More stories

  • in

    Animal–substrate interactions preserved in ancient lagoonal chalk

    Bromley, R. G. & Gale, A. S. The lithostratigraphy of the English Chalk Rock. Cretac. Res. 3, 273–306 (1982).Article 

    Google Scholar 
    Scholle, P. A., Arthur, M. A. & Ekdale, A. A. Pelagic environment. In Carbonate Depositional Environments (eds Scholle, P. A. et al.) 619–691 (Am. Ass. Petrol. Geol. Mem. 33, 1983).Chapter 

    Google Scholar 
    Gealy, E. L., Winterer, E. L. & Moberly, R. Methods, conventions, and general observations. Initial Rep. Deep Sea Drill. Proj. 7, 9–26 (1971).
    Google Scholar 
    Kroenke, L. W. et al. Ocean Drilling Program. Proc. ODP, Init. Repts. 130, College Station (1991).Dunham, R. L. Classification of carbonate rocks according to depositional texture. Mem. Am. Assoc. Petrol. Geol. 1, 108–121 (1962).
    Google Scholar 
    Quine, M. & Bosence, D. Stratal geometries, facies and sea-floor erosion in Upper Cretaceous chalk, Normandy, France. Sedimentology 38, 1113–1152 (1991).ADS 
    Article 

    Google Scholar 
    Røgen, B., Gommesen, L. & Fabricius, I. L. Grain size distributions of Chalk from Image analysis of electron micrographs. Comput. Geosci. 27, 1071–1080 (2001).ADS 
    Article 

    Google Scholar 
    Saïag, J. et al. Classifying chalk microtextures: Sedimentary versus diagenetic origin (Cenomanian–Santonian, Paris Basin, France). Sedimentology 66, 2976–3007 (2019).Article 
    CAS 

    Google Scholar 
    Scholle, P. A. Chalk diagenesis and its relation to petroleum exploration: Oil from chalks, a modern miracle?. Bull. Am. Assoc. Petrol. Geol. 61, 982–1009 (1977).CAS 

    Google Scholar 
    Tagliavento, M., John, C. M., Anderskouv, K. & Stemmerik, L. Towards a new understanding of the genesis of chalk: Diagenetic origin of micarbs confirmed by clumped isotope analysis. Sedimentology 68, 513–530 (2021).CAS 
    Article 

    Google Scholar 
    Bramlette, M. N. Significance of coccolithophorids in calcium-carbonate deposition. Bull. Geol. Soc. Am. 69, 121–126 (1958).Article 

    Google Scholar 
    Hattin, D. E. & Darko, D. A. Technique for determining coccolith abundance in shaly chalk of Greenhorn Limestone (Upper Cretaceous) of Kansas. Kansas Geol. Surv. Bull. 202, 1–11 (1971).
    Google Scholar 
    Houghton, S. D. Calcareous nannofossils. In Calcareous algae and Stromatolites (ed. Riding, R.) 217–266 (Springer, 1991).Chapter 

    Google Scholar 
    Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. In Coccolithophores—From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 481–508 (Springer, 2004).
    Google Scholar 
    Roth, P. H. Mesozoic paleoceanography of the North Atlantic and Tethys Oceans. In North Atlantic Paleoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Special Publications, 1986).
    Google Scholar 
    Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M. & Kinkel, H. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity: A review. Paläontol. Z. 79, 93–112 (2005).Article 

    Google Scholar 
    Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ando, A., Huber, B. T., MacLeod, K. G. & Watkins, D. K. Early Cenomanian “hot greenhouse” revealed by oxygen isotope record of exceptionally well-preserved foraminifera from Tanzania. Paleoceanography 30, 1556–1572 (2015).ADS 
    Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Comparative ichnology of shelf-sea and deep-sea chalk. J. Paleontol. 58, 322–332 (1984).
    Google Scholar 
    Savrda, C. E. Chalk and related deep-marine carbonates. In Trace Fossils as Indicators of Sedimentary Environments (eds Knaust, D. & Bromley, R. G.) 777–806 (Elsevier, 2012).Chapter 

    Google Scholar 
    Savrda, C. E., Foster, C. & Fluegeman, R. A unique Lower Paleocene shelf-sea chalk in the eastern U.S. Gulf coastal plain (Clayton Formation, western Alabama): Implications for depositional environment, sea-level dynamics and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109439 (2020).Article 

    Google Scholar 
    Erba, E., Watkins, D. & Mutterlose, J. Campanian dwarf calcareous nannofossils from Wodejebato Guyot. In Proc. Ocean Drill. Program Sci. Results (eds Haggerty, J. A. et al.) 141–155 (Ocean Drilling Program, 1995).
    Google Scholar 
    Hancock, J. M. The petrology of chalk. Proc. Geol. Assoc. 86, 499–535 (1975).Article 

    Google Scholar 
    Stanley, S. M. & Hardie, L. A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 3–19 (1998).Article 

    Google Scholar 
    Stanley, S. M., Ries, J. B. & Hardie, L. A. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology 33, 593–596 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Pemberton, S. G. et al. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geol. Assoc. Can. Short Course Notes 15, 1–343 (2001).
    Google Scholar 
    Buatois, L. A. & Mángano, M. G. Ichnology: Organism–Substrate Interactions in Space and Time (Cambridge Press University, 2011).Book 

    Google Scholar 
    Frey, R. W. & Bromley, R. G. Ichnology of American chalks: The Selma Group (Upper Cretaceous), western Alabama. Can. J. Earth Sci. 22, 801–828 (1985).ADS 
    Article 

    Google Scholar 
    Savrda, C. E. & Bottjer, D. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).Article 

    Google Scholar 
    Kennedy, W. J. Trace fossils in carbonate rocks. In The Study of Trace Fossils (ed. Frey, R. W.) 377–398 (Springer, 1975).Chapter 

    Google Scholar 
    Loucks, R. G., Gates, B. G. & Zahm, C. K. Depositional systems, lithofacies, nanopore to micropore matrix network, and reservoir quality of the Upper Cretaceous (Cenomanian) Buda Limestone in Dimmit County, southwestern Texas. Gulf Coast Assoc. Geol. Soc. 8, 281–300 (2019).
    Google Scholar 
    Valencia, F. L. et al. Depositional environments and controls on the stratigraphic architecture of the Cenomanian Buda Limestone in west Texas, U.S.A. Mar. Petrol. Geol. 133, 105275 (2021).Article 

    Google Scholar 
    Valencia, F. L., Laya, J. C., Buatois, L. A., Mángano, M. G. & Valencia, G. L. Sedimentology and stratigraphy of the Cenomanian Buda Limestone in central Texas, U.S.A.: Implications on regional and global depositional controls. Cretac. Res. 137, 105231 (2022).Article 

    Google Scholar 
    Martin, K. G. Stratigraphy of the Buda Limestone, south-central Texas. In Comanchean (Lower Cretaceous) Stratigraphy and Paleontology of Texas (ed. Hendricks, L.) 287–299 (Permian Basin Section SEPM 67 (8), 1967).
    Google Scholar 
    Mallon, A. J. & Swarbrick, R. E. Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea. Mar. Petrol. Geol. 25, 1097–1108 (2008).CAS 
    Article 

    Google Scholar 
    Brasher, J. E. & Vagle, K. R. Influence of lithofacies and diagenesis on Norwegian North Sea chalk reservoirs. Am. Assoc. Petrol. Geol. Bull. 80, 746–769 (1996).CAS 

    Google Scholar 
    Hentz, T. F. & Ruppel, S. C. Regional stratigraphic and rock characteristics of eagle ford shale in its play area: Maverick Basin to East Texas Basin. Am. Ass. Petrol. Geol. Search and Discovery 10325 (2011).Robinson, W. C. Petrography and depositional environments of the Buda Limestone, northern Coahuila, Mexico. MS Thesis. The University of Texas, 156 (1982).Reaser, D. F. & Robinson, W. C. Cretaceous Buda Limestone in west Texas and northern Mexico. In Cretaceous Stratigraphy and Paleoecology, Texas and Mexico (ed. Scott, R. W.) 337–373 (Perkins Memorial volume, GCSSEPM Foundation, Special Publications in Geology 1, 2003).
    Google Scholar 
    Young, K. P. Cretaceous paleogeography: Implications of endemic ammonite faunas. Geol. Circ. (University of Texas at Austin, Bureau of Economic Geology) 72, 1–13 (1972).
    Google Scholar 
    Buatois, L. A. & Mángano, M. G. Ichnodiversity and ichnodisparity: Significance and caveats. Lethaia 46, 281–292 (2013).Article 

    Google Scholar 
    Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G. Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth Sci. Rev. 164, 102–181 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Swinbanks, D. D. & Luternauer, J. L. Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia. J. Paleontol. 61, 315–333 (1987).Article 

    Google Scholar 
    Carmona, N. B., Buatois, L. A. & Mángano, M. G. The trace fossil record of burrowing decapod crustaceans: Evaluating evolutionary radiations and behavioural convergence. In Trace Fossils in Evolutionary Palaeoecology (eds Webby, B. D. et al.) 141–153 (Wiley, 2004).
    Google Scholar 
    Baucon, A. et al. Ethology of the trace fossil Chondrites: Form, function and environment. Earth Sci. Rev. 202, 102989 (2020).CAS 
    Article 

    Google Scholar 
    Pemberton, S. G. & Frey, R. W. Trace fossil nomenclature and the Planolites–Palaeophycus dilemma. J. Paleontol. 56, 843–881 (1982).
    Google Scholar 
    Rodríguez-Tovar, F. J. & Pérez-Valera, F. Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, Southern Spain: Characterization and environmental implications. Palaios 23, 78–86 (2008).ADS 
    Article 

    Google Scholar 
    Bown, T. M. & Kraus, M. J. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol 43, 95–128 (1983).Article 

    Google Scholar 
    Uchman, A. Taxonomy and palaeoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15, 3–115 (1995).
    Google Scholar 
    Demírcan, H. & Uchman, A. The miniature trace fossil Bichordites kuzunensis isp. Nov., from early Oligocene prodelta sediments of the Mezardere Formation, Gökçeada Island, NW Turkey. Acta Geol. Pol. 62, 205–215 (2012).
    Google Scholar 
    Plaziat, J.-C. & Mahmoudi, M. Trace fossils attributed to burrowing echinoids: A revision including new ichnogenus and ichnospecies. Geobios 21, 209–233 (1988).Article 

    Google Scholar 
    Chamberlain, C. K. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. J. Paleontol. 45, 212–246 (1971).
    Google Scholar 
    Farrow, G. E. Bathymetric zonation of Jurassic trace fossils from the coast of Yorkshire, England. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2, 103–151 (1966).Article 

    Google Scholar 
    Mángano, M. G., Buatois, L. A., West, R. R. & Maples, C. G. Contrasting behavioral and feeding strategies recorded by tidal-flat bivalve trace fossils from the upper carboniferous of eastern Kansas. Palaios 13, 335–351 (1998).ADS 
    Article 

    Google Scholar 
    Pemberton, S. G., Frey, R. W. & Bromley, R. G. The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Can. J. Earth Sci. 25, 866–892 (1988).ADS 
    Article 

    Google Scholar 
    Nara, M. Rosselia socialis: A dwelling structure of a probable terebellid polychaete. Lethaia 28, 171–178 (1995).Article 

    Google Scholar 
    Wilson, M. A., Curran, H. A. & White, B. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31, 241–250 (1998).Article 

    Google Scholar 
    Santos, A., Mayoral, E., Marques da Silva, C., Cachão, M. & Kullberg, J. C. Trypanites ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, 35–43 (2010).Article 

    Google Scholar 
    Wilson, J. L. Carbonate Facies in Geological History (Springer, 1975).Book 

