More stories

  • in

    Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1

    Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3:307–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 2001;52:487–511.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider J, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011;332:1097–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jousset A, Becker J, Chatterjee S, Karlovsky P, Scheu S, Eisenhauer N. Biodiversity and species identity shape the antifungal activity of bacterial communities. Ecology 2014;95:1184–90.PubMed 
    Article 

    Google Scholar 
    Becker J, Eisenhauer N, Scheu S, Jousset A. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecol Lett. 2012;15:468–74.PubMed 
    Article 

    Google Scholar 
    Hu J, Wei Z, Friman VP, Gu SH, Wang XF, Eisenhauer N, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio. 2016;7:e01790–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mehrabi Z, McMillan VE, Clark IM, Canning G, Hammond-Kosack KE, Preston G, et al. Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen. Sci Rep. 2016;6:1–10.Article 
    CAS 

    Google Scholar 
    Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, et al. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol. 2016;7:1–16.
    Google Scholar 
    Yan Q, Philmus B, Chang JH, Loper JE. Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. Elife 2017;6:e22835.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramette A, Moënne-Loccoz Y, Défago G. Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol Ecol. 2003;44:35–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raaijmakers JM, Weller DM. Natural Plant Protection by 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp. in Take-All Decline Soils. Mol Plant-Microbe Interact. 1998;11:144–52.CAS 
    Article 

    Google Scholar 
    Murata K, Suenaga M, Kai K. Genome Mining Discovery of Protegenins A–D, Bacterial Polyynes Involved in the Antioomycete and Biocontrol Activities of Pseudomonas protegens. ACS Chem Biol. 2021. https://pubs.acs.org/doi/10.1021/acschembio.1c00276. Online ahead of print.Achkar J, Xian M, Zhao H, Frost JW. Biosynthesis of Phloroglucinol. J Am Chem Soc. 2005;127:5332–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bangera MG, Thomashow LS. Identification and Characterization of a Gene Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol. 1999;181:3155–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bottiglieri M, Keel C. Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol. 2006;72:418–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan X, Yang R, Zhao R-X, Han J-T, Jia W-J, Li D-Y, et al. Transcriptional Regulator PhlH Modulates 2,4-Diacetylphloroglucinol Biosynthesis in Response to the Biosynthetic Intermediate and End Product. Appl Environ Microbiol. 2017;83:e01419–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dorrestein PC, Yeh E, Garneau-Tsodikova S, Kelleher NL, Walsh CT. Dichlorination of a pyrrolyl-S-carrier protein by FADH2- dependent halogenase PltA during pyoluteorin biosynthesis. Proc Natl Acad Sci USA. 2005;102:13843–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas MG, Burkart MD, Walsh CT. Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem Biol. 2002;9:171–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, et al. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol. 2000;182:1215–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brodhagen M, Henkels MD, Loper JE. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 2004;70:1758–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maurhofer M, Baehler E, Notz R, Martinez V, Keel C. Cross Talk between 2,4-Diacetylphloroglucinol-Producing Biocontrol Pseudomonads on Wheat Roots. Appl Environ Microbiol. 2004;70:1990–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clifford JC, Buchanan A, Vining O, Kidarsa TA, Chang JH, McPhail KL, et al. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens. Environ Microbiol. 2016;18:3296–308.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol. 2011;81:395–414.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LDH, et al. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 2010;12:899–915.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubuis C, Haas D. Cross-species GacA-controlled induction of antibiosis in pseudomonads. Appl Environ Microbiol. 2007;73:650–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen ML, He Z, Wibowo M, Jelsbak L. A Whole-Cell Biosensor for Detection of 2,4- Diacetylphloroglucinol (DAPG)-Producing Bacteria from Grassland Soil. Appl Environ Microbiol. 2021;87:e01400–e01420.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, et al. Genome‐based evolutionary history of Pseudomonas spp. Environ Microbiol. 2018;20:2142–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lozano-Andrade CN, Strube ML, Kovács ÁT. Complete genome sequences of four soil-derived isolates for studying synthetic bacterial community assembly. Microbiol Resour Announc. 2021;10:e00848–21.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Le Roux M, Kirkpatrick RL, Montauti EI, Tran BQ, Brook Peterson S, Harding BN, et al. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. Elife. 2015;2015:1–65.
    Google Scholar 
    Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, de Boer W, et al. Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol. 2014;5:1–10.
    Google Scholar 
    Qi SS, Bogdanov A, Cnockaert M, Acar T, Ranty-Roby S, Coenye T, et al. Induction of antibiotic specialized metabolism by co-culturing in a collection of phyllosphere bacteria. Environ Microbiol. 2021;23:2132–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cornforth DM, Foster KR. Competition sensing: The social side of bacterial stress responses. Nat Rev Microbiol. 2013;11:285–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    LeRoux M, Peterson SB, Mougous JD. Bacterial danger sensing. J Mol Biol. 2015;427:3744–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Westhoff S, van Wezel GP, Rozen DE. Distance-dependent danger responses in bacteria. Curr Opin Microbiol. 2017;36:95–101.PubMed 
    Article 

    Google Scholar 
    Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol. 2006;9:445–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer WDE. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J. 2011;5:973–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, Van Wezel GP, et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci USA. 2015;112:11054–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kehe J, Ortiz A, Kulesa A, Gore J, Blainey PC, Friedman J. Positive interactions are common among culturable bacteria. Sci Adv. 2021;7:1–10.Article 
    CAS 

    Google Scholar 
    Yang KM, Kim JS, Kim HS, Kim YY, Oh JK, Jung HW, et al. Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Sci Rep. 2021;11:1–16.Article 
    CAS 

    Google Scholar 
    Dubern JF, Lugtenberg BJJ, Bloemberg GV. The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol. 2006;188:2898–906.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wellington S, Peter Greenberg E. Quorum sensing signal selectivity and the potential for interspecies cross talk. mBio. 2019;10:e00146–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duffy BK, Défago G. Zinc Improves Biocontrol of Fusarium Crown and Root Rot of Tomato by Pseudomonas fluorescens and Represses the Production of Pathogen Metabolites Inhibitory to Bacterial Antibiotic Biosynthesis. Phytopathology. 1997;87:1250–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li W, Estrada-de los Santos P, Matthijs S, Xie G-L, Busson R, Cornelis P, et al. Promysalin, a Salicylate-Containing Pseudomonas putida Antibiotic, Promotes Surface Colonization and Selectively Targets Other Pseudomonas. Chem Biol. 2011;18:1320–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, et al. From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Front Plant Sci. 2016;7:1–12.Article 

    Google Scholar 
    Berendsen RL, van Verk MC, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, et al. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics. 2015;16:1–23.CAS 
    Article 

    Google Scholar 
    Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA. 2017;114:E2450–E2459.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhuang L, Li Y, Wang Z, Yu Y, Zhang N, Yang C, et al. Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth. Micro Biotechnol. 2021;14:488–502.CAS 
    Article 

    Google Scholar 
    Zobel S, Benedetti I, Eisenbach L, De Lorenzo V, Wierckx N, Blank LM. Tn7-Based Device for Calibrated Heterologous Gene Expression in Pseudomonas putida. ACS Synth Biol. 2015;4:1341–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014;8:2069–79.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc. 2015;10:1820–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang L, Hengzhuang W, Wu H, Damkiær S, Jochumsen N, Song Z. et al. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa. FEMS Immunol Med Microbiol. 2012;65:366–76.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Drought resistance enhanced by tree species diversity in global forests

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834 (2010).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).Article 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).Article 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article 

    Google Scholar 
    Morin, X. et al. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol. Lett. 17, 1526–1535 (2014).Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574 (2015).Article 

    Google Scholar 
    De Boeck, H. J. et al. Patterns and drivers of biodiversity–stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).Article 

    Google Scholar 
    Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. N. Phytol. 228, 42–49 (2020).Article 

    Google Scholar 
    O’Brien, M. J. et al. Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nat. Ecol. Evol. 1, 1643–1648 (2017).Article 

    Google Scholar 
    Gazol, A. & Camarero, J. J. Functional diversity enhances silver fir growth resilience to an extreme drought. J. Ecol. 104, 1063–1075 (2016).Article 

    Google Scholar 
    Pretzsch, H., Schütze, G. & Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 15, 483–495 (2013).Article 

    Google Scholar 
    Grossiord, C. et al. Tree diversity does not always improve resistance of forest ecosystems to drought. P. Natl Acad. Sci. USA 111, 14812–14815 (2014).Article 

    Google Scholar 
    Grossiord, C. et al. Does drought influence the relationship between biodiversity and ecosystem functioning in boreal forests. Ecosystems 17, 394–404 (2014).Article 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. P. Natl Acad. Sci. USA 100, 12765 (2003).Article 

    Google Scholar 
    Lloret, F. et al. Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests. Ecology 88, 2270–2279 (2007).Article 

    Google Scholar 
    He, Q. & Bertness, M. D. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 95, 1437–1443 (2014).Article 

    Google Scholar 
    Hafner, B. D. et al. Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment. Tree Physiol. 37, 950–960 (2017).Article 

    Google Scholar 
    Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61 (2016).Article 

    Google Scholar 
    Vitali, V., Forrester, D. I. & Bauhus, J. Know your neighbours: drought response of Norway spruce, silver fir and Douglas fir in mixed forests depends on species identity and diversity of tree neighbourhoods. Ecosystems 21, 1215–1229 (2018).Article 

    Google Scholar 
    The State of the World’s Forests 2020: Forests, Biodiversity and People (FAO and UNEP, 2020).Zhang, J., Fu, B., Stafford-Smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01332-9 (2020).Schulze, K., Malek, Ž. & Verburg, P. H. Towards better mapping of forest management patterns: a global allocation approach. For. Ecol. Manage. 432, 776–785 (2019).Article 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00976-6 (2021).Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).Article 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).Article 

    Google Scholar 
    Blackman, C. et al. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. N. Phytol. 188, 1113–1123 (2010).Article 

