More stories

  • in

    Fitness consequences of chronic exposure to different light pollution wavelengths in nocturnal and diurnal rodents

    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682. https://doi.org/10.1016/j.tree.2010.09.007 (2010).Article 
    PubMed 

    Google Scholar 
    Kyba, C., Mohar, A. & Posch, T. How bright is moonlight?. Astron. Geophys. 58, 1.31-1.32 (2017).
    Google Scholar 
    Hölker, F. et al. The dark side of light: A transdisciplinary research agenda for light pollution policy. Ecol. Soc. 15, 150413 (2010).
    Google Scholar 
    Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2021).PubMed 

    Google Scholar 
    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 88, 912–927. https://doi.org/10.1111/brv.12036 (2013).Article 
    PubMed 

    Google Scholar 
    Gaston, K. J. & Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 22, 323–330. https://doi.org/10.1139/er-2014-0005 (2014).Article 

    Google Scholar 
    Gaston, K. J., Visser, M. E. & Hoelker, F. The biological impacts of artificial light at night: The research challenge. R. Soc. Philos. Trans. Biol. Sci. 370, 20140133–20140133 (2015).
    Google Scholar 
    Ouyang, J. Q. et al. Stressful colours: Corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0517 (2016).Article 

    Google Scholar 
    Ouyang, J. Q., Davies, S. & Dominoni, D. Hormonally mediated effects of artificial light at night on behavior and fitness: Linking endocrine mechanisms with function. J. Exp. Biol. https://doi.org/10.1242/jeb.156893 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. Biol. Sci. 280(1756), 20123017. https://doi.org/10.1098/rspb.2012.3017 (2012).CAS 
    Article 

    Google Scholar 
    Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413–419 (2021).CAS 
    PubMed 

    Google Scholar 
    Ayalon, I., de Barros Marangoni, L. F., Benichou, J. I., Avisar, D. & Levy, O. Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Change Biol. 25, 4194–4207 (2019).ADS 

    Google Scholar 
    Amichai, E. & Kronfeld-Schor, N. Artificial light at night promotes activity throughout the night in nesting common swifts (Apus apus). Sci. Rep. 9, 11052 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kronfeld-Schor, N. et al. Drivers of infectious disease seasonality: Potential implications for COVID-19. J. Biol. Rhythms 36, 35–54 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2016.0248 (2017).Article 

    Google Scholar 
    Kronfeld-Schor, N. et al. Chronobiology by moonlight. Proc. R. Soc. B 280, 20123088 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Stevenson, T. J. et al. Disrupted seasonal biology impacts health, food security and ecosystems. Proc. R. Soc. Lond. B. https://doi.org/10.1098/rspb.2015.1453 (2015).Article 

    Google Scholar 
    Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4, e09991 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, J. A., Meléndez-Fernández, O. H., Bumgarner, J. R. & Nelson, R. J. Effects of light pollution on photoperiod-driven seasonality. Horm. Behav. 141, 105150. https://doi.org/10.1016/j.yhbeh.2022.105150 (2022).Article 
    PubMed 

    Google Scholar 
    Grubisic, M. et al. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability 11, 6400 (2019).CAS 

    Google Scholar 
    Stevenson, T. J. & Prendergast, B. J. Photoperiodic time measurement and seasonal immunological plasticity. Front. Neuroendocrinol. 37, 76–88. https://doi.org/10.1016/j.yfrne.2014.10.002 (2015).Article 
    PubMed 

    Google Scholar 
    Bumgarner, J. R. & Nelson, R. J. Light at night and disrupted circadian rhythms alter physiology and behavior. Integr. Comp. Biol. 61, 1160–1169 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Mishra, I. et al. Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Sci. Rep. 9, 1–12 (2019).
    Google Scholar 
    Grunst, M. L. et al. Early-life exposure to artificial light at night elevates physiological stress in free-living songbirds. Environ. Pollut. 259, 113895 (2020).CAS 
    PubMed 

    Google Scholar 
    Bedrosian, T., Galan, A., Vaughn, C., Weil, Z. M. & Nelson, R. J. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J. Neuroendocrinol. 25, 590–596 (2013).CAS 
    PubMed 

    Google Scholar 
    Touzot, M. et al. Artificial light at night alters the sexual behaviour and fertilisation success of the common toad. Environ. Pollut. 259, 113883 (2020).CAS 
    PubMed 

    Google Scholar 
    de Jong, M. et al. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Philos. Trans. R. Soc. B 370, 20140128 (2015).
    Google Scholar 
    Spoelstra, K. et al. Experimental illumination of natural habitat: An experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. Lond. B 370, 20140129 (2015).
    Google Scholar 
    Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070. https://doi.org/10.1126/science.1069609 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutman, R., Dayan, T., Levy, O., Schubert, I. & Kronfeld-Schor, N. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice. PLoS ONE 6, e23446 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dhairykar, M., Singh, K. P., Kumar Jadav, K. & Rajput, N. Comparison of cortisol level in Asian elephants of different tiger reserves of Madhya Pradesh. Int. J. Vet. Sci. Anim. Husb. 5, 152–155 (2020).
    Google Scholar 
    Sosnowski, M. J., Benítez, M. E. & Brosnan, S. F. Endogenous cortisol correlates with performance under pressure on a working memory task in capuchin monkeys. Sci. Rep. 12, 1–10. https://doi.org/10.1038/s41598-022-04986-6 (2022).CAS 
    Article 

    Google Scholar 
    Bewick, V., Cheek, L. & Ball, J. Statistics review 12: survival analysis. Crit. care 8, 1–6 (2004).
    Google Scholar 
    Shkolnik, A. Studies in the Comparative Biology of Israel’s Two Species of Spiny Mice (genus Acomys). Hebrew (1966).Shkolnik, A. Diurnal activity in a small desert rodent. Int. J. Biometeorol. 15, 115–120 (1971).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levy, O., Dayan, T. & Kronfeld-Schor, N. The relationship between the golden spiny mouse circadian system and its diurnal activity: An experimental field enclosures and laboratory study. Chronobiol. Int. 24, 599–613. https://doi.org/10.1080/07420520701534640 (2007).Article 
    PubMed 

    Google Scholar 
    Levy, O., Dayan, T. & Kronfeld-Schor, N. Interspecific competition and torpor in golden spiny mice: Two sides of the energy-acquisition coin. Integr. Comp. Biol. 51, 441–448. https://doi.org/10.1093/icb/icr071 (2011).Article 
    PubMed 

    Google Scholar 
    Jones, M. & Dayan, T. Foraging behavior and microhabitat use by spiny mice, Acomys cahirinus and A. russatus, in the presence of Blanford’s fox (Vulpes cana) odor. J. Chem. Ecol. 26, 455–469 (2000).CAS 

    Google Scholar 
    Jones, M., Mandelik, Y. & Dayan, T. Coexistence of temporally partitioned spiny mice: Roles of habitat structure and foraging behavior. Ecology 82, 2164–2176 (2001).
    Google Scholar 
    Kronfeld, N., Dayan, T., Zisapel, N. & Haim, A. Coexisting populations of Acomys cahirinus and A. russatus: A preliminary report. Isr. J. Zool. 40, 177–183 (1994).
    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435 (2003).Article 

    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. The dietary basis for temporal partitioning: Food habits of coexisting Acomys species. Oecologia 121, 123–128 (1999).ADS 
    PubMed 

    Google Scholar 
    Pinter-Wollman, N., Dayan, T., Eilam, D. & Kronfeld-Schor, N. Can aggression be the force driving temporal separation between competing common and golden spiny mice?. J. Mammal. 87, 48–53 (2006).
    Google Scholar 
    Shargal, E., Kronfeld-Schor, N. & Dayan, T. Population biology and spatial relationships of coexisting spiny mice (Acomys) in Israel. J. Mammal. 81, 1046–1052 (2000).
    Google Scholar 
    Pasco, R., Gardner, D. K., Walker, D. W. & Dickinson, H. A superovulation protocol for the spiny mouse (Acomys cahirinus). Reprod. Fertil. Dev. 24, 1117–1122 (2012).CAS 
    PubMed 

    Google Scholar 
    Lee, T. E., Watkins, J. F. & Cash, C. G. Acomys russatus. Mammal. Species 550, 1–4 (1998).
    Google Scholar 
    Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B 280, 20123017 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kempenaers, B., Borgström, P., Loës, P., Schlicht, E. & Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739. https://doi.org/10.1016/j.cub.2010.08.028 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Le Tallec, T., Théry, M. & Perret, M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 97, 753–760 (2016).
    Google Scholar 
    Vonshak, M., Dayan, T. & Kronfeld-Schor, N. Arthropods as a prey resource: Patterns of diel, seasonal, and spatial availability. J. Arid Environ. 73, 458–462. https://doi.org/10.1016/j.jaridenv.2008.11.013 (2009).ADS 
    Article 

    Google Scholar 
    Levy, O., Dayan, T. & Kronfeld-Schor, N. Adaptive thermoregulation in golden spiny mice: The influence of season and food availability on body temperature. Physiol. Biochem. Zool. 84, 175–184 (2011).PubMed 

    Google Scholar 
    Levy, O., Dayan, T., Rotics, S. & Kronfeld-Schor, N. Foraging sequence, energy intake and torpor: An individual-based field study of energy balancing in desert golden spiny mice. Ecol. Lett. 15, 1240–1248. https://doi.org/10.1111/j.1461-0248.2012.01845.x (2012).Article 
    PubMed 

    Google Scholar 
    Katz, N., Dayan, T. & Kronfeld-Schor, N. Fitness effects of interspecific competition between two species of desert rodents. Zoology 128, 62–68 (2018).PubMed 

    Google Scholar 
    Brzezinski, A. Melatonin in humans. N. Engl. J. Med. 336, 186–195 (1997).CAS 
    PubMed 

    Google Scholar 
    Hastings, M., Vance, G. & Maywood, E. Some reflections on the phylogeny and function of the pineal. Experientia 45, 903–909 (1989).CAS 
    PubMed 

    Google Scholar 
    Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4, 163–173 (2006).CAS 
    PubMed 

    Google Scholar 
    Mora, F., Segovia, G., Del Arco, A., de Blas, M. & Garrido, P. Stress, neurotransmitters, corticosterone and body–brain integration. Brain Res. 1476, 71–85 (2012).CAS 
    PubMed 

    Google Scholar 
    Farrell, M. R. Sex Differences and Stress Effects in Corticolimbic Structure and Function (Indiana University, 2013).
    Google Scholar 
    Son, G. H., Chung, S. & Kim, K. The adrenal peripheral clock: Glucocorticoid and the circadian timing system. Front. Neuroendocrinol. 32, 451–465 (2011).CAS 
    PubMed 

    Google Scholar 
    Schradin, C. Seasonal changes in testosterone and corticosterone levels in four social classes of a desert dwelling sociable rodent. Horm. Behav. 53, 573–579 (2008).CAS 
    PubMed 

    Google Scholar 
    Zatra, Y. et al. Seasonal changes in plasma testosterone and cortisol suggest an androgen mediated regulation of the pituitary adrenal axis in the Tarabul’s gerbil Gerbillus tarabuli (Thomas, 1902). Gen. Comp. Endocrinol. 258, 173–183 (2018).CAS 
    PubMed 

    Google Scholar 
    Richardson, C. S., Heeren, T. & Kunz, T. H. Seasonal and sexual variation in metabolism, thermoregulation, and hormones in the big brown bat (Eptesicus fuscus). Physiol. Biochem. Zool. 91, 705–715 (2018).PubMed 

