More stories

  • in

    Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China

    Orr, D. W. Land use and climate change. Conserv. Biol. 22(6), 1372–1374 (2010).
    Google Scholar 
    Zhang, X. D. et al. Tropospheric ozone perturbations induced by urban land expansion in China from 1980 to 2017. Environ. Sci. Technol. https://doi.org/10.1021/ACS.EST.1C06664 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian cerrado biome. Environ. Res. Lett. 12(2), 025004. https://doi.org/10.1088/1748-9326/aa5986 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, B., Xun, Z., Ran, Z. & Zhao, X. Study of multiple land use planning based on the coordinated development of wetland farmland: A case study of Fuyuan City, China. Sustainability 11(1), 271. https://doi.org/10.3390/su11010271 (2019).Article 

    Google Scholar 
    Tong, D., Chu, J., Han, Q. & Liu, X. How land finance drives urban expansion under fiscal pressure: Evidence from Chinese cities. Land. 11(2), 253. https://doi.org/10.3390/land11020253 (2022).Article 

    Google Scholar 
    Chen, J., Chang, K. T., Karacsonyi, D. & Zhang, X. Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat. Int. 43, 61–71. https://doi.org/10.1016/j.habitatint.2014.01.004 (2014).CAS 
    Article 

    Google Scholar 
    Shu, B. R., Zhang, H. H., Li, Y. L., Qu, Y. & Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat. Int. 43, 181–190. https://doi.org/10.1016/j.habitatint.2014.02.004 (2014).Article 

    Google Scholar 
    Wang, R. Y., He, W. S., Wu, D., Zhang, L. & Li, Y. J. Urban Land expansion simulation considering the diffusional and aggregated growth simultaneously: A case study of Luoyang City. Sustainability. 13(17), 9781–9781. https://doi.org/10.3390/su13179781 (2021).Article 

    Google Scholar 
    Wei, Y. D. & Ye, X. Determinants of urban land expansion and environmental change in China. Stoch. Env. Res. Risk. A. 28(4), 757–765. https://doi.org/10.1007/s00477-013-0840-9 (2014).Article 

    Google Scholar 
    Yang, Q. K., Duan, X. J., Yang, L. & Wang, L. Spatial-Temporal patterns and driving factors of rapid urban land development in provincial China: A case study of Jiangsu. Sustainability. 9(12), 2371. https://doi.org/10.3390/su9122371 (2017).Article 

    Google Scholar 
    Zhong, Y., Lin, A. & Zhou, Z. Evolution of the pattern of spatial expansion of urban land use in the Poyang Lake ecological economic zone. Int. J. Environ. Res. Public. Health. 16(1), 117. https://doi.org/10.3390/ijerph16010117 (2019).Article 
    PubMed Central 

    Google Scholar 
    Wu, C., Huang, X. & Chen, B. Telecoupling mechanism of urban land expansion based on transportation accessibility: A case study of transitional Yangtze River economic Belt, China. Land Use Policy 96, 104687. https://doi.org/10.1016/j.landusepol.2020.104687 (2020).Article 

    Google Scholar 
    Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing. Habitat. Int. 34(2), 236–243. https://doi.org/10.1016/j.habitatint.2009.09.008 (2010).Article 

    Google Scholar 
    Cai, W. J. & Tu, F. Y. Spatiotemporal characteristics and driving forces of construction land expansion in Yangtze River economic belt, China. PLoS ONE 15(1), 0227299. https://doi.org/10.1371/journal.pone.0227299 (2020).CAS 
    Article 

    Google Scholar 
    Salvati, L., Carlucci, M., Grigoriadis, E. & Chelli, F. M. Uneven dispersion or adaptive polycentrism? Urban expansion, population dynamics and employment growth in an “ordinary” city. Rev. Region. Res. 38(1), 1–25. https://doi.org/10.1007/s10037-017-0115-x (2017).Article 

    Google Scholar 
    Cao, Y., Ba, I. Z., Zhou, W. & Zhang, X. Analyses of traits and driving forces on urban land expansion in a typical coal-resource-based city in a loess area. Environ. Earth. Sci. 75(16), 1191.1-11911.3. https://doi.org/10.1007/s12665-016-5926-5 (2016).Article 

    Google Scholar 
    Davies, R. G., Barbosa, O. D. & Fuller, R. A. City-wide relationships between green spaces, urban land use and topography. Urban Ecosyst. 11(3), 269. https://doi.org/10.1007/s11252-008-0062-y (2008).Article 

    Google Scholar 
    Cheng, L. L., Liu, M. & Zhan, J. Q. Land use scenario simulation of mountainous districts based on Dinamica EGO model. J. Mt. Sci. 17(2), 289–303. https://doi.org/10.1007/s11629-019-5491-y (2020).Article 

    Google Scholar 
    Liu, J. Y., Zhan, J. Y. & Deng, X. Z. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio 34, 450–455. https://doi.org/10.1579/0044-7447-34.6.450 (2005).Article 
    PubMed 

    Google Scholar 
    Li, X. M., Zhou, W. & Quyang, Z. J. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors?. Appl. Geogr. 38, 1–10. https://doi.org/10.1016/j.apgeog.2012.11.004 (2013).Article 

    Google Scholar 
    Wang, Z. W. & Lu, C. H. Urban land expansion and its driving factors of mountain cities in China during 1990–2015. J. Geogr. Sci. 28(8), 1152–1166. https://doi.org/10.1007/s11442-018-1547-0 (2018).MathSciNet 
    Article 

    Google Scholar 
    Zhang, Y. W. & Xie, H. L. Interactive relationship among urban expansion, economic development, and population growth since the reform and opening up in China: An analysis based on a vector error correction model. Land 8(10), 153–153. https://doi.org/10.3390/land8100153 (2019).CAS 
    Article 

    Google Scholar 
    Deng, X., Huang, J., Rozelle, S. & Uchid, E. Growth, population and industrialization, and urban land expansion of China. J. Urban. Econ. 63(1), 96–115. https://doi.org/10.1016/j.jue.2006.12.006 (2006).Article 

    Google Scholar 
    Luo, J., Zhang, X. & Wu, Y. Urban land expansion and the floating population in China: For production or for living?. Cities 74(4), 219–228. https://doi.org/10.1016/j.cities.2017.12.007 (2018).Article 

    Google Scholar 
    Salem, M., Tsurusaki, N. & Divigalpitiya, P. Analyzing the driving factors causing urban expansion in the peri-urban areas using logistic regression: A case study of the greater Cairo region. Infrastructures 4(1), 4. https://doi.org/10.3390/infrastructures4010004 (2019).Article 

    Google Scholar 
    Salem, M., Bose, A. & Chowdhury, I. R. Urban expansion simulation based on various driving factors using a logistic regression model: Delhi as a case study. Sustainability 13(19), 1–17. https://doi.org/10.3390/su131910805 (2021).Article 

    Google Scholar 
    Su, Z. W. et al. Using GIS and Random Forests to identify fire drivers in a forest city, Yichun, China. Geomat. Nat. Hazards. Risk. 9(1), 1207–1229. https://doi.org/10.1080/19475705.2018.1505667 (2018).Article 

    Google Scholar 
    Hu, Y. & Hu, Y. Land cover changes and their driving mechanisms in central Asia from 2001 to 2017 supported by google earth engine. Remote. Sens-Basel. 11(5), 554. https://doi.org/10.3390/rs11050554 (2019).ADS 
    Article 

    Google Scholar 
    Liu, Y., Song, W. & Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional dpsir-based indicators. Ecol. Indic. 2(96), 23–37. https://doi.org/10.1016/j.ecolind.2018.01.029 (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L., Wang, Y. F., Sun, H. Y. & Yin, T. T. Comprehensive effectiveness evaluation and obstacle diagnosis of mining villages in the transition period. Trans. CSAE. 38(5), 241–249. https://doi.org/10.11975/j.issn.1002-6819.2022.05.029 (2022).Article 

    Google Scholar 
    Cheng, L. L., Sun, H. Y., Zhang, Y. & Zhen, S. Spatial structure optimization of mountainous abandoned mine land reuse based on system dynamics model and CLUE-S model. Int. J. Coal. Sci. Techn. 6, 113–126. https://doi.org/10.1007/s40789-019-0241-x (2019).CAS 
    Article 

    Google Scholar 
    Tian, C., Cheng, L. L. & Yin, T. T. Impacts of anthropogenic and biophysical factors on ecological land using logistic regression and random forest: A case study in Mentougou District, Beijing, China. J. Mt. Sci. 19, 433–445. https://doi.org/10.1007/s11629-021-7022-x (2022).Article 

    Google Scholar 
    Gorelick, N., Hanchr, M., Dixon, M., Ilyushchenko, S. & Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).ADS 
    Article 

    Google Scholar 
    Feng, R. D., Wang, F. Y. & Wang, K. Y. Quantifying influences of anthropogenic-natural factors on ecological land evolution in mega-urban agglomeration: A case study of Guangdong-Hong Kong-Macao Greater Bay area. J. Clean. Prod. 283(9), 125304. https://doi.org/10.1016/j.jclepro.2020.125304 (2021).Article 

    Google Scholar 
    Sun, X., Lu, Z., Li, F. & Crittenden, J. C. Analyzing spatio-temporal changes and tradeoffs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indicat. 94, 117–129. https://doi.org/10.1016/j.ecolind.2018.06.049 (2018).Article 

    Google Scholar 
    Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A. & Pereira, J. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest. Ecol. Manag. 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003 (2012).Article 

    Google Scholar 
    Ugur, A. Dynamic land cover mapping of urbanized cities with Landsat 8 multi-temporal images: Comparative evaluation of classification algorithms and dimension reduction methods. Isprs Int. J. Geo-Inf. 8(3), 139. https://doi.org/10.3390/ijgi8030139 (2019).Article 