    Google Scholar 
    Tucker, M. E. & Wright, V. P. Carbonate Sedimentology (Blackwell Science, 1990).Book 

    Google Scholar 
    MacEachern, J. A. & Gingras, M. K. Recognition of brackish-water trace fossil assemblages in the Cretaceous western interior seaway of Alberta. In Sediment-Organism Interactions: A Multifaceted Ichnology (eds Bromley, R. G. et al.) 149–194 (Society for Sedimentary Geology Special Publication, 2007).
    Google Scholar 
    MacEachern, J. A., Zaitlin, B. A. & Pemberton, S. G. High-resolution sequence stratigraphy of early transgressive deposits, Viking Formation, Joffre Field, Alberta, Canada. Bull. Am. Assoc. Petrol. Geol. 82, 729–756 (1998).
    Google Scholar 
    Buatois, L. A., Netto, R. G. & Mángano, M. G. Ichnology of Permian marginal-marine to shallow-marine coal-bearing successions: Rio Bonito and Palermo formations, Parana Basin, Brazil. In Applied Ichnology (eds MacEachern, J. A. et al.) 167–177 (Society for Sedimentary Geology Short Course Notes, 2007).
    Google Scholar 
    Buatois, L. A. et al. Colonization of brackish-water systems through time: Evidence from the trace-fossil record. Palaios 20, 321–347 (2005).ADS 
    Article 

    Google Scholar 
    Pemberton, S. G. & Wightman, D. M. Ichnological characteristics of brackish water deposits. In Applications of Ichnology to Petroleum Exploration: A Core Work-shop (ed. Pemberton, S. G.) 141–167 (Society of Economic Paleontologists and Mineralogists Core Workshop, 1992).Chapter 

    Google Scholar 
    Anderson, B. G. & Droser, M. L. Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphic framework: An example from the Upper Cretaceous US western interior. Sedimentology 45, 379–396 (1998).ADS 
    Article 

    Google Scholar 
    Buatois, L. A., Mángano, M. G. & Pattison, S. A. J. Ichnology of prodeltaic hyperpycnite–turbidite channel complexes and lobes from the Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology 66, 1825–1860 (2019).Article 

    Google Scholar 
    Bhattacharya, J. P. & MacEachern, J. A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res. 79, 184–209 (2009).ADS 
    Article 

    Google Scholar 
    Savrda, C. E. Ichnosedimentologic evidence for a noncatastrophic origin of Cretaceous-Tertiary boundary sand in Alabama. Geology 21, 1075–1078 (1993).ADS 
    Article 

    Google Scholar 
    Schlager, W. Accommodation and supply-a dual control on stratigraphic sequences. Sediment. Geol. 86, 111–136 (1993).ADS 
    Article 

    Google Scholar 
    Strasser, A. & Samankassou, E. Carbonate sedimentation rates today and in the past: Holocene of Florida Bay, Bahamas, and Bermuda vs. Upper Jurassic and Lower Cretaceous of the Jura Mountains (Switzerland and France). Geol. Croat. 56, 1–18 (2003).Article 

    Google Scholar 
    Moyano-Paz, D., Richiano, S., Varela, A. N., Gómez-Dacal, A. R. & Poire, D. G. Ichnological signatures from wave- and fluvial-dominated deltas: The La Anita Fromation, Upper Cretaceous, Austral-Magallanes Basin, Patagonia. Mar. Pet. Geol. 114, 104168 (2020).CAS 
    Article 

    Google Scholar 
    De Gibert, J. M. & Ekdale, A. A. Trace fossil assemblages reflecting stressed environments in the Middle Jurassic Carmel Seaway of Central Utah. J. Paleontol. 73, 711–720 (1999).Article 

    Google Scholar 
    Gingras, M. K., MacEachern, J. A. & Dashtgard, S. E. Process ichnology and the elucidation of physico-chemical stress. Sediment. Geol. 237, 115–134 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, C. R., Levin, L. A., Hoover, D. J., McMurty, G. & Gage, J. D. Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep-Sea Res. II 47, 227–257 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Wignall, P. B., Newton, R. & Brookfield, M. E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 183–188 (2005).Article 

    Google Scholar 
    Kennedy, W. J. Burrows and surface traces from the Lower Chalk of southern England. Bull. Br. Mus. Nat. Hist. Geol. 15, 127–167 (1967).
    Google Scholar 
    Kennedy, W. J. & Garrison, R. E. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22, 311–386 (1975).ADS 
    CAS 
    Article 

    Google Scholar 
    Bromley, R. G. Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Geol. Soc. Lond. Q. J. 123, 157–182 (1967).Article 

    Google Scholar 
    Bromley, R. G. Trace fossils at omission surfaces. In The Study of Trace Fossils (ed. Frey, R. W.) 399–428 (Springer, 1975).Chapter 

    Google Scholar 
    Hart, M. B., Harries, P. J. & Cárdenas, A. L. The Cretaceous/Paleogene boundary events in the Gulf Coast: Comparisons between Alabama and Texas. Gulf Coast Assoc. Geol. Trans. 63, 235–255 (2013).
    Google Scholar 
    Al Balushi, S. A. K. & Macquaker, J. H. S. Sedimentological evidence for bottom-water oxygenation during deposition of the Natih-B Member intrashelf-basinal sediments: Upper Cretaceous carbonate source rock, Natih Formation, North Sultanate of Oman. GeoArabia 16, 47–84 (2011).Article 

    Google Scholar 
    Lasseur, E. et al. A relative water-depth model for the Normandy Chalk (Cenomanian–Middle Coniacian, Paris Basin, France) based on facies patterns of metre-scale cycles. Sediment. Geol. 213, 1–26 (2009).ADS 
    Article 

    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Rhizocorallium in the upper Austin Chalk, Ellis County, Texas. Texas J. of Sci. 23, 207–214 (1980).
    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Ichnology and paleoenvironments of the middle and upper Austin Chalk (Upper Cretaceous), northeastern Texas. Trans. Am. Assoc. Pet. Geol. Southwest Sec. 1985, 47–67 (1985).
    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Trace fossils and paleoenvironments of lower and middle Austin Chalk (Upper Cretaceous), north-central Texas. Trans. Gulf Coast Assoc. Geol. Soc. 40, 161–173 (1990).
    Google Scholar 
    Dawson, W. C. & Reaser, D. F. Ichnology and Paleosubstrates of Austin Chalk (Cretaceous) Outcrops: Southern Dallas and Ellis Counties, Texas. Am. Assoc. Pet. Geol. Search Discovery Article #91004 (1991).Fürsich, F. T., Kennedy, W. J. & Palmer, T. J. Trace fossils at a regional discontinuity surface: The Austin/Taylor (Upper Cretaceous) contact in central Texas. J. Paleontol. 55, 537–551 (1981).
    Google Scholar 
    Morgan, R. F. A new ichnospecies of Gyrolithes from the Austin Chalk, Upper Cretaceous, Texas, USA. Ichnos 26, 1–7 (2018).Article 

    Google Scholar 
    Cooper, J. R., Godet, A. & Pope, M. C. Tectonic and eustatic impact on depositional features in the upper Cretaceous Austin Chalk Group of south-central Texas, USA. Sediment. Geol. 401, 105632 (2020).Article 

    Google Scholar 
    Loucks, R. G. et al. Geologic characterization of the type cored section for the Upper Cretaceous Austin Chalk Group in southern Texas: A combination fractured and unconventional reservoir. Am. Assoc. Pet. Geol. Bull. 104, 2209–2245 (2020).
    Google Scholar 
    Loucks, R. G., Reed, R. M., Ko, L. T., Zahm, C. K. & Larson, T. E. Micropetrographic characterization of a siliciclastic-rich chalk; Upper Cretaceous Austin Chalk Group along the onshore northern Gulf of Mexico, USA. Sediment. Geol. 412, 105821 (2021).CAS 
    Article 

    Google Scholar 
    Bottjer, D. J. Paleoecology, Ichnology, and Depositional Environments of Upper Cretaceous Chalks (Annona Formation; chalk Member of Saratoga Formation), Southwestern Arkansas. PhD Dissertation, Indiana University, 424 (1978).Bottjer, D. J. Ichnology and depositional environments of Upper Cretaceous chalks, southwestern Arkansas (Annona Formation; chalk member, Saratoga Formation). Am. Assoc. Pet. Geol. Bull. 63, 422 (1979).
    Google Scholar 
    Bottjer, D. J. Trace fossils and paleoenvironments of two Arkansas Upper Cretaceous discontinuity surfaces. J. Paleontol. 59, 282–298 (1985).
    Google Scholar 
    Bottjer, D. J. Campanian-Maastrichtian chalks of southwestern Arkansas: Petrology, paleoenvironments and comparison with other North American and European chalks. Cretac. Res. 7, 161–196 (1986).Article 

    Google Scholar 
    Bayet-Goll, A., Neto de Carvalho, C., Monaco, P. & Sharafi, M. Sequence stratigraphic and sedimentologic significance of biogenic structures from chalky limestones of the Turonian-Campanian Abderaz Formation, Kopet-Dagh, Iran. In Cretaceous Period: Biotic Diversity and Biogeography (eds Khosla, A. & Lucas, S. G.) 19–43 (New Mex. Mus. Nat. His. Sci. Bull. 71, 2016).
    Google Scholar 
    Locklair, R. E. & Savrda, C. E. Ichnology of rhythmically bedded Demopolis Chalk (Upper Cretaceous, Alabama): Implications for paleoenvironment, depositional cycle origins, and tracemaker behavior. Palaios 13, 423–438 (1998).ADS 
    Article 

    Google Scholar 
    Locklair, R. E. & Savrda, C. E. Ichnofossil tiering analysis of a rhythmically bedded chalk-marl sequence in the Upper Cretaceous of Alabama. Lethaia 31, 311–322 (1998).Article 

    Google Scholar 
    Kennedy, W. J. Trace fossils in the chalk environment. In Trace Fossils (eds Crimes, T. P. & Harper, J. C.) 263–282 (Geological Journal Special Issue 3, 1970).
    Google Scholar 
    Mortimore, R. N. & Pomerol, B. Stratigraphy and eustatic implications of trace fossil events in the Upper Cretaceous Chalk of northern Europe. Palaios 6, 216–231 (1991).ADS 
    Article 

    Google Scholar 
    Foster, C. B. III. Geology of the Moscow Landing Section, Tombigbee River, Western Alabama, with Focus on Ichnologic Aspects of the Lower Paleocene Clayton Formation. M.Sc. Dissertation, Auburn University, 88 (2019).Gabdullin, R. R. Rhythmicity of the Upper Cretaceous Deposits of the East European Craton, Northwestern Caucasus and Southwestern Crimea: Structure, Classification, Formation Models (Mosk. Gos. Univ., 2002).
    Google Scholar 
    Baraboshkin, E. Y. & Zibrov, I. A. Characteristics of the Middle Cenomanian Rhythmic Sequence from Mount Selbukhra in Southwest Crimea. Moscow Univ. Geol. Bull. 67, 176–184 (2012).Article 

    Google Scholar 
    Blinkenberg, K. H., Lauridsen, B. W., Knaust, D. & Stemmerik, L. New ichnofabrics of the Cenomanian-Danian Chalk Group. J. Sediment. Res. 90, 701–712 (2020).ADS 
    Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Trace fossils and ichnofabric in the Kjolby Gaard Marl, uppermost Cretaceous, Denmark. Bull. Geol. Soc. Denmark 31, 107–119 (1983).Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Cretaceous chalk ichnofacies in northern Europe. Geobios 8, 201–204 (1984).Article 

