The utility of the relationship (alpha _d approx kalpha), is twofold. First, we used model fitting (Eqs. (3a)–(3c)) to determine α from the respective field study data [9]. Note that using Eqs. (3a)–(3c), we actually fit for (theta _{n_1}), θp, and α using the field study data [9]. Please reference the “model fitting procedure” section as well as the appendix for details concerning the unique determination of the aforementioned parameters, i.e., the practical identifiability of these parameters, and justification regarding the legitimacy of measured tail populations relative to the respective field trial data [9]. Second, because we wanted to examine Spearman’s correlations (corr) between αd and various weather factors, given a particular weather factor (vec w) across trials (i = 1, ldots ,n), let k be the maximum persister fraction (of the tail) across these n trials, that is, for each i, we have (alpha _{d_i} approx k_ialpha _i), so (alpha _{d_i} lesssim kalpha _i). Thus kαi represents the maximum persister switch rate for each trial i, and since corr((kvec alpha ,vec w)) =corr((vec alpha ,vec w)), we conducted the correlation analysis with the fitted α values in lieu of the actual persister switch rate αd.The assumptions behind our approach are summarized below:

    A.

    The tails of pathogen populations surviving on plants in the field study [9] are comprised of some fraction k ∈(0,1) of persister cells since their decay rate is quite small and they remain culturable.

    B.

    Because (alpha _d approx kalpha), we hereafter utilize α from model (3a)–(3c) as the representative persister switch rate.

    C.

    Given that the experimental context [24] for modeling persister switching occurred during population decline, we only employed trials from Belias et al. [9] that exhibited bi-phasic decay. Namely, we did not include trials in which significant bacterial growth was observed at the time scale of successive data points (the time scale in the field study is on the order of 4–16 h for the 1st day and then 24 h thereafter.)

    D.

    The switch rate from normal to persister cell is on average a monotonic function of some measure of environmental stress.

    Based on assumptions A–D above, we applied the model (3a)–(3c) to published pathogen population size and weather data from four replicate trials in Spain, two in California, and one in NY [9]. More specifically, we fit model (3a)–(3c) to the respective population data in order to:

    1.

    determine values for the maximum switch rate α relative to the produce/bacteria type at the field scale,

    2.

    describe the correlative relationship between α and weather factors in the respective field trials.

    Model fitting procedureIn model (3a)–(3c) above, we supposed dp/dtt = 0  > 0, i.e., we assumed that bacteria experience stress from the change in conditions from culture growth and inoculum suspension preparation to those on the plant surface and therefore, that persister formation increases in the phyllosphere immediately following inoculation. The report that EcO157 persister formation increases as early as 1 h after inoculation into leaf wash water [23], which could be considered as a proxy for the average oligotrophic environment that bacterial cells experience after spray inoculation onto leaves or through irrigation in the field, supports this assumption. To avoid identifiability issues between the initial persister population (widehat {p_0}) and α regarding the model fits above, we assumed that (widehat {p_0})= 1 ((widehat {p_0}) = 0 gives the same results). Thus, the initial persister population at inoculation is at its lowest, an assumption supported by Munther et al. [24], who observed an average fraction of EcO157 persisters of 0.0043% in the inoculum population. This imparts the largest possible switch rate, α, onto the population, corresponding to the largest and hence most conservative food safety risk.Let yk (CFU/100 g of produce) be the average bacteria population measurement at time tk (h) and let Pk,X (CFU/100 g of produce) represent the model prediction (total population) at time tk relative to the parameter vector (X = [ {theta _{n_1} , theta_p , alpha } ]^T). Following Eqs. (3a) and (3b), this means that ({{{{{{{mathrm{P}}}}}}}}_{k,X} = n_1left( {t_k,X} right) + p(t_k,X)). Since the population data spans multiple orders of magnitude, we calculated the residuals as (e_{k,X} = log _{10}y_k – log _{10}P_{k,X}). To determine the optimal model fit (see the appendix for details regarding a priori bounds on parameter ranges), we utilized the fminsearch function in MATLAB (MATLAB 2020b, The MathWorks, Inc., Natick, Massachusetts, United States) to determine the parameter vector X that minimizes the 2-norm of the following function F:$$| | Fleft( X right) | |_2 = left( {mathop {sum }limits_k e_{k,X}^2} right)^{frac{1}{2}}$$Correlation analysisTo provide a statistical foundation from which to relate the switch rate α and measured weather factors, we utilized Spearman and partial Spearman correlation. First, we calculated the Spearman correlation coefficients between α and each of the respective factors: 8-h average of temperature, RH, solar radiation, wind speed post-inoculation, and then we calculated the partial Spearman correlation coefficients for each respective weather factor, while controlling for the other three factors and simultaneously controlling for produce type (using lettuce =1 and spinach =0) (For details regarding why 8-h weather variables were used, see the “model fitting” subsection of the results.) The correlation coefficients were determined using the corr and partialcorr functions in MATLAB 2020b (The MathWorks, Inc., Natick, MA, USA). Considering the significant association of Salmonella α with RH and temperature, we also examined the correlation between α and dew point. Figure 1 presents a logical flow of the statistical analysis. Partial correlations with a P value of less than 0.05 were deemed significant. If the 8-h average of a weather factor exhibited a significant correlation with the switch rate, the 8-h minimum and range of the weather factor were also tested.Fig. 1: Logical flow diagram for statistical analysis.Factors in Step 1: UV (average ultraviolet radiation intensity), RH (average air relative humidity), Wind (average wind speed), and Temp (average air temperature). All weather data used in the statistical analysis were obtained over 8 h post-inoculation of E. coli and Salmonella onto lettuce and spinach leaves in the field.Full size image More

  • in

    The relationships between growth rate and mitochondrial metabolism varies over time

    The experiments were approved by the French Ethics Committee in charge of Animal Experimentation (no.2019072411491441) and were in accordance with institutional and ARRIVE guidelines.Animal collection and husbandryIn May 2019, juvenile European sea bass, Dicentrarchus labrax (Linnaeus 1758) (6 months old, mass 5 g), were transferred from a fish farm (Turbot Ichtus, Trédarzec, France) to the Ifremer rearing facility (Plouzané, France). Fish were kept in a common tank for 5 months, maintained under a 12 L: 12 D photoperiod, and fed at satiety three times a week using commercial pellets (Neo Start, Le Gouessant, Lamballe, France).In October 2019, fish (n = 40) were anaesthetized (Tricaïne; 125 mg L−1), weighed (41.5 ± 1.8 g, MCE11201S-2S00-0, Sartorius, Göttingen, Germany), and implanted subcutaneously with an identification tag (RFID; Biolog-id, Bernay, France). The fish were then randomly allocated to ten replicate 400 L tanks supplied with open-flow, fully aerated seawater (oxygen saturation  > 95%, salinity 32 ppt), thermo-regulated during winter to avoid falling below 13 °C, and fed at satiety three times a week. Temperature was recorded weekly. To account for the potential effect of temperature variation over the duration of the trial (15.5 ± 0.5 °C, range: 13.1–17.9 °C) on growth, a correlations analysis was performed between temperature and specific growth rate (SGR). No statistical relationship was found between SGR and temperature (Spearman R2 = 0.060, P = 0.596). Additional fish (n = 40) were present in the tanks (final density: n = 8 per tank) for the need of another project.Growth measurementsBody mass (BM) was measured about every four weeks from October 2019 to June 2020. The fish were fasted for 48 h and anesthetized before each BM measurement (± 0.1 g). The specific growth rate (% day-1) was estimated as follows:$${text{Specific~Growth~Rate}} = ~frac{{ln left( {final~BM} right) – ln left( {initial~BM} right)}}{{{text{days~elapsed}}}} times 100$$In March 2020, a red muscle biopsy sample was collected from fish to measure the mitochondrial metabolic traits. Past growth was defined as specific growth rates before the analysis of mitochondrial metabolic traits (past specific growth rate, SGRpast). SGRpast were calculated using the BM at the muscle biopsy as the final BM and the BM at 7, 11, 16, and 20 weeks before the muscle biopsy as the initial BM (Fig. 1). Future growth was defined as specific growth rates after analysis of mitochondrial metabolic traits (future specific growth rates, SGRfuture). SGRfuture were calculated using the BM at 4, 8, and 12 weeks after the muscle biopsy as the final BM and the BM at the muscle biopsy as the initial BM. In European sea bass, most of the somatic growth occur within the first 3 to 5 years of life, so several months of growth measurement at the juvenile stage might be representative of the overall growth of the animal.Figure 1Experimental design. Juvenile European sea bass (n = 40) were weighted about every four weeks over a 32-week period. At week 20, a biopsy of red muscle was used for mitochondrial assay. Specific growth rates (SGR) were calculated relative to the time of the biopsy. Past growth rate corresponds to SGR calculated before the biopsy, and future growth rate corresponds to SGR calculated after the biopsy.Full size imageMuscle biopsy procedureMuscle biopsy was performed as a non-lethal means of sampling tissue for the mitochondrial assay while allowing us to determine future growth rate. Fish were anaesthetized with tricaine (as above), weighed (76.7 ± 3.6 g), and biopsied. A skin incision ( More

  • in

    Predicting the effects of winter water warming in artificial lakes on zooplankton and its environment using combined machine learning models

    Murphy, G. E. P., Romanuk, T. N. & Worm, B. Cascading effects of climate change on plankton community structure. Ecol. Evol. 10, 2170–2181. https://doi.org/10.1002/ece3.6055 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodward, G., Daniel, M., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055 (2010).Article 

    Google Scholar 
    Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19–27. https://doi.org/10.1023/A:1009943402621 (1997).Article 

    Google Scholar 
    Gannon, J. E. & Stemberger, R. S. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 97, 16–35. https://doi.org/10.2307/3225681 (1978).Article 

    Google Scholar 
    Ferdous, Z. & Muktadir, S. K. M. A review: Potentiality of zooplankton as bioindicator. Am. J. Appl. Sci. 6, 1815–1819 (2009).Article 

    Google Scholar 
    Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer Trophic State Index. Pol. J. Ecol. 60, 339–350 (2012).
    Google Scholar 
    Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22(2), 241–251 (2000).Article 

    Google Scholar 
    Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 85, 359–364. https://doi.org/10.1016/j.seares.2013.07.003 (2014).ADS 
    Article 

    Google Scholar 
    Carter, J. L. & Schindler, D. L. Responses of zooplankton populations to four decades of climate warming in Lakes of Southwestern Alaska. Ecosystems 15, 1010–1026. https://doi.org/10.1007/s10021-012-9560-0 (2012).CAS 
    Article 

    Google Scholar 
    Ejsmont-Karabin, J. & Węgleńska, T. Disturbances in zooplankton seasonality in Lake Gosławskie (Poland) affected by permanent heating and heavy fish stocking. Ekol. Pol. 36, 245–260 (1988).
    Google Scholar 
    Ejsmont-Karabin, J. et al. Rotifers in Heated Konin Lakes—A review of long-term observations. Water 12, 1660. https://doi.org/10.3390/w12061660 (2020).Article 

    Google Scholar 
    Evans, L. E., Hirst, A. G., Kratina, P. & Beaugrand, G. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography 43, 581–590. https://doi.org/10.1111/ecog.04631 (2020).Article 

    Google Scholar 
    Wang, L. et al. Is zooplankton body size an indicator of water quality in (sub)tropical reservoirs in China?. Ecosystems 25, 656–662. https://doi.org/10.1007/s10021-021-00656-2 (2021).CAS 
    Article 

    Google Scholar 
    Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54(6), 2273–2282 (2009).ADS 
    Article 

    Google Scholar 
    Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295. https://doi.org/10.1093/icesjms/fsn028 (2008).Article 