    Google Scholar 
    Chapelle, O. Training a support vector machine in the primal. Neural. Comput. 19(5), 1155. https://doi.org/10.1162/neco.2007.19.5.1155 (2007).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Lin, Q. Y., Guo, J. Y., Yan, J. F. & Wang, H. Land use and landscape pattern changes of Weihai, China based on object-oriented SVM classification from Landsat MSS/TM/OLI images. Eur. J. Remote. Sens. 51(1), 1036–1048. https://doi.org/10.1080/22797254.2018.1534532 (2018).Article 

    Google Scholar 
    Devos, O., Ruckebusch, C., Duponchel, L. & Huvenne, J. P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation. Chemometr. Intell. Lab. 96(1), 27–33. https://doi.org/10.1016/j.chemolab.2008.11.005 (2009).CAS 
    Article 

    Google Scholar 
    Heumann, B. W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote. Sens-Basel. 3(11), 2440–2460. https://doi.org/10.3390/rs3112440 (2011).ADS 
    Article 

    Google Scholar 
    Hsu, C., Chang, C. C. & Lin, C. J. A practical guide to support vector classification, 15. Department of Computer Science, National Taiwan University. https://doi.org/10.1111/j.1365-3016.1995.tb00168.x (2009).Aspinall, R. Modelling land use change with generalized linear models-a multi-model analysis of change between 1860 and 2000 in Gallatin valley, Montana. J. Environ. Manage. 72(1–2), 91–103. https://doi.org/10.1016/j.jenvman.2004.02.009 (2004).Article 
    PubMed 

    Google Scholar 
    Wu, W. & Zhang, J. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62. https://doi.org/10.1016/j.apgeog.2012.10.012 (2013).Article 

    Google Scholar 
    Thomas, D. R., Zhu, P. C. & Decady, Y. J. Point estimates and confidence intervals for variable importance in multiple linear regression. J. Educ. Behav. Stat. 32(1), 61–91. https://doi.org/10.1002/bimj.201100134 (2007).Article 

    Google Scholar 
    Huang, B. & Boutros, P. C. The parameter sensitivity of random forests. BMC Bioinform. 17, 331. https://doi.org/10.1186/s12859-016-1228-x (2016).Article 

    Google Scholar 
    Pang, J., Chen, Y., He, S., Qiu, H. & Mao, L. Classification of friction and wear state of wind turbine gearboxes using decision tree and random forest algorithms. J. Tribol-T. Asme. 143(9), 1–28. https://doi.org/10.1115/1.4049257 (2020).CAS 
    Article 

    Google Scholar 
    Liu, M., Hu, S., Ge, Y., Heuvelink, G. & Huang, X. Using multiple linear regression and random forests to identify spatial poverty determinants in rural China. Spat. Stat.-Neth. 42, 100461. https://doi.org/10.1016/j.spasta.2020.100461 (2020).MathSciNet 
    Article 

    Google Scholar 
    Jutidamrongphan, W. Determine the land-use land-cover changes, urban expansion and their driving factors for sustainable development in Gazipur Bangladesh. Atmosphere 12(10), 1353. https://doi.org/10.3390/atmos12101353 (2021).ADS 
    Article 

    Google Scholar 
    Liu, M. & Tian, H. China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009GB003687 (2010).Article 

    Google Scholar 
    Tong, Z., Yao, S., Hu, W. & Cui, F. Simulation of urban expansion in Guangzhou Foshan metropolitan area under the influence of accessibility. Scientia. Geographica. Sinica. 38(5), 737–746 (2018).
    Google Scholar 
    Poelmans, L. & Rompaey, A. V. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 34(1), 17–27. https://doi.org/10.1016/j.compenvurbsys.2009.06.001 (2010).Article 

    Google Scholar 
    Galinato, S. P. & Gregma, I. The effects of government spending on deforestation due to agricultural land expansion and CO2 related emissions. Ecol. Econ. 122, 43–53. https://doi.org/10.1016/j.ecolecon.2015.10.025 (2016).Article 

    Google Scholar 
    Xie, X. F., Wu, T., Zhu, M., Jiang, G. J. & Xw, E. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925. https://doi.org/10.1016/j.ecolind.2020.106925 (2021).CAS 
    Article 

    Google Scholar 
    Miller, M. D. The mpacts of Atlanta’s urban sprawl on forest cover and fragmentation. Appl. Geogr. 34, 171–179. https://doi.org/10.1016/j.apgeog.2011.11.010 (2012).ADS 
    Article 

    Google Scholar 
    Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/1/014025 (2013).Article 

    Google Scholar 
    Qiao, W. et al. Multi-dimensional expansion of urban space through the lens of land use: The case study of Nanjing city, China. J. Geogr. Sci. 29(5), 749–761. https://doi.org/10.1007/s11442-019-1625-y (2019).Article 

    Google Scholar 
    Yza, B., Lt, A. & Hw, A. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean. Prod. 329, 129488. https://doi.org/10.1016/j.jclepro.2021.129488 (2021).Article 

    Google Scholar  More

  • in

    Decomposition stages as a clue for estimating the post-mortem interval in carcasses and providing accurate bird collision rates

    Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).
    Google Scholar 
    Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).
    Google Scholar 
    Hunting, K. A Roadmap for PIER Research on Avian Collisions with Power Lines in California. (2002).Barrientos, R. et al. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLoS ONE 7, e32569 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).
    Google Scholar 
    Jenkins, A. R. et al. Estimating the impacts of power line collisions on Ludwig’s Bustards Neotis ludwigii. Bird Conserv. Int. 21, 303–310 (2011).
    Google Scholar 
    Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) 1859(160), 431–446 (2018).
    Google Scholar 
    Gómez-Catasús, J. et al. Factors affecting differential underestimates of bird collision fatalities at electric lines: a case study in the Canary Islands. Ardeola 68, 71–94 (2021).
    Google Scholar 
    Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).
    Google Scholar 
    Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
    Google Scholar 
    Brooks, J. W. & Sutton, L. in Veterinary Forensic Pathology (ed. Brooks, J. W.) 43–63 (2018). https://doi.org/10.1007/978-3-319-67172-7_4Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).
    Google Scholar 
    Hau, T. C., Hamzah, N. H., Lian, H. H. & Amir Hamzah, S. P. A. Decomposition process and post mortem changes: Review. Sains Malaysiana 43, 1873–1882 (2014).
    Google Scholar 
    Cooper, J. E. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 237–324 (CRC Press, 2013). https://doi.org/10.1201/b14553Sutherland, A., Myburgh, J., Steyn, M. & Becker, P. J. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 231, 257–262 (2013).CAS 
    PubMed 

    Google Scholar 
    Valverde, I., Espín, S., María-Mojica, P. & García-Fernández, A. J. Protocol to classify the stages of carcass decomposition and estimate the time of death in small-size raptors. Eur. J. Wildl. Res. 66, 1–13 (2020).
    Google Scholar 
    Goff, M. L. in Current Concepts in Forensic Entomology (eds. Amendt, J., Goff, M., Campobasso, C. & Grassberger, M.) 1–24 (Springer, 2010). https://doi.org/10.1007/978-1-4020-9684-6_1Pittner, S. et al. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 134, 1361–1373 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Probst, C. et al. Estimating the postmortem interval of wild boar carcasses. Vet. Sci. 7, 6 (2020).PubMed Central 

    Google Scholar 
    Cambra-Moo, Ó., Delgado-Buscalioni, Á. & Delgado-Buscalioni, R. An approach to the study of variations in early stages of Gallus gallus decomposition. J. Taphon. 6, 21–40 (2008).
    Google Scholar 
    Oates, D., Coggin, J., Hartman, F. & Hoilien, G. Guide to Time of Death in Selected Wildlife Species. (Nebraska Technical Series No. 14. Lincoln, N.E., Nebraska Game and Parks Commission, 1984).Hewadikaram, K. A. & Goff, M. L. Effect of carcass size on rate of decomposition and arthropod succession patterns. Am. J. Forensic Med. Pathol. 12, 240–265 (1991).
    Google Scholar 
    Zhou, C. & Byard, R. W. Factors and processes causing accelerated decomposition in human cadavers—An overview. J. Forensic Leg. Med. 18, 6–9 (2011).PubMed 

    Google Scholar 
    Cockle, D. L. & Bell, L. S. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 253(136), e1-136.e9 (2015).
    Google Scholar 
    Azevedo, R. R. & Krüger, R. F. The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera). Iheringia. Série Zool. 103, 145–152 (2013).
    Google Scholar 
    Barnes, K. M. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 149–160 (CRC Press, 2013).Mann, R. W., Bass, W. M. & Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 35, 103–111 (1990).CAS 
    PubMed 

    Google Scholar 
    Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: Positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).ADS 

    Google Scholar 
    Araujo, P. I., Grasso, A. A., González-Arzac, A., Méndez, M. S. & Austin, A. T. Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. Environ. 330, 107908 (2022).
    Google Scholar 
    Fernández-Palacios, J. M. & Martín-Esquivel, J. L. Naturaleza de las Islas Canarias: Ecología y Conservación. (Turquesa, 2001).Kenward, M. G. & Roger, J. H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal. 53, 2583–2595 (2009).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models-the R package pbkrtest. J. Stat. Softw. 59, 1–30 (2014).
    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. (Sage, 2011).Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.43.6, 2019).De Rosario-Martinez, H., Fox, J. & R Core Team. Package ‘phia’ Title Post-Hoc Interaction Analysis. (R Package Version 0.2–1, 2015).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Vass, A. Beyond the grave—Understanding human decomposition. Microbiol. Today 28, 190–192 (2001).
    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: The Postmortem Fate of Human Remains (eds. Haglund, W. D. & Sorg, M. H.) 93–104 (CRC Press, 1996). https://doi.org/10.1201/9781439821923.sec2Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 12, 18–27 (2001).
    Google Scholar 
    Austin, A. T., Araujo, P. I. & Leva, P. E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90, 2642–2647 (2009).PubMed 