    Google Scholar 
    Touitou, S., Heistermann, M., Schülke, O. & Ostner, J. Triiodothyronine and cortisol levels in the face of energetic challenges from reproduction, thermoregulation and food intake in female macaques. Horm. Behav. 131, 104968 (2021).CAS 
    PubMed 

    Google Scholar 
    Rotics, S., Dayan, T. & Kronfeld-Schor, N. Effect of artificial night lighting on temporally partitioned spiny mice. J. Mammal. 92, 159–168. https://doi.org/10.1644/10-mamm-a-112.1 (2011).Article 

    Google Scholar 
    Rotics, S., Dayan, T., Levy, O. & Kronfeld-Schor, N. Light masking in the field: An experiment with nocturnal and diurnal spiny mice under semi-natural field conditions. Chronobiol. Int. 28, 70–75. https://doi.org/10.3109/07420528.2010.525674 (2011).Article 
    PubMed 

    Google Scholar 
    Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol. 24, 444–448 (2003).CAS 
    PubMed 

    Google Scholar 
    Khansari, D. N., Murgo, A. J. & Faith, R. E. Effects of stress on the immune system. Immunol. Today 11, 170–175 (1990).CAS 
    PubMed 

    Google Scholar 
    Zozaya, S. M., Alford, R. A. & Schwarzkopf, L. Invasive house geckos are more willing to use artificial lights than are native geckos. Austral. Ecol. 40, 982–987 (2015).
    Google Scholar 
    Komine, H., Koike, S. & Schwarzkopf, L. Impacts of artificial light on food intake in invasive toads. Sci. Rep. 10, 1–8 (2020).
    Google Scholar 
    Murphy, S., Vyas, D., Sher, A. & Grenis, K. Light pollution affects invasive and native plant traits important to plant competition and herbivorous insects. Biol. Invasions 24, 599–602. https://doi.org/10.1007/s10530-021-02670-w (2022).Article 

    Google Scholar 
    Murphy, S. M. et al. Streetlights positively affect the presence of an invasive grass species. Ecol. Evol. 11, 10320–10326 (2021).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Wolf risk fails to inspire fear in two mesocarnivores suggesting facilitation prevails

    Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).PubMed 
    Article 

    Google Scholar 
    Newsome, T. M. et al. Top predators constrain mesopredator distributions. Nat. Commun. 8, 15469 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prugh, L. R. & Sivy, K. J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 23, 902–918 (2020).PubMed 
    Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).PubMed 
    Article 

    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).Article 

    Google Scholar 
    McArthur, C., Banks, P. B., Boonstra, R. & Forbey, J. S. The dilemma of foraging herbivores: Dealing with food and fear. Oecologia 176, 667–689 (2014).ADS 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 
    Article 

    Google Scholar 
    Kuijper, D. P. J. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B Biol. Sci. 283, 20161625 (2016).Article 

    Google Scholar 
    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolfes, elk, and bison: Reestablishing the ‘landscape of fear’ in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409 (2001).Article 

    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 
    Article 

    Google Scholar 
    Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).PubMed 
    Article 

    Google Scholar 
    Leo, V., Reading, R. P. & Letnic, M. Interference competition: Odours of an apex predator and conspecifics influence resource acquisition by red foxes. Oecologia 179, 1033–1040 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27, 1826–1832 (2016).
    Google Scholar 
    Haswell, P. M., Jones, K. A., Kusak, J. & Hayward, M. W. Fear, foraging and olfaction: how mesopredators avoid costly interactions with apex predators. Oecologia 187, 573–583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Switalski, T. A. Coyote foraging ecology and vigilance in response to gray wolf reintroduction in Yellowstone National Park. Can. J. Zool. 81, 985–993 (2003).Article 

    Google Scholar 
    Wikenros, C., Jarnemo, A., Frisén, M., Kuijper, D. P. J. & Schmidt, K. Mesopredator behavioral response to olfactory signals of an apex predator. J. Ethol. 35, 161–168 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palomares, F., Ferreras, P., Fedriani, J. M. & Delibes, M. Spatial relationships between Iberian Lynx and other carnivores in an area of south-western Spain. J. Appl. Ecol. 33, 5–13 (1996).Article 

    Google Scholar 
    Salo, P., Nordström, M., Thomson, R. L. & Korpimäki, E. Risk induced by a native top predator reduces alien mink movements. J. Anim. Ecol. 77, 1092–1098 (2008).PubMed 
    Article 

    Google Scholar 
    Haswell, P. M., Kusak, J. & Hayward, M. W. Large carnivore impacts are context-dependent. Food Webs 12, 3–13 (2017).Article 

    Google Scholar 
    Parsons, M. H. et al. Biologically meaningful scents: A framework for understanding predator–prey research across disciplines. Biol. Rev. 93, 98–114 (2018).PubMed 
    Article 

    Google Scholar 
    Sivy, K. J., Pozzanghera, C. B., Grace, J. B. & Prugh, L. R. Fatal attraction? Intraguild facilitation and suppression among predators. Am. Nat. 190, 663–679 (2017).PubMed 
    Article 

    Google Scholar 
    Ruprecht, J. et al. Variable strategies to solve risk-reward tradeoffs in carnivore communities. Proc. Natl. Acad. Sci. USA. 118, e2101614118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jędrzejewska, B. & Jędrzejewski, W. Predation in Vertebrate Communities Vol. 135 (Springer, 1998).Book 

    Google Scholar 
    Jȩdrzejewski, W. et al. Kill rates and predation by wolves on ungulate populations in Białowieża primeval forest (Poland). Ecology 83, 1341–1356 (2002).
    Google Scholar 
    Selva, N. The role of scavenging in the predator community of Białowieża Primeval Forest (Poland). PhD Thesis. (University of Sevilla, 2004).Kowalczyk, R., Zalewski, A., Jędrzejewska, B., Ansorge, H. & Bunevich, A. N. Reproduction and mortality of invasive raccoon dogs (Nyctereutes procyonoides) in the Biatowieža Primeval Forest (eastern Poland). Ann. Zool. Fennici 46, 291–303 (2009).Article 

    Google Scholar 
    Ballard, W. B., Carbyn, L. N. & Smith, D. W. Wolf interactions with non-prey. In Wolves: Behavior, Ecology, and Conservation (eds Mech, D. & Boitani, L.) 259–271 (University of Chicago Press, 2003).
    Google Scholar 
    Brown, J. S. Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22, 37–47 (1988).Article 

    Google Scholar 
    Bedoya-Perez, M. A., Carthey, A. J. R., Mella, V. S. A., McArthur, C. & Banks, P. B. A practical guide to avoid giving up on giving-up densities. Behav. Ecol. Sociobiol. 67, 1541–1553 (2013).Article 

    Google Scholar 
    Kwiatkowski, W. Vegetation landscapes of Białowieża Forest. Phytocoen. Suppl. Cart. Geobot 6, 35–87 (1994).
    Google Scholar 
    European Court of Justice Judgment of the Court (Grand Chamber) of 17 April 2018. European Commission vs. Republic of Poland. Case C-441/17. https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-04/cp180048en.pdf.Bubnicki, J. W., Churski, M., Schmidt, K., Diserens, T. A. & Kuijper, D. P. J. Linking spatial patterns of terrestrial herbivore community structure to trophic interactions. Elife 8, e44937 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kowalczyk, R., Bunevich, A. N. & Jędrzejewska, B. Badger density and distribution of setts in Bialowieza Primeval Forest (Poland and Belarus) compared to other Eurasian populations. Acta Theriol. 45, 395–408 (2000).Article 

    Google Scholar 
    Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B. & Kowalczyk, R. Territory size of wolves Canis lupus: Linking local (Białowieża Primeval Forest, Poland) and holarctic-scale patterns. Ecography 30, 66–67 (2007).
    Google Scholar 
    Schmidt, K., Jędrzejewski, W., Okarma, H. & Kowalczyk, R. Spatial interactions between grey wolves and Eurasian lynx in Białowieża Primeval Forest, Poland. Ecol. Res. 24, 207–214 (2009).Article 

    Google Scholar 
    Bytheway, J. P., Carthey, A. J. R. & Banks, P. B. Risk vs reward: How predators and prey respond to aging olfactory cues. Behav. Ecol. Sociobiol. 67, 715–725 (2013).Article 

    Google Scholar 
    Carthey, A. J. R. & Banks, P. B. Naiveté is not forever: responses of a vulnerable native rodent to its long term alien predators. Oikos 125, 918–926 (2016).Article 

    Google Scholar 
    Blanchard, C. D. & Blanchard, R. J. Antipredator DEFENSE. In The Behavior of the Laboratory Rat: A Handbook with Tests (eds Whishaw, I. Q. & Kolb, B.) 335–343 (Oxford University Press, 2004).Chapter 

    Google Scholar 
    Masini, C. V., Sauer, S. & Campeau, S. Ferret odor as a processive stress model in rats: Neurochemical, behavioral, and endocrine evidence. Behav. Neurosci. 119, 280–292 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bubnicki, J. W., Churski, M. & Kuijper, D. P. J. Trapper: An open source web-based application to manage camera trapping projects. Methods Ecol. Evol. 7, 1209–1216 (2016).Article 

    Google Scholar 
    Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B. & Okarma, H. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza Primeval Forest in Poland. Can. J. Zool. 79, 1993–2004 (2001).Article 

    Google Scholar 
    Theuerkauf, J., Jędrzejewski, W., Schmidt, K. & Gula, R. Spatiotemporal segregation of wolves from humans in the Bialowieza Forest (Poland). J. Wildl. Manage. 67, 706–716 (2003).Article 

    Google Scholar 
    Theuerkauf, J., Rouys, S. & Jędrzejewski, W. Selection of den, rendezvous, and resting sites by wolves in the Bialowieza Forest, Poland. Can. J. Zool. 81, 163–167 (2003).Article 

    Google Scholar 
    Miller, B. J., Harlow, H. J., Harlow, T. S., Biggins, D. & Ripple, W. J. Trophic cascades linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals. Can. J. Zool. 90, 70–78 (2012).Article 

    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Zoller, H. & Drygala, F. Activity patterns of the invasive raccoon dog (Nyctereutes procyonoides) in North East Germany. Folia Zool. 62, 290–296 (2013).Article 

    Google Scholar 
    Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).Article 

    Google Scholar 
    Mukherjee, S., Zelcer, M. & Kotler, B. P. Patch use in time and space for a meso-predator in a risky world. Oecologia 159, 661–668 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Tredennick, A. T., Hooker, G., Ellner, S. P. & Adler, P. B. A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology 102, e03336 (2021).PubMed 
    Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Magnusson, A. et al. R Package ‘glmmTMB’. (2020).Hartig, F. R Package ‘DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models’ (2021).Fox, J. et al. R Package ‘effects’. (2020).Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).PubMed 
    Article 

    Google Scholar 
    Diserens, T. A. et al. Fossoriality in a risky landscape: Badger sett use varies with perceived wolf risk. J. Zool. 313, 76–85 (2021).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Scheinin, S., Yom-Tov, Y., Motro, U. & Geffen, E. Behavioural responses of red foxes to an increase in the presence of golden jackals: A field experiment. Anim. Behav. 71, 577 (2006).Article 

    Google Scholar 
    Vanak, A. T., Thaker, M. & Gompper, M. E. Experimental examination of behavioural interactions between free-ranging wild and domestic canids. Behav. Ecol. Sociobiol. 64, 279–287 (2009).Article 

    Google Scholar 
    Creel, S., Winnie, J. A., Christianson, D. & Liley, S. Time and space in general models of antipredator response: Tests with wolves and elk. Anim. Behav. 76, 1139–1146 (2008).Article 