    Google Scholar 
    Ekdale, A. A. & Bromley, R. G. Analysis of composite ichnofabrics; An example in Uppermost Cretaceous chalk of Denmark. Palaios 6, 232–249 (1991).ADS 
    Article 

    Google Scholar 
    Surlyk, F. et al. The cyclic Rørdal Member—A new lithostratigraphic unit of chronostratigraphic and palaeoclimatic importance in the upper Maastrichtian of Denmark. Bull. Geol. Soc. Denmark 58, 89–98 (2010).Article 

    Google Scholar 
    Lauridsen, B. W., Surlyk, F. & Bromley, R. G. Trace fossils of a cyclic chalk marl succession; the upper Maastrichtian Rørdal Member, Denamrk. Cretac. Res. 32, 194–211 (2011).Article 

    Google Scholar 
    Frey, R. W. Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ. Kansas Paleontol. Contrib. 53, 52 (1970).
    Google Scholar 
    Hattin, D. E. Stratigraphy and depositional environment of Smoky Hill Chalk Member, Niobrara Chalk (Upper Cretaceous) of the type area western Kansas. Kansas Geol. Surv. Bull. 225, 1–108 (1982).
    Google Scholar 
    Savrda, C. E. Ichnocoenoses in the Niobrara Formation: Implications for benthic oxygenation histories. In Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA (eds Dean, W. E. & Arthur, M. A.) 137–151 (SEPM Society for Sedimentary Geology 6, 1998).Chapter 

    Google Scholar 
    Hattin, D. E. Widespread, synchronously deposited, burrow-mottled limestone beds in Greenhorn Limestone (Upper Cretaceous) of Kansas and southeastern Colorado. Am. Assoc. Pet. Geol. Bull. 55, 412–431 (1971).
    Google Scholar 
    Hattin, D. E. Stratigraphy and depositional environment of Greenhorn Limestone (Upper Cretaceous) of Kansas. Kansas Geol. Surv. Bull. 209, 128 (1975).
    Google Scholar 
    Savrda, C. E. Ichnology of the Bridge Creek Limestone: Evidence for temporal and spatial variations in paleo-oxygenation in the Western Interior Seaway. In Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA (eds Dean, W. E. & Arthur, M. A.) 127–136 (SEPM Society for Sedimentary Geology 6, 1998).Chapter 

    Google Scholar 
    Rasmussen, S. L. & Surlyk, F. Facies and ichnology of an Upper Cretaceous chalk contourite drift complex, eastern Denmark, and the validity of contourite facies models. J. Geol. Soc. Lond. 169, 435–447 (2012).Article 

    Google Scholar 
    Surlyk, F. et al. Upper Campanian-Maastrichtian holostratigraphy of the eastern Danish Basin. Cretac. Res. 46, 232–256 (2013).Article 

    Google Scholar 
    Boussaha, M., Thibault, N., Anderskouv, K., Moreau, J. & Stemmerik, L. Controls on upper Campanian-Maastrichtian chalk deposition in the eastern Danish Basin. Sedimentology 64, 1998–2030 (2017).Article 

    Google Scholar 
    Reolid, J. & Betzler, C. The ichnology of carbonate drifts. Sedimentology 66, 1427–1448 (2019).Article 

    Google Scholar 
    Nygaard, E. Bathichnus and Its Significance in the Trace Fossil Association of Upper Cretaceous Chalk, Mors, Denmark 107–113 (Danm. Geol. Unders. Årbog, 1983).
    Google Scholar 
    Scholle, P. A., Albrechtsen, T. & Tirsgaard, H. Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea. Sedimentology 45, 223–243 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Damholt, T. & Surlyk, F. Laminated–bioturbated cycles in Maastrichtian chalk of the North Sea: Oxygenation fluctuations within the Milankovitch frequency band. Sedimentology 51, 1323–1342 (2004).ADS 
    Article 

    Google Scholar 
    Anderskouv, K. & Surlyk, F. Upper Cretaceous chalk facies and depositional history recorded in the Mona-1 core, Mona Ridge, Danish North Sea. Geol. Surv. Denmark Greenland Bull. 25, 1–60 (2011).Article 

    Google Scholar 
    Maliva, R. G. & Dickson, J. A. D. Microfacies and diagenetic controls of porosity in Cretaceous/Tertiary chalks, Eldfisk Field, Norwegian North Sea. Am. Assoc. Pet. Geol. Bull. 76, 1825–1838 (1992).
    Google Scholar 
    Knaust, D., Dorador, J. & Rodríguez-Tovar, F. J. Burrowed matrix powering dual porosity systems—A case study from the Maastrichtian chalk of the Gullfaks Field Norwegian North Sea. Mar. Petrol. Geol. 113, 104158 (2020).Article 

    Google Scholar 
    Phillips, C. & McIlroy, D. Ichnofabrics and biologically mediated changes in clay mineral assemblages from a deep-water, fine-grained, calcareous sedimentary succession: An example from the Upper Cretaceous Wyandot Formation, offshore Nova Scotia. Bull. Can. Petrol. Geol. 58, 203–218 (2010).Article 

    Google Scholar 
    Rodríguez-Tovar, F. J. & Hernández-Molina, F. J. Ichnological analysis of contourites: Past, present and future. Earth-Sci. Rev. 182, 28–41 (2018).ADS 
    Article 

    Google Scholar 
    Miguez-Salas, O. & Rodríguez-Tovar, F. J. Ichnofacies distribution in the Eocene-Early Miocene Petra Tou Romiou outcrop, Cyprus: Sea level dynamics and palaeoenvironmental implications in a contourite environment. Int. J. Earth Sci. 108, 2531–2544 (2019).CAS 
    Article 

    Google Scholar 
    Nelson, C. S. Bioturbation in middle bathyal, Cenozoic nannofossil oozes and chalks, southwest Pacific. In Initial Reports of the Deep Sea Drilling Project 90 (eds Kennett, J. P., von der Borch, C. C. et al.) 1189–1200 (Washington U.S. Government Printing Office, 1986).
    Google Scholar 
    Fütterer, D. K. Bioturbation and trace fossils in deep sea sediments of the Walvis Ridge, southeastern Atlantic, Leg 74. In Initial Reports of the Deep Sea Drilling Project 74 (eds Moore, T. C., Rabinowitz, P. D. et al.) 543–555 (Government Printing Office, 1984).
    Google Scholar 
    Wetzel, A. Ichnofabrics in Eocene to Maestrichtian sediments from Deep Sea Drilling Project Site 605, off the New Jersey coast. In Initial Reports of the Deep Sea Drilling Project 93 (eds. Hinte, J. E., Wise Jr., S. W. et al.) 825–835 (1987).Droser, M. L. & Bottjer, D. J. Trace fossils and ichnofabrics in Leg 119 cores. In Proceedings of the Ocean Drilling Program, Scientific Results 119 (eds. Barron, J., Larsen, B. et al.) 635–641 (1991).Desai, B. G. Ichnofabric analysis of bathyal chalks: The Miocene Inglis Formation of the Andaman and Nicobar Islands, India. J. Palaeogeogr. 10, 1–15 (2021).Article 

    Google Scholar 
    Warme, J. E., Kennedy, W. J. & Scheidermann, N. Biogenic sedimentary structures (trace fossils) in Leg 15 cores. In Initial Reports of the Deep Sea Drilling Project 15 (eds. Edgar, N. T., Saunders, J. B. et al.) 813–831 (1973).Maurrasse, F. Sedimentary structures of Caribbean Leg 15 sediments. In Initial Reports of the Deep-Sea Drilling Project 15 (eds. Edgar, T. et al.) (1974).Erba, E. & Premoli-Silva, I. Orbitally driven cycles in trace-fossil distribution from the Piobbico core (late Albian, central Italy). In Orbital Forcing and Cyclic Sequences, IAS Spec. Publ. 19 (eds De Boer, P. L. & Smith, D. G.) 211–225 (Blackwell Scientific, 1994).
    Google Scholar 
    Chamberlain, C. K. Trace fossils in DSDP cores of the Pacific. J. Paleontol. 49, 1074–1096 (1975).
    Google Scholar 
    Ekdale, A. A. Trace fossils in Deep Sea Drilling Project Leg 58 cores. In Initial Reports of the Deep Sea Drilling Project 58 (eds. de Vries Klein, G., Kobyashi, K. et al.) 601–605 (1980).Ekdale, A. A. Geologic history of the abyssal benthos: Evidence from trace fossils in Deep-Sea Drilling Project cores. PhD Dissertation, Rice University, 154 (1974).Ekdale, A. A. Abyssal trace fossils in worldwide Deep Sea Drilling Project cores. In Trace Fossils 2 (eds. Crimes, T. P. & Harper, J. C.) 163–182 (Geol. J., Spec. Iss. 9, 1977).Ekdale, A. A. & Berger, W. H. Deep-sea ichnofacies: Modern organism traces on and in pelagic carbonates of the western equatorial Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 23, 263–278 (1978).Article 

    Google Scholar 
    Ekdale, A. A., Muller, L. N. & Novak, M. T. Quantitative ichnology of modern pelagic deposits in the abyssal Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 189–223 (1984).CAS 
    Article 

    Google Scholar 
    Savrda, C. E. Limited ichnologic fidelity and temporal resolution in pelagic sediments: Paleoenvironmental and paleoecologic implications. Palaios 29, 210–217 (2014).ADS 
    Article 

    Google Scholar 
    Bromley, R. G. & Ekdale, A. A. Composite ichnofabrics and tiering of burrows. Geol. Mag. 123, 59–65 (1986).ADS 
    Article 

    Google Scholar 
    Griffin, J. N. et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118, 1335–1342 (2009).Article 

    Google Scholar 
    Valentine, J. W. Overview of marine biodiversity. In Marine Macroecology (eds Witman, J. D. & Roy, K.) 3–28 (University of Chicago Press, 2009).Chapter 

    Google Scholar 
    Schlacher, T. A. et al. Soft-sediment benthic community structure in a coral reef lagoon—The prominence of spatial heterogeneity and “spot endemism”. Mar. Ecol. Prog. Ser. 174, 159–174 (1998).ADS 
    Article 

    Google Scholar 
    Hummel, H. et al. Geographic patterns of biodiversity in European coastal marine benthos. J. Mar. Biol. Assoc. U.K. 97, 507–523 (2017).Article 

    Google Scholar 
    Harborne, A. R., Mumby, P. J., Żychaluk, K., Hedley, J. D. & Blackwell, P. G. Modeling the beta diversity of coral reefs. Ecology 87, 2871–2881 (2006).PubMed 
    Article 

    Google Scholar 
    Christia, C., Giordani, G. & Papastergiadou, E. Environmental variability and macrophyte assemblages in coastal lagoon types of Western Greece (Mediterranean Sea). Water 10, 151 (2018).Article 
    CAS 

    Google Scholar 
    Dorador, J., Rodríguez-Tovar, F. J., IODP Expedition 339 Scientists. Digital image treatment applied to ichnological analysis of marine core sediments. Facies 60, 39–44 (2014).Article 

    Google Scholar 
    Dorador, J. & Rodríguez-Tovar, F. J. High-resolution image treatment in ichnological core analysis: Initial steps, advances and prospects. Earth-Sci. Rev. 177, 226–237 (2018).ADS 
    Article 

    Google Scholar 
    Taylor, A. M. & Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 150, 141–148 (1993).ADS 
    Article 

    Google Scholar 
    Cao, Y. M., Curran, A. H. & Glumac, B. Testing the use of photoshop and imageJ for evaluating ichnofabrics. 2015 GSA Annual Meeting in Baltimore, Maryland, USA, Paper No. 128-11 (The Geol. Soc. of Am., 2015). More

