More stories

  • in

    The Holocene temperature conundrum answered by mollusk records from East Asia

    Jiang, D. B., Lang, X. M., Tian, Z. P. & Wang, T. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations. J. Clim. 25, 4135–4153 (2012).ADS 
    Article 

    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11300 years. Science 339, 1198–1201 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marsicek, J., Shuman, B., Bartlein, P., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Affolter, S., Huselmann, A., Fleitmann, D., Edwards, R. L. & Leuenberger, M. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, J., Lachniet, M., Chervyatsova, O., Asmerom, Y. & Polyak, V. J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 10, 430–435 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Mann, M., Schmidt, G., Miller, S. & LeGrande, A. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. 36, L05708 (2009).ADS 
    Article 

    Google Scholar 
    Liu, T. S. Loess and the Environment (In Chinese). (China Ocean Press, Beijing, 1985).Rousseau, D. D. & Wu, N. Q. A new molluscan record of the monsoon variability over the past 130 000 yr in the Luochuan loess sequence, China. Geology 25, 275–278 (1997).ADS 
    Article 

    Google Scholar 
    Wu, N. Q., Li, F. J. & Rousseau, D. D. Terrestrial mollusk records from Chinese loess sequences and changes in the East Asian monsoonal environment. J. Asian Earth Sci. 155, 35–48 (2018).ADS 
    Article 

    Google Scholar 
    Qian, L. Q. Climate of Loess Plateau (in Chinese). (China Meteorological Press, Beijing, 1991).Chen, D. & Gao, J. Economic Fauna Sinica of China: Terrestrial Mollusca (in Chinese). (Science Press, Beijing, 1987).Proćków, M., Drvotová, M., Juřičková, L. & Kuźnik-Kowalska, E. Field and laboratory studies on the life-cycle, growth and feeding preference in the hairy snail Trochulus hispidus (L., 1758) (Gastropoda: Pulmonata: Hygromiidae). Biologia 68, 131–141 (2013).Article 

    Google Scholar 
    Rousseau, D. Climatic transfer function from Quaternary molluscs in European loess deposits. Quat. Res. 36, 195–209 (1991).Article 

    Google Scholar 
    Rousseau, D., Preece, R. & Limondin-Lozouet, N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology 26, 651–654 (1998).ADS 
    Article 

    Google Scholar 
    Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Lin, X. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B 278, 2122–2132 (2011).PubMed 
    Article 

    Google Scholar 
    Gu, Z. Y., Liu, Z. X., Xu, B. & Wu, N. Q. Stable carbon and oxygen isotopes in land snail carbonate shells from a last glacial loess sequence and their implications of environmental changes (in Chinese). Quat. Sci. 29, 13–22 (2009).CAS 

    Google Scholar 
    Sun, X. H., Gu, Z. Y. & Xu, B. Oxygen isotopic variations in the shells collected monthly from a live species of land snails at local in Zhenjiang, Jiangsu Province, China (in Chinese). Quat. Sci. 29, 976–980 (2009).CAS 

    Google Scholar 
    Huang, L., Wu, N., Gu, Z. & Chen, X. Variability of snail growing season at the Chinese Loess Plateau during the last 75 ka. Chin. Sci. Bull. 57, 1036–1045 (2012).CAS 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quat. Sci. Rev. 269, 107147 (2021).Article 

    Google Scholar 
    Horsák, M. Mollusc assemblages in palaeoecological reconstructions: an investigation of their predictive power using transfer function models. Boreas 40, 459–467 (2011).Article 

    Google Scholar 
    Sümegi, P. & Gulyás, S. Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.‘s “A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin”. Earth-Sci. Rev. 221, 103675 (2021).Samartin, S. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Seppä, H., Birks, H., Odland, A., Poska, A. & Veski, S. A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J. Biogeogr. 31, 251–267 (2004).Article 

    Google Scholar 
    Allen, J. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Rioual, P. et al. High-resolution record of climate stability in France during the last interglacial period. Nature 413, 293–296 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lu, H. et al. Seasonal climatic variation recorded by phytolith assemblages from Baoji loess sequence in central China over the last 150000 a. Sci. China, Ser. D. 26, 629–639 (1996).
    Google Scholar 
    Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).ADS 
    Article 

    Google Scholar 
    Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 26, 759–772 (2007).ADS 
    Article 

    Google Scholar 
    Sun, J. M., Diao, G. Y., Wen, Q. Z. & Zhou, H. Y. A preliminary study on quantitative estimate of Palaeoclimate by using geochemical transfer function in the Loess Plateau (In Chinese). Geochimica 28, 265–272 (1999).CAS 

    Google Scholar 
    Wen, R. et al. Pollen–climate transfer functions intended for temperate eastern Asia. Quat. Int. 311, 3–11 (2013).Article 

    Google Scholar 
    Xu, Q., Xiao, J., Li, Y., Tian, F. & Nakagawa, T. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai lake area, inner Mongolia, China. J. Clim. 23, 2856–2868 (2010).ADS 
    Article 

    Google Scholar 
    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).Article 

    Google Scholar 
    Nakagawa, T., Tarasov, P. E., Nishida, K., Gotanda, K. & Yasuda, Y. Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra. Quat. Sci. Rev. 21, 2099–2113 (2002).ADS 
    Article 

    Google Scholar 
    Chen, M.-T. et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years. Geophys. Res. Lett. 37, L23603 (2010).ADS 

    Google Scholar 
    Sun, Y., Oppo, D. W., Xiang, R., Liu, W. & Gao, S. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, PA4005 (2005).ADS 
    Article 

    Google Scholar 
    de Garidel-Thoron, T. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, PA3204 (2007).ADS 

    Google Scholar 
    Chen, F., Duan, Y. & Hou, J. An 88 ka temperature record from a subtropical lake on the southeastern margin of the Tibetan Plateau (third pole): new insights and future perspectives. Sci. Bull. 66, 1056–1057 (2021).Article 

    Google Scholar 
    James, R. P. & Arguez, A. On the estimation of daily climatological temperature variance. J. Atmos. Ocean. Tech. 32, 2297–2304 (2015).Article 

    Google Scholar 
    Mearns, L. O., Rosenzweig, C. & Goldberg, R. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Climatic Change 35, 367–396 (1997).Article 

    Google Scholar 
    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).ADS 
    MATH 
    Article 

    Google Scholar 
    Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E. & Skinner, C. B. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci. Adv. 8, eabj6535 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambert, F. et al. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 3, 487–491 (2013).ADS 
    Article 

    Google Scholar 
    Xu, Y., Wang, H., Liao, H. & Jiang, D. Simulation of the direct radiative effect of mineral dust aerosol on the climate at the last glacial maximum. J. Clim. 24, 843–858 (2011).ADS 
    Article 

    Google Scholar 
    Wohlfahrt, J., Harrison, S. P. & Braconnot, P. Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Clim. Dynam. 22, 223–238 (2004).ADS 
    Article 

    Google Scholar 
    Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Clim. Past 1, 1–7 (2005).Article 

    Google Scholar 
    Braconnot, P., Joussaume, S., Marti, O. & de Noblet, N. Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett. 26, 2481–2484 (1999).ADS 
    Article 

    Google Scholar 
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS 
    Article 

    Google Scholar 
    Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E1–E3 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, F. J. et al. Quantitative distribution and calculation of ecological amplitude of land snail Metodontia in the Chinese Loess Plateau and adjacent regions (In Chinese with English abstract). Quat. Sci. 36, 564–574 (2016).
    Google Scholar 
    Dong, Y. J. et al. Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Sci. Total Environ. 676, 206–214 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quat. Sci. Rev. 248, 106579 (2020).Article 

    Google Scholar 
    Cameron, R. A. D. & Pokryszko, B. M. Estimating the species richness and composition of land mollusc communities: Problems, consequences and practical advice. J. Conchol. 38, 529–547 (2005).
    Google Scholar 
    Dong, Y., Wu, N., Li, F., Huang, L. & Wen, W. Time-transgressive nature of the magnetic susceptibility record across the Chinese Loess Plateau at the Pleistocene/Holocene transition. PLoS One 10, e0133541 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). (Microcomputer Power, New York, 2002).Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0). (Microcomputer Power, New York, 2012).Ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).Article 

    Google Scholar 
    Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P. Tracking Environmental Change Using Lake Sediments Volume 5: Data Handling and Numerical Techniques. p. 123–141. (Springer, London, 2012).Ter Braak, C. J. F. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1, 127–140 (1994).Article 

    Google Scholar 
    Juggins, S. C2 data analysis (version 1.7.4). (Newcastle University, Newcastle, 2011).Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-21 http://cran.r-project.org/package=rioja (2017).Simpson, G. L. & Oksanen, J. Analogue: Analogue matching and Modern Analogue. Technique Transfer Function Models. R package version 0.17-4 https://cran.r-project.org/package=analogue (2020).Telford, R. J. palaeoSig: Significance Tests of Quantitative Palaeoenvironmental Reconstructions. R package version 2.0-3 http://cran.r-project.org/package=palaeoSig (2019).Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olonscheck, D., Schurer, A. P., Lücke, L. & Hegerl, G. C. Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun. 12, 7237 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y., Ren, G., Kang, H. & Sun, X. A significant bias of Tmax and Tmin average temperature and its trend. J. Appl. Meteorol. Clim. 58, 2235–2246 (2019).ADS 
    Article 

    Google Scholar 
    Parey, S., Dacunha-Castelle, D. & Hoang, T. T. H. Mean and variance evolutions of the hot and cold temperatures in Europe. Clim. Dyn. 34, 345–359 (2010).Article 

    Google Scholar 
    Dong, Y. SeaTemCon_R code for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426798 (2022).Article 

    Google Scholar 
    Dong, Y. Data repository for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426911 (2022).Article 

    Google Scholar  More

  • in

    Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages

    Wang C, Wang S. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol. 2017;62:73–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol. 2015;132:1–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA Entomopathogenic fungi: new insights into host-pathogen interactions. Advances in Genetics. 2016. Elsevier Ltd.Lu HL, St. Leger RJ. Insect immunity to entomopathogenic fungi. Adv Genet. 2016;94:251–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan S, Tao X, Huang S, Chen S, Xu A. Comparative immune systems in animals. Annu Rev Anim Biosci. 2014;2:235–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 2015;32:904–36.PubMed 
    Article 

    Google Scholar 
    Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol. 2014;28:341–55.Article 

    Google Scholar 
    Scarborough CL, Ferrari J, Godfray HC. Aphid protected from pathogen. Science 2005;310:1781.CAS 
    PubMed 
    Article 

    Google Scholar 
    Łukasik P, van Asch M, Guo H, Ferrari J, Charles H. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett. 2013;16:214–8.PubMed 
    Article 

    Google Scholar 
    Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun. 2017;8:15172.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun. 2018;9:2478.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol. 2005;15:475–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol. 2010;6:261–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaltenpoth M, Goettler W, Koehler S, Strohm E. Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol. 2010;24:463–77.Article 

    Google Scholar 
    Wang X, Yang X, Zhou F, Tian ZQ, Cheng J, Michaud JP, et al. Symbiotic bacteria on the cuticle protect the oriental fruit moth Grapholita molesta from fungal infection. Biol Control. 2022;169:104895.CAS 
    Article 

    Google Scholar 
    Wang L, Feng Y, Tian J, Xiang M, Sun J, Ding J, et al. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J. 2015;9:1793–801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie CR, Stuart AE. Weeding and grooming of pathogens in agriculture by ants. Proc R Soc B Biol Sci. 2001;268:1033–9.CAS 
    Article 

    Google Scholar 
    Currie CR, Scottt JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999;398:701–4.CAS 
    Article 

    Google Scholar 
    Currie CR, Bot ANM, Boomsma JJ. Experimental evidence of a tripartite mutualism: Bacteria protect ant fungus gardens from specialized parasites. Oikos 2003;101:91–102.Article 

    Google Scholar 
    Um S, Fraimout A, Sapountzis P, Oh D-CC, Poulsen M. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep. 2013;3:3250.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grubbs KJ, Surup F, Biedermann PHW, McDonald BR, Klassen JL, Carlson CM, et al. Cycloheximide-producing streptomyces associated with xyleborinus saxesenii and xyleborus affinis fungus-farming ambrosia beetles. Front Microbiol. 2020;11:1–12.Article 

    Google Scholar 
    Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep. 2009;26:338–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Arnam EB, Currie CR, Clardy J. Defense contracts: Molecular protection in insect-microbe symbioses. Chem Soc Rev. 2018;47:1638–51.PubMed 
    Article 

    Google Scholar 
    Beemelmanns C, Guo H, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein J Org Chem. 2016;12:314–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lackner G, Peters EE, Helfrich EJN, Piel J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci USA. 2017;114:E347–E356.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA. 2011;108:1955–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaltenpoth M, Strupat K, Svatoš A. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016;10:527–31.PubMed 
    Article 

    Google Scholar 
    Geier B, Sogin EM, Michellod D, Janda M, Kompauer M, Spengler B, et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat Microbiol. 2020;5:498–510.CAS 
    PubMed 
    Article 

    Google Scholar 
    De Roode JC, Lefèvre T. Behavioral immunity in insects. Insects 2012;3:789–820.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kerwin AH, Gromek SM, Suria AM, Samples RM, Deoss DJ, O’Donnell K, et al. Shielding the next generation: Symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. mBio. 2019;10:e02376-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M, et al. Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol. 2008;22:864–71.Article 

    Google Scholar 
    Bunker ME, Elliott G, Martin MO, Arnold AE, Weiss SL. Vertically transmitted microbiome protects eggs from fungal infection and egg failure. Anim Microbiome. 2021;3:43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nyholm SV. In the beginning: Egg-microbe interactions and consequences for animal hosts: Egg microbiomes in animals. Philos Trans R Soc B Biol Sci. 2020;375:20190593.CAS 
    Article 

    Google Scholar 
    Smith DFQ, Dragotakes Q, Kulkarni M, Hardwick M, Casadevall A, Microbiology M, et al. Melanization is an important antifungal defense mechanism in Galleria mellonella hosts. bioRxiv 2022.04.02.486843.Yokoi K, Hayakawa Y, Kato D, Minakuchi C, Tanaka T, Ochiai M, et al. Prophenoloxidase genes and antimicrobial host defense of the model beetle, Tribolium castaneum. J Invertebr Pathol. 2015;132:190–200.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang J, Huang W, Yuan C, Lu Y, Yang B, Wang CY, et al. Prophenoloxidase-mediated ex vivo immunity to delay fungal infection after insect ecdysis. Front Immunol. 2017;8:1–14.
    Google Scholar 
    Zhang J, Lu A, Kong L, Zhang Q, Ling E. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem. 2014;289:35891–906.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soluk DA. Postmolt susceptibility of ephemerella larvae to predatory stoneflies: constraints on defensive armour. Oikos 1990;58:336.Article 

    Google Scholar 
    Kanyile SN, Engl T, Kaltenpoth M. Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle. J Exp Biol. 2022;225:1–9.Article 

    Google Scholar 
    Flórez LV, Kaltenpoth M. Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia. Environ Microbiol. 2017;19:3674–88.PubMed 
    Article 
    CAS 

    Google Scholar 
    Uberti A, Smaniotto MA, Giacobbo CL, Lovatto M, Lugaresi A, Girardi GC. Novo inseto praga na cultura do pessegueiro: biologia de Lagria villosa Fabricius, 1783 (Coleoptera: Tenebrionidae) alimentados com pêssego. Sci Electron Arch. 2017;10:72–76.
    Google Scholar 
    Stammer HJ. Die Symbiose der Lagriiden (Coleoptera). Z für Morphol und Ökologie der Tiere. 1929;15:1–34.Article 

    Google Scholar 
    Boucias DG, Pendland JC Principles of Insect Pathology. 1998. Springer Science + Business Media, LLC, New York.Garcia MA, Pierozzi IJ. Aspectos da biologia e ecologia de Lagria villosa Fabricius, 1781 (Coleoptera, Lagriidae). Rev Bras Biol. 1982;42:415–20.
    Google Scholar 
    Vega FE, Posada F, Catherine Aime M, Pava-Ripoll M, Infante F, Rehner SA. Entomopathogenic fungal endophytes. Biol Control. 2008;46:72–82.Article 

    Google Scholar 
    Kabaluk JT, Ericsson JD. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J. 2007;99:1377–81.Article 

    Google Scholar 
    Hallouti A, Ait Hamza M, Zahidi A, Ait Hammou R, Bouharroud R, Ait Ben Aoumar A, et al. Diversity of entomopathogenic fungi associated with Mediterranean fruit fly (Ceratitis capitata (Diptera: Tephritidae)) in Moroccan Argan forests and nearby area: impact of soil factors on their distribution. BMC Ecol. 2020;20:1–13.Article 
    CAS 

    Google Scholar 
    Iwanicki NS, Pereira AA, Botelho ABRZ, Rezende JM, Moral RDA, Zucchi MI, et al. Monitoring of the field application of Metarhizium anisopliae in Brazil revealed high molecular diversity of Metarhizium spp in insects, soil and sugarcane roots. Sci Rep. 2019;9:1–12.CAS 
    Article 

    Google Scholar 
    Roberts DW, St. Leger RJ. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Adv Appl Microbiol. 2004;54:1–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. Transmission of bacterial symbionts with and without genome erosion between a beetle host and the plant environment. Front Microbiol. 2021;12:715601.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gillespie JP, Bailey AM, Cobb B, Vilcinskas A. Fungi as elicitors of insect immune responses. Arch Insect Biochem Physiol. 2000;44:49–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Urquiza A, Keyhani NO. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013;4:357–74.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grizanova EV, Coates CJ, Dubovskiy IM, Butt TM. Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella. Virulence 2019;10:999–1012.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eaton WD, Love DC, Botelho C, Meyers TR, Imamura K, Koeneman T. Preliminary results on the seasonality and life cycle of the parasitic dinoflagellate causing bitter crab disease in Alaskan Tanner crabs (Chionoecetes bairdi). J Invertebr Pathol. 1991;57:426–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Field RH, Chapman CJ, Taylor AC, Neil DM, Vickerman K. Infection of the Norway lobster Nephrops norvegicus by a Hematodinium-like species of dinoflagellate on the west coast of Scotland. Dis Aquat Organ. 1992;13:1–15.Article 

    Google Scholar 
    Threlkeld ST, Chiavelli DA, Willey RL. The organization of zooplankton epibiont communities. Trends Ecol Evol. 1993;8:317–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duneau D, Ebert D. The role of moulting in parasite defence. Proc R Soc B Biol Sci. 2012;279:3049–54.Article 

    Google Scholar 
    Vandenberg JD, Ramos M, Altre JA. Dose-Response and Age- and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae). Environ Entomol. 1998;27:1017–21.Article 

    Google Scholar 
    Vey A, Fargues J. Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineta larvae during ecdysis. J Invertebr Pathol. 1977;30:207–15.Article 

    Google Scholar 
    Reynolds SE, Samuels RI. Physiology and biochemistry of insect moulting fluid. Adv Insect Phys. 1996;26:157–232.CAS 
    Article 

    Google Scholar 
    Lopanik NB. Chemical defensive symbioses in the marine environment. Funct Ecol. 2014;28:328–40.Article 