    Google Scholar 
    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Article 

    Google Scholar 
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. P. Natl Acad. Sci. USA 116, 587–592 (2019).Article 

    Google Scholar 
    Tomppo, E. et al. National Forest Inventories: Pathways for Common Reporting (Springer, 2010).Chirici, G. et al. National Forest Inventories: Contributions to Forest Biodiversity Assessments (Springer, 2011).Magnussen, S., Smith, B. & Uribe, S. National Forest inventories in North America for monitoring forest tree species diversity. Plant Biosyst. 141, 113–122 (2007).Article 

    Google Scholar 
    Lesiv, M. et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 9, 199 (2022).Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A. Multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850 (2013).Article 

    Google Scholar 
    Forest Resources Assessment 2015 (FAO, 2015).Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).Article 

    Google Scholar 
    Didan, K. & Brreto, A. NASA MEaSUREs Vegetation Index and Phenology (VIP) Phenology EVI2 Yearly Global 0.05Deg CMG, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MEaSUREs/VIP/VIPPHEN_EVI2.004 (2016).Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Kline, T. J. B. Sample issues, methodological implications, and best practices. Can. J. Behav. Sci. 49, 71–77 (2017).Article 

    Google Scholar 
    Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Phil. Trans. R. Soc. B 368, 20120302 (2013).Article 

    Google Scholar 
    Obiang, N. L. E. et al. Spatial pattern of central African rainforests can be predicted from average tree size. Oikos 119, 1643–1653 (2010).Article 

    Google Scholar 
    Plotkin, J. B. et al. Predicting species diversity in tropical forests. P. Natl Acad. Sci. USA 97, 10850–10854 (2000).Article 

    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Tukey, J. W. Exploratory Data Analysis (Addison-Wesley,1977). More

  • in

    The effect of carbon fertilization on naturally regenerated and planted US forests

