More stories

  • in

    Pile driving repeatedly impacts the giant scallop (Placopecten magellanicus)

    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: Lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).Article 

    Google Scholar 
    Dahl, P. H., de Jong, C. A. & Popper, A. N. The underwater sound field from impact pile driving and its potential effects on marine life. Acoust. Today. 11, 18–25 (2015).
    Google Scholar 
    Mooney, T. A., Andersson, M. H. & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography 33, 82–95 (2020).Article 

    Google Scholar 
    Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, A. P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS 
    Article 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).PubMed 
    Article 

    Google Scholar 
    Jones, I. T., Stanley, J. A. & Mooney, T. A. Impulsive pile driving noise elicits alarm responses in squid (Doryteuthis pealeii). Mar. Pollut. Bull. 150, 110792 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, L. & Elliott, M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci. Total. Environ. 595, 255–268 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hawkins, A. D., Hazelwood, R. A., Popper, A. N. & Macey, P. C. Substrate vibrations and their potential effects upon fishes and invertebrates. J. Acoust. Soc. Am. 149, 2782–2790 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Popper, A. N. et al. Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. J. Acoust. Soc. Am. 151, 205–215 (2022).PubMed 
    Article 

    Google Scholar 
    Williams, R. et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean. Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    Roberts, L., Cheesman, S., Breithaupt, T. & Elliott, M. Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar. Ecol. Prog. Ser. 538, 185–195 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proc. Natl. Acad. Sci. 114, E8537–E8546 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newell, R. I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 23, 51–62 (2004).
    Google Scholar 
    Wijsman, J.W.M., Troost, K., Fang, J. & Roncarati, A. Global production of marine bivalves. Trends and challenges. Goods and services of marine bivalves, (Eds. Small, A.D., Ferrerira, J.G., Grant, J., Petersen, J.K., Strand, O.) 7–26 (Springer, Cham, 2019).Perveen, R., Kishor, N. & Mohanty, S. R. Off-shore wind farm development: Present status and challenges. Renew. Sust. Energ. Rev. 29, 780–792 (2014).Article 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Mar. Policy. 48, 172–183 (2014).Article 

    Google Scholar 
    Musial, W.D., Beiter, P.C., Spitsen, P., Nunemaker, J. & Gevorgian, V. 2018 offshore wind technologies market report. US Department of Energy (2019).Lacroix, D. & Pioch, S. The multi-use in wind farm projects: more conflicts or a win-win opportunity?. Aquat. Living. Resour. 24, 129–135 (2011).Article 

    Google Scholar 
    FishstatJ. FishStatJ-Software for Fishery and Aquaculture Statistical Time Series. FAO Fisheries Division [online], Rome. Accessed April 10, 2022. (2020).Flanders Marine Institute. Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11. Available online at https://www.marineregions.org/ (2019).Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C. & Mikkelsen, K. K. Optimization of monopiles for offshore wind turbines. Philos. Trans. R. Soc. A 373, 20140100 (2015).ADS 
    Article 

    Google Scholar 
    Bruns, B., Stein, P., Kuhn, C., Sychla, H. & Gattermann, J. Hydro sound measurements during the installation of large diameter offshore piles using combinations of independent noise mitigation systems. Proceedings of the Inter-noise Conference 1–10 (Melbourne, Australia, 2014).Hunt, H. L. & Scheibling, R. E. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 155, 269–301 (1997).ADS 
    Article 

    Google Scholar 
    Pilditch, C. A. & Grant, J. Effect of variations in flow velocity and phytoplankton concentration on sea scallop (Placopecten magellanicus) grazing rates. J. Exp. Mar. Biol. Ecol. 240, 111–136 (1999).Article 

    Google Scholar 
    Chauvaud, L., Thouzeau, G. & Paulet, Y. M. Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). J. Exp. Mar. Biol. Ecol. 227, 83–111 (1998).Article 

    Google Scholar 
    Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic Sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13, e0203536 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hawkins, A. D., Pembroke, A. E. & Popper, A. N. Information gaps in understanding the effects of noise on fishes and invertebrates. Rev. Fish. Biol. Fish. 25, 39–64 (2015).Article 

    Google Scholar 
    Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).Article 

    Google Scholar 
    Sabet, S. S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).Article 

    Google Scholar 
    Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change. Biol. 22, 3349–3360 (2016).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Hubert, J., Booms, E., Witbaard, R. & Slabbekoorn, H. Responsiveness and habituation to repeated sound exposures and pulse trains in blue mussels. J. Exp. Mar. Biol. Ecol. 547, 151668 (2022).Article 

    Google Scholar 
    Robson, A. A., Chauvaud, L., Wilson, R. P. & Halsey, L. G. Small actions, big costs: the behavioural energetics of a commercially important invertebrate. J. R. Soc. Interface. 9, 1486–1498 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, G. E. & Gruffydd, L. D. The types of escape reactions elicited in the scallop Pecten maximus by selected sea-star species. Mar. Biol. 10, 87–93 (1971).Article 

    Google Scholar 
    Livingstone, D. R., Dezwaan, A. & Thompson, R. J. Aerobic metabolism octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 70, 35–44 (1981).Article 

    Google Scholar 
    Comeau, L. A., Babarro, J. M., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa Spain. Aquac. Rep. 9, 68–73 (2018).Article 

    Google Scholar 
    Wilson, R., Reuter, P. & Wahl, M. Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Mar. Biol. 147, 1165–1172 (2005).Article 

    Google Scholar 
    Comeau, L. A. & Babarro, J. M. Narrow valve gaping in the invasive mussel Limnoperna securis: implications for competition with the indigenous mussel Mytilus galloprovincialis in NW Spain. Aquac. Int. 22, 1215–1227 (2014).CAS 
    Article 

    Google Scholar 
    Comeau, L. A., Mayrand, E. & Mallet, A. Winter quiescence and spring awakening of the Eastern oyster Crassostrea virginica at its northernmost distribution limit. Mar. Biol. 159, 2269–2279 (2012).Article 

    Google Scholar 
    Palmer, B. A. et al. The image-forming mirror in the eye of the scallop. Science 358, 1172–1175 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chappell, D. R., Horan, T. M. & Speiser, D. I. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc. R. Soc. B. 288, 20211730 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mat, A. M., Massabuau, J. C., Ciret, P. & Tran, D. Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol. Int. 29, 857–867 (2012).PubMed 
    Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods. Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Dickie, L. M. & Medcof, J. C. Causes of mass mortalities of scallops (Placopecten magellanicus) in the southwestern Gulf of St Lawrence. J. Fish. Res. Board. Can. 20, 451–482 (1963).Article 

    Google Scholar 
    Coleman, S., Cleaver, C., Morse, D., Brady, D. C. & Kiffney, T. The coupled effects of stocking density and temperature on Sea Scallop (Placopecten magellanicus) growth in suspended culture. Aquac. Rep. 20, 100684 (2021).Article 

    Google Scholar 
    Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES. J. Mar. Sci. 77, 890–900 (2020).Article 

    Google Scholar 
    ISO, 18406. Underwater acoustics measurement of radiated underwater sound from percussive pile driving. International Organization for Standardization (Geneva, Switzerland), 1–33 (2017).Madsen, P. T. Marine mammals and noise: Problems with root mean square sound pressure levels for transients. J. Acoust. Soc. Am. 117, 3952–3957 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R.V. emmeans: Estimated marginal means, aka least squares means. R package version 1.3.5.1. Retrieved from http://CRAN.R-project.org/package=emmeans (2019).Kragh, I. M. et al. Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 222, jeb216606 (2019).PubMed 
    Article 

    Google Scholar 
    Warner, R. M. Spectral Analysis of Time-Series Data (Guilford Press, 1998).
    Google Scholar 
    Fisher, R. A. Tests of significance in harmonic analysis. Proc. Math. Phys. Eng. Sci. 125, 54–59 (1929).MATH 