    Google Scholar 
    Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA. 2009;106:17805–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 2006;311:81–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li H, Sosa-Calvo J, Horn HA, Pupo MT, Clardy J, Rabeling C, et al. Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants. Proc Natl Acad Sci USA. 2018;115:10720–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaltenpoth M, Roeser-Mueller K, Koehler S, Peterson A, Nechitaylo TY, Stubblefield JW, et al. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc Natl Acad Sci. 2014;111:6359–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engl T, Kroiss J, Kai M, Nechitaylo TY, Svatoš A, Kaltenpoth M. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc Natl Acad Sci USA. 2018;115:E2020–E2029.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gil-Turnes MS, Hay ME, Fenical W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 1989;246:116–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gil-Turnes MS, Fenical W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull. 1992;182:105–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffmann KH Insect Molecular Biology and Ecology. 2015. CRC Press.Eisner T, Morgan RC, Attygalle AB, Smedley SR, Herath KB, Meinwald J. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J Exp Biol. 1997;200:2493–2500.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio. 2020;11:e02430-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, et al. Insect‐associated bacteria assemble the antifungal butenolide gladiofungin by non‐canonical polyketide chain termination. Angew Chem. 2020;132:23322–6.Article 

    Google Scholar 
    Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. Unexpected bacterial origin of the antibiotic icosalide: two-tailed depsipeptide assembly in multifarious Burkholderia symbionts. ACS Chem Biol. 2018;13:2414–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 
    CAS 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 2014;42:643–8.Article 
    CAS 

    Google Scholar 
    Weiss B, Kaltenpoth M. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae). Front Microbiol. 2016;7:1–10.Article 

    Google Scholar 
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paschke C, Leisner A, Hester A, Maass K, Guenther S, Bouschen W, et al. Mirion – A software package for automatic processing of mass spectrometric images. J Am Soc Mass Spectrom. 2013;24:1296–306.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Efficient carbon and nitrogen transfer from marine diatom aggregates to colonizing bacterial groups

    Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142. https://doi.org/10.1038/359139a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. A 36, 159–171. https://doi.org/10.1016/0198-0149(89)90131-3 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Jackson, G. A. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. A 37, 1197–1211. https://doi.org/10.1016/0198-0149(90)90038-w (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323. https://doi.org/10.1357/0022240943077145 (1994).Article 

    Google Scholar 
    Jackson, G. Coagulation Theory and Models of Oceanic Plankton Aggregation (CRC Press, 2005).
    Google Scholar 
    Grossart, H. P., Kiorboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: Growth and interactions. Appl. Environ. Microb. 69, 3500–3509. https://doi.org/10.1128/aem.69.6.3500-3509.2003 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiorboe, T., Tang, K., Grossart, H. P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: Colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047. https://doi.org/10.1128/AEM.69.6.3036 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: Carbon cycling in the northeast pacific. Deep Sea Res. A 34, 267–285. https://doi.org/10.1016/0198-0149(87)90086-0 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Buesseler, K. O. et al. VERTIGO (vertical transport in the global ocean): A study of particle sources and flux attenuation in the North Pacific. Deep Sea Res. II 55, 1522–1539. https://doi.org/10.1016/j.dsr2.2008.04.024 (2008).ADS 
    Article 

    Google Scholar 
    Grossart, H. P., Tang, K. W., Kiorboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol. Lett. 266, 194–200. https://doi.org/10.1111/j.1574-6968.2006.00520.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinez, J., Smith, D. C., Steward, G. F. & Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10, 223–230. https://doi.org/10.3354/ame010223 (1996).Article 

    Google Scholar 
    Kellogg, C. T. E. et al. Evidence for microbial attenuation of particle flux in the Amundsen Gulf and Beaufort Sea: Elevated hydrolytic enzyme activity on sinking aggregates. Polar Biol. 34, 2007–2023. https://doi.org/10.1007/s00300-011-1015-0 (2011).Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599. https://doi.org/10.1038/nrmicro2386 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiao, N. & Zheng, Q. The microbial carbon pump: From genes to ecosystems. Appl. Environ. Microbiol. 77, 7439–7444. https://doi.org/10.1128/AEM.05640-11 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698. https://doi.org/10.1038/nrmicro3326 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl. Acad. Sci. USA 113, 1576–1581. https://doi.org/10.1073/pnas.1512307113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Secchi, E. et al. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat. Commun. 11, 2851. https://doi.org/10.1038/s41467-020-16620-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore Western Mediterranean Waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microb. 65, 514–522 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. USA 115, E6799–E6807. https://doi.org/10.1073/pnas.1802470115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rieck, A., Herlemann, D. P., Jurgens, K. & Grossart, H. P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297. https://doi.org/10.3389/fmicb.2015.01297 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziervogel, K., Steen, A. D. & Arnosti, C. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences 7, 1007–1015. https://doi.org/10.5194/bg-7-1007-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. USA 105, 4209–4214. https://doi.org/10.1073/pnas.0709765105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopez-Perez, M. et al. Genomes of surface isolates of Alteromonas macleodii: The life of a widespread marine opportunistic copiotroph. Sci. Rep. 2, 696. https://doi.org/10.1038/srep00696 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471. https://doi.org/10.1128/AEM.02570-14 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bachmann, J. et al. Environmental drivers of free-living vs particle-attached bacterial community composition in the mauritania upwelling system. Front. Microbiol. 9, 2836. https://doi.org/10.3389/fmicb.2018.02836 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100. https://doi.org/10.1016/s0168-6496(01)00206-9 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M. et al. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ. Microbiol. 17, 3500–3514. https://doi.org/10.1111/1462-2920.12466 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 4354. https://doi.org/10.1126/sciadv.aaz4354 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708. https://doi.org/10.1038/s41396-020-00880-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11. https://doi.org/10.3354/meps179001 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475. https://doi.org/10.4319/lo.2000.45.7.1467 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl. Acad. Sci. USA 116, 23309–23316. https://doi.org/10.1073/pnas.1908512116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277. https://doi.org/10.4319/lo.2001.46.2.0267 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965. https://doi.org/10.1038/ncomms11965 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiorboe, T., Grossart, H. P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006. https://doi.org/10.1128/AEM.68.8.3996-4006.2002 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaqué, D., Duarte, C. M. & Marrasé, C. Influence of algal population dynamics on phytoplankton colonization by bacteria: Evidence from two diatom species. Mar. Ecol. Prog. Ser. 65, 201–203. https://doi.org/10.3354/meps065201 (1990).ADS 
    Article 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Bacterial production and growth efficiencies: Direct measurements on riverine aggregates. Limnol. Oceanogr. 45, 436–445. https://doi.org/10.4319/lo.2000.45.2.0436 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Duhamel, S. et al. Growth and specific P-uptake rates of bacterial and phytoplanktonic communities in the Southeast Pacific (BIOSOPE cruise). Biogeosciences 4, 941–956. https://doi.org/10.5194/bg-4-941-2007 (2007).ADS 
    Article 

    Google Scholar 
    Kirchman, D. L. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8, 285–309. https://doi.org/10.1146/annurev-marine-122414-033938 (2016).ADS 
    Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: Bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527. https://doi.org/10.3389/fmars.2020.00527 (2020).Article 

    Google Scholar 
    Thomas, T. et al. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS ONE 3, e3252. https://doi.org/10.1371/journal.pone.0003252 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varbanets, L. D. et al. The black sea bacteria-producers of hydrolytic enzymes. Mikrobiol. Z. 73, 9–15 (2011).CAS 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ. Microbiol. 14, 2348–2360. https://doi.org/10.1111/j.1462-2920.2012.02787.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gram, L., Grossart, H. P., Schlingloff, A. & Kiorboe, T. Possible quorum sensing in marine snow bacteria: Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 68, 4111–4116. https://doi.org/10.1128/AEM.68.8.4111 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N. et al. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396. https://doi.org/10.1111/1462-2920.14954 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sarmento, H., Morana, C. & Gasol, J. M. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J 10, 2582–2592. https://doi.org/10.1038/ismej.2016.66 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H. P. & Simon, M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15, 127–140. https://doi.org/10.3354/ame015127 (1998).Article 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318. https://doi.org/10.4319/lo.2001.46.6.1309 (2001).ADS 
    Article 

    Google Scholar 
    Chakraborty, S. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat. Commun. 12, 4085. https://doi.org/10.1038/s41467-021-23875-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hygum, B. H., Petersen, J. W. & Søndergaard, M. Dissolved organic carbon released by zooplankton grazing activity-a high-quality substrate pool for bacteria. J. Plankton Res. 19, 97–111. https://doi.org/10.1093/plankt/19.1.97 (1997).CAS 
    Article 

    Google Scholar 
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812. https://doi.org/10.1038/nrmicro1750 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 2569. https://doi.org/10.3389/fmicb.2018.02569 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N., Weber, P. K., Alonso-Saez, L., Moran, X. A. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 11, 641–650. https://doi.org/10.1038/ismej.2016.156 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worrich, A. et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun. 8(1), 15472. https://doi.org/10.1038/ncomms15472 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624. https://doi.org/10.5194/bg-7-2613-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193. https://doi.org/10.4319/lo.2009.54.1.0182 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Schneider, B., Schlitzer, R., Fischer, G. & Nöthig, E.-M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002gb001871 (2003).Article 

    Google Scholar 
    Jannasch, H. W. & Wirsen, C. O. Microbial activities in undecompressed and decompressed deep-seawater samples. Appl. Environ. Microbiol. 43, 1116–1124. https://doi.org/10.1128/AEM.43.5.1116-1124.1982 (1982).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000m water column in the NW Mediterranean. Deep Sea Res. II(49), 2109–2123. https://doi.org/10.1016/s0967-0645(02)00030-9 (2002).ADS 
    Article 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates: Potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085. https://doi.org/10.5194/bg-10-4073-2013 (2013).ADS 
    Article 

    Google Scholar 
    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms I Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990).CAS 
    Article 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 11 (1999).Article 

    Google Scholar 
    Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Manz, W., Amann, R., Vancanneyt, M., Schleifer, K.-H. & Ludwig, W. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106. https://doi.org/10.1099/13500872-142-5-1097 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. https://doi.org/10.1128/mr.59.1.143-169.1995 (1995).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925. https://doi.org/10.1128/AEM.56.6.1919-1925.1990 (1990).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA 105, 17861–17866. https://doi.org/10.1073/pnas.0809329105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polerecky, L. et al. Look@NanoSIMS: A tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023. https://doi.org/10.1111/j.1462-2920.2011.02681.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Musat, N. et al. The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst. Appl. Microbiol. 37, 267–276. https://doi.org/10.1016/j.syapm.2014.02.002 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: Magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15264 (2020).Article 
    PubMed 

    Google Scholar  More

  • in

    Long-term blast control in high eating quality rice using multilines

    The top-brand nonglutinous rice variety ‘Koshihikari’, which has a high palatability, is extremely susceptible to blast. Therefore, farmers apply fungicides over four times during the rice production season. As Koshihikari is sold by the Niigata brand, it has been traditionally viewed as having a high eating quality in Japan, and because of this, both farmers and consumers have requested that the multiline variety KO-BL be tested to determine if it is equivalent to Koshihikari before its introduction. Trials comparing Koshihikari and KO-BL were carried out in 2003 and 2004 in 594 and 622 fields covering 236 and 315 ha, respectively. These trials evaluated plant homogeneity, eating quality, and blast suppression using fewer fungicidal sprays. Following favorable results, in 2005, all Koshihikari were converted to KO-BL multiline variety covering an area of 94,000 ha. In addition, seed use and cultivation were restricted to the Niigata area to distinguish KO-BL from Koshihikari grown in other prefectures.Seed production and mixture processes are managed with precision by each prefectural official member (Fig. 1a). Original isogenic lines (ILs) were separately produced from the original stock in the original strain fields by the Niigata prefectural government. Using a precise mixture machine, the mixture of four ILs was then blended by weight in 2000 kg volumes, all multiplied by ten (giving a total volume of 20 t). Original production fields and commercial fields all used blended seeds that had been authorized by seed production farmers and commercial farmers in the 2003 and 2004 trials. Thus, it takes two years for seed production at the original strain field followed by the original production field for the preparation of commercial fields; thus, the seed mixture composition needs to be determined at least two years before introduction. Susceptible and resistant (effective) ILs were mixed at a ratio of 3:7 from 2005 to 2019 (Fig. 1b, Supplementary Table S1). Susceptible ILs, possessing Pia and Pii genes, were always mixed at a ratio of 1:2, but the composition of resistant ILs, containing Pita-2, Piz, Pib, Piz-t, and Pit genes, was changed every two to three years to avoid the breakdown of resistance6. These changes were determined by annually monitoring blast race distributions.Figure 1Representative seed production flow from original stock to commercial field and history of Koshihikari BL composition from 2005 to 2019 in Niigata Prefecture. (a) S1–S2, susceptible KO-BL; R1-R2, resistant KO-BL. Seeds obtained from original stock field at the Niigata Agricultural Research Institute. Seeds obtained from the original strain field and the original production field at both designated farmers’ fields. Commercial field (general farmers field) used for KO-BL production. Each field requires a year for seed production. (b) Pia and Pii, susceptible; Pita-2, Piz, Pib, Piz-t, and Pit, resistant. The proportion of susceptible KO-BLs and resistant KO-BLs was consistently 3:7 across years.Full size imageIn Niigata Prefecture, the predominant 5 blast races distributed from 1994 to 2004 were 001.0 (virulent to Koshihikari [Pik-s]), 003.0 (virulent to Pik-s and Pia), 005.0 (virulent to Pik-s and Pii), 007.0 (virulent to Pik-s, Pia, and Pii), and 037.1 (virulent to Pik-s, Pia, Pii, and Pik) (Fig. 2a, Supplementary Table S2). Because all the 5 races were virulent to Koshihikari, which had been widely cultivated in Niigata area during the years, there were no drastic race changes. In addition, genetic variations in blast resistance indicated that Koshihikari also harbored the Pish gene, and that the Pia, Pii, and Pik genes were also dominant in the Hokuriku region, including Niigata Prefecture21. Virulent blast races against the resistance genes Pish, Pia, Pii, Pi3, Pi5(t), Pik, Pik-s, and Pi19(t) were dominantly distributed in Niigata Prefecture22. These reports confirmed that Koshihikari had been susceptible to dominant blast races before KO-BL introduction.Figure 2Blast race change during the 1994–2019 period in Niigata Prefecture and the worst-case simulation of blast race dynamics in KO-BL during the 2005–2019 (years 1–15) period. Races and virulences are shown in Table 1. (a) A red line indicates the year (2005) when KO-BL was introduced. Races 007.0 and 037.1 became dominant after the introduction. (b) Actual races and their rates in 2004 and annual KO-BL compositions from 2005 to 2019 were set in the simulation. Parameters set in the simulation were as follows: maximum lesion number in a year, 10,000,000; weather condition, 10 (favorable); virulent mutation rate, 10–5; overwintering probability, 0.01; number of simulated years, 15; and number of simulation trials, 1000. The 1000 trial results for the lesion number increase in each race were averaged in each year and transformed into rates to show race dynamics. All simulation results are shown in Supplementary Table 6 in Supplementary information 2. The races 007.0 and 037.1 were also dominant until year 15 (correspond to 2019). Both actual and simulated race dynamics showed no outbreaks of the resistant composition of KO-BL.Full size imageIn the 2005 release year of KO-BL, the predominant blast races, 001.0 (virulent to Pik-s) and 003.0 (virulent to Pik-s and Pia), drastically decreased in distribution from 41.8% to 22.3% and 27.6% to 17.3%, respectively (Fig. 2a, Supplementary Table S2). Interestingly, races 001.0 and 003.0 rapidly decreased by 5.4% and 1.3% in 2006, respectively, even though especially Pia, which can be infected by the race 003.0, was used in the KO-BL composition. Because all ILs in the composition of KO-BL were resistant to race 001.0, and race 003.0 was only virulent to Pia, which made up 10% of the annual KO-BL composition (Table 1). In contrast, races 007.0 (virulent to Pik-s, Pia, and Pii) and 037.1 (virulent to Pik-s, Pia, Pii, and Pik) dominated from 2005 to 2019. The higher rate of race 007.0 detection was affected by 30% of the ILs composing the annual KO-BL were susceptible. The second highest rate of race 037.1 detection was affected by a number of factors: the high susceptibility of a minor cultivar that had Pii and Pik, the mosaic configuration of fields typical in Niigata, and the air-borne spread of race 037.1. To maintain consensus on KO-BL cultivation based on total blast suppression in Niigata, rarely detected races virulent to resistant ILs in commercial fields are strictly supervised by the prefectural government to avoid unnecessary confusion in Niigata residents.Table 1 Susceptible or resistant reaction of Koshihikari and KO-BL against blast races.Full size tableIn 2008, to mathematically support KO-BL composition changes, we developed a simulation software to estimate long-term blast race dynamics in multilines using a plant‒pathogen coevolution system23. The model calculated the persistence of resistant ILs to determine the optimal timing of changes to multiline variety compositions. To simulate race dynamics in KO-BL, we set five currently investigated races, 001.0 (virulent to Pik-s), 003.0 (virulent to Pik-s and Pia), 005.0 (virulent to Pik-s and Pii), 007.0 (virulent to Pik-s, Pia, and Pii), and 037.1 (virulent to Pik-s, Pia, Pii, and Pik), and their rates in 2004, as well as five emerging races, 043.0 (virulent to Pik-s, Pia, and Piz), 303.0 (virulent to Pik-s, Pia, and Pita-2), 003.2 (virulent to Pik-s, Pia, and Pib), 403.0 (virulent to Pik-s, Pia, and Piz-t), and 003.4 (virulent to Pik-s, Pia, and Pit) (see Fig. 2b, Supplementary Table S3) against five newly introduced respective resistant KO-BLs (see Fig. 1b, Supplementary Table S1) and the annual KO-BL compositions from 2005 to 2019. The worst case (severe epidemic) simulation result (Fig. 2b, Supplementary Tables S3 and S6) showed that race 007.0 (virulent to susceptible Pik-s, Pia and Pii) became the predominant race (77.4%), and race 037.1 (virulent to Pik-s, Pia, Pii, and Pik) remained at a low frequency (21.6%) until the fifteenth year (corresponding to 2019). In addition, super-race virulent to all KO-BLs did not emerge in this simulation. These suppression of outbreaks of newly emerged virulent races, including super-race on resistant KO-BL was apparently affected by 2–3 years of change in resistant KO-BL composition, and total suppression of blast occurrence decreasing the blast population. These results indicated that almost all the epidemics analyzed reflected actual race dynamics without affecting other minor races from other susceptible cultivars grown in Niigata, especially up to 2011. Thus, our decision support system provides an evaluation of KO-BL persistence and indicates the KO-BL composition changes needed for blast race population control in large areas. In addition, our simulation model may be useful for evaluating future KO-BL composition changes.Blast occurrence drastically decreased after 2005 (Fig. 3a, Supplementary Table S4). The average occurrence of leaf and panicle blast was 46.1% and 52.9% during the 1995–2004 period and 9.5% and 9.6% during the 2005–2019 period, respectively. This resulted in a blast suppression effect by 70% of the resistant composition in KO-BL. Current seed production fields are rarely contaminated with virulent races against resistant KO-BLs. This suggests that seed sanitation contributes to the suppression of virulent pathogen epidemics in multilines. In addition, induced resistance24,25 may have no effect on the practical use of multilines. Rice plants were found to induce a resistance response when inoculated with avirulent races of blast (those that stimulate protective responses to virulent race attacks). As the detection of several races in one area is rare and blast occurrence tends to be low, conditions that induce resistance in field situations do not occur. Fungicide applications to control blast in KO-BL and other minor cultivars decreased by approximately one-third during the 2005–2019 period compared with 2004 (Fig. 3b, Supplementary Table S5). Thus, the commercial scale use of crop diversity is clearly effective for the environmentally friendly control of airborne diseases.Figure 3Leaf and panicle blast occurrence from 1994 to 2019 and blast control area from 2004 to 2019 in Niigata Prefecture. (a) A red line indicates the year (2005) when KO-BL was introduced. (b) Gross fungicide spray area decreased by approximately one-third during the 2005–2019 period compared with 2004.Full size imageThe optimum long-term solution for pathogen population control using genetic diversity includes multilines. Blast occurrence in KO-BL introduced in Niigata, and the theoretical value of blast suppression in KO-BL tested at small scales, were reduced by approximately 10% compared to that of monoculture plots26,27,28. Thirty percent of susceptible ILs in KO-BL have the potential to improve compatible races with susceptible ILs and become predominant in large areas. This would contribute to the suppression of rapid increases in new virulent races emerging in the blast population. To maintain consensus on KO-BL cultivation based on total blast suppression in Niigata, rarely detected races virulent to resistant KO-BLs in commercial fields are strictly monitored by the prefectural government. Educating Niigata farmers ensures the long-term use of KO-BL. In fact, lower blast occurrence has been attributed to careful KO-BL cultivation and seed management.The implementation of genetically diversified homogeneous seed mixtures, rotations with resistant KO-BL, restricted KO-BL cultivation, and pathogen monitoring allowed rice quality to be maintained, diseases to be suppressed, and environmentally sound agriculture to be economically viable in Niigata. Collaboration among prefectural officers, farmers, and consumers in Niigata has resulted in safer rice production with good agricultural practices (GAPs) that meet sustainable development goals (SDGs). In addition, DNA tests differentiate KO-BL from the original Koshihikari for buyers, thereby prohibiting illegal distribution. Multiline varieties have been used in small areas in two different prefectures. For example, in Miyagi pref., Sasanishiki BL consisted of Pik, Pik-m, and Piz at ratios of 4:3:3 and 3:3:4 in 1995 and 1996, respectively. This composition was changed to Pik, Pik-m, Piz, and Piz-t at a ratio of 1:1:4:4 from 1997 to 2007 to prevent an increase in race 037.1 (virulent to the BL: Pik and Pik-m). In addition, an equal mixture of seven BLs (Pib, Pik, Pik-m, Piz, Piz-t, Pita, and Pita-2) was cultivated in 300 ha areas (maximum 4000 ha) from 2008 to 2014 without any outbreaks observed. In Toyama pref., the Koshihikari Toyama BL, which consists of resistant ILs, Pita-2, Pib, and Pik-p at a ratio of 4:4:2, was cultivated in an area of 300 ha and required a 50% reduction in chemical inputs from 2003 up to the present. Our model also calculated a greater than 50-year persistence in terms of the small area effect in both prefectural cases. This result depends on an insufficient pathogen population increase in virulent mutations against resistant ILs (data not shown). In this way, the practical use of a multiline provides control without the need for as much fungicide with or without a periodic change in IL composition. Our results demonstrate that the management of crop and pathogen coevolution can control diseases at large scales and, thereby, contribute to global food security. More