    Google Scholar 
    Brandt, L. A., Bonnet, C. & King, J. Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 114, G02004 (2009).ADS 

    Google Scholar 
    Lee, H., Rahn, T. & Throop, H. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Chang. Biol. 18, 1185–1195 (2012).ADS 

    Google Scholar 
    Zepp, R. G., Erickson, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).CAS 
    PubMed 

    Google Scholar 
    Archer, M. S. Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci. Justice J. Forensic Sci. Soc. 44, 35–41 (2004).Simmons, T., Adlam, R. E. & Moffatt, C. Debugging decomposition data—Comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 55, 8–13 (2010).PubMed 

    Google Scholar 
    Spicka, A., Johnson, R., Bushing, J., Higley, L. G. & Carter, D. O. Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci. Int. 209, 80–85 (2011).CAS 
    PubMed 

    Google Scholar 
    Tracqui. in Encyclopaedia of Forensic Sciences (eds. Siegel, J. A., Saukko, P. J. & Max, M. H.) 1357–1363 (Academic Press, 2000).Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird–window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).PubMed 

    Google Scholar  More

  • in

    Spatial distribution and interactions between mosquitoes (Diptera: Culicidae) and climatic factors in the Amazon, with emphasis on the tribe Mansoniini

    Changes in temperature and extreme environmental conditions can affect the dynamics of vector-borne pathogens. These include leishmaniasis, transmitted by phlebotomine sandflies, as well as mosquitoes that spread arboviruses like dengue, encephalitis, yellow fever, West Nile fever, and lymphatic filariasis19,20,21.The CCA analysis showed that maximum temperature significantly influenced the abundance of mosquito populations in the study area. In addition, the NMDS showed two different groupings that consisted of samples collected during the rainy and dry seasons. Accordingly, Refs.22,23 report that changes in temperature and relative humidity determine the abundance of mosquitoes, which can disappear entirely during the dry season. Moreover, Refs.22,24,25 note that certain species of mosquitoes increase proportionally with the regional rainfall regime. This is consistent with Ref.10, who find alternating patterns in tropical and temperate climates in some Brazilian regions.As shown by the geometric regression, there is a positive correlation between cumulative rainfall in the days before collection and the number of species found in the study period. Likewise, Ref.26 reported that under the conditions observed in the Serra do Mar State Park, climate variables directly influenced the abundance of Cq. chrysonotum and Cq. venezuelensis, favoring the occurrence of culicids during the more warm, wet, and rainy months.The current climate scenario and future projections about climate, environmental, demographic, and meteorological factors directly influence the distribution and abundance of mosquito vectors and/or diseases27,28,29,30. Environmental temperature alters mosquito population dynamics, thereby affecting the development of immature stages as well as reproduction31. While temperature has an important effect on population dynamics, rainfall and drought also affect the density and dispersal of mosquitoes in temperate and tropical regions32.To be sure, environmental changes other than climate can modify the behavior of vector insects and, subsequently, the mechanism of transmission of parasites20. Specifically, human impacts on the environment can result in drastically different disease transmission cycles in and around inhabited areas33.A previous study34 reported that changes in land use influence the mosquito communities with potential implications for the emergence of arboviruses. Another study35 noted that environmental changes negatively affect natural ecosystems with accelerated biodiversity loss. This is due to the modification and loss of natural habitat and unsustainable land use, which leads to the spread of pathogens and disease vectors.Hence, understanding the relationship between humans and the environment becomes increasingly critical, given the way in which climate changes can lead to alterations in the epidemiology of diseases such as dengue in areas considered free of the disease, as well as in endemic areas36.We found that the abundance and diversity of Mansoniini were directly influenced by the effect of the rainy season and other climatic factors. The rainfall regime has been shown to affect the development of immature forms12,37; explaining the greater frequency of these specimens in the warmer and wetter months38,39,40. According to Ref.41, stable ecosystems such as forests contain great species diversity. On the other hand, diversity tends to be reduced in biotic communities suffering from stress.Studies of insect populations in natural areas are important because they allow a direct analysis of how environmental factors influence phenomena such as the choice of breeding sites by females for oviposition, hematophagous behavior, and the distribution of species along a vegetation gradient12,26,42,43.Throughout the experimental period of the present study, we observed that Shannon light traps are an effective method for catching mosquitoes from the Mansoniini tribe. Interestingly, Ref.44 reported a species richness pattern strongly influenced by Coquillettidia fasciolata (Lynch Arribálzaga, 1891) on mosquito samples from different capture points by using CDC and Shannon light traps as sampling methods. In contrast to the results of Ref.44, where the highest population density of mosquitoes was captured with CDC traps, we observed that these traps were not effective at capturing specimens of Mansoniini in spite of being used in large numbers in the present study. Moreover, Ref.45 conducted another study on faunal diversity in an Atlantic Forest remnant of the state of Rio de Janeiro and observed the highest abundance of Cq. chrysonotum (Peryassú, 1922) and Cq. venezuelensis by using Shannon light traps, while the numbers of captures of Ma. titillans were very similar using CDC and Shannon traps.The results of this study indicate that the makeup of culicid fauna remains quite similar throughout the year, despite seasonal variations in abundance, though there was a lower variability of fauna in the dry season. Therefore, although the seasonality did not affect the temporal variation of the faunal composition in a generalized way, it was possible to detect a partial effect of the seasonality on fauna abundance.
    Reference46 report that the incidence peaks of mosquitoes in the warmer and wetter months, as well as mosquito populations remaining between tolerance limits for most of the year, indicate the sensitivity of some species to the local climate.The elevated abundance and diversity of species of Mansoniini in the study area were influenced by the favorable maintenance of breeding sites, including specific water accumulations with emerging vegetation that remain present throughout the year and the well-defined rainy season in the region. In addition, the representatives of Mansoniini, which prefer breeding sites containing macrophytes, made up nearly all of the species collected7.Besides providing a greater awareness of mosquito populations’ ecological and biological aspects, research carried out in wild areas also provides information on the relationship between species diversity and the area in which they are found. Considering that wild insects may become potential vectors of diseases, research in wild areas also provides helpful information for understanding relevant epidemiological aspects. These studies facilitate the identification, monitoring, and control of mosquito populations following environmental changes caused by direct human action, which can lead to major epidemics26.We observed considerable heterogeneity among Mansoniini fauna, and the months with the highest rainfall directly influence the structure of the communities and contribute to the increase in mosquito diversity and abundance, possibly due to variations in the availability of habitat for their immature forms. More

  • in

    Weather stressors correlate with Escherichia coli and Salmonella enterica persister formation rates in the phyllosphere: a mathematical modeling study