    Google Scholar 
    Visconti, A., Manca, M. & De Bernardi, R. Eutrophication-like response to climate warming: An analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J. Limnol. 67(2), 87–92 (2008).Article 

    Google Scholar 
    Vandysh, O. I. The effect of thermal flow of large power facilities on zooplankton community under subarctic conditions. Water Res. 36(3), 310–318. https://doi.org/10.1134/S0097807809030063 (2009).CAS 
    Article 

    Google Scholar 
    Alric, B. et al. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94(12), 2767–2780 (2013).Article 

    Google Scholar 
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. PNAS 106(31), 12788–12793. https://doi.org/10.1073/pnas.0902080106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutierrez, M. F. et al. Is recovery of large-bodied zooplankton after nutrient loading reduction hampered by climate warming? A long-term study of shallow hypertrophic Lake Søbygaard, Denmark. Water 8, 341. https://doi.org/10.3390/w8080341 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884. https://doi.org/10.1038/nature02808 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thackeray, S. J., Jones, I. D. & Maberly, S. C. Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523–535. https://doi.org/10.1111/j.1365-2745.2008.01355.x (2008).Article 

    Google Scholar 
    Adrian, A., Wilhelm, S. & Gerten, D. Life-history traits of lake plankton species may govern their phenological response to climate warming. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol. 12, 652–661. https://doi.org/10.1111/j.1365-2486.2006.01125.x (2006).ADS 
    Article 

    Google Scholar 
    Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28(11), 1099–1105. https://doi.org/10.1093/plankt/fbl042 (2006).Article 

    Google Scholar 
    Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623. https://doi.org/10.1111/ele.12265 (2014).Article 
    PubMed 

    Google Scholar 
    Wagner, C. & Adrian, R. Exploring lake ecosystems: Hierarchy responses to long-term change?. Glob. Change Biol. 15, 1104–1115. https://doi.org/10.1111/j.1365-2486.2008.01833.x (2009).ADS 
    Article 

    Google Scholar 
    Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123–139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).Article 

    Google Scholar 
    Carter, J. L., Schindler, D. E. & Francis, T. B. Effects of climate change on zooplankton community interactions in an Alaskan lake. Climate Change Resp. 4, 3. https://doi.org/10.1186/s40665-017-0031-x (2017).Article 

    Google Scholar 
    Calbet, A. The trophic roles of microzooplankton in marine systems. ICES J. Mar. Sci. 65, 325–331 (2008).Article 

    Google Scholar 
    Wollrab, S. et al. Climate change-driven regime shifts in a planktonic food web. Am. Natur. 197, 281–295. https://doi.org/10.1086/712813 (2021).Article 
    PubMed 

    Google Scholar 
    Recknagel, F., Adrian, R. & Köhler, J. Quantifying phenological asynchrony of phyto- and zooplankton in response to changing temperature and nutrient conditions in Lake Müggelsee (Germany) by means of evolutionary computation. Environ. Model. Softw. 146, 105224. https://doi.org/10.1016/j.envsoft.2021.105224 (2021).Article 

    Google Scholar 
    EEA. Projected changes in annual, summer and winter temperature. European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/projected-changes-in-annual-summer-1 (2014).IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 (1957).Article 

    Google Scholar 
    Ferrario, A. & Hämmerli, R. On Boosting: Theory and Applications. SSRN: https://ssrn.com/abstract=3402687 (2019).Meysman, F. J. R. & Bruers, S. Ecosystem functioning and maximum entropy production: A quantitative test of hypotheses. Philos. Trans. R. Soc. B 365, 1405–1416. https://doi.org/10.1098/rstb.2009.0300 (2010).CAS 
    Article 

    Google Scholar 
    Yu, Q., Ji, W., Prihodko, L., Anchang, J. Y. & Hanan, N. P. Study becomes insight: Ecological learning from machine learning. Methods Ecol. Evol. 12, 217–2128. https://doi.org/10.1111/2041-210X.13686 (2021).Article 

    Google Scholar 
    Park, J. et al. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 832, 155070. https://doi.org/10.1016/j.scitotenv.2022.155070 (2022).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Grbčić, L. et al. Coastal water quality prediction based on machine learning with feature interpretation and spatio-temporal analysis. Environ. Model. Softw. 155, 105458. https://doi.org/10.1016/j.envsoft.2022.105458 (2022).Article 

    Google Scholar 
    Kruk, M., Artiemjew, P. & Paturej, E. The application of game theory-based machine learning modelling to assess climate variability effects on the sensitivity of lagoon ecosystem parameters. Ecol. Inf. 66, 101462. https://doi.org/10.1016/j.ecoinf.2021.101462 (2021).Article 

    Google Scholar 
    Hebert, P. D. N. Competition in zooplankton communities. Ann. Zool. Fennici 19, 349–356 (1982).
    Google Scholar 
    Eigen, M. & Winkler, R. Laws of the Game. How the Principles of Nature Govern Chance (Princeton University Press, 1993).
    Google Scholar 
    Tilman, A. R., Plotkin, J. B. & Akçay, E. Evolutionary games with environmental feedbacks. Nat. Commun. 11, 915. https://doi.org/10.1038/s41467-020-14531-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shapley, L. S. A Value for n-Person Games. In Contributions to the Theory of Games II (eds Kuhn, H. W. & Tucker, A. W.) 315–317 (Princeton University Press, 1953).
    Google Scholar 
    Lundberg, S. M. & Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).
    Google Scholar 
    Štrumbelj, E. & Kononenko, I. An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 http://dl.acm.org/citation.cfm?id=1756006.1756007 (2010).Gan, G., Ma, C. & Wu, J. Data clustering: Theory, algorithms, and applications. ASA-SIAM Ser. Stat. Appl. Math. https://doi.org/10.1137/1.9780898718348 (2007).Article 
    MATH 

    Google Scholar 
    Riechert, S. E. & Hammerstein, P. Game theory in the ecological context. Ann. Rev. Ecol. Syst. 14, 377–409. https://doi.org/10.1146/annurev.es.14.110183.002113 (1983).Article 

    Google Scholar 
    Maynard-Smith, J. Evolution and the Theory of Games (Cambridge University Press, 1982).Book 

    Google Scholar 
    Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303(5659), 793–799. https://doi.org/10.1126/science.1093411 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Maloney, K. O., Schmid, M. & Weller, D. E. Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages. Methods Ecol. Evol. 3, 116–128. https://doi.org/10.1111/j.2041-210X.2011.00124.x (2012).Article 

    Google Scholar 
    Cao, H., Recknagel, F. & Orr, P. T. Parameter optimization algorithms for evolving rule models applied to freshwater ecosystems. IEEE Trans. Evol. Comput. 18, 793–806. https://doi.org/10.1109/TEVC.2013.2286404 (2014).Article 

    Google Scholar 
    Naqshbandi, N., Iranmanesh, M. & Askari Hesni, M. Effects of environmental factors on species diversity of rotifers using biodiversity indicators and canonical correlation analysis (CCA). J. Aquat. Ecol. 7, 66–75 https://www.sid.ir/en/journal/ViewPaper.aspx?id=661950 (2017).Weisse, M. & Frahm, A. Species-specific interactions between small planctonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J. Plank. Res. 23, 1329–1338 (2001).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11, 33–40 (1962).Article 

    Google Scholar 
    Pomerleau, C., Sastri, A. R. & Beisner, B. E. Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. J. Plankton Res. 37, 712–726. https://doi.org/10.1093/plankt/fbv045 (2015).Article 

    Google Scholar 
    Hopcroft, R. R., Kosobokova, K. N. & Pinchuk, A. I. Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep-Sea Res. II(57), 27–39. https://doi.org/10.1016/j.dsr2.2009.08.003 (2010).ADS 
    Article 

    Google Scholar 
    Neumann, L. S. et al. Connectivity between coastal and oceanic zooplankton from Rio Grande do Norte in the Tropical Western Atlantic. Front. Mar. Sci. 6, 00287. https://doi.org/10.3389/fmars.2019.00287 (2019).Article 

    Google Scholar 
    Benedetti, F., Ayata, S.-D., Irisson, J.-O., Adloff, F. & Guilhaumon, F. Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Divers. Distrib. 25, 568–581. https://doi.org/10.1111/ddi.12857 (2019).Article 

    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 (2012).CAS 
    Article 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Jasnos, K., Kołba, P., Biernat, H. & Noga, B. The results of the hydrogeological research leading to know and develop the resources of thermal water in the Kleszczów district. Modelowanie Inżynierskie 45, 14 (2012).
    Google Scholar 
    Rybak, J. I. & Błędzki, L. A Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).
    Google Scholar 
    Kim, H.-W., Hwang, S.-J. & Joo, G.-J. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22, 1559–1577 (2000).CAS 
    Article 

    Google Scholar 
    Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).Article 

    Google Scholar 
    Obertegger, U. & Flaim, G. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly?. Hydrobiologia 823, 79–91. https://doi.org/10.1007/s10750-018-3697-6 (2018).Article 

    Google Scholar 
    Ejsmont-Karabin, J., Radwan, S. & Bielańska-Grajner, I. Rotifers. Monogononta–atlas of species. Polish freshwater fauna (University of Łódź, Łódź, 2004).
    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 52, 886–895. https://doi.org/10.4319/lo.2007.52.2.0886 (2007).ADS 
    Article 

    Google Scholar 
    Huntley, M. E. & Lopez, M. D. Temperature-dependent production of marine copepods: A global synthesis. Am. Nat. 140, 201–242. https://doi.org/10.1086/285410 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olonscheck, D., Hofmann, M., Worm, B. & Schellnhuber, H. J. Decomposing the effects of ocean warming on chlorophyll a concentrations into physically and biologically driven contributions. Environ. Res. Lett. 8, 014043. https://doi.org/10.1088/1748-9326/8/1/014043 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Goldman revisited: Faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol. Oceanogr. 58, 2076–2088. https://doi.org/10.4319/lo.2013.58.6.2076 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Kruk, M., Kobos, J., Nawrocka, L. & Parszuto, K. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic). J. Mar. Syst. 180, 49–58. https://doi.org/10.1016/j.jmarsys.2018.01.003 (2018).Article 

    Google Scholar 
    Santer, B. & Hansen, A.-M. Diapause of Cyclops vicinus (Uljanin) in Lake Søbyga˚ rd: Indication of a risk-spreading strategy. Hydrobiologia 560, 217–226. https://doi.org/10.1007/s10750-005-1067-7 (2006).Article 

    Google Scholar 
    Mayer, J. et al. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342(343), 165–174 (1997).Article 

    Google Scholar 
    Galir Balkić, A., Ternjej, I. & Špoljar, M. Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology 11, 1917. https://doi.org/10.1002/eco.1917 (2018).Article 

    Google Scholar 
    Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Koszałka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 27, 279–291. https://doi.org/10.1111/fme.12411 (2020).Article 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).Article 

    Google Scholar 
    von Flössner, D. Krebstiere (Branchiopoda, Fischläuse, Branchiura (VEB Gustav Fischer Verlag, Jena, 1972).
    Google Scholar 
    Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband, 52–570, (Gebrüder Borntraeger, Berlin, 1978).Streble H. & Krauter D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süβwassers. (Kosmos Gesellschaft der Naturfreunde Franckh’sche Verlagshandlung, Stuttgart, 1978).Błędzki, L. A. & Rybak, J. I. Freshwater crustacean zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification with notes on ecology, distribution, methods and introduction to data analysis. (Springer, Switzerland, 2016).Bottrell, H. H. et al. Review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456 (1976).
    Google Scholar 
    Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513–522 (1998).
    Google Scholar 
    APHA. Standard methods for the examination of water and wastewater, 20th ed.. (American Public Health Association, Washington, DC, 1999).Wei, Z.-G. et al. Comparison of methods for picking the operational taxonomic units from amplicon sequences. Front. Microbiol. 24, 644012. https://doi.org/10.3389/fmicb.2021.644012 (2021).Article 