  • in

    Pollen beetle offspring is more parasitized under moderate nitrogen fertilization of oilseed rape due to more attractive volatile signal

    Poelman, E. H., van Loon, J. J. A. & Dicke, M. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13, 534–541 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Degenhardt, J. et al. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. USA 106, 13213–13218 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dicke, M. Behavioural and community ecology of plants that cry for help. Plant. Cell Environ. 32, 654–665 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Himanen, S. J. et al. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 181, 174–186 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Girling, R. D. et al. Parasitoids select plants more heavily infested with their caterpillar hosts: A new approach to aid interpretation of plant headspace volatiles. Proc. Biol. Sci. 278, 2646–2653 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamiru, A. et al. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 14, 1075–1083 (2011).PubMed 
    Article 

    Google Scholar 
    Njihia, T. N. et al. Identification of kairomones of second instar nymphs of the variegated coffee bug Antestiopsis thunbergii (Heteroptera: Pentatomidae). Chemoecology 27, 239–248 (2017).CAS 
    Article 

    Google Scholar 
    Becker, C. et al. Effects of abiotic factors on HIPV-mediated interactions between plants and parasitoids. BioMed. Res. Int. 2015, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Brilli, F., Loreto, F. & Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant. Sci. 10, 264 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aoun, W. B., El Akkari, M., Flénet, F., Jacquet, F. & Gabrielle, B. Recommended fertilization practices improve the environmental performance of biodiesel from winter oilseed rape in France. J. Cleaner Prod. 139, 242–249 (2016).Article 
    CAS 

    Google Scholar 
    Micha, E., Roberts, W., O’ Sullivan, L., O’ Connell, K. & Daly, K. Examining the policy-practice gap: the divergence between regulation and reality in organic fertiliser allocation in pasture based systems. Agric. Syst. 179, 102708 (2020).Article 

    Google Scholar 
    Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ormeño, E. & Fernandez, C. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr. Bioact. Compd. 8, 71–79 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, B. et al. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix. Environ. Pollut. 237, 205–217 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olson, D. M., Cortesero, A. M., Rains, G. C., Potter, T. & Lewis, W. J. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton. Biol. Control. 49, 239–244 (2009).CAS 
    Article 

    Google Scholar 
    Rosatto, L., Lainé, P. & Ourry, A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: Nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52, 1655–1663 (2001).Article 

    Google Scholar 
    Yoneyama, T., Ito, O. & Engelaar, W. M. H. G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochem. Rev. 2, 121–132 (2003).CAS 
    Article 

    Google Scholar 
    Fahey, J. W., Zalcmann, A. T. & Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mithen, R. F. Glucosinolates and their degradation products. Adv. Bot. Res. 35, 213–262 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    García-Coronado, H. et al. Analysis of a suppressive subtractive hybridization library of Alternaria alternata resistant to 2-propenyl isothiocyanate. Electron. J. Biotechnol. 18, 320–326 (2015).Article 

    Google Scholar 
    Renwick, J. A. A., Haribal, M., Gouinguené, S. & Städler, E. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J. Chem. Ecol. 32, 755–766 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Behmer, S. T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Butler, J., Garratt, M. P. D. & Leather, S. R. Fertilisers and insect herbivores: a meta-analysis. Ann. Appl. Biol. 161, 223–233 (2012).Article 

    Google Scholar 
    Soufbaf, M., Fathipour, Y., Zalucki, M. P. & Hui, C. Importance of primary metabolites in canola in mediating interactions between a specialist leaf-feeding insect and its specialist solitary endoparasitoid. Arthropod-Plant Interact. 6, 241–250 (2012).Article 

    Google Scholar 
    De Vries, S. C., van de Ven, G. W. J., van Ittersum, M. K. & Giller, K. E. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34, 588–601 (2010).Article 
    CAS 

    Google Scholar 
    Hegewald, H., Koblenz, B., Wensch-Dorendorf, M. & Christen, O. Impacts of high intensity crop rotation and N management on oilseed rape productivity in Germany. Crop Pasture sci. 67, 439–449 (2016).CAS 
    Article 

    Google Scholar 
    Jankowski, K. J., Budzyński, W. S., Załuski, D., Hulanicki, P. S. & Dubis, B. Using a fractional factorial design to evaluate the effect of the intensity of agronomic practices on the yield of different winter oilseed rape morphotypes. Field. Crop. Res. 188, 50–61 (2016).Article 

    Google Scholar 
    Chakwizira, E. et al. Effects of nitrogen rate on nitrate-nitrogen accumulation in forage kale and rape crops. Grass. Forage Sci. 70, 268–282 (2015).CAS 
    Article 

    Google Scholar 
    Rathke, G. W., Behrens, T. & Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 117, 80–108 (2006).CAS 
    Article 

    Google Scholar 
    Henke, J., Breustedt, G., Sieling, K. & Kage, H. Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation. J. Agric. Sci. 145, 455–468 (2007).CAS 
    Article 

    Google Scholar 
    Eurostat. Agriculture, Forestry and Fishery Statistics (Publications Office of the European Union, 2020). https://doi.org/10.2785/143455.Book 

    Google Scholar 
    Zapata, N., Vargas, M., Reyes, J. F. & Belmar, G. Quality of biodiesel and press cake obtained from Euphorbia lathyris, Brassica napus and Ricinus communis. Ind. Crops Prod. 38, 1–5 (2012).CAS 
    Article 

    Google Scholar 
    Alford, D. V., Nilsson, C. & Ulber, B. Insect pests of oilseed rape crops. In Biocontrol of Oilseed Rape Pests (ed. Alford, D. V.) 9–42 (Blackwell Science, 2003).Chapter 

    Google Scholar 
    Veromann, E., Luik, E., Metspalu, L. & Williams, I. Key pests and their parasitoids on spring and winter oilseed rape in Estonia. Entomol. Fennica 17, 4 (2006).Article 

    Google Scholar 
    Meier, U. (ed.) Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph (Blackwell Wissenschaft, 1997).
    Google Scholar 
    Lancashire, P. D. et al. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119, 561–601 (1991).Article 

    Google Scholar 
    Williams, I. H. The major insect pests of oilseed rape in Europe and their management: An overview. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I. H.) 1–43 (Springer, 2010).Chapter 

    Google Scholar 
    Williams, I. H. & Free, J. B. The feeding and mating behaviour of pollen beetles (Meligethes aeneus Fab.) and seed weevils (Ceutorhynchus assimilis Payk.) on oil-seed rape (Brassica napus L.). J. Agric. Sci. 91, 453–459 (1978).Article 

    Google Scholar 
    Ekbom, B. & Borg, A. Pollen beetle (Meligethes aeneus) oviposition and feeding preference on different host plant species. Entomol. Exp. Appl. 78, 291–299 (1996).Article 

    Google Scholar 
    Kaasik, R. et al. Meligethes aeneus oviposition preferences, larval parasitism rate and species composition of parasitoids on Brassica nigra, Raphanus sativus and Eruca sativa compared with on Brassica napus. Biol. Control 69, 65–71 (2014).Article 

    Google Scholar 
    Thieme, T., Heimbach, U. & Müller, A. Chemical control of insect pests and insecticide resistance in oilseed rape. In Biocontrol-based integrated management of oilseed rape pests (ed. Williams, I. H.) 313–335 (Springer, 2010). https://doi.org/10.1007/978-90-481-3983-5_12.Chapter 

    Google Scholar 
    Slater, R. et al. Pyrethroid resistance monitoring in European populations of pollen beetle (Meligethes spp.): A coordinated approach through the Insecticide Resistance Action Committee (IRAC). Pest. Manag. Sci. 67, 633–638 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zimmer, C. T., Köhler, H. & Nauen, R. Baseline susceptibility and insecticide resistance monitoring in European populations of Meligethes aeneus and Ceutorhynchus assimilis collected in winter oilseed rape. Entomol Exp Appl 150, 279–288 (2014).CAS 
    Article 

    Google Scholar 
    Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M. & Xue, Q. 2008. Documentation of pesticide resistance in arthropods. In Global Pesticide Resistance in Arthropods (eds Whalon, M. E. et al.) 32–39 (Cromwell Press, Berlin, 2008).Chapter 

    Google Scholar 
    Willow, J., Silva, A., Veromann, E. & Smagghe, G. Acute effect of low-dose thiacloprid exposure synergised by tebuconazole in a parasitoid wasp. PLoS ONE 14, e0212456 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Osborne, P. Observations on the natural enemies of Meligethes aeneus (F.) and M. viridescens (F.) [Coleoptera: Nitidulidae]. Parasitology 50, 91–110 (1960).CAS 
    PubMed 
    Article 

    Google Scholar 
    Büchi, R. Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric. Ecosyst. Environ. 90, 255–263 (2002).Article 

    Google Scholar 
    Veromann, E., Saarniit, M., Kevväi, R. & Luik, A. Effect of crop management on the incidence of Meligethes aeneus Fab. and their larval parasitism rate in organic and conventional winter oilseed rape. Agronomy Res. 7, 548–554 (2009).
    Google Scholar 
    Veromann, E. et al. Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Prot 43, 79–88 (2013).CAS 
    Article 

    Google Scholar 
    Kovács, G. et al. Effects of land use on infestation and parasitism rates of cabbage seed weevil in oilseed rape. Pest Manag Sci 75, 658–666 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kaasik, R., Kovács, G., Toome, M., Metspalu, L. & Veromann, E. The relative attractiveness of Brassica napus, B. rapa, B. juncea and Sinapis alba to pollen beetles. Bio. Control. 59, 19–28 (2014).
    Google Scholar 
    Lucas-Barbosa, D. et al. Endure and call for help: strategies of black mustard plants to deal with a specialized caterpillar. Funct. Ecol. 31, 325–333 (2017).Article 

    Google Scholar 
    Toome, M. et al. Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232, 235–243 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kännaste, A., Copolovici, L. & Niinemets, Ü. Gas chromatography–mass spectrometry method for determination of biogenic volatile organic compounds emitted by plants. Methods Mol. Biol. 1153, 161–169. https://doi.org/10.1007/978-1-4939-0606-2_11 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kask, K., Kännaste, A., Talts, E., Copolovici, L. & Niinemets, Ü. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant Cell Environ. 39, 2027–2042 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niinemets, Ü. et al. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8, 2209–2246 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Copolovici, L., Kännaste, A., Remmel, T., Vislap, V. & Niinemets, Ü. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J. Chem. Ecol. 37, 18–28 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peck, J. E. In Multivariate Analysis for Ecologists: Step-by-Step 2nd edn (ed. Peck, J. E.) (MjM Software Design, 2016).
    Google Scholar 
    Narits, L. Effect of nitrogen rate and application time to yield and quality of winter oilseed rape (Brassica napus L. var. oleifera subvar. biennis). Agron. Res. 8, 671–686 (2010).ADS 

    Google Scholar 
    Naderi, R. & Ghadiri, H. Competition of wild mustard (Sinapis arvense L.) densities with rapeseed (Brassica napus L.) under different levels of nitrogen fertilizer. J. Agr. Sci. Technol. 13, 45–51 (2011).
    Google Scholar 
    Grzebisz, W., Łukowiak, R. & Kotnis, K. Evaluation of nitrogen fertilization systems based on the in-season variability in the nitrogenous growth factor and soil fertility factors—A case of winter oilseed rape (Brassica napus L.). Agronomy 10, 1701 (2020).CAS 
    Article 

    Google Scholar 
    He, H. et al. Genotypic variation in nitrogen utilization efficiency of oilseed rape (Brassica napus) under contrasting N supply in pot and field experiments. Front. Plant. Sci. 8, 1825 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pashalidou, F. G., Lucas-Barbosa, D., van Loon, J. J. A., Dicke, M. & Fatouros, N. E. Phenotypic plasticity of plant response to herbivore eggs: Effects on resistance to caterpillars and plant development. Ecology 94, 702–713 (2013).PubMed 
    Article 