    Google Scholar  More

  • in

    N addition alters growth, non-structural carbohydrates, and C:N:P stoichiometry of Reaumuria soongorica seedlings in Northwest China

    Galloway, J. N., Townsend, W. H., Erisman, J. W., Bekunda, M. & Cai, Z. Transformation of the nitrogen cycle: Recent trends, questions and potential solutions. Science 320, 889–892 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Phoenix, G. K. et al. Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob. Change Biol. 18, 1197–1215 (2012).ADS 
    Article 

    Google Scholar 
    Pons, T. L., van der, Werf, A. & Lambers, H. Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species: Possible explanations for observed differences. In A Whole Plant Perspective on Carbon-Nitrogen Interactions (eds Roy, J., Garnier, E.) 61–77 (SPB Academic Publishing, The Hague, 1994).Ai, Z. M., Xue, S., Wang, G. L. & Liu, G. B. Responses of Non-structural carbohydrates and C:N: P stoichiometry of Bothriochloa ischaemum to nitrogen addition on the Loess Plateau, China. J. Plant Growth Regul. 36, 714–722 (2017).CAS 
    Article 

    Google Scholar 
    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dietze, M. C. et al. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol. 65, 667–687 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees -from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Q. P. et al. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees 30, 1863–1871 (2016).CAS 
    Article 

    Google Scholar 
    Peng, Z. T. et al. Non-structural carbohydrates regulated by nitrogen and phosphorus fertilization varied with organs and fertilizer levels in Moringa oleifera Seedlings. J. Plant Growth Regul. 40, 1777–1786 (2021).CAS 
    Article 

    Google Scholar 
    Nardini, A. et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms deferentially affected by an extreme summer drought. Plant Cell Environ. 39, 618–627 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, F. C. et al. Effects of experimental nitrogen addition on nutrients and nonstructural carbohydrates of dominant understory plants in a Chinese Fir plantation. Forests 10, 155 (2019).Article 

    Google Scholar 
    Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).Article 

    Google Scholar 
    Jinm, X. M. et al. Ecological stoichiometry and biomass response of Agropyron michnoi under simulated N deposition in a sandy grassland, China. J. Arid Land. 12, 741–751 (2020).Article 

    Google Scholar 
    Jing, H. et al. Nitrogen addition changes the stoichiometry and growth rate of different organsin pinus tabuliformis seedlings. Front. Plant Sci. 8, 1922 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhan, S. X., Wang, Y., Zhu, Z. C., Li, W. H. & Bai, Y. F. Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environ. Exp. Bot. 134, 21–32 (2017).CAS 
    Article 

    Google Scholar 
    Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2 -mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842 (2007).ADS 
    Article 

    Google Scholar 
    Wang, X. G. et al. Responses of C:N: P stoichiometry of plants from a Hulunbuir grassland to salt stress, drought and nitrogen addition. Phyton-Int. J. Exp. Bot. 87, 123–132 (2018).
    Google Scholar 
    Liu, X. J. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, W. J., Houlton, B. Z., Marklein, A. R., Liu, J. X. & Zhou, G. Y. Plant stoichiometric responses to elevated CO2 vary with nitrogen and phosphorus inputs: Evidence from a global-scale meta-analysis. Sci. Rep. 5, 18225 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. Effects of nutrient addition on nitrogen, phosphorus and non-structural carbohydrates concentrations in leaves of dominant plant species in a semiarid steppe. Chin. J. Ecol. 33, 1795–1802 (2014).
    Google Scholar 
    Yang, D. X., Song, L. & Jin, G. Z. The soil C:N: P stoichiometry is more sensitive than the leaf C:N: P stoichiometry to nitrogen addition: A four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant Soil 442, 183–198 (2019).CAS 
    Article 

    Google Scholar 
    Chong, P. F., Zhan, J., Li, Y. & Jia, X. Y. Carbon dioxide and precipitation alter Reaumuria soongorica root morphology by regulating the levels of soluble sugars and phytohormones. Acta Physiol. Plant 41, 184 (2019).Article 
    CAS 

    Google Scholar 
    Ma, X. Z. & Wang, X. P. Biomass partitioning and allometric relations of the Reaumuria soongorica shrub in Alxa steppe desert in NW China. For. Ecol. Manag. 468, 118–178 (2020).Article 

    Google Scholar 
    He, F. L., Bao, A. K., Wang, S. M. & Jin, H. X. NaCl stimulates growth and alleviates drought stress in the salt-secreting xerophyte Reaumuria soongorica. Environ. Exp. Bot. 162, 433–443 (2019).CAS 
    Article 

    Google Scholar 
    Xu, D. H. et al. Photosynthetic parameters and carbon reserves of a resurrection plant Reaumuria soongorica during dehydration and rehydration. Plant Growth Regul. 60, 183–190 (2010).CAS 
    Article 

    Google Scholar 
    Zhang, H. et al. miRNA–mRNA integrated analysis reveals roles for miRNAs in a typical halophyte, Reaumuria soongorica, during seed germination under salt stress. Plants 9, 351 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bai, Y. M., Li, Y., Shan, L. S., Su, M. & Zhang, W. T. Effects of precipitation change and nitrogen addition on root morphological characteristics of Reaumuria soongorica. Arid Zone Res. 37, 1284–1292 (2020).
    Google Scholar 
    Hedwall, P. O., Nordin, A., Strengbom, J., Brunet, J. & Olsson, B. Does background nitrogen deposition affect the response of boreal vegetation to fertilization?. Oecologia 173, 615–624 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, G., Fahey, T. J., Xue, S. & Liu, F. Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia 171, 583–590 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Grechi, I. et al. Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine. Environ. Exp. Bot. 59, 139–149 (2007).CAS 
    Article 

    Google Scholar 
    Xiao, L., Liu, G., Li, P. & Xue, S. Nitrogen addition has a stronger effect on stoichiometries of non-structural carbohydrates, nitrogen and phosphorus in Bothriochloa ischaemum than elevated CO2. Plant Growth Regul. 83, 325–334 (2017).CAS 
    Article 

    Google Scholar 
    Quentin, A. G. et al. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. 35, 1146–1165 (2015).CAS 
    PubMed 

    Google Scholar 
    White, L. M. Carbohydrate reserves of grasses: A review. J. Range Manag. 26, 13–18 (1973).CAS 
    Article 

    Google Scholar 
    Millard, P., Sommerkorn, M. & Grelet, G. A. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytol. 175, 11–28 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, T., Cao, Y., Chen, Y. M. & Liu, G. B. Non-structural carbohydrate dynamics in Robinia pseudoacacia saplings under three levels of continuous drought stress. Trees 29, 1837–1849 (2015).CAS 
    Article 

    Google Scholar 
    Chapin, F. S., Schulze, E. D. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423–447 (1990).Article 

    Google Scholar 
    Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The C:N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evolut. Syst. 14, 33–47 (2012).Article 

    Google Scholar 
    Xia, J. Y. & Wan, S. Q. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 179, 428–439 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Y. H., Luo, Y. Q., Lu, M., Schädel, C. & Han, W. X. Terrestrial C: N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant Soil 343, 393–400 (2011).CAS 
    Article 

    Google Scholar 
    Mayor, J. R., Wright, S. J. & Turner, B. L. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. J. Ecol. 102, 36–44 (2014).CAS 
    Article 

    Google Scholar 
    Koerselman, A. & Meuleman, A. F. The vegetation ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    Gusewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).PubMed 
    Article 

    Google Scholar 
    Wang, S., Shan, L. S., Li, Y., Zhang, Z. Z. & Ma, J. Effect of Precipitation on the Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus of Reaumuria soongarica and Salsola passerina. Acta Bot. Boreal. Occident. Sin. 40, 0335–0344 (2020).ADS 