  • in

    The shrunk genetic diversity of coral populations in North-Central Patagonia calls for management and conservation plans for marine resources

    Försterra, G. et al. Animal forests in the Chilean fiord region: Discoveries and perspectives in shallow and deep waters. In Marine Animal Forests. Orejas Saco del Valle (eds Rossi, S. et al.) 1–35 (Springer, 2016). https://doi.org/10.1007/978-3-319-17001-5_3-1.Chapter 

    Google Scholar 
    Castilla, J. C. et al. (eds) Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Iriarte, J. L. et al. Oceanographic Processes in Chilean Fjords of Patagonia: From small to large-scale studies. Prog. Oceanogr. 129, 1–7. https://doi.org/10.1016/j.pocean.2014.10.004 (2014).ADS 
    Article 

    Google Scholar 
    Iriarte, J. L. Natural and human influences on marine processes in Patagonian Subantarctic coastal waters. Front. Mar. Sci. 5, 360. https://doi.org/10.3389/fmars.2018.00360 (2018).Article 

    Google Scholar 
    Strub, P. T. et al. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 172, 159–198. https://doi.org/10.1016/j.pocean.2019.01.004 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Häussermann, V. et al. Macrobentos de fondos duros de la Patagonia chilena: Énfasis en la conservación de bosques sublitorales de invertebrados y algas. In Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (eds Castilla, J. C. et al.) (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Kol, P. H. Los Riesgos de la Expansión Salmonera en la Patagonia Chilena. Estado de la Salmonicultura Intensiva en la Región de Magallanes (AIDA, 2018).Iversen, A. et al. Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture 522, 735089. https://doi.org/10.1016/j.aquaculture.2020.735089 (2020).Article 

    Google Scholar 
    Cárdenas-Retamal, R. et al. Impact assessment of salmon farming on income distribution in remote coastal areas: The Chilean case. Food Policy 101, 102078. https://doi.org/10.1016/j.foodpol.2021.102078 (2021).Article 

    Google Scholar 
    Chavez, C. et al. Main issues and challenges for sustainable development of salmon farming in Chile: A socio-economic perspective. Rev. Aquac. 11, 403–421. https://doi.org/10.1111/raq.12338 (2019).Article 

    Google Scholar 
    Quiñones, R. A. et al. Environmental issues in Chilean salmon farming: A review. Rev. Aquac. 11, 375–402. https://doi.org/10.1111/raq.12337 (2019).Article 

    Google Scholar 
    Mardones, J. I. et al. Disentangling the environmental processes responsible for the world’s largest farmed fish-killing harmful algal bloom: Chile, 2016. Sci. Total Environ. 76, 1–19. https://doi.org/10.1016/j.scitotenv.2020.144383 (2021).CAS 
    Article 

    Google Scholar 
    Navedo, J. G. et al. Upraising a silent pollution: Antibiotic resistance at coastal environments and transference to long-distance migratory shorebirds. Sci. Total Environ. 777, 1–7. https://doi.org/10.1016/j.scitotenv.2021.146004 (2021).CAS 
    Article 

    Google Scholar 
    SUBPESCA. Listado de concesiones de acuicultura d salmónidos por agrupación de concesiones en las regiones X, XI y XII (Julio 2021). https://www.subpesca.cl/portal/619/w3-article-103129.html (2021).Gorny, M. et al. Las comunidades marinas bentónicas de la Reserva Nacional Katalalixar (Chile). Oceanografía, 29–44 (2020).Friedlander, A. M. et al. Marine communities of the newly created Kawésqar National Reserve, Chile: From glaciers to the Pacific Ocean. PLoS One 16(4), e0249413. https://doi.org/10.1371/journal.pone.0249413 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mardones, J. I. et al. Toxic dinoflagellate blooms of Alexandrium catenella in Chilean fjords: A resilient winner from climate change. ICES J. Mar. Sci. 74(4), 988–995. https://doi.org/10.1093/icesjms/fsw164 (2016).Article 

    Google Scholar 
    Alvarez-Garreton, C. et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies—Chile dataset. Hydrol. Earth Syst. Sci. 22, 5817–5846. https://doi.org/10.5194/hess-22-5817-2018 (2018).ADS 
    Article 

    Google Scholar 
    Novak, B. J. et al. Transforming ocean conservation: Applying the genetic rescue toolkit. Genes 11, 209. https://doi.org/10.3390/genes11020209 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Outeiro, L. et al. Using ecosystem services mapping for marine spatial planning in southern Chile under scenario assessment. Ecosyst. Serv. 16, 341–353. https://doi.org/10.1016/j.ecoser.2015.03.004 (2015).Article 

    Google Scholar 
    Anbleyth-Evans, J. et al. Toward marine democracy in Chile: Examining aquaculture ecological impacts through common property local ecological knowledge. Mar. Policy 113, 103690. https://doi.org/10.1016/j.marpol.2019.103690 (2019).Article 

    Google Scholar 
    Kershaw, F. et al. Geospatial genetics: Integrating genetics into marine protection and spatial planning. Aquat. Conserv. Mar Freshw. Ecosyst. https://doi.org/10.1002/aqc.3622 (2021).Article 

    Google Scholar 
    Jenkins, T. L. & Stevens, J. R. Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy. Mar. Policy 94, 165–173. https://doi.org/10.1016/j.marpol.2018.04.022 (2018).Article 

    Google Scholar 
    Paredes, J. et al. Population genetic structure at the northern edge of the distribution of Alexandrium catenella in the Patagonian fjords and its expansion along the open Pacific Ocean coast. Front. Mar. Sci. 5, 532. https://doi.org/10.3389/fmars.2018.00532 (2019).Article 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean. PeerJ 6, e4173. https://doi.org/10.7717/peerj.4173 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. High genetic diversity and low-population differentiation in the Patagonian sprat (Sprattus fuegensis) based on mitochondrial DNA. Mitochondrial DNA Part A 29(8), 1148–1155. https://doi.org/10.1080/24701394.2018.1424841 (2018).CAS 
    Article 

    Google Scholar 
    Pérez-Alvarez, M. et al. Historical dimensions of population structure in a continuously distributed marine species: The case of the endemic Chilean dolphin. Sci. Rep. 6, 35507. https://doi.org/10.1038/srep35507 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Alvarez, J. M. et al. Phylogeography and demographic inference of the endangered sei whale, with implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3717 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Global-scale genetic structure of a cosmopolitan cold-water coral species. Aquat. Conserv. Mar. Freshw. Ecosyst. 31(1), 1–14. https://doi.org/10.1002/aqc.3421 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Genetic conservation management of marine resources and ecosystems of Patagonian Fjords. Front. Mar. Sci. 8, 612195. https://doi.org/10.3389/fmars.2021.612195 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus and cross-species amplifications in the Scleractinia Order. J. Hered. 106(3), 322–330. https://doi.org/10.1093/jhered/esv010 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Miller, K. J. & Gunasekera, R. M. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci. Rep. 7, 1–14. https://doi.org/10.1038/srep46103 (2017).CAS 
    Article 

    Google Scholar 
    Holloley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517. https://doi.org/10.2144/000113156 (2009).Article 

    Google Scholar 
    Brookfield, J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455. https://doi.org/10.1046/j.1365-294X.1996.00098.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C. et al. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).CAS 
    Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet 
    MATH 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Falush, D. et al. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Li, Y. L. & Liu, J. X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. https://doi.org/10.1111/1755-0998.12719 (2018).Article 
    PubMed 

    Google Scholar 
    Kopelman, N. M. et al. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K. et al. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    Evanno, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627. https://doi.org/10.1111/1755-0998 (2016).Article 
    PubMed 

    Google Scholar 
    Piry, S. et al. GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1997).Article 

    Google Scholar 
    Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Wickham, H. et al. dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2022). https://ggplot2.tidyverse.org. ISBN 978-3-319-24277-4.Addamo, A. M. et al. Microsatellites of Desmophyllum dianthus—Comau Fjord. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.612195. Zenodo. https://doi.org/10.5281/zenodo.4435966 (2021).Tecklin, D. Sensing the limits of fixed marine property rights in changing coastal ecosystems: Salmon aquaculture concessions, crises, and governance challenges in Southern Chile. J. Int. Wildl. Law Policy 19(4), 284–300. https://doi.org/10.1080/13880292.2016.1248647 (2016).Article 

    Google Scholar 
    Buschmann, A. H. et al. Salmon aquaculture and coastal ecosystem health in Chile: Analysis of regulations, environmental impacts and bioremediation systems. Ocean Coast. Manag. 52, 243–249. https://doi.org/10.1016/j.ocecoaman.2009.03.002 (2009).Article 

    Google Scholar 
    Pantoja, S. et al. Oceanography of the Chilean Patagonia. Cont. Shelf Res. 31, 149–153. https://doi.org/10.1016/j.csr.2010.10.013 (2011).ADS 
    Article 

    Google Scholar 
    Molina, V. & Fernández, C. Bacterioplankton response to nitrogen and dissolved organic matter produced from salmon mucus. Microbiol. Open 9(12), e1132. https://doi.org/10.1002/mbo3.1132 (2020).CAS 
    Article 

    Google Scholar 
    Försterra, G. & Häussermann, V. First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool. Verh. 345, 117–128 (2003).
    Google Scholar 
    Brown, S. M. et al. Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem. PLoS One 8(4), e59732. https://doi.org/10.1371/journal.pone.0059732 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460. https://doi.org/10.1111/mec.13782 (2016).Article 
    PubMed 

    Google Scholar 
    Thiel, M. et al. The Humboldt Current system of Northern and Central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).
    Google Scholar 
    Giesecke, R. et al. General Hydrography of the Beagle Channel, a Subantarctic Interoceanic Passage at the Southern Tip of South America. Front. Mar. Sci. Coast. Ocean Process. 8, 621822. https://doi.org/10.3389/fmars.2021.621822 (2021).Article 

    Google Scholar 
    Chaigneau, A. Surface circulation and fronts of the South Pacific Ocean, east of 120°. Geophys. Res. Lett. 32, L08605. https://doi.org/10.1029/2004GL022070 (2005).ADS 
    Article 

    Google Scholar 
    Aiken, C. M. A reanalysis of the Chilean ocean circulation: Preliminary results for the region between 20°S to 40°S. Lat. Am. J. Aquat. Res. 45(1), 193–198. https://doi.org/10.3856/vol45-issue1-fulltext-19 (2017).Article 

    Google Scholar 
    González, H. E. et al. Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 402, 13–30. https://doi.org/10.3354/meps08360 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    González, H. E. et al. Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Cont. Shelf Res. 31, 225–243. https://doi.org/10.1016/j.csr.2010.08.010 (2011).ADS 
    Article 

    Google Scholar 
    Feehan, K. A. et al. Highly seasonal reproduction in deep-water emergent Desmophyllum dianthus (Scleractinia: Caryophylliidae) from the Northern Patagonian Fjords. Mar. Biol. 166(4), 52. https://doi.org/10.1007/s00227-019-3495-3 (2019).Article 

    Google Scholar 
    Försterra, G. et al. Mass die off of the cold-water coral Desmophyllum dianthus in the Chilean Patagonian Fjord Region. Bull. Mar. Sci. 90(3), 895–899 (2014).Article 

    Google Scholar 
    Mora-Soto, A. et al. A song of wind and ice: Increased frequency of marine cold-spells in southwestern Patagonia and their possible effects on giant kelp forests. J. Geophys. Res. Oceans 127, e2021JC017801. https://doi.org/10.1029/2021JC017801 (2022).ADS 
    Article 

    Google Scholar 
    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    Verberk, W. Explaining general patterns in species abundance and distributions. Nat. Sci. Educ. 3(10), 38 (2011).
    Google Scholar 
    Devenish, C. et al. Extreme and complex variation in range-wide abundances across a threatened Neotropical bird community. Divers. Distrib. 23, 910–921. https://doi.org/10.1111/ddi.12577 (2017).Article 

    Google Scholar 
    Iriarte, J. L. et al. Influence of seasonal freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord. N. Z. J. Mar. Freshw. Res. 51(2), 304–315. https://doi.org/10.1080/00288330.2016.1220955 (2016).CAS 
    Article 

    Google Scholar 
    Silva, N. et al. Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y Laguna San Rafael (Crucero Cimar-Fiordo 1). Cienc. Tecnol. Mar. 20, 23–106 (1997).
    Google Scholar 
    Iriarte, J. L. et al. Low spring primary production and microplankton carbon biomass in Sub-Antarctic Patagonian channels and fjords (50–53°S). Arct. Antarct. Alp. Res. 50(1), e1525186. https://doi.org/10.1080/15230430.2018.1525186 (2018).Article 

    Google Scholar 
    Höfer, J. et al. All you can eat: The functional response of the cold-water coral Desmophyllum dianthus feeding on krill and copepods. PeerJ 6, e5872. https://doi.org/10.7717/peerj.5872 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montero, P. et al. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem. Estuar. Coast. Shelf Sci. 199, 105e116. https://doi.org/10.1016/j.ecss.2017.09.027 (2017).CAS 
    Article 

    Google Scholar 
    Quiroga, E. et al. Seasonal benthic patterns in a glacial Patagonian fjord: The role of suspended sediment and terrestrial organic matter. Mar. Ecol. Prog. Ser. 561, 31–50. https://doi.org/10.3354/meps11903 (2016).ADS 
    Article 

    Google Scholar 
    Escribano, R. et al. Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Prog. Oceanogr. 75, 470–485. https://doi.org/10.1016/j.pocean.2007.08.027 (2007).ADS 
    Article 

    Google Scholar 
    Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4, e1606. https://doi.org/10.7717/peerj.1606 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Dios, A. et al. Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus. PeerJ 8, e8236. https://doi.org/10.7717/peerj.8236 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-Márquez, V. et al. Asexual reproduction in bad times? The case of Cladocora caespitosa in the eastern Mediterranean Sea. Coral Reefs 40, 663–677. https://doi.org/10.1007/s00338-020-02040-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva, N. & Calvete, C. Características oceanográficas físicas y químicas de canales australes chilenos entre el Golfo de Penas y el Estrecho de Magallanes (Crucero Cimar-Fiordo 2). Cienc. Tecnol. Mar. 20, 23–88 (2002).
    Google Scholar 
    Häussermann, V. et al. Species that fly at a higher game: Patterns of deep–water emergence along the Chilean coast, including a global review of the phenomenon. Front. Mar. Sci. 8, 688316. https://doi.org/10.3389/fmars.2021.688316 (2021).Article 

    Google Scholar 
    Fillinger, L. & Richter, C. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: A cold-water coral thriving at low pH. PeerJ 1, e194. https://doi.org/10.7717/peerj.194 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Addamo, A. M. et al. Biodiversity and distribution of corals in Chile. Mar. Biodivers. 52, 33. https://doi.org/10.1007/s12526-022-01271-7 (2022).Article 

    Google Scholar 
    Figuerola, B. et al. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Front. Mar. Sci. 8, 584445. https://doi.org/10.3389/fmars.2021.584445 (2021).Article 

    Google Scholar 
    SGS SIGA. 4.15 Pobreza multidimensional y pobreza por ingresos de la Region de los Lagos. Agosto 2018. Subsecreteria de Desarollo Regional y Administrativo, Gobierno de Chile (2018).FAO. The state of world fisheries and aquaculture. http://www.fao.org/3/a-i720e.pdf (2014).Niklitschek, E. J. et al. Southward expansion of the Chilean salmon industry in the Patagonian Fjords: Main environmental challenges. Rev. Aquac. 4, 1–24. https://doi.org/10.1111/raq.1201 (2013).Article 

    Google Scholar 
    Soto, M. V. et al. Natural hazards and exposure of strategic connectivity in extreme territories. Comau Fjord, North Patagonia, Chile. Rev. Geogr. Norte Grande 73, 57–75 (2019).Article 