    Google Scholar 
    Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128 (2017).PubMed 
    Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services

    DeVault, T. L., Rhodes, O. E. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10, 303–311 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054 (2014).PubMed 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
    Google Scholar 
    Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. Condor 88, 318–323 (1986).
    Google Scholar 
    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88 (2017).ADS 

    Google Scholar 
    Kane, A. & Kendall, C. J. Understanding how mammalian scavengers use information from avian scavengers: Cue from above. J. Anim. Ecol. 86, 837–846 (2017).PubMed 

    Google Scholar 
    Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology. https://doi.org/10.1002/ecy.3519 (2021).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    Bassi, E., Battocchio, D., Marcon, A., Stahlberg, S. & Apollonio, M. Scavenging on ungulate carcasses in a mountain forest area in Northern Italy. Mamm. Study 43, 1–11 (2018).
    Google Scholar 
    Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428 (2021).
    Google Scholar 
    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. 89, 2156–2167 (2020).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography (Cop.) 43, 1143–1155 (2020).
    Google Scholar 
    Cortés-Avizanda, A., Selva, N., Carrete, M. & Donázar, J. A. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl. Ecol. 10, 265–272 (2009).
    Google Scholar 
    Sebastián-González, E. et al. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97, 95–105 (2016).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & Devault, T. L. Carrion cycling in food webs: Comparisons among terrestrial and marine ecosystems. Oikos 121, 1021–1026 (2012).
    Google Scholar 
    Ray, R. R., Seibold, H. & Heurich, M. Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim. Biodivers. Conserv. 37, 77–88 (2014).
    Google Scholar 
    Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography (Cop.) 41, 1173–1183 (2018).
    Google Scholar 
    Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).
    Google Scholar 
    Putman, A. R. J. Patterns of carbon dioxide evolution from decaying carrion: Decomposition of small mammal carrion in temperate systems, Part 1. Oikos 31, 47–57 (1978).CAS 

    Google Scholar 
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Google Scholar 
    Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Pedro, P. O. et al.) 23–44 (Springer, 2019).
    Google Scholar 
    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).
    Google Scholar 
    Animal Care and Use Committee. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J. Mamm. 79, 1416–1431 (1998).
    Google Scholar 
    Committee of Reviewing Taxon Names and Specimen Collections. Guidelines for the Procedure of Obtaining Mammal Specimens as Approved by the Mammal Society of Japan (Revised in 2009) (Mammal Society of Japan, 2009).
    Google Scholar 
    Yoshino, M. Microclimate: New Edition (Chijin Shokan, 1986).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).Sokal, R. R. & Rohlf, F. J. Biometry 4th edn. (WH Freeman and Company, 2012).MATH 

    Google Scholar 
    Fisher, R. A. Statistical Methods for Research Workers (Oliver and Boyd, 1934).MATH 

    Google Scholar 
    Therneau, T. A Package for Survival Analysis in S. Version 2.38 (2015).Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. & Rhodes, O. E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar  More

  • in

    The combined impact of low temperatures and shifting phosphorus availability on the competitive ability of cyanobacteria

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).PubMed 
    Article 

    Google Scholar 
    Grzybowski, M. & Glińska-Lewczuk, K. Principal threats to the conservation of freshwater habitats in the continental biogeographical region of Central Europe. Biodivers. Conserv. 28, 4065–4097 (2019).Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article 

    Google Scholar 
    Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113 (2001).CAS 
    Article 

    Google Scholar 
    Krztoń, W., Kosiba, J., Pociecha, A. & Wilk-Woźniak, E. The effect of cyanobacterial blooms on bio- and functional diversity of zooplankton communities. Biodivers. Conserv. 28, 1815–1835 (2019).Article 

    Google Scholar 
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change 165, 1–17 (2021).Article 

    Google Scholar 
    Yan, X. et al. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Res. 125, 449–457 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, D., Glibert, P. & Burkholder, J. Harmful algal blooms and eutrophication: Nutrient sources, compositions, and consequences. Estuaries 25, 704–726 (2002).Article 

    Google Scholar 
    Li, D. et al. Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ. Sci. Eur. https://doi.org/10.1186/s12302-018-0152-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Ocean. 59, 99–144 (2014).Article 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, H. W. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters 1. Limnol. Oceanogr. 33, 823–843 (1988).ADS 
    CAS 

    Google Scholar 
    Schindler, D. W. et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. 105, 11254–11258 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Förster, W. et al. Phosphorous supply to a eutrophic artificial lake: Sedimentary versus groundwater sources. Water 13, 1–20 (2021).ADS 
    Article 

    Google Scholar 
    Lang, P. et al. Phytoplankton community responses in a shallow lake following lanthanum-bentonite application. Water Res. 97, 55–68 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lürling, M. & van Oosterhout, F. Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710, 253–263 (2013).Article 

    Google Scholar 
    Bishop, W. M. & Richardson, R. J. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources. Environ. Sci. Pollut. Res. 25, 4544–4557 (2018).CAS 
    Article 

    Google Scholar 
    Drugă, B. et al. The impact of cation concentration on Microcystis (cyanobacteria) scum formation. Sci. Rep. 9, 1–11 (2019).ADS 
    Article 

    Google Scholar 
    Stockenreiter, M., Isanta Navarro, J., Buchberger, F. & Stibor, H. Community shifts from eukaryote to cyanobacteria dominated phytoplankton: The role of mixing depth and light quality. Freshw. Biol. 66, 2145–2157 (2021).Article 

    Google Scholar 
    Drugă, B. et al. term acclimation might enhance the growth and competitive ability of Microcystis aeruginosa in warm environments. Freshw. Biol. https://doi.org/10.1111/fwb.13865 (2022).Article 

    Google Scholar 
    Fordham, D. A. Mesocosms reveal ecological surprises from climate change. PLOS Biol. 13, 1–7 (2015).Article 

    Google Scholar 
    Reinl, K. L. et al. Cyanobacterial blooms in oligotrophic lakes: Shifting the high-nutrient paradigm. Freshw. Biol. 66, 1846–1859 (2021).Article 

    Google Scholar 
    Tillich, U. M., Wolter, N., Franke, P., Dühring, U. & Frohme, M. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol. 14, 1–15 (2014).Article 

    Google Scholar 
    Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).PubMed 
    Article 

    Google Scholar 
    LaPanse, A. J., Krishnan, A. & Posewitz, M. C. Adaptive Laboratory Evolution for algal strain improvement: Methodologies and applications. Algal Res. 53, 102122 (2021).Article 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLOS Pathog. 15, e1007801 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glöckner, F. O. et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl. Acad. Sci. U. S. A. 100, 8298–8303 (2003).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sowell, S. M. et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3, 93–105 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiriac, M.-C. et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome https://doi.org/10.21203/rs.3.rs-776685/v2 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Von Der Heyden, S., Chao, E. E. & Cavalier-Smith, T. Genetic diversity of goniomonads: An ancient divergence between marine and freshwater species. Eur. J. Phycol. 39, 343–350 (2004).Article 

    Google Scholar 
    Kim, B. R., Nakano, S. I., Kim, B. H. & Han, M. S. Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 45, 163–170 (2006).Article 

    Google Scholar 
    Varol, M., Bekleyen, A., Şen, B. & Gökot, B. First record of the order Choanoflagellida in Turkey. Turkish J. Fish. Aquat. Sci. 11, 1–2 (2011).
    Google Scholar 
    Cabrerizo, M. J. et al. Warming and CO2 effects under oligotrophication on temperate phytoplankton communities. Water Res. https://doi.org/10.1016/j.watres.2020.115579 (2020).Article 
    PubMed 

    Google Scholar 
    Maberly, S. C., Pitt, J.-A., Davies, P. S. & Carvalho, L. Nitrogen and phosphorus limitation and the management of small productive lakes. Inl. Waters 10, 159–172 (2020).Article 

    Google Scholar 
    Li, J., Sellner, K., Place, A., Cornwell, J. & Gao, Y. Mitigation of cyanohabs using phoslock® to reduce water column phosphorus and nutrient release from sediment. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph182413360 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nwosu, E. C. et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the southern Baltics. Front. Microbiol. 12, 1–17 (2021).ADS 
    Article 

    Google Scholar 
    Vörös, L., Callieri, C., V-Balogh, K. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).Article 

    Google Scholar 
    Camacho, A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25, 453–478 (2006).Article 

    Google Scholar 
    Cabello-Yeves, P. J. et al. Novel synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8, 1151 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prihantini, N. B., Addana, F., Sjamsuridzal, W. & Yokota, A. The effect of temperature on the growth of genus Synechococcus isolated from four Indonesian hot springs and Agathis small lake of Universitas Indonesia. AIP Conf. Proc. 1729 (2016).Callieri, C. Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett. 364, 1–8 (2017).Article 

    Google Scholar 
    Acinas, S. G., Haverkamp, T. H. A., Huisman, J. & Stal, L. J. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J. 3, 31–46 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kehoe, D. M. & Gutu, A. Responding to color: The regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57, 127–150 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bell, T. & Kalff, J. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 46, 1243–1248 (2001).ADS 
    Article 

    Google Scholar 
    Jezberová, J. & Komárková, J. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ. Microbiol. 9, 1858–1862 (2007).PubMed 
    Article 

    Google Scholar 
    Chu, Z., Jin, X., Iwami, N. & Inamori, Y. The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. In Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China (eds Qin, B. et al.) 217–223 (Springer, 2007).Chapter 

    Google Scholar 
    Ma, J. et al. The persistence of cyanobacterial (Microcystis spp,) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr. 61, 711–722 (2016).ADS 
    Article 

    Google Scholar 
    Davis, T. W., Berry, D. L., Boyer, G. L. & Gobler, C. J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8, 715–725 (2009).CAS 
    Article 

    Google Scholar 
    Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64, 1347–1370 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, R. M. et al. Episodic decrease in temperature increases mcy gene transcription and cellular microcystin in continuous cultures of Microcystis aeruginosa PCC 7806. Front. Microbiol. 11, 3081 (2020).Article 

    Google Scholar 
    You, J., Mallery, K., Hong, J. & Hondzo, M. Temperature effects on growth and buoyancy of Microcystis aeruginosa. J. Plankton Res. 40, 16–28 (2018).Article 

    Google Scholar 
    Aguilar, P., Acosta, E., Dorador, C. & Sommaruga, R. Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Front. Microbiol. 7, 1–8 (2016).Article 

    Google Scholar 
    Echeverría-Vega, A. et al. Watershed-induced limnological and microbial status in two oligotrophic andean lakes exposed to the same climatic scenario. Front. Microbiol. 9, 1–17 (2018).Article 

    Google Scholar 
    Schmidt, M. L., White, J. D. & Denef, V. J. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 18, 1212–1226 (2016).PubMed 
    Article 

    Google Scholar 
    Kaboré, O. D., Godreuil, S. & Drancourt, M. Planctomycetes as host-associated bacteria: A perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell Infect. Microbiol. 10, 1–19 (2020).Article 

    Google Scholar 
    Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sutcliffe, I. C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Phenotype changes of cyanobacterial and microbial distribution characteristics of surface sediments in different periods of cyanobacterial blooms in Taihu Lake. Aquat. Ecol. 54, 591–607 (2020).CAS 
    Article 

    Google Scholar 
    Waidner, L. A. & Kirchman, D. L. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl. Environ. Microbiol. 74, 4012–4021 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sisson, C., Gulla-Devaney, B., Katz, L. A. & Grattepanche, J. D. Seed bank and seasonal patterns of the eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a New England vernal pool. J. Plankton Res. 40, 376–390 (2018).Article 