    Google Scholar 
    Niu, D. C., Li, Q., Jiang, S. G., Chang, P. J. & Fu, H. Seasonal variations of leaf C:N: P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chin. J. Plant Ecol. 37, 317–325 (2013).Article 

    Google Scholar 
    Kleyer, M. & Minden, V. Why functional ecology should consider all plant organs: An allocation-based perspective. Basic Appl. Ecol. 16, 1–9 (2015).Article 

    Google Scholar 
    Yemm, E. & Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508–514 (1954).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bao, S. D. Soil and Agricultural Chemistry Analysis 3rd edn. (China Agriculture Press, Beijing, 2000).
    Google Scholar  More

  • in

    Carbon farming: integrate biodiversity metrics

    Incentivizing farmers to shift from conventional to regenerative practices could help fulfil the United Nations Food Systems commitments to transform food supply chains — as well as reducing carbon emissions (see L. A. Schulte et al. Nature Sustain. 5, 384–388; 2022).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Collecting critically endangered cliff plants using a drone-based sampling manipulator

    Cliffs present a unique flora that has been little studied until now mainly because of the inherent difficulties to access this unique environment, as shown in Fig. 2. The techniques currently used to access plants on steep slopes and cliffs (e.g., abseiling, helicopter) are generally dangerous, costly and time consuming. Using a small aerial manipulator to sample plants on the cliffs can represent many advantages, including safety and portability, as well as the capability of reaching otherwise inaccessible locations easily, quickly and at low cost.Figure 2Examples of the cliff habitats of some critically endangered species on the Kauaʻi Island along with the count of known individuals as of February 2022.Full size imageHowever, several technical challenges make it difficult to develop suitable aerial manipulators for this task. Indeed, the sampling of plants on cliffs necessarily leads to significant collision risks, as well as contact forces and moments during sampling that can destabilize the drone. The samples collected would also need to be accessed from the side of the aerial platform22. Any weight (e.g., sampling tool, collected samples) located horizontally away from the center of mass of the drone creates large additional demands on the propulsion system of most drones. To collect specific plant parts in windy conditions (e.g., scion, flowers, seeds, etc.), precise and fast motion is required even in degraded Global Navigation Satellite System (GNSS) coverage near the cliffs. The great diversity of plant species and morphology found on cliffs, as well as the variety of targeted sections of plant, also represent a major design challenge. Finally, to maximize the adoption of this tool, it is also desirable that scientists with minimal training could use this platform. The next sections describe how these challenges were addressed through the development of the Mamba.Suspended sampling platformThere are a multitude of configurations that could have been explored to sample plants on cliffs. Some drones have manipulators rigidly attached to their structure20,23. However, these manipulators tend to have a limited reach to keep the center of mass within the propeller footprint and to minimize the inertia of the system. This could result in a high collision risk with the propellers in the uneven terrain found on cliffs. The contact forces created during the sampling operation also generate destabilizing moments through manipulators rigidly attached to the drone. To address these challenges, concepts involving a compliant manipulator operated from specialized drones were also explored10. Alternatively, some aerial manipulators were also passively suspended under the drone through a long rod21,24. This keeps the drone above potential obstacles within the environment, significantly reducing the operator’s mental demand and stress while also reducing the disturbances transmitted to the drone to a downward force aligned with the rod and yaw torque. To maintain these advantages while providing better precision, some projects have developed cable suspended platforms equipped with thrusters25,26. As these platforms do not have to counter gravity, the thrusters can be positioned to fight external disturbances more efficiently (e.g., wind, contact forces, drone movements). Existing systems however only stabilize the suspended platform close to its equilibrium point.The chosen concept for the Mamba, illustrated at Fig. 3, consists of a suspended platform that can stabilize itself far from its natural equilibrium to provide a large workspace. The lifting drone in this system stays safely away and above from steep cliff faces, while supporting the platform and providing rough positioning in space through better GNSS coverage. The platform is suspended 10 m below the lifting drone using four attachment points to prevent pitch and roll motions. The cable also acts as a low pass filter, isolating the platform from the fast drone movements required to fight wind disturbances. The suspended platform design can then focus on fast and precise positioning, while also being tolerant to contacts during sampling. To do so, four pairs of bidirectional actuators are used to control the motion in the plane of the pendulum (i.e., x and y translation, as well as yaw). Two pairs of actuators are installed in the x-direction to provide sufficient force to reach plants as far as 4 m from the equilibrium position. This corresponds to roughly 3.3 m from the tip of the lifting drone’s propellers.Figure 3(a) General concept of the Mamba and lifting drone during transit and sampling on cliffs. (b) Side view of the Mamba showing the components and cable installations. (c) Top view showing the antagonist thrusters configuration. (d) Close-up of the sampling tool and 2 degrees of freedom (DOF) wrist specifically designed to sample small fragile plants.Full size imageSince the Mamba is self-powered and has its own communication system, the lifting drone function is simply to lift the platform and hold it in place. This made it possible to select amongst the many commercially available products to accelerate the development of the Mamba. The DJI M300 was chosen as it comes equipped with a 360° optical obstacle avoidance vision system, an IP45 rating, and a flight time of 20 min with the Mamba attached (3.3 kg). It also advertised a four constellation GNSS receiver for better coverage around buildings, structures, and cliffs.Precise control in windsWinds under 20 km/h represent a gentle breeze on the Beaufort scale. At this level, the wind only moves the leaves, and not the branches, which allows for ideal sampling conditions. According to historical weather data from 2020, daily maximum winds are less than 20 km/h for 40 to 70% of the year, depending on the exact location on Kauaʻi Island (i.e., Lihuʻe International airport, as reported by the National Oceanic and Atmospheric Administration, and the Makaha Ridge Weather Station, as reported in the MesoWest database). This also implies that Kauaʻi experiences stronger winds on certain days which would make precise sampling difficult. Wind conditions are also more challenging near cliff faces, with increased turbulence and vertical airflow along the cliff.To allow operations on most days, while providing precise positioning and fast rejection of wind disturbances, the actuators of the Mamba are oriented in the horizontal plane. This allows the actuator forces to directly affect the motion of the suspended platform. Each actuator of the Mamba consists of a pair of brushless DC motors and 23 cm propellers capable of producing 7 N of force. The motors are installed in opposite directions, are always idling at their minimum rotation speed, and are commanded to only create force in their preferred direction. This antagonistic configuration avoids the low-velocity dead zone of a brushless motor during thrust reversal. This makes it possible to quickly revert the direction of the thrust and nearly triples the bandwidth of the actuators to approximately 2.5 Hz27. This configuration, however, comes at the expense of added mass and components.The Mamba is equipped with a flight controller that includes a control system, and a state estimator. To avoid degraded GNSS coverage issues, the state estimator only uses data from a high accuracy inertial measurement unit (IMU) to estimate the attitude of the platform. This provides the relative position of the platform with respect to the drone and is sufficient for teleoperation. Three separated proportional-derivative controllers are used for each of the DOF controlled by the actuators. This control system also provides attitude-hold assistance (i.e., pitch and roll, which correspond to x and y displacements, as well as yaw). This implies that if the user does not send any commands, the suspended platform maintains its current state.Figure 4 illustrates the stabilization accuracy of the Mamba when moving along a representative trajectory when suspended indoors from a 5.7 m cable (limited by ceiling height). This experiment confirmed that the sampling tool can maintain a position at a horizontal reach of 2.25 m with a precision of about 5 cm for 30 s. As the horizontal reach and precision are limited by the cable angular displacements (e.g., component of weight acting on the pendulum, IMU angular resolution), the resulting workspace when operating with a 10 m long cable would reach a radius of 4 m with a positioning accuracy of about 9 cm. To account for potential external disturbances like wind, the sampling tool was designed with an opening of 15 cm. This creates some margin for the pilot to align the target with the sampling mechanism. Field trials detailed below demonstrated that the Mamba actuators and controller could maintain a sufficiently stable position to sample plants in winds During the sampling phase, wind speed averaged 15.7 km/h with a standard deviation of 6.8 km/h, while wind gusts reached an average of 20.1 km/h with a standard deviation of 6.5 km/h. The maximum average wind speed recorded during sampling was 28 km/h with gusts up to 37 km/h. This represents a lower bound of the system performance, as no failure resulted from the wind conditions experienced during the trials. The a ttached Supplementary Video also demonstrates the stability of the system.Figure 4Representative motion of the sampling tool within its workspace based only on feedback from a high accuracy IMU and recorded using a motion capture system. The natural equilibrium point is at (0,0). The experiment starts with a 90° rotation around the z axis, followed by a forward movement along the x-axis of the Mamba and a lateral movement along its y-axis. The system then maintains this position for 30 s without any user inputs. Produced in MATLAB R2021a.Full size imageTeleoperated sampling of cliffs habitatsPlants growing on Kauaʻi cliffs exhibit a wide morphological variety. For this project, targets ranged from small herbaceous plants such as Euphorbia eleanoriae (plants  More