    Case studyThe experimental setup for the field studies that provided the bacterial population and weather data used here was previously described by Belias et al. [9]. Briefly, baby spinach and lettuce plants were spray-inoculated with E. coli and S. enterica (Salmonella) onto field plots established in Davis, CA (University of California, Plant Sciences Field Research Facility); Freeville, NY (Homer C. Thompson Research Farm, Cornell University); and Murcia, Spain (La Matanza Research Farm). The spinach and lettuce varieties were selected based on their suitability for baby leaf production: lettuce var. Tamarindo, and spinach var. Acadia F1 and Seaside F1. Four replicate trials at different times of the regional growing season were carried out per location. The plants were spray-inoculated with a 104 CFU/mL cocktail of rifampin-resistant strains of commensal E. coli and attenuated S. enterica serovar Typhimurium (Salmonella), and samples were collected for bacterial cell quantification by plate counts on selective and differential media at 0, 4, 8, 24, 48, 72 and 96 h post-inoculation. Concurrent with leaf sample collection, weather variables (temperature, relative humidity (RH), solar radiation intensity, and wind velocity) were recorded hourly for the respective field locations. The hourly dew point (DP) was calculated as a function of both the hourly temperature and RH.Model for persister formation on plantsMathematical modeling to characterize the switch rate from a non-persister bacterial cell (hereafter termed “normal cell”) to a persister cell in the phyllosphere under laboratory conditions was performed as described in our previously published study [24]. Briefly, persister cell fractions were quantified in culturable EcO157 populations after inoculation onto young lettuce plants cultivated in plant growth chambers. Persister cells recovered from the lettuce phyllosphere were identified using the antibiotic lysing method [23]. The greatest persister fraction in the EcO157 population on lettuce in our laboratory investigation above was observed during population decline on leaf surfaces of plants left to dry after inoculation. Using mathematical modeling, we calculated the switch rate from an EcO157 normal to persister cell on dry lettuce plants based on these data [24]. Importantly, our laboratory conditions mimicked inoculation conditions in which E. coli arrived via water on leaves, the surfaces of which progressively dried like under prevailing weather conditions in the field.Based on the main dynamic observed in the field study data [9] and building on our previous study [24], we assumed that the total enteric pathogen population is composed of (i) non-persister (normal) cells consisting of two sub-populations, characterized by fast (n1) (CFU/100g) and slow (n2) (CFU/100g) decay, and (ii) the persister population, leading to the following model from Munther et al. [24]:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1 + beta _dleft( {1 – sigma } right)hat p,$$
    (1a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2 – alpha _dn_2 + beta _dsigma hat p,$$
    (1b)
    $$frac{{dhat p}}{{dt}} = – mu _{hat p}hat p – beta _dhat p + alpha _dleft( {n_1 + n_2} right),$$
    (1c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (1d)
    where (theta _{n_i})(1/h) is the death rate of the normal cells (subscript i = 1 for fast and i = 2 for slow), (hat p) (CFU/100 g) represents the persister cell population at time t (h), (mu _{hat p}) (1/h) reflects the persister population inactivation rate, αd (1/h) is the switch rate from normal to persister state, βd (1/h) is the switch rate from persister to the normal state, and σ ∈ (0,1) is a constant, describing the fraction of persister cells switching back to the normal, slowly decaying state. Equation (1a) and (1b) reflect the assumption that times between switching states are exponentially distributed, using the expected values (frac{1}{{alpha _d}}) (h) and (frac{1}{{beta _d}}) (h) of the respective distributions.Lacking data for potential persister populations from the field trials, we assumed the persister population is a fraction 1  > k  > 0 of the tail population, as observed in Munther et al. [24]. Regarding the model above, this implies that (hat p approx kn_2) for (t ge t^ ast), where (t^ ast approx frac{1}{{theta _{n_1}}}) (the time scale of survival for the fast-decaying population (n1)). In accord with bi-phasic decay, for (t ge t^ ast), the main dynamics for slow decaying population (n2) is dictated by (- theta _{n_2}n_2) in Eq. (1b). This suggests that the effective switch rates from n2 to (hat p) and from (hat p) back to n2 balance, so that (beta _dsigma hat p approx alpha _dn_2) in Eq. (1b). Following these ideas, we simplified the model in Eq. (1a)–(1d) to:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1,$$
    (2a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2,$$
    (2b)
    $$frac{{dhat p}}{{dt}} = – theta _{hat p}hat p + alpha _dn_1,$$
    (2c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (2d)
    where we ignored (beta _dleft( {1 – sigma } right)hat p) in (1a) since the decay rate ((theta _{n_1})) dominates. Also, by setting (theta _{hat p} = mu _{hat p} + beta _d(1 – sigma )), and using (beta _dsigma hat p approx alpha _dn_2), we obtained Eq. (2c). Furthermore, because (hat p approx kn_2) for (t ge t^ ast), (theta _{hat p} approx) (theta _{n_2}).In particular, the assumption that (hat p approx kn_2) for (t ge t^ ast) characterizes the switch rate from normal to persister cells, αd, as (alpha _d approx kalpha), where α is a hypothetical switch rate assuming that the population is composed only of fast decaying normal cells (n1) and a hypothetical persister cell population (p). In this case, the hypothetical population p starts small at (widehat {p_0}), initially increases due to switching from population n1 and then slowly decays as the n1 population is effectively inactivated (i.e., the tail of the total population is comprised entirely of p). From this perspective we utilized the following equations:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha n_1,$$
    (3a)
    $$frac{{dp}}{{dt}} = alpha n_1 – theta _pp.$$
    (3b)
    $$n_1left( 0 right) = n_0,, pleft( 0 right) = widehat {p_0},$$
    (3c)
    For mathematical justification regarding the relationship (alpha _d approx kalpha), please see the appendix (Supplementary Information).The utility of the relationship (alpha _d approx kalpha), is twofold. First, we used model fitting (Eqs. (3a)–(3c)) to determine α from the respective field study data [9]. Note that using Eqs. (3a)–(3c), we actually fit for (theta _{n_1}), θp, and α using the field study data [9]. Please reference the “model fitting procedure” section as well as the appendix for details concerning the unique determination of the aforementioned parameters, i.e., the practical identifiability of these parameters, and justification regarding the legitimacy of measured tail populations relative to the respective field trial data [9]. Second, because we wanted to examine Spearman’s correlations (corr) between αd and various weather factors, given a particular weather factor (vec w) across trials (i = 1, ldots ,n), let k be the maximum persister fraction (of the tail) across these n trials, that is, for each i, we have (alpha _{d_i} approx k_ialpha _i), so (alpha _{d_i} lesssim kalpha _i). Thus kαi represents the maximum persister switch rate for each trial i, and since corr((kvec alpha ,vec w)) =corr((vec alpha ,vec w)), we conducted the correlation analysis with the fitted α values in lieu of the actual persister switch rate αd.The assumptions behind our approach are summarized below:

    A.

    The tails of pathogen populations surviving on plants in the field study [9] are comprised of some fraction k ∈(0,1) of persister cells since their decay rate is quite small and they remain culturable.

    B.

    Because (alpha _d approx kalpha), we hereafter utilize α from model (3a)–(3c) as the representative persister switch rate.

    C.

    Given that the experimental context [24] for modeling persister switching occurred during population decline, we only employed trials from Belias et al. [9] that exhibited bi-phasic decay. Namely, we did not include trials in which significant bacterial growth was observed at the time scale of successive data points (the time scale in the field study is on the order of 4–16 h for the 1st day and then 24 h thereafter.)

    D.

    The switch rate from normal to persister cell is on average a monotonic function of some measure of environmental stress.

    Based on assumptions A–D above, we applied the model (3a)–(3c) to published pathogen population size and weather data from four replicate trials in Spain, two in California, and one in NY [9]. More specifically, we fit model (3a)–(3c) to the respective population data in order to:

    1.

    determine values for the maximum switch rate α relative to the produce/bacteria type at the field scale,

    2.

    describe the correlative relationship between α and weather factors in the respective field trials.

    Model fitting procedureIn model (3a)–(3c) above, we supposed dp/dtt = 0  > 0, i.e., we assumed that bacteria experience stress from the change in conditions from culture growth and inoculum suspension preparation to those on the plant surface and therefore, that persister formation increases in the phyllosphere immediately following inoculation. The report that EcO157 persister formation increases as early as 1 h after inoculation into leaf wash water [23], which could be considered as a proxy for the average oligotrophic environment that bacterial cells experience after spray inoculation onto leaves or through irrigation in the field, supports this assumption. To avoid identifiability issues between the initial persister population (widehat {p_0}) and α regarding the model fits above, we assumed that (widehat {p_0})= 1 ((widehat {p_0}) = 0 gives the same results). Thus, the initial persister population at inoculation is at its lowest, an assumption supported by Munther et al. [24], who observed an average fraction of EcO157 persisters of 0.0043% in the inoculum population. This imparts the largest possible switch rate, α, onto the population, corresponding to the largest and hence most conservative food safety risk.Let yk (CFU/100 g of produce) be the average bacteria population measurement at time tk (h) and let Pk,X (CFU/100 g of produce) represent the model prediction (total population) at time tk relative to the parameter vector (X = [ {theta _{n_1} , theta_p , alpha } ]^T). Following Eqs. (3a) and (3b), this means that ({{{{{{{mathrm{P}}}}}}}}_{k,X} = n_1left( {t_k,X} right) + p(t_k,X)). Since the population data spans multiple orders of magnitude, we calculated the residuals as (e_{k,X} = log _{10}y_k – log _{10}P_{k,X}). To determine the optimal model fit (see the appendix for details regarding a priori bounds on parameter ranges), we utilized the fminsearch function in MATLAB (MATLAB 2020b, The MathWorks, Inc., Natick, Massachusetts, United States) to determine the parameter vector X that minimizes the 2-norm of the following function F:$$| | Fleft( X right) | |_2 = left( {mathop {sum }limits_k e_{k,X}^2} right)^{frac{1}{2}}$$Correlation analysisTo provide a statistical foundation from which to relate the switch rate α and measured weather factors, we utilized Spearman and partial Spearman correlation. First, we calculated the Spearman correlation coefficients between α and each of the respective factors: 8-h average of temperature, RH, solar radiation, wind speed post-inoculation, and then we calculated the partial Spearman correlation coefficients for each respective weather factor, while controlling for the other three factors and simultaneously controlling for produce type (using lettuce =1 and spinach =0) (For details regarding why 8-h weather variables were used, see the “model fitting” subsection of the results.) The correlation coefficients were determined using the corr and partialcorr functions in MATLAB 2020b (The MathWorks, Inc., Natick, MA, USA). Considering the significant association of Salmonella α with RH and temperature, we also examined the correlation between α and dew point. Figure 1 presents a logical flow of the statistical analysis. Partial correlations with a P value of less than 0.05 were deemed significant. If the 8-h average of a weather factor exhibited a significant correlation with the switch rate, the 8-h minimum and range of the weather factor were also tested.Fig. 1: Logical flow diagram for statistical analysis.Factors in Step 1: UV (average ultraviolet radiation intensity), RH (average air relative humidity), Wind (average wind speed), and Temp (average air temperature). All weather data used in the statistical analysis were obtained over 8 h post-inoculation of E. coli and Salmonella onto lettuce and spinach leaves in the field.Full size image More

  • in

    Predicting the effects of winter water warming in artificial lakes on zooplankton and its environment using combined machine learning models

    Murphy, G. E. P., Romanuk, T. N. & Worm, B. Cascading effects of climate change on plankton community structure. Ecol. Evol. 10, 2170–2181. https://doi.org/10.1002/ece3.6055 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodward, G., Daniel, M., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055 (2010).Article 

    Google Scholar 
    Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19–27. https://doi.org/10.1023/A:1009943402621 (1997).Article 

    Google Scholar 
    Gannon, J. E. & Stemberger, R. S. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 97, 16–35. https://doi.org/10.2307/3225681 (1978).Article 

    Google Scholar 
    Ferdous, Z. & Muktadir, S. K. M. A review: Potentiality of zooplankton as bioindicator. Am. J. Appl. Sci. 6, 1815–1819 (2009).Article 

    Google Scholar 
    Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer Trophic State Index. Pol. J. Ecol. 60, 339–350 (2012).
    Google Scholar 
    Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22(2), 241–251 (2000).Article 

    Google Scholar 
    Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 85, 359–364. https://doi.org/10.1016/j.seares.2013.07.003 (2014).ADS 
    Article 