    Google Scholar 
    Sgalella. Kaggle. https://www.kaggle.com/sgalella/correlation-heatmaps-with-hierarchical-clustering (2019).Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    Article 

    Google Scholar 
    Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. 22 ACM SIGKDD Conference on Knowledge, Discovery and Data mining, 12–17 August, San Francisco. https://doi.org/10.1145/2939672.2939785 (2016).Kirpal, E. Kaggle. https://www.kaggle.com/eshaan90/ensembles-and-model-stacking (2019).Brownlee, J. Github. https://github.com/datamangit/codes_for_articles/blob/master/Explain%20your%20model%20with%20the%20SHAP%20values%20for%20article.ipynb (2021).Rathi, P. Toward Data Science. https://towardsdatascience.com/a-novel-approach-to-feature-importance-shapley-additive-explanations-d18af30fc21 (2020). More

  • in

    Signals of local bioclimate-driven ecomorphological changes in wild birds

    Study areaWe conducted field studies in both regions from August to March, each year from 2012 to 2016. In north India, we selected the two traditional breeding colonies of the Painted Storks, viz., the Delhi Zoo (28° 36′ N 77° 14′ E) and Keoladeo National Park (KNP) (27° 17′ N 77° 52′ E), Bharatpur, Rajasthan (Fig. 1). In the Delhi Zoo, close to the river Yamuna, the Painted Storks nest in the traditional heronries with other colonial nesters, Little Cormorant, Indian Cormorant, Black-headed Ibis, and Night Heron38. The KNP, a Ramsar site spread over 29 km2, situated at the confluence of the rivers Gambhir and Banganga on the western edge of the Gangetic basin, supports diverse fauna, flora, and a mosaic of habitats, wetlands, woodlands, scrub forests, grasslands, and heronries39. In 2013, we recorded 680 adults and 310 nests in the Delhi Zoo and 1584 adults and 430 nests of Painted Storks in the KNP.We selected the Vedanthangal Bird Sanctuary (VBS), the nesting colonies at Melmaruvathur Lake, and Koonthankulam Bird Sanctuary (KBS). The KBS & VBS are the newly declared Ramsar sites in Tamil Nadu, south India. The VBS (12° 32′ 02″ N and 79° 52′ 29″ E) is a 40.3-hectare community reserve effectively protected by the state Forest Department, Tamil Nadu, and Vedanthangal villagers40. It is the oldest breeding waterbird reserve in south India, located 85 km southwest of Chennai. More than 40 species of waterbirds, both residents and migrants, live here. Along with the other 17 heronry species, the Painted Storks build nests every year from November to April during its breeding season. The Painted Stork nesting colonies at Melmaruvathur Lake (12° 25′ 53″ N and 79° 49′ 36″ E) are about 20 km away from the VBS. Here, the Painted Storks build nests at 1.8–5 m above the water level, on trees of Acacia nilotica and Barringtonia acutangula on mounds surrounded by water41. In 2012, we recorded a total of 3185 nests in the VBS, with a maximum number of nests belonging to Spot-billed Pelican (1050 nests) followed by Painted Stork (550 nests), Asian Open-bill (770 nests), and others.Birds have been breeding in Melmaruvathur Lake since 2013, and we counted 80 nests of Spot-billed pelican, 45 nests of Oriental White Ibis, and 56 nests of Painted Stork during the winter of the year 2014. The Lake is spread over 0.19 km2 with islets (mounds) with four clusters of Acacia nilotica and Barringtonia acutangula trees. Rainwater and domestic sewage from the neighboring residential complex are the primary water source, and recreational boating attracts a large crowd visiting the Melmaruvathur temple41. KBS (8° 29′ 44″ N and 77° 45′ 30″ E) is about a 1.3 km2 protected area, declared a bird sanctuary in 1994 and an Important Bird Area40. It comprises Koonthankulam and Kadankulam irrigation tanks actively protected and managed by the local community. We noticed the frequent failures of breeding events due to water shortages related to monsoon failures in VBS and KBS. In 2015, we also observed Painted Storks’ breeding failure across northern India for unknown reasons; therefore, data could not be collected for those periods.Bioclimatic variablesWe obtained the bioclimatic variable, particularly temperature at 2 m height for all the four study sites, from the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) Prediction of Worldwide Energy Resource (POWER) Project funded through the NASA Earth Science/Applied Science Program. The monthly average data from 2010 to 2020 was downloaded from the POWER Project’s Hourly 2.0.0 version on 2022/01/04.Digital images of Painted Storks collected under field conditionsUsing Binoculars (Olympus 10X50), Digital Cameras (Canon 5D Mark III and Sony handy-cam), we monitored and recorded all active nests with juveniles and adult Painted Storks twice a week. The nests were on trees, 3–7 m in height, and chicks and adults were visible, which aided the photography. Nests were numbered for our records by taking note of tree branching patterns, the nest’s position on the tree, and other local identification marks. Numbering the nests helped us identify the individuals associated with a given nest and avoided re-recording the same individual (pseudoreplication). Storks show site fidelity42,43, and hence we assumed the same breeding pairs occupied the same nesting site.During the initial months of the breeding seasons, pairing and copulations of the breeding pairs could be readily noticeable. We took consecutive photographs when they were copulating at the nest. After disengagement following the copulation, the birds (male and female) standing side by side at the nest were also photographed. The first author noted all the relevant spatial orientations of males and females during each copulation event in the field notes. Thus nearly 100 copulations involving different individuals of the Painted Storks pair were photographed. To minimize measurement errors, we selected for further analysis only the images of males and females standing parallel and close to each other, perpendicular to the camera. Since we used the digital images of the free-living Storks, we did not have the freedom to choose all morphological features resulting in some missing values. Therefore, we selected a hundred and forty-eight individuals for the analysis from nearly 1500 localized adults. The technique has an efficiency of less than 10% of the population, more efficient than the traditional capture, measure, and release of individuals. Though many individuals were recorded, only a few were subjected to the analyses. Moreover from the digital images, not all the morphological characters of the individuals were measured. The birds’ orientation towards the camera assumes importance because the correct direction ensures maximum exposure of body parts in the picture. In many pictures, correct orientation was missing as the birds were behind other individuals or branches of the trees or leaves. Therefore, selecting the right digital image becomes crucial. Keeping all the above criteria, we filtered images that were later included in the analysis.Calibrations of subject-distance using Exif MetadataWe extracted the EXIF metadata from each JPEG image of Painted Stork. EXIF metadata includes the filename, type, date, and time of the image captured, image width and height in pixels, camera model, lens information, field of view, focal length, and subject-distance. The subject-distance (Painted Stork distance from the camera) being a critical variable and its Exif metadata were standardized with the following equation.$${text{Subject{-}distance}} = 0.7864 times {text{(EXIF subject{-}distance)}}^{{1.0301}}$$
    (1)
    Using the Eq. (1) derived from an earlier study5, we regressed actual subject-distance with the Exif subject-distance from the images. Then multiplying with the field of view, available as Exif metadata (angle of view) with standardized subject-distance (Eq. 1), the total image size (length and width) in metric units was estimated. We excluded the cropped or manipulated images because Image (size) estimation is possible only for the images coming straight from the camera with EXIF tags. The methodological details for calibration and estimation of in-situ measurements of the morphological variables are given in Mahendiran et al.5.Measurements of the morphological variablesWe created a TPS file for JPEG images of Painted Storks with the TPSUtility Program44. Using the TPS file in the TPSDig (v. 2.17) program44, we measured the selected characters (morphological variables) in pixels. Later, it was used along with the total image size to estimate the size of the specific morphological features in metric units, following Mahendiran et al.5. Ten different morphological variables were measured: Bill length (upper and lower mandible), tibia & tarsus length of both legs, distances among the ear, nostril and corners of the mouth, and body length. We estimated the dimensions of the rigid body parts, viz., bill length, tibia, and tarsus using the given methodology13,15,21. Bill length is the distance from the tip of the upper mandible to the beginning of skin corners near nostrils, the proximal end of the beak (marked as ‘a’ in Fig. 3); Tibia length is the distance from the joint of the tibia-tarsus to the feathers (marked as ‘b’ in Fig. 3); Tarsus length is the distance between the tibia-tarsus joint and foot (marked as ‘c’ in Fig. 3). We took measurements of each individual’s right and left legs and other characters, viz., inter-distances among the nostril, corner of the eye, corner of the mouth on each side (marked as ‘d’, ‘e’, ‘f’ in Fig. 3). Body depth is the distance from the base of the neck near the breast to the tip of the tail (marked as ‘g’ in Fig. 3).Data analysisWe performed the statistical analysis in R45, primarily through the nlme, ggbiplot, nnet, tidyverse, devtools packages. We did not have the freedom to measure a few morphological variables due to the problems mentioned above, which led to missing values in the datasets. We filled the missing values with the impute function using the R Core team45 through mice & VIM packages. When the missing values are high in numbers, we discard the data rather than use the impute function. Since almost about 70% of the lower mandible values were missing, we discarded them and ended up having only nine morphological variables in the final analysis. Moreover, the lower mandible is movable, with the mouth being open and closed, producing a considerable variation in measurements.We designed the matrix (Individuals × Region × Sex) representing the intraspecific variations concerning the region and sexes of Painted Storks46. The individuals are in rows (R), their region in column (C1), and sex in column (C2). We considered the regional variations as a sequence of the latitudinal gradient of the study sites. The values of the individuals (R) were the selected morphological variables. This matrix helped us investigate the critical questions relating to eco-geographic variations and sexual dimorphism.To determine whether temperature varied between study sites, we conducted a two-way ANOVA to analyse the effect of study sites (between North India (DZ & KNP) and South India (VBS & KBS)) and months of the year on the temperature at 2 m. For each character, Dimorphism Index (DI) was calculated as a mean value of female divided by the mean male, multiplied by 100, following the method of Urfi and Kalam15. We estimated the general body size of Painted Storks from the selected morphological variables through Principal Component Analysis (PCA) and tested hypotheses on Eco-geographic variations (Bergmann’s or Allen’s rules)2,47 and the sexual dimorphism15,48. The dimension reduction through PCA was carried out after the imputation as there were a few missing values. Body depth was omitted only for the principal component analysis due to many missing values. However, the values of all the characters are presented in the summary statistics in Table 1. The first principal component is characterized as a measure of size, and subsequent components describe various aspects of shape; therefore, it is considered a measure of general body size15,48,49. The PC1 indicated the body size variation, and PC2 revealed leg length variation (tibia and tarsus). We used nested ANOVA to test their body size variation between regions and sexes. The sexes nested within the region explained the eco-geographic rules and sexual selection patterns.Using a multinomial logistic regression model, we compared the Painted Storks’ northern male (NM), southern male (SM), and female (SF) with the reference category, northern female (NF). Then, we classified the data through multinomial log-linear and feed-forward neural network models. We predicted the Painted Stork’s region and sex using the Machine Learning (ML) algorithms through open-source software Waikato Environment for Knowledge Analysis (WEKA.3.9.5) implemented in Java50. WEKA has standard Machine learning/data-mining algorithms with pre-processing tools generating insightful knowledge from the Painted Storks’ morphological data.Using the R and Python interfaces, we used different ML software frameworks, libraries, and computer programs, viz., TensorFlow and Keras, and extensively explored the WEKA workbench environment to predict the sex and region of the Painted Stork. We used the k-fold cross-validation (k = 10) to avoid overlapping test sets, including splitting the data into k subsets of equal size, using each subset for testing and the remainder for training. We analyzed using the WEKA on a Lenovo ThinkPad P53s Mobile Workstation with the 8th Gen Intel® Core i7 @ 1.80 GHz processor, 48 GB DDR4 Memory, NVIDIA® Quadro® P520 with 2 GB GDDR5 Graphics. The performance criteria for all the eight models were assessed by using the Precision (TP/(TP + FP)), Recall (TP/(TP + FN)), Area under Curve (AUC) = (Sensitivity + Specificity)/2, Accuracy = (TP + TN)/(TP + TN + FP + FN), where TP, TN, FN and FP are the acronyms of true positive, true negative, false negative and false positive, respectively. We used the WEKA experimenter environment to test the statistical significance of the selected Machine Learning algorithms. We performed the Paired T-tester based on the number of correctly classified instances and areas under the curve. More