    Google Scholar 
    Moser, M. & Weisse, T. The outcome of competition between the two chrysomonads Ochromonas sp. and Poterioochromonas malhamensis depends on pH. Eur. J. Protistol. 47, 79–85 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pröschold, T. et al. An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea). Sci. Rep. 11, 1–19 (2021).Article 

    Google Scholar 
    Jones, H. A classification of mixotrophic protists based on their behaviour. Freshw. Biol. 37, 35–43 (1997).Article 

    Google Scholar 
    Fischer, R., Giebel, H. A. & Ptacnik, R. Identity of the limiting nutrient (N vs. P) affects the competitive success of mixotrophs. Mar. Ecol. Prog. Ser. 563, 51–63 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Gillette, J. P., Stewart, D. J., Teece, M. A. & Schulz, K. L. Abundance of mixoplanktonic algae in relation to prey, light and nutrient limitation in a dystrophic lake: A mesocosm study. Mar. Freshw. Res. 72, 1760–1772 (2021).CAS 
    Article 

    Google Scholar 
    Harder, C. B. et al. Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J. 10, 2488–2497 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 1–12 (2018).Article 

    Google Scholar 
    Sakharova, E. G. & Korneva, L. G. Phytoplankton in the Littoral and Pelagial zones of the Rybinsk reservoir in years with different temperature and water-level regimes. Inl. Water Biol. 11, 6–12 (2018).Article 

    Google Scholar 
    Cruaud, P. et al. Annual Protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: The saint-Charles River (Canada). Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S. & Huszar, V. L. M. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw. Biol. 58, 552–559 (2013).Article 

    Google Scholar 
    Jensen, J. P., Jeppesen, E., Olrik, K. & Kristensen, P. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. Aquat. Sci. 51, 1692–1699 (1994).Article 

    Google Scholar 
    Dragoș, N. An Introduction to the Algae and the Culture Collection of Algae at the Institute of Biological Research, Cluj-Napoca (Cluj University Press, 1997).
    Google Scholar 
    Frank, J. A. et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. M. & Stanier, R. Y. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 51, 199–202 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. IPCC report Global warming of 1.5°C. Ipcc Sr15 2, 17–20 (2018).Kalendar, R., Khassenov, B., Ramankulov, Y., Samuilova, O. & Ivanov, K. I. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109, 312–319 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).Article 

    Google Scholar 
    Kimura, S. et al. Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl. Environ. Microbiol. 78, 5805–5811 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto, F., Pacheco, C. C., Ferreira, D., Moradas-Ferreira, P. & Tamagnini, P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE 7, e34983 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 9, e87624 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Evolutionary implications of new Postopsyllidiidae from mid-Cretaceous amber from Myanmar and sternorrhynchan nymphal conservatism