    Google Scholar 
    Montes, R. M. et al. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65. https://doi.org/10.1016/j.hal.2018.05.004 (2018).Article 
    PubMed 

    Google Scholar 
    Lembeye, G. Harmful algal blooms in the austral Chilean channels and fjords. In Progress in the Oceanographic Knowledge of Chilean Interior Waters, from Puerto Montt to Cape Horn (eds Silva, N. & Palma, S.) 99–103 (Comité Oceanográfico, 2008).
    Google Scholar 
    Häussermann, V. et al. Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom. PeerJ 5, e3123. https://doi.org/10.7717/peerj.3123 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Google IncGoogle Earth. Retrieved from https://www.google.com/earth/versions/#download-pro (2009). More

  • in

    Hotspot in ferruginous rock may have serious implications in Brazilian conservation policy

    Pseudocryptic diversityThe richness was the measure of the subterranean diversity, we surveyed all data about previous records for Brazilian Collembola cave species, ecological status, lithology, and distribution from the literature, and included 11 newly found pseudocryptic species from subterranean habitats in iron and limestone rock. The pseudocryptic species were verified by comparison of chaetotaxy and “micro-morphology” through optic and scanning microscopy of disjunct populations of a widespread morphotype. The imagery was compared under hypotheses of chaetotaxic and morphologic homology, previously defined by different authors. Those populations with consistent discrete chaetotaxic and morphologic patterns were assumed to be independent species, therefore they were taxonomically diagnosed, named, and ordered in a dichotomic identification key with all Brazilian species of the genus.MicroscopySpecimens were preserved in ethanol 70% and mounted on slides following Jordana et al.31, after clearing using Nesbitt’s solution for study under phase contrast microscope, line drawings were made with help of a drawing tube. For scanning electronic microscope (SEM) study, specimens were dehydrated by ethanol, dried in a critical point dryer, and covered in gold.HomologyThe terminology used in the diagnoses for the hypotheses of homology followed: labial chaetotaxy after Gisin32 with additions of Zhang and Pan33, Fjellberg34 for labial palp papillae and maxillary palp; postlabial chaetotaxy after Chen and Christiansen35, with adaptations of Cipola et al.36 for J series; clypeal chaetotaxy after Yoshii and Suhardjono37; labral chaetotaxy after Cipola et al.38; unguiculus lamellae after Hüther39; Anterior dens chaetotaxy after Oliveira et al.40; Mari-Mutt41 for dorsal head chaetotaxy, with additions of Soto-Adames42; Szeptycki43 and Zhang and Deharveng44 for S-chaetotaxy; and Szeptycki45 for dorsal chaetotaxy, with additions and modifications provided by Soto-Adames42 and Zhang et al.46. Symbols used to depict the chaetotaxy are presented in Fig. 4A–C. Codes will be used in italics along the text to replace the morphological description of each chaeta and sensillum type. Additional information about morphology and chaetotaxy of discussed species was obtained from the literature.Abbreviations used in the diagnosesAnt–antennal segment(s); b.c.–basal chaeta(e), t.a.–terminal appendage of the maxillary palp; l.p.–lateral process of labial papilla E, lpc–labial proximal chaeta(e); Th–thoracic segment; Abd–abdominal segment(s); Omt–trochanteral organ; a.e.–antero-external lamella, a.i.–antero-internal lamella, a.t.–unguis apical tooth, b.a.–basal anterior tooth of unguis, b.p.–basal posterior tooth of unguis, m.t.–unguis median tooth, p.i.–postero-internal lamella, p.e.–postero-external lamella; mac–macrochaeta(e), mes–mesochaeta(e), mic–microchaeta(e), ms–specialized microchaeta(e), psp–pseudopore(s), sens–specialized ordinary chaeta(e) (sensillum), MSS–Mesovoid Shallow Substratum.Ecological statusTo avoid subjectivity and ambiguity to determine the ecological status of the species, we assumed to be a troglobite all the species with some degree of troglomorphism exclusively distributed in the subterranean environment, either caves, MSS, or both. Species distributed in the surface and subterranean habitats were assumed to be troglophiles.Identification Key for the known and new species of the genus Trogolaphysa recorded in Brazil
    Taxonomic diagnoses and morphological platesType materials are deposited in the Coleção de Referência de Fauna de Solo, Universidade Estadual da Paraíba (CRFS-UEPB) and Museu Nacional Rio de Janeiro, Universidade Federal do Rio de Janeiro (MNRJ-UFRJ).

    Additional records in Supplementary Material S1, taxonomic references in S2.

    Family Paronellidae Börner, 1906

    Subfamily Paronellinae Börner, 1906

    Tribe Paronellini sensu Zhang et al., 2019

    Genus Trogolaphysa Mills, 1938

    (Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11)