  • in

    Quantifying wood decomposition by insects and fungi using computed tomography scanning and machine learning

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Filipiak, M. Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: The ecological stoichiometry of saproxylophagous insects. In Saproxylic Insects (ed. Ulyshen, M. D.) 429–470 (Springer, 2018).
    Google Scholar 
    Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species?. Ecol. Lett. 12, 45–56 (2009).PubMed 

    Google Scholar 
    Oberle, B. et al. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Glob. Change Biol. 26, 864–875 (2020).ADS 

    Google Scholar 
    Guo, C., Yan, E. & Cornelissen, J. H. C. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.06.003 (2022).Article 
    PubMed 

    Google Scholar 
    Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).PubMed 

    Google Scholar 
    Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl. Acad. Sci. U.S.A. 117, 1–8 (2020).
    Google Scholar 
    Tláskal, V. et al. Complementary roles of wood-Inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6, e01078-20 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection and Use (Springer, 2006).
    Google Scholar 
    Arantes, V. & Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. ACS Symp. Ser. 1158, 3–21 (2014).CAS 

    Google Scholar 
    Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).
    Google Scholar 
    Fukami, T. et al. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).PubMed 

    Google Scholar 
    Wang, J. Y. et al. Durability of mass timber structures: A review of the biological risks. Wood Fiber Sci. 50, 110–127 (2018).CAS 

    Google Scholar 
    Venugopal, P., Junninen, K., Linnakoski, R., Edman, M. & Kouki, J. Climate and wood quality have decayer-specific effects on fungal wood decomposition. For. Ecol. Manag. 360, 341–351 (2016).
    Google Scholar 
    Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
    Google Scholar 
    Freschet, G. T., Weedon, J. T., Aerts, R., van Hal, J. R. & Cornelissen, J. H. C. Interspecific differences in wood decay rates: Insights from a new short-term method to study long-term wood decomposition. J. Ecol. 100, 161–170 (2012).
    Google Scholar 
    Chang, C. et al. Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods Ecol. Evol. 11, 828–838 (2020).
    Google Scholar 
    Hervé, V., Mothe, F., Freyburger, C., Gelhaye, E. & Frey-Klett, P. Density mapping of decaying wood using X-ray computed tomography. Int. Biodeterior. Biodegrad. 86, 358–363 (2014).
    Google Scholar 
    Williamson, G. B. & Wiemann, M. C. Measuring wood specific gravity…Correctly. Am. J. Bot. 97, 519–524 (2010).PubMed 

    Google Scholar 
    Van Der Wal, A., Gunnewiek, P. J. A. K., Cornelissen, J. H. C., Crowther, T. W. & De Boer, W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere 7, e01393 (2016).
    Google Scholar 
    Saint-Germain, M., Buddle, C. M. & Drapeau, P. Substrate selection by saprophagous wood-borer larvae within highly variable hosts. Entomol. Exp. Appl. 134, 227–233 (2010).
    Google Scholar 
    Lettenmaier, L. et al. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia https://doi.org/10.1007/s00442-022-05141-8 (2022).Article 
    PubMed 

    Google Scholar 
    Gao, S. et al. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann. For. Sci. 74, 1–13 (2017).
    Google Scholar 
    Arnstadt, T. et al. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manag. 382, 129–142 (2016).
    Google Scholar 
    Gessner, M. O. Ergosterol as a measure of fungal biomass. In Methods to Study Litter Decomposition (eds Bärlocher, F. et al.) 247–255 (Springer, 2020). https://doi.org/10.1007/978-3-030-30515-4_27.Chapter 

    Google Scholar 
    Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).CAS 

    Google Scholar 
    Strid, Y., Schroeder, M., Lindahl, B., Ihrmark, K. & Stenlid, J. Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol. 7, 47–58 (2014).
    Google Scholar 
    Hagge, J. et al. Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proc. R. Soc. B Biol. Sci. 286, 20191744 (2019).
    Google Scholar 
    Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. Insect–fungus interactions in dead wood. In Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).
    Google Scholar 
    Leach, J. G., Ork, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).
    Google Scholar 
    Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, art47 (2014).
    Google Scholar 
    Shigo, A. L. & Marx, H. G. Compartmentalization of decay in trees (1977).De Ligne, L. et al. Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung 76, 408–420 (2022).
    Google Scholar 
    Freyburger, C., Longuetaud, F., Mothe, F., Constant, T. & Leban, J. M. Measuring wood density by means of X-ray computer tomography. Ann. For. Sci. 66, 804 (2009).
    Google Scholar 
    Wei, Q., Leblon, B. & La Rocque, A. On the use of X-ray computed tomography for determining wood properties: A review. Can. J. For. Res. 41, 2120–2140 (2011).
    Google Scholar 
    Fuchs, A., Schreyer, A., Feuerbach, S. & Korb, J. A new technique for termite monitoring using computer tomography and endoscopy. Int. J. Pest Manag. 50, 63–66 (2004).
    Google Scholar 
    Choi, B., Himmi, S. K. & Yoshimura, T. Quantitative observation of the foraging tunnels in Sitka spruce and Japanese cypress caused by the drywood termite Incisitermes minor (Hagen) by 2D and 3D X-ray computer tomography (CT). Holzforschung 71, 535–542 (2017).CAS 

    Google Scholar 
    Bélanger, S. et al. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs. J. Econ. Entomol. 106, 1331–1338 (2013).PubMed 

    Google Scholar 
    Pereira Junior, A. & Garcia de Carvalho, M. An initial study in wood tomographic image classification using the SVM and CNN techniques. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) Vol. 4 575–581 (2022).Kautz, M., Peter, F. J., Harms, L., Kammen, S. & Delb, H. Patterns, drivers and detectability of infestation symptoms following attacks by the European spruce bark beetle. J. Pest Sci. https://doi.org/10.1007/s10340-022-01490-8 (2022).Article 

    Google Scholar 
    Ehnström, B. & Axelsson, R. Insektsgnag i bark och ved (ArtDatabanken SLU, 2002).
    Google Scholar 
    Philpott, T. J., Prescott, C. E., Chapman, W. K. & Grayston, S. J. Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody debris. For. Ecol. Manag. 315, 121–128 (2014).
    Google Scholar 
    Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).
    Google Scholar 
    Deflorio, G., Johnson, C., Fink, S. & Schwarze, F. W. M. R. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 255, 2373–2383 (2008).
    Google Scholar 
    Fuhr, M. J., Schubert, M., Schwarze, F. W. M. R. & Herrmann, H. J. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 115, 919–932 (2011).CAS 
    PubMed 

    Google Scholar 
    Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233. https://doi.org/10.1109/ISBI.2011.5872394 (2011).Dodds, K. J., Graber, C. & Stephen, F. M. Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environ. Entomol. 30, 17–22 (2001).
    Google Scholar 
    Graham, S. A. Temperature as a limiting factor in the life of subcortical insects. J. Econ. Entomol. 17, 377–383 (1924).
    Google Scholar 
    Baldrian, P. et al. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 6, 1–11 (2013).
    Google Scholar 
    Šnajdr, J. et al. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 40, 2068–2075 (2008).
    Google Scholar 
    Möller, G. Struktur- und Substratbindung holzbewohnender Insekten, Schwerpunkt Coleoptera—Käfer. Dissertation at Freien Universität Berlin (Freie Universität Berlin, 2009).
    Google Scholar 
    Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).CAS 
    PubMed 

    Google Scholar 
    Steger, C., Ulrich, M. & Wiedemann, C. Machine Vision Algorithms and Applications (Wiley, 2008).
    Google Scholar 
    Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation (Springer, 2015).
    Google Scholar 
    Jansche, M. Maximum expected F-measure training of logistic regression models. In Proceedings of the conference on human language technology and empirical meth-ods in natural language processing 692–699 (Association for Computational Linguistics, 2005).Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chollet, F. Keras. https://github.com/fchollet/keras (2015).Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Tensorflow.org. (2015).R Core Team. R: A language and environment for statistical computing (2020). More

  • in

    Microbacterium kunmingensis sp. nov., an attached bacterium of Microcystis aeruginosa

    Liu LP. Characteristics of blue algal bloom in Dianchi Lake and analysis on its cause. Res Environ Sci. 1999;12:36–37.
    Google Scholar 
    Liu YM, Chen W, Li DH, Shen YW, Liu YD, Song LR. Analysis of paralytic shellfish toxins in Aphanizomenon DC-1 from Lake Dianchi, China. Environ Toxicol. 2006;21:289–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dziallas C, Grossart HP. Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol. 2011;13:1632–41.PubMed 
    Article 

    Google Scholar 
    Parveen B, Ravet V, Djediat C, Mary I, Quiblier C, Debroas D, Humbert JF. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ Microbiol Rep. 2013;5:716–24.CAS 
    PubMed 

    Google Scholar 
    Shi LM, Cai YF, Kong FX, Yu Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ Microbiol Rep. 2012;4:669–78.CAS 
    PubMed 

    Google Scholar 
    Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotech. 2015;33:125–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.PubMed 
    Article 

    Google Scholar 
    Yang L, Xiao L. Outburst, jeopardize and control of cyanobacterial bloom in lakes. Beijing: Science Press; 2011. p. 71–212.
    Google Scholar 
    de-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol. 2008;44:938–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao Y, Wang L, Wang X, Chen M, Chen J, Tian BY, Zhang BH. Nocardioides lacusdianchii sp. nov., an attached bacterium of Microcystis aeruginosa. Antonie van Leeuwenhoek. 2022;115:141–53.PubMed 
    Article 

    Google Scholar 
    Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.Article 

    Google Scholar 
    Zhang BH, Chen W, Li HQ, Zhou EM, Hu WY, Duan YQ, Mohamad OA, Gao R, Li WJ. An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol. 2015;99:7673–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Xiao M, Li HQ, Yang JY, Zha DM, Li WJ. Citricoccus lacusdiani sp. nov., an actinobacterium promoting Microcystis growth with limited soluble phosphorus. Antonie Van Leeuwenhoek. 2016;109:1457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Guo QG, Li WJ. Microbacterium lacusdiani sp. nov., a phosphate–solubilizing novel actinobacterium isolated from mucilaginous sheath of Microcystis. J Antibiot. 2017;70:147–51.Article 

    Google Scholar 
    Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR, editors. Methods for general and molecular bacteriology. Washington, DC: American Society for Microbiology; 1994. p. 607–54.Dong XZ, Cai MY. Manual of systematic identification of common bacteria. Beijing: Science Press; 2001. p. p349–89.
    Google Scholar 
    Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol. 1979;47:87–95.CAS 
    Article 

    Google Scholar 
    Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol. 1983;54:31–36.CAS 
    Article 

    Google Scholar 
    Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972;36:407–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol. 2009;59:2025–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBiocloud: a taxonomically united database of 16S rRNA gene sequences and whole–genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saitou N, Nei M. The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–42.CAS 
    PubMed 

    Google Scholar 
    Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–16.Article 

    Google Scholar 
    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.PubMed 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F, Rougemont J, Cole ST, Deplancke B. Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods. 2010;7:485–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinforma. 2007;8:209.Article 