  • in

    Subsurface Archaea associated with rapid geobiological change in a model Yellowstone hot spring

    Acidification of CPHistorical geochemical data suggest that the water chemistry of Cinder Pool (CP) has been relatively stable from the time of first reported geochemical data in 1947 until autumn 2018, followed by pronounced acidification between winter and spring 2019 (Supplementary Data 1, Fig. 1a, b). Images and documentation dating to even earlier (1927) reveal the presence of cinders covering ~50% of the spring surface at that time, a temperature near boiling (91.5 °C), and a description of having high sulfate and chloride levels (although data was not provided), suggesting that its chemistry has been generally stable since its discovery1. Spring pH ranged between ~3.6 and 4.5 in 22 yearly measurements spanning 71 years (1947–2018; multiple measurements in the same year were averaged to represent each year) (Fig. 1b), while the pH has been subsequently measured after 2018 as low as 2.5 (Fig. 1b). A single pH measurement of 2.5 was also recorded in a 2003 publication27, although other measurements in 2003, 2000, and 2001 were more consistent with the long-term average (i.e., pH 4.2–4.3; Supplementary Data 1). Scrutiny of chemical data accompanying the pH 2.5 measurement in 2003 indicates a SO42− concentration (~48 mg L−1) that is considerably lower than would be expected for CP, even when the pH is much higher (SO42− = 80 mg L−1; pH = 4.2–4.3). Considering that sulfuric acid is the predominant buffer of pH in these systems7,28, the pH 2.5 reading in 2003 is considered questionable. Nevertheless, the 2018 shift in pH towards more acidic conditions was accompanied by a notable change in the appearance of CP. Prior to autumn 2018, the spring waters were cloudy gray with the considerable suspension of kaolinite clay particles20 and black cinders10. However, between autumn 2018 and spring 2019, the spring waters visibly turned blue-green and contained colloidal S° particles that were also deposited along the pool shelves, while the pool also lacked its characteristic black cinders (Fig. 1a). The spring has maintained this appearance since spring 2019 until at least July 2022.Fig. 1: Historical geochemistry of Cinder Pool (CP).a Top panel shows the visual change in the appearance of CP in 2016 (left) and 2020 (right). Scale bars in the bottom right are ∼1 m. b Measurements of pH (n = 21; black line) and sulfate (SO42−) concentrations (n = 12; red line) in CP waters between 1947 and 2021. Years with multiple measurements were averaged to represent the entire year. c Paired measurements of SO42− and chloride (Cl−) concentrations (n = 12) between 1947 and 2021 in the context of the same measurements for 488 YNP springs derived from previous studies. Paired points for CP are colored based on the year they were recorded (averaged for multiple measurements/year as described above). End member fluid compositions as described in the manuscript text are indicated based on the abbreviations: MO meteoric only, HO hydrothermal only, MG meteoric plus gas, HB hydrothermal plus boiling, HBG hydrothermal plus boiling plus gas. Points for 2016, 2018, 2019, 2020, and 2021 are indicated by “16”, “18”, “19”, “20”, and “21”, respectively.Full size imageThe source of fluids in YNP hot springs can be broadly defined by concentrations of sulfate (SO42−) and chloride (Cl−)2,7. These indicators have been previously used to define the source of YNP springs as either (1) hydrothermal only (HO) waters that have moderate concentrations of SO42− (~30 mg L−1 depending on the depth of boiling; described below) but high concentrations of Cl− (~300 mg L−1), (2) meteoric-only (MO) waters containing lower concentrations of both solutes, or (3) MO waters infused with gas (MG) that have lower Cl− concentrations and higher SO42− concentrations (Fig. 1c). Subsequent boiling and/or evaporation of HO waters can concentrate Cl− and SO42− to higher concentrations (termed hydrothermal plus boiling; HB), while additional gas input into HO or HB waters can lead to particularly high concentrations of both Cl− and SO42− (hydrothermal + boiling + gas; HBG)7 (Fig. 1c). Geochemical data from surveys spanning 1947 to 2018 suggest that CP was largely sourced by hydrothermal (HO) waters that have undergone boiling and/or evaporation (HB) during this time frame (Fig. 1c).HO and HB waters are typically circumneutral7, while CP (which is also sourced by HB waters) has maintained a moderately acidic pH of ~4 until autumn 2018 (Fig. 1b). Several other low pH HB waters have been previously observed within the NGB7. The moderately acidic pH in CP (prior to 2018) has been attributed to the hydrolysis of molten S° that occurs at depths of >18 m that leads to the formation of S2O32– 11. Oxygen (O2)-dependent oxidation of S2O32−, catalyzed by trace iron sulfide in the cinders, forms SxO62− that can then react with sulfide to yield S2O32− and S° 11. Alternatively, SxO62− can be disproportionated to form S2O32− and SO42− 11. The relative rates of these reactions in CP prior to 2018 are not known although similar concentrations of S2O32− measured between 1995 and 1997 suggest that rates of S° hydrolysis and rates of S2O32− formation have been relatively constant over yearly time scales11. The consumption of O2 by reaction with S2O32− and the consumption of sulfide involving reactions with SxO62− would limit the amount of sulfuric acid that could be formed, thereby maintaining a less acidic pH than other sulfuric acid buffered acidic springs in YNP7.Between November 2018 and March 2019, the pH of CP markedly decreased to 2.8 in 2019, 2.7 in 2020, and 2.6 in 2021. This coincided with a marked increase in SO42− concentrations of ~3–5 fold above historical ranges (Fig. 1b), while Cl− concentrations fluctuated without clear trends during this time (Supplementary Fig. 1c). Thus, CP transitioned from an HB water type to an HBG water type between autumn 2018 and spring 2019 and has remained this way since (Fig. 1c). This is interpreted to reflect a substantial increase in H2S/S° oxidation that results in the formation of SO42− and H+ (sulfuric acid). Several observations suggest a fundamental restructuring of CP’s unique sulfur cycling due to dramatic physical and chemical changes at this time. As described in more detail below, the molten S° layer was detected at a depth of 18 m in 2016. However, in 2020 and 2021 there was no evidence of molten S° at ~18 to 20 m depth as previously documented, and sampling equipment could be freely dropped to a depth of 22 m (length of the cable) without interruption. In the absence of the molten S° at depth, the S° hydrolysis product S2O32−, and the cinders that catalyze SxO62− formation from S2O32− and H2S, it is possible that such reactions that previously competed for H2S or O2 (i.e., those involving S2O32− and SxO62−) are no longer taking place in CP. This in turn would allow for sulfur compounds (H2S and S°) to now be oxidized, thereby contributing to spring acidification.Alternative scenarios underlying the dramatic changes in CP waters also warrant consideration, and the three most logical are presented below. First, it is possible that the waters sourcing CP may have shifted either via replacement of the primary source or by altered mixing of multiple water sources. Water isotope values (δ2H and δ18O) can be used to further deconvolute the sources of hydrothermal waters because distinctive isotope values are associated with distinct water sources and the various influences upon them including meteoric water recharge, boiling (and/or evaporation), and water–rock interactions7,29. The water isotope values measured among the measured depths in CP in 2020 were near the range of water isotope values observed in CP across multiple months in 201613 (depth-resolved water isotope measurements were not made in 2016). The 2020 CP water isotope values were slightly right-shifted relative to those of 2016, suggesting a minor increase in the evaporation and concentration of CP water isotopes between 2016 and 20207 (Supplementary Fig. 2). These data thus do not support the hypothesis that the source of waters in CP dramatically shifted between 2016 and 2020, consistent with the SO42− and Cl− measurements indicating that the primary change to CP waters was increased input or availability of H2S for oxidation.A second alternative explanation is that a change in the water level of CP could potentially alter residence times which could allow for more oxidation of sulfur compounds in the spring and increased acidification. Such a scenario would also likely result in increased evaporation and concentration of solutes. However, the minimal increase in water isotope values (Supplementary Fig. 2) and similar Cl− concentrations (Supplementary Fig. 1c) accompanying a ~3–5 fold increase in SO42− concentration pre- and post-acidification (Fig. 1b) argue that increased residence time was of minimal importance in acidification.A third possible explanation is that a change in the plumbing system of CP is now delivering more vapor phase gas that contributes H2S and acidity when oxidized. Such a scenario could be consistent with increased surface deformation, subsurface gas accumulation, and seismic activity that has been taking place near NGB just prior to these changes21, and the transition from HB-type to HBG-type waters in CP. Sulfur species isotope analyses would help deconvolute the sources of SO42− in CP, but samples for sulfur isotopic analyses were not collected prior to acidification. Thus, it is unclear if this process may also be contributing to the acidification of CP. Regardless, the disappearance of the molten S° cap either by consumption or displacement would in effect make H2S more available for oxidation, similar to increased vapor phase input. The acidification of hot springs involves the oxidation of H2S by O230. More specifically, partial oxidation of H2S at acidic pH (90% amino acid identity to other homologs from UYS MAGs), but that was only present on unbinned contig sequences. Proteins are grouped based on their functionalities and associations in complexes. TetH (tetrathionate hydrolase), SQO sulfide:quinone oxidoreductase, SOR sulfur oxygenase reductase, SoxABCD Sulfolobus oxidase, SoxM Sulfolobus oxidase, CbsAB cytochrome b 558/566, SoxLN cytochrome ba complex, DoxBCE Desulfurolobus oxidase, DoxAD/TQOab Desulfurolobus oxidase/thiosulfate-quinone oxidoreductase, HdrAB1C1B2C2 (heterodisulfide reductase), DsrE3 DsrE3 sulfurtransferase, Dld dihydrolipoamide dehydrogenase, LplA lipoate-protein ligase A, LbpA lipoate binding protein A/glycine cleavage system H protein, TusA tRNA 2-thiouridine synthesizing protein A, SreABC sulfur reductase, SAOR sulfite:acceptor oxidoreductase, HcaLS [NiFe]-hydrogenase group 1 g. SoxEFGHI and FoxABCDEFGH (ferrous iron oxidation) gene sets were also investigated, but not identified in any of the MAGs and not shown here for brevity. A complete description of the enzymes/proteins found in individual UYS MAGs is provided in Supplementary Data 4.Full size imageTo assess the potential role of the UYS in sulfur biogeochemical cycling, the metabolic functional potentials of these populations were evaluated in greater detail based on their reconstructed genomes (Fig. 5, Supplementary Data 3). The UYS encoded the capacity for autotrophy via full complements of enzymes involved in the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP-4HB) (Supplementary Data 4), consistent with the general potential for autotrophy in most other Sulfolobales36. Consistently, the SoxM subunit that has been suggested as a marker for (facultatively) heterotrophic growth of Sulfolobales37 was absent in all UYS MAGs (Fig. 5, Supplementary Data 4). Given that all known Acidilobus and Vulcanisaeta spp. are characterized heterotrophs without known autotrophic capacity38,39, the UYS are likely the sole primary producers in the CP surface and subsurface waters, consistent with their considerable dominance in CP water communities over time.Also consistent with almost all other Sulfolobales36, the UYS universally encode the ability to reduce O2 via terminal cytochrome oxidases, although not via Sulfolobus oxidase (SoxABCD) complexes that are common among many Sulfolobales36 but rather via Desulfurolobus oxidase complexes (DoxBCE) (Fig. 5, Supplementary Data 4). An additional terminal oxidase complex (CbsAB-SoxLN) was encoded in the 2020 CP MAGs along with several other UYS MAGs from other YNP springs, although homologs of CbsAB-SoxLN were not present in the 2016 CP MAGs or several others recovered from sediments of other hot springs (Fig. 5). Thus, a potentially important metabolic difference between the pre- and post-acidification (2016 and 2020, respectively) CP Sulfolobales was the ability to use different terminal cytochrome oxidase compliments for aerobic respiration. The capacity to use multiple terminal oxidases has been suggested as an adaptation to varying oxygen tensions/availabilities37,40 that likely substantively differed between the low ORP 2016 CP waters and the high ORP 2020 CP waters (Fig. 2c). Consequently, these data point to the ecological succession of UYS strains within CP that are, at least in part, related to strain-level differences in aerobic respiration capacities.A defining feature of most cultured Sulfolobales is the ability to grow chemolithoautotrophically by coupling the oxidation of sulfur compounds (e.g., S0) to aerobic respiration37. The slow kinetics associated with abiotic oxidation of S0 with O2 at temperatures More

