Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237â240 (1998).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591â596 (2010).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (â€3 ÎŒm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795â820 (2008).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Agawin, N. S. R., Duarte, C. M. & AgustĂ, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591â600 (2000).CASÂ
ArticleÂ
Google ScholarÂ
MorĂĄn, X. A. G., LĂłpez-Urrutia, Ă., Calvo-DĂaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137â1144 (2010).ArticleÂ
Google ScholarÂ
Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221â227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189â206 (1995).CASÂ
ArticleÂ
Google ScholarÂ
Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503â513 (1998).ArticleÂ
Google ScholarÂ
Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944â947 (2003).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165â2180 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391â419 (2019).CASÂ
ArticleÂ
Google ScholarÂ
Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364â371 (2015).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701â710 (2013).CASÂ
ArticleÂ
Google ScholarÂ
Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).ArticleÂ
Google ScholarÂ
Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377â387 (1997).CASÂ
ArticleÂ
Google ScholarÂ
Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701â715 (1993).CASÂ
ArticleÂ
Google ScholarÂ
Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1â12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675âR677 (2012).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Dimier, C. Ă©, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823â836 (2009).CASÂ
ArticleÂ
Google ScholarÂ
Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076â1092 (2015).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533â536 (2016).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543â548 (2018).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188â197 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675â682 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Chi, J., MahĂ©, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660â672 (2014).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185â191 (2005).CASÂ
PubMedÂ
Google ScholarÂ
Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual âscandalsâ and the evolution of sex. Bioessays 30, 579â589 (2008).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084â1097.e21 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
FrĂ©mont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393â401 (2022).ArticleÂ
Google ScholarÂ
Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426â1433 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726â749 (2005).ArticleÂ
Google ScholarÂ
Agusti, S., LubiĂĄn, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).ArticleÂ
Google ScholarÂ
Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123â129 (1994).CASÂ
ArticleÂ
Google ScholarÂ
Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676â679 (2010).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534â537 (2018).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
TurnĆĄek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921â3948 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602â605 (2022).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182â190 (2018).ArticleÂ
Google ScholarÂ
Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121â124 (2003).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274â7284 (1999).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95â98 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713â714 (2008).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Kopylova, E., NoĂ©, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211â3217 (2012).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202â2204 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Vaser, R. & Ć ikiÄ, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1â9 (2021).ArticleÂ
Google ScholarÂ
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540â546 (2019).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155â158 (2020).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350â3352 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Vaser, R., SoviÄ, I., Nagarajan, N. & Ć ikiÄ, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737â746 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573â580 (1999).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Morgulis, A., Gertz, E. M., SchĂ€ffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028â1040 (2006).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351âi358 (2005).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841â842 (2010).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867â868 (2018).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086â1092 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821â829 (2008).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078â2079 (2009).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Marchler-Bauer, A. et al. CDD: NCBIâs conserved domain database. Nucleic Acids Res. 43, D222âD226 (2015).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLATâthe BLAST-like alignment tool. Genome Res. 12, 656â664 (2002).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403â410 (1990).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988â995 (2004).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435âW439 (2006).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116âW120 (2005).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366â368 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251â2252 (2020).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CASÂ
ArticleÂ
Google ScholarÂ
Li, H. & Durbin, R. Fast and accurate short read alignment with BurrowsâWheeler transform. Bioinformatics 25, 1754â1760 (2009).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Aumont, O., EthĂ©, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465â2513 (2015).CASÂ
ArticleÂ
Google ScholarÂ
Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877â2889 (2017).CASÂ
ArticleÂ
Google ScholarÂ
Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
GĂŒnther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30â38 (2010).ArticleÂ
Google ScholarÂ
Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352â4357 (2011).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1â12 (2019).CASÂ
ArticleÂ
Google ScholarÂ
Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239â244 (2008).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79â86 (2004).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268â272 (2009).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705â7710 (2007).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209â213 (2013).CASÂ
PubMedÂ
ArticleÂ
Google Scholar More