    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence–based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.Article 

    Google Scholar 
    Xiao Y, Chen J, Chen M, Deng SJ, Xiong ZQ, Tian BY, Zhang BH. Mycolicibacterium lacusdiani sp. nov., an attached bacterium of Microcystis aeruginosa. Front Microbiol. 2022;13:861291.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaz-Moreira I, Lopes AR, Faria C, Spröer C, Schumann P, Nunes OC, Manaia CM. Microbacterium invictum sp. nov., isolated from homemade compost. Int J Syst Evol Microbiol. 2009;59:2036–41.PubMed 
    Article 

    Google Scholar 
    Ohta Y, Ito T, Mori K, Nishi S, Shimane Y, Mikuni K, Hatada Y. Microbacterium saccharophilum sp. nov., isolated from a sucrose-refining factory. Int J Syst Evol Microbiol. 2013;63:2765–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kageyama A, Takahashi Y, Ōmura S. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol. 2006;56:2113–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–5.
    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.Article 

    Google Scholar 
    Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR, Mendoza V, Poole AC, Zimmerman ZP, Utz LK, Wurch LL, Steffen MM. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE. 2021;16:e0257017.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Zhang YQ, Ai MJ, Hozzein WN, Li WJ. Modestobacter lacusdianchii sp. nov., a phosphate-solubilizing actinobacterium with ability to promote Microcystis growth. PLoS ONE. 2016;11:e0161069.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Environmental conditions experienced upon first breeding modulate costs of early breeding but not age-specific reproductive output in peregrine falcons

    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).Article 

    Google Scholar 
    Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. The forms and fitness cost of senescence: Age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. Am. Nat. 179, E15–E27 (2011).Article 

    Google Scholar 
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. Biol. Sci. 282, 20150209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Millon, A., Petty, S. J. & Lambin, X. Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls. J. Anim. Ecol. 79, 426–435 (2010).CAS 
    Article 

    Google Scholar 
    Newton, I. & Rothery, P. Senescence and reproductive value in Sparrowhawks. Ecology 78, 1000–1008 (1997).Article 

    Google Scholar 
    Boonekamp, J. J., Salomons, M., Bouwhuis, S., Dijkstra, C. & Verhulst, S. Reproductive effort accelerates actuarial senescence in wild birds: An experimental study. Ecol. Lett. 17, 599–605 (2014).Article 

    Google Scholar 
    Péron, G., Gimenez, O., Charmantier, A., Gaillard, J.-M. & Crochet, P.-A. Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proc. R. Soc. B Biol. Sci. 277, 2849–2856 (2010).Article 

    Google Scholar 
    Pyle, P., Nur, N., Sydeman, W. J. & Emslie, S. D. Cost of reproduction and the evolution of deferred breeding in the western gull. Behav. Ecol. 8, 140–147 (1997).Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Age specific reproductive performance in red-billed chough Pyrrhocorax pyrrhocorax: Patterns and processes in a natural population. J. Anim. Ecol. 72, 765–776 (2003).Article 

    Google Scholar 
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626 (2011).ADS 
    Article 

    Google Scholar 
    Nussey, D. H. et al. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1–18 (2007).Article 

    Google Scholar 
    Cam, E. & Monnat, J. Y. Apparent inferiority of first-time breeders in the kittiwake: The role of heterogeneity among age classes. J. Anim. Ecol. 69, 380–394 (2000).Article 

    Google Scholar 
    Newton, I., McGrady, M. J. & Oli, M. K. A review of survival estimates for raptors and owls. Ibis (Lond. 1859). 158, 227–248 (2016).Clutton-Brock, T. H. Reproductive success: Studies of individual variation in contrasting breeding systems. (The university of Chicago Press, 1988).Ringsby, T. H., Sæther, B. & Solberg, E. J. Factors affecting juvenile survival in house sparrow passer domesticus. J. Avian Biol. 29, 241–247 (1998).Article 

    Google Scholar 
    Verhulst, S. & Nilsson, J.-A. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 399–410 (2008).Article 

    Google Scholar 
    Crawley, M. J. The R Book. (John Wiley & Sons, Ltd, 2007). https://doi.org/10.1002/9780470515075Zabala, J. & Zuberogoitia, I. Breeding performance and survival in the peregrine falcon Falco peregrinus support an age-related competence improvement hypothesis mediated via an age threshold. J. Avian Biol. 46, 141–150 (2015).Article 

    Google Scholar 
    Forslund, P. & Pärt, T. Age and reproduction in birds–hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    Article 

    Google Scholar 
    Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).Article 

    Google Scholar 
    Sergio, F. et al. Variation in age-structured vital rates of a long-lived raptor: Implications for population growth. Basic Appl. Ecol. 12, 107–115 (2010).Article 

    Google Scholar 
    Murgatroyd, M. et al. Sex-specific patterns of reproductive senescence in a long-lived reintroduced raptor. J. Anim. Ecol. 87, 1587–1599 (2018).Article 

    Google Scholar 
    Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. 50, 1–14 (2019).Article 

    Google Scholar 
    Nielsen, J. T. & Drachmann, J. Age-dependent reproductive performance in Northern Goshawks Accipiter gentilis. Ibis (Lond. 1859). 145, 1–8 (2003).Zuberogoitia, I. et al. Population trends of Peregrine Falcon in Northern Spain–results of a long-term monitoring project. Ornis Hungarica 26, 51–68 (2018).Article 

    Google Scholar 
    Macdonald, D. W. The ecology of carnivore social behaviour. Nature 301, 379–384 (1983).ADS 
    Article 

    Google Scholar 
    Sergio, F. & Boto, A. Nest dispersion, diet, and breeding success of Black Kites (Milvus migrans) in the Italian pre-Alps. J. Raptor Res. 33, 207–217 (1999).
    Google Scholar 
    Sergio, F. & Newton, I. Occupancy as a measure of habitat quality. J. Anim. Ecol. 72, 857–865 (2003).Article 

    Google Scholar 
    Millon, A. et al. Dampening prey cycle overrides the impact of climate change on predator population dynamics: A long-term demographic study on tawny owls. Glob. Chang. Biol. 20, 1770–1781 (2014).ADS 
    Article 

    Google Scholar 
    Krüger, O. Long-term demographic analysis in goshawk accipiter gentilis: The role of density dependence and stochasticity. Oecologia 152, 459–471 (2007).ADS 
    Article 

    Google Scholar 
    Oro, D., Hernández, N., Jover, L. & Genovart, M. From recruitment to senescence: Food shapes the age-dependent pattern of breeding performance in a long-lived bird. Ecology 95, 446–457 (2014).Article 

    Google Scholar 
    Froy, H., Phillips, R. A., Wood, A. G., Nussey, D. H. & Lewis, S. Age-related variation in reproductive traits in the wandering albatross: Evidence for terminal improvement following senescence. Ecol. Lett. 16, 642–649 (2013).Article 

    Google Scholar 
    McCleery, R. H., Perrins, C. M., Sheldon, B. C. & Charmantier, A. Age-specific reproduction in a long-lived species- the combined effects of senescence and individual quality. Proc. R. Soc. B 275, 963–970 (2008).CAS 
    Article 

    Google Scholar 
    Dixon, A. et al. Seasonal variation in gonad physiology indicates juvenile breeding in the Saker Falcon (Falco cherrug). Avian Biol. Res. 14, 39–47 (2021).Article 

    Google Scholar 
    Newton, I. & Mearns, R. Population ecology of peregrines in South Scotland. in Peregrine falcon populations. Their management and recovery. (eds. Cade, T. J., Enbderson, J. H., Thelander, C. G. & White, C. M.) 651–665 (The Peregrine Fund Inc., 1988).Brommer, J. E., Pietiäinen, H. & Kolunen, H. The effect of age at first breeding on Ural owl lifetime reproductive success and fitness under cyclic food conditions. J. Anim. Ecol. 67, 359–369 (1998).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E., González-Oreja, J. A., Calvo, J. F. & Zabala, J. The relationship between brood size and prey selection in a Peregrine Falcon population located in a strategic region on the Western European Flyway. J. Ornithol. 154, 73–82 (2013).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E. & Zabala, J. Individual recognition of territorial peregrine falcons Falco peregrinus : A key for long-term monitoring programmes. Munibe Ciencias Nat. 61, 117–127 (2013).
    Google Scholar 
    Zabala, J. & Zuberogoitia, I. Individual quality explains variation in reproductive success better than territory quality in a long-lived territorial raptor. PLoS ONE 9, e90254 (2014).ADS 
    Article 

    Google Scholar 
    Zuberogoitia, I., Zabala, J. & Martínez, J. E. Moult in birds of prey: A review of current knowledge and future challenges for research. Ardeola 65, 183–207 (2018).Article 

    Google Scholar 
    McDonald, T. L. & White, G. C. A comparison of regression models for small counts. J. Wildl. Manage. 74, 514–521 (2010).Article 

    Google Scholar 
    Zabala, J. et al. Accounting for food availability reveals contaminant-induced breeding impairment, food-modulated contaminant effects, and endpoint-specificity of exposure indicators in free ranging avian populations. Sci. Total Environ. 791, 148322 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. (Springer-Verlag, 2002).Toms, J. D. & Lesperance, M. L. Piecewise regresion: A tool for identifying ecological tresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Van De Pol, M. & Verhulst, S. Age–dependent traits: A new statistical model to separate within–and between–individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer New York, 2009). https://doi.org/10.1007/978-0-387-87458-6Therneau, T. A Package for Survival Analysis in S. (2014). More

  • in

    Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology

    Sloan, R. E. in Essays on palaeontology in honour of Loris Shano Russell (ed C. S. Churcher) 134–155 (Royal Ontario Museum, 1976).Dodson, P. J. A faunal review of the Judith River (Oldman) Formation, Dinosaur Provincial Park, Alberta. Mosasaur 1, 89–118 (1983).
    Google Scholar 
    Clemens, W. A. in Dynamics of extinction (ed D. K. Elliott) 63–85 (John Wiley & Sons, 1986).Dodson, P. J. & Tatarinov, L. P. in The Dinosauria (eds D. B. Weishampel, P. J. Dodson, & H. Osmólska) 55–62 (University of California Press, 1990).Lehman, T. M. in Dinofest International (eds D. L. Wolberg, E. Stump, & G. D. Rosenberg) 223–240 (Philadelphia Academy of Natural Sciences, 1997).Lehman, T. M. in Mesozoic Vertebrate Life (eds D. H. Tanke & K. Carpenter) 310–328 (Indiana University Press, 2001).Sampson, S. D. et al. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism. PLoS ONE 5, e12292. https://doi.org/10.1371/journal.pone.0012292 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mannion, P. D., Upchurch, P., Carrano, M. T. & Barrett, P. M. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol. Rev. 86, 157–181. https://doi.org/10.1111/j.1469-185X.2010.00139.x (2011).Article 
    PubMed 

    Google Scholar 
    Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J. & Carrano, M. T. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. Spec. Publ 358, 209–240. https://doi.org/10.1144/SP358.14 (2011).Article 

    Google Scholar 
    Haq, B. U. Cretaceous eustasy revisited. Glob. Planet. Change 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007 (2014).ADS 
    Article 

    Google Scholar 
    Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J. & Savin, S. M. Does ice drive early Maastrichtian eustasy?. Geology 27, 783. https://doi.org/10.1130/0091-7613(1999)027%3c0783:dideme%3e2.3.co;2 (1999).ADS 
    Article 

    Google Scholar 
    Catuneanu, O., Sweet, A. R. & Miall, A. D. Reciprocal stratigraphy of the Campanian-Paleocene Western Interior of North America. Sediment. Geol. 134, 235–255. https://doi.org/10.1016/S0037-0738(00)00045-2 (2000).ADS 
    Article 

