More stories

  • in

    A Physarum-inspired approach to the Euclidean Steiner tree problem

    Having introduced our novel explore-and-fuse method and the Physarum Steiner Algorithm we shall dedicate this section to discussing how the algorithm’s parameters influence the model, and how the method can be used towards diverse applications.In what follows we shall consider how different parameters such as the different shapes of cells, as well as their number, influence the results obtained by the Physarum Steiner Algorithm. We shall then conclude the section by studying different applications that our methods have.Cell shapeAlthough13 and6 considered diamond shaped CELLs, we shall consider here CELLs with other shapes. The primary benefit of square cells is that their shape allows for more cytoplasm to be placed on the grid. As a result, the foraging phase is very fast so using square cells tends to result in shorter run times than using diamond-shaped cells. In addition, large square cells are able to more completely cover the standard square grid than diamond-shaped cells. On the other hand, diamond-shaped cells result in less cytoplasm and more time spent in the foraging stage. This gives the cytoplasm time to move towards a centralized location which results in better solutions.Example A In order to illustrate the above point, in Fig. 3a.i., we begin with squares that are tightly packed. Since the squares are so tightly packed (1 apart), if any piece of cytoplasm in a square is moved, it will lead to a connection with a neighboring cell. As a result, all the points are found very quickly. In fact, many of the squares are connected and part of the network even if they are not close to any of the points, as shown in Fig. 3 (a.ii.). Shrinking these extra squares takes a long time and can also result in long paths which are far out of the way as seen in Fig. 3a.iii.Example B In contrast to Example A, in Fig. 3b, we consider diamond-shaped cells. The cells start off diamond-shaped and with less overall cytoplasm than the square cells. The cells then spend quite a few iterations in the foraging phase. Although this does take time, it allows the cytoplasm to move towards a centralized location around the active zones as seen in Fig. 3 (b.ii.). When the cell finally proceeds to the shrinking phase, there is less cytoplasm to remove and no out of the way paths, resulting in shorter solutions. The downside to this is the increased time which in some cases can be very long (over 100 million iterations) and in some cases the algorithm may not even complete.The effect of multiple cellsIn what follows we shall examine the effects of the number of cells used. We run 10 trials on 10 grids for a total of 100 trials on each cell size and number of cells. For each trial, we measure the total amount or area of cytoplasm that is initially spawned. This is used to normalize the search area which is the number of squares in the grid (for example a (100 times 100) grid has search area 10,000).Success rate: The algorithm may sometimes be unsuccessful at connecting all the points. For example, the cells may miss a point early on and move far away from that point, making it almost impossible to ever find that point. There may also simply not be enough cytoplasm for two far away cells to fuse into one. For each number of cells (1, 9, 25, 100), we try various sizes/amounts of cytoplasm and compute the proportion of trials (out of 100) that successfully terminate within 10 million iterations.Figure 4(a) Proportion of trials that are successful versus the search area as a percentage of cytoplasm for trials with 1, 9, 25, and 100 cells. (b) Length of solutions versus the search area as a percentage of cytoplasm. (c) Number of iterations versus the search area as a percentage of cytoplasm. Failed trails excluded from graphs.Full size imageIn Fig. 4a, we see that the black line (100 cells) extends much further to the right than the cyan line (one cell). Thus, the more cells there are, the larger of a search area we can explore. This is mainly because with more cells, we can spread out our cytoplasm instead of having it be concentrated in certain areas.Solution length Another important metric to consider is the solution length. We measure how good the solution is by counting the amount of cytoplasm when the algorithm terminates. We ignore any cytoplasm that is part of a disjoint cell that does not contain an active zone, or in other words is separate from the cell that actually forms the tree. In Fig. 4b, we see that as the search area as a percentage of cytoplasm increases, the quality of the solution improves. This is because there is comparatively less cytoplasm to begin with. In addition, we see that as the number of cells increases, it is possible to find a better solution. This correlates with the earlier result shown in Fig. 4a that using more cells allows solutions to be found with less cytoplasm. Trials with 100 cells found the shortest solutions (rightmost data point).Run time The last metric we consider is the run time. We consider the true number of iterations the algorithm runs for. By true iterations, we account for the fact that in a parallel algorithm or set of real-world Physarum organisms, multiple cells will be introducing and moving bubbles at the same time. As a result, the iteration count is scaled by the number of disjoint cells. In Fig. 4c, we see that the more cells there are, the lower the number of iterations. This may be because with more cells, the cytoplasm is more spread out and therefore there are less out of the way points which may take a very long time to find. From the above analysis, we see that using more cells allows us to explore bigger search areas, find shorter solutions, and solve problems faster.ApplicationsThe behavior of Physarum and the models it has inspired have found many different uses among which are drug repositioning, developing bio-computing chips, approximating highways layouts, and designing subway systems2,8,9,10. In order to illustrate the operation of the Physarum Steiner Algorithm and demonstrate its applicability to real world problems, we consider the following:

    sep0em

    Network design We use the algorithm to develop a road network in the United States.

    Obstacle-avoidance We use the algorithm to solve the obstacle-avoiding Euclidean Steiner tree problem.

    VLSI routing We use the algorithm to route connections between pads in chip design.

    Topological surfaces We discuss the algorithm’s adaptability to varying surfaces and boundaries by considering topological surfaces such as the sphere, torus, Klein bottle, and (mathbb{RP}mathbb{}^2).