    Figure 3Trogolaphysa sp.: habitus lateral view. (A, B) specimen fixed in ethanol. (C, D) SEM photographs.Full size imageFigure 4Trogolaphysa sp. SEM: general body chaetae. (A) Antennal chaetae, sensilla and scales: 1—macrochaeta with short ciliation, 2—macrochaeta with long ciliation, 3—microchaeta with long ciliation, 4—microchaeta with short ciliation, 5—finger-shaped sens, 6—wrinkly sens, 7—coffee bean shaped sens, 8—rod sens, 9—spine-like sens, 10—Ant IV subapical-organ, 11—lanceolate scale, 12—rounded scales. (B) Head chaetae and scales: 1—strait macrochaeta with long ciliation, 2—blunt macrochaeta, 3—smooth chaeta, 4—blunt chaeta, 5—strait microchaeta with long ciliation, 6—labial r microchaeta, 7—cephalic anterior scale, 8—cephalic posterior scale. (C) Body and appendages chaetae, sens and scales: 1—bothriotrichum, 2—blunt macrochaeta, 3—blunt mesochaeta, 4—dens external ciliate chaeta, 5—smooth microchaeta, 6—blunt microchaeta, 7—fan-shape chaeta, 8—dental spine, 9—‘al’ sens, 10—‘ms’ sens, 11—lanceolate scale, 12—intersegmental scale.Full size imageFigure 5Trogolaphysa sp. SEM: antenna: (A) Ant IV dorsal view. (B) Ant IV apex dorsal view, arrow indicates finger-shaped and wrinkly sens. (C) Ant IV apex ventral view, left arrow indicates Ant IV subapical-organ, right arrow point one sensillum type A8. (D) Ant II dorsal view, dashed line indicates rod sens. (E) Detail of the sensilla of the Ant III apical organ (red). (F) Ant I dorsal view spine like sens (arrows indicate the sensilla in red). (G) Detail of the Ant I basal, arrow indicates psp and antenobasal organ (yellow and red respectively).Full size imageFigure 6Trogolaphysa sp. SEM: head and mouthpart chaetotaxy. (A) clypeus, (B) dorsal head, (C) eyes (red) circled by dashed line, arrow indicates antenobasal organ and psp, (D) ventral head, (E) maxillary palp and sublobal plate (right side), (F) detail of maxillary palp.Full size imageFigure 7Trogolaphysa sp. SEM: thorax and abdomen dorsal chaetotaxy: (A) Th II, (B) Th III, (C) Abd I-II, (D) Abd III.Full size imageFigure 8Trogolaphysa sp. SEM: (A) Abd IV dorsal chaetotaxy, (B) Abd V dorsal chaetotaxy, (C) anal pore and male genital papilla.Full size imageFigure 9Trogolaphysa. sp. SEM: empodial complex III (A) external lamella of unguis with external teeth (pseudonychia, yellow), (B) unguis and unguiculus lateral view, unguis internal lamella with basal, medial and apical teeth (blue, red and yellow respectively), unguiculus with internal and external teeth, tenent hair capitate (white arrow), (C) lateral view, unguiculus lamellae, tenent hair acuminate (white arrow).Full size imageFigure 10Trogolaphysa sp. SEM: appendages (A) Metatrochanteral organ with pseudopores (alveoli marked in yellow, white arrows indicate pseudopores), (B) ventral tube posterior chaetae, (C) ventral tube anterior chaetae, (D) Tenaculum.Full size imageFigure 11Trogolaphysa sp. SEM: furca. (A) manubrial plate pseudopores (yellow), (B) antero-proximal chaetae of dens, (C) dens anterior view, (D) mucro.Full size imageDiagnosisHabitus typical of this genus (Fig. 3A–D), hyaline scales presents on Ant. I–II, head, body, and ventral face of furcula (Figs. 3C–D, 4A–C, 5D, F, 7, 8, 11C), Ant IV smooth or annulated and never subdivided in two (Fig. 5A); eyes 0–8 (ex. Fig. 6C); prelabral and labral formula 4/5,5,4 (prelabral smooth or ciliate, pma smooth chaetae) (Fig. 6A); antennobasal-organ present (Fig. 6C); labial chaetae L1–2 not reduced (Fig. 6E); sublobal plate of maxillary palp with 2 chaetae (Fig. 6E); Th II normally with a5 mac and p3 complex with variable number of mac, and Th III with p3 mac present or abset (Fig. 7A, B), abdominal segments II–IV with 2, 3, 3 bothriotricha (Figs. 7C, D, 8A); unguis with three external lamellae and unguiculus with p.e. lamella serrate or smooth (Fig. 9A–C); trochanteral organ with 2–4 psp (Fig. 10A) collophore anterior side with 2–3 distal mac (Fig. 10C); tenaculum with four teeth on each branch and one anterior chaeta (Fig. 10D); manubrium without spines, manubrial plate with 2–3 psp (Fig. 11A); anterior proximal dens with b.a., b.m. and i5 chaetae (Fig. 11B); dens with 1–2 rows of spines; mucro square or rectangular but relatively short, with 3–5 teeth (Fig. 11D).Trogolaphysa bellinii sp. nov. Oliveira, Lima & ZeppeliniFigures 12, 13 and 14, Tables 1 and 2Figure 12Trogolaphysa bellinii sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 13Trogolaphysa bellinii sp. nov.: Dorsal chaetotaxy: (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 14Trogolaphysa bellinii sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageTable 2 Trogolaphysa species of the Neotropical Region, comparative morphology.Full size tableType material. Holotype female in slide (15,482/CRFS-UEPB): Brazil, Minas Gerais State, Barão de Cocais municipality, cave MDIR-0028, next to “Mina de Brucutu”, 19°52′48.7″S, 43°26′13.6″W, 19–23.viii.2019, Carste team coll. Paratypes in slides (15,468, 15,483/CRFS-UEPB): 2 females, same data as holotype. Paratypes in slides (15,519, 15,576/CRFS-UEPB donated to MNJR): 2 females, same data as holotype. Additional records see S1.Description. Total length (head + trunk) of specimens 1.53–1.75 mm (n = 5), holotype 1.70 mm.Head. Ratio antennae: trunk = 1: 1.29–1.95 (n = 5), holotype = 1: 1.95; Ant III shorter than Ant II; Ant segments ratio as I: II, III, IV = 1: 1.80–2.24, 0.85–2.08, 0.85–2.08, holotype = 1: 1.80, 0.85, 1.34. Antennal chaetotaxy: Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with a longitudinal row with about eight rod sens, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens on external longitudinal row, apical organ with two mic smooth chaetae externally, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with four sub-apical finger-shaped sens, one wrinkly sens and two subapical rod sens, ventrally with one apical psp, about six wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0, rarely 2 + 2. Head dorsal chaetotaxy (Fig. 12A) with 12 An (An1a–3), six A (A0–5), five M (M1–5), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pa5 and Pm3 as mes, An1a–3a with 10 mac plus two mes, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 12B). Ventral chaetotaxy with 35–38 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of four to seven mes chaetae distally (Fig. 12B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 12B). Maxillary palp with t.a. smooth and 1.23× larger than b.c.Thorax dorsal chaetotaxy (Fig. 13A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with three mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.04–1.36: 1 (n = 5), holotype = 1.05: 1.Abdomen dorsal chaetotaxy (Fig. 13B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by five and four fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with two mic (A1, A6), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), two mes (F3, F3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by five and two (T3) fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.70–4.37 (n = 5), holotype = 1: 4.37.Legs. Trochanteral organ diamond shape with about 20 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 14A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with lamellae smooth and lanceolate (a.i., a.e., p.i.), except p.e. slightly serrate (Fig. 14B); ratio unguis: unguiculus = 1.56–1.79: 1 (n = 5), holotype = 1.56: 1. Tibiotarsal smooth chaetae about 0.9 × smaller than unguiculus; tenent hair capitate and about 0.55 × smaller than unguis outer lamella.Collophore (Fig. 14C). Anterior side with 12 ciliate, apically acuminate chaetae, five proximal, four subdistal (as mes) and three distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 14D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 24 external and 25 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.29 (holotype).Etymology. Species named after Dr. Bruno C. Bellini in recognition of his work on Brazilian Collembola.Remarks. Trogolaphysa bellinii sp. nov. resembles T. bessoni, T. epitychia sp. nov., and T. mariecurieae sp. nov. by 0 + 0 eyes (T. bellinii sp. nov. rarely with 2 + 2 eyes), Th II with 3 + 3 mac, and Th III without mac, but can be distinguished by presenting Abd IV with 4 + 4 central mac (A3, A5, B4–5); T. epitychia sp. nov. with 3 + 3 central mac on Abd IV, T. mariecurieae sp. nov. with 2 + 2 central mac on Abd IV.Trogolaphysa lacerta sp. nov. Lima, Oliveira & ZeppeliniFigures 15, 16 and 17, Tables 1 and 2Figure 15Trogolaphysa lacerta sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 16Trogolaphysa lacerta sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 17Trogolaphysa lacerta sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype male in slide (10,311/CRFS-UEPB): Brazil, Minas Gerais State, Conceição do Rio Acima municipality, cave GAND-115, next to “Lapa do Calango”, 20°04′08.4″S, 43°40′09.9″W, 10.ii–20.iii.2014, Carste team coll. Paratypes in slides (10,312, 10,309/CRFS-UEPB): 2 males, same data as holotype. Paratypes in slides (10,313, 10,314/CRFS-UEPB donated to MNJR): 2 females, same data as holotype. Additional records see S1.Description. Total length (head + trunk) of specimens 1.31–2.43 mm (n = 5), holotype 1.86 mm.Head. Ratio antennae: trunk = 1: 1.33–1.46 (n = 2), holotype = 1: 1.46; Ant III shorter than Ant II; Ant segments ratio, I: II, III, IV = 1: 1.78–2.05: 1.5–1.64: 2.64–2.83, holotype = 1: 1.80: 1.64: 2.64. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with a longitudinal row with about five rod sens, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, one apical wrinkly sens on, apical organ with two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with three sub-apical finger-shaped sens, one wrinkly sens and two apical rod sens, ventrally with one apical psp, one longitudinal external row with two subapical wrinkly sens and two medial finger-shaped sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0, rarely 3 + 3. Head dorsal chaetotaxy (Fig. 15A) with 15 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–2, Pa4–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3, Pa5 and Pp7 as mes, An1a–3a with 11 mac plus four meso, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 15B). Ventral chaetotaxy with 36–38 ciliate chaetae and 1 reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of three to five mes chaetae distally (Fig. 15B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 15B). Maxillary palp with t.a. smooth and 1.28× larger than t.a.Thorax dorsal chaetotaxy (Fig. 16A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with six mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.09–1.46: 1 (n = 5), holotype = 1.09: 1.Abdomen dorsal chaetotaxy (Fig. 16B, C). Abd I m series with six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), four mic (p6e, p7i–7p), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with seven, two and four fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), five mic (T1, T3, T5–7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and one fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’(Fig. 8A); Abd. IV posteriorly with five to six psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.70–4.37 (n = 5), holotype = 1: 4.37.Legs. Trochanteral organ diamond shape with about 24 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 17A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 17B); ratio unguis: unguiculus = 1: 1.50–1.79 (n = 5), holotype = 1: 1.75. Tibiotarsal smooth chaetae about 0.7× smaller than unguiculus; tenent hair slightly acuminate and about 0.44× smaller than unguis outer lamella.Collophore (Fig. 17C). Anterior side with 10 ciliate, apically acuminate chaetae, five proximal (thinner); three subdistal and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 17D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 50 external and 37 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.31 (n = 5).Etymology. Lacerta from Latin means lizard, in allusion to the name of the cave where this species was found, Lapa do Calango (cave of the Calango), which is a small lizard common in this region.Remarks. Trogolaphysa lacerta sp. nov. The new species resembles T. caripensis, T. ernesti, T. piracurucaensis, T. formosensis and T. dandarae sp. nov. by the number of mac in Th II p3 complex (6 + 6), but is easily distinguished by the head m2 and s5 mic (T. caripensis, T. ernesti, T. formosensis, T. piracurucaensis as mac) and Th III without mac (T. dandarae sp. nov. 3 + 3).Trogolaphysa chapelensis sp. nov. Lima, Oliveira & ZeppeliniFigures 18, 19 and 20, Tables 1 and 2Figure 18Trogolaphysa chapelensis sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 19Trogolaphysa chapelensis sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 20Trogolaphysa chapelensis sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (4550/CRFS-UEPB): Brazil, Minas Gerais State, Rio Acima municipality, cave Gruta-2d7, next to “Morro do Chapéu” 20°07′42.1″S, 43°54′26.2″W, 02–10.viii.2011, Andrade et al. coll. Paratypes in slides (4551–4553/CRFS-UEPB): 3 females, Brazil, Minas Gerais State, Rio Acima municipality, cave Gruta-7d7, Qd7, 9d7 respectively, 20°07′42.1″S, 43°54′26.7″W, 29.iii–01.vi.2011, Andrade et al. coll. Paratype in slide (4603/CRFS-UEPB donated to MNJR): 1 female, Brazil, Minas Gerais State, Rio Acima municipality, cave Gruta Qd7, 20°09′46.1″S, 43°49′36.2″W, 925 m, 29.iii–01.vi.2011, Andrade et al. Coll. Additional records see S1.Description. Total length (head + trunk) 1.21–2.22 mm (n = 5), holotype 2.22 mm.Head. Ratio antennae: trunk = 1: 1.31–1.16 (n = 3), holotype = 1: 1.16; Ant III shorter than Ant II; Ant segments ratio, I: II, III, IV = 1: 1.66–1.85, 1.65–1.78, 2.95–3.76, holotype = 1: 1.66, 1.65, 2.95. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about six rod sens on longitudinal row, ventrally with one subapical-organ and about three subapical wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, one apical wrinkly sens, apical organ with two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about three sub-apical finger-shaped sens and about three apical rod sens, ventrally with one apical psp, one longitudinal external row with four wrinkly sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about three smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 18A) with 15 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 and Pa5 as mes, An1a–3a with 13 mac plus two mes, A0 and A2 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 18B). Ventral chaetotaxy with 29 ciliate chaetae; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of six mes chaetae distally (Fig. 18B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 18B). Maxillary palp with t.a. smooth and 1.17× larger than b.c.Thorax dorsal chaetotaxy (Fig. 19A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with four mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), two mic (m4–6p), four mes (m6–6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.10–1.31: 1 (n = 4), holotype = 1.10: 1.Abdomen dorsal chaetotaxy (Fig. 19B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by five and four fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with nine psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.46–5.80 (n = 5), holotype = 1: 5.80.Legs. Trochanteral organ diamond shape with about 23 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 20A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with lamellae smooth and lanceolate (a.i., a.e., p.i.), except p.e. slightly serrate (Fig. 20B); ratio unguis: unguiculus = 1: 1.63–1.84 (n = 5), holotype = 1: 1.79. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair capitate and about 0.52× smaller unguis outer lamella.Collophore (Fig. 20C). Anterior side with 13 ciliate, apically acuminate chaetae, seven proximal (thinner); four subdistal and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 20D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 70 external and 30 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.33 (n = 5).Etymology. Species named after Type locality Morro do Chapeu.Remarks. Trogolaphysa chapelensis sp. nov. resembles T. jacobyi, T. caripensis, T. bessoni, and T. belizeana by te absence of eyes (0 + 0 eyes) but is easily distinguished by presenting 4 + 4 mac in Th II p3 complex (2–3 + 2–3 T. jacobyi; 6 + 6 T. caripensis; 2 + 2 T. bessoni; 2–4 + 2–4 T. belizeana), and 9 + 9 psp posterior Abd IV (4 + 4T. belizeana).Trogolaphysa crystallensis sp. nov. Oliveira, Lima & ZeppeliniFigures 21, 22 and 23, Tables 1 and 2Figure 21Trogolaphysa crystallensis sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 22Trogolaphysa crystallensis sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III; (C) Abd IV–V.Full size imageFigure 23Trogolaphysa crystallensis sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (16,252/CRFS-UEPB): Brazil, Minas Gerais State, Mariana municipality, cave LOC-0090, next to “Cachoeira Crystal”, 20°20′20.8″S, 43°23′44.3″W, 11–14.xi.2019, Carste team coll. Paratype in slide (16,251/CRFS-UEPB): female, same data as holotype. Paratype in slide (16,254/CRFS-UEPB donated to MNJR): female, same data as holotype. Additional records see S1.Description. Total length (head + trunk) of specimens 1.40–1.68 mm (n = 3), holotype 1.68 mm.Head. Ratio antennae: trunk = 1: 1.24–2.30 (n = 2), holotype = 1: 1.24; Ant III shorter than Ant II length; Ant segments ratio as I: II, III, IV = 1: 1.72–1.78, 1.58–1.64, 3.11–3.14, holotype = 1: 1.78, 1.64, 3.14. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about three rod sens on longitudinal row, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens on external longitudinal row, apical organ with two rod sens, and one finger-shaped sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with three sub-apical finger-shaped sens and one wrinkly sens, ventrally with one apical psp (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about three smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 21A) with 12–13 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pa5, Pm3 and Pp7 as mes, An1a–3a, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 21B). Ventral chaetotaxy with 33–35 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of four to six mes chaetae distally (Fig. 21B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 21B). Maxillary palp with t.a. smooth and 1.43 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 22A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with two mic (a1–2), two mes (a6–7), theree mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.05–1.27: 1 (n = 3), holotype = 1.05: 1.Abdomen dorsal chaetotaxy (Fig. 22B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively, a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–7), five mic (D1–1p, D3–3p, De3), one mes (D2), two mes (E4p–4p2), three mac (E1–3), four mes (Ee9–12), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by three and two (T3) fan-shaped chaetae respectively; ps and as present, and at least 14 supernumerary sens with uncertain homology ‘s’(Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–P6ae), three mes (p6e–pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 4.06–4.51 (n = 3), holotype = 1: 4.51.Legs. Trochanteral organ diamond shape with about 18 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 23A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with three teeth, basal pair subequal, b.p. little larger, but not reaching the m.t. apex, m.t. just after the distal half, a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 23B); ratio unguis: unguiculus = 1.48–1.79: 1 (n = 3), holotype = 1.48: 1. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair acuminate and about 0.5× smaller than unguis outer lamella.Collophore (Fig. 23C). Anterior side with 10 ciliate, apically acuminate chaetae, six proximal, two subdistal (as mes) and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 23D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 60 external and 28 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.31 (holotype).Etymology. Species named after Type locality Cachoeira Crystal (Portuguese for Crystal falls).Remarks. Trogolaphysa crystallensis sp. nov. resembles T. barroca sp. nov., T. gisbertae sp. nov., T. sotoadamesi sp. nov., T. triocelata and T. zampauloi sp. nov. by the absence of eyes (0 + 0 eyes) (T. triocelata 3 + 3 and T. zampauloi sp. nov. eventually 4 + 4), Th II with 5 + 5 mac, and Th III without mac. Can be distinguished from T. barroca sp. nov., T. gisbertae sp. nov., and T. sotoadamesi sp. nov. by the Abd IV with 4 + 4 central mac (A3, A5, B4–5); T. barroca sp. nov., T. gisbertae sp. nov., and T. triocelata, with 3 + 3 and T. sotoadamesi sp. nov. 2 + 2 central mac on Abd IV. Finally, the new species differentiates from T. zampauloi sp. nov. by unpaired lamella of unguis with one tooth, Omt with about 18 spine-like chaetae, dens external row with about 58 spines on T. crystallensis sp. nov. and unpaired lamella of unguis with two teeth, Omt with about 26 spine-like chaetae, dens external row with about 30 spines on T. zampauloi sp. nov.Trogolaphysa sotoadamesi sp. nov. Ferreira, Oliveira & ZeppeliniFigures 24, 25 and 26, Tables 1 and 2Figure 24Trogolaphysa sotoadamesi sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore, Gray cut circle pseudopore at the under surface.Full size imageFigure 25Trogolaphysa sotoadamesi sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 26Trogolaphysa sotoadamesi sp. nov.: (A) Trochanteral organ, ((B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype male in slide (13,162/CRFS-UEPB): Brazil, Minas Gerais State, Mariana municipality, cave ALEA 0003, next to “Mina de Alegria”, 20°09′6.81″S, 43°29′13.6″W, 07.ii.2018, Bioespeloeo team coll. Paratypes in slides (13,146, 13,153/CRFS-UEPB): 2 females, same data as holotype, except 12.vi.2017. Paratype in slide (13,173, 13,186/CRFS-UEPB donated to MNJR): 2 females, same data as holotype, except 09.vi.2017. Additional records see S1.Description. Total length (head + trunk) of specimens1.50–1.81 mm (n = 5), holotype 1.50 mm.Head. Ratio antennae: trunk = 1: 1.26–1.45 (n = 3), holotype = 1: 1.38; Ant III shorter than Ant II; Ant segments ratio, I: II, III, IV = 1: 1.78–2.76, 1.52–2.22, 2.61–3.90, holotype = 1: 2.04, 1.68, 3.16. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with a longitudinal row with about three rod sens, ventrally with one subapical-organ and with several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, several wrinkly sens, apical organ with two coffee bean-like sens, one rod sens and one finger-shaped sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with two sub-apical rod sens and two finger-shaped sens, ventrally with one apical psp and several finger-shaped sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with about seven basal spine-like sens, about three smooth mic and several finger-shaped sens (Fig. 3A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 24A) with 16 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 as mes (rarely mic), Pa5 as mes, An1a–3a, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 24B). Ventral chaetotaxy with 37 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of six mes chaetae distally (Fig. 24B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–p3) and subequal in length (Fig. 24B). Maxillary palp with t.a. smooth and 1.28× larger than b.c.Thorax dorsal chaetotaxy (Fig. 25A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3, a6), one mes (a7), four mic (m4, m6–7, m6p), two mes (m6e, m7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.17–1.52: 1 (n = 5), holotype = 1.03: 1.Abdomen dorsal chaetotaxy (Fig. 25B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by five and three fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with five mic (A1, A3, A5–6, Ae1), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), two mic (T1, T6), two mes (T5, T7), three mic (D1–2), two mes (D3p, De3), two mes (E4p–p2), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and three (T3) fan-shaped chaetae respectively; ps and as present, and at least five supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–p6ae), one mic (P6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 5.03–4.42 (n = 5), holotype = 1: 4.42.Legs. Trochanteral organ triangular shape with about 19–21 spine-like chaetae, plus two psp one external and one on distal vertex of Omt (Fig. 26A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair unequal, b.p. larger than b.a.; m.t. and a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 26B); ratio unguis: unguiculus = 1: 1.46–1.91 (n = 5), holotype = 1: 1.91. Tibiotarsal smooth chaetae about 0.8 × smaller unguiculus; tenent hair acuminate and about 0.4 × smaller than unguis outer lamella.Collophore (Fig. 26C). Anterior side with seven ciliate, apically acuminate chaetae, three proximal, two subdistal and two distal mac; lateral flap with nine chaetae, four ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (two inner mac) and three psp (Fig. 26D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 35 external and 26 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.39 (n = 5).Etymology. Species named after Dr. Felipe N. Soto-Adames for his contribution on Collembola taxonomy and systematics.Remarks. Trogolaphysa sotoadamesi sp. nov. resembles T. barroca sp. nov., T. crystallensis sp. nov., T. gisbertae sp. nov., T. zampauloi sp. nov. by 0 + 0 eyes (T. zampauloi sp. nov. rarely with 4 + 4 eyes), Th II p3 complex with five mac, Th III without mac, manubrial plate with five ciliate chaetae and mucro with four teeth. The new species T. sotoadamesi sp. nov. with 2 + 2 central mac on Abd IV differentiates from T. barroca sp. nov., T. gisbertae sp. nov. with 3 + 3, and T. crystallensis sp. nov., T. zampauloi sp. nov. with 4 + 4 central mac.Trogolaphysa mariecurieae sp. nov. Ferreira, Oliveira & ZeppeliniFigures 27, 28 and 29, Tables 1 and 2Figure 27Trogolaphysa mariecurieae sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore, Gray cut circle pseudopore at the under surface.Full size imageFigure 28Trogolaphysa mariecurieae sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 29Trogolaphysa mariecurieae sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (9109/CRFS-UEPB): Brazil, Minas Gerais State, Conceição do Mato Dentro municipality, MSS 10/11, next to “Pico do Soldado” 19°00′23.86″S, 43°23′41.266″W, 11–10.ix.2015, Carste team coll. Paratypes in slides (5888, 5857/CRFS-UEPB): 2 females, same data as holotype, except,19–23.v.2014, Soares et al. coll.Paratype in slide (9222, 10,760/CRFS-UEPB donated to MNJR): 2 females, same data as holotype, except 19°00′18.72″S, 43°23′30.031″W, 14.x.2015 and 18–20.iv.2016. Additional records see S1.Description. Total length (head + trunk) of specimens 1.07–1.49 mm (n = 5), holotype 1.49 mm.Head. Ratio antennae: trunk = 1: 1.69–1.91 (n = 2), holotype = 1: 1.69; Ant III shorter than Ant II length; Ant segments ratio, I: II, III, IV = 1: 2.00–2.75, 1.69–2.55, 4.02–5.29, holotype = 1: 2.75, 1.69, 4.02. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally with one longitudinal row with about four rod sens, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, apical organ with two rod sens (Fig. 4A); Ant II dorsally and ventrally with several short less ciliate mic and mac, dorsally with five apical rod sens, ventrally with one apical psp, about five wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short less ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with seven basal spine-like sens, about five smooth mic, and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 27A) with 12 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–3, Pa5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 and Pa5 as mes, An1a–3a, A0 and A2 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 27B). Ventral chaetotaxy with 34 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of six mes chaetae distally (Fig. 27B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 27B). Maxillary palp with t.a. smooth and 1.13× larger than b.c.Thorax dorsal chaetotaxy (Fig. 28A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with three mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4–m6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 0.85–1.02: 1 (n = 4), holotype = 0.89: 1. Abdomen dorsal chaetotaxy (Fig. 28B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), two mic (p6e, p7i), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and two fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), one mac (A4), two mic (B1–2), one mes (B6), one mac (B5), four mic (C1–4), three mic (T1, T5, T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), two mes (Ee10–11), one mac (Ee9), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and three (T3) fan-shaped chaetae respectively; ps and as present, and at least five supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), five mac (m2–3, m5–5e), five mic (p3a–p6ae), two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 4.27–5.91 (n = 5), holotype = 1: 5.02.Legs. Trochanteral organ diamond shape with about 15 spine-like chaetae, plus 2–3 psp one external, one on distal vertex and another (present or absent) on top of posterior spines row of Omt (Fig. 29A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair subequal, b.p. larger than b.a., inner lamella with unpaired small m.t. between b.a. and b.p. and a.t. absent. Unguiculus with all lamellae smooth and truncate (a.i., a.e., p.i., p.e.) (Fig. 29B); ratio unguis: unguiculus = 1.50–1.95: 1 (n = 5), holotype = 1.95: 1. Tibiotarsal smooth chaetae about 0.9× smaller than unguiculus; tenent hair slightly capitate and about 0.6× smaller than unguis outer lamella.Collophore (Fig. 29C). Anterior side with eight ciliate, apically acuminate chaetae, six proximal and two distal mac; lateral flap with 13 chaetae, five ciliate in the proximal row and eight smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 29D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 40 external and 22 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.23 (holotype).Etymology. Species named after Dr. Marie Skłodowska-Curie for her enormous contribution to science.Remarks. Trogolaphysa mariecurieae sp. nov. resembles T. bellinii sp. nov. T. jacobyia and T. epitychia sp. nov. by the absence of eyes (T. bellinii sp. nov. rarely with 2 + 2 eyes), Th II p3 complex with three mac and with one unpaired tooth on inner lamella of unguis. The new species T. mariecurieae sp. nov. (Abd IV with 2 + 2 mac) differs from T. jacobyia, T. epitychia sp. nov. both with Abd IV 3 + 3, and T. bellinii sp. nov. with 4 + 4 central mac. T. mariecurieae sp. nov. and T. bellinii sp. nov. with capitate tenent hair, in contrast with T. jacobyia and T. epitychia sp. nov. with acuminated tenant hair.Trogolaphysa barroca sp. nov. Brito & ZeppeliniFigures 30, 31 and 32, Tables 1 and 2Figure 30Trogolaphysa barroca sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 31Trogolaphysa barroca sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 32Trogolaphysa barroca sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (13,167/CRFS-UEPB): Brazil, Minas Gerais State, Mariana municipality, ALFA-0003 cave, 20°09′06.8″S, 43°29′13.6″W, 07–27.ii.2018, Bioespeleo team coll. Paratype in slide (13,150/CRFS-UEPB): 1 female, same data as holotype, except 12.vi.2017. Paratype in slide (13,158/CRFS-UEPB donated to MNJR): 1 female, same data as holotype. Paratype in slide (13,197/CRFS-UEPB): 1 female, Brazil, Minas Gerais State, Mariana municipality, ALEA-0004 cave, 20°09′00.0″S, 43°29′11.8″W, 07.ii.2018, Bioespeleo team coll. Paratype in slide (13,203/CRFS-UEPB): 1 female, Brazil, Minas Gerais State, Mariana municipality, ALEA-0002 cave, 20°08′56.5″S, 43°29′09.8″W, 27.ii.2018, Bioespeleo team coll. Additional records see S1.Description. Total length (head + trunk) of specimens 1.70–2.13 mm (n = 5), holotype 1.81 mm.Head. Ratio antennae: trunk = 1: 1.27–1.60 (n = 3), holotype = 1: 1.27; Ant III shorter than Ant II; Ant segments ratio as, I: II, III, IV = 1: 1.90–2.41, 1.64–2.02, 2.69–3.64, holotype = 1: 1.90, 1.67, 2.69. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally with about four rod sens on longitudinal row, ventrally with one subapical-organ and several wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short less ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about nine wrinkly sens on external longitudinal row, apical organ with one finger-shaped sens, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short less ciliate mic and mac, dorsally with two sub-apical finger-shaped sens and two subapical rod sens, ventrally with one apical psp, and several wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short less ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with about five basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 30A) with 14–15 An (An1a–3), six A (A0–5), five M (M1–5), six S (S1–6), two Ps (Ps2, Ps5), four Pa (Pa1–3, Pa5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 as mic, A3 as mes, An1a–3, A0, A2 and Pa5 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 30B). Ventral chaetotaxy with 33 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of five to six mes chaetae distally (Fig. 30B). Prelabral chaetae weakly ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and subequal the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3), and subequal in length (Fig. 30B). Maxillary palp with t.a. smooth and 1.14 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 31A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–7), two mic (m4, m6p), four mes (m6–6e, m7–7e), and four mic (p1–3, p6), respectively. Ratio Th II: III = 1.11–1.35: 1 (n = 5), holotype = 1.29: 1.Abdomen dorsal chaetotaxy (Fig. 31B, C). Abd I a, m series with one (a5) and six (m2–6e) mic, respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and three fan-shaped chaetae, respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae, respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae, respectively; as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae, respectively; ps and as present, and at least seven supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with four to six psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a–5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e), two mes (ap6, pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 3.38–5.55 (n = 5), holotype = 1: 5.27.Legs. Trochanteral organ diamond shape with about 16–21 spine-like chaetae, plus 2–3 psp one external, and two (one of them present or absent) on top of posterior spines row of Omt (Fig. 32A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair subequal; b.p. little larger than b.a., m.t. and a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 32B); ratio unguis: unguiculus = 1.53–1.67: 1 (n = 5), holotype = 1.61: 1. Tibiotarsal smooth chaetae about 0.61 × smaller than unguiculus; tenent hair acuminate and about 0.4 × smaller than unguis outer lamella.Collophore (Fig. 32C). Anterior side with eight ciliate, apically acuminate chaetae, four proximal (thinner), one subdistal and three distal mac; lateral flap with 10 chaetae, five ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (three inner mac) and three psp (Fig. 32D). Dens posterior face with two or more longitudinal rows of spines-like chaetae about 22 external and 37–39 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.33 (holotype).Etymology. Refers to the Baroque art (which is “barroco” noun, in Portuguese) of Mariana, Minas Gerais, type locality.Remarks. Trogolaphysa barroca sp. nov. resembles T. formosensis by head Pm3 mic (mac in T. piracurucaensis, T. gisbertae sp. nov. and T. dandarae sp. nov.; mes in T. ernesti, T. sotoadamesi sp. nov. and T. mariecurieae sp. nov.); 3 + 3 head dorsal mac like T. ernesti, although in the new species it is as A0, A2 and Pa5, and in T. ernesti is A0, A2–3; unguis m.t. and a.t. teeth absent like T. sotoadamesi sp. nov. and T. dandarae sp. nov. (present in T. bellini sp. nov., T. lacerta sp. nov. and T. chapelensis sp. nov.).Trogolaphysa epitychia sp. nov. Oliveira, Lima & ZeppeliniFigures 33, 34 and 35, Tables 1 and 2Figure 33Trogolaphysa epitychia sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 34Trogolaphysa epitychia sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 35Trogolaphysa epitychia sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype male in slide (10,578/CRFS-UEPB): Brazil, Minas Gerais State, Conceição do Mato Dentro municipality, cave CSS-0118, next to “São Sebastião do Bom Sucesso”, 18°56′14.1″S, 43°24′43.8″W, 21.xi–15.xii.2016, Carste team coll. Paratypes in slides (10,580, 10,585/CRFS-UEPB): 2 females, same data as holotype. Paratypes in slides (10,653, 10,692/CRFS-UEPB donated to MNJR): 1 female and 1 male, same data as holotype, except 22.xi–15.xii.2016 and 31.v–12.vi.2016, respectively. Additional records see S1.Description. Total length (head + trunk) 1.13–1.35 mm (n = 5), holotype 1.13 mm.Head. Ratio antennae: trunk = 1: 1.29–1.95 (n = 5), holotype = 1: 1.95; Ant III shorter than Ant II; Ant segments ratio as I: II, III, IV = 1: 1.69–2.20, 1.14–1.86, 2.37–3.52, holotype = 1: 1.71, 1.14, 2.37. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with one longitudinal row with about six rod sens, ventrally with one subapical-organ and one longitudinal row with about four wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens on external longitudinal row, apical organ with two coffee bean-like sens, one rod sens and one smooth mic (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about six sub-apical finger-shaped sens and one wrinkly sens, ventrally with one apical psp, about three wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, three basal spine-like sens, ventrally with four basal spine-like sens, about three smooth mic, several finger-shaped sens, and two wrinkly sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 33A) with 12 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pm3 and Pa5 as mes, An1a–3a, A0 and A2 as mac; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 33B). Ventral chaetotaxy with 31–32 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of five to six mes chaetae distally (Fig. 33B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 33B). Maxillary palp with t.a. smooth and 1.26× larger than b.c.Thorax dorsal chaetotaxy (Fig. 34A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with three mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–a7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6) respectively. Ratio Th II: III = 1.05–1.21: 1 (n = 5), holotype = 1.18: 1.Abdomen dorsal chaetotaxy (Fig. 34B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae respectively. Abd III a, m, p series with two mic (a7i–7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae, respectively; a5, m2 and m5 bothriotricha with five, two and one fan-shaped chaetae, respectively; as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), two mic (B1, B4), one mes (B6), one mac (B5), four mic (C1–4), four mic (T1, T3, T5–6), one mac (T7), six mic (D1–3p, De3), two mic (E4p–4p2), three mac (E1–3), one mic (Ee11), three mes (Ee9–10, Ee12), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by five and two fan-shaped chaetae, respectively; ps and as present, and at least seven supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with three mic (a1, a3, a6), one mac (a5), two mic (m3, me5), three mac (m2, m5–5a), two mic (p3a–4a), one mes (p5a) two mac (p6ai–6ae), four mes (p5–pp6), three mac (p1, p3–4) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 4.69–5.55 (n = 5), holotype = 1: 4.88.Legs. Trochanteral organ in V–shape with about 15 spine-like chaetae, plus 4 psp one external, one on distal vertex and another two on top of posterior spines row of Omt (Fig. 35A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. little larger, not reaching the m.t. apex, m.t. just after the distal half, a.t. absent. Unguiculus with all lamellae smooth and slightly truncate (a.i., a.e., p.i., p.e.) (Fig. 35B); ratio unguis: unguiculus = 1.17–1.98: 1 (n = 5), holotype = 1.17: 1. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair acuminate and about 0.53× smaller than unguis outer lamella.Collophore (Fig. 35C). Anterior side with nine ciliate, apically acuminate chaetae, five proximal, two subdistal and two distal mac; lateral flap with 10 chaetae, five ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (two inner mac) and three psp (Fig. 35D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 60 external and 34 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.30 (holotype).Etymology. Epitychia from Greek means success, in allusion to the collection site where the species was found São Sebastião do Bom Sucesso.Remarks. Trogolaphysa epitychia sp. nov. resembles T. bellinii sp. nov., T. bessoni, and T. mariecurieae sp. nov. by the absence of eyes (T. bellinii sp. nov. rarely with 2 + 2 eyes), Th II with 3 + 3 mac, and Th III without mac. Differentiates from T. bellinii sp. nov. and T. mariecurieae sp. nov. by Abd IV with 3 + 3 (A3, A5, B5), 4 + 4, and 2 + 2 mac on Abd IV respectively; on T. bellinii sp. nov. and can be distinguished from T. bessoni by the absence of unpaired tooth on inner lamella of unguis, external row of dens with 25 spines, inner row of dens with 20 spines (T. epitychia sp. nov. with one unpaired tooth m.t. on inner lamella of unguis, external row of dens with about 60 spines and inner row of dens with about 34 spines).Trogolaphysa zampauloi sp. nov. Lima, Oliveira & ZeppeliniFigures 36, 37 and 38, Tables 1 and 2Figure 36Trogolaphysa zampauloi sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 37Trogolaphysa zampauloi sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 38Trogolaphysa zampauloi sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (11,851/CRFS-UEPB): Brazil, São Paulo State, Ribeira municipality, cave MTD-13, nexto to “Serra Pontalhão”, 24°38′47.4″S, 48°57′52.6″W, 08–20.iii.2016, Carste team coll. Paratypes in slides (11,875–11,878/CRFS-UEPB): 2 males and 2 females, Brazil, São Paulo State, Ribeira municipality, cave MTD-02, 24°37′27.3″S, 48°57′35.8″W, 08–20.iii.2016. Paratype in slide (11,876/CRFS-UEPB donated to MNJR). Additional records see S1.Description. Total length (head + trunk) of specimens 1.35–1.91 mm (n = 5), holotype 1.35 mm.Head. Ratio antennae: trunk = 1: 1.35–1.55 (n = 2), holotype = 1: 1.55; Ant III smaller than Ant II length; Ant segments ratio as I: II, III, IV = 1: 1.71–2.38, 1.60–1.88, 2.85–3.61, holotype = 1: 2.38, 1.88, 3.61. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about three rod sens on longitudinal row, ventrally with one subapical-organ, and about three wrinkly sens (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, one apical wrinkly sens, apical organ with two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about three sub-apical finger-shaped sens and two apical rod sens, ventrally with one apical psp, one longitudinal external row with two subapical finger-shaped sens and two medial wrinkly sens (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about four smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0 to 4 + 4. Head dorsal chaetotaxy (Fig. 36A) with 14 An (An1a–3), six A (A0–5), four M (M1–4), five S (S2–6), two Ps (Ps2, Ps5), four Pa (Pa1–3, Pa5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; Pe4, Pe6, Pm3 and Pa5 as mes, An1a–3a as mac, A0 and A2 as mac, A3–5 as mes; interocular p mes present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 36B). Ventral chaetotaxy with about 37 ciliate chaetae, plus one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of eight mes chaetae distally (Fig. 36B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 36B). Maxillary palp with t.a. smooth and 1.17 × smaller than b.a.Thorax dorsal chaetotaxy (Fig. 37A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms present. Th III a, m, p series with three mic (a1–3), two mes (a6–a7), three mic (m4, m6–6p), three mes (m6e, m7–7e), four mic (p1–3, p6), respectively. Ratio Th II: III = 1.02–1.48: 1 (n = 5), holotype = 1.21: 1Abdomen dorsal chaetotaxy (Fig. 37B, C). Abd I a, m series with one (a5) and six (m2–6e) mic respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el as mic and as present; a5 and m2 bothriotricha surrounded by three and two fan-shaped chaetae respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and three fan-shaped chaetae respectively, as sens elongated, ms present. Abd IV A–Fe series with three mic (A1, A6, Ae1), two mac (A3, A5), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), one mes (Ee11), two mac (Ee9–10), one mic (F1), two mes (F3–3p), one mac (F2), one mic (Fe2), two mes (Fe3, Fe5), one mac (Fe4) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and four (T3) fan-shaped chaetae respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with two mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a, m5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e) two mes (ap6–pp6), four mac (p1, p3–5) chaetae, respectively; as, acc.p4–5 present. Ratio Abd III: IV = 1: 3.29–4.28 (n = 5), holotype = 1: 4.10.Legs. Trochanteral organ diamond shape with about 27 spine-like chaetae, plus 3–4 psp one external, one on distal vertex and another two (one of them present or absent) on top of posterior spines row of Omt (Fig. 38A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with four teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. present. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 38B); ratio unguis: unguiculus = 1.63–1.84 (n = 5), holotype = 1: 1.79. Tibiotarsal smooth chaetae about 0.8× smaller than unguiculus; tenent hair acuminate and about 0.39× smaller than unguis outer edge.Collophore (Fig. 38C). Anterior side with five ciliate, apically acuminate chaetae, two proximal (thinner); one subdistal and two distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 38D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 30 external and 23 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.29 (n = 5).Etymology. Species named after the field biologist MSc. Robson de Almeida Zampaulo for his contribution to Brazilian biospeleology.Remarks. Trogolaphysa zampauloi sp. nov. resembles T. caripensis; T. ernesti; T. piracurucaensis by Th III without mac, and 4 + 4 central mac (A3, A5, B4–5) in Abd IV, but is easily distinguished from these species by the presence of Th II with 4 + 4 mac in p3 complex (6 + 6T. caripensis, T. ernesti, T. piracurucaensis). For more comparisons see remarks in T. crystallensis sp. nov.Trogolaphysa gisbertae sp. nov. Brito & ZeppeliniFigures 39, 40 and 41, Tables 1 and 2Figure 39Trogolaphysa gisbertae sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 40Trogolaphysa gisbertae sp. nov.: Dorsal chaetotaxy: (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 41Trogolaphysa gisbertae sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy.Full size imageType material. Holotype female in slide (6668/CRFS-UEPB): Brazil, Pará State, Parauapebas municipality, cave N1N8-N8-017, next to “Serra Norte”, 06°10′05.9″S, 50°09′25.6″W, 02–29.iv.2015, Carste team coll. Paratype in slide (6669/CRFS-UEPB donated to MNJR): 1 female, same data as holotype, except 04.ix–06.x.2014. Paratype in slide (6973/CRFS-UEPB): 1 female, same data as holotype, except 04.ix–06.x.2014. Paratypes in slides (6657, 7138/CRFS-UEPB): 2 females, Brazil, Pará State, Parauapebas municipality, N1N8-N8-020 cave, 06°10′07.8″S, 50°09′25.4″W, 17.vii–04.viii.2014, Carste team coll. Additional records see S1.Description. Total length (head + trunk) of specimens 1.10–1.23 mm (n = 5), holotype 1.15 mm.Head. Ratio antennae: trunk = 1: 1.44–1.55 (n = 3); Ant segments ratio as I: II, III, IV = 1: 1.67–2.43, 1.58–2.63, 2.91–5.46, holotype = 1: 2.03, – , 3.90. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about five rod sens in row, ventrally with one subapical-organ and several wrinkly sens row (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about four wrinkly sens on external longitudinal row, apical organ with one finger-shaped sens, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with four finger-shapedd sens in row and two subapical rod sens, ventrally with one apical psp, and about five wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several fniger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 39A) with 11 An (An1a–3), six A (A0–5), four M (M1–4), five S (S1–5), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; An1a–3a, A0, A2–3, Pa5 and Pm3 as mac; interocular p absent. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 39B). Ventral chaetotaxy with 20 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of three to four mes chaetae distally (Fig. 39B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and surpassing the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 39B). Maxillary palp with t.a. smooth and 1.32 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 40A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with five mac, respectively, al and ms presents. Th III a, m, p series with three mic (a1–3), two mes (a6–7), three mic (m4, m6–6p), three mes (m6e, m7–7e), and four mic (p1–3, p6), respectively. Ratio Th II: III = 1.00–2.60: 1 (n = 5), holotype = 1.28: 1.Abdomen dorsal chaetotaxy (Fig. 40B, C). Abd I a, m series with one (a5) and six (m2–6e) mic, respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and two fan-shaped chaetae, respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6), three mic (p6e, p7i–7), one mac (p6) chaetae, respectively; a5, m2 and m5 bothriotricha with six, two and three fan-shaped chaetae, respectively, as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), four mic (T1, T5–7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae, respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with one to three psp. Abd V a, m, p series with three mic (a1, a3), one mes (a6), one mac (a5), two mes (m5a–5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e), two mes (ap6, pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 3.29–4.90 (n = 5), holotype = 1: 3.29.Legs. Trochanteral organ diamond shape with about 25 spine-like chaetae, plus two psp one external, and one on distal vertex of Omt (Fig. 41A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with three teeth, basal pair subequal, b.p. not reaching the m.t. apex, m.t. just after the distal half, a.t. absent. Unguiculus with lamellae smooth and slightly truncate (a.i., a.e., p.i.), except p.e. slightly serrate (Fig. 41B); ratio unguis: unguiculus = 1.59–2.05: 1 (n = 5), holotype = 1.62: 1. Tibiotarsal smooth chaetae about 0.9× smaller than unguiculus; tenent hair acuminate and about 0.53× smaller than unguis outer lamella.Collophore (Fig. 41C). Anterior side with five ciliate, apically acuminate chaetae, one proximal (thinner); two subdistal and two distal mac; lateral flap with 10 chaetae, five ciliate in the proximal row and five smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with five ciliate chaetae (three inner mac) and three psp (Fig. 41D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 18 external and 24 internal, external spines larger and thinner than internal ones. Mucro with four teeth, ratio width: length = 0.26 (holotype).Etymology. Honor to Gisberta Salce Júnior, Brazilian woman, murdered in 2006 (Porto, Portugal) in a transphobia crime.Remarks. Trogolaphysa gisbertae sp. nov. differs from T. ernesti and T. formosensis (with 0 + 0 head dorsal mac), T. piracurucaensis, and T. barroca sp. nov. (1+1 head dorsal mac); and resembles T. dandarae sp. nov. (with 5+5 head dorsal mac), but it is easily distinguishable by Th II p3 complex and Th III mac (5 + 5 and 0 + 0, 6 + 6 and 3 + 3, respectively); and unguis with m.t. present (absent in T. sotoadamesi sp. nov., T. barroca sp. nov.).Trogolaphysa dandarae sp. nov. Brito & ZeppeliniFigures 42, 43 and 44, Tables 1 and 2Figure 42Trogolaphysa dandarae sp. nov.: (A) Head dorsal chaetotaxy, (B) labial proximal chaetae, basomedial and basolateral labial fields and postlabial chaetotaxy. Black cut circle, pseudopore; Gray cut circle pseudopore at the under surface.Full size imageFigure 43Trogolaphysa dandarae sp. nov.: Dorsal chaetotaxy. (A) Th II–III, (B) Abd I–III, (C) Abd IV–V.Full size imageFigure 44Trogolaphysa dandarae sp. nov.: (A) Trochanteral organ, (B) Distal tibiotarsus and empodial complex III (anterior view), (C) Manubrial plate, (D) Antero-lateral view of collophore chaetotaxy, (E) Mucro.Full size imageType material. Holotype female in slide (12,775/CRFS-UEPB): Brazil, Pará State, Parauapebas municipality, cave N4WS-0018/48, next to “Serra Norte”, 06°04′34.5″S, 50°11′37.7″W, 21–30.vii.2018, Brandt Meio Ambiente team coll. Paratype in slide (12,776/CRFS-UEPB donated to MNJR): 1 female, same data as holotype. Paratypes in slides (12,777, 12,778/CRFS-UEPB): 2 females, same data as holotype. Paratypes in slides (12,772, 12,773/CRFS-UEPB): 2 females, Brazil, Pará State, Parauapebas municipality, N4WS-0016 cave, 06°04′35.5″S, 50°11′37.1″W, 21–30.vii.2018, Brandt Meio Ambiente team coll. Additional records see S1.Description. Total length (head + trunk) of specimens 1.43–1.75 mm (n = 5), holotype 1.58 mm.Head. Ratio antennae: trunk = 1: 0.83–0.98 (n = 4), holotype = 1: 0.83; Ant III larger than Ant II; Ant segments ratio as I: II: III: IV = 1: 1.36–1.77: 1.65–2.03: 2.84–3.27, holotype = 1: 1.72: 1.99: 3.21. Antennal chaetotaxy (no represented): Ant IV dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally with about two rod sens sub-apical on longitudinal row, ventrally with one subapical-organ and about three wrinkly sens on longitudinal row (Fig. 4A); Ant III dorsally and ventrally with several short ciliate mic and mac, and finger-shaped sens, dorsally without modified sens, ventrally with one apical psp, about three wrinkly sens and three smooth mic on external longitudinal row, apical organ with one finger-shaped sens, two coffee bean-like sens, and one rod sens (Fig. 4A); Ant II dorsally and ventrally with several short ciliate mic and mac, dorsally with about four sub-apical finger-shaped sens and two subapical rod sens, ventrally with one apical psp, and several wrinkly sens on longitudinal external row (Fig. 4A); and Ant I dorsally and ventrally with several short ciliate mic and mac, dorsally with three basal spine-like sens, ventrally with four basal spine-like sens, about five smooth mic and several finger-shaped sens (Fig. 4A). Eyes 0 + 0. Head dorsal chaetotaxy (Fig. 42A) with 12 An (An1a–3), six A (A0–5), four M (M1–4), six S (S1–6), two Ps (Ps2, Ps5), four Pa (Pa1–5), two Pm (Pm1, Pm3), seven Pp (Pp1–7), and two Pe (Pe4, Pe6) chaetae; A1 as mes, An1a–3, A0, A2, S5, Pa5 and Pm3 as mac; interocular p mic present. Basomedian and basolateral labial fields with a1–5 smooth, M, Me, E and L1–2 ciliate, r reduced (Fig. 42B). Ventral chaetotaxy with 28 ciliate chaetae and one reduced lateral spine; postlabial G1–4; X, X4; H1–4; J1–2, chaetae b.c. present and a collar row of five chaetae distally (Fig. 42B). Prelabral chaetae ciliate. Labral chaetae smooth, no modifications. Labial papilla E with l.p. finger-shaped and subequal the base of apical appendage. Labial proximal chaetae smooth (an1–3, p2–3) and subequal in length (Fig. 42B). Maxillary palp with t.a. smooth and 1.58 × larger than b.c.Thorax dorsal chaetotaxy (Fig. 43A). Th II a, m, p series with two mic (a1–2), one mac (a5), three mic (m1–2, m4) and four mic (p4–6e), p3 complex with six mac, respectively, al and ms presents. Th III a, m, p series with three mic (a1–3), two mes (a6–7), two mic (m6–6p), three mes (m6e, m7–7e), and one mic (p6), respectively. Ratio Th II: III = 0.82–1.13: 1 (n = 6), holotype = 1.13: 1.Abdomen dorsal chaetotaxy (Fig. 43B, C). Abd I a, m series with one (a5) and six (m2–6e) mic, respectively, ms present. Abd II a, m, p series with two mic (a6–7), two mac (m3, m5), three mic (p5–7) respectively, el mic and as present; a5 and m2 bothriotricha surrounded by four and four fan-shaped chaetae, respectively. Abd III a, m, p series with one mic (a7), three fan-shaped chaetae (a2–3, a6), two mic (m7i–7), three mac (m3, am6, pm6) and three mic (p6e–7), one mac (p6) chaetae respectively; a5, m2 and m5 bothriotricha with five, two and two fan-shaped chaetae, respectively, as sens elongated, ms present. Abd IV A–Fe series with four mic (A1, A5–6, Ae1), one mac (A3), one mic (B1), one mes (B6), two mac (B4–5), four mic (C1–4), three mic (T1, T5–6), one mes (T7), five mic (D1–3, De3), one mes (D3p), one mic (E4p2), one mes (E4p), three mac (E1–3), one mic (Ee12), three mes (Ee9–11), one mic (F1), three mes (F2–3p), one mic (Fe2), three mes (Fe3–5) chaetae, respectively; T2, T4 and E4 bothriotricha surrounded by four and two (T3) fan-shaped chaetae, respectively; ps and as present, and at least six supernumerary sens with uncertain homology ‘s’ (Fig. 8A); Abd. IV posteriorly with three psp. Abd V a, m, p series with three mic (a1, a3), one mes (a6), one mac (a5), two mic (m5a–5e), three mac (m2–3, m5), five mic (p3a–6ae), one mic (p6e), two mes (ap6, pp6), four mac (p1, p3–5) chaetae, respectively; as and acc.p4–5 present. Ratio Abd III: IV = 1: 2.98–4.82 (n = 6), holotype = 1: 3.81.Legs. Trochanteral organ diamond shape with about 19 spine-like chaetae, plus 2–3 psp one external, one on distal vertex and another (present or absent) on top of posterior spines row of Omt (Fig. 44A). Unguis outer side with one paired tooth straight and not developed on proximal third; inner lamella wide with two teeth, basal pair subequal, m.t. and a.t. absent. Unguiculus with all lamellae smooth and lanceolate (a.i., a.e., p.i., p.e.) (Fig. 44B); ratio unguis: unguiculus = 1.49–1.80: 1 (n = 6), holotype = 1.80: 1. Tibiotarsal smooth chaetae about 1.25× smaller than unguiculus; tenent hair slightly capitate and about 0.54× smaller than unguis outer lamella.Collophore (Fig. 44C). Anterior side with 11 ciliate, apically acuminate chaetae, six proximal (thinner); two subdistal and three distal mac; lateral flap with 11 chaetae, five ciliate in the proximal row and six smooth in the distal row.Furcula. Covered with ciliate chaetae, spine-like chaetae and scales. Manubrial plate with four ciliate chaetae (two inner mac) and three psp (Fig. 44D). Dens posterior face with two or more longitudinal rows of spine-like chaetae about 31–39 external and 18–21 internal, external spines larger and thinner than internal ones. Mucro with three teeth (Fig. 44E), ratio width: length = 0,28 (holotype).Etymology. Honor to Dandara Kettley, Brazilian man, transvestite, murdered in 2017 (Ceará, Brazil) in a homophobia crime.Remarks. Trogolaphysa dandarae sp. nov. resembles T. ernesti, T. formosensis and T. piracurucaensis by chaetae head S5 mac (all other Brazilian cave species with S5 mic); head Pm3 mac as in T. gisbertae sp. nov., but they are different in terms of head ventral proximal collar mac, unguiculus, tenent hair and collophore anterior distal chaetae (5 + 5, smooth pe, capitate, 3 + 3 and 4 + 4, serrate pe, acuminate, 2 + 2, respectively); Th II P3 complex with 6 + 6 and Th III with 3 + 3 mac (6 + 6 and 0 + 0 in T. lacerta sp. nov., T. piracurucaensis, T. ernesti and T. caripensis); T. dandarae sp. nov., T. belizeana and T. jacobyi are the only cave species with 3 + 3 teeth in the mucro. See the comparison among them in remarks of the late species. More