    MaterialsInformation on wood volume and the physical environment of the plots were obtained from the US Forest Service Forest Inventory and Analysis (USFS-FIA)22. The FIA database categorizes each plot into one of 33 forest groups, but 23 groups do not have sufficient data in the control period (before 1990) to enable robust matching and so were dropped from this study. As a result, several western forest groups (e.g., Douglas-fir) were not included in our study. The following ten forest groups [(1) Loblolly/Shortleaf Pine, (2) Slash/Shortleaf Pine, (3) White/Red/Jack Pine, (4) Spruce/Fir, (5) Elm/Ash/Cottonwood, (6) Maple/Beech/Birch, (7) Oak/Hickory, (8) Oak/Gum/Cypress, (9) Aspen/Birch, and (10) Oak/Pine] all had more than 5000 observations and large numbers of observations both from before 1990 and from 2000 on. Data for the 48 conterminous states from evaluation years between 1968 and 2018 were included in the study. We limited our analysis to plots with trees from 1 to 100 years of age, resulting in trees that had been planted somewhere between 1869 and 2018—a period during which atmospheric CO2 increased from roughly 287 to more than 406 ppm32,33,34. The geographic distribution of the ten forest groups presented in Fig. 2 shows in orange all counties in which the USFS recorded in at least one year between 1968 and 2018 the presence of a plot of the respective forest group that met the age requirements for inclusion in this study. Precipitation and temperature data were obtained from the PRISM Climate Group41.MethodsResults in Tables 1 and 2 are based on estimated exponential tree-volume functions of the generalized form shown in Eq. 1. The left-hand side is the natural log of the volume per hectare in the central stem of trees on each plot in cubic meters. Volume is assumed to be a function of age, the logged cumulative lifetime concentration of CO2, and other variables, including plot-specific variables that vary across plots but not time (Xi), weather variables that vary across plots and time (Wit), and time-specific fixed effects that vary across time but not plots (Et).$${{{{mathrm{Ln}}}}},{left(frac{{{{{{rm{Volume}}}}}}}{{{{{{rm{Hectare}}}}}}}right)}_{it}= ,alpha+{beta }_{0}frac{1}{{{{{{{rm{Age}}}}}}}_{{{{{{rm{it}}}}}}}}+{beta }_{1},{{{{mathrm{Ln}}}}}({{{{{rm{CumCO}}}}}}2{{{{{{rm{Life}}}}}}}_{{{{{{rm{t}}}}}}})\ +{beta }_{2}{{{{{{rm{X}}}}}}}_{{{{{{rm{i}}}}}}}+{beta }_{3}{{{{{{rm{W}}}}}}}_{{{{{{rm{it}}}}}}}+{beta }_{4}{{{{{{rm{E}}}}}}}_{{{{{{rm{t}}}}}}}+{varepsilon }_{it}$$
    (1)
    The nonparametric smearing estimate method was used to transform logged-volume results into a volume in cubic meters per hectare42. The climate variables, obtained from the PRISM Climate Group41 and described in Supplementary Table 1, enter as cubic polynomials of the lifetime seasonal temperature and precipitation averages that a plot of a given age at a given time experienced.The variable for atmospheric carbon was constructed as the logarithmic transformation of the sum of yearly atmospheric CO2 exposures over the lifetime of the stand. Other site-specific covariates were obtained from the FIA data (Supplementary Table 2), such as the availability of water, the quality of the soil, the photoperiod of the plot, whether disturbances had impacted the land, and whether the land was publicly or privately owned43,44.The time-specific fixed effects (Et) in the model control for episodic factors like nitrogen deposition and invasive species, which are correlated with time but cannot be observed over space for the whole time period. These time-dummy variables account for underlying, unobservable systematic differences between the 21st-century period when atmospheric CO2 was higher and the pre-period when levels were much lower. Controlling for these factors aids the identification of the impact of elevated CO2, which varies annually.A potential concern is that wood volume changes over time could be related to an increased number of trees per hectare rather than increased wood volume of the trees. To assess whether controls for the stocking condition were needed, we examined data on the number of trees per acre of each forest type. First, we looked at a group of southern states (Supplementary Table 3) and found double-digit percentage changes in tree stocking between 1974 and 2017 for seven of the nine forest groups. However, the changes were mixed, with four having increased tree density and five decreasing tree density. The FIA data do not record the Aspen/Birch forest group as present in these southern states in these evaluations.Examination of a group of northern states involved a comparison of the average stocking conditions around 1985 with those in 2017. The changes in tree density for these forest types (Supplementary Table 4) were also split with four showing increased stocking and five having less dense stocking. The change for Loblolly/Shortleaf pine was relatively large, with stocking density increasing by 27.2%. Slash/Longleaf was not recorded as present in these states in these evaluations.Next, we analyzed changes, over the period from around 1985 to 2017, in all states east of the 100th meridian, as those states comprised the bulk of the data in our study (Supplementary Table 5). Results for seven of the ten forest groups showed a less dense composition. Loblolly/Shortleaf pine again was shown to have become more densely stocked, with an increase of 13.2%.The last check included all of the 48 conterminous states and compared changes in stocking conditions from years around 1985 to 2017 (Supplementary Table 6). Seven of the ten forest groups showed decreased stocking density over time. Not surprisingly (because most Loblolly/Shortleaf is located in the Eastern US), the change in Loblolly/Shortleaf pine density is the same for this check as was shown in the results in Supplementary Table 5. Based on the results from all these comparisons and given that stocking density has changed over time, we controlled for it both in the matching and in the multivariate-regression analysis.Genetic matching (GM), the primary approach used for this analysis, combines propensity score matching and Mahalanobis matching techniques45. The choice of GM was made after initially considering other approaches, such as nearest-neighbor propensity score matching with replacement and a non-matching, pooled regression approach. These three options were tested on the samples for Loblolly/Shortleaf pine and Oak/Hickory, and the regression results are presented in Supplementary Data 3-4.The results across these different approaches were quite similar, suggesting that the results are not strongly driven by methodological choice. We focused on matching rather than a pooled regression approach to help reduce bias and provide estimates closer to those that would be obtained in a randomized controlled trial. When choosing the specific matching approach, we considered that standard matching methods are equal percent bias reducing (EPBR) only in the unlikely case that the covariate distributions are all roughly normal46 and that EPBR may not be desirable, as in the case where one of two covariates has a nonlinear relationship with the dependent variable16. We also noted that GM is a matching algorithm that at each step minimizes the largest bias distance of the covariates24 and that GM has been shown to be a more efficient estimator than other methods like the inverse probability of treatment weighting and one-to-one greedy nearest-neighbor matching24,47,48,49. Additionally, when the distributions of covariates are non-ellipsoidal, this nonparametric method has been shown to minimize bias that may not be captured by simple minimization of mean differences50. Lastly, as sample size increases, this approach will converge to a solution that reduces imbalance more than techniques like full or greedy matching48,51,52. Given the support that this choice has in the literature, we decided to employ GM to create all the matched data used in this study using R software53.Artificial regeneration of forest stands, noted as planting throughout the text is used as the main proxy for the impact of forest management. The other indicator of management activity is what can be described as interventions, which are a range of human on-site activities that the USFS details22. We define unmanaged land as stands with natural regeneration and where no interventions occurred on the plot.To create Table 1, we first excluded all plots on which there had been either planting activities or some type of human intervention. Then, we created treatment and control groups by forming two time periods separated by an intervening period of ten years to ensure a more than a marginal difference between the groups in terms of lifetime exposure to atmospheric CO2. The control period used forest plot data sampled between 1968 and 1990, and the treatment period used forest plots sampled between 2000 and 2018. Note that even though the earlier period contains more years, there are fewer overall observations.Matches were then made to balance the treatment and control groups based on the following observable covariates: (1) Seasonal Temperature, (2) Seasonal Precipitation, (3) Stocking Condition, (4) Aspect, (5) Age, (6) Physiographic Class, and (7) Site Class. The propensity score was defined as a logit function of the above covariates to generate estimates of the probability of treatment. Calipers with widths less than or equal to 0.2 standard deviations of the propensity score were also employed to remove at least 98% of bias49.Balance statistics for the primary covariates are presented in Supplementary Data 1–2 and show a strong balance for all covariates across all forest groups. Thus for each forest group, our sample of plots includes control plots (pre-1990) and treatment plots (post-2000) that are comparable (balanced) in climate and other biophysical attributes.After trimming our sample using this matching process and obtaining strongly balanced matches, we turned to regression analysis, where we employed Stata software54. To confirm that we had the most appropriate model structure, tests of the climate and atmospheric carbon variables were undertaken using various polynomial forms, and the main variable of interest, atmospheric carbon, was tested both using a linear lifetime cumulative CO2 variable and a logarithmic transformation of that variable. Results (Supplementary Data 5–10) show that the climate variables were not improved with complexity beyond cubic form. Moreover, selection tools, like the Akaike and Bayesian information criterion, favored the cubic choice, and so we utilized the cubic formulation throughout this study. Results for the CO2 variable were similar in both sign and significance for the linear and logged form. We use the logged form as it allows easier interpretation of the effect, suppresses heteroscedasticity, and removes the assumption that each unit increase in CO2 exposure will have a linear (constant) effect on volume.The estimated effect of CO2 exposure for each forest group (Supplementary Data 12–21) was estimated using alternate specifications of the independent variables included in Eq. 1. For each forest type, the Model (1) specification (Eq. 2) is the basis for the results presented in Table 1. The β0 coefficient details the impact on the volume of the main variable of interest, atmospheric carbon.$${{{{mathrm{Ln}}}}}left(frac{volume}{hectare}right)= alpha+{beta }_{0},{{{{mathrm{Ln}}}}}({{{{{{rm{Lifetime}}}}}}{{{{{rm{CO}}}}}}}_{2})+{beta }_{1}frac{1}{{{{{{rm{Age}}}}}}}+{beta }_{2}{{{{{rm{Site}}}}}},{{{{{rm{Class}}}}}}\ +{beta }_{3}{{{{{rm{Seasonal}}}}}},{{{{{rm{Temperature}}}}}}+{beta }_{4}{{{{{rm{Seasonal}}}}}},{{{{{{rm{Temp}}}}}}}^{2}+{beta }_{5}{{{{{rm{Seasonal}}}}}},{{{{{{rm{Temp}}}}}}}^{3}\ +{beta }_{6}{{{{{rm{Seasonal}}}}}},{{{{{rm{Precipitation}}}}}}+{beta }_{7}{{{{{rm{Seasonal}}}}}},{{{{{{rm{Precip}}}}}}}^{2}+{beta }_{8}{{{{{rm{Seasonal}}}}}},{{{{{{rm{Precip}}}}}}}^{3}\ +{beta }_{9}{{{{{rm{Stocking}}}}}}+{beta }_{10}{{{{{rm{Disturbances}}}}}}+{beta }_{11}{{{{{rm{Physiographic}}}}}},{{{{{rm{Class}}}}}}+{beta }_{12}{{{{{rm{Aspect}}}}}}\ +{beta }_{13}{{{{{rm{Slope}}}}}}+{beta }_{14}{{{{{rm{Elevation}}}}}}+{beta }_{15}{{{{{rm{Latitude}}}}}}+{beta }_{16}{{{{{rm{Longitude}}}}}}+{beta }_{17}{{{{{rm{Ownership}}}}}}\ +{beta }_{18}{{{{{rm{Time}}}}}},{{{{{rm{Dummies}}}}}}+{beta }_{19}{{{{{rm{Seasonal}}}}}},{{{{{rm{Vapor}}}}}},{{{{{rm{Pressure}}}}}},{{{{{rm{Deficit}}}}}}\ +{beta }_{20}{{{{{rm{Length}}}}}},{{{{{rm{of}}}}}},{{{{{rm{Growing}}}}}},{{{{{rm{Season}}}}}}+{{{{{rm{varepsilon }}}}}}$$
    (2)
    After estimating Eq. 2 for each forest type individually (Supplementary Data 12–21), all plots were pooled across forest groups, with additional forest-group dummy variables, to estimate a general tree-volume function (Supplementary Data 22).Our main Model (1) results are provided in Supplementary Data 12–22, along with three additional models that assess the robustness of the elevated CO2 effect to different specifications. The simplest specification, Model (4), included only stand age, CO2 exposure, and a time-dummy variable. Model (3) took the Model (4) base and added in an array of site-specific variables, including those for the climate. Model (2) was similar to Model (1) in that it included the impact of vapor pressure deficit and the length of the growing season on the variables included in Model (3), but it differed from Model (1) in that it tested an alternate approach to capturing the impact of underlying, unobservable systematic differences like nitrogen deposition.Using the estimated coefficients from the preferred Model (column 1) specification (Eq. 2), the estimated change in growing-stock volume between two CO2 exposure scenarios was calculated at ages 25, 50, and 75. The first scenario examined CO2 exposure up to 1970 (that is, when calculating growing-stock volume for a 25-year-old stand, the CO2 exposure would have the summation of the yearly values for the years from 1946 to 1970 [310 to 326 ppm CO2]). The second scenario examined CO2 exposure up to 2015 (that is, when calculating growing-stock volume for a 25-year-old stand, the CO2 exposure was the summation of the yearly values for the years from 1991 to 2015 [347 to 401 ppm CO2])32,33,34. In both scenarios, climate variables were maintained at their 1970 exposure levels, covering the same historical years (e.g., for a 25-year-old stand, 1946 to 1970 were the years of interest), while using seasonal, not annual values and calculating average values, not lifetime summations.Forest dynamics in the Western US differ from those in the East (e.g., generally drier conditions; greater incidence of large wildfires) and as most of the observations for this study are of forest groups located in the 33 states that the USFS labels as comprising the Eastern US, robustness tests were conducted to assess whether results would differ were only eastern observations utilized. Three forest groups [(1) Loblolly/Shortleaf pine, (2) Oak/Gum/Cypress, and (3) Slash/Longleaf pine] have no observations in the Western US. A fourth, White/Red/Jack Pine, has a slight presence in a few Western states, but no western observations were selected in the original matching process (Supplementary Data 2). For the other six forest groups, all observations from Western US states were dropped. As can be seen from Fig. 2, this had the biggest impact on Aspen/Birch and Elm/Ash/Cottonwood. With this data removed, the GM matching algorithm was again used. Balance statistics are presented in Supplementary Data 23 and again show a strong balance for all covariates across all forest groups. With matches made, the average treatment effect on the treated was estimated using the Model (1) specification used to create Table 1. Regression results are presented in Supplementary Data 24,25, and a revised version of Table 1 for just the observations from the Eastern US is presented as Supplementary Table 7.As an additional robustness check on the results in Table 1, we tested an alternative functional form of the volume function. This alternative volume function is shown in Eq. 3. It has a similar shape as the function used for the main results in the paper, however, this equation cannot be linearized with logs in a similar way. Thus, it was estimated with nonlinear least squares, using the matched samples of naturally regenerated forests for individual forest groups, as well as the aggregated sample.$$frac{{{{{{mathrm{Volume}}}}}}}{{{{{{mathrm{Hectare}}}}}}}=a/(b+exp (-c,ast ,{{{{{rm{Age}}}}}}))$$
    (3)
    We began by estimating two separate growth functions, one for the pre-1990 (low CO2) period and one for the post-2000 (high CO2) period using Eq. 3. That is, observations from the pre-1990 (low CO2) control period and from the post-2000 (high CO2) treatment period were handled in separate regressions. For this initial analysis with the nonlinear volume function, we did not control for CO2 concentration or other factors that could influence volume across sites (e.g., weather, soils, slope, aspect), and thus, results likely show the cumulative impact of these various factors. Using the regression results (Supplementary Data 26), we calculated the predicted volume for the pre-1990 and post-2000 periods and compared the predicted volumes (Supplementary Table 8).Next, we tested this yield function on the combined sample (containing both control and treatment observations) and all forest groups. Here the model was expanded to better identify the impact of elevated CO2 by including all covariates. Instead of using a dummy variable for each forest group, though, a single dummy variable was used to differentiate hardwoods from softwoods. Once again, the equation was logarithmically transformed for ease of comparison with the results presented in Table 1. All covariates were originally input, but those which were not significant were removed. That process yielded the functional form shown in Eq. 4. Results for the regression are presented in Supplementary Data 27. The predicted change in volume due to CO2 fertilization from 1970 to 2015 is shown in Supplementary Table 9.$$frac{{{{{{mathrm{Volume}}}}}}}{{{{{{mathrm{Hectare}}}}}}}= big(a0+a1,ast ,{{{{{rm{Time}}}}}},{{{{{rm{Dummy}}}}}}+a2,ast ,{{{{mathrm{Ln}}}}}({{{{{rm{LifetimeCO}}}}}}2)+a{3},ast ,{{{{mathrm{Ln}}}}}({{{{{rm{Seasonal}}}}}},{{{{{rm{Temperature}}}}}})\ +a{4},ast ,{{{{mathrm{Ln}}}}}({{{{{rm{Seasonal}}}}}},{{{{{rm{Precipitation}}}}}})+a{5},ast ,{{{{{rm{Site}}}}}},{{{{{rm{Class}}}}}}\ +a6,ast ,{{{{{rm{Physiographic}}}}}},{{{{{rm{Dummy}}}}}}+a{7},ast ,{{{{{rm{Aspect}}}}}},{{{{{rm{Dummy}}}}}}+a{8},ast ,{{{{{rm{Stocking}}}}}},{{{{{rm{Code}}}}}}\ +a9,ast ,{{{{{rm{Disturbances}}}}}}+a{10},ast ,{{{{{rm{Hardwood}}}}}}/{{{{{rm{Softwood}}}}}},{{{{{rm{Dummy}}}}}}left.right) /left(right.b{0}+b{1},ast ,{{{{{rm{Time}}}}}},{{{{{rm{Dummy}}}}}}\ +b{2},ast ,{{{{mathrm{Ln}}}}}({{{{{rm{Lifetime}}}}}},C{O}_{2})+b3,ast ,{{{{mathrm{Ln}}}}}({{{{{rm{Seasonal}}}}}},{{{{{rm{Temperature}}}}}})\ +b{4},ast ,{{{{mathrm{Ln}}}}}({{{{{rm{Seasonal}}}}}},{{{{{rm{Precipitation}}}}}})+b5,ast ,{{{{{rm{Site}}}}}},{{{{{rm{Class}}}}}}\ +b6,ast ,{{{{{rm{Physiographic}}}}}},{{{{{rm{Dummy}}}}}}+b{7},ast ,{{{{{rm{Aspect}}}}}},{{{{{rm{Dummy}}}}}}+b8,ast ,{{{{{rm{Stocking}}}}}},{{{{{rm{Code}}}}}}\ +b9,ast ,{{{{{rm{Disturbances}}}}}}+b{10},ast ,{{{{{rm{Hardwood}}}}}}/{{{{{rm{Softwood}}}}}},{{{{{rm{Dummy}}}}}}\ +exp left(right.-left(right.c{0}+c{1},ast ,{{{{{rm{Time}}}}}},{{{{{rm{Dummy}}}}}}+c{2},ast ,{{{{{rm{Lifetime}}}}}},{{{{{{rm{CO}}}}}}}_{2}\ +c{3},ast ,{{{{mathrm{Ln}}}}}({{{{{rm{Seasonal}}}}}},{{{{{rm{Temperature}}}}}})+c{4},ast ,{{{{mathrm{Ln}}}}}({{{{{rm{Seasonal}}}}}},{{{{{rm{Precipitation}}}}}})+c{5},ast ,{{{{{rm{Site}}}}}},{{{{{rm{Class}}}}}}\ +c{6},ast ,{{{{{rm{Physiographic}}}}}},{{{{{rm{Dummy}}}}}}+c{7},ast ,{{{{{rm{Aspect}}}}}},{{{{{rm{Dummy}}}}}}+c{8},ast ,{{{{{rm{Stocking}}}}}},{{{{{rm{Code}}}}}}\ +c{9},ast ,{{{{{rm{Disturbances}}}}}}+c{10},ast ,{{{{{rm{Hardwood}}}}}}/{{{{{rm{Softwood}}}}}},{{{{{rm{Dummy}}}}}}left.right),ast ,{{{{{rm{Age}}}}}}left.right)left.right)$$
    (4)
    As the results using the nonlinear volume functions were similar in sign and magnitude to the multivariate-regression results and as the practice of matching and then running a multivariate-regression represents a doubly robust econometric approach that has been shown to yield results that are robust to misspecification in either the matching or the regression model47,55,56,57, the main text results are based on estimations utilizing multivariate-regression analysis post-matching.To develop Table 2, which compares naturally regenerated stands with planted stands, we used the same general approach as was used to create Table 1. The analysis and comparison of planted and naturally regenerated stands was conducted only for stands with enough observations of both to make a comparison: White/Red/Jack, Slash/Longleaf, and Loblolly/Shortleaf pine. We followed the same matching and regression procedures as above, but conducted the matching separately for naturally regenerated and planted stands. We also limited the data to stands less than or equal to 50 years of age, as there are few planted stands of older ages due to the economics of rotational forestry35,36,37,38,39,40. Balance statistics for the matched samples are presented in Supplementary Data 28–30. Again, the matching process resulted in a good balance in observable plot characteristics, which implies that we achieved comparable treatment and control plots.Using the matched data, we estimated the same regression as in Eq. 2. Estimation results, which use the Model (2) specification from Supplementary Data 19–21 that was used with the data for these three forest groups from ages 1–100, are presented in Supplementary Data 30–32. A comparison of the parameter estimates on the natural log of lifetime CO2 exposure between the results for ages 1–50 (from Supplementary Tables 31–33) and those for ages 1–100 (from Supplementary Data 19–21) is presented in Supplementary Table 10.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Declining severe fire activity on managed lands in Equatorial Asia