    Google Scholar 
    Smith, R. L. Ash flows. Geol. Soc. Am. Bull. 71, 795–841. https://doi.org/10.1130/0016-7606(1960)71[795:af]2.0.co;2 (1960).ADS 
    Article 

    Google Scholar 
    Smedes, H. W. Geology and igneous petrology of the northern Elkhorn mountains. 116 (United States Geological Survey Professional Paper 510 1966).Rutland, C., Smedes, H. W., Tilling, R. I. & Greenwood, W. R. in Cordilleran volcanism, plutonism, and magma generation at various crustal levels, Montana and Idaho. 28th International Geological Congress, Field Trip Guidebook T337 (ed D. W. Hyndman) 16–31 (American Geophysical Union, 1989).Harlan, S. S. et al. 40Ar/39Ar and K-Ar Geochronology and Tectonic Significance of the Upper Cretaceous Adel Mountain Volcanics and Spatially Associated Tertiary Igneous Rocks, Northwestern Montana. 29 (United States Geological Survey Professional Paper 1696, 2005).Breyer, J. A. et al. Evidence for late cretaceous volcanism in Trans-Pecos Texas. J. Geol. 115, 243–251. https://doi.org/10.1086/510640 (2007).ADS 
    Article 

    Google Scholar 
    Jennings, G. R., Lawton, T. E. & Clinkscales, C. A. Late cretaceous U-Pb tuff ages from the, Skunk Ranch Formation and their implications for age of Laramide deformation, Little Hatchet Mountains, southwestern New Mexico, USA. Cretac. Res. 43, 18–25. https://doi.org/10.1016/j.cretres.2013.02.001 (2013).Article 

    Google Scholar 
    Roberts, E. M. & Hendrix, M. S. Taphonomy of a petrified forest in the Two Medicine Formation (Campanian), northwest Montana: implications for palinspastic restoration of the Boulder batholith and Elkhorn Mountains Volcanics. Palaios 15, 476–482. https://doi.org/10.2307/3515516 (2000).ADS 
    Article 

    Google Scholar 
    Sewall, J. O. et al. Climate model boundary conditions for four Cretaceous time slices. Clim. Past. 3, 647–657. https://doi.org/10.5194/cp-3-647-2007 (2007).Article 

    Google Scholar 
    Bertog, J. Stratigraphy of the lower Pierre Shale (Campanian): implications for the tectonic and eustatic controls on facies distributions. J. Geol. Res. 2010, 910243. https://doi.org/10.1155/2010/910243 (2010).ADS 
    Article 

    Google Scholar 
    Fricke, H. C., Foreman, B. Z. & Sewall, J. O. Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous. Earth Planet. Sci. Lett. 289, 11–21. https://doi.org/10.1016/j.epsl.2009.10.018 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Obradovich, J. D. in Evolution of the Western Interior Basin (eds W. G. E. Caldwell & E. G. Kaufman) 379–396 (Geological Association of Canada Special Paper 39, 1993).Cobban, W. A., Walaszczyk, I., Obradovich, J. D. & McKinney, K. C. A USGS Zonal Table for the Upper Cretaceous Middle Cenomanian–Maastrichtian of the Western Interior of the United States Based on Ammonites, Inoceramids, and Radiometric Ages. (United States Geological Survey Open-File Report 2006–1250, 2006).Rogers, R. R., Swisher, C. C. & Horner, J. R. 40Ar/39Ar age and correlation of the nonmarine Two Medicine Formation (Upper Cretaceous), northwestern Montana, U.S.A. Can J Earth Sci 30, 1066–1075. https://doi.org/10.1139/e93-090 (1993).CAS 
    Article 

    Google Scholar 
    Goodwin, M. B. & Deino, A. L. The first radiometric ages from the Judith River Formation (Upper Cretaceous), Hill County, Montana. Can. J. Earth Sci. 26, 1384–1391. https://doi.org/10.1139/e89-118 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Thomas, R. G., Eberth, D. A., Deino, A. L. & Robinson, D. Composition, radioisotopic ages, and potential significance of an altered volcanic ash (bentonite) from the Upper Cretaceous Judith River Formation, Dinosaur Provincial Park, southern Alberta, Canada. Cretac. Res. 11, 125–162. https://doi.org/10.1016/s0195-6671(05)80030-8 (1990).CAS 
    Article 

    Google Scholar 
    Roberts, E. M., Deino, A. L. & Chan, M. A. 40Ar/39Ar age of the Kaiparowits Formation, southern Utah, and correlation of contemporaneous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretac. Res. 26, 307–318. https://doi.org/10.1016/j.cretres.2005.01.002 (2005).Article 

    Google Scholar 
    Fassett, J. E. & Steiner, M. B. in Mesozoic Geology and Paleontology of the Four Corners Region (eds O. Anderson, B. S. Kues, & S. G. Lucas) 239–247 (New Mexico Geological Society 48th Field Conference Guidebook, 1997).Sprain, C. J., Renne, P. R., Wilson, G. P. & Clemens, W. A. High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana. Geol. Soc. Am. Bull. 127, 393–409. https://doi.org/10.1130/B31076.1 (2015).ADS 
    Article 

    Google Scholar 
    Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A. & Jones, M. M. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth Planet. Sci. Lett. 452, 272–280. https://doi.org/10.1016/j.epsl.2016.07.041 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, T. T. et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth Planet. Sci. Lett. 446, 37–44. https://doi.org/10.1016/j.epsl.2016.04.007 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Blakey, R. C. Paleogeography and Paleotectonics of the Western Interior Seaway, Jurassic-Cretaceous of North America. (American Association of Petroleum Geologists Search and Discovery Article 30392, 2014).Archibald, J. D. Dinosaur Extinction and the End of an Era: What the Fossils Say 240 (Columbia University Press, London, 1996).
    Google Scholar 
    Currie, P. J. & Russell, D. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 537–569 (Indiana University Press, 2005).Eberth, D. A. & Hamblin, A. P. Tectonic, stratigraphic, and sedimentologic significance of a regional discontinuity in the upper Judith River Group (Belly River Wedge) of southern Alberta, Saskatchewan, and northern Montana. Can. J. Earth Sci. 30, 174–200. https://doi.org/10.1139/e93-016 (1993).ADS 
    Article 

    Google Scholar 
    Eberth, D. A. in Dinosaur Provincial Park: A spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) Ch. 3, 54–82 (Indiana University Press, 2005).Eberth, D. A. Origin and significance of mud-filled incised valleys (Upper Cretaceous) in southern Alberta, Canada. Sedimentology 43, 459–477. https://doi.org/10.1046/j.1365-3091.1996.d01-15.x (1996).ADS 
    Article 

    Google Scholar 
    Russell, D. A. A new specimen of Stenonychosaurus from the Oldman Formation (Cretaceous) of Alberta. Can. J. Earth Sci. 6, 595–612. https://doi.org/10.1139/e69-059 (1969).ADS 
    Article 

    Google Scholar 
    Dodson, P. Sedimentology and taphonomy of Oldman formation (Campanian), Dinosaur-Provincial-Park, Alberta (Canada). Palaeogeogr. Palaeocl. 10, 21–000. https://doi.org/10.1016/0031-0182(71)90044-7 (1971).Article 

    Google Scholar 
    Farlow, J. O. Consideration of trophic dynamics of a late cretaceous large dinosaur community (Oldman formation). Ecology 57, 841–857. https://doi.org/10.2307/1941052 (1976).Article 

    Google Scholar 
    Beland, P. & Russell, D. A. Paleoecology of Dinosaur-Provincial-Park (Cretaceous), Alberta, interpreted from distribution of articulated vertebrate remains. Can. J. Earth Sci. 15, 1012–1024. https://doi.org/10.1139/e78-109 (1978).ADS 
    Article 

    Google Scholar 
    MacDonald, M., Currie, P. J. & Spencer, W. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 478–485 (Indiana University Press, 2005).Eberth, D. A., Brinkman, D. B. & Barkas, V. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 495–508 (Indiana University Press, 2010).Mallon, J. C., Evans, D. C., Ryan, M. J. & Anderson, J. S. Megaherbivorous dinosaur turnover in the Dinosaur Park Formation (upper Campanian) of Alberta, Canada. Palaeogeogr. Palaeocl. 350, 124–138. https://doi.org/10.1016/j.palaeo.2012.06.024 (2012).Article 

    Google Scholar 
    Brown, C. M., Evans, D. C., Campione, N. E., O’Brien, L. J. & Eberth, D. A. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr Palaeocl 372, 108–122. https://doi.org/10.1016/j.palaeo.2012.06.027 (2013).Article 

    Google Scholar 
    Eberth, D. A. & Getty, M. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 501–536 (Indiana University Press, 2005).Brown, C. M., Herridge-Berry, S., Chiba, K., Vitkus, A. & Eberth, D. A. High-resolution (centimetre-scale) GPS/GIS-based 3D mapping and spatial analysis of in situ fossils in two horned-dinosaur bonebeds in the Dinosaur Park Formation (Upper Cretaceous) at Dinosaur Provincial Park, Alberta, Canada. Can. J. Earth Sci. 58, 225–246. https://doi.org/10.1139/cjes-2019-0183 (2021).ADS 
    Article 

    Google Scholar 
    Eberth, D. A., Braman, D. R. & Tokaryk, T. T. Stratigraphy, Sedimentology and vertebrate paleontology of the Judith River Formation (Campanian) near Muddy Lake, West-Central Saskatchewan. Bull. Can. Petrol. Geol. 38, 387–406 (1990).
    Google Scholar 
    Rogers, R. R. Sequence analysis of the Upper Cretaceous Two Medicine and Judith River formations, Montana; nonmarine response to the Claggett and Bearpaw marine cycles. J. Sediment. Res. 68, 615–631. https://doi.org/10.2110/jsr.68.604 (1998).ADS 
    Article 

    Google Scholar 
    Rogers, R. R. Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of Northwestern Montana: evidence for drought-related mortality. Palaios 5, 394–413. https://doi.org/10.2307/3514834 (1990).ADS 
    Article 

    Google Scholar 
    Falcon-Lang, H. J. Growth interruptions in silicified conifer woods from the Upper Cretaceous Two Medicine Formation, Montana, USA: implications for palaeoclimate and dinosaur palaeoecology. Palaeogeogr. Palaeocl. 199, 299–314. https://doi.org/10.1016/S0031-0182(03)00539-X (2003).Article 

    Google Scholar 
    Horner, J. R. & Makela, R. Nest of juveniles provides evidence of family-structure among dinosaurs. Nature 282, 296–298. https://doi.org/10.1038/282296a0 (1979).ADS 
    Article 

    Google Scholar 
    Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61. https://doi.org/10.1038/358059a0 (1992).ADS 
    Article 

    Google Scholar 
    Sampson, S. D. Two new horned dinosaurs from the Upper Cretaceous Two Medicine Formation of Montana; With a phylogenetic analysis of the Centrosaurinae (Ornithischia:Ceratopsidae). J. Vertebr. Paleontol. 15, 743–760. https://doi.org/10.1080/02724634.1995.10011259 (1995).Article 

    Google Scholar 
    Carr, T. D., Varricchio, D. J., Sedlmayr, J. C., Roberts, E. M. & Moore, J. R. A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Sci. Rep. 7, 44942. https://doi.org/10.1038/srep44942 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, J. P., Ryan, M. J. & Evans, D. C. A new, transitional centrosaurine ceratopsid from the Upper Cretaceous Two Medicine Formation of Montana and the evolution of the “Styracosaurus-line” dinosaurs. R. Soc. Open Sci. 7, 200284. https://doi.org/10.1098/rsos.200284 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foreman, B. Z., Rogers, R. R., Deino, A. L., Wirth, K. R. & Thole, J. T. Geochemical characterization of bentonite beds in the Two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretac. Res. 29, 373–385. https://doi.org/10.1016/j.cretres.2007.07.001 (2008).Article 