  • in

    Global patterns of vascular plant alpha diversity

    Linder, H. P. Plant diversity and endemism in sub‐Saharan tropical Africa. J. Biogeogr. 28, 169–182 (2001).Article 

    Google Scholar 
    Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Nat. Acad. Sci. 104, 5925–5930 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brummitt, N., Araújo, A. C. & Harris, T. Areas of plant diversity—What do we know? Plants, People, Planet 3, 33–44 (2020).Article 

    Google Scholar 
    Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 75, 1–34 (1988).Article 

    Google Scholar 
    Slik, J. F. et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. 112, 7472–7477 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Parmentier, I. et al. The odd man out? Might climate explain the lower tree α‐diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).Article 

    Google Scholar 
    Weigand, A. et al. Global fern and lycophyte richness explained: How regional and local factors shape plot richness. J. Biogeogr. 47, 59–71 (2020).Article 

    Google Scholar 
    Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE 5, e15734 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Bruelheide, H., Jiménez-Alfaro, B., Jandt, U. & Sabatini, F. M. Deriving site-specific species pools from large databases. Ecography 43, 1215–1228 (2020).Article 

    Google Scholar 
    Dengler, J. et al. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. J. Biogeogr. 47, 72–86 (2020).Article 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, And Conservation (Oxford University Press, 2007).Bruelheide, H. et al. sPlot —a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Ricklefs, R. E. Community diversity—relative roles of local and regional processes. Science 235, 167–171 (1987).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Crawley, M. J. & Harral, J. E. Scale dependence in plant biodiversity. Science 291, 864–868 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiménez-Alfaro, B. et al. History and environment shape species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2, 483–490 (2018).PubMed 
    Article 

    Google Scholar 
    Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S. & Blasi, C. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 15, 147–157 (2014).Article 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    Pärtel, M., Bennett, J. A. & Zobel, M. Macroecology of biodiversity: disentangling local and regional effects. N. Phytol. 211, 404–410 (2016).Article 

    Google Scholar 
    Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    Biurrun, I. et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. J. Veg. Sci. 32, e13050 (2021).Article 

    Google Scholar 
    Da, S. S. et al. Plant biodiversity patterns along a climatic gradient and across protected areas in West Africa. Afr. J. Ecol. 56, 641–652 (2018).Article 

    Google Scholar 
    Gerstner, K., Dormann, C. F., Václavík, T., Kreft, H. & Seppelt, R. Accounting for geographical variation in species–area relationships improves the prediction of plant species richness at the global scale. J. Biogeogr. 41, 261–273 (2014).Article 

    Google Scholar 
    Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).PubMed 
    Article 

    Google Scholar 
    Muñoz Mazón, M. et al. Mechanisms of community assembly explaining beta-diversity patterns across biogeographic regions. J. Veg. Sci. 32, e13032 (2021).Article 

    Google Scholar 
    Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    Večeřa, M. et al. Alpha diversity of vascular plants in European forests. J. Biogeogr. 46, 1919–1935 (2019).Article 

    Google Scholar 
    Wüest, R. O. et al. Macroecology in the age of Big Data—Where to go from here? J. Biogeogr. 47, 1–12 (2019).Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).Article 

    Google Scholar 
    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belitz, K. & Stackelberg, P. Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environ. Model. Softw. 139, 105006 (2021).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92, 61–83 (2005).
    Google Scholar 
    Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231 (2021).Article 

    Google Scholar 
    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).Article 

    Google Scholar 
    Chytrý, M. et al. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87, 217–278 (2015).
    Google Scholar 
    Whitmore, T. C., Peralta, R. & Brown, K. Total species count in a Costa Rican tropical rain forest. J. Trop. Ecol. 1, 375–378 (1985).Article 

    Google Scholar 
    Chytrý, M. et al. High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. J. Veg. Sci. 23, 605–616 (2012).Article 

    Google Scholar 
    Duivenvoorden, J. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodivers. Conserv. 3, 685–715 (1994).Article 

    Google Scholar 
    Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. in Forest Biodiversity in North, Central and South America and the Carribean: Research and Monitoring. Man and the Biosphere Series (eds. Dallmeier, F. & Comiskey, J. A.) (Unesco and The Parthenon Publishing Group, 1998).Mendieta‐Leiva, G. et al. EpIG‐DB: a database of vascular epiphyte assemblages in the Neotropics. J. Veg. Sci. 31, 518–528 (2020).Article 

    Google Scholar 
    Spicer, M. E., Mellor, H. & Carson, W. P. Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology 101, e02974 (2020).PubMed 
    Article 

    Google Scholar 
    Royo, A. A. & Carson, W. P. The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia 145, 66–75 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dwomoh, F. K. & Wimberly, M. C. Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landsc. Ecol. 32, 1849–1865 (2017).Article 

    Google Scholar 
    Condit, R. et al. Beta-diversity in tropical forest trees. Science 295, 666–669 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, K. et al. Species packing and the latitudinal gradient in beta-diversity. Proc. R. Soc. B 288, 20203045 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Naturalist 133, 240–256 (1989).Article 

    Google Scholar 
    Andermann, T., Antonelli, A., Barrett, R. L. & Silvestro, D. Estimating alpha, beta, and gamma diversity through deep learning. Front Plant Sci. 13, 839407 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Nat. Acad. Sci. 114, 10695–10700 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cayuela, L. et al. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).Article 

    Google Scholar 
    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).ADS 
    Article 

    Google Scholar 
    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the Anthropocene. PLoS ONE 7, e30535 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Dengler, J. et al. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J. Veg. Sci. 22, 582–597 (2011).Article 

    Google Scholar 
    Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).Article 

    Google Scholar 
    Chytrý, M. Database of Masaryk University Vegetation Research in Siberia. Biodiver. Ecol. 4, 290 (2012).Article 

    Google Scholar 
    Schmidt, M. et al. The West African Vegetation Database. Biodiv. Ecol. 4, 105–110 (2012).Article 

    Google Scholar 
    Muche, G., Schmiedel, U. & Jürgens, N. BIOTA Southern Africa Biodiversity Observatories Vegetation Database. Biodiver. Ecol. 4, 111–123 (2012).Article 

    Google Scholar 
    Revermann, R. et al. Vegetation database of the Okavango Basin. Phytocoenologia 46, 103–104 (2016).Article 

    Google Scholar 
    N’Guessan, A. E. et al. Drivers of biomass recovery in a secondary forested landscape of West Africa. Ecol. Manag. 433, 325–331 (2019).Article 

    Google Scholar 
    Müller, J. Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos (Frankfurt-Main Universität, 2003).Kearsley, E. et al. Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun. 4, 2269 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Djomo Nana, E. et al. Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica 47, 758–764 (2015).Article 

    Google Scholar 
    Wana, D. & Beierkuhnlein, C. Responses of plant functional types to environmental gradients in the south‐west Ethiopian highlands. J. Trop. Ecol. 27, 289–304 (2011).Article 

    Google Scholar 
    Finckh, M. Vegetation Database of Southern Morocco. Biodiver. Ecol. 4, 297 (2012).Article 

    Google Scholar 
    Strohbach, B. & Kangombe, F. National Phytosociological Database of Namibia. Biodiver. Ecol. 4, 298–298 (2012).Article 

    Google Scholar 
    Samimi, C. Das Weidepotential im Gutu‐Distrikt (Zimbabwe)—Möglichkeiten und Grenzen der Modellierung unter Verwendung von Landsat TM‐5. Vol. 19 (2003).Černý, T. et al. Classification of Korean forests: patterns along geographic and environmental gradients. Appl. Veg. Sci. 18, 5–22 (2015).Article 

    Google Scholar 
    Nowak, A. et al. Vegetation of Middle Asia: the project state of the art after ten years of survey and future perspectives. Phytocoenologia 47, 395–400 (2017).Article 

    Google Scholar 
    Liu, H., Cui, H., Pott, R. & Speier, M. Vegetation of the woodland‐steppe ecotone in southeastern Inner Mongolia, China. J. Veg. Sci. 11, 525–532 (2000).Article 

    Google Scholar 
    Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).Article 

    Google Scholar 
    Bruelheide, H. et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol. Monogr. 81, 25–41 (2011).Article 

    Google Scholar 
    Cheng, X.-L. et al. Taxonomic and phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, China: Reponses to soil properties. PLoS ONE 13, e0198517 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hatim, M. Vegetation Database of Sinai in Egypt. Biodiver. Ecol. 4, 303 (2012).Article 

    Google Scholar 
    Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 371, 20150275 (2016).Article 

    Google Scholar 
    Dolezal, J., Dvorsky, M. & Kopecky, M. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borchardt, P. & Schickhoff, U. Vegetation Database of South‐Western Kyrgyzstan—the walnut‐wildfruit forests and alpine pastures. Biodiver. Ecol. 4, 309 (2012).Article 

    Google Scholar 
    Wagner, V. Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. J. Veg. Sci. 20, 199–208 (2009).Article 

    Google Scholar 
    von Wehrden, H., Wesche, K. & Miehe, G. Plant communities of the southern Mongolian Gobi. Phytocoenologia 39, 331–376 (2009).Article 

    Google Scholar 
    Chepinoga, V. V. Wetland Vegetation Database of Baikal Siberia (WETBS). Biodiver. Ecol. 4, 311 (2012).Article 

    Google Scholar 
    Korolyuk, A. et al. Database of Siberian Vegetation (DSV). Biodiver. Ecol. 4, 312–312 (2012).Article 

    Google Scholar 
    El-Sheikh, M. A. et al. SaudiVeg ecoinformatics: aims, current status and perspectives. Saudi J. Biol. Sci. 24, 389–398 (2017).PubMed 
    Article 

    Google Scholar 
    Vanselow, K. A. Eastern Pamirs—a vegetation‐plot database for the high mountain pastures of the Pamir Plateau (Tajikistan). Phytocoenologia 46, 105 (2016).Article 

    Google Scholar 
    De Sanctis, M. & Attorre, F. Socotra Vegetation Database. Biodiver. Ecol. 4, 315 (2012).Article 

    Google Scholar 
    Chabbi, A. & Loescher, H. W. Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (CRC Press, 2017).Ibanez, T. et al. Structural and floristic diversity of mixed rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC‐PIPPN). Appl. Veg. Sci. 17, 386–397 (2014).Wiser, S. K., Bellingham, P. J. & Burrows, L. E. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
    Google Scholar 
    Whitfeld, T. J. S. et al. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46, 538–548 (2014).Article 

    Google Scholar 
    Dengler, J. & Rūsiņa, S. Database dry grasslands in the Nordic and Baltic Region. Biodiver. Ecol. 4, 319–320 (2012).Article 

    Google Scholar 
    Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M. & Loidi, J. Vegetation-plot database of the University of the Basque Country (BIOVEG). Biodiver. Ecol. 4, 328 (2012).Article 

    Google Scholar 
    Vassilev, K., Stevanović, Z. D., Cušterevska, R., Bergmeier, E. & Apostolova, I. Balkan Dry Grasslands Database. Biodiver. Ecol. 4, 330–330 (2012).Article 

    Google Scholar 
    Marcenò, C. & Jiménez‐Alfaro, B. The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation. Phytocoenologia 47, 95–105 (2017).
    Google Scholar 
    Vassilev, K. et al. Balkan Vegetation Database: historical background, current status and future perspectives. Phytocoenologia 46, 89–95 (2016).Article 

    Google Scholar 
    Landucci, F. et al. WetVegEurope: a database of aquatic and wetland vegetation of Europe. Phytocoenologia 45, 187–194 (2015).Article 

    Google Scholar 
    Peterka, T., Jiroušek, M., Hájek, M. & Jiménez‐Alfaro, B. European Mire Vegetation Database: a gap‐oriented database for European fens and bogs. Phytocoenologia 45, 291–297 (2015).Article 

    Google Scholar 
    De Sanctis, M., Fanelli, G., Mullaj, A. & Attorre, F. Vegetation database of Albania. Phytocoenologia 47, 107–108 (2017).Article 

    Google Scholar 
    Willner, W., Berg, C. & Heiselmayer, P. Austrian Vegetation Database. Biodiver. Ecol. 4, 333 (2012).Article 

    Google Scholar 
    Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. Bulgarian Vegetation Database: historic background, current status and future prospects. Biodiver. Ecol. 4, 141–148 (2012).Article 

    Google Scholar 
    Wohlgemuth, T. Swiss Forest Vegetation Database. Biodiver. Ecol. 4, 340 (2012).Article 

    Google Scholar 
    Chytrý, M. & Rafajová, M. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data. Preslia 75, 1–15 (2003).
    Google Scholar 
    Jansen, F., Dengler, J. & Berg, C. VegMV—the vegetation database of Mecklenburg‐Vorpommern. Biodiver. Ecol. 4, 149–160 (2012).Article 

    Google Scholar 
    Ewald, J., May, R. & Kleikamp, M. VegetWeb—the national online‐repository of vegetation plots from Germany. Biodiver. Ecol. 4, 173–175 (2012).Article 

    Google Scholar 
    Jandt, U. & Bruelheide, H. German vegetation reference database (GVRD). Biodiver. Ecol. 4, 355–355 (2012).Article 

    Google Scholar 
    Garbolino, E., De Ruffray, P., Brisse, H. & Grandjouan, G. The phytosociological database SOPHY as the basis of plant socio-ecology and phytoclimatology in France. Biodiver. Ecol. 4, 177–184 (2012).Article 

    Google Scholar 
    Dimopoulos, P. & Tsiripidis, I. Hellenic Natura 2000 Vegetation Database (HelNAtVeg). Biodiver. Ecol. 4, 388 (2012).Article 

    Google Scholar 
    Fotiadis, G., Tsiripidis, I., Bergmeier, E. & Dimopoulos, P. Hellenic Woodland Database. Biodiver. Ecol. 4, 389 (2012).Article 

    Google Scholar 
    Stančić, Z. Phytosociological Database of Non‐Forest Vegetation in Croatia. Biodiver. Ecol. 4, 391 (2012).Article 

    Google Scholar 
    Lájer, K. et al. Hungarian Phytosociological database (COENODATREF): sampling methodology, nomenclature and its actual stage. Ann. Botanica Nuova Ser. 7, 197–201 (2008).
    Google Scholar 
    Landucci, F. et al. VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst. 146, 756–763 (2012).Article 

    Google Scholar 
    Casella, L., Bianco, P. M., Angelini, P. & Morroni, E. Italian National Vegetation Database (BVN/ISPRA). Biodiver. Ecol. 4, 404 (2012).Article 

    Google Scholar 
    Agrillo, E. et al. Nationwide Vegetation Plot Database—Sapienza University of Rome: state of the art, basic figures and future perspectives. Phytocoenologia 47, 221–229 (2017).Article 

    Google Scholar 
    Rūsiņa, S. Semi‐natural Grassland Vegetation Database of Latvia. Biodiver. Ecol. 4, 409 (2012).Article 

    Google Scholar 
    Schaminée, J. H. J. et al. Schatten voor de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank (KNNV Uitgeverij, 2006).Kącki, Z. & Śliwiński, M. The Polish Vegetation Database: structure, resources and development. Acta Soc. Bot. Pol. 81, 75–79 (2012).Article 

    Google Scholar 
    Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. Romanian Forest Database: a phytosociological archive of woody vegetation. Phytocoenologia 47, 389–393 (2017).Article 

    Google Scholar 
    Vassilev, K. et al. The Romanian Grassland Database (RGD): historical background, current status and future perspectives. Phytocoenologia 48, 91–100 (2018).Article 

    Google Scholar 
    Aćić, S., Petrović, M., Dajić Stevanović, Z. & Šilc, U. Vegetation database Grassland vegetation in Serbia. Biodiver. Ecol. 4, 418 (2012).Article 

    Google Scholar 
    Golub, V. et al. Lower Volga Valley Phytosociological Database. Biodiver. Ecol. 4, 419 (2012).Article 

    Google Scholar 
    Lysenko, T., Kalmykova, O. & Mitroshenkova, A. Vegetation Database of the Volga and the Ural Rivers Basins. Biodiver. Ecol. 4, 420–421 (2012).Article 

    Google Scholar 
    Prokhorov, V., Rogova, T. & Kozhevnikova, M. Vegetation database of Tatarstan. Phytocoenologia 47, 309–313 (2017).Article 

    Google Scholar 
    Šilc, U. Vegetation Database of Slovenia. Biodiver. Ecol. 4, 428 (2012).Article 