    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356 (2017).CAS 
    Article 

    Google Scholar 
    Sloan, S., Locatelli, B., Wooster, M. J. & Gaveau, D. L. A. Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Glob. Environ. Change 47, 95–109 (2017).Article 

    Google Scholar 
    Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–96 (2019).Article 

    Google Scholar 
    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).Ward, D. S., Shevliakova, E., Malyshev, S. & Rabin, S. Trends and variability of global fire emissions due to historical anthropogenic activities. Glob. Biogeochem. Cycles 32, 122–42 (2018).CAS 
    Article 

    Google Scholar 
    Earl, N. & Simmonds, I. Spatial and temporal variability and trends in 2001–2016 global fire activity. J. Geophys. Res. Atmos. 123, 2524–36 (2018).Article 

    Google Scholar 
    Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–28 (2013).Article 

    Google Scholar 
    Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).Article 

    Google Scholar 
    van Lierop, P., Lindquist, E., Sathyapala, S. & Franceschini, G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecol. Manag. 352, 78–88 (2015).Article 

    Google Scholar 
    Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article 

    Google Scholar 
    Andela, N. & van der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4, 791–95 (2014).Article 

    Google Scholar 
    Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–35 (2010).Article 
    CAS 

    Google Scholar 
    Balch, J. K. et al. Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Change Biol. 14, 2276–87 (2008).Article 

    Google Scholar 
    Cochrane, M. A. & Laurance, W. F. Synergisms among fire, land use, and climate change in the Amazon. Ambio 37, 522–27 (2008).Article 

    Google Scholar 
    Gaveau, D. L. A. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112 (2014).Vadrevu, K. P. et al. Trends in vegetation fires in South and Southeast Asian countries. Sci. Rep. 9, 7422 (2019).Article 
    CAS 

    Google Scholar 
    Sloan, S., Tacconi, L. & Cattau, M. E. Fire prevention in managed landscapes: recent successes and challenges in Indonesia. Mitig. Adapt. Strateg. Glob. Change 26, Article 32 (2021).Article 

    Google Scholar 
    Gaveau, D. L. A., Descales, A., Salim, M. A., Shields, D. & Sloan, S. Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning. Earth Syst. Sci. Data, https://doi.org/10.5194/essd-2021-113, (2021).Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).Article 
    CAS 

    Google Scholar 
    Field, R. D., van der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–88 (2009).CAS 
    Article 

    Google Scholar 
    Huijnen, V. et al. Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).CAS 
    Article 

    Google Scholar 
    Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Change 6, 640–43 (2016).Article 

    Google Scholar 
    Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).Article 

    Google Scholar 
    Kiely, L. et al. Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environ. Res. Lett.15, 094054 (2020).Article 

    Google Scholar 
    Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 37074 (2016).CAS 
    Article 

    Google Scholar 
    Glauber, A. J. & Gunawan, I. The Cost of Fire: An Economic Analysis of Indonesia’s 2015 Fire Crisis. (The World Bank, Washington, D.C., (2016).Tan, Z. D., Carrasco, L. R. & Taylor, D. Spatial correlates of forest and land fires in Indonesia. Int. J. Wildland Fire 29, 1088–99 (2020).Article 

    Google Scholar 
    Marlier, M. E. et al. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett. 10, 085005 (2015).Article 
    CAS 

    Google Scholar 
    Vetrita, Y. & Cochrane, M. A. Fire frequency and related land-use and land-cover changes in Indonesia’s peatlands. Remote Sens. 12, 5 (2020).Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 65 (2020).Article 

    Google Scholar 
    Field, R. Biomass burning in Indonesia: Signs of Progress in 2019?, http://www.columbia.edu/~rf2426/index_files/20200128.Field.GSFC.NoOz.pdf, January, NASA Goddard Space Flight Center, (2019).Watts, J. et al. Incentivising compliance: evaluating the effectiveness of targeted village incentives for reducing forest and peat fires. Forest Policy Econ. 108, 101956 (2019).Wijedasa, L. et al. Carbon emissions from peat forests will continue to increase despite emission-reduction schemes. Glob. Change Biol. 24, 4598–613 (2018).Article 

    Google Scholar 
    Sloan, S., Meyfroidt, P., Rudel, T. K. & Bongers, F. & Chazdon Robin, L. The forest transformation: Planted tree cover and regional dynamics of tree gains and losses. Glob. Environ. Change 59, 101988 (2019).Article 

    Google Scholar 
    Albar, I., Jaya, I. N. S., Saharjo, B. H., Kuncahyo, B. & Vadrevu, K. P. Spatio-temporal analysis of land and forest fires in Indonesia using MODIS active fire dataset, in Land-Atmospheric Research Applications in South and Southeast Asia (eds K P Vadrevu et al.), p. 105-27 (Springer International Publishing, 2018).Miettinen, J., Shi, C. & Liew, S. C. Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires. Environ. Manage. 60, 747–57 (2017).Article 

    Google Scholar 
    Fanin, T. & van der Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).Article 

    Google Scholar 
    Wiggins, E. B. et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl. Acad. Sci. USA 115, 12419 (2018).CAS 
    Article 

    Google Scholar 
    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).CAS 
    Article 

    Google Scholar 
    Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Glob. Change Biol. 24, 644–54 (2018).Article 

    Google Scholar 
    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article 

    Google Scholar 
    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. USA 113, 9204–09 (2016).CAS 
    Article 

    Google Scholar 
    Austin, K. G. et al. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69, 41–48 (2017).Article 

    Google Scholar 
    Pan, X., Chin, M., Ichoku, C. & Field, R. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016. J. Geophys. Res. Atmos. 123, (2018).van der Werf, G. R. et al. Climate regulation of fire emissions and deforestation in Equatorial Asia. Proc. Natl Acad. Sci. USA 105, 20350–55 (2008).Article 

    Google Scholar 
    Wooster, M. J., Roberts, G., Perry, G. L. W. & Kaufman, Y. J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Rese. Atmos. 110, (2005).Spessa, A. et al. Seasonal forecasting of fires over Kalimantan, Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–42 (2015).Article 