  • in

    Seasonal bacterial niche structures and chemolithoautotrophic ecotypes in a North Atlantic fjord

    Cloern, J. E., Foster, S. Q. & Kleckner, A. E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11, 2477–2501 (2014).ADS 
    Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science (80-) 281, 237–240 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: A continental scale review of climate-driven species redistribution in marine systems. Glob. Chang. Biol. 685, 171–181 (2021).
    Google Scholar 
    Scanes, E., Scanes, P. R. & Ross, P. M. Climate change rapidly warms and acidifies Australian estuaries. Nat. Commun. 11, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    Rodrigues, J. G. et al. Marine and coastal cultural ecosystem services: knowledge gaps and research priorities. One Ecosyst. 2 (2017).O’Brien, T. D., Lorenzoni, L., Isensee, K. & Valdés, L. What are marine ecological time series telling us about the ocean. A status report. IOC Tech. Ser. 129, 1–297 (2017).
    Google Scholar 
    Ajani, P. A., Davies, C. H., Eriksen, R. S. & Richardson, A. J. Global warming impacts micro-phytoplankton at a long-term Pacific Ocean Coastal Station. Front. Mar. Sci. 7, 878 (2020).Article 

    Google Scholar 
    Wiltshire, K. H. et al. Helgoland roads, North Sea: 45 years of change. Estuaries Coasts 33, 295–310 (2010).CAS 
    Article 

    Google Scholar 
    Benway, H. M. et al. Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications. Front. Mar. Sci. 6, 393 (2019).Article 

    Google Scholar 
    Wilson, J. M., Chamberlain, E. J., Erazo, N., Carter, M. L. & Bowman, J. S. Recurrent microbial community types driven by nearshore and seasonal processes in coastal Southern California. Environ. Microbiol. 23, 3225 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28, 538–551 (1976).ADS 
    CAS 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 
    Article 

    Google Scholar 
    Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Brown, M. V. et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Sci. Data 5, 180130 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buttigieg, P. L. et al. Marine microbes in 4D—Using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 43, 169–185 (2018).PubMed 
    Article 