    Google Scholar 
    Lucas-Barbosa, D., Loon van, J. J. A., Gols, R., Beek van, T. A. & Dicke, M. Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Funct. Ecol. 27, 245–254 (2013).Article 

    Google Scholar 
    Milchunas, D. G. & Noy-Meir, I. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99, 113–130 (2002).Article 

    Google Scholar 
    Williams, I. H. & Free, J. B. Compensation of oil-seed rape (Brassica napus L.) plants after damage to their buds and pods. J. Agric. Sci. 92, 53–59. https://doi.org/10.1017/S0021859600060494 (1979).Article 

    Google Scholar 
    Tatchell, G. Compensation in spring-sown oil-seed rape (Brassica napus L.) plants in response to injury to their flower buds and pods. J. Agric. Sci. 101, 565–573. https://doi.org/10.1017/S0021859600038594 (1983).Article 

    Google Scholar 
    Tiffin, P. Mechanisms of tolerance to herbivore damage: What do we know?. Evol. Ecol. 14, 523–536. https://doi.org/10.1023/A:1010881317261 (2000).Article 

    Google Scholar 
    Pinet, A., Mathieu, A. & Jullien, A. Floral bud damage compensation by branching and biomass allocation in genotypes of Brassica napus with different architecture and branching potential. Front. Plant Sci 6, 70. https://doi.org/10.3389/fpls.2015.00070 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muzika, R. M. & Pregitzer, K. S. Effect of nitrogen fertilization on leaf phenolic production of grand fir seedlings. Trees 6, 241–244 (1992).Article 

    Google Scholar 
    Kesselmeier, J. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies. J. Atmos. Chem. 39, 219–233 (2001).CAS 
    Article 

    Google Scholar 
    Karl, T., Curtis, A. J., Rosenstiel, T. N., Monson, R. K. & Fall, R. Transient releases of acetaldehyde from tree leaves—Products of a pyruvate overflow mechanism?. Plant. Cell Environ. 25, 1121–1131 (2002).CAS 
    Article 

    Google Scholar 
    Szczepaniak, W., Grzebisz, W., Potarzycki, J., Łukowiak, R. & Przygocka-Cyna, K. Nutritional status of winter oilseed rape in cardinal stages of growth as the yield indicator. Plant Soil Environ. 61, 291–296 (2015).CAS 
    Article 

    Google Scholar 
    Anjum, N. A. et al. Improving growth and productivity of Oleiferous brassicas under changing environment: Significance of nitrogen and sulphur nutrition, and underlying mechanisms. Scientific World J. 2012, 657808 (2012).Article 
    CAS 

    Google Scholar 
    Okereke, C. N., Liu, B., Kaurilind, E. & Niinemets, Ü. Heat stress resistance drives coordination of emissions of suites of volatiles after severe heat stress and during recovery in five tropical crops. Environ. Exp. Bot. 184, 104375 (2021).CAS 
    Article 

    Google Scholar 
    Kanagendran, A., Pazouki, L. & Niinemets, Ü. Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environ. Exp. Bot. 145, 21–38 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robertson, G. W. et al. A comparison of the flower volatiles from hawthorn and four raspberry cultivars. Phytochemistry 33, 1047–1053 (1993).CAS 
    Article 

    Google Scholar 
    Robertson, G. W., Griffiths, D. W., Smith, W. M. & Butcher, R. D. The application of thermal desorption-gas chromatography-mass spectrometry to the analyses of flower volatiles from five varieties of oilseed rape (Brassica napus spp. oleifera). Phytochem. Anal. 4, 152–157 (1993).CAS 
    Article 

    Google Scholar 
    Kos, M. et al. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry 77, 162–170 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niinemets, Ü., Kännaste, A. & Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant. Sci. 4, 262. https://doi.org/10.3389/fpls.2013.00262 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shannon, R. W. R. et al. Something in the air? The impact of volatiles on mollusc attack of oilseed rape seedlings. Ann. Bot. 117, 1073–1082 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ruther, J., Reinecke, A. & Hilker, M. Plant volatiles in the sexual communication of Melolontha hippocastani: Response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecol. Entomol. 27, 76–83 (2002).Article 

    Google Scholar 
    Khan, Z. R., Pickett, J. A., Berg, J. V. D., Wadhams, L. J. & Woodcock, C. M. Exploiting chemical ecology and species diversity: Stem borer and striga control for maize and sorghum in Africa. Pest. Manag. Sci. 56, 957–962 (2000).CAS 
    Article 

    Google Scholar 
    Jayanthi, P. D. K. et al. Specific volatile compounds from mango elicit oviposition in gravid Bactrocera dorsalis females. J. Chem. Ecol. 40, 259–266 (2014).Article 
    CAS 

    Google Scholar 
    Hu, Z. et al. Aldehyde volatiles emitted in succession from mechanically damaged leaves of poplar cuttings. J. Plant. Biol. 51, 269–275 (2008).Article 

    Google Scholar 
    Giacomuzzi, V., Mattheis, J. P., Basoalto, E., Angeli, S. & Knight, A. L. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae). Pest. Manag. Sci. 73, 1837–1845 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torrens-Spence, M. P. et al. Structural basis for independent origins of new catalytic machineries in plant AAAD proteins. BioRxiv 404970 (2018)Birkett, M. A. et al. The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Med. Vet. Entomol. 18, 313–322 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brodmann, J. et al. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr. Biol. 18, 740–744 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hervé, M. R. et al. Oviposition behavior of the pollen beetle (Meligethes aeneus): A functional study. J. Insect. Behav. 28, 107–119 (2015).Article 

    Google Scholar 
    Hilker, M. & Meiners, T. Plants and insect eggs: How do they affect each other?. Phytochemistry 72, 1612–1623 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibanez, S., Gallet, C. & Després, L. Plant insecticidal toxins in ecological networks. Toxins 4, 228–243 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Effective land management strategies can help climate mitigation in China

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Lu, N. et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01432-3 (2022). More

  • in

    Seasonal dynamics in picocyanobacterial abundance and clade composition at coastal and offshore stations in the Baltic Sea

    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. PNAS 110, 9824–9829 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honda, D. & Yokota, A. Detection of seven major evolutionary lineages in cyanobacteria based on the 165 rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48, 723–739 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Robertson, B. R., Tezuka, N. & Watanabe, M. M. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 51, 861–871 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stomp, M. et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104–107 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Albrecht, M., Pröschold, T. & Schumann, R. Identification of Cyanobacteria in a eutrophic coastal lagoon on the Southern Baltic Coast. Front. Microbiol. 8, 1–16 (2017).Article 

    Google Scholar 
    Bertos-Fortis, M. et al. Unscrambling cyanobacteria community dynamics related to environmental factors. Front. Microbiol. 7, 625 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunter-Cevera, K. R. et al. Seasons of syn. Limnol. Oceanogr. 65, 1–18 (2019).
    Google Scholar 
    Kuosa, H. Picoplanktonic algae in the northern Baltic Sea: Seasonal dynamics and flagellate grazing. Mar. Ecol. Prog. Ser. 73, 269–276 (1991).ADS 
    Article 

    Google Scholar 
    Sathicq, M. B., Unrein, F. & Gómez, N. Recurrent pattern of picophytoplankton dynamics in estuaries around the world: The case of Río de la Plata. Mar. Environ. Res. 161, 105136 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rajaneesh, K. M. & Mitbavkar, S. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary. Mar. Environ. Res. 92, 133–143 (2013).Article 
    CAS 

    Google Scholar 
    Crosbie, N. D., Pöckl, M. & Weisse, T. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microbiol. 69, 5716–5721 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ernst, A., Becker, S., Wollenzien, U. I. A. & Postius, C. Ecosystem-dependent adaptive radiations ofpicocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149, 217–228 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Handley, B. A. & Hayest, P. K. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology 154, 3347–3357 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hu, Y. O. O., Karlson, B., Charvet, S. & Andersson, A. F. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea. Front. Microbiol. 7, 679 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Larsson, J. et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8, 1892–1903 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Celepli, N. et al. Meta-omic analyses of Baltic Sea cyanobacteria: Diversity, community structure and salt acclimation. Environ. Microbiol. 19, 673–686 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 
    Article 

    Google Scholar 
    Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Clim. Dyn. 45, 1253–1280 (2015).Article 

    Google Scholar 
    Wang, T., Chen, X., Qin, S. & Li, J. Phylogenetic and phenogenetic diversity of Synechococcus along a yellow sea section reveal its environmental dependent distribution and co-occurrence microbial pattern. J. Mar. Sci. Eng. 9, 1018 (2021).Article 

    Google Scholar 
    Tai, V. & Palenik, B. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J. 3, 903–915 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahlgren, N. A. & Rocap, G. Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front. Microbiol. 3, 1–24 (2012).Article 
    CAS 

    Google Scholar 
    Rajaneesh, K. M., Mitbavkar, S., Anil, A. C. & Sawant, S. S. Synechococcus as an indicator of trophic status in the Cochin backwaters, west coast of India. Ecol. Indic. 55, 118–130 (2015).Article 

    Google Scholar 
    Campbell, L. & Carpenter, E. J. Characterization of phycoerythrin-containing Synechococcus spp. populations by immunofluorescence. J. Plankton Res. 9, 1167–1181 (1987).Article 

    Google Scholar 
    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).PubMed 
    Article 

    Google Scholar 
    Callieri, C. & Stockner, J. G. Freshwater autotrophic picoplankton: A review. J. Limnol. 61, 1–14 (2002).Article 

    Google Scholar 
    Liu, H., Jing, H., Wong, T. H. C. & Chen, B. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environ. Microbiol. Rep. 6, 90–99 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Haverkamp, T. et al. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10, 174–188 (2008).CAS 
    PubMed 

    Google Scholar 
    Otero-Ferrer, J. L. et al. Factors controlling the community structure of picoplankton in contrasting marine environments. Biogeosciences 15, 6199–6220 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ploug, H. et al. Carbon, nitrogen and O2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. ISME J. 5, 1549–1558 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohlendieck, U., Stuhr, A. & Siegmund, H. Nitrogen fixation by diazotrophic cyanobacteria in the Baltic Sea and transfer of the newly fixed nitrogen to picoplankton organisms. J. Mar. Syst. 25, 213–219 (2000).Article 

    Google Scholar 
    Klawonn, I. et al. Untangling hidden nutrient dynamics: Rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME J. 13, 1960–1974 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lin, Y., Wang, L., Xu, K., Huang, H. & Ren, H. Algae biofilm reduces microbe-derived dissolved organic nitrogen discharges: Performance and mechanisms. Environ. Sci. Technol. 55, 6227–6238 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Berthelot, H., Bonnet, S., Camps, M., Grosso, O. & Moutin, T. Assessment of the dinitrogen released as ammonium and dissolved organic nitrogen by unicellular and filamentous marine diazotrophic cyanobacteria grown in culture. Front. Mar. Sci. https://doi.org/10.3389/fmars.2015.00080 (2015).Article 

    Google Scholar 
    Loick-Wilde, N. et al. De novo amino acid synthesis and turnover during N2 fixation. Limnol. Ocean. 63, 1076–1092 (2018).CAS 
    Article 