    Google Scholar 
    Carter, J. L. & Schindler, D. L. Responses of zooplankton populations to four decades of climate warming in Lakes of Southwestern Alaska. Ecosystems 15, 1010–1026. https://doi.org/10.1007/s10021-012-9560-0 (2012).CAS 
    Article 

    Google Scholar 
    Ejsmont-Karabin, J. & Węgleńska, T. Disturbances in zooplankton seasonality in Lake Gosławskie (Poland) affected by permanent heating and heavy fish stocking. Ekol. Pol. 36, 245–260 (1988).
    Google Scholar 
    Ejsmont-Karabin, J. et al. Rotifers in Heated Konin Lakes—A review of long-term observations. Water 12, 1660. https://doi.org/10.3390/w12061660 (2020).Article 

    Google Scholar 
    Evans, L. E., Hirst, A. G., Kratina, P. & Beaugrand, G. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography 43, 581–590. https://doi.org/10.1111/ecog.04631 (2020).Article 

    Google Scholar 
    Wang, L. et al. Is zooplankton body size an indicator of water quality in (sub)tropical reservoirs in China?. Ecosystems 25, 656–662. https://doi.org/10.1007/s10021-021-00656-2 (2021).CAS 
    Article 

    Google Scholar 
    Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54(6), 2273–2282 (2009).ADS 
    Article 

    Google Scholar 
    Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295. https://doi.org/10.1093/icesjms/fsn028 (2008).Article 

    Google Scholar 
    Visconti, A., Manca, M. & De Bernardi, R. Eutrophication-like response to climate warming: An analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J. Limnol. 67(2), 87–92 (2008).Article 

    Google Scholar 
    Vandysh, O. I. The effect of thermal flow of large power facilities on zooplankton community under subarctic conditions. Water Res. 36(3), 310–318. https://doi.org/10.1134/S0097807809030063 (2009).CAS 
    Article 

    Google Scholar 
    Alric, B. et al. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94(12), 2767–2780 (2013).Article 

    Google Scholar 
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. PNAS 106(31), 12788–12793. https://doi.org/10.1073/pnas.0902080106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutierrez, M. F. et al. Is recovery of large-bodied zooplankton after nutrient loading reduction hampered by climate warming? A long-term study of shallow hypertrophic Lake Søbygaard, Denmark. Water 8, 341. https://doi.org/10.3390/w8080341 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884. https://doi.org/10.1038/nature02808 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thackeray, S. J., Jones, I. D. & Maberly, S. C. Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523–535. https://doi.org/10.1111/j.1365-2745.2008.01355.x (2008).Article 

    Google Scholar 
    Adrian, A., Wilhelm, S. & Gerten, D. Life-history traits of lake plankton species may govern their phenological response to climate warming. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol. 12, 652–661. https://doi.org/10.1111/j.1365-2486.2006.01125.x (2006).ADS 
    Article 

    Google Scholar 
    Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28(11), 1099–1105. https://doi.org/10.1093/plankt/fbl042 (2006).Article 

    Google Scholar 
    Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623. https://doi.org/10.1111/ele.12265 (2014).Article 
    PubMed 

    Google Scholar 
    Wagner, C. & Adrian, R. Exploring lake ecosystems: Hierarchy responses to long-term change?. Glob. Change Biol. 15, 1104–1115. https://doi.org/10.1111/j.1365-2486.2008.01833.x (2009).ADS 
    Article 

    Google Scholar 
    Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123–139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).Article 

    Google Scholar 
    Carter, J. L., Schindler, D. E. & Francis, T. B. Effects of climate change on zooplankton community interactions in an Alaskan lake. Climate Change Resp. 4, 3. https://doi.org/10.1186/s40665-017-0031-x (2017).Article 

    Google Scholar 
    Calbet, A. The trophic roles of microzooplankton in marine systems. ICES J. Mar. Sci. 65, 325–331 (2008).Article 

    Google Scholar 
    Wollrab, S. et al. Climate change-driven regime shifts in a planktonic food web. Am. Natur. 197, 281–295. https://doi.org/10.1086/712813 (2021).Article 
    PubMed 

    Google Scholar 
    Recknagel, F., Adrian, R. & Köhler, J. Quantifying phenological asynchrony of phyto- and zooplankton in response to changing temperature and nutrient conditions in Lake Müggelsee (Germany) by means of evolutionary computation. Environ. Model. Softw. 146, 105224. https://doi.org/10.1016/j.envsoft.2021.105224 (2021).Article 

    Google Scholar 
    EEA. Projected changes in annual, summer and winter temperature. European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/projected-changes-in-annual-summer-1 (2014).IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 (1957).Article 

    Google Scholar 
    Ferrario, A. & Hämmerli, R. On Boosting: Theory and Applications. SSRN: https://ssrn.com/abstract=3402687 (2019).Meysman, F. J. R. & Bruers, S. Ecosystem functioning and maximum entropy production: A quantitative test of hypotheses. Philos. Trans. R. Soc. B 365, 1405–1416. https://doi.org/10.1098/rstb.2009.0300 (2010).CAS 
    Article 

    Google Scholar 
    Yu, Q., Ji, W., Prihodko, L., Anchang, J. Y. & Hanan, N. P. Study becomes insight: Ecological learning from machine learning. Methods Ecol. Evol. 12, 217–2128. https://doi.org/10.1111/2041-210X.13686 (2021).Article 

    Google Scholar 
    Park, J. et al. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 832, 155070. https://doi.org/10.1016/j.scitotenv.2022.155070 (2022).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Grbčić, L. et al. Coastal water quality prediction based on machine learning with feature interpretation and spatio-temporal analysis. Environ. Model. Softw. 155, 105458. https://doi.org/10.1016/j.envsoft.2022.105458 (2022).Article 

    Google Scholar 
    Kruk, M., Artiemjew, P. & Paturej, E. The application of game theory-based machine learning modelling to assess climate variability effects on the sensitivity of lagoon ecosystem parameters. Ecol. Inf. 66, 101462. https://doi.org/10.1016/j.ecoinf.2021.101462 (2021).Article 

    Google Scholar 
    Hebert, P. D. N. Competition in zooplankton communities. Ann. Zool. Fennici 19, 349–356 (1982).
    Google Scholar 
    Eigen, M. & Winkler, R. Laws of the Game. How the Principles of Nature Govern Chance (Princeton University Press, 1993).
    Google Scholar 
    Tilman, A. R., Plotkin, J. B. & Akçay, E. Evolutionary games with environmental feedbacks. Nat. Commun. 11, 915. https://doi.org/10.1038/s41467-020-14531-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shapley, L. S. A Value for n-Person Games. In Contributions to the Theory of Games II (eds Kuhn, H. W. & Tucker, A. W.) 315–317 (Princeton University Press, 1953).
    Google Scholar 
    Lundberg, S. M. & Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).
    Google Scholar 
    Štrumbelj, E. & Kononenko, I. An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 http://dl.acm.org/citation.cfm?id=1756006.1756007 (2010).Gan, G., Ma, C. & Wu, J. Data clustering: Theory, algorithms, and applications. ASA-SIAM Ser. Stat. Appl. Math. https://doi.org/10.1137/1.9780898718348 (2007).Article 
    MATH 

    Google Scholar 
    Riechert, S. E. & Hammerstein, P. Game theory in the ecological context. Ann. Rev. Ecol. Syst. 14, 377–409. https://doi.org/10.1146/annurev.es.14.110183.002113 (1983).Article 

    Google Scholar 
    Maynard-Smith, J. Evolution and the Theory of Games (Cambridge University Press, 1982).Book 

    Google Scholar 
    Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303(5659), 793–799. https://doi.org/10.1126/science.1093411 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Maloney, K. O., Schmid, M. & Weller, D. E. Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages. Methods Ecol. Evol. 3, 116–128. https://doi.org/10.1111/j.2041-210X.2011.00124.x (2012).Article 

    Google Scholar 
    Cao, H., Recknagel, F. & Orr, P. T. Parameter optimization algorithms for evolving rule models applied to freshwater ecosystems. IEEE Trans. Evol. Comput. 18, 793–806. https://doi.org/10.1109/TEVC.2013.2286404 (2014).Article 

    Google Scholar 
    Naqshbandi, N., Iranmanesh, M. & Askari Hesni, M. Effects of environmental factors on species diversity of rotifers using biodiversity indicators and canonical correlation analysis (CCA). J. Aquat. Ecol. 7, 66–75 https://www.sid.ir/en/journal/ViewPaper.aspx?id=661950 (2017).Weisse, M. & Frahm, A. Species-specific interactions between small planctonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J. Plank. Res. 23, 1329–1338 (2001).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11, 33–40 (1962).Article 

    Google Scholar 
    Pomerleau, C., Sastri, A. R. & Beisner, B. E. Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. J. Plankton Res. 37, 712–726. https://doi.org/10.1093/plankt/fbv045 (2015).Article 

    Google Scholar 
    Hopcroft, R. R., Kosobokova, K. N. & Pinchuk, A. I. Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep-Sea Res. II(57), 27–39. https://doi.org/10.1016/j.dsr2.2009.08.003 (2010).ADS 
    Article 

    Google Scholar 
    Neumann, L. S. et al. Connectivity between coastal and oceanic zooplankton from Rio Grande do Norte in the Tropical Western Atlantic. Front. Mar. Sci. 6, 00287. https://doi.org/10.3389/fmars.2019.00287 (2019).Article 

    Google Scholar 
    Benedetti, F., Ayata, S.-D., Irisson, J.-O., Adloff, F. & Guilhaumon, F. Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Divers. Distrib. 25, 568–581. https://doi.org/10.1111/ddi.12857 (2019).Article 