    Google Scholar 
    Šibík, J. Slovak Vegetation Database. Biodiver. Ecol. 4, 429 (2012).Article 

    Google Scholar 
    Kuzemko, A. Ukrainian Grasslands Database. Biodiver. Ecol. 4, 430 (2012).Article 

    Google Scholar 
    Cayuela, L. et al. The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics. Biodiver. Ecol. 4, 211–224 (2012).Article 

    Google Scholar 
    Wagner, V., Spribille, T., Abrahamczyk, S. & Bergmeier, E. Timberline meadows along a 1000 km transect in NW North America: species diversity and community patterns. Appl. Veg. Sci. 17, 129–141 (2014).Article 

    Google Scholar 
    Aubin, I., Gachet, S., Messier, C. & Bouchard, A. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience 14, 259–271 (2007).Article 

    Google Scholar 
    Sieg, B., Drees, B. & Daniëls, F. J. A. Vegetation and altitudinal zonation in continental West Greenland. Medd. om. Gr.ønland Biosci. 57, 1–93 (2006).
    Google Scholar 
    Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodiv. Ecol. 4, 233–241 (2012).Article 

    Google Scholar 
    Peet, R. K. et al. Vegetation‐plot database of the Carolina Vegetation Survey. Biodiver. Ecol. 4, 243–253 (2012).Article 

    Google Scholar 
    Walker, D. A. et al. The Alaska Arctic Vegetation Archive (AVA‐AK). Phytocoenologia 46, 221–229 (2016).Peyre, G. et al. VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia 45, 195–201 (2015).Article 

    Google Scholar 
    Vibrans, A. C., Sevgnani, L., Lingner, D. V., Gasper, A. L. & Sabbagh, S. The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects. Pesqui. Florest. Brasileira 30, 291–302 (2010).Article 

    Google Scholar 
    Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R. & Marticorena, A. In Plant Invasions in Protected Areas (eds Foxcroft, L., Pyšek, P., Richardson, D., Genovesi, P.) (Springer, 2013).González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article 

    Google Scholar 
    Bresciano, D., Altesor, A. & Rodríguez, C. The growth form of dominant grasses regulates the invasibility of Uruguayan grasslands. Ecosphere 5, 1–12 (2014).Aiba, S.-i & Kitayama, K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 140, 139–157 (1999).Article 

    Google Scholar 
    Armstrong, A. H., Shugart, H. H. & Fatoyinbo, T. E. Characterization of community composition and forest structure in a Madagascar lowland rainforest. Tropical Conserv. Sci. 4, 428–444 (2011).Article 

    Google Scholar 
    Ayyappan, N. & Parthasarathy, N. Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers. Conserv 8, 1533–1554 (1999).Article 

    Google Scholar 
    Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. In Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (eds. Dallmeier, F. & Comiskey, J. A.) 585–594 (1998).Bordenave, B. G., Granville, J.-J. D. & Hoff, M. Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. (1998).Boyle, T. J. B. & Boontawee, B. CIFOR’s Research Programme on Conservation of Tropical Forest Genetic Resources, 395 (Center for International Forestry Research CIFOR, 1995).Bunyavejchewin, S., Baker, P. J., LaFrankie, J. V. & Ashton, P. S. Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand. Nat. Hist. Bull. Siam Soc. 49, 89–106 (2001).
    Google Scholar 
    Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).Article 

    Google Scholar 
    Cano Ortiz, A. et al. Phytosociological study, diversity and conservation status of the cloud forest in the Dominican Republic. Plants (Basel, Switzerland) 9, 741 (2020).Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 101, 1214–1224 (2013).Article 

    Google Scholar 
    Chu, C. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).ADS 
    PubMed 

    Google Scholar 
    Condit, R. S. et al. Tropical Tree a—Diversity: Results From a Worldwide Network of Large Plots (CABI, 2005).D’Amico, C. & Gautier, L. Inventory of a 1-ha lowland rainforest plot in Manongarivo, (NW Madagascar). Candollea 55, 319–340 (2000).
    Google Scholar 
    Davidar, P., Mohandass, D. & Vijayan, L. Floristic inventory of woody plants in a tropical montane (shola) forest in the Palni hills of the Western Ghats, India. Trop. Ecol. 12, 42–58 (2007).
    Google Scholar 
    Davies, S. J. & Becker, P. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J. Trop. Sci. 8, 542–569 (1996).
    Google Scholar 
    Duivenvoorden, J. F. Vascular plant species counts in the rain forests of the middle Caquet area. Colomb. Amazon. Biodivers. Conserv. 3, 685–715 (1994).Article 

    Google Scholar 
    Ek, R. C. Botanical diversity in the tropical rain forest of Guyana: Botanische diversiteit in het tropisch regenwoud van Guyana. (Met een samenvatting in het Nederlands) (Universiteit Utrecht, 1997).Galeano, G., Suárez, S. & Balslev, H. Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers. Conserv. 7, 1563–1575 (1998).Article 

    Google Scholar 
    Garrigues, J. P. Action anthropique sur la dynamique des formations végétales au sud de l’Inde (Ghâts occidentaux, Etat du Karnataka, District de Shimoga) (University of Claude Bernard, Lyon I, 1999).Gastauer, M., Leyh, W. & Meira-Neto, J. A. A. Tree Diversity and Dynamics of the Forest of Seu Nico, Viçosa, Minas Gerais, Brazil. Biodiv. Data J. 3, e5425 (2015).Article 

    Google Scholar 
    Helmi, N., Kartawinata, K. & Samsoedin, I. An undescribed lowland natural forest at Bodogol, Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 13, 33–44 (2009).
    Google Scholar 
    Hernández, L., Dezzeo, N., Sanoja, E., Salazar, L. & Castellanos, H. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield. Rev. de. Biol.ía Tropical 60, 11–33 (2012).
    Google Scholar 
    Ho, B. C. et al. The plant diversity in Bukit Timah Nature Reserve, Singapore. Gardens’ Bull. Singap. 71, 41–144 (2019).Article 

    Google Scholar 
    Hubbel, S. P. & Foster, R. B. In Tropical Rain Forest: Ecology and Management (eds Sutton, S. L., Whitmore, T. C. & Chadwick, S.) 25–41 (Blackwell Scientific Publications,1983).Kartawinata, K., Samsoedin, I., Heriyanto, M. & Afriastini, J. J. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12, 145 (2013).Article 

    Google Scholar 
    Kiratiprayoon, S. Measuring and monitoring biodiversity in tropical and temperate forests. In: IUFRO Symposium, Chiang Mai (Thailand), 27 Aug-2 (CIFOR, 1994).KuoJung, C., WeiChun, C., KeiMei, C. & ChangFu, H. Vegetation dynamics of a lowland rainforest at the northern border of the paleotropics at Nanjenshan, southern Taiwan. Taiwan J. Sci. 25, 29–40 (2010).
    Google Scholar 
    Lan, G., Zhu, H. & Cao, M. Tree species diversity of a 20-ha plot in a tropical seasonal rainforest in Xishuangbanna, southwest China. J. For. Res. 17, 432–439 (2012).CAS 
    Article 

    Google Scholar 
    Lee, H. S. et al. Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. J. Trop. Sci. 14, 379–400 (2002).
    Google Scholar 
    Linares-Palomino, R. et al. Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol. 201, 87–99 (2009).Article 

    Google Scholar 
    Lubini, A. & Mandango, A. Etude phytosociologique et ecologique des forets a Uapaca guineensis dans le nord-est du district forestier central (Zaire). Bull. Jard. Bot. Natl Belg. 51, 231 (1981).Article 

    Google Scholar 
    Makana, J.-R., Hart, T. & Hart, J. Forest structure and diversity of lianas and understory treelets in monodominant and mixed stands in the Ituri Forest, Democratic Republic of the Congo. Liana Article Index 20 (1998).Mansur, M. & Kartawinata, K. Phytosociology of a lower montane forest on Mt. Batulanteh, Sumbawa, Indonesia. Reinwardtia 16, 77 (2017).Article 

    Google Scholar 
    Mikoláš, M. et al. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc. R. Soc. B 288, 20211631 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohandass, D. & Davidar, P. Floristic structure and diversity of a tropical montane evergreen forest (shola) of the Nilgiri Mountains, southern India. Trop. Ecol. 50, 219–229 (2009).
    Google Scholar 
    Monge González, M. et al. BIOVERA-Tree: tree diversity, community composition, forest structure and functional traits along gradients of forest-use intensity and elevation in Veracruz, Mexico. Biodiv. Data J. 9, e69560 (2021).Ngo, K. M., Davies, S., Nik, H., Faizu, N. & Lum, S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Diver. 9, 397–407 (2016).Article 

    Google Scholar 
    Parthasarathy, N. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in southern Western Ghats, India. Biodivers. Conserv. 8, 1365–1381 (1999).Article 

    Google Scholar 
    Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38 (1997).Pascal, J. P. Wet Evergreen Forests of the Western Ghats of India (Institut français de Pondichéry, 1988).Pascal, J. P. & Pelissier, R. Structure and floristic composition of a tropical evergreen forest in south-west India. J. Trop. Ecol. 12, 191–214 (1996).Article 

    Google Scholar 
    Phillips, O. L. et al. Efficient plot-based floristic assessment of tropical forests. J. Trop. Ecol. 19, 629–645 (2003).Article 

    Google Scholar 
    Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak: I. Forest Environment, Structure and Floristics. J. Ecol. 71, 237 (1983).Article 

    Google Scholar 
    Ramesh, B. R. et al. Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology 91, 3118 (2010).Article 

    Google Scholar 
    Razak, S. A. & Haron, N. W. Phytosociology of Aquilaria Malaccensis Lamk. and its communities from a tropical forest reserve in peninsular Malaysia. Pak. J. Bot. 47, 2143–2150 (2015).
    Google Scholar 
    Romoleroux, K. et al. Especies leñosas (dap= 1 cm) encontradas en dos hectáreas de un bosque de la Amazonía ecuatoriana. Estudios sobre diversidad y ecología de plantas, 189–215 (1997).Sarah, A. R., Nuradnilaila, H., Haron, N. W. & Azani, M. A Phytosociological Study on the Community of Palaquium gutta (Hook. f.) Baill.(Sapotaceae) at Ayer Hitam Forest Reserve, Selangor, Malaysia. Sains Malaysiana 44, 491–496 (2015).Article 

    Google Scholar 
    Schrader, J., Moeljono, S., Tambing, J., Sattler, C. & Kreft, H. A new dataset on plant occurrences on small islands, including species abundances and functional traits across different spatial scales. Biodiv. Data J. 8, e55275 (2020).Article 

    Google Scholar 
    Sheil, D., Kartawinata, K., Samsoedin, I., Priyadi, H. & Afriastini, J. J. The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): results from a one-hectare plot. Plant Ecol. Diver. 3, 59–66 (2010).Article 

    Google Scholar 
    Sukumar, R. et al. Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, southern India. Curr. Sci. 62, 608–616 (1992).
    Google Scholar 
    van Andel, T. R. Floristic composition and diversity of three swamp forests in northwest Guyana. Plant Ecol. 167, 293–317 (2003).Article 

    Google Scholar 
    Webb, E. L. & Fa’aumu, S. Diversity and structure of tropical rain forest of Tutuila, American Samoa: effects of site age and substrate. Plant Ecol. 144, 257–274 (1999).Article 

    Google Scholar 
    Zimmerman, J. K. et al. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life Histories. J. Ecol. 82, 911 (1994).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schultz, J. The Ecozones of the World (Springer, 2005).Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. Available online at: http://cran.r-project.org/web/packages/dismo/index.html (2011).Zhou, S. et al. Estimating stock depletion level from patterns of catch history. Fish. Fish. 18, 742–751 (2017).Article 

    Google Scholar 
    Rocchini, D. et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geogr. 35, 211–226 (2011).Article 

    Google Scholar 
    Potapov, P., Laestadius, L. & Minnemeyer, S. Global map of potential forest cover www.wri.org/forest-restoration-atlas (2011).Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article 

    Google Scholar 
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).Article 

    Google Scholar 
    Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. RFID J. 8, 204–218 (2016).
    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing v.3.6.1. R Foundation for Statistical Computing http://www.R-project.org/ (2019).South, A. rnaturalearth: World Map Data from Natural Earth v.0.1.0. R package https://CRAN.R-project.org/package=rnaturalearth (2017).Sabatini, F. M. et al. Global patterns of vascular plant alpha-diversity [Dataset]. iDiv Data Repository. https://doi.org/10.25829/idiv.3506-p4c0mo (2022).Sabatini, F. M. fmsabatini/GlobalLocal_PlantRichness: NatComms R3 v.3. Zenodo https://doi.org/10.5281/zenodo.6659837 (2022). More

  • in

    Asymmetrical dose responses shape the evolutionary trade-off between antifungal resistance and nutrient use

    Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio 11, e00449–20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nash, A. et al. MARDy: Mycology Antifungal Resistance Database. Bioinformatics 34, 3233–3234 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ksiezopolska, E. et al. Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata. Curr. Biol. 4, 5314–5326.e10 (2021).Article 
    CAS 

    Google Scholar 
    Bryce Taylor, M. et al. yEvo: Experimental evolution in high school classrooms selects for novel mutations and epistatic interactions that impact clotrimazole resistance in S. cerevisiae. Preprint at bioRxiv https://doi.org/10.1101/2021.05.02.442375 (2021).Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerstein, A. C., Lo, D. S. & Otto, S. P. Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast. Genetics 192, 241–252 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, F. et al. The fitness costs and benefits of trisomy of each Candida albicans chromosome. Genetics 218, iyab056 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kanafani, Z. A. & Perfect, J. R. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46, 120–128 (2008).PubMed 
    Article 

    Google Scholar 
    Iyer, K. R., Revie, N. M., Fu, C., Robbins, N. & Cowen, L. E. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat. Rev. Microbiol. 19, 454–466 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330–338 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Erbs, P., Exinger, F. & Jund, R. Characterization of the Saccharomyces cerevisiae FCY1 gene encoding cytosine deaminase and its homologue FCA1 of Candida albicans. Curr. Genet. 31, 1–6 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wrenbeck, E. E., Azouz, L. R. & Whitehead, T. A. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nat. Commun. 8, 15695 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, J. Z., Fowler, D. M. & Tokuriki, N. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase. eLife 9, e56707 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, A., Acevedo-Rocha, C. G. & Reetz, M. T. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Appl. Microbiol. Biotechnol. 102, 6095–6103 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biot-Pelletier, D. & Martin, V. J. J. Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9. J. Biol. Eng. 10, 6 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dionne, U. et al. Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Nat. Commun. 12, 1597 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eddy, A. A. Expulsion of uracil and thymine from the yeast Saccharomyces cerevisiae: contrasting responses to changes in the proton electrochemical gradient. Microbiology 143, 219–229 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kurtz, J. E., Exinger, F., Erbs, P. & Jund, R. New insights into the pyrimidine salvage pathway of Saccharomyces cerevisiae: requirement of six genes for cytidine metabolism. Curr. Genet. 36, 130–136 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fujimura, H. Growth inhibition of Saccharomyces cerevisiae by the immunosuppressant leflunomide is due to the inhibition of uracil uptake via Fur4p. Mol. Gen. Genet. 260, 102–107 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Després, P. C., Dubé, A. K., Nielly-Thibault, L., Yachie, N. & Landry, C. R. Double selection enhances the efficiency of Target-AID and Cas9-based genome editing in yeast. G3 8, 3163–3171 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wang, J. et al. Role of glutamate 64 in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase. Biochemistry 51, 475–486 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ivankov, D. N., Finkelstein, A. V. & Kondrashov, F. A. A structural perspective of compensatory evolution. Curr. Opin. Struct. Biol. 26, 104–112 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayrose, I., Graur, D., Ben-Tal, N. & Pupko, T. Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. Mol. Biol. Evol. 21, 1781–1791 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tarassov, K. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freschi, L., Torres-Quiroz, F., Dubé, A. K. & Landry, C. R. qPCA: a scalable assay to measure the perturbation of protein–protein interactions in living cells. Mol. Biosyst. 9, 36–43 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chang, A. et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49, D498–D508 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mirdita, M. et al. ColabFold – Making protein folding accessible to all. Preprint at bioRxiv https://doi.org/10.1101/2021.08.15.456425 (2022).Pokusaeva, V. O. et al. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet. 15, e1008079 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oliver, J. D. et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl Acad. Sci. USA 113, 12809–12814 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoenigl, M. et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs https://doi.org/10.1007/s40265-021-01611-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verweij, P. E., Te Dorsthorst, D. T. A., Janssen, W. H. P., Meis, J. F. G. M. & Mouton, J. W. In vitro activities at pH 5.0 and pH 7.0 and in vivo efficacy of flucytosine against Aspergillus fumigatus. Antimicrob. Agents Chemother. 52, 4483–4485 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gsaller, F. et al. Mechanistic basis of pH-dependent 5-flucytosine resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02593-17 (2018).Garland, T. Jr. Trade-offs. Curr. Biol. 24, R60–R61 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chang, Y. C. et al. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat. Commun. 12, 3418 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Billmyre, R. B., Applen Clancey, S., Li, L. X., Doering, T. L. & Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nat. Commun. 11, 127 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldstein, A. L. & McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeLuna, A., Springer, M., Kirschner, M. W. & Kishony, R. Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol. 8, e1000347 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Casadaban, M. J. & Cohen, S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yachie, N. et al. Pooled-matrix protein interaction screens using barcode fusion genetics. Mol. Syst. Biol. 12, 863 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Andrews, S. FastQC: A quality control analysis tool for high throughput sequencing data (Babraham Bioinformatics, 2016); https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

    Google Scholar 
    Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reback, J. et al. pandas-dev/pandas: Pandas 1.3.4. Zenodo https://doi.org/10.5281/zenodo.5574486 (2021).Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).Article 

    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-31 (2012).Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rice, P., Longden, L. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. https://doi.org/10.1016/S0168-9525(00)02024-2 (2000).Article 
    PubMed 

    Google Scholar 
    Ryan, O. W., Poddar, S. & Cate, J. H. D. Crispr–cas9 genome engineering in Saccharomyces cerevisiae cells. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot086827 (2016).Amberg, D. C., Burke, D. J. & Strathern, J. N. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual (CSHL Press, 2005).Ireton, G. C., Black, M. E. & Stoddard, B. L. The 1.14 A crystal structure of yeast cytosine deaminase: evolution of nucleotide salvage enzymes and implications for genetic chemotherapy. Structure 11, 961–972 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marchant, A. et al. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 8, e46754 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Usmanova, D. R. et al. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation. Bioinformatics 34, 3653–3658 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chorostecki, U., Molina, M., Pryszcz, L. P. & Gabaldón, T. MetaPhOrs 2.0: integrative, phylogeny-based inference of orthology and paralogy across the tree of life. Nucleic Acids Res. 48, W553–W557 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lõoke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schlecht, U., Miranda, M., Suresh, S., Davis, R. W. & St Onge, R. P. Multiplex assay for condition-dependent changes in protein-protein interactions. Proc. Natl Acad. Sci. USA 109, 9213–9218 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diss, G. & Lehner, B. The genetic landscape of a physical interaction. eLife 7, e32472 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).CAS 
    PubMed 
    Article 

    Google Scholar  More