    Systematic palaeontologyOrder Hemiptera Linnaeus, 1758Suborder Sternorrhyncha Amyot et Audinet-Serville, 1843Superfamily Protopsyllidioidea Carpenter, 1931Family Postopsyllidiidae Hakim, Azar et Huang, 2019Genus Megalophthallidion Drohojowska et Szwedo, gen. nov.LSID urn:lsid:zoobank.org:act:A6F71390-9B8E-4A19-8F30-C2A024B6EFB1Type speciesMegalophthallidion burmapateron Drohojowska et Szwedo, sp. nov.; by present designation and monotypy.EtymologyGeneric name is derived from Classic Greek megas (μέγας)—large, ophthalmos (ὀφθαλμός)—an eye and Greek form of generic name Psyllidium. Gender: masculine.Type localityNorthern Myanmar: state of Kachin, Noije bum 2001 Summit Site amber mine in the Hukawng Valley, SW of Maingkhwan.Type stratumLowermost Cenomanian, Upper Cretaceous (‘mid-Cretaceous’).DiagnosisHead capsule with 12 stiff setae on tubercles (18 setae in Postopsyllidium); fore wing without pterostigma (tiny pterostigma, widening of ScP + RA present in Postopsyllidium); vein CuP not thickened distally (distinctly thickened distally in Postopsyllidium); profemur with a row of ventral (ventrolateral) setae (two rows in Postopsyllidium).Megalophthallidion burmapateron Drohojowska et Szwedo, sp. nov.LSID urn:lsid:zoobank.org:act:F3F971F4-AE04-4F41-98B0-9A0A04470625.(Figs. 1A–F, 2A–I).Figure 1Megalophthallidion burmapteron gen. et sp. nov., holotype (MAIG 6687), imago. (A) Photo of body, ventral side; (B) photo of right antennae and (C) drawing of antenna; (D) drawing of body, dorsal side; (E) drawing of thorax structure with sclerites marked: red—pronotum; orange—mesopraescutum; yellow—mesoscutum; light green—mesoscutellum, dark green—mesopostnotum; light blue—metascutum; dark blue—metascutellum; violet—metapostnotum; (F) photo of thorax dorsal side. Scale bars: 0.5 mm (A), 0.2 mm (B–D), 0.1 mm (F).Full size imageFigure 2Megalophthallidion burmapteron gen. et sp. nov., holotype (MAIG 6687), imago. (A) Photo of right fore wing; (B) photo of right wings; (C) photo of antenna and proleg; (D) photo of proleg and mesoleg, and (E) photo of femur of proleg, and (F) photo of right metatarsus and left mesotarsus in the background, and (G) photo of right mesotarsus of mesoleg, and (H) Photo of tarsi; (I) photo of male genital block. Scale bars: 0.5 mm (A–D), 0.2 mm (B,E,F,H), 0.1 mm (G,I).Full size imageMaterialHolotype, number MAIG 6687 (BUB 96), deposited in Museum of Amber Inclusions (MAIG), University of Gdańsk, Poland. Imago, a complete and well-preserved male. Piece of amber 8 × 6 × 3 mm, cut from larger lump, polished flat on both sides.Type localityNorthern Myanmar: state of Kachin, Noije bum 2001 Summit Site amber mine in the Hukawng Valley, SW of Maingkhwan.Type stratumLowermost Cenomanian, Upper Cretaceous (‘mid-Cretaceous’).DiagnosisAs for the genus with the following additions: three ocelli distinct, antennomere IX the longest, about as long as pedicel, antennomeres III–VII and XI of similar length, antennomere XII the shortest, subconically tapered in apical portion. Paramere lobate, ventral margin with acute, small process, apical and dorsal margins rounded. Aedeagus geniculately bent at base, directed dorsally, tapered apicad.DescriptionMale (Figs. 1A–F, 2A–I). Head with compound eyes distinctly wider than pronotum (Fig. 1D–F). Compound eyes subglobular, protruding laterally. Vertex short in midline, about 2.5 times as wide as posterior margin and as long in middle; trapezoidal, anterior margin slightly arched, lateral margins diverging posteriad, posterior margin shallowly arched, disc of vertex with distinct setae on large tubercles: four setae at posterior margin, two at anterior angles of compound eyes, two medial, over the median ocellus. Three ocelli present, median ocellus distinct, visible from above, lateral ocelli near anterior angles of compound eyes. Frons about as wide as long in midline, two rows of setae on tubercles, upper row at level of median ocellus, lower one, below half of compound eye height. Clypeus, elongate, triangular, in lower portion roof-like; two setae on tubercles near upper margin. Genae very narrow. Rostrum reaching slightly beyond mesocoxae, apical segment slightly shorter than subapical one, darker. Antennae bases placed at lower margin of compound eyes; antennal fovea elevated; scapus shorter than pedicel, cylindrical; pedicel cylindrical; antennomeres IIIrd–VIIth and XIth of similar length, VIIIth slightly longer than VIIth, as long as Xth antennomere, IXth the longest, XIIth the shortest, tapered apically; rhinaria absent.Thorax (Fig. 1D–F): pronotum quadrangular, about as long as mesothorax; pronotum with anterior and posterior margins parallel, merely arcuate, disc with transverse groove in the median portion, lateral margins slightly arcuate, two distinct setae on tubercles in anterolateral angle, two setae on tubercles anterior margin at distance1/3 to median line, three distinct setae on tubercles in posterolateral angles. Mesopraescutum subtriangular, with apex widely rounded, about 0.4 times as wide as pronotum, about 0.4 times as long as wide, delicately separated from mesoscutum. Mesoscutum as wide as pronotum at widest point, distinctly narrowed medially, anterior angles rounded, anterolateral margin sigmoid, lateral angle acute, posterior angles wide, posterior margin V-shape incised, posterolateral areas of mesoscutum disc declivent posteriorly; disc with two setae on tubercles, at 1/3 of mesoscutum width. Mesoscutellum about as long as wide, diamond-shape, anterior and lateral angles acute, posterior angle rounded. Mesopostnotum in form of transverse band, slightly widened in median portion. Metascutum narrower than mesoscutum, anterior angles widely rounded, lateral angles acute, anterolateral margin concave, posterior margin arcuate, with deep median arcuate incision. The suture between metascutum and metascutellum weakly visible, metascutellum subtriangular, longer than wide at base.Parapteron with three distinct setae.Fore wing (Fig. 2A,B) membranous, narrow, elongate, about 3.5 times as long as wide, widest at 2/3 of length. Anterior margin merely arcuate, slightly bent at very base, anteroapical angle widely arcuate, apex rounded, posteroapical angle widely arcuate, tornus arcuate, claval margin straight, with incision between terminals of Pcu (claval apex) and A1. Stem ScP + R + MP + CuA slightly arcuate, very short stalk ScP + R + MP + CuA leaving basal cell, stem ScP + R oblique, straight, forked in basal half of fore wing length, branch ScP + RA, oblique, reaching anterior margin slightly distally of half of fore wing length, slightly distally of ending of CuA2 branch; branch RP slightly arcuate, a little more curved in basal section, reaching margin at anteroapical angle; stalk MP + CuA slightly shorter than basal cell; stem MP almost straight, forked in apical half of fore wing, at about 2/3 of fore wing length, with three terminals reaching margin between apex and posteroapical angle; stem CuA shorter than branches CuA1 and CuA2, about half as long as branch CuA1; claval vein CuP weak at base, not thickened distally; claval vein Pcu straight, claval vein A1 straight. Basal cell present, subtriangular, about twice as long as wide, basal veinlet cua-cup oblique, no other veinlets present; cell r (radial) very long, longer than half of fore wing length; cell m (medial) the shortest, shorter than cell cu (areola postica). Margins of fore wing with fringe of long setae, starting on costal margin near base of fore wing, ending at level of middle of cell cu; longitudinal veins with distinct, scarcely but evenly dispersed, movable setae; terminal section of CuP with two setae; costal margin with row of short, densely distributed setae, apical margin, tornus and claval margin with rows of scaly setae.Hind wing (Fig. 2B) membranous, shorter than fore wing, 3.23 times as long as wide. Costal margin bent at base, then almost straight up to the level of ScP + RA end and wing coupling lobe, then straight to anteroapical angle, anteroapical angle widely arcuate, apex arcuate, posteroapical angle arcuate, tornus straight, claval margin merely arcuate, posteroclaval angle angulate; stem ScP + R + MP bent at base, then straight, stem ScP + R short, branch ScP + RA short, about as long as stem ScP + R, branch RP arcuate basally than straight, reaching apex; stem MP arcuate, forked slightly distad CuA1 terminus level, branch MP1+2 slightly arcuate, reaching margin at posteroapical angle, branch MP3+4 straight, reaching tornus; stem CuA slightly bent at base, then straight, forked slightly distad ScP + R forking, branch CuA1 arcuate, branch CuA2 short, straight, slightly oblique, reaching tornus; claval vein CuP weak, visible only at base, claval vein Pcu slightly arcuate; wing coupling apparatus (fold) with a few short setae.Legs slender, relatively long, profemora armed (Fig. 2C–H). Procoxa as long as profemur, narrow, flattened. Protrochanter scaphoid, elongate, with long apical and subapical setae. Profemur flattened laterally, about as long as protibia, ventrally armed with four large setae on elevated plinths; dorsal margin with row of short, decumbent setae. Protibia narrow, rounded in cross section, covered with short setae, a few longer setae in distal portion. Protarsus—single, long tarsomere, plantar surface with row of semi-erect setae; tarsal claws long, straight, directed ventrally, no arolium nor empodium.Mesocoxa elongate, narrow, slightly flattened. Mesotrochanter scaphoid. Mesofemur slender, flattened laterally, dorsal margin with short setae. Mesotibia subequal to mesofemur, slender, covered with setae, two apical setae slightly thicker and longer. Mesotarsus with three tarsomeres, basimesotarsomere the longest, shorter than cumulative length of mid- and apical mesotarsomere, plantar margins with setae, two apical setae slightly longer and thicker; midmesotarsomere the shortest, 1/3 of basimesotarsomere length, a few setae on plantar surface; apical tarsomere shorter than basimesotarsomere, twice as long as midmesotarsomere, plantar surface with a few, scarcely dispersed setae, tarsal claws long, narrow, directed ventrally, no arolium nor empodium.Metacoxa conical, narrow. Metatrochanter scaphoid, elongate. Metafemur slender, laterally flattened, longer than mesofemur, dorsal margin with row of short setae. Metatibia, long, slender, 1.6 times as long as metafemur, with suberect setae of different size, two larger and longer and two shorter setae subapical setae. Metatarsus slightly less than half of metatibia length, with three tarsomeres, basimetatarsomere the longest, more than twice as long as apical metatarsomere, 1.5 times as long as combined length of mid- and apical metatarsomere, plantar surface with scarce decumbent setae; mid metatarsomere the shortest, 1/4 of basimetatarsomere length, plantar surface with a few setae, two apical ones slightly thicker; apical metatarsomere about 0.4 of basimetatarsomere length, with scarcely dispersed setae on along plantar surface; tarsal claws, long, slender, other pretarsal structures absent.Abdomen (Fig. 1F) narrowly attached to thorax, tergite segment shorter, 2nd tergite distinctly longer, 3rd to 8th tergites of similar length; pygofer narrowing apicad, ventral margin strongly elongated posteriorly; anal tube short, directed posterodorsad, anal style shorter than anal tube. Paramere lobate, ventral margin with acute, small process, apical and dorsal margins rounded. Aedeagus (Fig. 2I) geniculately bent at base, directed dorsad, tapered apicad.Female. Unknown.Megalophthallidion sp. (5th instar nymph)(Figs. 3A–D, 4A–F)Figure 3Megalophthallidion sp. (MAIG 6688), nymph. (A) Photo of body, dorsal side and (B) drawing of body dorsal side; (C) photo of body dorsal side and (D) drawing of body ventral side. Scale bars: 0.5 mm (A–D).Full size imageFigure 4Megalophthallidion sp. (MAIG 6688), nymph. Photo of clypeus and (B) drawing of clypeus; (C) photo of proleg, and (D) photo of mesoleg, and (E) photo of metaleg; (F) photo of posterior part of abdomen ventral side. Scale bars: 0.1 mm (A–F).Full size imageMaterialNymph, 5th instar, MAIG 6688 (BUB 1799), deposited in Museum of Amber Inclusions (MAIG), University of Gdańsk, Poland. Piece of amber 13 × 6 × 2 mm, cut from larger lump, polished flat on one side, more convex on the other.Diagnostic charactersThe nymph of Megalophthallidion gen. nov. is similar in general body shape to the only known fossil protopsyllidioidean nymph described from Lower Cretaceous Lebanese amber—Talaya batraba Drohojowska et Szwedo, 2013. The nymph of Talaya batraba is 2nd or 3rd instar, therefore some features are difficult to compare with this last instar nymph of Megalophthallidion gen. nov. The morphological states observed in those two specimens are: head covered with strongly expanded disc and expanded disc of pronotum, however shapes and ratios of these structures differ; compound eyes on ventral side of head, shifted laterad (ommatidia on cones in T. batraba, while ventroposterior expansions are present in Megalophthallidion gen. nov.); compound eyes visible from above as short, stout cones in fissure between posterior margin of disc (hypertrophied vertex) and anterior margin of pronotum (compound eyes (?) are visible on dorsal side of Permian Aleuronympha bibulla Riek, 1974); in Megalophthallidion gen. nov. rostrum reached mesocoxa, while in Talaya batraba distinctly exceeds length of the body; abdomen with 9 segments; tergites of abdominal segments 5th–9th expanded posterolaterad in form of fan-like expansion; 9th abdominal segment short, placed ventral; anal tube short, cylindrical, epiproct (?) globular.DescriptionNymph, 5th instar (Figs. 3A–D, 4A–F). Body oval shaped, dorso-ventrally flattened, 1.5 times longer than wide with segmentation visible; on the ventral side slightly concave. Length of body c. 1.56 mm long, outline, in dorsal view, maximum width of body 0.94 mm; length of head and pronotum (cephaloprothorax) c. 0.46 mm in midline, width c. 0.83 mm; cumulative length of mesonotum + metanotum c. 0.25 mm; abdomen c. 0.8 mm long. Dorsal side (Fig. 3A,B) with distinct median line (ecdysial line), not reaching anterior or posterior margin of the body, the line distinctly roof-like in abdominal portion. Anterior margin of head (cephaloprothorax) disc arcuate, lateral angles rounded; anterior margin of pronotum arcuate, lateral margins arcuately diverging posteriad, posterior margin distinctly arcuate, anterior angles widely rounded, posterior angles acutely rounded, disc elevated, convex, lateral portions declivitous; the fissure between posterior margin of head disc and anterior margin of pronotum narrow, widened medially, with stalked compound eyes popping out.Head partly separated from prothorax, wide in ventral view. Bases of antennae protruding anterolaterally, wide, anterior margin arcuate, with a small lump extending anteriorly connecting margin with vertex expansion. Suture separating anteclypeus and postclypeus visible in ventral aspect (Fig. 4A,B). Postclypeus about three times as long as wide, oval, slightly swollen, without any setae; weak traces of salivary pump muscle attachments visible. Anteclypeus about as long as postclypeus, widened in upper section below clypeal suture, convex, carinately elevated in lower section, with sides distinctly declivitous, clypellus long, carinately elevated. Lora (mandibulary plates) distinct, separated from anteclypeus by shallow suture, with upper angles at half of postclypeus length, lower angles at half of anteclypeus length, about as wide as half of postclypeus width. Maxillary plates narrow. Genal portion of head enlarged, medial portion arcuately convex; lateral sections narrowing laterally, terminally encircling bases of compound eyes. Antennae short (Fig. 3C,D), placed in front of genal portion. Antennal flagellum indistinctly subdivided into four segments. Rostrum (Fig. 4A,B) three-segmented, 0.2 mm long, with apex reaching apex of mesocoxae; apical segment about 2.5 times as long as subapical one.No lateral sclerites on meso- and metathorax, only one plus one large medial sclerite on both meso- and metathorax. Mesothoracic and metathoracic wing pads distinct, wide, subtriangular, with posterior apices directed posteriorly; lateral portions of mesothoracic wing pads arcuate. Fore wing pad 0.6 mm long, with small, straight humeral lobe, forming a right angle, not protruding anteriorly. Mesothoracic tergites slightly larger than metathoracic segments (respectively c. 0.14 mm and c. 0.12 mm long in midline, 0.26 mm and 0.27 mm in lateral lines); mesothoracic tergum with distinct median elevation (low double crest with ecdysial line in between), slightly wider than long in midline, anterior margin arcuate, lateral margins straight, subparallel, posterior margin concave. Metathoracic wing pad apex slightly exceeding mesothoracic wing pad. Metathoracic tergum wider than long, slightly shorter than mesothoracic tergum, with distinct elevation in the middle.Legs relatively long (Figs. 3C,D, 4C–E). Coxae of legs placed near the median axis of the body. Prolegs: procoxal pit with margins elevated, procoxa conical (c. 0.1 mm long), protrochanter scaphoid, about as long as procoxa, profemur c. 0.13 mm long, slightly flattened laterally, merely thickened, protibia longer than profemur, c. 0.23 mm long; tarsus shorter than protibia, basiprotarsomere about as long as apical protarsomere, the latter with distinct tarsal claws, and wide arolium. Mesoleg similar to proleg, mesocoxa conical (c. 0.1 mm long), mesotrochanter scaphoid, mesofemur (c. 0.13 mm) slightly flattened laterally, mesotibia slightly longer than mesofemur (c. 0.18 mm), mesotarsus slightly shorter than mesotibia, three-segmented, basimesotarsomere the longest (c. 0.07 mm), about as long as combined length of mid- and apical mesotarsomeres (c. 0.04 mm respectively), arolium wide, tarsal claws distinct. Metaleg: metacoxa conical (c. 0.1 mm), metatrochanter scaphoid, about as long as metacoxa (c. 0.12 mm). Metafemur (c. 0.17 mm) slightly more thickened than pro- and mesofemur, metatibia slightly longer (0.19 mm) than pro- and mesotibiae. Metatarsus three-segmented: basimetatarsomere about as long (0.08 mm) as combined length of mid- and apical metatarsomeres (0.04 mm respectively), arolium lobate, wide, tarsal claws distinct, widely spread.Abdomen (Fig. 3A–D) 9-segmented, narrow at base, widening fan-shape posteriorly, 1st segment visible from above, segmentation visible, abdominal terga 5th–9th expanded posterolaterally. Tergites carinately elevated in the middle, separated by ecdysial line. 1st sternite visible in ventral view, sternites 2nd–4th fused medially, sternites 5th–9th separated; 9th abdominal segment short (Fig. 4F), placed ventrally, under tergal expansion; anal tube short, cylindrical, epiproct (?) globular. More

  • in

    Complex effects of chytrid parasites on the growth of the cyanobacterium Planktothrix rubescens across interacting temperature and light gradients

    Díez B, Ininbergs K. Ecological importance of cyanobacteria. In Cyanobacteria (pp. 41–63). John Wiley & Sons, Ltd. (2013) https://doi.org/10.1002/9781118402238.ch3Fristachi A, Sinclair JL, Hall S, Berkman JAH, Boyer G, Burkholder J, et al. Occurrence of cyanobacterial harmful algal blooms workgroup report. Adv Experimental Med Biol. 2008;619:45–103. https://doi.org/10.1007/978-0-387-75865-7_3CAS 
    Article 

    Google Scholar 
    Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83. https://doi.org/10.1038/s41579-018-0040-1CAS 
    Article 
    PubMed 

    Google Scholar 
    Plaas HE, Paerl HW. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. In Environmental Science and Technology (Vol. 55, Issue 1, pp. 44–64). American Chem Soc. 2021. https://doi.org/10.1021/acs.est.0c06653Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae. 2016;54:69–86. https://doi.org/10.1016/j.hal.2016.01.004CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohrlack T, Christiansen G, Kurmayer R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus planktothrix. Appl Environ Microbiol. 2013;79:2642–7. https://doi.org/10.1128/AEM.03499-12CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Legnani E, Copetti D, Oggioni A, Tartari G, Palumbo MT, Morabito G. Planktothrix rubescens’ seasonal dynamics and vertical distribution. J Limnol. 2005;64:61–73.Article 