    Google Scholar 
    Glibert, P. M. & Bronk, D. A. Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria Trichodesmium spp.. Appl. Environ. Microbiol. 60, 3996–4000 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuo, J. et al. Picoplankton dynamics and picoeukaryote diversity in a hyper-eutrophic subtropical lagoon. J. Environ. Sci. Heal. 4, 521–523 (2014).
    Google Scholar 
    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. PNAS 115, E2010–E2019 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Urbach, E., Scanlan, D., Distel, D., Waterbury, J. & Chisholm, S. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (cyanobacteria). J. Mol. Biol. 46, 188–201 (1998).ADS 
    CAS 

    Google Scholar 
    Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. PNAS 113, E3365–E3374 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mazard, S., Ostrowski, M., Partensky, F. & Scanlan, D. J. Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ. Microbiol. 14, 372–386 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, S. et al. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 6, 285–297 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Choi, D. H. & Noh, J. H. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol. Ecol. 69, 439–448 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, M. D. et al. Marine Synechococcus isolates representing globally abundant genomic lineages demonstrate a unique evolutionary path of genome reduction without a decrease in GC content. Environ. Microbiol. 21, 1677–1686 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, R., Foster, R., Jenkins, B., Montoya, J. & Zehr, J. Phylogenetic diversity of cyanobacterial narB genes from various marine habitats. Environ. Microbiol. 10, 3377–3387 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fuller, N. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scanlan, D. J. et al. Ecological genomics of marine Picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mazard, S., Wilson, W. H. & Scanlan, D. J. Dissecting the physiological response to phosphorus stress in marine Synechococcus isolates (cyanophyceae). J. Phycol. 48, 94–105 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, J. et al. Synechococcus bloom in the Pearl River Estuary and adjacent coastal area –With special focus on flooding during wet seasons. Sci. Total Environ. 692, 769–783 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zwirglmaier, K. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10, 147–161 (2008).PubMed 

    Google Scholar 
    Sohm, J. A. et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 10, 333–345 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bunse, C. et al. High frequency multi-year variability in Baltic Sea microbial plankton stocks and activities. Front. Microbiol. 10, 1–18 (2019).Article 

    Google Scholar 
    Alegria Zufia, J., Farnelid, H. & Legrand, C. Seasonality of coastal picophytoplankton growth, nutrient limitation and biomass contribution. Front. Microbiol. 12, 1–13 (2021).Article 

    Google Scholar 
    Granéli, E., Wallström, K., Larsson, U., Granéli, W. & Elmgren, R. Nutrient limitation of primary production in the Baltic Sea Area. Ambio 19, 142–151 (1990).
    Google Scholar 
    Mazur-Marzec, H. et al. Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 701, 235–252 (2013).CAS 
    Article 

    Google Scholar 
    Stal, L. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—Responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).ADS 
    Article 

    Google Scholar 
    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hugerth, L. W. et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 16, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Walve, J. & Larsson, U. Seasonal changes in Baltic Sea seston stoichiometry: The influence of diazotrophic cyanobacteria. Mar. Ecol. Prog. Ser. 407, 13–25 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Huber, P. et al. Primer design for an accurate view of picocyanobacterial community structure by using high-throughput sequencing. Appl. Environ. Microbiol. 85, 1–17 (2019).Article 

    Google Scholar 
    Jiang, T. et al. Temporal and spatial variations of abundance of phycocyanin- and phycoerythrin-rich Synechococcus in Pearl River Estuary and adjacent coastal area. J. Ocean Univ. China 15, 897–904 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Li, S. et al. Unexpected predominance of photosynthetic picoeukaryotes in shallow eutrophic lakes. J. Plankton Res. 38, 830–842 (2016).CAS 
    Article 

    Google Scholar 
    Collos, Y. et al. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J. Sea Res. 61, 68–75 (2009).ADS 
    Article 

    Google Scholar 
    Bec, B., Husseini-Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).CAS 
    Article 

    Google Scholar 
    Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of coastal phytoplankter. Science 354, 326–329 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Albertano, P., Di Somma, D. & Capucci, E. Cyanobacterial picoplankton from the central Baltic Sea: Cell size classification by image analyzed fluorescence microscopy. J. Plankton Res. 19, 1405–1416 (1997).Article 

    Google Scholar 
    Paulsen, M. L. et al. Synechococcus in the Atlantic gateway to the Arctic Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00191 (2016).Article 

    Google Scholar 
    Felföldi, T. et al. Diversity and seasonal dynamics of the photoautotrophic picoplankton in Lake Balaton (Hungary). Aquat. Microb. Ecol. 63, 273–287 (2011).Article 

    Google Scholar 
    Grinienė, E., Šulčius, S. & Kuosa, H. Size-selective microzooplankton grazing on the phytoplankton in the Curonian Lagoon (SE Baltic Sea). Oceanologia 58, 292–301 (2016).Article 

    Google Scholar 
    Tsai, A. Y., Gong, G. C., Huang, Y. W. & Chao, C. F. Estimates of bacterioplankton and Synechococcus spp. mortality from nanoflagellate grazing and viral lysis in the subtropical Danshui River estuary. Estuar. Coast. Shelf Sci. 153, 54–61 (2015).ADS 
    Article 

    Google Scholar 
    Camacho, A., Miracle, M. R. & Vicente, E. Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Arch. Hydrobiol. 157(321), 338 (2003).
    Google Scholar 
    Berry, D. L. et al. Shifts in cyanobacterial strain dominance during the onset of harmful algal blooms in Florida Bay, USA. Microb. Ecol. 70, 361–371 (2015).PubMed 
    Article 

    Google Scholar 
    Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. PNAS 116, 16899–16908 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wall, C. C., Rodgers, B. S., Gobler, C. J. & Peterson, B. J. Responses of loggerhead sponges Spechiospongia vesparium during harmful cyanobacterial blooms in a sub-tropical lagoon. Mar. Ecol. Prog. Ser. 451, 31–43 (2012).ADS 
    Article 

    Google Scholar 
    Glibert, P. M. et al. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 61, 165–197 (2016).ADS 
    Article 

    Google Scholar 
    Herbert, R. A. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev. 23, 563–590 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cai, J., Hodoki, Y. & Nakano, S. I. Phylogenetic diversity of the picocyanobacterial community from a novel winter bloom in Lake Biwa. Limnology 22, 161–167 (2021).Article 

    Google Scholar 
    Guyet, U. et al. Synergic effects of temperature and irradiance on the physiology of the marine Synechococcus strain WH7803. Front. Microbiol. 11, 1707 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meier, H. E. M. et al. Ensemble modeling of the Baltic Sea ecosystem to provide scenarios for management. Ambio 43, 37–48 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neumann, T. et al. Extremes of temperature, oxygen and blooms in the baltic sea in a changing climate. Ambio 41, 574–585 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersson, A. et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 44, 345–356 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Change Biol. 26, 5574–5587 (2020).ADS 
    Article 

    Google Scholar 
    Legrand, C. et al. Interannual variability of phyto-bacterioplankton biomass and production in coastal and offshore waters of the Baltic Sea. Ambio 44, 427–438 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. Change Biol. 24, e352–e364 (2017).Article 

    Google Scholar 
    Valderrama, J. C. Methods of nutrient analysis. In Manual on Harmful Marine Microalgae (eds Hallagraeff, G. M. et al.) 251–268 (IOC Manuals and Guides, 1995).
    Google Scholar 
    Jespersen, A. M. & Christoffersen, K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 109, 445–454 (1987).CAS 

    Google Scholar 
    Edler, L. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll (Baltic Marine Biologists BMB (Sweden), 1979).HELCOM Phytoplankton Expert Group. Phytoplankton biovolume and carbon content. https://www.ices.dk/data/Documents/ENV/PEG_BVOL.zip (2013).Mostböck, S. FCSalyzer (2021).Gregory Caporaso, J. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods https://doi.org/10.1038/nmeth.f.303 (2010).Article 
    PubMed 

    Google Scholar 
    Callahan, B. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crosbie, N. D., Pöckl, M. & Weisse, T. Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J. Microbiol. Methods 55, 361–370 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, C. S. P., Genuário, D. B., Vaz, M. G. M. V. & Fiore, M. F. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst. Appl. Microbiol. 37, 100–112 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marsan, D., Wommack, K. E. & Ravel, J. Draft genome sequence of Synechococcus sp. strain CB0101, isolated from the Chesapeake Bay estuary. Genome Announc. 2, e01111 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.5.1. https://www.r-project.org/ (2019).Oksanen, J. et al. Package ‘vegan’ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016) (ISBN 978-3-319-24277-4).MATH 
    Book 

    Google Scholar 
    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill, A. E. Atmosphere-Ocean Dynamics (Academic Press, USA, 1982).
    Google Scholar 
    Li, X., Wang, Y., Li, J. & Lei, B. Physical and socioeconomic driving forces of land-use and land-cover changes: A Case Study of Wuhan City, China. Discret Dyn. Nat. Soc. 2016 (2016).Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Tropical tree species differ in damage and mortality from lightning

    Dale, V. H. et al. Climate change and forest disturbances. BioScience 51, 723 (2001).Article 

    Google Scholar 
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).Article 

    Google Scholar 
    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 
    Article 

    Google Scholar 
    Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).CAS 
    Article 

    Google Scholar 
    Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).Article 

    Google Scholar 
    Gora, E. M. et al. A mechanistic and empirically supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).Article 

    Google Scholar 
    Gora, E. M., Burchfield, J. C., Muller‐Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning‐caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).Article 

    Google Scholar 
    Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).Article 

    Google Scholar 
    Maxwell, H. Observations on trees, as conductors of lightning. Mem. Am. Acad. Arts Sci. 2, 143 (1793).
    Google Scholar 
    Covert, R. N. Why an oak is often struck by lightning: a method of protecting trees against lightning. Mon. Weather Rev. 52, 492–493 (1924).Article 

    Google Scholar 
    Taylor, A. R. Lightning damage to forest trees in Montana. Weatherwise 17, 61–65 (1964).Article 

    Google Scholar 
    Furtado, C. X. Lightning injuries to trees. J. Malays. Branch R. Asiat. Soc. 13, 157–162 (1935).
    Google Scholar 
    Magnusson, W. E., Lima, A. P. & De Lima, O. Group lightning mortality of trees in a neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).Article 

    Google Scholar 
    Yanoviak, S. P., Gora, E. M., Burchfield, J. M., Bitzer, P. M. & Detto, M. Quantification and identification of lightning damage in tropical forests. Ecol. Evol. 7, 5111–5122 (2017).Article 

    Google Scholar 
    Makela, J., Karvinen, E., Porjo, N., Makela, A. & Tuomi, T. Attachment of natural lightning flashes to trees: preliminary statistical characteristics. J. Light. Res. 1, 9–21 (2009).Article 

    Google Scholar 
    Yanoviak, S. P. in Treetops at Risk (eds Lowman, M. et al.) 147–153 (Springer, 2013).Gora, E. M., Bitzer, P. M., Burchfield, J. C., Schnitzer, S. A. & Yanoviak, S. P. Effects of lightning on trees: a predictive model based on in situ electrical resistivity. Ecol. Evol. 7, 8523–8534 (2017).Article 

    Google Scholar 
    Orville, R. E. Photograph of a close lightning flash. Science 162, 666–667 (1968).CAS 
    Article 

    Google Scholar 
    Gora, E. M. & Yanoviak, S. P. Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Can. J. For. Res. 45, 236–245 (2015).Article 

    Google Scholar 
    Hietz, P., Rosner, S., Hietz-Seifert, U. & Wright, S. J. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol. 213, 170–180 (2017).CAS 
    Article 

    Google Scholar 
    Clarke, P. J. et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol. 197, 19–35 (2013).CAS 
    Article 