    Road networks The Physarum Steiner Algorithm can be used to build a road network between the largest one hundred cities in the lower 48 United States (excluding Alaska and Hawaii). We use data32 containing the longitude and latitude of the 100 cities with the highest population to generate a rectangular grid of active zones.We spawn diamond-shaped cells of size 7 with a spacing of 1 as shown in Fig. 3. After many iterations, the final road network is shown in Fig. 5a. The algorithm is particularly suited to the problem of designing transportation systems because it first connects all the points before optimizing the network into a tree. The algorithm can thus be terminated early depending on how much redundant connectivity is desired in the transportation network.For example, in Fig. 5b, we have a network that still contains loops in high-traffic routes between the Bay Area, Los Angeles, and Las Vegas. If we allow the algorithm to continue running, we will get networks with fewer loops and eventually a tree.Figure 5Road network generated by the algorithm. (a) shows the final solution with no loops while (b) displays a solution that has some redundancy resulting from terminating the algorithm early.Full size imageWe believe that this algorithm can be applied to many similar problems such as designing fiber optic or electric cable networks. Moreover, as discussed in the last section, it will be very interesting to compare this study to that of33, where in vitro slime mold is used to investigate the construction of transportation networks over a USA map.Obstacle avoidance Due to the cellular automaton nature of this algorithm, it is straightforward to define boundaries or other obstacles that need to be avoided. This is very useful in cases where certain areas need to be avoided such as a lake or the boundary of a county. And, unlike the current standard obstacle-avoiding Euclidean Steiner algorithm27 which takes multiple hours for graphs with only 150 points, the run time of the Physarum Steiner Algorithm is not affected by the need to avoid obstacles.As an example, consider the boundary given in Fig. 6a. Here, the grey area represents the search area and the 100 white squares outlined in dark grey are the points. There are many possible real world situations similar to this. For example, the grey area could be a county and all the points represent homes that subscribe to a certain Internet service provider (ISP). The big white area in the center could be a lake and the smaller white area could be a dog park. The ISP company could utilize the Physarum Steiner Algorithm to find networks to lay fiber optic cables.Figure 6(a) Sample boundary map. Grey area is search area and small white squares are points. (b) Initial deployment of Physarum. (c) Solution at the end of the foraging stage. (d) The final network.Full size imageWe begin by deploying square Physarum cells of size 7 in Fig. 6b. In Fig. 6c, the cells begin to fuse, share intelligence, and find all the points. We choose a solution that still has some loops to increase reliability and ease of future modification to the network. Our final solution is shown in Fig. 6d. This solution is generated in 300,000 iterations and less than 30 seconds.VLSI Routing for VLSI (very large-scale integration) chip design19 is one of the largest real-world manifestations of the Steiner tree problem, especially as modern chips may contain upwards of 10 billion transistors. Solving the VLSI problem would require additional modification to the Physarum Steiner Algorithm since VLSI design is typically presented as a group Steiner tree problem and has very large problem sizes, the Physarum Steiner Algorithm. Due to the usage of a square grid in the Physarum Steiner Algorithm, the algorithm is easily applied to find rectilinear networks such as those required for routing chips. In addition, our empirical results suggest that it should scale well to the large problem sizes common in chip design. Using data from34, we consider a set of pads that need to be connected. In Fig. 7, we represent the pads as active zones and generate a tree between them.Figure 7(a) Graphical representation of 131-point VLSI data set34. (b) Routing solution obtained by the Physarum Steiner Algorithm.Full size imageTopological surfaces Finally, the Physarum Steiner Algorithm is easily applicable to finding Steiner trees on other topological surfaces. Given the nature of the algorithm, we are able to map coordinates on one edge to another. In Fig. 8, we use square identification spaces to find Steiner trees on the torus, sphere, Klein bottle, and (mathbb{RP}mathbb{}^2). These solutions on identification spaces can be seen on a torus and a sphere in Fig. 8a,b.Figure 8Steiner trees on topological surfaces we defined by identification space and obtained through our code. (a) Torus. (b) Sphere. (c) Klein Bottle. (d) (mathbb{RP}mathbb{}^2). Images generated using manim35.Full size imageConcluding remarksWe have presented here a novel explore-and-fuse approach to solve problems that cannot be solved by traditional divide-and-conquer.Our approach is inspired by Physarum, a unicellular slime mold capable of solving the traveling salesman and Steiner tree problems. Besides exhibiting individual intelligence, Physarum can also share information with other Physarum organisms through fusion. These characteristics of Physarum inspire us to spawn many Physarum organisms to independently explore the problem space and collect information in parallel before sharing the information with other organisms through fusion. Eventually, all the organisms fuse into one large Physarum that can then globally optimize using the knowledge collected earlier. Explore-and-fuse can be seen as a less rigid form of divide-and-conquer that can better handle problems that cannot be decomposed into independent subproblems.We demonstrate the explore-and-fuse approach on the Steiner tree problem by creating the Physarum Steiner Algorithm. This algorithm has the ability to incrementally find Steiner trees. The first solution tends to contain many loops that are removed with additional iterations of the algorithm. This incremental improvement is particularly useful for applications such as road and cable networks where some degree of redundancy in the connectivity is desired. In particular, it will be very interesting to compare our work to the the one done in33 where a protoplasmic network created by in vivo Physarum is considered to study and asses show the slime mold imitates the United States Interstate System. We foresee several applications of our algorithm in this direction, leading to similar findings to those appearing in the studies done in33.The algorithm operates on a rectilinear grid and is particularly applicable to rectilinear Steiner tree problems such as those that often arise in VLSI design. In addition, the algorithm performs well on the obstacle-avoidance Euclidean Steiner tree problem.In comparison to the existing Physarum-inspired Steiner tree algorithms described in Section “The Steiner tree problem”, the Physarum Steiner Algorithm uses a completely different mechanism. While the existing algorithms use a system of equations modeling the thickening of tubes as protoplasm flows through them, the Physarum Steiner Algorithm is based on modeling Physarum spatially moving around a grid and finding a tree between squares of the grid. In addition, it should be noted that the approach taking in existing algorithms would not work on the Euclidean Steiner tree problem as in the Euclidean Steiner tree problem, there are an infinite number of possible points that could be part of the Steiner tree (essentially any point in the plane). It would not be possible to write a system of equations representing the infinite possible points and edges. In the future, we believe further work could be done to improve the Physarum Steiner Algorithm. Since the Physarum Steiner Algorithm is an approximate algorithm, future improvements could be made so its approximations are closer to the actual optimal solution. In addition, it would be interesting to see this approach applied to other problems Physarum has been able to solve such as the traveling salesmen problem. More

  • in

    The impact of summer drought on peat soil microbiome structure and function-A multi-proxy-comparison

    Different proxies for changes in structure and/or function of microbiomes have been developed, allowing assessing microbiome dynamics at multiple levels. However, the lack and differences in understanding the microbiome dynamics are due to the differences in the choice of proxies in different studies and the limitations of proxies themselves. Here, using both amplicon and metatranscriptomic sequencings, we compared four different proxies (16/18S rRNA genes, 16/18S rRNA transcripts, mRNA taxonomy and mRNA function) to reveal the impact of a severe summer drought in 2018 on prokaryotic and eukaryotic microbiome structures and functions in two rewetted fen peatlands in northern Germany. We found that both prokaryotic and eukaryotic microbiome compositions were significantly different between dry and wet months. Interestingly, mRNA proxies showed stronger and more significant impacts of drought for prokaryotes, while 18S rRNA transcript and mRNA taxonomy showed stronger drought impacts for eukaryotes. Accordingly, by comparing the accuracy of microbiome changes in predicting dry and wet months under different proxies, we found that mRNA proxies performed better for prokaryotes, while 18S rRNA transcript and mRNA taxonomy performed better for eukaryotes. In both cases, rRNA gene proxies showed much lower to the lowest accuracy, suggesting the drawback of DNA based approaches. To our knowledge, this is the first study comparing all these proxies to reveal the dynamics of both prokaryotic and eukaryotic microbiomes in soils. This study shows that microbiomes are sensitive to (extreme) weather changes in rewetted fens, and the associated microbial changes might contribute to ecological consequences. More

  • in

    Fungal succession on the decomposition of three plant species from a Brazilian mangrove

    Raghukumar, S. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast. Ocean. Mar. Ecosyst. Mar. Fungi. https://doi.org/10.1007/978-3-319-54304-8 (2017).Article 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 
    Article 

    Google Scholar 
    Sebastianes, F. L. D. S. et al. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 59, 153–166 (2013).CAS 
    Article 

    Google Scholar 
    Holguin, G. et al. Mangrove health in an arid environment encroached by urban development—A case study. Sci. Total Environ. 363, 260–274 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schaeffer-Novelli, Y., Cintrón-Molero, G. & Adaime, R. R. Variability of Mangrove ecosystems along the Brazilian coast variability of mangrove ecosystems along the Brazilian Coast. Estuaries 13, 204–218 (1990).Article 

    Google Scholar 
    Baskaran, R., Mohan, P., Sivakumar, K., Ragavan, P. & Sachithanandam, V. Phyllosphere microbial populations of ten true mangrove species of the Andaman Island. Int. J. Microbiol. Res. 3, 124–127 (2012).
    Google Scholar 
    Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285, 19–32 (1994).CAS 
    Article 

    Google Scholar 
    Taketani, R. G., Moitinho, M. A., Mauchline, T. H. & Melo, I. S. Co-occurrence patterns of litter decomposing communities in mangroves indicate a robust community resistant to disturbances. PeerJ 6, e5710 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schmit, J. P. & Mueller, G. M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 16, 99–111 (2007).Article 

    Google Scholar 
    Hawksworth, D. L. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 50, 9–18 (2004).
    Google Scholar 
    Valderrama, B. et al. Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico. Revista Mexicana de Biodiversidad 87, 18–28 (2016).Article 

    Google Scholar 
    Marano, A. V., Pires-Zottarelli, C. L. A., Barrera, M. D., Steciow, M. M. & Gleason, F. H. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream. Hydrobiologia 659, 93–109 (2011).Article 

    Google Scholar 
    Pascoal, C. & Cassio, F. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70, 5266–5273 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moitinho, M. A., Bononi, L., Souza, D. T., Melo, I. S. & Taketani, R. G. Bacterial succession decreases network complexity during plant material decomposition in mangroves. Microb. Ecol. https://doi.org/10.1007/s00248-018-1190-4 (2018).Article 
    PubMed 