    Google Scholar 
    Varricchio, D. J. et al. in Large Meteorite Impacts and Planetary Evolution IV Vol. 465 (eds R. L. Gibson & W. U. Reimold) 269–299 (Geological Society of America Special Paper 465, 2010).Meek, F. B. & Hayden, F. V. Descriptions of new species of acephala and gasteropoda, from the tertiary formations of Nebraska Territory, with some general remarks on the geology of the country about the sources of the Missouri River. Ceratites Americanus. Proc. Acad. Nat. Sci. Phila. 8, 111–126 (1856).
    Google Scholar 
    Hayden, F. V. Notes explanatory of a map and section illustrating the geologic structure of the country bordering the Missouri River from the mouth of the Platte River to Fort Benton. Proc. Acad. Natl. Sci. Phila. 9, 109–148 (1857).
    Google Scholar 
    Hayden, F. V. in [Fourth Annual] Preliminary Report of the United States Geological Survey of Wyoming and portions of contiguous Territories 85–98 (U.S. Geological Survey, 1871).Dawson, G. M. in Report on the Geology and Resources of the Region in the Vicinity of the Forty-Ninth Parallel, from the Lake of the Woods to the Rocky Mountains 1–18 (British North American Boundary Commission, 1875).Stanton, T. W., Hatcher, J. B. & Knowlton, F. H. Geology and Paleontology of the Judith River Beds (United States Geological Survey Bulletin No. 257, 1905).Bowen, C. F. in Shorter Contributions to General Geology 1914 95–153 (United States Geological Survey Professional Paper 90, 1915).Waage, K. M. in The Cretaceous System in the Western Interior of North America: The Proceedings of an International Symposium Organized by the Geological Association of Canada, Saskatoon, Saskatchewan, May 23–26, 1973 (ed W. G. E. Caldwell) 55–81 (Geological Association of Canada Special paper 13, 1975).Leidy, J. Notice of remains of extinct reptiles and fishes, discovered by Dr. FV Hayden in the Bad Lands of the Judith River, Nebraska Territory. Proc. Acad. Nat. Sci. Phila. 8, 72–73. https://doi.org/10.5281/zenodo.1038128 (1856).Article 

    Google Scholar 
    Leidy, J. Extinct vertebrata from the Judith River and Great Lignite formations of Nebraska. Trans. Am. Philos. Soc. 11, 139–154. https://doi.org/10.2307/3231936 (1860).Article 

    Google Scholar 
    Cope, E. D. On some extinct reptiles and Batrachia from the Judith River and Fox Hills beds of Montana. Proc. Acad. Natl. Sci. Phila. 28, 340–359 (1876).
    Google Scholar 
    Sternberg, C. H. Notes on the fossil vertebrates collected on the Cope expedition to the Judith River and Cow Island beds, Montana, in 1876. Science 40, 134–135. https://doi.org/10.1126/science.40.1021.134 (1914).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sahni, A. The vertebrate fauna of the Judith River Formation, Montana. Bull. Am. Mus. Nat. Hist. 147, 325–412 (1972).
    Google Scholar 
    Tschudy, B. D. Palynology of the upper Campanian (Cretaceous) Judith River Formation, north-central Montana. 42 (United States Geological Survey Professional Paper 770, 1973).Case, G. R. A new Selachian Fauna from the Judith River formation (Campanian) of Montana. Palaeontogr. Abt. A Band A 160, 176–205 (1978).
    Google Scholar 
    Horner, J. R. A new hadrosaur (Reptilia, Ornithischia) from the Upper Cretaceous Judith River Formation of Montana. J. Vertebr. Paleontol. 8, 314–321. https://doi.org/10.1080/02724634.1988.10011714 (1988).Article 

    Google Scholar 
    Fiorillo, A. R. & Currie, P. J. Theropod teeth from the Judith River formation (Upper Cretaceous) of south-central Montana. J. Vertebr. Paleontol. 14, 74–80. https://doi.org/10.1080/02724634.1994.10011539 (1994).Article 

    Google Scholar 
    Prieto-Marquez, A. New information on the cranium of Brachylophosaurus canadensis (Dinosauria, Hadrosauridae), with a revision of its phylogenetic position. J. Vertebr. Paleontol. 25, 144–156. https://doi.org/10.1671/0272-4634(2005)025[0144:Niotco]2.0.Co;2 (2005).Article 

    Google Scholar 
    Fricke, H. C., Rogers, R. R., Backlund, R., Dwyer, C. N. & Echt, S. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta. Palaeogeogr. Palaeocl. 266, 13–27. https://doi.org/10.1016/j.palaeo.2008.03.030 (2008).Article 

    Google Scholar 
    Fricke, H. C., Rogers, R. R. & Gates, T. A. Hadrosaurid migration: inferences based on stable isotope comparisons among Late Cretaceous dinosaur localities. Paleobiology 35, 270–288. https://doi.org/10.1666/08025.1 (2009).Article 

    Google Scholar 
    Tweet, J. S., Chin, K., Braman, D. R. & Murphy, N. L. Probable gut contents within a specimen of Brachylophosaurus canadensis (Dinosauria: Hadrosauridae) from the Upper Cretaceous Judith River formation of Montana. Palaios 23, 624–635. https://doi.org/10.2110/palo.2007.p07-044r (2008).ADS 
    Article 

    Google Scholar 
    Ryan, M. J., Evans, D. C., Currie, P. J. & Loewen, M. A. A new chasmosaurine from northern Laramidia expands frill disparity in ceratopsid dinosaurs. Naturwissenschaften 101, 505–512. https://doi.org/10.1007/s00114-014-1183-1 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Arbour, V. M. & Evans, D. C. A new ankylosaurine dinosaur from the Judith River formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R. Soc. Open Sci. 4, 161086. https://doi.org/10.1098/rsos.161086 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chiba, K., Ryan, M. J., Fanti, F., Loewen, M. A. & Evans, D. C. New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River formation (Campanian, Montana). J. Paleontol. 92, 272–288. https://doi.org/10.1017/jpa.2017.62 (2017).Article 

    Google Scholar 
    Rogers, R. R. et al. Age, correlation, and lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River formation in its type area (north-central Montana), with a comparison of low- and high-accommodation alluvial records. J. Geol. 124, 99–135. https://doi.org/10.1086/684289 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lawton, T. F., Pollock, S. L. & Robinson, R. A. J. Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the late cretaceous fluvial systems of southwestern Utah, USA. J. Sediment. Res. 73, 389–406. https://doi.org/10.1306/100702730389 (2003).ADS 
    Article 

    Google Scholar 
    Jinnah, Z. A. et al. New 40Ar/39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits formations on the Kaiparowits Plateau, Utah: implications for regional correlation, provenance, and biostratigraphy. Cretac. Res. 30, 287–299. https://doi.org/10.1016/j.cretres.2008.07.012 (2009).Article 

    Google Scholar 
    Beveridge, T. L. et al. Refined geochronology and revised stratigraphic nomenclature of the Upper Cretaceous Wahweap Formation, Utah, U.S.A. and the age of early Campanian vertebrates from southern Laramidia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 591, 110876. https://doi.org/10.1016/j.palaeo.2022.110876 (2022).Article 

    Google Scholar 
    Jinnah, Z. A. & Roberts, E. M. Facies associations, paleoenvironment, and base-level changes in the Upper Cretaceous Wahweap Formation, Utah, USA. J. Sediment. Res. 81, 266–283. https://doi.org/10.2110/jsr.2011.22 (2011).ADS 
    Article 

    Google Scholar 
    Gregory, H. E. & Moore, R. C. The Kaiparowits region, a geographic and geologic reconnaissance of parts of Utah and Arizona. Report No. 164, 161 (United States Geological Survey Professional Paper 164, 1931).Lohrengel, C. F. II. Palynology of Kaiparowits Formation, Garfield County, Utah. AAPG Bull. 53, 729–729. https://doi.org/10.1306/5d25c75f-16c1-11d7-8645000102c1865d (1969).Article 

    Google Scholar 
    Roberts, E. M. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sediment. Geol. 197, 207–233. https://doi.org/10.1016/j.sedgeo.2006.10.001 (2007).ADS 
    Article 

    Google Scholar 
    Lawton, T. F. & Bradford, B. A. Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, USA, from Zircon U-Pb geochronology and petrography. J. Sediment. Res. 81, 495–512. https://doi.org/10.2110/jsr.2011.45 (2011).ADS 
    Article 

    Google Scholar 
    Beveridge, T. L., Roberts, E. M. & Titus, A. L. Volcaniclastic member of the richly fossiliferous Kaiparowits Formation reveals new insights for regional correlation and tectonics in southern Utah during the latest Campanian. Cretac. Res. https://doi.org/10.1016/j.cretres.2020.104527 (2020).Article 

    Google Scholar 
    Titus, A. L. et al. in Interior Western United States (ed C. M. Dehler) 1–28 (Geological Society of America Field Guide 6, 2005).Titus, A. L. & Loewen, M. A. At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (Indiana University Press, 2013).Cifelli, R. L. Cretaceous mammals of southern Utah. I. Marsupials from the Kaiparowits Formation (Judithian). J. Vertebr. Paleontol. 10, 295–319. https://doi.org/10.1080/02724634.1990.10011816 (1990).Article 

    Google Scholar 
    Eaton, J., Cifelli, R., Hutchison, J. H., Kirkland, J. & Parrish, J. in Vertebrate Paleontology in Utah (ed D. D. Gillette) 345–353 (Utah Geological Survey Miscellaneous Publication 99–1, 1999).Zanno, L. E. & Sampson, S. D. A new oviraptorosaur (Theropoda, Maniraptora) from the Late Cretaceous (Campanian) of Utah. J. Vertebr. Paleontol. 25, 897–904. https://doi.org/10.1671/0272-4634(2005)025[0897:Anotmf]2.0.Co;2 (2005).Article 

    Google Scholar 
    Gates, T. A. & Sampson, S. D. A new species of Gryposaurus (Dinosauria : Hadrosauridae) from the late Campanian Kaiparowits Formation, southern Utah, USA. Zool J Linn Soc-Lond 151, 351–376. https://doi.org/10.1111/j.1096-3642.2007.00349.x (2007).Article 

    Google Scholar 
    Sampson, S. D., Lund, E. K., Loewen, M. A., Farke, A. A. & Clayton, K. E. A remarkable short-snouted horned dinosaur from the Late Cretaceous (late Campanian) of southern Laramidia. Proc. Biol. Sci. 280, 20131186. https://doi.org/10.1098/rspb.2013.1186 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carr, T. D., Williamson, T. E., Britt, B. B. & Stadtman, K. Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (Late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits formation of Utah. Naturwissenschaften 98, 241–246. https://doi.org/10.1007/s00114-011-0762-7 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zanno, L. E., Varricchio, D. J., O’Connor, P. M., Titus, A. L. & Knell, M. J. A new troodontid theropod, Talos sampsoni gen. et sp. Nov., from the Upper Cretaceous Western Interior Basin of North America. PLoS ONE 6, e24487. https://doi.org/10.1371/journal.pone.0024487 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loewen, M. A., Irmis, R. B., Sertich, J. J., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans. PLoS ONE 8, e79420. https://doi.org/10.1371/journal.pone.0079420 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiersma, J. P. & Irmis, R. B. A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. Nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA. Peerj 6, e5016. https://doi.org/10.7717/peerj.5016 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Titus, A. L. et al. Geology and taphonomy of a unique tyrannosaurid bonebed from the upper Campanian Kaiparowits Formation of southern Utah: implications for tyrannosaurid gregariousness. PeerJ 9, e11013. https://doi.org/10.7717/peerj.11013 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, E., Sampson, S., Deino, A., Bowring, S. & Buchwaldt, R. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 85–106 (Indiana University Press, 2013).Fassett, J. E. & Hinds, J. S. Geology and fuel resources of the Fruitland Formation and Kirtland Shale of the San Juan Basin, New Mexico and Colorado. Report No. 676, 76 (United States Geological Survey Professional Paper 676, 1971).Fassett, J. E. in Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah (eds M. A. Kirschbaum, L. N. R. Roberts, & L. Biewick) Q1-Q132 (U.S. Geological Survey Professional Paper 1625–B, 2000).Flynn, A. G. et al. Early Paleocene magnetostratigraphy and revised biostratigraphy of the Ojo Alamo Sandstone and Lower Nacimiento Formation, San Juan Basin, New Mexico, USA. GSA Bull. 132, 2154–2174. https://doi.org/10.1130/b35481.1 (2020).Article 