    Google Scholar 
    Chow, C.-E.T. et al. Temporal variability and coherence of euphotic zone bacterial communities over a decade in the southern California Bight. ISME J. 7, 2259–2273 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krabberød, A. K. et al. Long-term patterns of an interconnected core marine microbiota. bioRxiv 2021.03.18.435965. https://doi.org/10.1101/2021.03.18.435965 (2021).Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).PubMed 
    Article 

    Google Scholar 
    Auladell, A. et al. Seasonal niche differentiation among closely related marine bacteria. ISME J. https://doi.org/10.1038/s41396-021-01053-2 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robicheau, B. M., Tolman, J., Bertrand, E. M. & LaRoche, J. Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic. ISME Commun. 2(1), 1–12 (2022).Article 

    Google Scholar 
    Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015).ADS 
    Article 

    Google Scholar 
    Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 1–11 (2017).Article 
    CAS 

    Google Scholar 
    Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science (80-). 325, 747–750 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh, D. A. et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science (80-). 326, 578–582 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Shan, S., Sheng, J., Thompson, K. R. & Greenberg, D. A. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model. Ocean Dyn. 61, 951–976 (2011).ADS 
    Article 

    Google Scholar 
    Petrie, B. & Yeats, P. Simple models of the circulation, dissolved metals, suspended solids and nutrients in Halifax Harbour. Water Qual. Res. J. 25, 325–350 (1990).CAS 
    Article 

    Google Scholar 
    WK, W. L. The State of Phytoplankton and Bacterioplankton at the Compass Buoy Station: Bedford Basin Monitoring Program 1992–2013. (Fisheries and Oceans Canada = Pêches et Océans Canada, 2014).Haas, S. et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc. Natl. Acad. Sci. 118, e2004877118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084-1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity?. Ecology 82, 2381–2396 (2001).Article 

    Google Scholar 
    Pernthaler, J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ. Microbiol. 19, 2133–2150 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science (80-) 336, 608–611 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wietz, M. et al. The polar night shift: Annual dynamics and drivers of microbial community structure in the Arctic Ocean. bioRxiv 2021.04.08.436999. https://doi.org/10.1101/2021.04.08.436999 (2021).Ladau, J. et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 7, 1669–1677 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science (80-). 348, 1261359 (2015).Article 
    CAS 

    Google Scholar 
    Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).PubMed 
    Article 

    Google Scholar 
    Raes, E. J. et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc. Natl. Acad. Sci. 115, E8266–E8275 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. 105, 7774–7778 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raes, E. J., Bodrossy, L., van de Kamp, J., Bissett, A. & Waite, A. M. Marine bacterial richness increases towards higher latitudes in the eastern Indian Ocean. Limnol. Oceanogr. Lett. 3, 10–19 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. The vegan package. Commun. Ecol. Packag. 10, 719 (2007).
    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. 115, E6799–E6807 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    El-Swais, H., Dunn, K. A., Bielawski, J. P., Li, W. K. W. & Walsh, D. A. Seasonal assemblages and short-lived blooms in coastal north-west A tlantic O cean bacterioplankton. Environ. Microbiol. 17, 3642–3661 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raes, E. J. et al. Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat. Commun. 12, 2213 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. 105, 17861–17866 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wong, H. L., MacLeod, F. I., White, R. A., Visscher, P. T. & Burns, B. P. Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome 8, 1–14 (2020).Article 
    CAS 

    Google Scholar 
    De Cáceres, M. How to use the indicspecies package (ver. 1.7.1). R Proj. 2, 29 (2013).
    Google Scholar 
    Hood, R. R. et al. Pelagic functional group modeling: Progress, challenges and prospects. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 459–512 (2006).ADS 
    Article 

    Google Scholar 
    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 1–9 (2020).CAS 
    Article 

    Google Scholar 
    Lynam, C. P. et al. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. 114, 1952–1957 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, Z. et al. Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. ISME J. 14, 3136–3148 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dede, B. et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 16(6), 1479–1490 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lavik, G. et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581–584 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science (80-) 333, 1296–1300 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Taguchi, S. & Platt, T. Assimilation of 14CO2 in the dark compared to phytoplankton production in a small coastal inlet. Estuar. Coast. Mar. Sci. 5, 679–684 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Platt, T. & Irwin, B. Phytoplankton Production and Nutrients in Bedford Basin, 1969–1970. (1971).Vega, S. et al. Morphological plasticity in a sulfur-oxidizing marine bacterium from the SUP05 clade enhances dark carbon fixation. MBio 10, e00216-e219 (2021).
    Google Scholar 
    Mattes, T. E., Ingalls, A. E., Burke, S. & Morris, R. M. Metabolic flexibility of SUP05 under low DO growth conditions. Environ. Microbiol. 23, 2823 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation. Proc. Natl. Acad. Sci. 103, 12552–12557 (2006).Zorz, J. et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front. Microbiol. 10, 281 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2, e00127 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).PubMed 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2, 191–16 (2017).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lahti L. & Shetty, S.A. Tools for Microbiome Analysis in R. Microbiome Package Version 1.7.21. R/Bioconductor http://microbiome.github.com/microbiome. (2017).Team, R. C. R: A Language and Environment for Statistical Computing. (2013).Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Schlitzer, R. Ocean Data View. 2018. Available odv. awi. (2015).Hijmans, R. J., Williams, E., Vennes, C. & Hijmans, M. R. J. Package ‘geosphere’. in Spherical Trigonometry. Vol. 1 (2017).Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Groemping, U. & Matthias, L. Package ‘relaimpo’. (2021).Clarke, K. R. & Gorley, R. N. Primer. Prim. Plymouth (2006).Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13, 79–90 (2002).Article 

    Google Scholar 
    Tichy, L. & Chytry, M. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 17, 809–818 (2006).Article 

    Google Scholar  More

  • in

    The effect of time regime in noise exposure on the auditory system and behavioural stress in the zebrafish