    Google Scholar 
    Tan, T. K., Leong, W. F. & Jones, E. B. G. Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can. J. Bot. 67, 2686–2691 (1989).Article 

    Google Scholar 
    Ananda, K. & Sridhar, K. R. Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr. Sci. 80, 1431–1437 (2004).
    Google Scholar 
    Maria, G. L., Sridhar, K. R. & Bärlocher, F. Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Bot. Mar. 49, 450–455 (2006).CAS 
    Article 

    Google Scholar 
    Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycprrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mcmurdie, P. J. & Holmes, S. phyloseq : An R package for reproducible interactive analysis and graphics of microbiome census data. 8, (2013).Oksanen, P. Vegan 1.17-0. (2010).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Hamilton, N. E. & Ferry, M. {ggtern}: Ternary diagrams using {ggplot2}. J. Stat. Softw. Code Snippets 87, 1–17 (2018).
    Google Scholar 
    Hanski, I. Communities of bumblebees: Testing the core-satellite species hypothesis. Annales Zoologici Fennici 65–73 (1982).Gumiere, T. et al. A probabilistic model to identify the core microbial community. bioRxiv. https://doi.org/10.1101/491183 (2018).Article 

    Google Scholar 
    Salazar, G. EcolUtils: Utilities for community ecology analysis. (2019).Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).Book 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Promputtha, I. et al. Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Diversity 30, 23–36 (2008).
    Google Scholar 
    Kodsueb, R., McKenzie, E. H. C., Lumyong, S. & Hyde, K. D. Fungal succession on woody litter of Magnolia liliifera (Magnoliaceae). Fungal Diversity 30, 55–72 (2008).
    Google Scholar 
    Voriskova, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Osono, T. Phyllosphere fungi on leaf litter of Fagus crenata: Occurrence, colonization, and succession. Can. J. Bot. 80, 460–469 (2002).Article 

    Google Scholar 
    Osono, T. et al. Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Diversity 36, 101–119 (2009).
    Google Scholar 
    Costa, I. P. M. W., Maia, L. C. & Cavalcanti, M. A. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz. J. Microbiol. 43, 1165–1173 (2012).Article 

    Google Scholar 
    Sobrado, M. A. Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. 422–427 (2004). https://doi.org/10.1007/s00468-004-0320-4.Dias, A. C. F. et al. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests. Braz. J. Microbiol. 43, (2012).Moitinho, M. A. et al. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane. Braz. J. Microbiol. 50, 1041–1050 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barroso-Matos, T., Bernini, E. & Rezende, C. E. Descomposición de hojas de mangle en el estuario del Río Paraíba do Sul Rio de Janeiro, Brasil. Lat. Am. J. Aquat. Res. 40, 398–407 (2012).Article 

    Google Scholar 
    Sessegolo, G. C. & Lana, P. C. Lagunculana racemosa Leaves in a Mangrove of Paranaguä Bay (Southeastern Brazil). Bot. Mar. 34, 285–289 (1991).Article 

    Google Scholar 
    Miura, T. et al. Diversity of fungi on decomposing leaf litter in a sugarcane plantation and their response to tillage practice and bagasse mulching: implications for management effects on litter decomposition. Microb. Ecol. 70, 646–658 (2015).PubMed 
    Article 

    Google Scholar 
    Behnke-Borowczyk, J. & Wołowska, D. The identification of fungal species in dead wood of oak. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 17, 17–23 (2018).Article 

    Google Scholar 
    Simões, M. F. et al. Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—A metagenomic approach. Genom. Proteom. Bioinform. 13, 310–320 (2015).Article 

    Google Scholar 
    Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 22, 955–974 (2007).Article 

    Google Scholar 
    Zhang, W. et al. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. CATENA 161, 85–95 (2018).CAS 
    Article 

    Google Scholar 
    Jones, E. B. G. & Choeyklin, R. Ecology of marine and freshwater basidiomycetes. in Ecology of Saprotrophic Basidiomycetes 301–324 (2007).Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 6, 1749–1762 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, X. et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Biores. Technol. 170, 183–195 (2014).CAS 
    Article 

    Google Scholar 
    Koivusaari, P. et al. Fungi originating from tree leaves contribute to fungal diversity of litter in streams. Front. Microbiol. 10, (2019).Raudabaugh, D. B. et al. Coniella lustricola, a new species from submerged detritus. Mycol. Prog. 17, 191–203 (2018).Article 

    Google Scholar 
    Arfi, Y. et al. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp. Nat. Commun. 4, (2013). More

  • in

    Effects of maternal age and offspring sex on milk yield, composition and calf growth of red deer (Cervus elaphus)

    Trivers, R. L. Parental investment and sexual selection. in Sexual selection and the descent of man 136–179 (Aldine, 1972).Evans, R. M. The relationship between parental input and investment. Anim. Behav. 39, 797–798 (1990).Article 

    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    Willson, M. F. & Pianka, E. R. Sexual selection, sex ratio and mating system. Am. Nat. 97, 405–407 (1963).Article 

    Google Scholar 
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Major, M., Albon, S. D. & Guinness, F. E. Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56, 53–67 (1987).Article 

    Google Scholar 
    Kruuk, L. E. B., Clutton-Brock, T. H., Rose, K. E. & Guinness, F. E. Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc. R. Soc. B-Biol. Sci. 266, 1655–1661 (1999).CAS 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Reproductive success in male and female red deer. in Reproductive success 325–343 (University of Chicago Press, 1988).Pérez-Barbería, F. J. & Yearsley, J. M. Sexual selection for fighting skills as a driver of sexual segregation in polygynous ungulates: an evolutionary model. Anim. Behav. 80, 745–755 (2010).Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 15, e0233809 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nussey, D. H. et al. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174, 342–357 (2009).PubMed 
    Article 

    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behavior & Ecology (Stackpole Books, 1998).
    Google Scholar 
    Ricklefs, R. E. Evolutionary theories of aging: Confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152, 24–44 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).PubMed 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. in Bioenergetics of wild herbivores 215–238 (CRC-Press, 1985).Linn, J. G. Factors Affecting the Composition of Milk from Dairy Cows. in Designing Foods: Animal Product Options in the Marketplace (National Academies Press (US), 1988).Hinde, K., Power, M. L. & Oftedal, O. T. Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation. Am. J. Phys. Anthropol. 138, 148–157 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomendio, M., Clutton-Brock, T. H., Albon, S. D., Guinness, F. E. & Simpson, M. J. Mammalian sex ratios and variation in costs of rearing sons and daughters. Nature 343, 261–263 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Berube, C. H., Festa-Bianchet, M. & Jorgenson, J. T. Reproductive costs of sons and daughters in Rocky Mountain bighorn sheep. Behav. Ecol. 7, 60–68 (1996).Article 

    Google Scholar 
    Landete-Castillejos, T., García, A., López-Serrano, F. R. & Gallego, L. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 57, 267–274 (2005).Article 

    Google Scholar 
    Hinde, K. First-time macaque mothers bias milk composition in favor of sons. Curr. Biol. 17, R958–R959 (2007).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinde, K. Richer milk for sons but more milk for daughters: Sex-biased investment during lactation varies with maternal life history in rhesus macaques. Am. J. Hum. Biol. 21, 512–519 (2009).PubMed 
    Article 

    Google Scholar 
    Powe, C. E., Knott, C. D. & Conklin-Brittain, N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 22, 50–54 (2010).PubMed 
    Article 

    Google Scholar 
    Fujita, M. et al. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 149, 52–59 (2012).PubMed 
    Article 

    Google Scholar 
    Robert, K. A. & Braun, S. Milk composition during lactation suggests a mechanism for male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE 7, e51099 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. Bioenerg. Wild Herbiv. https://doi.org/10.1201/9781351070218-10 (2018).Article 