    Google Scholar 
    Hay, O. P. On the habits and the pose of the Sauropodous dinosaurs, especially of Diplodocus. Am. Nat. 42, 672–681. https://doi.org/10.1086/278992 (1908).Article 

    Google Scholar 
    Gilmore, C. W. in Shorter Contributions to General Geology 1916 279–308 (United States Geological Survey Professional Paper 98-Q, 1916).Gilmore, C. W. On the Replilia of the Kirtland formation of New Mexico, with descriptions of new species of fossil turtles. Proc. U.S. Natl. Mus. 83, 159–188 (1935).Article 

    Google Scholar 
    Hunt, A. P. Integrated vertebrate, invertebrate and plant taphonomy of the Fossil Forest area (Fruitland and Kirtland formations: Late Cretaceous), San-Juan-County, New-Mexico, USA. Palaeogeogr. Palaeocl. 88, 85–107. https://doi.org/10.1016/0031-0182(91)90016-K (1991).Article 

    Google Scholar 
    Hunt, A. P. & Lucas, S. G. in New Mexico Geological Society 43rd Field Conference Guidebook Vol. 43 (eds S. G. Lucas, B. S. Kues, T. E. Williamson, & A. P. Hunt) 217–239 (New Mexico Geological Society, 1992).Fassett, J. E. & Heizler, M. T. in The Geology of the Ouray-Silverton Area (eds K. E. Karlstrom et al.) 115–121 (68th New Mexico Geological Society Field Conference Guidebook, 2017).Folinsbee, R., Lipson, J. & Baadsgaard, H. Potassium-argon dates of upper cretaceous ash falls, Alberta, Canada. Ann. N. Y. Acad. Sci. 91, 352. https://doi.org/10.1111/j.1749-6632.1961.tb35475.x (1961).ADS 
    Article 

    Google Scholar 
    Lerbekmo, J. F. Petrology of the belly river formation, southern Alberta foothills. Sedimentology 2, 54–86. https://doi.org/10.1111/j.1365-3091.1963.tb01200.x (1963).ADS 
    Article 

    Google Scholar 
    Min, K. W., Renne, P. R. & Huff, W. D. 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth Planet. Sci. Lett. 185, 121–134. https://doi.org/10.1016/S0012-821x(00)00365-4 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Steiger, R. H. & Jäger, E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362. https://doi.org/10.1016/0012-821x(77)90060-7 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Samson, S. D. & Alexander, E. C. Calibration of the interlaboratory 40Ar-39Ar dating standard, Mmhb-1. Chem. Geol. 66, 27–34. https://doi.org/10.1016/0168-9622(87)90025-X (1987).CAS 
    Article 

    Google Scholar 
    Deino, A. & Potts, R. Single-crystal 40Ar/39Ar dating of the Olorgesailie formation, Southern Kenya Rift. J. Geophys. Res. 95, 8453. https://doi.org/10.1029/JB095iB06p08453 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Renne, P. R. et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145, 117–152. https://doi.org/10.1016/s0009-2541(97)00159-9 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504. https://doi.org/10.1126/science.1154339 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fowler, D. W. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America. PLoS ONE 12, e0188426. https://doi.org/10.1371/journal.pone.0188426 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turrin, B. D. et al. in American Geophysical Union, Fall Meeting Vol. 2016 V23A–2969 (San Francisco, California, 2016).Phillips, D., Matchan, E. L., Dalton, H. & Kuiper, K. F. Revised astronomically calibrated 40Ar/39Ar ages for the Fish Canyon Tuff sanidine—closing the interlaboratory gap. Chem. Geol. 597, 120815. https://doi.org/10.1016/j.chemgeo.2022.120815 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Eberth, D. A. & Kamo, S. L. High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian-Maastrichtian), Red Deer River valley, Alberta, Canada. Can. J. Earth Sci. 57, 1220–1237. https://doi.org/10.1139/cjes-2019-0019 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Gale, A. S. et al. in Geologic Time Scale 2020 (eds F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg) 1023–1086 (Elsevier, 2020).Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480. https://doi.org/10.1016/j.gca.2015.05.026 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattinson, J. M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501. https://doi.org/10.1016/j.gca.2015.02.040 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Lu, J. et al. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proc. Natl. Acad. Sci. U.S.A. 118, e2109895118. https://doi.org/10.1073/pnas.2109895118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, B., Harlow, G. E., Wohletz, K., Zhou, Z. & Meng, J. New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota. Nat. Commun. 5, 3151. https://doi.org/10.1038/ncomms4151 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gates, T. A. et al. Biogeography of terrestrial and freshwater vertebrates from the late Cretaceous (Campanian) Western Interior of North America. Palaeogeogr. Palaeocl. 291, 371–387. https://doi.org/10.1016/j.palaeo.2010.03.008 (2010).Article 

    Google Scholar 
    Eaton, J. G. in Stratigraphy, depositional environments; and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway (eds J. Dale Nations & J. G. Eaton) 47–63 (Geological Society of America Special Paper 260, 1991).Sankey, J. T. Late Campanian southern dinosaurs, Aguja Formation, Big Bend, Texas. J. Paleontol. 75, 208–215. https://doi.org/10.1666/0022-3360(2001)075%3c0208:Lcsdaf%3e2.0.Co;2 (2001).Article 

    Google Scholar 
    Sullivan, R. & Lucas, S. G. Vertebrate faunal succession in the Upper Cretaceous, San Juan Basin, New Mexico, with implications for correlations within the north American western interior. J. Vertebr. Paleontol. 23, 102a–102a (2003).
    Google Scholar 
    Currie, P. J. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 3–33 (Indiana University Press, 2005).Kirkland, J. I. & Deblieux, D. D. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 117–140 (Indiana University Press, 2010).Miller, I. M., Johnson, K., Kline, D. E., Nichols, D. J. & Barclay, R. in At the Top of the Grand Staircase: The Late Cretaceous of southern Utah (eds A. Titus & M. Loewen) 107–131 (Indiana University Press, 2013).Tapanila, L. & Roberts, E. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 132–152 (Indiana University Press, 2013).Schmitt, J. & Varricchio, D. J. Volcano-tectonic partitioning of Laramidia: Influence on Campanian terrestrial environments and ecosystems. Program and Abstracts. J. Vertebr. Paleontol. 31, 188. https://doi.org/10.1080/02724634.2011.10635174 (2011).Article 

    Google Scholar 
    Burgener, L. et al. An extreme climate gradient-induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North America. GSA Bull. https://doi.org/10.1130/b35904.1 (2021).Article 

    Google Scholar 
    Sullivan, R. M. Revision of the dinosaur Stegoceras Lambe (Ornithischia, Pachycephalosauridae). J. Vertebr. Paleontol. 23, 181–207. https://doi.org/10.1671/0272-4634(2003)23[181:ROTDSL]2.0.CO;2 (2003).Article 

    Google Scholar 
    Sullivan, R. & Lucas, S. The Kirtlandian land-vertebrate “age”-faunal composition, temporal position and biostratigraphic correlation in the nonmarine Upper Cretaceous of western North America. N. M. Mus. Nat. Hist. Sci. Bull. 35, 7–29 (2006).
    Google Scholar 
    Lucas, S. G., Sullivan, R. M., Lichtig, A., Dalman, S. & Jasinski, S. E. in Cretaceous Period: Biotic Diversity and Biogeography Vol. New Mexico Museum of Natural History and Science Bulletin 71 (eds S. G. Lucas & A. Khosla) 195–213 (2016).Dean, C. D., Chiarenza, A. A. & Maidment, S. C. R. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881–901. https://doi.org/10.1111/pala.12492 (2020).Article 

    Google Scholar 
    Maidment, S. C. R., Dean, C. D., Mansergh, R. I. & Butler, R. J. Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America. Proc. Biol. Sci. 288, 20210692. https://doi.org/10.1098/rspb.2021.0692 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loughney, K. M. & Badgley, C. The influence of depositional environment and basin history on the taphonomy of mammalian assemblages from the Barstow Formation (middle Miocene), California. Palaios 35, 175–190. https://doi.org/10.2110/palo.2019.067 (2020).ADS 
    Article 

    Google Scholar 
    Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl. Acad. Sci. 113, 5036–5040. https://doi.org/10.1073/pnas.1521478113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833. https://doi.org/10.1038/s41467-021-23754-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Therrien, F. O. & Fastovsky, D. E. Paleoenvironments of early theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. Palaios 15, 194–211. https://doi.org/10.1669/0883-1351(2000)015%3c0194:poetcf%3e2.0.co;2 (2000).ADS 
    Article 

    Google Scholar 
    Hoke, G. D., Schmitz, M. D. & Bowring, S. A. An ultrasonic method for isolating nonclay components from clay-rich material. Geochem. Geophys. Geosyst. 15, 492–498. https://doi.org/10.1002/2013GC005125 (2014).ADS 
    Article 

    Google Scholar 
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. Geol. Soc. Am. Bull. 123, 2142–2159. https://doi.org/10.1130/b30433.1 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Widmann, P., Davies, J. H. F. L. & Schaltegger, U. Calibrating chemical abrasion: its effects on zircon crystal structure, chemical composition and U-Pb age. Chem. Geol. 511, 1–10. https://doi.org/10.1016/j.chemgeo.2019.02.026 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Krogh, T. E. Low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494. https://doi.org/10.1016/0016-7037(73)90213-5 (1973).ADS 
    CAS 
    Article 

    Google Scholar 
    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312. https://doi.org/10.1016/S0009-2541(96)00033-2 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003479 (2011).Article 

    Google Scholar 
    McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003478 (2011).Article 

    Google Scholar 
    Machlus, M. L. et al. A strategy for cross-calibrating U-Pb chronology and astrochronology of sedimentary sequences: an example from the Green River Formation, Wyoming, USA. Earth Planet. Sci. Lett. 413, 70–78. https://doi.org/10.1016/j.epsl.2014.12.009 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614. https://doi.org/10.1126/science.1215507 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D. & Bowring, S. A. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta 70, 426–445. https://doi.org/10.1016/j.gca.2005.09.007 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattinson, J. M. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186–198. https://doi.org/10.1016/j.chemgeo.2010.05.007 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889 (1971).ADS 
    Article 

    Google Scholar 
    Nasdala, L. et al. GZ7 and GZ8—two zircon reference materials for SIMS U-Pb geochronology. Geostand. Geoanal. Res. 42, 431–457. https://doi.org/10.1111/ggr.12239 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C Appl. Stat. 57, 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x (2008).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E. & Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci. Rev. 27, 1872–1885. https://doi.org/10.1016/j.quascirev.2008.07.009 (2008).ADS 
    Article 

    Google Scholar  More