    Google Scholar 
    Siegert, F., Ruecker, G., Hinrichs, A. & Hoffmann, A. A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 414, 437–40 (2001).CAS 
    Article 

    Google Scholar 
    Fernandes, K. et al. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environ. Res. Lett. 12, 054002 (2017).Article 

    Google Scholar 
    Herawati, H. & Santoso, H. Tropical forest susceptibility to and risk of fire under changing climate: a review of fire nature, policy and institutions in Indonesia. Forest Policy Econ. 13, 227–33 (2011).Article 

    Google Scholar 
    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–23 (2014).CAS 
    Article 

    Google Scholar 
    Dennis, R. A Review of Fire Projects In Indonesia, 1982-1998. (CIFOR, Bogor, Indonesia, 1999).de Groot, W. J., Field, R. D., Brady, M. A., Roswintiarti, O. & Mohamad, M. Development of the Indonesian and Malaysian fire danger rating systems. Mitig. Adapt. Strateg. Glob. Change 12, 165 (2006).Article 

    Google Scholar 
    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).CAS 
    Article 

    Google Scholar 
    Bissonnette, J.-F. & De Koninck, R. The return of the plantation? Historical and contemporary trends in the relation between plantations and smallholdings in Southeast Asia. J. Peasant Stud. 44, 918–38 (2017).Article 

    Google Scholar 
    Gaveau, D. L. A. et al. Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLOS ONE 17, e0266178 (2022).Svatoňová, T., Herák, D. & Kabutey, A. Financial profitability and sensitivity analysis of palm oil plantation in Indonesia. Acta Univ. Agric. Silvic. Mendelianae Brunensis 63, 1365–73 (2015).Article 

    Google Scholar 
    Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Scientific Reports 6, (2016).Simamora, A. P. Govt says no to converting peatland into plantations, The Jakarta Post. August (2010).Satriastanti, F. E. Jokowi bans new oil palm and mining concessions, Mongabay.com April (2016).Sloan, S., Edwards, D. P. & Laurance, W. F. Does Indonesia’s REDD+ moratorium on new concessions spare imminently-threatened forests? Conserv. Lett. 5, 222–31 (2012).Article 

    Google Scholar 
    Busch, J. et al. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc. Natl Acad Sci USA 112, 1328–33 (2015).CAS 
    Article 

    Google Scholar 
    Forsyth, T. Public concerns about transboundary haze: a comparison of Indonesia, Singapore, and Malaysia. Glob. Environ. Change 25, 76–86 (2014).Article 

    Google Scholar 
    Carbon Conservation. Fire Free Village Program – Review 2017. (Carbon Conservation, Singapore, (2017).Gaveau, D. L. A. et al. Overlapping land claims limit the use of satellites to monitor no-deforestation committments and no-burning compliance. Conserv. Lett. 10, 257–64 (2017).Article 

    Google Scholar 
    EarthData. MODIS Collection 6 Active-Fire Detections standard scientific data (MCD14ML), NASA EarthData, https://earthdata.nasa.gov/firms (2019).Giglio, L., Schroeder, W. & Justice, C. O. The Collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Sloan, S., Cattau, M.E. Discrete Fire Events, their Severity, and their Ignitions, as Derived from MODIS MCD 14ML Active-Fire Detection Data for Indonesia, 2002-2019. Sean Sloan and Megan E. Cattau, Datadryad.org. (2022).Cattau, M. E. et al. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Change 39, 205–19 (2016).Article 

    Google Scholar 
    Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo during the pre-MODIS era (1980–2000). Biogeosciences 9, 317–40 (2012).Article 

    Google Scholar 
    Tansey, K., Beston, J., Hoscilo, A., Page, S. E. & Paredes Hernández, C. U. Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. J. Geophys. Res. 113, (2008).Oom, D., Silva, P. C., Bistinas, I. & Pereira, J. M. C. Highlighting biome-specific sensitivity of fire size distributions to time-gap parameter using a new algorithm for fire event individuation. Remote Sens. 8, 663 (2016).Schroeder, W. et al. Validation of GOES and MODIS active fire detection products using ASTER and ETM plus data. Remote Sens. Environ. 112, 2711–26 (2008).Article 

    Google Scholar 
    Hantson, S., Padilla, M., Corti, D. & Chuvieco, E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens. Environ. 131, 152–59 (2013).Article 

    Google Scholar 
    Tanpipat, V., Honda, K. & Nuchaiya, P. MODIS hotspot validation over Thailand. Remote Sens. 1, 1043–54 (2009).Article 

    Google Scholar 
    Liew, S. C., Shen, C., Low, J., Lim, A. & Kwoh, L. K. The 24th Asian Conference on Remote Sensing and 2003 International Symposium on Remote Sensing (ACRS2003). p. 671-73 (Asian Association on Remote Sensing), November 3–7.Fornacca, D., Ren, G. & Xiao, W. Performance of three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountainous area of northwest Yunnan, China, characterized by frequent small fires. Remote Sens. 9, 1131 (2017).Article 

    Google Scholar 
    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).Article 

    Google Scholar 
    Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).Article 

    Google Scholar 
    Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. The Collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–707 (2008).Article 

    Google Scholar 
    Miettinen, J., Langner, A. & Siegert, F. Burnt area estimation for the year 2005 in Borneo using multi-resolution satellite imagery. Int. J. Wildland Fire 16, 45–53 (2007).Luo, R., Hui, D., Miao, N., Liang, C. & Wells, N. Global relationship of fire occurrence and fire intensity: a test of intermediate fire occurrence-intensity hypothesis. J. Geophys. Res. Biogeosci. 122, 1123–36 (2017).Article 

    Google Scholar 
    Andela, N. et al. The Global Fire Atlas of individual fire size, duration, speed, and direction. Earth Syst. Sci. Data 11, 529–52 (2019).Article 

    Google Scholar 
    Andela, N., Morton, D. C., Giglio, L. & Randerson, J. T. Global Fire Atlas with Characteristics of Individual Fires, 2003-2016, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1642, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1642 (2019).Field, R. D. & Shen, S. S. P. Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006. J. Geophys. Res. Biogeosci. 113, G04024 (2008).Article 
    CAS 

    Google Scholar 
    Fuller, D. O. & Murphy, K. The ENSO-fire dynamic in insular Southeast Asia. Clim. Change 74, 435–55 (2006).Article 

    Google Scholar 
    Field, R. D. et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 15, 1407–23 (2015).Article 

    Google Scholar 
    Huffman, G. J. GPM IMERG Final Precipitation gridded data, L3 1 month 0.1 degree x 0.1 degree, version 06B. NASA Precipitation Processing System, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://storm-pps.gsfc.nasa.gov/storm/; https://pmm.nasa.gov/data-access/downloads/gpm (2019).Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).Article 

    Google Scholar 
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).Article 

    Google Scholar 
    Hsu, J., Huang, W.-R., Liu, P.-Y. & Li, X. Validation of CHIRPS precipitation estimates over taiwan at multiple timescales. Remote Sens. 13, 254 (2021).Rozante, J. R., Vila, D. A., Barboza Chiquetto, J., Fernandes, A. D. A. & Souza Alvim, D. Evaluation of TRMM/GPM blended daily products over Brazil. Remote Sens. 10, 882 (2018).Prakash, S., Mitra, A. K., Pai, D. S. & AghaKouchak, A. From TRMM to GPM: how well can heavy rainfall be detected from space? Adv. Water Resour. 88, 1–7 (2016).Article 

    Google Scholar 
    Ma, Q. et al. Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmos. Res. 249, 105304 (2021).Article 

    Google Scholar 
    Nwachukwu, P. N., Satge, F., Yacoubi, S. E., Pinel, S. & Bonnet, M.-P. From TRMM to GPM: how reliable are satellite-based precipitation data across Nigeria? Remote Sens. 12, 3964 (2020).Popovych, V. F. & Dunaieva, I. A. Assessment of the GPM IMERG and CHIRPS precipitation estimations for the steppe part of the Crimea. Meteorol. Hydrol. Water Manage 9, (2021).Navarro, A. et al. Assessment of IMERG precipitation estimates over Europe. Remote Sens. 11, 2470 (2019).Dezfuli, A. K. et al. Validation of IMERG precipitation in Africa. J. Hydrometeorol. 18, 2817–25 (2017).Article 

    Google Scholar 
    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap. (Chapman and Hall, Boca Raton, FL, USA, 1993).Pérez-Hoyos, A., Rembold, F., Kerdiles, H. & Gallego, J. Comparison of global land cover datasets for cropland monitoring. Remote Sens. 9, 1118 (2017).ESA. Annual land-cover product, 1992 to 2019/present, based on MERIS 300-m and ancillary SPOT, AVHRR, Sentinel-3 and PROB-V satellite data. European Space Agency (ESA) European Centre for Medium-Range Weather Forecasts (ECMFW) Copernicus Climate Change Service (C3S) Climate Change Initiative (CCI), https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview; http://maps.elie.ucl.ac.be/CCI/viewer/download.php; http://www.esa-landcover-cci.org/ (2020).Defourny, P. Product User Guide and Specification: ICDR Land Cover 2016 to 2019 (Version 2.1.1 of ESA Coperninus Climate Change Intitiative Annual 300-m Land-Cover Classifications). (Universitie Catholique du Lovain, Louvain, Belgium, (2020).Vetrita, Y. & Cochrane, M. A. Annual Burned Area from Landsat, Mawas, Central Kalimantan, Indonesia, 1997-2015, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1708, https://daac.ornl.gov/CMS/guides/Annual_Burned_Area_Maps.html; https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=33 (2019). More

  • in

    Evaluation of animal and plant diversity suggests Greenland’s thaw hastens the biodiversity crisis