    Google Scholar 
    Walsby A, Ng G, Dunn C, Davis PA. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. New Phytologist. 2004;162:133–45. https://doi.org/10.1111/j.1469-8137.2004.01020.xArticle 

    Google Scholar 
    Bruning K. Effects of temperature and light on the population dynamics of the Asterionella-Rhizophydium association. J Plankton Res. 1991a;13:707–19. https://doi.org/10.1093/plankt/13.4.707Article 

    Google Scholar 
    Rohrlack T, Haande S, Molversmyr Å, Kyle M. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis. 2015;1–17. https://doi.org/10.1371/journal.pone.0145559Tao Y, Wolinska J, Hölker F, Agha R. Light intensity and spectral distribution affect chytrid infection of cyanobacteria via modulation of host fitness. Parasitology. 2020;147:1206–15. https://doi.org/10.1017/S0031182020000931CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis PA, Walsby A. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District. New Phytologist. 2002;156:225–39. https://doi.org/10.1046/j.1469-8137.2002.00495.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens 1. J Phycol. 2007;43:1191–9. https://doi.org/10.1111/j.1529-8817.2007.00414.xCAS 
    Article 

    Google Scholar 
    Reynolds CS Growth and replication of phytoplankton. In The Ecology of Phytoplankton (pp. 145–77). Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511542145.005Litchman E, Klausmeier CA . Trait-based community ecology of phytoplankton. Ann Rev Ecol, Evol, Syst. 2008;39:615–39.Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol Oceanography. 2016;61:1232–44.Article 

    Google Scholar 
    Thomas MK, Kremer CT, Litchman E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Global Ecol Biogeog. 2016;25:75–86. https://doi.org/10.1111/geb.12387Article 

    Google Scholar 
    Bright DI, Walsby A. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytologist. 2000;146:301–16. https://doi.org/10.1046/j.1469-8137.2000.00640.xArticle 
    PubMed 

    Google Scholar 
    Jann-Para G, Schwob I, Feuillade M. Occurrence of toxic Planktothrix rubescens blooms in lake Nantua, France. Toxicon. 2004;43:279–85.CAS 
    Article 

    Google Scholar 
    Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, et al. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae. 2005;4:651–72.Article 

    Google Scholar 
    Lenard T. Metalimnetic bloom of Planktothrix rubescens in relation to environmental conditions. Oceanological Hydrobiological Studies. 2009;38:45–53.
    Google Scholar 
    Van den Wyngaert S, Salcher MM, Pernthaler J, Zeder M, Posch T. Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol Oceanogr. 2011;56:97–109.Article 

    Google Scholar 
    Walsby A. Stratification by cyanobacteria in lakes: A dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist. 2005;168:365–76. https://doi.org/10.1111/j.1469-8137.2005.01508.xArticle 
    PubMed 

    Google Scholar 
    Conroy JD, Kane DD, Quinlan EL, Edwards WJ, Culver DA. Abiotic and biotic controls of phytoplankton biomass dynamics in a freshwater tributary, estuary, and large lake ecosystem: Sandusky bay (lake erie) chemostat. Inland Waters. 2017;7:473–92. https://doi.org/10.1080/20442041.2017.1395142CAS 
    Article 

    Google Scholar 
    Sommer U, Maciej Gliwics Z, Lampert W, Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie. 1986;106:433–71.
    Google Scholar 
    Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Ann Rev Ecol, Evol, Syst. 2012;43:429–48. https://doi.org/10.1146/annurev-ecolsys-110411-160251Article 

    Google Scholar 
    Hatcher MJ, Dunn AM Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press (2011).Marcogliese DJ. Parasites: Small Players with Crucial Roles in the Ecological Theater. EcoHealth. 2004;1:151–64. https://doi.org/10.1007/s10393-004-0028-3Article 

    Google Scholar 
    Sime-Ngando T, Lafferty KD, Biron DG. Roles and Mechanisms of Parasitism in Aquatic Microbial Communities. 2007. https://doi.org/10.3389/978-2-88919-588-6Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology. 2017;19:3802–22. https://doi.org/10.1111/1462-2920.13827Article 
    PubMed 

    Google Scholar 
    Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74. https://doi.org/10.1016/j.hal.2004.12.015Article 

    Google Scholar 
    Gerphagnon M, Macarthur DJ, Gachon C, Van Ogtrop F, Latour D, et al. The biological factors affecting the dynamics of cyanobacterial blooms. 2009.Gleason FH, Jephcott TG, Küpper FC, Gerphagnon M, Sime-Ngando T, Karpov SA, et al. Potential roles for recently discovered chytrid parasites in the dynamics of harmful algal blooms. Fungal Biol Rev. 2015;29:20–33. https://doi.org/10.1016/j.fbr.2015.03.002Article 

    Google Scholar 
    Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biol. 2011;56:754–66. https://doi.org/10.1111/j.1365-2427.2010.02565.xArticle 

    Google Scholar 
    Kagami M, De Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: Their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–29. https://doi.org/10.1007/s10750-006-0438-zArticle 

    Google Scholar 
    Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS. 2005;103:3165–70.Article 

    Google Scholar 
    McKenzie VJ, Peterson AC. Pathogen pollution and the emergence of a deadly amphibian pathogen. Molecular Ecol. 2012;21:5151–4. https://doi.org/10.1111/mec.12013Article 

    Google Scholar 
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 2007;4:125–34. https://doi.org/10.1007/s10393-007-0093-5Article 

    Google Scholar 
    Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol. 2004;40:437–53.Article 

    Google Scholar 
    Bosch J, Martínez-Solano I, García-París. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conserv. 2001;97:331–7. https://doi.org/10.1016/S0006-3207(00)00132-4Article 

    Google Scholar 
    Bruning K, Lingeman R, Ringelberg J. Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr. 1992;37:252–60. https://doi.org/10.4319/lo.1992.37.2.0252Article 

    Google Scholar 
    Paterson RA. Infestation of Chytridiaceous Fungi on Phytoplankton in Relation to Certain Environmental Factors. Ecology. 1960;41:416–24. https://doi.org/10.2307/1933316Article 

    Google Scholar 
    Ṣen B. Fungal parasitism of planktonic algae in Shearwater. IV: Parasitic occurrence of a new chytrid species on the blue-green alga Microcystis aeruginosa Kuetz. emend. Elenkin. 1998.van Donk E, Ringelberg J. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I. Netherlands Freshwater Biol. 1983;13:241–51. https://doi.org/10.1111/j.1365-2427.1983.tb00674.xArticle 

    Google Scholar 
    Agha R, Saebelfeld M, Manthey C, Rohrlack T, Wolinska J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Scientific Rep. 2016;6. https://doi.org/10.1038/srep35039Frenken T, Wierenga J, van Donk E, Declerck SAJ, de Senerpont Domis LN, Rohrlack T, et al. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol Oceanogr. 2018;63:2384–93. https://doi.org/10.1002/lno.10945Article 

    Google Scholar 
    Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Biological Sci/ Royal Soc. 2007;274:1561–6. https://doi.org/10.1098/rspb.2007.0425Article 

    Google Scholar 
    Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW. Temperature alters host genotype-specific susceptibility to chytrid infection. PLoS One. 2013;8:e71737. https://doi.org/10.1371/journal.pone.0071737CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKindles KM, Manes MA, McKay RM, Davis TW, Bullerjahn GS. Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii. J Plankton Res. 2021a;43:658–72.Article 

    Google Scholar 
    Fallowfield HJ, Daft MJ. The extracellular release of dissolved organic carbon by freshwater cyanobacteria and algae and the interaction with Lysobacter CP-1. Br Phycol J. 1988;1617:317–26. https://doi.org/10.1080/00071618800650351Article 

    Google Scholar 
    Mueller B, den Haan J, Visser PM, Vermeij MJA, van Duyl FC. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Rep. 2016;6:1–9. https://doi.org/10.1038/srep23248CAS 
    Article 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. II. Effects of light on survival and epidemic development of the parasite. J Plankton Res. 1991c;13:119–29. https://doi.org/10.1093/plankt/13.1.119Article 

    Google Scholar 
    Van den Wyngaert S, Gsell AS, Spaak P, Ibelings BW. Herbicides in the environment alter infection dynamics in a microbial host-parasite system. Environ Microbiol. 2013;15:837–47. https://doi.org/10.1111/j.1462-2920.2012.02874.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Almocera AES, Hsu SB, Sy PW. Extinction and uniform persistence in a microbial food web with mycoloop: Limiting behavior of a population model with parasitic fungi. Mathematical Biosci Eng. 2019;16:516–37.Article 

    Google Scholar 
    Frenken T, Miki T, Kagami M, Van de Waal DB, Van Donk E, Rohrlack T, et al. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology. 2020;101. https://doi.org/10.1002/ecy.2900Gerla DJ, Gsell AS, Kooi BW, Ibelings BW, Van Donk E, Mooij WM. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts. FMeier, M. H. et al. (2015) Neuropsychological Decline in Schizophrenia from the Premorbid to Post-Onset Period: Evidence from a Population-Representative Longitudinal Study. American J Psychiatry. 2013;58:538–51. https://doi.org/10.1111/fwb.12010Article 

    Google Scholar 
    Miki T, Takimoto G, Kagami M. Roles of parasitic fungi in aquatic food webs: A theoretical approach. Freshwater Biol. 2011;56:1173–83. https://doi.org/10.1111/j.1365-2427.2010.02562.xArticle 

    Google Scholar 
    Guillard RRL, Lorenzen CJ. Yellow-green algae with chlorophyllid C. In Phycology. 1972;8:10–14.CAS 

    Google Scholar 
    McKindles KM, Jorge AN, McKay RM, Davis TW, Bullerjahn GS. Isolation and characterization of Rhizophydiales (Chytridiomycota), obligate parasites of Planktothrix agardhii in a Laurentian Great Lakes embayment. Appl Environ Microbiol. 2021b;87:e02308–20.CAS 
    Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and Environment for Statistical Computing.RStudio Team. (2021). RStudio: Integrated Development Environment for R (1.4.1106).Wickham, H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the {tidyverse}. J Open Source Software. 2019;4:1686. https://doi.org/10.21105/joss.01686Article 

    Google Scholar 
    Champely, S (2018). PairedData (1.1.1).Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in {R}: Package deSolve. J Statistical Software. 2010;33:1–25. https://doi.org/10.18637/jss.v033.i09Article 

    Google Scholar 
    Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R, Kosten S, et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biol. 2016;22:299–309. https://doi.org/10.1111/gcb.13095Article 

    Google Scholar 
    Scholz B, Vyverman W, Küpper FC, Ólafsson HG, Karsten U. Effects of environmental parameters on chytrid infection prevalence of four marine diatoms: A laboratory case study. Botanica Marina. 2017;60:419–31. https://doi.org/10.1515/bot-2016-0105CAS 
    Article 

    Google Scholar 
    Sønstebø JH, Rohrlack T. Possible implications of Chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol. 2011;77:1344–51. https://doi.org/10.1128/AEM.02153-10CAS 
    Article 
    PubMed 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J Plankton Res. 1991b;13:103–17. https://doi.org/10.1093/plankt/13.1.103Article 

    Google Scholar 
    Muehlstein LK, Amon JP, Leffler DL. Chemotaxis in the Marine Fungus Rhizophydium littoreum. Appl Environ Microbiol. 1988;54:1668–72. https://doi.org/10.1128/aem.54.7.1668-1672.1988CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esch GW, Fernández JC. Introduction. In A Functional Biology of Parasitism (pp. 1–25). Springer Netherlands (1993). https://doi.org/10.1007/978-94-011-2352-5_1Gerphagnon M, Colombet J, Latour D, Sime-Ngando T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Scientific Rep. 2017;7:6056. https://doi.org/10.1038/s41598-017-06273-1CAS 
    Article 