    Google Scholar 
    Rogers, G. & Stewart, J. The effects of some nutritional and non-nutritional factors on milk protein concentration and yield [dairy cattle]. Aust. J. Dairy Technol. 26–32 (1982).Lubritz, D. L., Forrest, K. & Robison, O. W. Age of cow and age of dam effects on milk production of hereford cows. J. Anim. Sci. 67, 2544–2549 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khan, M. S. & Shook, G. E. Effects of age on milk yield: Time trends and method of adjustment. J. Dairy Sci. 79, 1057–1064 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenness, R. Biochemical and nutritional aspects of milk and colostrum. in Lactation / edited by Bruce L. Larson ; written by Ralph R. Anderson … [et al.] 164–197 (Iowa State University, 1985).Ng-Kwai-Hang, K. F., Hayes, J. F., Moxley, J. E. & Monardes, H. G. Environmental influences on protein content and composition of bovine milk. J. Dairy Sci. 65, 1993–1998 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kroeker, E. M., Ng-Kwai-Hang, K. F., Hayes, J. F. & Moxley, J. E. Effect of β-lactoglobulin variant and environmental factors on variation in the detailed composition of bovine milk serum proteins. J. Dairy Sci. 68, 1637–1641 (1985).CAS 
    Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Water sprinkling as a tool for heat abatement in farmed Iberian red deer: Effects on calf growth and behaviour. PLoS ONE 16, e0249540 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Abecia, J. A. & Palacios, C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital. J. Anim. Sci. 17, 736–739 (2018).Article 

    Google Scholar 
    Hinde, K., Carpenter, A. J., Clay, J. S. & Bradford, B. J. Holsteins favor heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 9, e86169 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thakkar, S. K. et al. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. Am. J. Hum. Biol. 25, 770–779 (2013).PubMed 
    Article 

    Google Scholar 
    Quinn, E. A. No evidence for sex biases in milk macronutrients, energy, or breastfeeding frequency in a sample of Filipino mothers. Am. J. Phys. Anthropol. 152, 209–216 (2013).PubMed 

    Google Scholar 
    Ono, K. A. & Boness, D. J. Sexual dimorphism in sea lion pups: Differential maternal investment, or sex-specific differences in energy allocation?. Behav. Ecol. Sociobiol. 38, 31–41 (1996).Article 

    Google Scholar 
    Skibiel, A. L., Downing, L. M., Orr, T. J. & Hood, W. R. The evolution of the nutrient composition of mammalian milks. J. Anim. Ecol. 82, 1254–1264 (2013).PubMed 
    Article 

    Google Scholar 
    Mitoulas, L. R. et al. Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation. Br. J. Nutr. 88, 29–37 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenkins, T. C. & McGuire, M. A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 89, 1302–1310 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobbs, N. T., Baker, D. L., Bear, G. D. & Bowden, D. C. Ungulate grazing in sagebrush grassland: Effects of resource competition on secondary production. Ecol. Appl. 6, 218–227 (1996).Article 

    Google Scholar 
    Robbins, A. M., Robbins, M. M., Gerald-Steklis, N. & Steklis, H. D. Age-related patterns of reproductive success among female mountain gorillas. Am. J. Phys. Anthropol. 131, 511–521 (2006).PubMed 
    Article 

    Google Scholar 
    Sunderland, N., Heffernan, S., Thomson, S. & Hennessy, A. Maternal parity affects neonatal survival rate in a colony of captive bred baboons (Papio hamadryas). J. Med. Primatol. 37, 223–228 (2008).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Age-related body weight constraints on prenatal and milk provisioning in Iberian red deer (Cervus elaphus hispanicus) affect allocation of maternal resources. Theriogenology 71, 400–407 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bercovitch, F. B., Widdig, A. & Nürnberg, P. Maternal investment in rhesus macaques (Macaca mulatta): Reproductive costs and consequences of raising sons. Behav. Ecol. Sociobiol. 48, 1–11 (2000).Article 

    Google Scholar 
    López-Quintanilla, M. Comportamiento Social y Maternofilial del Ciervo en Cautividad (Universidad de Castilla-La Mancha, 2022).
    Google Scholar 
    Adam, C. L., Kyle, C. E. & Young, P. Growth and reproductive development of red deer calves (Cervus elaphus) born out-of-season. Anim. Sci. 55, 265–270 (1992).Article 

    Google Scholar 
    Landete-Castillejos, T., Garcia, A. & Gallego, L. Calf growth in captive Iberian red deer (Cervus elaphus hispanicus): Effects of birth date and hind milk production and composition. J. Anim. Sci. 79, 1085–1092 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Great expectations – dominance, breeding success and offspring sex-ratios in red deer. Anim. Behav. 34, 460–471 (1986).Article 

    Google Scholar 
    Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).ADS 
    Article 

    Google Scholar 
    Youngner, V. B. & McKell, C. M. The Biology and Utilization of Grasses (Academic Press, 1972).
    Google Scholar 
    Pinares-Patiño, C. S. Methane emission from forage-fed sheep, a study of variation between animals. PhD thesis. Massey University, Wellington, New Zealand. (Massey University, 2000).van Tassell, C. P., Wiggans, G. R. & Norman, H. D. Method R estimates of heritability for milk, fat, and protein yields of United States dairy cattle. J. Dairy Sci. 82, 2231–2237 (1999).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. J. Anim. Sci. 78, 2771–2777 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrin, D. R. 709. The calorific value of milk of different species. J. Dairy Res. 25, 215–220 (1958).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing, v. 3.4.1. (R Foundation for Statistical Computing, 2017).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1–131. Retrieved on 229 July 2017 from http://CRAN.R-project.org/package=nlme. (2017).Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Citizen science in environmental and ecological sciences

    Fraisl, D. et al. Mapping citizen science contributions to the UN sustainable development goals. Sustain. Sci. 15, 1735–1751 (2020). This is the first article to quantitatively assess the potential of citizen science for SDG indicator monitoring.
    Google Scholar 
    Haklay, M. et al. Contours of citizen science: a vignette study. R. Soc. Open Sci. 8, 202108 (2021). This article comprehensively explores the diverse perceptions of citizen science.ADS 

    Google Scholar 
    Kullenberg, C. & Kasperowski, D. What is citizen science? — A scientometric meta-analysis. PLoS ONE 11, e0147152 (2016). This article analyses the main topical focal points of citizen science.
    Google Scholar 
    Lemmens, R., Antoniou, V., Hummer, P. & Potsiou, C. in The Science of Citizen Science (eds. Vohland, K. et al.) 461–474 (Springer International Publishing, 2021).Wynn, J. Citizen Science In The Digital Age: Rhetoric, Science, And Public Engagement (Univ. Alabama Press, 2017).Roser, M. & Ortiz-Ospina, E. Literacy. Our World in Data https://ourworldindata.org/literacy (2016).Pateman, R., Dyke, A. & West, S. The diversity of participants in environmental citizen science. Citiz. Sci. Theory Pract. 6, 9 (2021).
    Google Scholar 
    Haklay, M. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 13–33 (Springer International Publishing, 2021).Odenwald, S. A citation study of citizen science projects in space science and astronomy. Citiz. Sci. Theory Pract. 3, 5 (2018).
    Google Scholar 
    Bedessem, B., Julliard, R. & Montuschi, E. Measuring epistemic success of a biodiversity citizen science program: a citation study. PLoS ONE 16, e0258350 (2021).
    Google Scholar 
    Gardiner, M. M. & Roy, H. E. The role of community science in entomology. Annu. Rev. Entomol. 67, 437–456 (2022).
    Google Scholar 
    Kasperowski, D. & Hillman, T. The epistemic culture in an online citizen science project: programs, antiprograms and epistemic subjects. Soc. Stud. Sci. 48, 564–588 (2018).
    Google Scholar 
    Lambers, K., Verschoof-van der Vaart, W. & Bourgeois, Q. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote. Sens. 11, 794 (2019).ADS 