    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 (2012).CAS 
    Article 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Jasnos, K., Kołba, P., Biernat, H. & Noga, B. The results of the hydrogeological research leading to know and develop the resources of thermal water in the Kleszczów district. Modelowanie Inżynierskie 45, 14 (2012).
    Google Scholar 
    Rybak, J. I. & Błędzki, L. A Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).
    Google Scholar 
    Kim, H.-W., Hwang, S.-J. & Joo, G.-J. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22, 1559–1577 (2000).CAS 
    Article 

    Google Scholar 
    Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).Article 

    Google Scholar 
    Obertegger, U. & Flaim, G. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly?. Hydrobiologia 823, 79–91. https://doi.org/10.1007/s10750-018-3697-6 (2018).Article 

    Google Scholar 
    Ejsmont-Karabin, J., Radwan, S. & Bielańska-Grajner, I. Rotifers. Monogononta–atlas of species. Polish freshwater fauna (University of Łódź, Łódź, 2004).
    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 52, 886–895. https://doi.org/10.4319/lo.2007.52.2.0886 (2007).ADS 
    Article 

    Google Scholar 
    Huntley, M. E. & Lopez, M. D. Temperature-dependent production of marine copepods: A global synthesis. Am. Nat. 140, 201–242. https://doi.org/10.1086/285410 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olonscheck, D., Hofmann, M., Worm, B. & Schellnhuber, H. J. Decomposing the effects of ocean warming on chlorophyll a concentrations into physically and biologically driven contributions. Environ. Res. Lett. 8, 014043. https://doi.org/10.1088/1748-9326/8/1/014043 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Goldman revisited: Faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol. Oceanogr. 58, 2076–2088. https://doi.org/10.4319/lo.2013.58.6.2076 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Kruk, M., Kobos, J., Nawrocka, L. & Parszuto, K. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic). J. Mar. Syst. 180, 49–58. https://doi.org/10.1016/j.jmarsys.2018.01.003 (2018).Article 

    Google Scholar 
    Santer, B. & Hansen, A.-M. Diapause of Cyclops vicinus (Uljanin) in Lake Søbyga˚ rd: Indication of a risk-spreading strategy. Hydrobiologia 560, 217–226. https://doi.org/10.1007/s10750-005-1067-7 (2006).Article 

    Google Scholar 
    Mayer, J. et al. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342(343), 165–174 (1997).Article 

    Google Scholar 
    Galir Balkić, A., Ternjej, I. & Špoljar, M. Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology 11, 1917. https://doi.org/10.1002/eco.1917 (2018).Article 

    Google Scholar 
    Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Koszałka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 27, 279–291. https://doi.org/10.1111/fme.12411 (2020).Article 

    Google Scholar 
    Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).Article 

    Google Scholar 
    von Flössner, D. Krebstiere (Branchiopoda, Fischläuse, Branchiura (VEB Gustav Fischer Verlag, Jena, 1972).
    Google Scholar 
    Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband, 52–570, (Gebrüder Borntraeger, Berlin, 1978).Streble H. & Krauter D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süβwassers. (Kosmos Gesellschaft der Naturfreunde Franckh’sche Verlagshandlung, Stuttgart, 1978).Błędzki, L. A. & Rybak, J. I. Freshwater crustacean zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification with notes on ecology, distribution, methods and introduction to data analysis. (Springer, Switzerland, 2016).Bottrell, H. H. et al. Review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456 (1976).
    Google Scholar 
    Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513–522 (1998).
    Google Scholar 
    APHA. Standard methods for the examination of water and wastewater, 20th ed.. (American Public Health Association, Washington, DC, 1999).Wei, Z.-G. et al. Comparison of methods for picking the operational taxonomic units from amplicon sequences. Front. Microbiol. 24, 644012. https://doi.org/10.3389/fmicb.2021.644012 (2021).Article 

    Google Scholar 
    Sgalella. Kaggle. https://www.kaggle.com/sgalella/correlation-heatmaps-with-hierarchical-clustering (2019).Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    Article 

    Google Scholar 
    Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. 22 ACM SIGKDD Conference on Knowledge, Discovery and Data mining, 12–17 August, San Francisco. https://doi.org/10.1145/2939672.2939785 (2016).Kirpal, E. Kaggle. https://www.kaggle.com/eshaan90/ensembles-and-model-stacking (2019).Brownlee, J. Github. https://github.com/datamangit/codes_for_articles/blob/master/Explain%20your%20model%20with%20the%20SHAP%20values%20for%20article.ipynb (2021).Rathi, P. Toward Data Science. https://towardsdatascience.com/a-novel-approach-to-feature-importance-shapley-additive-explanations-d18af30fc21 (2020). More

  • in

    Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades

    Morens, D. M. et al. The origin of COVID-19 and why it matters. Am. J. Trop. Med. Hyg. 103, 955–959 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gates, B. The next epidemic—Lessons from Ebola., https://doi.org/10.1056/NEJMp1502918 (2015).World Health Organization. Lassa fever research and development (R&D) roadmap. https://www.who.int/publications/m/item/lassa-fever-research-and-development-(r-d)-roadmap (2018).World Health Organization. Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts.Akpede, G. O. et al. Caseload and case fatality of Lassa fever in Nigeria, 2001–2018: A specialist center’s experience and its implications. Front. Public Health 7, https://doi.org/10.3389/fpubh.2019.00170 (2019).Eberhardt, K. A. et al. Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. Int. J. Infect. Dis. 87, 15–20 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lukashevich, I. S., Paessler, S. & de la Torre, J. C. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res 8, https://doi.org/10.12688/f1000research.16989.1 (2019).Purushotham, J., Lambe, T. & Gilbert, S. C. Vaccine platforms for the prevention of Lassa fever. Immunol. Lett. 215, 1–11 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mateo, M. et al. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci. Transl. Med. 13, eabf6348 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCormick, J. B. et al. Lassa Fever. N. Engl. J. Med. 314, 20–26 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bell-Kareem, A. R. & Smither, A. R. Epidemiology of Lassa fever. in 1–23 (Springer, 2021). https://doi.org/10.1007/82_2021_234.Nigeria Centre for Disease Control. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.Manning, J. T., Forrester, N. & Paessler, S. Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front. Microbiol. 6, https://doi.org/10.3389/fmicb.2015.01037 (2015).Dzotsi, E. K. et al. The first cases of Lassa fever in Ghana. Ghana. Med. J. 46, 166–170 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patassi, A. A. et al. Emergence of Lassa fever disease in northern Togo: Report of two cases in Oti District in 2016. Case Rep. Infect. Dis. 2017, 8242313 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Yadouleton, A. et al. Lassa fever in Benin: Description of the 2014 and 2016 epidemics and genetic characterization of a new Lassa virus. Emerg. Microbes Infect. 9, 1761–1770 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCormick, J. B. & Fisher-Hoch, S. P. Lassa fever. Curr. Top. Microbiol. Immunol. 262, 75–109 (2002).CAS 
    PubMed 

    Google Scholar 
    Monath, T. P., Newhouse, V. F., Kemp, G. E., Setzer, H. W. & Cacciapuoti, A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 185, 263–265 (1974).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stephenson, E. H., Larson, E. W. & Dominik, J. W. Effect of environmental factors on aerosol-induced Lassa virus infection. J. Med. Virol. 14, 295–303 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wozniak, D. M. et al. Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir – Mastomys natalensis. Emerg. Microbes Infect. 10, 2313–2325 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ter Meulen, J. et al. Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the Republic of Guinea. Am. J. Trop. Med. Hyg. 55, 661–666 (1996).PubMed 
    Article 

    Google Scholar 
    Downs, I. L. et al. Natural history of aerosol induced Lassa fever in non-human primates. Viruses 12, 593 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Lecompte, E. et al. Mastomys natalensis and Lassa Fever, West Africa. Emerg. Infect. Dis. 12, 1971–1974 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smither, A. R. & Bell-Kareem, A. R. Ecology of Lassa Virus. in 1–20 (Springer, 2021). https://doi.org/10.1007/82_2020_231.Ogbu, O., Ajuluchukwu, E. & Uneke, C. J. Lassa fever in West African sub-region: An overview. J. Vector Borne Dis. 44, 1–11 (2007).CAS 
    PubMed 

    Google Scholar 
    Fichet-Calvet, E. et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne Zoonotic Dis. 7, 119–128 (2007).PubMed 
    Article 

    Google Scholar 
    Fichet-Calvet, E., Becker-Ziaja, B., Koivogui, L. & Günther, S. Lassa serology in natural populations of rodents and horizontal transmission. Vector Borne Zoonotic Dis. 14, 665–674 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lo Iacono, G. et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: The case of Lassa fever. PLoS Negl. Trop. Dis. 9, e3398 (2015).Siddle, K. J. et al. Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. N. Engl. J. Med. 379, 1745–1753 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kafetzopoulou, L. E. et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363, 74–77 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, K. G. et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell 162, 738–750 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lalis, A. & Wirth, T. Mice and men: An evolutionary history of Lassa fever. in Biodiversity and Evolution (eds. Grandcolas, P. & Maurel, M.-C.) 189–212, https://doi.org/10.1016/B978-1-78548-277-9.50011-5 (Elsevier, 2018).Mylne, A. Q. N. et al. Mapping the zoonotic niche of Lassa fever in Africa. Trans. R. Soc. Trop. Med. Hyg. 109, 483–492 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colangelo, P. et al. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol. J. Linn. Soc. 108, 901–916 (2013).Article 

    Google Scholar 
    Gryseels, S. et al. When viruses don’t go viral: The importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Path 13, e1006073 (2017).Article 