    Google Scholar 
    Kozlowski, T. T. & Pallardy, S. G. Physiology of Woody Plants (Academic Press, 1997).Bruijning, M. et al. Surviving in a cosexual world: a cost–benefit analysis of dioecy in tropical trees. Am. Nat. 189, 297–314 (2017).Article 

    Google Scholar 
    Visser, M. D. et al. Strict mast fruiting for a tropical dipterocarp tree: a demographic cost–benefit analysis of delayed reproduction and seed predation. J. Ecol. 99, 1033–1044 (2011).Article 

    Google Scholar 
    Charles, A. E. Coconut lightning strike. Papua New Guin. Agric. J. 12, 192–195 (1960).
    Google Scholar 
    Sharples, A. Lightning storms and their significance in relation to diseases of Cocos nucifera and Hevea brasilensis. Ann. Appl. Biol. 20, 1–22 (1933).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).Article 

    Google Scholar 
    Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459–12464 (2018).CAS 
    Article 

    Google Scholar 
    Poorter, L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 181, 890–900 (2009).Article 

    Google Scholar 
    Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutiérrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation, and plant mortality in a tropical forest. Ecology 102, e03541 (2021).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Brooks, M. E. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 (2019).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Condit, R. et al. Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, 2019 version. Dryad https://doi.org/10.15146/5xcp-0d46 (2019).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).Article 

    Google Scholar 
    Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 70 (2020).Article 

    Google Scholar 
    Gora, E. M. et al. Data from: A mechanistic and empirically-supported lightning risk model for forest trees. Dryad https://doi.org/10.5061/dryad.c59zw3r48 (2020). More

  • in

    The gut microbiota affects the social network of honeybees

    Wilson, E. O. Sociobiology: The New Synthesis (Harvard Univ. Press, 1975).Diamond, J. M. & Ordunio, D. Guns, Germs, and Steel (Books on Tape, 1999).Couzin, I. D. et al. Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–75 (2003).
    Google Scholar 
    Keller, L. Adaptation and the genetics of social behaviour. Philos. Trans. R. Soc. Lond. B 364, 3209–3216 (2009).
    Google Scholar 
    Kay, T., Keller, L. & Lehmann, L. The evolution of altruism and the serial rediscovery of the role of relatedness. Proc. Natl Acad. Sci. USA 117, 28894–28898 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).CAS 
    PubMed 

    Google Scholar 
    Johnson, K. V. A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).CAS 
    PubMed 

    Google Scholar 
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).CAS 
    PubMed 

    Google Scholar 
    Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).CAS 
    PubMed 

    Google Scholar 
    Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, M. et al. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children. Sci. Adv. 6, eaba3760 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, W.-L. et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595, 409–414 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764–775 (2019).CAS 
    PubMed 

    Google Scholar 
    Schretter, C. E. Links between the gut microbiota, metabolism, and host behavior. Gut Microbes 11, 245–248 (2020).PubMed 

    Google Scholar 
    Liberti, J. & Engel, P. The gut microbiota–brain axis of insects. Curr. Opin. Insect Sci. 39, 6–13 (2020).PubMed 

    Google Scholar 
    O’Donnell, M. P., Fox, B. W., Chao, P.-H., Schroeder, F. C. & Sengupta, P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583, 415–420 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, E. O. The Insect Societies (Harvard Univ. Press, 1971).Hölldobler, B. & Wilson, E. O. The Ants (Harvard Univ. Press, 1990).Teseo, S. et al. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim. Behav. 150, 239–254 (2019).
    Google Scholar 
    Vernier, C. L. et al. The gut microbiome defines social group membership in honey bee colonies. Sci. Adv. 6, eabd3431 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, L. et al. Gut microbiome drives individual memory variation in bumblebees. Nat. Commun. 12, 6588 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choi, S. H. et al. Individual variations lead to universal and cross-species patterns of social behavior. Proc. Natl Acad. Sci. USA 117, 31754–31759 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl Acad. Sci. USA 117, 10406–10413 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).CAS 
    PubMed 

    Google Scholar 
    Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, e2003467 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14, 801–814 (2020).PubMed 

    Google Scholar 
    Mersch, D. P., Crespi, A. & Keller, L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340, 1090–1093 (2013).CAS 
    PubMed 

    Google Scholar 
    Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945 (2018).CAS 
    PubMed 

    Google Scholar 
    Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but can improve decision accuracy. Philos. Trans. R. Soc. Lond. B 374, 20180378 (2019).
    Google Scholar 
    de Groot, A. P. Protein and amino acid requirements of the honeybee (Apis mellifica L.). Physiol. Comp. Oecol. 3, 197–285 (1953).
    Google Scholar 
    Billard, J.-M. d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 43, 1851–1860 (2012).CAS 
    PubMed 

    Google Scholar 
    Marcaggi, P. & Attwell, D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47, 217–225 (2004).PubMed 

    Google Scholar 
    Gage, S. L., Calle, S., Jacobson, N., Carroll, M. & DeGrandi-Hoffman, G. Pollen alters amino acid levels in the honey bee brain and this relationship changes with age and parasitic stress. Front. Neurosci. 14, 231 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kawase, T. et al. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br. J. Nutr. 117, 775–783 (2017).CAS 
    PubMed 

    Google Scholar 
    Socha, E., Koba, M. & Koslinski, P. Amino acid profiling as a method of discovering biomarkers for diagnosis of neurodegenerative diseases. Amino Acids 51, 367–371 (2019).CAS 
    PubMed 

    Google Scholar 
    Tarlungeanu, D. C. et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167, 1481–1494 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maynard, T. M. & Manzini, M. C. Balancing act: maintaining amino acid levels in the autistic brain. Neuron 93, 476–479 (2017).CAS 
    PubMed 

    Google Scholar 
    Kurochkin, I. et al. Metabolome signature of autism in the human prefrontal cortex. Commun. Biol. 2, 234 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    van der Velpen, V. et al. Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimer’s Res. Ther. 11, 93 (2019).
    Google Scholar 
    Aldana, B. I. et al. Glutamate–glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia. Mol. Brain 13, 125 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galizia, C. G., Eisenhardt, D. & Giurfa M. (eds) Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel (Springer Science & Business Media, 2011).Menzel, R. The honeybee as a model for understanding the basis of cognition. Nat. Rev. Neurosci. 13, 758–768 (2012).CAS 
    PubMed 

    Google Scholar 
    Ellegaard, K. M. & Engel, P. Genomic diversity landscape of the honey bee gut microbiota. Nat. Commun. 10, 446 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruno, F., Angilica, A., Cosco, F., Luchi, M. L. & Muzzupappa, M. Mixed prototyping environment with different video tracking techniques. In IMProVe 2011 International Conference on Innovative Methods in Product Design (eds Concheri, G. et al.) 105–113 (Libreria Internazionale Cortina Padova, 2011).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Anderson, K. E., Rodrigues, P. A. P., Mott, B. M., Maes, P. & Corby-Harris, V. Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb. Ecol. 71, 1008–1019 (2016).CAS 
    PubMed 

    Google Scholar 
    Almasri, H., Liberti, J., Brunet, J. L., Engel, P. & Belzunces, L. P. Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Sci. Rep. 12, 4281 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).Gallup, J. M. in PCR Troubleshooting and Optimization: The Essential Guide (eds Kennedy, S. & Oswald, N.) 23–65 (Caister Academic Press, 2011).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
    Google Scholar 
    Patassini, S. et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem. Biophys. Res. Commun. 468, 161–166 (2015).CAS 
    PubMed 

    Google Scholar 
    Gonzalez-Riano, C., Garcia, A. & Barbas, C. Metabolomics studies in brain tissue: a review. J. Pharm. Biomed. Anal. 130, 141–168 (2016).CAS 
    PubMed 

    Google Scholar 
    Belle, J. E. L., Harris, N. G., Williams, S. R. & Bhakoo, K. K. A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed. 15, 37–44 (2002).PubMed 

    Google Scholar 
    Wanichthanarak, K., Jeamsripong, S., Pornputtapong, N. & Khoomrung, S. Accounting for biological variation with linear mixed-effects modelling improves the quality of clinical metabolomics data. Comput. Struct. Biotechnol. J. 17, 611–618 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS 
    PubMed 

    Google Scholar 
    Wallberg, A. et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics 20, 275 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).CAS 
    PubMed 

    Google Scholar 
    Reijnders, M. J. & Waterhouse, R. M. Summary visualisations of gene ontology terms with GO-Figure! Front. Bioinform. 1, 638255 (2021).
    Google Scholar  More

  • in

    Greater bee diversity is needed to maintain crop pollination over time

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 
    Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc. Biol. Sci. 287, 20202063 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).PubMed 
    Article 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, A. D. et al. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150279 (2016).Article 

    Google Scholar 
    Manning, P. & Cutler, G. C. Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric. Ecosyst. Environ. 264, 9–14 (2018).Article 

    Google Scholar 
    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. Camb. Philos. Soc. 94, 1220–1245 (2019).PubMed 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).Article 
    CAS 

    Google Scholar 
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782 (2018).PubMed 
    Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 
    Article 

    Google Scholar 
    Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).PubMed 
    Article 

    Google Scholar 
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).Article 

    Google Scholar 
    Lohbeck, M., Bongers, F., Martinez-Ramos, M. & Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97, 2772–2779 (2016).PubMed 
    Article 

    Google Scholar 
    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).Article 

    Google Scholar 
    Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. Biol. Sci. 286, 20191189 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).Article 

    Google Scholar 
    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642 (2003).Article 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).Article 

    Google Scholar 
    Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. Biol. Sci. 285, 20180038 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Qiu, J. & Cardinale, B. J. Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101, e03166 (2020).Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albrecht, J. et al. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582–1593 (2021).PubMed 
    Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shanafelt, D. W. et al. Biodiversity, productivity, and the spatial insurance hypothesis revisited. J. Theor. Biol. 380, 426–435 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).Article 

    Google Scholar 
    Herrera, C. M. Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. Lond. 35, 95–125 (1988).Article 

    Google Scholar 
    McCormack, M. L., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95, 2224–2235 (2014).PubMed 
    Article 

    Google Scholar 
    Wright, K. W., Vanderbilt, K. L., Inouye, D. W., Bertelsen, C. D. & Crimmins, T. M. Turnover and reliability of flower communities in extreme environments: insights from long-term phenology data sets. J. Arid Environ. 115, 27–34 (2015).Article 

    Google Scholar 
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).PubMed 
    Article 

    Google Scholar 
    Iserbyt, S. & Rasmont, P. The effect of climatic variation on abundance and diversity of bumblebees: a ten years survey in a mountain hotspot. Ann. Soc. Entomol. Fr. 48, 261–273 (2012).Article 

    Google Scholar 
    Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ernest, S. K. M. & Brown, J. H. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).Article 

    Google Scholar 
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Awasthi, A., Singh, M., Soni, S. K., Singh, R. & Kalra, A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 8, 2445–2452 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: Insurance effects during the first decade of the Sabah biodiversity experiment. Proc. Biol. Sci. 283, 20161451 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl Acad. Sci. USA 112, 3427–3432 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).PubMed 
    Article 

    Google Scholar 
    Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).Article 

    Google Scholar 
    Baumgärtner, S. The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model. 20, 87–127 (2007).Article 

    Google Scholar 
    Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 323–356 (Academic Press, 2019).Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).Article 

    Google Scholar 
    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Liu, D., Chang, P.-H. S., Power, S. A., Bell, J. N. B. & Manning, P. Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytol. 232, 1238–1249 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).PubMed 
    Article 

    Google Scholar 
    Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020: Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).PubMed 
    Article 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. The effects of honey bee and bumble bee pollination on fruit set and abortion of cucumber and watermelon. Am. Bee. J. 137, 386–391 (1997).
    Google Scholar 
    Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113 (2007).PubMed 
    Article 