    Google Scholar 
    Froeling, F. et al. Narrative review of citizen science in environmental epidemiology: setting the stage for co-created research projects in environmental epidemiology. Environ. Int. 152, 106470 (2021).
    Google Scholar 
    Hilton, N. H. Stimmen: a citizen science approach to minority language sociolinguistics. Linguist. Vanguard. 7, 20190017 (2021).
    Google Scholar 
    Maisonneuve, N., Stevens, M., Niessen, M. E. & Steels, L. in Information Technologies in Environmental Engineering (eds Athanasiadis, I. N., Rizzoli, A. E., Mitkas, P. A. & Gómez, J. M.) 215–228 (Springer, 2009).Arias, R., Capelli, L. & Diaz Jimenez, C. A new methodology based on citizen science to improve environmental odour management. Chem. Eng. Trans. 68, 7–12 (2018).
    Google Scholar 
    Nascimento, S., Rubio Iglesias, J. M., Owen, R., Schade, S. & Shanley, L. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hecker, S. et al.) 219–240 (UCL Press, 2018).Den Broeder, L., Devilee, J., Van Oers, H., Schuit, A. J. & Wagemakers, A. Citizen Science for public health. Health Promot. Int. 33, 505–514 (2018).
    Google Scholar 
    Bio Innovation Service. Citizen Science For Environmental Policy: Development Of An EU Wide Inventory And Analysis Of Selected Practices (Publications Office, 2018).Mielke, J., Vermaßen, H. & Ellenbeck, S. Ideals, practices, and future prospects of stakeholder involvement in sustainability science. Proc. Natl Acad. Sci. USA 114, E10648–E10657 (2017).
    Google Scholar 
    Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. Adv. Ecol. Res. 59, 169–223 (2018). This article describes the opportunities of citizen science for biodiversity research.
    Google Scholar 
    Isaac, N. J. B., Strien, A. J., August, T. A., Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014). This article describes bias-correction approaches for ecological trend estimates.
    Google Scholar 
    Tengö, M., Austin, B. J., Danielsen, F. & Fernández-Llamazares, Á. Creating synergies between citizen science and Indigenous and local knowledge. BioScience 71, 503–518 (2021).
    Google Scholar 
    Krick, E. Citizen experts in participatory governance: democratic and epistemic assets of service user involvement, local knowledge and citizen science. Curr. Sociol. https://doi.org/10.1177/00113921211059225 (2021).Article 

    Google Scholar 
    Danielsen, F. et al. in Citizen Science (eds Hecker, S. et al.) 110–123 (UCL Press, 2018).Luzar, J. B. et al. Large-scale environmental monitoring by Indigenous peoples. BioScience 61, 771–781 (2011).
    Google Scholar 
    UNESCO. UNESCO recommendation on open science. UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en (2021).Wehn, U. et al. Impact assessment of citizen science: state of the art and guiding principles for a consolidated approach. Sustain. Sci. 16, 1683–1699 (2021). This article presents guidelines for a common approach in assessing citizen science impacts.
    Google Scholar 
    Aristeidou, M. & Herodotou, C. Online citizen science: a systematic review of effects on learning and scientific literacy. Citiz. Sci. Theory Pract. 5, 11 (2020).
    Google Scholar 
    Peter, M., Diekötter, T. & Kremer, K. Participant outcomes of biodiversity citizen science projects: a systematic literature review. Sustainability 11, 2780 (2019).
    Google Scholar 
    Turrini, T., Dörler, D., Richter, A., Heigl, F. & Bonn, A. The threefold potential of environmental citizen science — generating knowledge, creating learning opportunities and enabling civic participation. Biol. Conserv. 225, 176–186 (2018).
    Google Scholar 
    ECSA. Ten principles of citizen science. ECSA https://zenodo.org/record/5127534 (2015).Haklay, M. et al. ECSA’s characteristics of citizen science. ECSA https://zenodo.org/record/3758668 (2020).Danielsen, F. Community-based Monitoring In The Arctic (Univ. Alaska Press, 2020).Cooper, C. B. et al. Inclusion in citizen science: the conundrum of rebranding. Science 372, 1386–1388 (2021). This article discusses issues around justice, equity, diversity and inclusion related to citizen science.ADS 

    Google Scholar 
    Eitzel, M. V. et al. Citizen science terminology matters: exploring key terms. Citiz. Sci. Theory Pract. 2, 1 (2017). This article highlights how choice of concepts and terms affects knowledge creation.
    Google Scholar 
    Bonney, R. et al. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977–984 (2009). This article presents an early model for building and operating citizen science projects.
    Google Scholar 
    Haklay, M. in Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice (eds Sui, D., Elwood, S. & Goodchild, M.) 105–122 (Springer, 2013).Wiggins, A. & Crowston, K. From conservation to crowdsourcing: a typology of citizen science. In 44th Hawaii Int. Conf. on System Sciences 1–10 (IEEE, 2011).Shirk, J. L. et al. Public participation in scientific research: a framework for deliberate design. Ecol. Soc. 17, art29 (2012). This article describes multiple forms of public participation in science.
    Google Scholar 
    Tweddle, J. C., Robinson, L. D., Pocock, M. J. O. & Roy, H. E. Guide to citizen science: developing, implementing and evaluating citizen science to study biodiversity and the environment in the UK. UK Environmental Observation Framework https://www.ceh.ac.uk/sites/default/files/citizenscienceguide.pdf (2012).Wiggins, A. et al. Data management guide for public participation in scientific research. DataONE https://old.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf (2013). This document describes essential steps of the data management life cycle.Silvertown, J., Buesching, C. D., Jacobson, S. K. & Rebelo, T. in Key Topics in Conservation Biology Vol. 2 (eds Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).Pocock, M. J. O., Chapman, D. S., Sheppard, L. J. & Roy, H. E. Choosing and using citizen science: a guide to when and how to use citizen science to monitor biodiversity and the environment. SEPA https://www.ceh.ac.uk/sites/default/files/sepa_choosingandusingcitizenscience_interactive_4web_final_amended-blue1.pdf (2014).Participatory Monitoring and Management Partnership (PMMP). Manaus Letter: recommendations for the participatory monitoring of biodiversity. Participatory Monitoring and Management Partnership (PMMP) https://doi.org/10.25607/OBP-965 (2015).Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook Of Citizen Science In Ecology And Conservation (Univ. California Press, 2020).US GSA. Citizen science toolkit: basic steps for your project planning. citizenscience.gov https://www.citizenscience.gov/toolkit/howto/ (2022).García, F. S. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 419–437 (Springer International Publishing, 2021).Van Brussel, S. & Huyse, H. Citizen science on speed? Realising the triple objective of scientific rigour, policy influence and deep citizen engagement in a large-scale citizen science project on ambient air quality in Antwerp. J. Environ. Plan. Manag. 62, 534–551 (2019).
    Google Scholar 
    de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760 (2021).
    Google Scholar 
    Hyder, K., Townhill, B., Anderson, L. G., Delany, J. & Pinnegar, J. K. Can citizen science contribute to the evidence-base that underpins marine policy? Mar. Policy 59, 112–120 (2015).
    Google Scholar 
    Wehn, U. et al. Capturing and communicating impact of citizen science for policy: a storytelling approach. J. Environ. Manag. 295, 113082 (2021).
    Google Scholar 
    van Strien, A. J., van Swaay, C. A. M. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).
    Google Scholar 
    Laso Bayas, J. C. et al. Crowdsourcing LUCAS: citizens generating reference land cover and land use data with a mobile app. Land 9, 446 (2020).
    Google Scholar 
    Cooper, C. B. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology. Int. J. Biometeorol. 58, 1415–1419 (2014).ADS 