    Google Scholar 
    Cuypers, L. N. et al. Three arenaviruses in three subspecific natal multimammate mouse taxa in Tanzania: Same host specificity, but different spatial genetic structure? Virus Evol. https://doi.org/10.1093/ve/veaa039 (2020).Vazeille, M., Gaborit, P., Mousson, L., Girod, R. & Failloux, A.-B. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus. BMC Infect. Dis. 16, 318 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chan, K. F. et al. Investigating viral interference between influenza A virus and human respiratory syncytial virus in a ferret model of infection. J. Infect. Dis. 218, 406–417 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meunier, D. Y., McCormick, J. B., Georges, A. J., Georges, M. C. & Gonzalez, J. P. Comparison of Lassa, Mobala, and Ippy virus reactions by immunofluorescence test. Lancet 1, 873–874 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard, C. R. Antigenic diversity among the Arenaviruses. in The Arenaviridae (ed. Salvato, M. S.) 37–49, https://doi.org/10.1007/978-1-4615-3028-2_3 (Springer US, 1993).Bhattacharyya, S., Gesteland, P. H., Korgenski, K., Bjørnstad, O. N. & Adler, F. R. Cross-immunity between strains explains the dynamical pattern of paramyxoviruses. Proc. Natl Acad. Sci. U. S. A. 112, 13396–13400 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luis, A. D., Douglass, R. J., Mills, J. N. & Bjørnstad, O. N. Environmental fluctuations lead to predictability in Sin Nombre hantavirus outbreaks. Ecology 96, 1691–1701 (2015).Article 

    Google Scholar 
    Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. M. Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian, H. et al. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLoS Pathog. 13, e1006198 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).Article 

    Google Scholar 
    Peterson, A. T., Moses, L. M. & Bausch, D. G. Mapping transmission risk of Lassa fever in West Africa: the importance of quality control, sampling bias, and error weighting. PLoS One 9, e100711 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fichet-Calvet, E. & Rogers, D. J. Risk maps of Lassa fever in West Africa. PLoS. Negl. Trop. Dis. 3, e388 (2009).Basinski, A. J. et al. Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput. Biol. 17, e1008811 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iacono, G. L. et al. A unified framework for the infection dynamics of zoonotic spillover and spread. PLoS Negl. Trop. Dis. 10, e0004957 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 
    Article 

    Google Scholar 
    Coumou, D., Robinson, A. & Rahmstorf, S. Global increase in record-breaking monthly-mean temperatures. Clim. Change 118, 771–782 (2013).ADS 
    Article 

    Google Scholar 
    Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, eaar5809 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arneth, A. Uncertain future for vegetation cover. Nature 524, 44–45 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 81 (2017).PubMed 
    Article 

    Google Scholar 
    Herrmann, S. M., Brandt, M., Rasmussen, K. & Fensholt, R. Accelerating land cover change in West Africa over four decades as population pressure increased. Com. Earth Envir 1, 1–10 (2020).
    Google Scholar 
    Gibb, R., Moses, L. M., Redding, D. W. & Jones, K. E. Understanding the cryptic nature of Lassa fever in West Africa. Pathog. Glob. Health 111, 276–288 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).ADS 
    Article 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl Acad. Sci. U. S. A. 106, 19644–19650 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lukashevich, I. S. Generation of reassortants between African arenaviruses. Virology 188, 600–605 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vijaykrishna, D., Mukerji, R. & Smith, G. J. D. RNA virus reassortment: an evolutionary mechanism for host jumps and immune evasion. PLoS Path 11, e1004902 (2015).Article 

    Google Scholar 
    Whitmer, S. L. M. et al. New lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 24, 599 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ehichioya, D. U. et al. Phylogeography of Lassa virus in Nigeria. J. Virol. 93, e00929–19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat. Commun. 11, 5620 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos, Trans. Am. Geophys. Union 38, 913–920 (1957).Article 

    Google Scholar 
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ehichioya, D. U. et al. Current molecular epidemiology of Lassa virus in Nigeria. J. Clin. Microbiol. 49, 1157 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oloniniyi, O. K. et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLoS Negl. Trop. Dis. 12, e0006971 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olesen, J. E. et al. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim. Change 81, 123–143 (2007).Article 

    Google Scholar 
    Simo Tchetgna, H. et al. Molecular characterization of a new highly divergent Mobala related arenavirus isolated from Praomys sp. rodents. Sci. Rep. 11, 10188 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olayemi, A. et al. New hosts of the Lassa virus. Sci. Rep. 6, 25280 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zaidi, M. B. et al. Competitive suppression of dengue virus replication occurs in chikungunya and dengue co-infected Mexican infants. Parasit. Vectors 11, 378 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olayemi, A. et al. Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria. Parasit. Vectors 11, 416 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nigeria Centre for Disease Control. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.Norris, K. et al. Biodiversity in a forestagriculture mosaic: the changing face of west Africa rainforests. Biol. Conserv. 143, 2341–2350 (2010).Article 

    Google Scholar 
    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, United Kingdom and New York, 2013).Buba, M. I. et al. Mortality among confirmed Lassa fever cases during the 2015-2016 outbreak in Nigeria. Am. J. Public Health 108, 262–264 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tobin, E. A. et al. Knowledge of secondary school children in Edo State on Lassa fever and its implications for prevention and control. West. Afr. J. Med. 34, 101–107 (2015).CAS 
    PubMed 

    Google Scholar 
    Saez, A. M. et al. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 12, e0006829 (2018).Article 

    Google Scholar 
    Ejembi, J. et al. Contact tracing in Lassa fever outbreak response, an effective strategy for control? Online J. Public Health Inf. 11, e378 (2019).
    Google Scholar 
    ECHO Flash List. https://erccportal.jrc.ec.europa.eu/ECHO-Flash/ECHO-Flash-List/yy/2018/mm/2.Pigott, D. M. et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet 390, 2662–2672 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology https://doi.org/10.1038/s41564-019-0376-y (2019).Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Dhingra, M. S. et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. eLife 5, e19571 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz‐Monfort, J. J. & Guillera‐Arroita, G. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Randin, C. F. et al. Are niche-based species distribution models transferable in space? J. Biogeogr. 33, 1689–1703 (2006).Article 

    Google Scholar 
    Lange, S. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset. Earth Syst. Dyn. 9, 627–645 (2018).ADS 
    Article 

    Google Scholar 
    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
    Article 

    Google Scholar 
    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).ADS 
    Article 

    Google Scholar 
    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Watanabe, M. et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).ADS 
    Article 

    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 1–65 https://doi.org/10.5194/gmd-2019-360 (2020)Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).ADS 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. https://doi.org/10.1093/sysbio/syz020 (2019).Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17, 57–86 (1986).MathSciNet 
    MATH 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laenen, L. et al. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol. Ecol. 25, 5994–6008 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Landscape genetic analyses of Cervus elaphus and Sus scrofa: comparative study and analytical developments. Heredity 123, 228–241 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S. et al. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9, 2222 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S. et al. Phylogeographic and phylodynamic approaches to epidemiological hypothesis testing. bioRxiv https://doi.org/10.1101/788059 (2020).Dellicour, S., Rose, R. & Pybus, O. G. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinform 17, 1–12 (2016).Article 

    Google Scholar 
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).PubMed 
    Article 

    Google Scholar 
    Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. R. Soc. Lond. B 284, 20170919 (2017).
    Google Scholar 
    Gill, M. S. et al. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Quantifying wood decomposition by insects and fungi using computed tomography scanning and machine learning

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Filipiak, M. Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: The ecological stoichiometry of saproxylophagous insects. In Saproxylic Insects (ed. Ulyshen, M. D.) 429–470 (Springer, 2018).
    Google Scholar 
    Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species?. Ecol. Lett. 12, 45–56 (2009).PubMed 

    Google Scholar 
    Oberle, B. et al. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Glob. Change Biol. 26, 864–875 (2020).ADS 

    Google Scholar 
    Guo, C., Yan, E. & Cornelissen, J. H. C. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.06.003 (2022).Article 
    PubMed 

    Google Scholar 
    Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).PubMed 

    Google Scholar 
    Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl. Acad. Sci. U.S.A. 117, 1–8 (2020).
    Google Scholar 
    Tláskal, V. et al. Complementary roles of wood-Inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6, e01078-20 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection and Use (Springer, 2006).
    Google Scholar 
    Arantes, V. & Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. ACS Symp. Ser. 1158, 3–21 (2014).CAS 

    Google Scholar 
    Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).
    Google Scholar 
    Fukami, T. et al. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).PubMed 

    Google Scholar 
    Wang, J. Y. et al. Durability of mass timber structures: A review of the biological risks. Wood Fiber Sci. 50, 110–127 (2018).CAS 

    Google Scholar 
    Venugopal, P., Junninen, K., Linnakoski, R., Edman, M. & Kouki, J. Climate and wood quality have decayer-specific effects on fungal wood decomposition. For. Ecol. Manag. 360, 341–351 (2016).
    Google Scholar 
    Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).
    Google Scholar 
    Freschet, G. T., Weedon, J. T., Aerts, R., van Hal, J. R. & Cornelissen, J. H. C. Interspecific differences in wood decay rates: Insights from a new short-term method to study long-term wood decomposition. J. Ecol. 100, 161–170 (2012).
    Google Scholar 
    Chang, C. et al. Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods Ecol. Evol. 11, 828–838 (2020).
    Google Scholar 
    Hervé, V., Mothe, F., Freyburger, C., Gelhaye, E. & Frey-Klett, P. Density mapping of decaying wood using X-ray computed tomography. Int. Biodeterior. Biodegrad. 86, 358–363 (2014).
    Google Scholar 
    Williamson, G. B. & Wiemann, M. C. Measuring wood specific gravity…Correctly. Am. J. Bot. 97, 519–524 (2010).PubMed 

    Google Scholar 
    Van Der Wal, A., Gunnewiek, P. J. A. K., Cornelissen, J. H. C., Crowther, T. W. & De Boer, W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere 7, e01393 (2016).
    Google Scholar 
    Saint-Germain, M., Buddle, C. M. & Drapeau, P. Substrate selection by saprophagous wood-borer larvae within highly variable hosts. Entomol. Exp. Appl. 134, 227–233 (2010).
    Google Scholar 
    Lettenmaier, L. et al. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia https://doi.org/10.1007/s00442-022-05141-8 (2022).Article 
    PubMed 