    Species occurrence recordsWe compiled data on the distribution of 21,252 endemic species of any of the twelve megadiverse countries from four tetrapod (5,757) and four vascular plant groups (15,389) (amphibians, reptiles, birds, mammals, lycophytes, ferns, gymnosperms, and flowering plants). Species occurrence records were obtained from the Global Biodiversity Information Facility (GBIF)27, the International Union of Conservation of Nature (IUCN)28, and BirdLife60,61. We only modeled species with at least 25 unique records at a 5 arc-minute resolution (~10 km at the equator). In many cases, the processing of the IUCN polygons resulted in species with thousands of occurrence records. In these cases, we randomly chose a maximum of 500 records per species. The greater the number of observed records, more problems can be associated with spatial bias in the modeling62. In the case of records coming from IUCN polygons, more records require more computing time and these do not necessarily provide more information into the modeling given that their distribution is quite homogeneous.For tetrapods, we first explored the possibility of using occurrence records from GBIF, but data for megadiverse countries were scarce. Consequently, we decided to use the distribution polygons provided by the IUCN for amphibians, reptiles, and mammals (terrestrial and freshwater species)28, and the distribution polygons provided by BirdLife60. We based this decision on the fact that ecological niche modeling using IUCN polygons has been proven to give robust results20. For the IUCN polygons, we retained species that have been categorized as “extant”, “possibly extinct”, “probably extant”, “possibly extant”, and “presence uncertain”, discarding species considered to be “extinct”. In addition, we did not model species reported by the IUCN as “introduced”, “vagrant”, or those in the “assisted colonization” category; for mammals and birds, we only considered the distribution of “resident” species. Depending on the taxonomic group, and given the information available, we used different approaches to identify species endemic to any of twelve megadiverse countries: Australia, Brazil, China, Colombia, Ecuador, India, Indonesia, Madagascar, Mexico, Peru, Philippines, and Venezuela. For birds, we used BirdLife to identify species listed as “breeding endemic” and then choose the corresponding IUCN polygons. To identify the rest of endemic species in the other groups, we used a 0.08333° buffer around each country to select the IUCN polygons that fall completely within the country limits. We converted all selected species polygons into unique records at a 5 min resolution (~10 km at the equator).For vascular plants, we used geographic occurrence data obtained from the Global Biodiversity Information Facility by querying all records under “Tracheophyta” (we only considered “Preserved Specimens” in our search). Plants records were taxonomically homogenized and cleaned following the procedures described in ref. 63 using Kew’s Plants of the World database64 as the source of taxonomic information. Mostly, we identified endemic species as those with all occurrence records restricted to any given megadiverse country. For countries in which data for vascular plants were scarce or absent (e.g., India), we complemented occurrence information with polygons from the IUCN (although IUCN data for plants remains limited) following the procedure described for tetrapods.Climatic dataWe used the 19 bioclimatic variables available at WorldClim v.2 (Fick 2017) as the baseline (present-day) climatic conditions (1970–2000) (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, the maximum temperature of the warmest month, minimum temperature of the coldest month, temperature annual range, mean annual range, mean temperature of wettest quarter, mean temperature of driest quarter, mean temperature of warmest quarter, mean temperature of coldest quarter, annual precipitation, precipitation of wettest month, precipitation of driest month, precipitation seasonality, precipitation of wettest quarter, precipitation of driest quarter, precipitation of warmest quarter and precipitation of coldest quarter). From this baseline scenario, bioclimatic variables start to vary because of climate change. We used bioclimatic variables derived from the IPSL-CM5-LR ocean-atmospheric model under five scenarios: (i) the high-emissions RCP 8.5 W/m2; and (ii) melting scenarios consisting of four different experiments of freshwater discharge into the North Atlantic from Greenland’s meltwater (see DeFrance16 for details). We acknowledge that using a single GCM does not allow us to estimate inter-GCM variability in the resulting distribution models; however, the melting scenarios do only exist for IPSL-CM5-LR GCM. We applied as control scenario RCP 8.5 because melting scenarios would have been more complicated to support with lower emission scenarios. In addition, we are using well-designed opportunity experiments from ref. 11 and wanted to be consistent with their choice of RCP 8.5. Also, these experiments are based on CMIP5, which shows similar climate impact fingerprints than CMIP665. This might be explained by the fact that CMIP5 and CMIP6 are still relatively close, and that the main climatic effects of the AMOC are already well-represented by the climate dynamics in CMIP5.The four melting scenarios are equivalent to a sea-level rise of 0.5, 1.0, 1.5, and 3.0 meters above the current sea level, and these are named accordingly: Melting 0.5, Melting 1.0, Melting 1.5., and Melting 3.0. These AMOC scenarios are experiments that were superimposed to the RCP 8.5 scenario adding 0.11, 0.22, 0.34, and 0.68 Sv (1 Sv = 106 m3/s) coming from a freshwater release that starts in 2020 and finishes in 2070 (Anthoff et al.14). We obtained debiased bioclimatic variables11 under the five future scenarios for three consecutive time horizons: T1: 2030 (2030–2060); T2: 2050 (2050–2080); and T3: 2070 (2070–2100). The time horizons evaluated represent short, medium, and long terms in order to help decision-makers order conservation priorities.Ecological niche modelingAt their most basic, the algorithms used to construct species distribution models relate species occurrence records with climatic variables to create a climatic profile that can be projected onto other time periods and geographic regions66. The resulting models have proven useful in evaluating the impacts of climate change on biodiversity and to identify varying levels of vulnerability among species32,67,68. Here, we employed a multi-algorithm (ensemble) approach to construct species distribution models as implemented in the “biomod2” package67 in R69 (Supplementary Fig. 33). The underlying philosophy of ensemble modeling is that each model carries a true “signal” about the climate-occurrence relationships we aim to capture, but it also carries “noise” created by biases and uncertainties in the data and model structure32,67. By combining models created with different algorithms, ensemble models aim at capturing the true “signal” while controlling for algorithm-derived model differences; therefore, model uncertainty is accounted for during model construction (see Supplementary Material for further detail).Prior to modeling, we reduced the number of bioclimatic variables per species by estimating collinearity among present-day bioclimatic variables. We employed the “corrSelect” function of the package fuzzySim70 in R69, using a Pearson correlation threshold of 0.8 and variance inflation factors as criteria to select variables. Given the number of species evaluated and the ecological information scarcity, we did not select a set of variables based on ecological knowledge by each of the species modeled. Instead, for the variables pre-selection, we used the statistical approach described above that has been proven to give models with good performance71,72. We used seven algorithms with a good predictive performance (evaluated with the TSS and ROC statistics; Supplementary Fig. 1): Maxent (MAXENT.Phillips), Generalized Additive Models (GAM), Classification Trees Analysis (CTA), Artificial Neural Networks (ANN), Surface Range Envelope (SRE), Flexible Discriminant Analysis (FDA), and Random Forest (RF). Because occurrence datasets consisted of presence-only data, for each model, we randomly generated 10,000 pseudo-absences within the model calibration area; we gave presences and absences the same importance during the calibration process (BIOMOD’s prevalence = 0.5). For each species, we selected a calibration area (i.e., the accessible area or M)73 using a spatial intersection between a 4° buffer around species occurrences and the terrestrial ecoregions occupied by the species73 (Supplementary Fig. 33). The projected M (i.e., the area accessible for species in future scenarios) was defined using a 2° buffer around the present-day calibration area (M). By limiting the M, we incorporated information about dispersal and ecological limitations of each species into the modeling66. We did this to take into account a more realistic dispersal scenario given the velocity with which climatic changes are happening and because there are geographic and ecological barriers, which is the reason why we used ecoregions to limit our M. We assumed climatic niche conservatism across time; and inside the projected M we also assumed full dispersal. Consequently, inside the projected M, the evaluated species can win or lose suitable climatic conditions.We calibrated each algorithm using a random sample of 70% of occurrence records and evaluated the resulting models using the remaining 30% of records. To validate the predictive power of the ecological niche models, we used the True Skill Statistics (TSS) and the Receiver Operating Characteristics (ROC) and performed 10 replicates for every model, providing a tenfold internal cross-validation. To account for uncertainty, we constructed the ensemble models (seven algorithms × ten replicates) using a total consensus rule, where models from different algorithms were assembled using a weighted mean of replicates with an evaluation threshold of AUC  > 0.7 (Supplementary Fig. 1). However, as shown by the distribution of validation statistic in Supplementary Fig. 1, most ensemble models presented a very good predictive power (AUC  > 0.8). In some cases, modeling issues in some insular species required that we change the calibration area (M) to the entire country.We used the resulting ensemble models to project the potential distribution of each species under both current and future climatic conditions (Supplementary Fig. 34). We then examined the frequency in which different bioclimatic variables appeared to have the highest contribution during model construction for each species. The algorithms used (Maxent, GAM, CTA, ANN, SRE, FDA, and RF) identify these variables by iteratively testing combinations of all the available variables (i.e., those selected based on low correlation values) until reaching a set of variables that was most informative on the distribution of species; this set of variables had the highest predictive power of species occurrence. For every species, we retrieved the two variables with the largest model contribution (Supplementary Figs. 34 and 35).Species geographic rangeWe converted ensemble probability maps into binary maps of presence/absence using the TSS threshold; these binary maps reflect the distribution of climatic suitability of species, where values of 0 and 1 represent grid cells with non-suitable and suitable climates, respectively. In order to approximate the vulnerability of individual species to climate change, we estimated the temporal changes in the extent of the area of climatic suitability (geographic range) for every species relative to the present-day distribution. We estimated species’ geographic ranges by identifying and counting those grid cells with suitable climatic conditions (values of 1) in the present-day and under future scenarios. We then estimated the proportion of range changes through time, quantifying the proportion of grid cells either lost or gained for each species. This allowed us to estimate the proportion of species (by country and group) projected to have a complete loss of geographic ranges in the future.Species richness, differences in species richness, potential species hotspots (PSH), and temporal dissimilarityWe used binary maps to construct presence-absence matrices (PAM), which contain information on the presence (values of 1) or absence (values of 0) of species across grid cells. Using these PAMs, we estimated species richness (SR) as the sum of species present in each grid cell; to visualize SR across space, we generated 16 species richness maps corresponding to the present-day and the four future scenarios at each of the three temporal horizons. We used these maps to estimate and visualize temporal differences in species richness (ΔSR) over time by subtracting the estimated SR in the future from the current SR, for every grid cell; for visualization, we standardized SR per country to the range 0–1. We assumed full dispersal ability of species in all analyses, meaning that all suitable areas in the future had the same probability of being occupied, irrespective of the distance to the present-day distribution.By calculating species richness (SR) across grid cells, we defined Potential Species Hotspots (PSH) within each country as those grid cells with the highest levels of SR. For this, we defined the PSH by calculating the maximum present-day species richness (maxSR) observed in each country and then identified grid cells with richness values above a threshold of maxSR*0.6. Considering only those grid cells with a SR above this threshold, we estimated the geographic extent of PSH across time periods and scenarios and estimated changes to the extent of PSH relative to present-day conditions. Given that we use the threshold to define PSHs, we tested two additional thresholds (20 and 90%) to define and quantify the extent of PSHs. However, these additional results agree with the general trend. We chose not to base our threshold on the distribution of SR values (i.e., quantiles, median) due to the high proportion of grid cells with SR  More