    Google Scholar 
    Pettibone, L. et al. Citizen Science For All. A Guide For Citizen Science Practitioners (Deutsches Zentrum für Integrative Biodiversitätsforschung, Helmholtz-Zentrum für Umweltforschung, Berlin-Brandenburgisches Institut für Biodiversitätsforschung, Museum für Naturkunde, Leibniz-Institut, 2016).Pernat, N. et al. How media presence triggers participation in citizen science — the case of the mosquito monitoring project ‘Mückenatlas’. PLoS ONE 17, e0262850 (2022).
    Google Scholar 
    Crowston, K. & Prestopnik, N. R. Motivation and data quality in a citizen science game: a design science evaluation. In 46th Hawaii Int. Conf. on System Sciences 450–459 (IEEE, 2013).Funder, M., Danielsen, F., Ngaga, Y., Nielsen, M. R. & Poulsen, M. K. Reshaping conservation: the social dynamics of participatory monitoring in Tanzania’s community-managed forests. Conserv. Soc. 11, 218–232 (2013).
    Google Scholar 
    Deterding, S. Gamification: designing for motivation. Interactions 19, 14–17 (2012).
    Google Scholar 
    West, S. & Pateman, R. Recruiting and retaining participants in citizen science: what can be learned from the volunteering literature? Citiz. Sci. Theory Pract. 1, 15 (2016). This article discusses participant motivations for engagement and volunteering.
    Google Scholar 
    Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding motivations for citizen science. Final report on behalf of UKEOF. SEI https://www.sei.org/publications/understanding-motivations-for-citizen-science/ (2016).Baruch, A., May, A. & Yu, D. The motivations, enablers and barriers for voluntary participation in an online crowdsourcing platform. Comput. Hum. Behav. 64, 923–931 (2016).
    Google Scholar 
    Larson, L. R. et al. The diverse motivations of citizen scientists: does conservation emphasis grow as volunteer participation progresses? Biol. Conserv. 242, 108428 (2020).
    Google Scholar 
    Danielsen, F. et al. The concept, practice, application, and results of locally based monitoring of the environment. BioScience 71, 484–502 (2021). This article summarizes the potential and intricacies of community-led citizen science.
    Google Scholar 
    Salmon, R. A., Rammell, S., Emeny, M. T. & Hartley, S. Citizens, scientists, and enablers: a tripartite model for citizen science projects. Diversity 13, 309 (2021).
    Google Scholar 
    Bowser, A., Shilton, K., Preece, J. & Warrick, E. Accounting for privacy in citizen science: ethical research in a context of openness. In Proc. 2017 ACM Conf. on Computer Supported Cooperative Work and Social Computing 2124–2136 (ACM, 2017).Ward-Fear, G., Pauly, G. B., Vendetti, J. E. & Shine, R. Authorship protocols must change to credit citizen scientists. Trends Ecol. Evol. 35, 187–190 (2020).
    Google Scholar 
    Pandya, R. E. A framework for engaging diverse communities in citizen science in the US. Front. Ecol. Environ. 10, 314–317 (2012).
    Google Scholar 
    Sorensen, A. E. et al. Reflecting on efforts to design an inclusive citizen science project in West Baltimore. Citiz. Sci. Theory Pract. 4, 13 (2019).
    Google Scholar 
    Bonney, R., Phillips, T. B., Ballard, H. L. & Enck, J. W. Can citizen science enhance public understanding of science? Public. Underst. Sci. 25, 2–16 (2016).
    Google Scholar 
    Hermoso, M. I., Martin, V. Y., Gelcich, S., Stotz, W. & Thiel, M. Exploring diversity and engagement of divers in citizen science: insights for marine management and conservation. Mar. Policy 124, 104316 (2021).
    Google Scholar 
    Barahona-Segovia, R. M. et al. Combining citizen science with spatial analysis at local and biogeographical scales for the conservation of a large-size endemic invertebrate in temperate forests. For. Ecol. Manag. 497, 119519 (2021).
    Google Scholar 
    Bowser, A., Wiggins, A., Shanley, L., Preece, J. & Henderson, S. Sharing data while protecting privacy in citizen science. Interactions 21, 70–73 (2014).
    Google Scholar 
    Wiggins, A., Newman, G., Stevenson, R. D. & Crowston, K. Mechanisms for data quality and validation in citizen science. In IEEE Seventh Int. Conf. on e-Science Workshops 14–19 (IEEE, 2011).Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016). This article discusses common assumptions and evidence about citizen science data quality.
    Google Scholar 
    Downs, R. R., Ramapriyan, H. K., Peng, G. & Wei, Y. Perspectives on citizen science data quality. Front. Clim. 3, 615032 (2021). This article describes perspectives on quality assessment and control issues.
    Google Scholar 
    Fritz, S. et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2, 922–930 (2019). This article identifies the full potential of citizen science for SDG monitoring and implementation.
    Google Scholar 
    Phillips, T., Ferguson, M., Minarchek, M., Porticella, N. & Bonney, R. Evaluating learning outcomes from citizen science. The Cornell Lab of Ornithology https://www.birds.cornell.edu/citizenscience/wp-content/uploads/2018/10/USERS-GUIDE_linked.pdf (2014).Tredick, C. A. et al. A rubric to evaluate citizen-science programs for long-term ecological monitoring. BioScience 67, 834–844 (2017).
    Google Scholar 
    Kieslinger, B. et al. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hekler, S., Haklay, M., Bowser, A., Vogel, J. & Bonn, A.) 81–95 (UCL Press, 2018).Schaefer, T., Kieslinger, B., Brandt, M. & van den Bogaert, V. in The Science of Citizen Science (eds Vohland, K. et al.) 495–514 (Springer International Publishing, 2021).Prysby, M. & Oberhauser, K. S. in The Monarch Butterfly: Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 9–20 (Cornell Univ. Press, 2004).Danielsen, F. et al. A multicountry assessment of tropical resource monitoring by local communities. BioScience 64, 236–251 (2014). The article presents the largest quantitative study to date of the accuracy of citizen science across the three tropical continents.
    Google Scholar 
    Swanson, A., Kosmala, M., Lintott, C. & Packer, C. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv. Biol. 30, 520–531 (2016).
    Google Scholar 
    Serret, H., Deguines, N., Jang, Y., Lois, G. & Julliard, R. Data quality and participant engagement in citizen science: comparing two approaches for monitoring pollinators in France and South Korea. Citiz. Sci. Theory Pract. 4, 22 (2019).
    Google Scholar 
    Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. J. Soc. Conserv. Biol 25, 1148–1154 (2011).
    Google Scholar 
    Deguines, N., de Flores, M., Loïs, G., Julliard, R. & Fontaine, C. Fostering close encounters of the entomological kind. Front. Ecol. Environ. 16, 202–203 (2018).
    Google Scholar 
    van der Wal, R., Sharma, N., Mellish, C., Robinson, A. & Siddharthan, A. The role of automated feedback in training and retaining biological recorders for citizen science. Conserv. Biol. J. Soc. Conserv. Biol. 30, 550–561 (2016).
    Google Scholar 
    Watson, D. & Floridi, L. Crowdsourced science: sociotechnical epistemology in the e-research paradigm. Synthese 195, 741–764 (2018).MathSciNet 

    Google Scholar 
    Silvertown, J. et al. Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480, 125–146 (2015).
    Google Scholar 
    Edgar, G. & Stuart-Smith, R. Ecological effects of marine protected areas on rocky reef communities — a continental-scale analysis. Mar. Ecol. Prog. Ser. 388, 51–62 (2009).ADS 

    Google Scholar 
    Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).
    Google Scholar 
    Johnson, N., Druckenmiller, M. L., Danielsen, F. & Pulsifer, P. L. The use of digital platforms for community-based monitoring. BioScience 71, 452–466 (2021).
    Google Scholar 
    Hochmair, H. H., Scheffrahn, R. H., Basille, M. & Boone, M. Evaluating the data quality of iNaturalist termite records. PLoS ONE 15, e0226534 (2020).
    Google Scholar 
    Torres, A.-C., Bedessem, B., Deguines, N. & Fontaine, C. Online data sharing with virtual social interactions favor scientific and educational successes in a biodiversity citizen science project. J. Responsible Innov. https://doi.org/10.1080/23299460.2021.2019970 (2022).Hochachka, W. M. et al. Data-intensive science applied to broad-scale citizen science. Trends Ecol. Evol. 27, 130–137 (2012).
    Google Scholar 
    Robinson, O. J., Ruiz-Gutierrez, V. & Fink, D. Correcting for bias in distribution modelling for rare species using citizen science data. Divers. Distrib. 24, 460–472 (2018).
    Google Scholar 
    Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).
    Google Scholar 
    Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves? PLoS ONE 10, e0139600 (2015).
    Google Scholar 
    Johnston, A., Fink, D., Hochachka, W. M. & Kelling, S. Estimates of observer expertise improve species distributions from citizen science data. Methods Ecol. Evol. 9, 88–97 (2018).
    Google Scholar 
    Giraud, C., Calenge, C., Coron, C. & Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics 72, 649–658 (2016).MathSciNet 
    MATH 