    Google Scholar 
    Gao, S. et al. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann. For. Sci. 74, 1–13 (2017).
    Google Scholar 
    Arnstadt, T. et al. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manag. 382, 129–142 (2016).
    Google Scholar 
    Gessner, M. O. Ergosterol as a measure of fungal biomass. In Methods to Study Litter Decomposition (eds Bärlocher, F. et al.) 247–255 (Springer, 2020). https://doi.org/10.1007/978-3-030-30515-4_27.Chapter 

    Google Scholar 
    Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).CAS 

    Google Scholar 
    Strid, Y., Schroeder, M., Lindahl, B., Ihrmark, K. & Stenlid, J. Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol. 7, 47–58 (2014).
    Google Scholar 
    Hagge, J. et al. Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proc. R. Soc. B Biol. Sci. 286, 20191744 (2019).
    Google Scholar 
    Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. Insect–fungus interactions in dead wood. In Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).
    Google Scholar 
    Leach, J. G., Ork, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).
    Google Scholar 
    Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, art47 (2014).
    Google Scholar 
    Shigo, A. L. & Marx, H. G. Compartmentalization of decay in trees (1977).De Ligne, L. et al. Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung 76, 408–420 (2022).
    Google Scholar 
    Freyburger, C., Longuetaud, F., Mothe, F., Constant, T. & Leban, J. M. Measuring wood density by means of X-ray computer tomography. Ann. For. Sci. 66, 804 (2009).
    Google Scholar 
    Wei, Q., Leblon, B. & La Rocque, A. On the use of X-ray computed tomography for determining wood properties: A review. Can. J. For. Res. 41, 2120–2140 (2011).
    Google Scholar 
    Fuchs, A., Schreyer, A., Feuerbach, S. & Korb, J. A new technique for termite monitoring using computer tomography and endoscopy. Int. J. Pest Manag. 50, 63–66 (2004).
    Google Scholar 
    Choi, B., Himmi, S. K. & Yoshimura, T. Quantitative observation of the foraging tunnels in Sitka spruce and Japanese cypress caused by the drywood termite Incisitermes minor (Hagen) by 2D and 3D X-ray computer tomography (CT). Holzforschung 71, 535–542 (2017).CAS 

    Google Scholar 
    Bélanger, S. et al. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs. J. Econ. Entomol. 106, 1331–1338 (2013).PubMed 

    Google Scholar 
    Pereira Junior, A. & Garcia de Carvalho, M. An initial study in wood tomographic image classification using the SVM and CNN techniques. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) Vol. 4 575–581 (2022).Kautz, M., Peter, F. J., Harms, L., Kammen, S. & Delb, H. Patterns, drivers and detectability of infestation symptoms following attacks by the European spruce bark beetle. J. Pest Sci. https://doi.org/10.1007/s10340-022-01490-8 (2022).Article 

    Google Scholar 
    Ehnström, B. & Axelsson, R. Insektsgnag i bark och ved (ArtDatabanken SLU, 2002).
    Google Scholar 
    Philpott, T. J., Prescott, C. E., Chapman, W. K. & Grayston, S. J. Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody debris. For. Ecol. Manag. 315, 121–128 (2014).
    Google Scholar 
    Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).
    Google Scholar 
    Deflorio, G., Johnson, C., Fink, S. & Schwarze, F. W. M. R. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 255, 2373–2383 (2008).
    Google Scholar 
    Fuhr, M. J., Schubert, M., Schwarze, F. W. M. R. & Herrmann, H. J. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 115, 919–932 (2011).CAS 
    PubMed 

    Google Scholar 
    Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233. https://doi.org/10.1109/ISBI.2011.5872394 (2011).Dodds, K. J., Graber, C. & Stephen, F. M. Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environ. Entomol. 30, 17–22 (2001).
    Google Scholar 
    Graham, S. A. Temperature as a limiting factor in the life of subcortical insects. J. Econ. Entomol. 17, 377–383 (1924).
    Google Scholar 
    Baldrian, P. et al. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 6, 1–11 (2013).
    Google Scholar 
    Šnajdr, J. et al. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 40, 2068–2075 (2008).
    Google Scholar 
    Möller, G. Struktur- und Substratbindung holzbewohnender Insekten, Schwerpunkt Coleoptera—Käfer. Dissertation at Freien Universität Berlin (Freie Universität Berlin, 2009).
    Google Scholar 
    Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).CAS 
    PubMed 

    Google Scholar 
    Steger, C., Ulrich, M. & Wiedemann, C. Machine Vision Algorithms and Applications (Wiley, 2008).
    Google Scholar 
    Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation (Springer, 2015).
    Google Scholar 
    Jansche, M. Maximum expected F-measure training of logistic regression models. In Proceedings of the conference on human language technology and empirical meth-ods in natural language processing 692–699 (Association for Computational Linguistics, 2005).Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chollet, F. Keras. https://github.com/fchollet/keras (2015).Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Tensorflow.org. (2015).R Core Team. R: A language and environment for statistical computing (2020). More

  • in

    Microbacterium kunmingensis sp. nov., an attached bacterium of Microcystis aeruginosa

    Liu LP. Characteristics of blue algal bloom in Dianchi Lake and analysis on its cause. Res Environ Sci. 1999;12:36–37.
    Google Scholar 
    Liu YM, Chen W, Li DH, Shen YW, Liu YD, Song LR. Analysis of paralytic shellfish toxins in Aphanizomenon DC-1 from Lake Dianchi, China. Environ Toxicol. 2006;21:289–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dziallas C, Grossart HP. Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol. 2011;13:1632–41.PubMed 
    Article 

    Google Scholar 
    Parveen B, Ravet V, Djediat C, Mary I, Quiblier C, Debroas D, Humbert JF. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ Microbiol Rep. 2013;5:716–24.CAS 
    PubMed 

    Google Scholar 
    Shi LM, Cai YF, Kong FX, Yu Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ Microbiol Rep. 2012;4:669–78.CAS 
    PubMed 

    Google Scholar 
    Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotech. 2015;33:125–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.PubMed 
    Article 

    Google Scholar 
    Yang L, Xiao L. Outburst, jeopardize and control of cyanobacterial bloom in lakes. Beijing: Science Press; 2011. p. 71–212.
    Google Scholar 
    de-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol. 2008;44:938–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao Y, Wang L, Wang X, Chen M, Chen J, Tian BY, Zhang BH. Nocardioides lacusdianchii sp. nov., an attached bacterium of Microcystis aeruginosa. Antonie van Leeuwenhoek. 2022;115:141–53.PubMed 
    Article 

    Google Scholar 
    Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.Article 

    Google Scholar 
    Zhang BH, Chen W, Li HQ, Zhou EM, Hu WY, Duan YQ, Mohamad OA, Gao R, Li WJ. An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol. 2015;99:7673–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Xiao M, Li HQ, Yang JY, Zha DM, Li WJ. Citricoccus lacusdiani sp. nov., an actinobacterium promoting Microcystis growth with limited soluble phosphorus. Antonie Van Leeuwenhoek. 2016;109:1457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Guo QG, Li WJ. Microbacterium lacusdiani sp. nov., a phosphate–solubilizing novel actinobacterium isolated from mucilaginous sheath of Microcystis. J Antibiot. 2017;70:147–51.Article 

    Google Scholar 
    Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR, editors. Methods for general and molecular bacteriology. Washington, DC: American Society for Microbiology; 1994. p. 607–54.Dong XZ, Cai MY. Manual of systematic identification of common bacteria. Beijing: Science Press; 2001. p. p349–89.
    Google Scholar 
    Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol. 1979;47:87–95.CAS 
    Article 

    Google Scholar 
    Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol. 1983;54:31–36.CAS 
    Article 

    Google Scholar 
    Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972;36:407–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol. 2009;59:2025–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBiocloud: a taxonomically united database of 16S rRNA gene sequences and whole–genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saitou N, Nei M. The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–42.CAS 
    PubMed 

    Google Scholar 
    Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–16.Article 

    Google Scholar 
    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.PubMed 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F, Rougemont J, Cole ST, Deplancke B. Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods. 2010;7:485–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinforma. 2007;8:209.Article 

    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence–based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.Article 

    Google Scholar 
    Xiao Y, Chen J, Chen M, Deng SJ, Xiong ZQ, Tian BY, Zhang BH. Mycolicibacterium lacusdiani sp. nov., an attached bacterium of Microcystis aeruginosa. Front Microbiol. 2022;13:861291.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaz-Moreira I, Lopes AR, Faria C, Spröer C, Schumann P, Nunes OC, Manaia CM. Microbacterium invictum sp. nov., isolated from homemade compost. Int J Syst Evol Microbiol. 2009;59:2036–41.PubMed 
    Article 

    Google Scholar 
    Ohta Y, Ito T, Mori K, Nishi S, Shimane Y, Mikuni K, Hatada Y. Microbacterium saccharophilum sp. nov., isolated from a sucrose-refining factory. Int J Syst Evol Microbiol. 2013;63:2765–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kageyama A, Takahashi Y, Ōmura S. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol. 2006;56:2113–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–5.
    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.Article 

    Google Scholar 
    Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR, Mendoza V, Poole AC, Zimmerman ZP, Utz LK, Wurch LL, Steffen MM. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE. 2021;16:e0257017.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Zhang YQ, Ai MJ, Hozzein WN, Li WJ. Modestobacter lacusdianchii sp. nov., a phosphate-solubilizing actinobacterium with ability to promote Microcystis growth. PLoS ONE. 2016;11:e0161069.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More