    Test animals and husbandryWild type adult zebrafish (AB line) were initially obtained from China Zebrafish Resource Center (CZRC, China) and reared at the zebrafish facility of the University of Saint Joseph, Macao. Fish were maintained in 10 L tanks in a standalone housing system (model AAB-074-AA-A, Yakos 65, Taiwan) with filtered and aerated water (pH balanced 7–8; 400–550 μS conductivity) at 28 ± 1 °C and under a 12:12 light: dark cycle. Animals were fed twice daily with live artemia and dry powder food (Zeigler, PA, USA). The fish used in this study were 6–8 months old, both males and females (1:1), with a total length of 2.2–3.1 cm. The total number of specimens tested was 30 for the auditory sensitivity measurements and inner ear morphological analysis (6 fish per experimental group), and 78 for the Novel Tank Diving assay (15-18 fish per group).All experimental procedures complied with the ethical guidelines regarding animal research and welfare enforced at the Institute of Science and Environment, University of Saint Joseph, and approved by the Division of Animal Control and Inspection of the Civic and Municipal Affairs Bureau of Macao (IACM), license AL017/DICV/SIS/2016. This study was conducted in compliance with the ARRIVE guidelines60.Noise treatmentsPrior to acoustic treatments, all subjects were transferred to 4 L isolation glass tanks that were placed in a quiet lab environment (Sound Pressure Level, SPL: ranging between 103 and 108 dB re 1 μPa) for a minimum of 7 days. These tanks had no filtering system but were subject to frequent water changes, and the light, temperature and water quality were kept similar to the stock conditions. This adaptation period was important to reduce potential effects of noise conditions from the zebrafish housing system.After this period, groups of six zebrafish were transferred into separate acoustic treatment glass tanks (dimensions: 59 cm length × 29 cm width × 47 cm height; 70 L)—Fig. 1 Supplementary, where they remained 24 h in acclimation. Each tank was equipped with an underwater speaker (UW30, Electro-Voice, MN, USA) housed between two styrofoam boards (dimensions: 3 cm thick × 29 cm width × 47 cm height) with a hole in the centre, positioned vertically in one side of the tank. Another similar sized board was positioned in the opposite side of the tank and fine sand was placed in the bottom to minimize transmission of playback vibrations into the tank walls. Each treatment tank was mounted on top of styrofoam boards placed over two granite plates spaced by rubber pads to reduce non-controlled vibrations.Four acoustic treatment tanks were prepared for this study to be used alternately between trials and cleaning procedures, but only two were used simultaneously. When two tanks were being used, one contained specimens under acclimation and the other fish under a specific acoustic treatment. The tanks were housed in a custom-made rack and placed at least 1 m apart to minimize acoustic interferences. The tanks were used randomly for the different treatments across the various trials.The speakers were connected to audio amplifiers (ST-50, Ai Shang Ke, China) that were connected to laptops running Adobe Audition 3.0 for windows (Adobe Systems Inc., USA). After the acclimation period, specimens were exposed to white noise playbacks (bandwidth: 100–3000 Hz) at 150 dB re 1 µPa for 24 h, starting in the morning between 10 and 11 a.m. The bandwidth adopted covered the best hearing range of zebrafish27, as well as the frequency range of most anthropogenic noise sources, such as pile driving and vessels2.Sound recordings and SPL measurements were made with a hydrophone (Brüel & Kjær type 8104, Naerum, Denmark; frequency range: 0.1 Hz–120 kHz, sensitivity of − 205 dB re 1 V/μPa) connected to a hand-held sound level meter (Brüel & Kjær type 2270). Noise level was adjusted with the speaker amplifier so that the intended amplitude (LZS, RMS sound level obtained with slow time and linear frequency weightings: 6.3 Hz–20 kHz) was achieved at the centre of the tanks before each treatment. A variation in SPL of ±10 dB was registered in the closest and farthest points (in relation to the speaker). The sound spectra of the noise treatments were relatively flat similar to the setup described in a prior study by Breitzler et al.27.Moreover, the acoustic treatments were calibrated with a tri-axial accelerometer (M20-040, frequency range 1–3 kHz, GeoSpectrum Technologies, NS, Canada) with the acoustic centre placed in the middle of the tank. The sound playback generated was about 120 dB re 1 m/s2, with most energy in the horizontal axis perpendicular to the speaker, which was verified based on previously described methods using a MATLAB script paPAM16.In this study four sound treatments were used with varying temporal patterns similar to Sabet et al.18—Fig. 1: continuous noise (CN); intermittent regular noise with a fast pulse rate—1 s pulses interspersed with 1 s silence (IN1,1); intermittent regular noise with a slow pulse rate—1 s pulses interspersed with 4 s silence (IN1,4) and intermittent random noise—1 s pulses interspersed with 1, 2, 3, 4, 5, 6 or 7 s silent intervals in randomized sequence (RN1,7) leading to a mean interval of 4 s. All intermittent patterns had 5 ms ramps to fade in and fade out pulses for smooth transitions. In the “control” treatment tank, the amplifier connected to the speaker was switched on but without playback.After each treatment, two specimens were tested for audiometry, two were tested with the NTD assay and another two were euthanized and dissected for inner ear morphological analysis.Auditory sensitivity measurementsAuditory Evoked Potential (AEP) recordings were conducted immediately after noise treatments. The AEP recording technique adopted followed previously described procedures27. The recordings were conducted in a rectangular plastic tank (50 cm length × 35 cm width × 23 cm height) equipped with an underwater speaker (UW30) positioned in the bottom and surrounded by fine sand. A custom-built sound stimulation system with enhanced performance at lower frequencies ( More

  • in

    Effect of temperature on the life cycle of Harmonia axyridis (Pallas), and its predation rate on the Spodoptera litura (Fabricius) eggs

    Ahmad, M., Saleem, M. A. & Sayyed, A. H. Efficacy of insecticide mixtures against pyrethroid-and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest. Manag. Sci. 65, 266–274 (2009).CAS 

    Google Scholar 
    Shekhawat, S. S., Shafiq, A. M. & Basri, M. Effect of host plants on life table parameters of Spodoptera litura. Ind. J. Pure Appl. Biosci. 6, 324–332 (2018).
    Google Scholar 
    Sang, S. et al. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Manag. Sci. 72, 922–928 (2016).CAS 
    PubMed 

    Google Scholar 
    Ortega, D. S., Bacca, T., Silva, A. P. N., Canal, N. A. & Haddi, K. Control failure and insecticides resistance in populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) from Colombia. J. Stored Prod. Res. 92, 101802 (2021).CAS 

    Google Scholar 
    Li, L. Pest biological control: Goals throughout my life. Annu. Rev. Entomol. 67, 1–10 (2022).PubMed 

    Google Scholar 
    Razaq, M., Shah, F. M., Ahmad, S. & Afzal, M. in Pest management for agronomic crops. Agronomic Crops (ed. Hasanuzzaman M.) 365–384 (Springer, 2019).Shah, F. M. & Razaq, M. in From agriculture to sustainable agriculture: Prospects for improving pest management in industrial revolution 4.0. Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 4.0. Cham. (ed. Cham) 1–18 (Springer, 2020).Razaq, M. & Shah, F. M. in Biopesticides for management of arthropod pests and weeds. Biopesticides. Biopesticides Voulme 2: Advances in Bioinoculants 7–18 (Elsevier, 2022).Kishinevsky, M., Keasar, T. & Bar-Massada, A. Parasitoid abundance on plants: Effects of host abundance, plant species, and plant flowering state. Arthropod-Plant Interact. 11, 155–161 (2017).
    Google Scholar 
    Islam, Y. et al. Age-stage, two-sex life table and predation parameters of Harmonia axyridis Pallas (Coleoptera: Coccinellidae), reared on Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), at four different temperatures. Crop Prot. 2, 106029 (2022).
    Google Scholar 
    Furlong, M. J. & Zalucki, M. P. Climate change and biological control: The consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 20, 39–44 (2017).PubMed 

    Google Scholar 
    Islam, Y. et al. Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: The effect of temperature. Sci. Rep. 11, 1–13 (2021).
    Google Scholar 
    Keva, O. et al. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs. Glo. Change Bio. 27, 282–296 (2021).ADS 
    CAS 

    Google Scholar 
    Chi, H. et al. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 40, 103–124 (2020).
    Google Scholar 
    Guedes, C. Preferência alimentar e estratégias de alimentação em Coccinellidae (Coleoptera). Oecol. Aust. 17, 59–80 (2013).
    Google Scholar 
    Hodek, I. & Honêk, A. Ecology of coccinellidae. Vol. 54 464 (Kulver Academic Publisher, 2013).Sutherland, A. M. & Parrella, M. P. Mycophagy in Coccinellidae: Review and synthesis. Biol. Control 51, 284–293 (2009).
    Google Scholar 
    Hagen, K. & Ks, H. The significance of predaceous Coccinellidae in biological and integrated control of insects. Entomophaga 7, 25–44 (1974).
    Google Scholar 
    Jawad, D. S., Rashid, Y. D. & Hamzah, A. G. in IOP Conference Series: Earth and Environmental Science. 012029 (IOP Publishing).Kumari, S., Suroshe, S. S., Kumar, D., Budhlakoti, N. & Yana, V. Foraging behaviour of Scymnus coccivora Ayyar against cotton mealybug Phenacoccus solenopsis Tinsley. Saudi J. Biol. Sci. 28, 3799–3805 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Alloush, A. A. Developmental duration and predation rate of the coccidophagous coccinellid Rhyzobius lophanthae (Blaisdell) (Coleoptera: Coccinellidae) on Aspidiotus nerii Bouche. Bull. Entomol. Res. 109, 612–616 (2019).PubMed 