  • in

    Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean

    Nelson G. From Candolle to croizat: comments on the history of biogeography. J Hist Biol. 1978;11:269–305.PubMed 
    Article 
    CAS 

    Google Scholar 
    Lomolino MV, Riddle BR, Whittaker RJ, Brown JH. Biogeography. Sunderland, MA: Sinauer Associates; 2005. p. 752Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J. Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J Biogeogr. 2011;38:595–603.Article 

    Google Scholar 
    Treseder KK, Maltz MR, Hawkins BA, Fierer N, Stajich JE, Mcguire KL. Evolutionary histories of soil fungi are reflected in their large-scale biogeography. Ecol Lett. 2014;17:1086–93.PubMed 
    Article 

    Google Scholar 
    Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;4:1–9.PubMed 
    Article 

    Google Scholar 
    Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA 2012;109:17633–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sul WJ, Oliver TA, Ducklow HW, Amaral-Zettlera LA, Sogin ML. Marine bacteria exhibit a bipolar distribution. Proc Natl Acad Sci USA 2013;110:2342–7.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 

    Google Scholar 
    de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.PubMed 
    Article 
    CAS 

    Google Scholar 
    Milici M, Tomasch J, Wos-Oxley ML, Decelle J, Jáuregui R, Wang H. et al. Bacterioplankton biogeography of the Atlantic ocean: a case study of the distance-decay relationship. Front Microbiol. 2016;7:Article 590.PubMed 

    Google Scholar 
    Raes EJ, Bodrossy L, Van De Kamp J, Bissett A, Ostrowski M, Brown MV, et al. Oceanographic boundaries constrain microbial diversity gradients in the south pacific ocean. Proc Natl Acad Sci USA 2018;115:8266–75.Article 
    CAS 

    Google Scholar 
    Wu W, Lu HP, Sastri A, Yeh YC, Gong GC, Chou WC, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.PubMed 
    Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.PubMed 
    Article 

    Google Scholar 
    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.PubMed 
    Article 
    CAS 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmidt TSB, Matias Rodrigues JF, Von Mering C. A family of interaction-adjusted indices of community similarity. ISME J. 2017;11:791–807.PubMed 
    Article 

    Google Scholar 
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.Article 

    Google Scholar 
    Djurhuus A, Port J, Closek CJ, Yamahara KM, Romero-maraccini O, Walz KR. et al. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Front Mar Sci. 2017;4:Article 314.Article 

    Google Scholar 
    Wang ZB, Sun YY, Li Y, Chen XL, Wang P, Ding HT, et al. Significant bacterial distance-decay relationship in continuous, well-connected southern ocean surface water. Micro Ecol. 2020;80:73–80.Article 
    CAS 

    Google Scholar 
    Dlugosch L, Pohlein A, Wemheuer B, Pfeiffer B, Badewien T, Daniel R, et al. Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome. Nat Commun. 2022;13:456.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone C, Knight R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Doblin MA, Petrou K, Sinutok S, Seymour JR, Messer LF, Brown MV, et al. Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current. PeerJ. 2016;4:e1973.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Polovina JJ, Howell E, Kobayashi DR, Seki MP. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Prog Oceanogr. 2001;49:469–83.Article 

    Google Scholar 
    Karl DM, Church MJ. Ecosystem structure and dynamics in the north pacific subtropical gyre: new views of an old ocean. Ecosystems. 2017;20:433–57.Article 

    Google Scholar 
    Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA 2018;115:6799–807.Article 
    CAS 

    Google Scholar 
    Balmonte JP, Simon M, Giebel HA, Arnosti C. A sea change in microbial enzymes: Heterogeneous latitudinal and depth-related gradients in bulk water and particle-associated enzymatic activities from 30°S to 59°N in the Pacific Ocean. Limnol Oceanogr. 2021;66:3489–507.Article 
    CAS 

    Google Scholar 
    Giebel H-A, Arnosti C, Badewien TH, Bakenhus I, Balmonte JP, Billerbeck S. et al. Microbial growth and organic matter cycling in the Pacific Ocean along a latitudinal transect between subarctic and subantarctic waters. Front Mar Sci. 2021;8:Article 764383.Article 

    Google Scholar 
    Milici M, Tomasch J, Wos-Oxley ML, Wang H, Jáuregui R, Camarinha-Silva A, et al. Low diversity of planktonic bacteria in the tropical ocean. Sci Rep. 2016;6:19054.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Longhurst AR. Ecological geography of the sea. San Diego, USA: Academic Press; 2007.Parada AE, Needham DM, Fuhrman JA. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.PubMed 
    Article 
    CAS 

    Google Scholar 
    Milke F, Sanchez-Garcia S, Dlugosch L, McNichol J, Fuhrman J, Simon M. et al. Composition and biogeography of pro- and eukaryotic communities in the Atlantic Ocean: primer choice matters. Front Microbiol. 2022;13:Article 895875.PubMed 
    Article 

    Google Scholar 
    Vaulot D, Geisen S, Mahé F, Bass D. pr2-primers: An 18S rRNA primer database for protists. Mol Ecol Resour. 2022;22:168–79.PubMed 
    Article 
    CAS 

    Google Scholar 
    Yeh YC, McNichol J, Needham DM, Fichot EB, Berdjeb L, Fuhrman JA. Comprehensive single-PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. Environ Microbiol. 2021;23:3240–50.PubMed 
    Article 
    CAS 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 
    CAS 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 (Nature Biotechnology, (2019), 37, 8, (852-857), 10.1038/s41587-019-0209-9). Nat Biotechnol. 2019;37:1091.PubMed 
    Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S. Msa: an R package for multiple sequence alignment. Bioinformatics. 2015;31:3997–9.PubMed 
    CAS 

    Google Scholar 
    Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis. Hoboken NJ, USA: John Wiley & Sons; 2009.Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett. 2008;11:995–1003.PubMed 
    Article 

    Google Scholar 
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fine PVA, Kembel SW. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography. 2011;34:552–65.Article 

    Google Scholar 
    Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere. 2011;2:1–11.Article 

    Google Scholar 
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory OBPG. Moderate-resolution Imaging Spectroradiometer (MODIS) aqua chlorophyll data. https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3B/CHL/2018/. Accessed 13 Nov 2020.Pommier T, Douzery EJP, Mouillot D. Environment drives high phylogenetic turnover among oceanic bacterial communities. Biol Lett. 2012;8:562–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. The role of B vitamins in marine biogeochemistry. Ann Rev Mar Sci. 2014;6:339–67.PubMed 
    Article 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012;3:e00036–12.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carini P, Campbell EO, Morré J, Sañudo-Wilhelmy SA, Cameron Thrash J, Bennett SE, et al. Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea. ISME J. 2014;8:1727–38.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wienhausen G, Bruns S, Sultana S, Dlugosch L, Groon L, Wilkes H, et al. The overlooked role of a biotin precursor for marine bacteria – desthiobiotin as an escape route for biotin auxotrophy. ISME J. 2022. https://doi.org/10.1038/s41396-022-01304-w.Biller SJ, Coe A, Chisholm SW. Torn apart and reunited: Impact of a heterotroph on the transcriptome of Prochlorococcus. ISME J. 2016;10:2831–43.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: cobamides unveil microbial interactions. Science. 2020;369:eaba0165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wienhausen G, Dlugosch L, Jarling R, Wilkes H, Giebel H-A, Simon M. Availability of vitamin B12 and its lower ligand intermediate a-ribazole impact prokaryotic and protist communities in oceanic systems. ISME J. 2022;16:2002–14.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci USA 2015;112:9938–43.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amin SA, Hmelo LR, Van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.PubMed 
    Article 
    CAS 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci USA 2020;117:27445–55.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Villarino E, Watson JR, Chust G, Woodill AJ, Klempay B, Jonsson B, et al. Global beta diversity patterns of microbial communities in the surface and deep ocean. Glob Ecol Biogeogr. 2022;00:1–14.
    Google Scholar 
    Cravatte S, Kestenare E, Marin F, Dutrieux P, Firing E. Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: Paths and vertical structure. J Phys Oceanogr. 2017;47:2305–24.Article 

    Google Scholar 
    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.Article 
    CAS 

    Google Scholar 
    Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016;10:596–608.PubMed 
    Article 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. Elife. 2019;8:e46497.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hillebrand H. On the generallity of the latutinal diversity gradient. Am Nat. 2004;163:192–211.PubMed 
    Article 

    Google Scholar  More

  • in

    Coral conservation in a warming world must harness evolutionary adaptation

    Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Nat. Clim. Chang. 11, 537–542 (2021).Article 

    Google Scholar 
    Cook, C. N. & Sgrò, C. M. Conserv. Biol. 31, 501–512 (2017).Article 