    Google Scholar 
    Maier MA, Peterson TD. Prevalence of chytrid parasitism among diatom populations in the lower Columbia River (2009–2013). Freshwater Biol. 2017;62:414–28. https://doi.org/10.1111/fwb.12876CAS 
    Article 

    Google Scholar 
    Sime-Ngando T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol. 2012;3:361. https://doi.org/10.3389/fmicb.2012.00361Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagami M, Urabe J. Mortality of the planktonic desmid, Staurastrum dorsidentiferum, due to interplay of fungal parasitism and low light conditions. SIL Proceed. 2002;28:1001–5. https://doi.org/10.1080/03680770.2001.11901868Article 

    Google Scholar  More

  • in

    Influence of green technology, green energy consumption, energy efficiency, trade, economic development and FDI on climate change in South Asia

    Kejun, J. et al. Transition of the Chinese economy in the face of deep greenhouse gas emissions cuts in the future. Asian Econ. Policy Rev. 16(1), 142–162 (2021).
    Google Scholar 
    COP26, United nations climate change. https://unfccc.int/news/cop26-facts-and-figures, (2020).Dong, Y., Coleman, M. and Miller, S. A. Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annual Rev. Environ. Resour. 46 (2021).Azam, M. & Khan, A. Q. Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries. Renew. Sustain. Energy Rev. 63, 556–567 (2016).CAS 

    Google Scholar 
    Li, Z. et al. An economic analysis software for evaluating best management practices to mitigate greenhouse gas emissions from cropland. Agric. Syst. 186, 102950 (2021).
    Google Scholar 
    Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 49(4), 431–455 (2004).
    Google Scholar 
    Xia, Q. et al. Drivers of global and national CO2 emissions changes 2000–2017. Climate Policy 21(5), 604–615 (2021).
    Google Scholar 
    Fatima, T., Shahzad, U. & Cui, L. Renewable and nonrenewable energy consumption, trade and CO2 emissions in high emitter countries: Does the income level matter?. J. Environ. Planning Manage. 64(7), 1227–1251 (2021).
    Google Scholar 
    Kılavuz, E. & Doğan, İ. Economic growth, openness, industry and CO2 modelling: Are regulatory policies important in Turkish economies?. Int. J. Low-Carbon Technol. 16(2), 476–487 (2021).
    Google Scholar 
    Setyari, N. P. W. & Kusuma, W. G. A. Economics and environmental development: Testing the environmental Kuznets Curve hypothesis. Int. J. Energy Econ. Policy 11(4), 51 (2021).
    Google Scholar 
    Gołasa, P. et al. Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies 14(13), 3784 (2021).
    Google Scholar 
    Liobikienė, G. & Butkus, M. The challenges and opportunities of climate change policy under different stages of economic development. Sci. Total Environ. 642, 999–1007 (2018).ADS 
    PubMed 

    Google Scholar 
    Koondhar, M. A. et al. A visualization review analysis of the last two decades for environmental Kuznets curve “EKC” based on co-citation analysis theory and pathfinder network scaling algorithms. Environ. Sci. Pollut. Res. 28(13), 16690–16706 (2021).CAS 

    Google Scholar 
    Bilgili, F., Koçak, E. & Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 54, 838–845 (2016).
    Google Scholar 
    Gorus, M. S. & Aydin, M. The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain. Energy 168, 815–822 (2019).
    Google Scholar 
    Kirikkaleli, D. & Adebayo, T. S. Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence. Sustain. Develop. 29(4), 583–594 (2021).
    Google Scholar 
    Godil, D. I. et al. Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development. Sustain. Develop. (2021).An, T., Xu, C. & Liao, X. The impact of FDI on environmental pollution in China: Evidence from spatial panel data. Environ. Sci. Pollut. Res. 1–13 (2021).Halliru, A. M., Loganathan, N. and Golam Hassan, A. A. Does FDI and economic growth harm environment? Evidence from selected West African countries. Trans. Corp. Rev., 13(2), 237–251 (2021.).Al-Mulali, U., Ozturk, I. & Solarin, S. A. Investigating the environmental Kuznets curve hypothesis in seven regions: The role of renewable energy. Ecol. Ind. 67, 267–282 (2016).
    Google Scholar 
    Zhang, D. et al. Public spending and green economic growth in BRI region: Mediating role of green finance. Energy Policy 153, 112256 (2021).
    Google Scholar 
    Usman, M. et al. How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy, 122515 (2021).Rehman, A. et al. The impact of globalization, energy use, and trade on ecological footprint in Pakistan: does environmental sustainability exist?. Energies 14(17), 5234 (2021).CAS 

    Google Scholar 
    Bremond, U. et al. A vision of European biogas sector development towards 2030: Trends and challenges. J. Clean. Prod. 287, 125065 (2021).
    Google Scholar 
    Abdul Latif, S. N. et al. The trend and status of energy resources and greenhouse gas emissions in the malaysia power generation mix. Energies 14(8), 2200 (2021).CAS 

    Google Scholar 
    Chen, P.-Y. et al. Modeling the global relationships among economic growth, energy consumption and CO2 emissions. Renew. Sustain. Energy Rev. 65, 420–431 (2016).CAS 

    Google Scholar 
    Kais, S. & Sami, H. An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries. Renew. Sustain. Energy Rev. 59, 1101–1110 (2016).
    Google Scholar 
    Rüstemoğlu, H. & Andrés, A. R. Determinants of CO2 emissions in Brazil and Russia between 1992 and 2011: A decomposition analysis. Environ. Sci. Policy 58, 95–106 (2016).
    Google Scholar 
    Yao, C., Feng, K. & Hubacek, K. Driving forces of CO2 emissions in the G20 countries: An index decomposition analysis from 1971 to 2010. Eco. Inform. 26, 93–100 (2015).
    Google Scholar 
    González, P. F., Landajo, M. & Presno, M. The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states. Environ. Sci. Policy 38, 11–16 (2014).
    Google Scholar 
    Nathaniel, S. P. Environmental degradation in ASEAN: assessing the criticality of natural resources abundance, economic growth and human capital. Environ. Sci. Pollut. Res. 28(17), 21766–21778 (2021).
    Google Scholar 
    Baloch, M. A., Mahmood, N. & Zhang, J. W. Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Sci. Total Environ. 678, 632–638 (2019).ADS 
    PubMed 

    Google Scholar 
    Balsalobre-Lorente, D. et al. How economic growth, renewable electricity and natural resources contribute to CO2 emissions?. Energy Policy 113, 356–367 (2018).
    Google Scholar 
    Bekun, F. V., Alola, A. A. & Sarkodie, S. A. Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci. Total Environ. 657, 1023–1029 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Baloch, M. A. & Meng, F. Modeling the non-linear relationship between financial development and energy consumption: Statistical experience from OECD countries. Environ. Sci. Pollut. Res. 26(9), 8838–8846 (2019).
    Google Scholar 
    Dong, K., Sun, R. & Hochman, G. Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. Energy 141, 1466–1478 (2017).
    Google Scholar 
    Omri, A. et al. Determinants of environmental sustainability: Evidence from Saudi Arabia. Sci. Total Environ. 657, 1592–1601 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhu, H. et al. The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression. Econ. Model. 58, 237–248 (2016).
    Google Scholar 
    Cheng, C. et al. Heterogeneous impacts of renewable energy and environmental patents on CO2 emission-evidence from the BRIICS. Sci. Total Environ. 668, 1328–1338 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, C. & Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev. 58, 943–951 (2016).
    Google Scholar 
    Phung, T. Q., Rasoulinezhad, E. and Luong Thi Thu, H. How are FDI and green recovery related in Southeast Asian economies? Econ. Change Restruct. 1–21 (2022).Quang, P.T. and Thao, D. P. Analyzing the green financing and energy efficiency relationship in ASEAN. J. Risk Financ. (2022)(ahead-of-print).Ahmad, M. et al. Modelling the dynamic linkages between eco-innovation, urbanization, economic growth and ecological footprints for G7 countries: Does financial globalization matter?. Sustain. Cities Soc. 70, 102881 (2021).
    Google Scholar 
    Murshed, M. An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ. Sci. Pollut. Res. 27(29), 36254–36281 (2020).CAS 

    Google Scholar 
    Díaz-García, C., González-Moreno, Á. & Sáez-Martínez, F. J. Eco-innovation: Insights from a literature review. Innovation 17(1), 6–23 (2015).
    Google Scholar 
    Wang, L. et al. Are eco-innovation and export diversification mutually exclusive to control carbon emissions in G-7 countries?. J. Environ. Manage. 270, 110829 (2020).PubMed 

    Google Scholar 
    Su, H.-N. & Moaniba, I. M. Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions. Technol. Forecast. Soc. Chang. 122, 49–62 (2017).
    Google Scholar 
    Ding, Q., Khattak, S. I. & Ahmad, M. Towards sustainable production and consumption: assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain. Prod. Consum. 27, 254–268 (2021).
    Google Scholar 
    Zhang, Y.-J. et al. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 100, 18–28 (2017).
    Google Scholar 
    Solarin, S. A. & Bello, M. O. Energy innovations and environmental sustainability in the US: the roles of immigration and economic expansion using a maximum likelihood method. Sci. Total Environ. 712, 135594 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hashmi, R. & Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 231, 1100–1109 (2019).
    Google Scholar 
    Sinha, A., Sengupta, T. & Alvarado, R. Interplay between technological innovation and environmental quality: Formulating the SDG policies for next 11 economies. J. Clean. Prod. 242, 118549 (2020).
    Google Scholar 
    Gormus, S. & Aydin, M. Revisiting the environmental Kuznets curve hypothesis using innovation: New evidence from the top 10 innovative economies. Environ. Sci. Pollut. Res. 27(22), 27904–27913 (2020).
    Google Scholar 
    Usman, M. & Hammar, N. Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: Fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environ. Sci. Pollut. Res. 28(12), 15519–15536 (2021).
    Google Scholar 
    Shahbaz, M., Mutascu, M. & Azim, P. Environmental Kuznets curve in Romania and the role of energy consumption. Renew. Sustain. Energy Rev. 18, 165–173 (2013).
    Google Scholar 
    Kong, Q. et al. Trade openness and economic growth quality of China: Empirical analysis using ARDL model. Financ. Res. Lett. 38, 101488 (2021).
    Google Scholar 
    Kasman, A. & Duman, Y. S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 44, 97–103 (2015).
    Google Scholar 
    Ali, S. et al. Impact of trade openness, human capital, public expenditure and institutional performance on unemployment: Evidence from OIC countries. Int. J. Manpower, (2021).Chen, F., Jiang, G. & Kitila, G. M. Trade openness and CO2 emissions: The heterogeneous and mediating effects for the belt and road countries. Sustainability 13(4), 1958 (2021).
    Google Scholar 
    Sun, H. et al. Nexus between environmental infrastructure and transnational cluster in one belt one road countries: Role of governance. Bus. Strategy Develop. 1(1), 17–30 (2018).
    Google Scholar 
    Jebli, M. B. & Youssef, S. B. The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. Renew. Sustain. Energy Rev. 47, 173–185 (2015).
    Google Scholar 
    Jebli, M. B., Youssef, S. B. & Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Ind. 60, 824–831 (2016).
    Google Scholar 
    Shahbaz, M. et al. Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates. Ecol. Ind. 45, 622–631 (2014).CAS 