    Google Scholar 
    Koch, R., Hutchison, W., Venette, R. & Heimpel, G. Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 28, 265–270 (2003).
    Google Scholar 
    Islam, Y., Shah, F. M., Güncan, A., DeLong, J. P. & Zhou, X. Functional response of Harmonia axyridis to the larvae of Spodoptera litura: The combined effect of temperatures and prey instars. Front. Plant Sci. 13, 849574 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Dixon, A. F. G. & Dixon, A. E. Insect predator-prey dynamics: ladybird beetles and biological control. (Cambridge University Press, 2000).Thompson, S. Nutrition and culture of entomophagous insects. Annu. Rev. Entomol. 44, 561–592 (1999).CAS 
    PubMed 

    Google Scholar 
    Chaudhary, D. D., Kumar, B. & Mishra, G. Functional response in Coccinellid beetles (Coleoptera: Coccinellidae) is modified by prey-density experience. Can. Entomol. 154, 55068 (2022).
    Google Scholar 
    Castro, C., Almeida, L. & Penteado, S. The impact of temperature on biological aspects and life table of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Fla. Entomol. 94, 923–932 (2011).
    Google Scholar 
    Noman, Q. M., Shah, F. M., Mahmood, K. & Razaq, M. Population dynamics of Tephritid fruit flies in citrus and mango orchards of Multan, Southern Punjab, Pakistan. Pakistan J. Zool. 54, 325–330 (2021).
    Google Scholar 
    Eliopoulos, P. & Stathas, G. Life tables of Habrobracon hebetor (Hymenoptera: Braconidae) parasitizing Anagasta kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae): Effect of host density. J. Econ. Entomol. 101, 982–988 (2008).CAS 
    PubMed 

    Google Scholar 
    Yu, J.-Z., Chi, H. & Chen, B.-H. Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Biol. Control 64, 1–9 (2013).
    Google Scholar 
    Roy, H. E. & Ten Brown, P. M. years of invasion: Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae) in Britain. Ecol. Entomol. 40, 336–348 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, R. The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J. Insect. Sci. 3, 5689 (2003).
    Google Scholar 
    de Castro-Guedes, C. F., de Almeida, L. M., do Rocio, C. P. S. & Moura, M. O. Effect of different diets on biology, reproductive variables and life and fertility tables of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae). Rev. Bras. Entomol. 60, 260–266 (2016).
    Google Scholar 
    Abdel-Salam, A. & Abdel-Baky, N. Life table and biological studies of Harmonia axyridis Pallas (Col., Coccinellidae) reared on the grain moth eggs of Sitotroga cerealella Olivier (Lep., Gelechiidae). J. Appl. Entomol. 125, 455–462 (2001).
    Google Scholar 
    Islam, Y. et al. Temperature-dependent functional response of Harmonia axyridis (Coleoptera: Coccinellidae) on the eggs of Spodoptera litura (Lepidoptera: Noctuidae) in laboratory. Insects 11, 583 (2020).PubMed Central 

    Google Scholar 
    Di, N. et al. Predatory ability of Harmonia axyridis (Coleoptera: Coccinellidae) and Orius sauteri (Hemiptera: Anthocoridae) for suppression of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 12, 1063 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Saljoqi, A.-U.-R., Khan, J. & Ali, G. Rearing of Spodoptera litura (Fabricius) on different artificial diets and its parasitization with Trichogramma chilonis (Ishii). Pak. J. Zool. 47, 1104 (2015).
    Google Scholar 
    Brown, P. M. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): Distribution, dispersal and routes of invasion. Biocontrol 56, 623–641 (2011).
    Google Scholar 
    Chi, H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Available from http://140.120.197.173/ecology/Download/TWOSEX-MSChart-B100000.rar. (2022).Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).
    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24, 225–240 (1985).
    Google Scholar 
    Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).MathSciNet 

    Google Scholar 
    Chi, H. & Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35, 10–21 (2006).
    Google Scholar 
    Tuan, S.J., Lee, C.C., Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014a).CAS 
    PubMed 

    Google Scholar 
    Tuan, S.J., Lee, C.C., Chi, H. Erratum: Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 1936 (2014b).CAS 

    Google Scholar 
    Chi, H. & Yang, T.-C. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer)(Homoptera: Aphididae). Environ. Entomol. 32, 327–333 (2003).
    Google Scholar 
    Chi, H. CONSUME-MSChart: a computer program for consumption rate analysis based on the age stage, two-sex life table analysis. http://140.120.197.173/ecology/Download/CONSUME-MSChart.rar. (2022).Akca, I., Ayvaz, T., Yazici, E., Smith, C. L. & Chi, H. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. J. Econ. Entomol. 108, 1466–1478 (2015).PubMed 

    Google Scholar 
    Akköprü, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378–387 (2015).
    Google Scholar 
    Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).
    Google Scholar 
    Wei, M. et al. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. J. Econ. Entomol. 113, 2343–2353 (2020).PubMed 

    Google Scholar 
    Huang, H.-W., Chi, H. & Smith, C. L. Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 111, 1–9 (2018).PubMed 

    Google Scholar 
    Chi, H.Timing of control based on the stage structure of pest populations: a simulation approach. J. Econ. Entomol. 83,
    1143–1150 (1990).
    Google Scholar 
    Chi, H. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. (http://140.120.197.173/Ecology/Download/TIMING-MSChart.rar). (2022).Mignault, M.-P., Roy, M. & Brodeur, J. Soybean aphid predators in Quebec and the suitability of Aphis glycines as prey for three Coccinellidae. BioControl 51, 89–106 (2006).
    Google Scholar 
    Brown, M. Intraguild responses of aphid predators on apple to the invasion of an exotic species, Harmonia axyridis. BioControl 48, 141–153 (2003).
    Google Scholar 
    Pervez, A., Chandra, S. & Kumar, R. Effect of dietary history on intraguild predation and cannibalism of ladybirds’ eggs. Int. J. Trop. Insect Sci. 41, 2637–2642 (2021).
    Google Scholar 
    Lundgren, J. G. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol. Control 51, 294–305 (2009).
    Google Scholar 
    Yu, J.Z. et al. Demography and mass-rearing Harmonia dimidiata (Coleoptera: Coccinellidae) using Aphis gossypii (Hemiptera: Aphididae) and eggs of Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 111, 595–602 (2018).PubMed 

    Google Scholar 
    De Oliveira, R. T., dos Santos-Cividanes, T. M., Cividanes, F. J. & da Conceic, L. Harmonia axyridis Pallas (Coleoptera: Coccinellidae): Biological aspects and thermal requirements. Adv. Entomol. 2014, 5589 (2014).
    Google Scholar 
    Ali, S. et al. Using a two-sex life table tool to calculate the fitness of Orius strigicollis as a predator of Pectinophora gossypiella. Insects 11, 275 (2020).PubMed Central 

    Google Scholar 
    Merene, Y. Population dynamics and damages of onion thrips (Thripstabaci)(Thysanoptera: Thripidae) on onion in Northeastern Ethiopia. J. Entomol. Nematol. 7, 1–4 (2015).
    Google Scholar 
    Mou, D. F., Lee, C. C., Smith, C. & Chi, H. Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiata (Coleoptera: Coccinellidae). J. Appl. Entomol. 139, 579–591 (2015).
    Google Scholar 
    Farhadi, R., Allahyari, H. & Chi, H. Life table and predation capacity of Hippodamia variegata (Coleoptera: Coccinellidae) feeding on Aphis fabae (Hemiptera: Aphididae). Biol. Control 59, 83–89 (2011).
    Google Scholar 
    Hance, T., van Baaren, J., Vernon, P. & Boivin, G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 52, 107–126 (2007).CAS 
    PubMed 

    Google Scholar 
    Ma, X., Zhu, J., Yan, W. & Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 781, 146777 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar  More