    Google Scholar 
    Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H. & Marini, L. Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280, 16–23 (2019).Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. Seed production in watermelon: a comparison between two commercially available pollinators. HortScience 33, 28–30 (1998).Article 

    Google Scholar 
    Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. Biol. Sci. 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sáez, A. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc. Biol. Sci. 289, 20220086 (2022).PubMed 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A. M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. Biol. Sci. 280, 20122767 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Houlahan, J. E. et al. Negative relationships between species richness and temporal variability are common but weak in natural systems. Ecology 99, 2592–2604 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Winfree, R. Global change, biodiversity, and ecosystem services: what can we learn from studies of pollination? Basic Appl. Ecol. 14, 453–460 (2013).Article 

    Google Scholar 
    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).PubMed 
    Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).PubMed 
    Article 

    Google Scholar 
    Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).PubMed 
    Article 

    Google Scholar 
    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms (Wiley, 2004).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. R package version 0.7.0 https://doi.org/10.5281/zenodo.3952174 (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Brooks, M. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 https://glmmtmb.github.io/glmmTMB/ (2022).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Citizen science monitoring reveals links between honeybee health, pesticide exposure and seasonal availability of floral resources

    The Insect Pollinators Initiative & Vanbergen, A. J. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. https://doi.org/10.1038/s41467-019-08974-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459. https://doi.org/10.1038/ncomms12459 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. TREE 25, 345–353 (2010).PubMed 

    Google Scholar 
    Becher, M. A., Osborne, J. L., Thorbek, P., Kennedy, P. J. & Grimm, V. REVIEW: Towards a systems approach for understanding honeybee decline: A stocktaking and synthesis of existing models. J. Appl. Ecol. 50, 868–880 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becher, M. A. et al. BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J. Appl. Ecol. 51, 470–482 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549. https://doi.org/10.1038/nature21709 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conti, I. et al. Sugar and protein content in different monofloral pollens – Building a database. Bull. Insectol. 69, 318–320 (2016).
    Google Scholar 
    Rodney, S. & Kramer, V. J. Probabilistic assessment of nectar requirements for nectar-foraging honey bees. Apidologie 51, 180–200 (2020).Article 

    Google Scholar 
    Cartar, R. V. Colony energy-reuirements affect response to predation risk in foraging bumble bees. Ethology 87, 90–96 (1991).Article 

    Google Scholar 
    Cook, S. M., Awmack, C. S., Murray, D. A. & Williams, I. H. Are honey bees’ foraging preferences affected by pollen amino acid composition?. Ecol. Entomol. 28, 622–627 (2003).Article 

    Google Scholar 
    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88. https://doi.org/10.1038/nature16532 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do Pollen quality and diversity matter?. PLoS ONE https://doi.org/10.1371/journal.pone.0072016 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bayo, F. et al. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 89–90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. Lond. B Biol. Sci. 282, 20150299. https://doi.org/10.1098/rspb.2015.0299 (2015).CAS 
    Article 

    Google Scholar 
    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honeybees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    PPDB. The pesticide properties DataBase (PPDB) (Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2013).Belden, J. B. The acute toxicity of pesticide mixtures to honeybees. Integr. Environ. Assess. Manag. https://doi.org/10.1002/ieam.4595 (2022).Article 
    PubMed 

    Google Scholar 
    Battisti, L. et al. Is glyphosate toxic to bees? A meta-analytical review. Sci. Tot. Environ. 767, 145397. https://doi.org/10.1016/j.scitotenv.2021.145397 (2021).CAS 
    Article 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article 

    Google Scholar 
    Carvell, C. et al. Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481–489 (2006).Article 

    Google Scholar 
    Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).Article 

    Google Scholar 
    Storkey, J. & Westbury, D. B. Managing arable weeds for biodiversity. Pest Manag. Sci. 63, 517–523 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutchinson, L. A. et al. Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agric. Ecosyst. Environ. 315, 107447. https://doi.org/10.1016/j.agee.2021.107447 (2021).Article 

    Google Scholar 
    Requier, F., Odoux, J. F., Henry, M. & Bretagnolle, V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J. Appl. Ecol. 54, 1161–1170 (2017).Article 

    Google Scholar 
    Alburaki, M., Gregorc, A., Adamczyk, J. & Stewart, S. D. Insights on pollen diversity of honey bee (Apis mellifera L.) colonies Located in various agricultural landscapes. Southwest. Nat. 63, 49–58 (2018).Article 

    Google Scholar 
    Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Honeybee nutrition is linked to landscape composition. Ecol. Evol. 4, 4195–4206 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cole, L. J., Brocklehurst, S., Robertson, D., Harrison, W. & McCracken, D. I. Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 246, 157–167 (2017).Article 

    Google Scholar 
    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. Lond. B Biol. Sci. 270, 569–575 (2003).Article 

    Google Scholar 
    Woodcock, B. A. et al. Enhancing floral resources for pollinators in productive agricultural grasslands. Biol. Conserv. 171, 44–51 (2014).Article 

    Google Scholar 
    Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. App. 25, 881–890 (2015).Article 

    Google Scholar 
    Ausseil, A. G. E., Dymond, J. R. & Newstrom, L. Mapping floral resources for honey bees in New Zealand at the catchment scale. Ecol. Appl. 28, 1182–1196. https://doi.org/10.1002/eap.1717 (2018).Article 
    PubMed 

    Google Scholar 
    Kamo, T. et al. A DNA barcoding method for identifying and quantifying the composition of pollen species collected by European honeybees, Apis mellifera (Hymenoptera: Apidae). Appl. Entomol. Zool. 53, 353–361 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurnberger, F., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Mol. Ecol. 28, 3602–3611 (2019).PubMed 
    Article 

    Google Scholar 
    Richardson, R. T. et al. Applications of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. https://doi.org/10.3732/apps.1400066 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, A. E. et al. Integration of DNA extraction, metabarcoding and an informatics pipeline to underpin a national citizen science honey monitoring scheme. MethodsX 8, 101303. https://doi.org/10.1016/j.mex.2021.101303 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, L. et al. Shifts in honeybee foraging reveal historical changes in floral resources. Commun. Biol. 4, 37. https://doi.org/10.1038/s42003-020-01562-4 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barroso-Arevalo, S., Vicente-Rubiano, M., Ruiz, J. A., Bentabol, A. & Sanchez-Vizcaino, J. M. Does pollen diversity influence honey bee colony health?. Sp. J. Agric. Res. https://doi.org/10.5424/sjar/2019173-13991 (2019).Article 

    Google Scholar 
    Bansch, S., Tscharntke, T., Ratnieks, F. L. W., Hartel, S. & Westphal, C. Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2019.106792 (2020).Article 

    Google Scholar 
    Danner, N., Molitor, A. M., Schiele, S., Hartel, S. & Steffan-Dewenter, I. Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecol. Appl. 26, 1920–1929 (2016).PubMed 
    Article 

    Google Scholar 
    EFSA. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2014).
    Google Scholar 
    Hatjina, F. et al. Citizen scientist initiative for measuring varroa damage thresholds: Common efforts for data collection—CSI varroa. Bee World 98, 132–135 (2021).Article 

    Google Scholar 
    Gratzer, K. & Brodschneider, R. How and why beekeepers participate in the INSIGNIA citizen science honey bee environmental monitoring project. Environ. Sci. Pollut. Res. 28, 37995–38006 (2021).Article 

    Google Scholar 
    Brodschneider, R. et al. CSI pollen: Diversity of honey bee collected pollen studied by citizen scientists. Insects 12, 987. https://doi.org/10.3390/insects12110987 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodschneider, R. et al. A citizen science supported study on seasonal diversity and monoflorality of pollen collected by honey bees in Austria. Sci. Rep. https://doi.org/10.1038/s41598-019-53016-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).Article 
    PubMed 

    Google Scholar 
    Nagaharu, U. Genome analysis in brassica with special reference to the experimental formation of B. Napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389–452 (1935).
    Google Scholar 
    Herbertsson, L., Lindstrom, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).Article 

    Google Scholar 
    Magrach, A., Gonzalez-Varo, J. P., Boiffier, M., Vila, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).PubMed 
    Article 

    Google Scholar 
    Adams-Groom, B., Martin, P. & Banon, A. Pollen characterization of English honey from Worcestershire, West Midlands (UK). Bee World https://doi.org/10.1080/0005772X.2019.1698105 (2019).Article 

    Google Scholar 
    Smart, M. D. et al. A comparison of honey bee-collected pollen from working agricultural lands using light microscopy and ITS metabarcoding. Environ. Entomol. 46, 38–49 (2017).CAS 
    PubMed 

    Google Scholar 
    Danner, N., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE https://doi.org/10.1371/journal.pone.0183716 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piroux, M. et al. Correlating the pollens gathered by Apis mellifera with the landscape features in Western France. Appl. Ecol. Environ. Res. 12, 423–439 (2014).Article 

    Google Scholar 
    Di Pasquale, G. et al. Variations in the availability of pollen resources affect honey bee health. PLoS ONE https://doi.org/10.1371/journal.pone.0162818 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donkersley, P. et al. Nutritional composition of honey bee food stores vary with floral composition. Oecologia 185, 749–761 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, R. F. et al. Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and pollen deposition. Landsc. Ecol. 35, 513–527 (2020).Article 

    Google Scholar 
    LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. https://doi.org/10.1098/rsos.190279 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egan, P. A. et al. Plant toxin levels in nectar vary spatially across native and introduced populations. J. Ecol. 104, 1106–1115 (2016).CAS 
    Article 

    Google Scholar 
    Flombaum, P., Sala, O. E. & Rastetter, E. B. Interactions among resource partitioning, sampling effect, and facilitation on the biodiversity effect: A modeling approach. Oecologia 174, 559–566 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C. & Stanley, D. A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE https://doi.org/10.1371/journal.pone.0225743 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature https://doi.org/10.1038/s41586-021-03787-7 (2021).Article 
    PubMed 

    Google Scholar 
    Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jarvis, S. G. et al. CEH land cover plus: Pesticides 2012-2017 (England, Scotland and Wales). NERC Environmental Information Data Centre. https://doi.org/10.5285/99a2d3a8-1c7d-421e-ac9f-87a2c37bda62 (2020).Simon-Delso, N. et al. Honeybee colony disorder in crop areas: The role of pesticides and viruses. PLoS ONE https://doi.org/10.1371/journal.pone.0103073 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. G., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    FERA. PUS STAT: Pesticide usage surveys. https://secure.fera.defra.gov.uk/pusstats/myindex.cfm (2015).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UKCEH. Land cover plus: Crops © NERC (CEH) 2019. (Remote Sensing Applications Consultants Ltd., 2019).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Kovach, J., Petzoldt, C., Degni, J. & Tette, J. A method to measure the environmental impact of pesticides, Vol. 139 1–8 (New York Food and Life Sciences Bulletin, 1992).Juraske, R., Antón, A. & Castells, F. Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere 70, 1748–1755 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, H. M., Fryday, S. L., Harkin, S. & Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45, 545–553. https://doi.org/10.1007/s13592-014-0273-6 (2014).CAS 
    Article 

    Google Scholar 
    Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE https://doi.org/10.1371/journal.pone.0072587 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ridley, L. et al. Pesticide usage survey report 295. Arable crops in the United Kingdom 2020 (Food & Environment Research Agency, 2020).Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    R Core Development Team. R: Version 3.6.3. A language and environment for statistical computing. R Foundation for Statistical Computing, Bristol, UK. http://cran.r-project.org (2021).Pinheiro, J. C., Bates, D. & DebRoy, S. The R core team nlme: Linear and nonlinear mixed effects models. R Package nlme Version 3, 1–83 (2007).
    Google Scholar  More