    Google Scholar 
    Xu, B. & Lin, B. How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 48, 188–202 (2015).
    Google Scholar 
    Ertugrul, H. M. et al. The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries. Ecol. Ind. 67, 543–555 (2016).
    Google Scholar 
    Najarzadeh, R. et al. Kyoto Protocol and global value chains: Trade effects of an international environmental policy. Environ. Develop. 40, 100659 (2021).
    Google Scholar 
    Liobikienė, G. & Butkus, M. Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects. Energy 135, 237–248 (2017).
    Google Scholar 
    Liobikienė, G. The revised approaches to income inequality impact on production-based and consumption-based carbon dioxide emissions: Literature review. Environ. Sci. Pollut. Res. 27(9), 8980–8990 (2020).
    Google Scholar 
    Li, G., Zakari, A. & Tawiah, V. Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives. Resour. Policy 68, 101769 (2020).
    Google Scholar 
    Ali, M. U. et al. Fossil energy consumption, economic development, inward FDI impact on CO2 emissions in Pakistan: Testing EKC hypothesis through ARDL model. Int. J. Financ. Econ. 26(3), 3210–3221 (2021).
    Google Scholar 
    Özbuğday, F. C. & Erbas, B. C. How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis. Energy 82, 734–745 (2015).
    Google Scholar 
    Wang, Q., Chiu, Y.-H. & Chiu, C.-R. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis. Energy Econ. 51, 252–260 (2015).
    Google Scholar 
    Dong, K. et al. Energy intensity and energy conservation potential in China: A regional comparison perspective. Energy 155, 782–795 (2018).
    Google Scholar 
    Tan, R. & Lin, B. What factors lead to the decline of energy intensity in China’s energy intensive industries?. Energy Econ. 71, 213–221 (2018).
    Google Scholar 
    Tariq, G. et al. Energy consumption and economic growth: Evidence from four developing countries. Am. J. Multidiscip. Res. 7(1), (2018).Sharif, A. et al. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from quantile ARDL approach. Sustain. Cities Soc. 57, 102138 (2020).
    Google Scholar 
    Khan, I., Hou, F. & Le, H. P. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ. 754, 142222 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bölük, G. & Mert, M. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy 74, 439–446 (2014).
    Google Scholar 
    Sugiawan, Y. & Managi, S. The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy. Energy Policy 98, 187–198 (2016).
    Google Scholar 
    Bölük, G. & Mert, M. The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach. Renew. Sustain. Energy Rev. 52, 587–595 (2015).
    Google Scholar 
    Sebri, M. & Ben-Salha, O. On the causal dynamics between economic growth, renewable energy consumption, CO2 emissions and trade openness: Fresh evidence from BRICS countries. Renew. Sustain. Energy Rev. 39, 14–23 (2014).
    Google Scholar 
    Tiwari, A. K. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 31(2), 1793–1806 (2011).
    Google Scholar 
    Apergis, N. & Payne, J. E. Renewable energy consumption and growth in Eurasia. Energy Econ. 32(6), 1392–1397 (2010).
    Google Scholar 
    Menyah, K. & Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 38(6), 2911–2915 (2010).CAS 

    Google Scholar 
    Fareed, Z. et al. Financial inclusion and the environmental deterioration in Eurozone: The moderating role of innovation activity. Technol. Soc. 69, 101961 (2022).
    Google Scholar 
    Adebayo, T. S. Renewable energy consumption and environmental sustainability in Canada: does political stability make a difference? Environ. Sci. Pollut. Res., 1–16 (2022).Shahbaz, M. et al. Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?. Energy Econ. 51, 275–287 (2015).
    Google Scholar 
    Tariq, G. et al. Trade liberalization, FDI inflows economic growth and environmental sustanaibility in Pakistan and India. J. Agric. Environ. Int. Develop. (JAEID) 112(2), 253–269 (2018).
    Google Scholar 
    Lee, J. W. The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth. Energy Policy 55, 483–489 (2013).
    Google Scholar 
    Sun, H.-P. et al. Evaluating the environmental effects of economic openness: Evidence from SAARC countries. Environ. Sci. Pollut. Res. 26(24), 24542–24551 (2019).CAS 

    Google Scholar 
    Adebayo, T. S. Environmental consequences of fossil fuel in Spain amidst renewable energy consumption: a new insights from the wavelet-based Granger causality approach. Int. J. Sustain. Develop. World Ecol. 1–14 (2022).Adebayo, T. S. et al. Impact of tourist arrivals on environmental quality: A way towards environmental sustainability targets. Current Issues Tourism, 1–19 (2022).Akadiri, S.S. et al. Testing the role of economic complexity on the ecological footprint in China: A nonparametric causality-in-quantiles approach. Energy Environ. 0958305X221094573 (2022).Xie, Q. et al. Race to environmental sustainability: Can renewable energy consumption and technological innovation sustain the strides for China? Renew. Energy (2022).Du, L. et al. Asymmetric effects of high-tech industry and renewable energy on consumption-based carbon emissions in MINT countries. Renew. Energy 196, 1269–1280 (2022).CAS 

    Google Scholar 
    Al-Mulali, U. & Tang, C. F. Investigating the validity of pollution haven hypothesis in the gulf cooperation council (GCC) countries. Energy Policy 60, 813–819 (2013).
    Google Scholar 
    Jiang, Y. Foreign direct investment, pollution, and the environmental quality: A model with empirical evidence from the Chinese regions. Int. Trade J. 29(3), 212–227 (2015).
    Google Scholar 
    Ren, S. et al. International trade, FDI (foreign direct investment) and embodied CO2 emissions: A case study of Chinas industrial sectors. China Econ. Rev. 28, 123–134 (2014).
    Google Scholar 
    Tang, C. F. & Tan, B. W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 79, 447–454 (2015).
    Google Scholar 
    Omri, A. & Kahouli, B. Causal relationships between energy consumption, foreign direct investment and economic growth: Fresh evidence from dynamic simultaneous-equations models. Energy Policy 67, 913–922 (2014).
    Google Scholar 
    Dong, K.-Y. et al. A review of China’s energy consumption structure and outlook based on a long-range energy alternatives modeling tool. Pet. Sci. 14(1), 214–227 (2017).
    Google Scholar 
    WDI, World Development Indicator. https://data.worldbank.org/, (2022).OECD, Organisation for Economic Co-operation and Development. https://data.oecd.org/, (2021).Levin, A., Lin, C.-F. & Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 108(1), 1–24 (2002).MathSciNet 
    MATH 

    Google Scholar 
    Breitung, J. The local power of some unit root tests for panel data. (Emerald Group Publishing Limited, 2001).Im, K. S., Pesaran, M. H. & Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 115(1), 53–74 (2003).MathSciNet 
    MATH 

    Google Scholar 
    Hlouskova, J. & Wagner, M. The performance of panel unit root and stationarity tests: Results from a large scale simulation study. Economet. Rev. 25(1), 85–116 (2006).MathSciNet 
    MATH 

    Google Scholar 
    Narayan, P. K. & Narayan, S. Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy 38(1), 661–666 (2010).
    Google Scholar 
    Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bull. Econ. Stat. 61(S1), 653–670 (1999).
    Google Scholar 
    Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Economet. Theor. 20(3), 597–625 (2004).MathSciNet 
    MATH 

    Google Scholar 
    Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 90(1), 1–44 (1999).MathSciNet 
    MATH 

    Google Scholar 
    Breusch, T. S. & Pagan, A. R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 47(1), 239–253 (1980).MathSciNet 
    MATH 

    Google Scholar 
    Baltagi, B. H. and Hashem Pesaran, M. Heterogeneity and cross section dependence in panel data models: Theory and applications introduction. 229–232 (Wiley Online Library, 2007).Levine, S. & Kendall, K. Energy efficiency and conservation: Opportunities, obstacles, and experiences. Vt. J. Envtl. L. 8, 101 (2006).
    Google Scholar 
    Stock, J. H. and Watson, M. W. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica: J. Econom. Soc. 783–820 (1993).Phillips, P.C. and Hansen, B.E. Estimation and inference in models of cointegration: A simulation study. (Cowles Foundation for Research in Economics, Yale University, 1988).Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels, in Nonstationary panels, panel cointegration, and dynamic panels. (Emerald Group Publishing Limited, 2001).Kao, C. and Chiang, M.-H. On the estimation and inference of a cointegrated regression in panel data, in Nonstationary panels, panel cointegration, and dynamic panels. (Emerald Group Publishing Limited, 2001).Liobikienė, G. & Butkus, M. Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions. Renew. Energy 132, 1310–1322 (2019).
    Google Scholar 
    Balsalobre-Lorente, D. et al. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew. Energy 185, 1441–1455 (2022).CAS 

    Google Scholar 
    Sarkodie, S. A. & Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 643, 1590–1601 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mohamued, E. A. et al. Global oil price and innovation for sustainability: The impact of R&D spending, oil price and oil price volatility on GHG emissions. Energies 14(6), 1757 (2021).
    Google Scholar 
    Iqbal, N. et al. Does exports diversification and environmental innovation achieve carbon neutrality target of OECD economies?. J. Environ. Manage. 291, 112648 (2021).PubMed 

    Google Scholar 
    Edenhofer, O. et al. Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. (Cambridge University Press, 2011).Owusu, P. A. & Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016).
    Google Scholar  More

  • in

    Study of cattle microbiota in different regions of Kazakhstan using 16S metabarcoding analysis

    Comparative characteristics of rations for feeding cattle from different regions of the Republic of Kazakhstan and the impact of animal feeding types on the faecal microbiotaDue to the huge differences in the natural and climatic conditions of Kazakhstan, animals from different regions of Kazakhstan were enrolled for this study. The difference in soil and climatic conditions of different zones has a significant impact on the type of feeding (Table 1) and the composition of diets, which has a certain effect on the microbiota of intestinal contents and methanogenic archaea in particular.Table 1 Animal diets in different regions of Kazakhstan.Full size tableIn the course of the research work, regions and specific agricultural formations were identified in the context of these regions.In North Kazakhstan, the fodder base is represented by such fodders as alfalfa hay, herb hay, alfalfa haylage, wheat straw, fodder wheat and sunflower cake. The feed is mainly of 2 quality classes. The live weight of cattle ranged from 375 to 480 kg. Feeding type: hay-concentrate and haylage-hay-concentrate.In the Western region, the animals were on the pasture, represented by the green mass of feather grass, hair, sage and tansy. Beef cattle are represented by the following breeds: Kazakh white-headed, Aberdeen-Angus and Hereford. Average live weight is 350–550 kg.In the Southeast region, the fodder base consists of wheat hay, sainfoin + alfalfa hay, mountain hay, herb haylage, corn silage and crushed corn. The feed is mainly of 2 and 3 classes. Hay-concentrate type of feeding is used, as well as pastures. Livestock of Angus, Kazakh white-headed breeds and animals of the local population are kept. Live weight of young animals is in the range of 360–380 kg.The diets of the Southern Region include natural grass hay, alfalfa hay, wheat straw, alfalfa haylage and concentrates. Hay-concentrate type of livestock feeding is widespread in the region. The average live weight of bulls for fattening of the Kazakh white-headed and Angus breeds—360–420 kg with a daily increase in live weight of 870–920 g.The composition of the fecal microbiota depending on the type of feeding is presented in Table 2.Table 2 The content of methanogenic archaea in feces.Full size tableFrom the data of Table 2 it follows that the largest amount of Bacteria was found in the faeces of animals with silage-concentrated feeding (98.59 ± 13.0%), and the smallest—with pasture-concentrated (93.24 ± 3.73%) and haylage—concentrated (93.8 ± 12.41%) types of feeding. The differences amounted to 5.35 and 4.79 absolute percent, respectively. However, the differences were not significant at P  More