    Google Scholar 
    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. Phil. Trans. R. Soc. Lond. B 368, 1–8 (2013).
    Google Scholar 
    Kovach, R. P., Gharrett, A. J. & Tallmon, D. A. Proc. R. Soc. Lond. B 279, 3870–3878 (2012).
    Google Scholar 
    Bonnet, T. et al. Science 376, 1012–1016 (2022).CAS 
    Article 

    Google Scholar 
    Norberg, J. et al. Nat. Clim. Chang. 2, 747–751 (2012).Article 

    Google Scholar 
    Torda, G. et al. Nat. Clim. Chang. 7, 627–636 (2017).Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. Curr. Biol. 29, R996–R1007 (2019).CAS 
    Article 

    Google Scholar 
    Keppel, G. et al. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Vos, C. C. et al. J. Appl. Ecol. 45, 1722–1731 (2008).Article 

    Google Scholar 
    Isaak, D. J. et al. Glob. Change Biol. 21, 2540–2553 (2015).Article 

    Google Scholar 
    Beyer, H. L. et al. Conserv. Lett. 11, e12587 (2018).Article 

    Google Scholar 
    Tingley, M. W., Estes, L. D. & Wilcove, D. S. Nature 500, 271–272 (2013).CAS 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Cornwell, B. et al. eLife 10, e64790 (2021).CAS 
    Article 

    Google Scholar 
    National Academies. of Sciences Engineering & Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. (The National Academies Press, 2019).Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Science 344, 895–898 (2014).CAS 
    Article 

    Google Scholar 
    Matz, M. V., Treml, E. A. & Haller, B. C. Glob. Change Biol. 26, 3473–3481 (2020).Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Curr. Biol. 24, 2952–2956 (2014).CAS 
    Article 

    Google Scholar 
    Donovan, M. K. et al. Science 372, 977–980 (2021).CAS 
    Article 

    Google Scholar 
    Anthony, K. et al. Nat. Ecol. Evol. 1, 1420–1422 (2017).Article 

    Google Scholar 
    Morrison, T. H. et al. Nature 573, 333–336 (2019).CAS 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).Article 

    Google Scholar 
    DeFilippo, L. B. et al. Ecol. Appl. https://doi.org/10.1002/eap.2650 (2022).Steneck, R. S. et al. Front. Mar. Sci. 6, 265 (2019).Article 

    Google Scholar 
    Dixon, G. B. et al. Science 348, 1460–1462 (2015).CAS 
    Article 

    Google Scholar 
    McManus, L. C. et al. Glob. Change Biol. 27, 4307–4321 (2021).CAS 
    Article 

    Google Scholar 
    Kleypas, J. A. et al. Glob. Change Biol. 22, 3539–3549 (2016).Article 

    Google Scholar 
    McManus, L. C. et al. Ecology 102, e03381 (2021).Article 

    Google Scholar 
    Walsworth, T. E. et al. Nat. Clim. Chang. 9, 632–636 (2019).Article 

    Google Scholar  More

  • in

    Fungi are more transient than bacteria in caterpillar gut microbiomes

    Futuyma, D. J. & Agrawal, A. A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. 106, 18054–18061 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).PubMed 
    Article 

    Google Scholar 
    Gurung, K., Wertheim, B. & Salles, J. F. The microbiome of pest insects: It is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giron, D. et al. Chapter seven—influence of microbial symbionts on plant-insect interactions. In Advances in Botanical Research Vol. 81 (eds Sauvion, N. et al.) 225–257 (Academic Press, 2017).
    Google Scholar 
    Chen, B. et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6, 29505 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. Tree endophytes: cryptic drivers of tropical forest diversity. In Endophytes of Forest Trees: Biology and Applications (eds Pirttilä, A. M. & Frank, A. C.) 63–103 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-89833-9_4.Chapter 

    Google Scholar 
    Peñuelas, J., Rico, L., Ogaya, R., Jump, A. S. & Terradas, J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14, 565–575 (2012).PubMed 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA. 111, 13715–13720 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92, 303–311 (2014).Article 

    Google Scholar 
    Faeth, S. H. & Hammon, K. E. Fungal endophytes in oak trees: Long-term patterns of abundance and associations with leafminers. Ecology 78, 810–819 (1997).Article 

    Google Scholar 
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40, 1111–1122 (2011).PubMed 
    Article 

    Google Scholar 
    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).Article 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, 117 (2019).Article 
    CAS 

    Google Scholar 
    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Montagna, M. et al. Evidence of a bacterial core in the stored products pest Plodia interpunctella: The influence of different diets. Environ. Microbiol. 18, 4961–4973 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Phalnikar, K., Kunte, K. & Agashe, D. Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc. R. Soc. B Biol. Sci. 286, 20192438 (2019).CAS 
    Article 

    Google Scholar 
    Somerville, J., Zhou, L. & Raymond, B. Aseptic rearing and infection with gut bacteria improve the fitness of transgenic diamondback moth, Plutella xylostella. Insects 10, 89 (2019).PubMed Central 
    Article 

    Google Scholar 
    González-Serrano, F. et al. The gut microbiota composition of the moth brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Goharrostami, M. & JalaliSendi, J. Investigation on endosymbionts of Mediterranean flour moth gut and studying their role in physiology and biology. J. Stored Prod. Res. 75, 10–17 (2018).Article 

    Google Scholar 
    Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, 1005 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minard, G., Tikhonov, G., Ovaskainen, O. & Saastamoinen, M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ. Microbiol. 21, 4253–4269 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).PubMed 
    Article 

    Google Scholar 
    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).PubMed 
    Article 

    Google Scholar 
    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. J. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Gomes, T., Pereira, J. A., Benhadi, J., Lino-Neto, T. & Baptista, P. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb. Ecol. 76, 668–679 (2018).PubMed 
    Article 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitaker, M. R. L., Salzman, S., Sanders, J., Kaltenpoth, M. & Pierce, N. E. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 7, 1920 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, Y. et al. Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiol. 20, 58 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffin, E. A., Harrison, J. G., McCormick, M. K., Burghardt, K. T. & Parker, J. D. Tree diversity reduces fungal endophyte richness and diversity in a large-scale temperate forest experiment. Diversity 11, 234 (2019).Article 

    Google Scholar 
    Kim, M. et al. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63, 674–681 (2012).PubMed 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Višňovská, D. et al. Caterpillar gut and host plant phylloplane mycobiomes differ: A new perspective on fungal involvement in insect guts. FEMS Microbiol. Ecol. 96, fiaa116 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 100, e02758 (2019).PubMed 
    Article 

    Google Scholar 
    Berlec, A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 193–194, 96–102 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Unterseher, M., Reiher, A., Finstermeier, K., Otto, P. & Morawetz, W. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol. Prog. 6, 201–212 (2007).Article 

    Google Scholar 
    Gilbert, G. S., Reynolds, D. R. & Bethancourt, A. The patchiness of epifoliar fungi in tropical forests: Host range, host abundance, and environment. Ecology 88, 575–581 (2007).PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol. Ecol. 95, fiz032 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant. Microbe Interact. 28, 274–285 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Seasonal patterns contribute more towards phyllosphere bacterial community structure than short-term perturbations. Microb. Ecol. https://doi.org/10.1007/s00248-020-01564-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B. & Allende, A. Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiol. 66, 77–85 (2017).PubMed 
    Article 

    Google Scholar 
    Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).PubMed 
    Article 

    Google Scholar 
    Yun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sánchez, N. E., Pereyra, P. C. & Luna, M. G. Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Entomol. 38, 365–374 (2009).PubMed 
    Article 

    Google Scholar 
    Santos, A. M. C. & Quicke, D. L. J. Large-scale diversity patterns of parasitoid insects. Entomol. Sci. 14, 371–382 (2011).Article 

    Google Scholar 
    Mereghetti, V., Chouaia, B. & Montagna, M. New insights into the microbiota of moth pests. Int. J. Mol. Sci. 18, 2450 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Floater, G. J. Estimating movement of the processionary caterpillar Ochrogaster zunifer Herrich-Schäffer (Lepidoptera: Thaumetopoeidae) between discrete resource patches. Aust. J. Entomol. 35, 279–283 (1996).Article 

    Google Scholar 
    Turčáni, M. & Patočka, J. Does intraguild predation of Cosmia trapezina L. (Lep.: Noctuidae) influence the abundance of other Lepidoptera forest pests?. J. For. Sci. 57, 472–482 (2011).Article 

    Google Scholar 
    Hikisz, J. & Soszynska-Maj, A. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in Central Poland. J. Entomol. Res. Soc. 17, 59–71 (2015).
    Google Scholar 
    Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69–114 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).Article 

    Google Scholar 
    Qian, X. et al. Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci. Rep. 10, 952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed 
    Article 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Müller, T., Müller, M., Behrendt, U. & Stadler, B. Diversity of culturable phyllosphere bacteria on beech and oak: The effects of lepidopterous larvae. Microbiol. Res. 158, 291–297 (2003).PubMed 
    Article 

    Google Scholar 
    Hrcek, J., Miller, S. E., Quicke, D. L. J. & Smith, M. A. Molecular detection of trophic links in a complex insect host-parasitoid food web. Mol. Ecol. Resour. 11, 786–794 (2011).PubMed 
    Article 

    Google Scholar 
    Bateman, C., Šigut, M., Skelton, J., Smith, K. E. & Hulcr, J. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ. Entomol. 45, 883–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science https://peerj.com/preprints/27295 (2018) https://doi.org/10.7287/peerj.preprints.27295v2.Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    UNITE Community. UNITE QIIME Release for Fungi 2. (2019).Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Ter Braak, C. J. F. ter & Smilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. (2012).Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    Chrostek, E., Pelz-Stelinski, K., Hurst, G. D. D. & Hughes, G. L. Horizontal transmission of intracellular insect symbionts via plants. Front. Microbiol. 8, 2237 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Ann. Zool. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology (2019).Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More