    Google Scholar 
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    Google Scholar 
    Kelling, S., Yu, J., Gerbracht, J. & Wong, W.-K. Emergent filters: automated data verification in a large-scale citizen science project. In IEEE Seventh Int. Conf. on e-Science Workshops 20–27 (IEEE, 2011).Kelling, S. et al. Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio 44, 601–611 (2015).
    Google Scholar 
    Palmer, J. R. B. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 916 (2017).ADS 

    Google Scholar 
    Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).ADS 

    Google Scholar 
    Brashares, J. S. & Sam, M. K. How much is enough? Estimating the minimum sampling required for effective monitoring of African reserves. Biodivers. Conserv. 14, 2709–2722 (2005).
    Google Scholar 
    Andrianandrasana, H. T., Randriamahefasoa, J., Durbin, J., Lewis, R. E. & Ratsimbazafy, J. H. Participatory ecological monitoring of the Alaotra Wetlands in Madagascar. Biodivers. Conserv. 14, 2757–2774 (2005).
    Google Scholar 
    Jiguet, F., Devictor, V., Julliard, R. & Couvet, D. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica 44, 58–66 (2012).ADS 

    Google Scholar 
    Martin, G., Devictor, V., Motard, E., Machon, N. & Porcher, E. Short-term climate-induced change in French plant communities. Biol. Lett. 15, 20190280 (2019).
    Google Scholar 
    Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40, 281–295 (2017).
    Google Scholar 
    Gregory, R. D. et al. Developing indicators for European birds. Phil. Trans. R. Soc. B 360, 269–288 (2005).
    Google Scholar 
    Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).
    Google Scholar 
    Weisshaupt, N., Lehikoinen, A., Mäkinen, T. & Koistinen, J. Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE 16, e0246572 (2021).
    Google Scholar 
    Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).
    Google Scholar 
    Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 6, 1967–1976 (2016).
    Google Scholar 
    Desaegher, J., Nadot, S., Fontaine, C. & Colas, B. Floral morphology as the main driver of flower-feeding insect occurrences in the Paris region. Urban. Ecosyst. 21, 585–598 (2018).
    Google Scholar 
    Osenga, E. C., Vano, J. A. & Arnott, J. C. A community-supported weather and soil moisture monitoring database of the Roaring Fork catchment of the Colorado River Headwaters. Hydrol. Process. 35, e14081 (2021).
    Google Scholar 
    Ryan, S. F. et al. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. R. Soc. B 285, 20181977 (2018).
    Google Scholar 
    Paap, T., Wingfield, M. J., Burgess, T. I., Hulbert, J. M. & Santini, A. Harmonising the fields of invasion science and forest pathology. NeoBiota 62, 301–332 (2020).
    Google Scholar 
    Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10, 298–304 (2012). This article gives a history account of the development of citizen science.
    Google Scholar 
    Clark, G. F. et al. A visualization tool for citizen-science marine debris big data. Water Int. 46, 211–223 (2021).
    Google Scholar 
    Gray, A., Robertson, C. & Feick, R. CWDAT — an open-source tool for the visualization and analysis of community-generated water quality data. ISPRS Int. J. Geo-Inf. 10, 207 (2021).
    Google Scholar 
    Hoyer, T., Moritz, J. & Moser, J. Visualization and perception of data gaps in the context of citizen science projects. KN J. Cartogr. Geogr. Inf. 71, 155–172 (2021).
    Google Scholar 
    Liu, H.-Y., Dörler, D., Heigl, F. & Grossberndt, S. in The Science of Citizen Science (eds Vohland, K. et al.) 439–459 (Springer International Publishing, 2021).Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).
    Google Scholar 
    Kobori, H. et al. Citizen science: a new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).
    Google Scholar 
    Clavero, M. & Revilla, E. Mine centuries-old citizen science. Nature 510, 35–35 (2014).ADS 

    Google Scholar 
    Kalle, R., Pieroni, A., Svanberg, I. & Sõukand, R. Early citizen science action in ethnobotany: the case of the folk medicine collection of Dr. Mihkel Ostrov in the territory of present-day Estonia, 1891–1893. Plants 11, 274 (2022).
    Google Scholar 
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017). This article highlights the magnitude of citizen science contributions to global biodiversity datasets.
    Google Scholar 
    Groom, Q., Weatherdon, L. & Geijzendorffer, I. R. Is citizen science an open science in the case of biodiversity observations? J. Appl. Ecol. 54, 612–617 (2017).
    Google Scholar 
    Cooper, C. B., Shirk, J. & Zuckerberg, B. The invisible prevalence of citizen science in global research: migratory birds and climate change. PLoS ONE 9, e106508 (2014).ADS 

    Google Scholar 
    Morales, C. L. et al. Does climate change influence the current and future projected distribution of an endangered species? The case of the southernmost bumblebee in the world. J. Insect Conserv. 26, 257–269 (2022).
    Google Scholar 
    Campbell, H. & Engelbrecht, I. The Baboon Spider Atlas — using citizen science and the ‘fear factor’ to map baboon spider (Araneae: Theraphosidae) diversity and distributions in southern Africa. Insect Conserv. Divers. 11, 143–151 (2018).
    Google Scholar 
    Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2021).
    Google Scholar 
    Croft, S., Chauvenet, A. L. M. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).
    Google Scholar 
    Hsing, P. et al. Economical crowdsourcing for camera trap image classification. Remote Sens. Ecol. Conserv. 4, 361–374 (2018).
    Google Scholar 
    Altwegg, R. & Nichols, J. D. Occupancy models for citizen-science data. Methods Ecol. Evol. 10, 8–21 (2019).
    Google Scholar 
    Green, S. E., Rees, J. P., Stephens, P. A., Hill, R. A. & Giordano, A. J. Innovations in camera trapping technology and approaches: the integration of citizen science and artificial intelligence. Animals 10, 132 (2020).
    Google Scholar 
    Hsing, P.-Y. et al. Citizen scientists: school students conducting, contributing to and communicating ecological research — experiences of a school–university partnership. Sch. Sci. Rev. 101, 67–74 (2020).
    Google Scholar 
    Degnan, L. MammalWeb citizen science wildlife monitoring. Vimeo https://vimeo.com/237565215 (2017).Hsing, P.-Y. et al. Large-scale mammal monitoring: the potential of a citizen science camera-trapping project in the UK. Ecol. Solut. Evid. (in the press).Chapman, H. Spotting wildlife helps teens cope with life in lockdown. The Northern Echo https://www.thenorthernecho.co.uk/news/18459359.spotting-wildlife-helps-teens-cope-life-lockdown/ (2020).McKie, R. How an army of ‘citizen scientists’ is helping save our most elusive animals. The Guardian https://www.theguardian.com/environment/2019/jul/28/britain-elusive-animals-fall-into-camera-trap-citizen-scientist (2019).Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).ADS 

    Google Scholar 
    Levé, M., Baudry, E. & Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647, 420–430 (2019).ADS 

    Google Scholar 
    Aparicio Camín, N., Comaposada, A., Paul, E., Maceda-Veiga, A. & Piera, J. Analysis of species richness in Barcelona beaches using a citizen science based approach (Sociedad Ibérica de Ecología, 2019).Chao, A., Colwell, R. K., Chiu, C. & Townsend, D. Seen once or more than once: applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods Ecol. Evol. 8, 1221–1232 (2017).
    Google Scholar 
    Mominó, J. M., Piera, J. & Jurado, E. in Analyzing the Role of Citizen Science in Modern Research (eds Ceccaroni, L. & Piera, J.) 231–245 (IGI Global, 2017).Salvador, X. et al. Guia Participativa Marina del Barcelonès (Marcombo, 2021).Carayannis, E. G., Barth, T. D. & Campbell, D. F. The Quintuple Helix innovation model: global warming as a challenge and driver for innovation. J. Innov. Entrep. 1, 2 (2012).
    Google Scholar 
    Goodchild, M. F. Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007).
    Google Scholar 
    Capineri, C. et al. European Handbook of Crowdsourced Geographic Information (Ubiquity Press, 2016).Skarlatidou, A. & Haklay, M. Geographic Citizen Science Design: No One Left Behind (UCL Press, 2021).Haklay, M. & Weber, P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).
    Google Scholar 
    Jeddi, Z. et al. Citizen seismology in the Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00139 (2020).Eurostat. LUCAS — Land use and land cover survey. eurostat https://ec.europa.eu/eurostat/statistics-explained/index.php?title=LUCAS_-_Land_use_and_land_cover_survey (2021).Laso Bayas, J. et al. Crowdsourcing in-situ data on land cover and land use using gamification and mobile technology. Remote. Sens. 8, 905 (2016).ADS 

    Google Scholar 
    EU. Regulation (EU) 2016/679 Of The European Parliament And Of The Council, Article 5(c). EU https://eur-lex.europa.eu/eli/reg/2016/679/oj (2016).Danielsen, F. et al. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18, 41 (2013).
    Google Scholar 
    Boissière, M., Herold, M., Atmadja, S. & Sheil, D. The feasibility of local participation in measuring, reporting and verification (PMRV) for REDD. PLoS ONE 12, e0176897 (2017).
    Google Scholar 
    Walker, D. W., Smigaj, M. & Tani, M. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. WIREs Water 8, e1488 (2021).
    Google Scholar 
    Danielsen, F. et al. Community monitoring of natural resource systems and the environment. Annu. Rev. Environ. Resour. https://doi.org/10.1146/annurev-environ-012220-022325 (2022).Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00349 (2019).Shinbrot, X. A. et al. Quiahua, the first citizen science rainfall monitoring network in Mexico: filling critical gaps in rainfall data for evaluating a payment for hydrologic services program. Citiz. Sci. Theory Pract. 5, 19 (2020).
    Google Scholar 
    Little, K. E., Hayashi, M. & Liang, S. Community-based groundwater monitoring network using a citizen-science approach. Groundwater 54, 317–324 (2016).
    Google Scholar 
    Wolff, E. The promise of a “people-centred” approach to floods: types of participation in the global literature of citizen science and community-based flood risk reduction in the context of the Sendai Framework. Prog. Disaster Sci. 10, 100171 (2021).
    Google Scholar 
    Hauser, D. D. W. et al. Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change. Environ. Res. Lett. 16, 095003 (2021).ADS 

    Google Scholar 
    Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).ADS 

    Google Scholar 
    Robles, M. C. et al. Clouds around the world: how a simple citizen science data challenge became a worldwide success. Bull. Am. Meteorol. Soc. 101, E1201–E1213 (2020).
    Google Scholar 
    Beeden, R. J. et al. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef. Environ. Monit. Assess. 186, 8527–8540 (2014).
    Google Scholar 
    Miller-Rushing, A. J., Gallinat, A. S. & Primack, R. B. Creative citizen science illuminates complex ecological responses to climate change. Proc. Natl Acad. Sci. USA 116, 720–722 (2019).
    Google Scholar 
    Kress, W. J. et al. Citizen science and climate change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. BioScience 68, 348–358 (2018).
    Google Scholar 
    Kirchhoff, C. et al. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 755, 142348 (2021).ADS 

    Google Scholar 
    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).
    Google Scholar 
    Soil Survey Staff, Natural Resources Conservation Service & USDA. Web soil survey. USDA https://websoilsurvey.nrcs.usda.gov/ (2019).Cooper, C. B., Hochachka, W. M. & Dhondt, A. A. in Citizen Science (eds Dickinson, J. L. & Bonney, R.) 99–113 (Cornell Univ. Press, 2012).Bastin, L., Schade, S. & Schill, C. in Mapping and the Citizen Sensor (eds Foody, G. et al.) 249–272 (Ubiquity Press, 2017).Resnik, D. B., Elliott, K. C. & Miller, A. K. A framework for addressing ethical issues in citizen science. Environ. Sci. Policy 54, 475–481 (2015). This article outlines basic considerations for ethical research practices in citizen science.
    Google Scholar 
    Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. Lond. B 268, 2473–2478 (2001).
    Google Scholar 
    Lotfian, M., Ingensand, J. & Brovelli, M. A. The partnership of citizen science and machine learning: benefits, risks, and future challenges for engagement, data collection, and data quality. Sustainability 13, 8087 (2021).
    Google Scholar 
    Kissling, W. D. et al. Towards global interoperability for supporting biodiversity research on essential biodiversity variables (EBVs). Biodiversity 16, 99–107 (2015).
    Google Scholar 
    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
    Google Scholar 
    Carroll, S. R., Herczog, E., Hudson, M., Russell, K. & Stall, S. Operationalizing the CARE and FAIR principles for Indigenous data futures. Sci. Data 8, 108 (2021).
    Google Scholar 
    UKEOF Citizen Science Working. Data management planning for citizen science. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1406 (2020). This document provides advice about the development of data management plans.Hansen, J. S. et al. Research data management challenges in citizen science projects and recommendations for library support services. A scoping review and case study. Data Sci. J. 20, 25 (2021).
    Google Scholar 
    Croucher, M., Graham, L., James, T., Krystalli, A. & Michonneau, F. A guide to reproducible code. British Ecological Society https://www.britishecologicalsociety.org/publications/guides-to/ (2019).Parker, A., Dosemagen, S., Molloy, J., Bowser, A. & Novak, A. Open hardware: an opportunity to build better science. Wilson Center https://www.wilsoncenter.org/publication/open-hardware-opportunity-build-better-science (2021).Palmer, M. S., Dewey, J. & Huebner, S. Snapshot Safari educational materials. Libraries Digital Conservancy https://hdl.handle.net/11299/217102 (2020).Campbell, J., Bowser, A., Fraisl, D. & Meloche, M. in Data for Good Exchange (IIASA, 2019).Fraisl, D. et al. Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring. Environ. Sci. Policy 128, 81–93 (2022).
    Google Scholar 
    Humm, C. & Schrögel, P. Science for all? Practical recommendations on reaching underserved audiences. Front. Commun. https://doi.org/10.3389/fcomm.2020.00042 (2020).Article 

    Google Scholar 
    Clary, E. G. & Snyder, M. The motivations to volunteer: theoretical and practical considerations. Curr. Dir. Psychol. Sci. 8, 156–159 (1999).
    Google Scholar 
    Hobbs, S. J. & White, P. C. L. Motivations and barriers in relation to community participation in biodiversity recording. J. Nat. Conserv. 20, 364–373 (2012).
    Google Scholar 
    Lukyanenko, R., Wiggins, A. & Rosser, H. K. Citizen science: an information quality research frontier. Inf. Syst. Front. 22, 961–983 (2020).
    Google Scholar 
    Mair, L. & Ruete, A. Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796 (2016).
    Google Scholar 
    Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution? Biodivers. Conserv. 29, 1767–1781 (2020).
    Google Scholar 
    Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in Citizen Science data reporting: implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).ADS 

    Google Scholar 
    Cretois, B. et al. Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway. Ecol. Evol. 11, 15191–15204 (2021).
    Google Scholar 
    Haklay, M. E. in European Handbook of Crowdsourced Geographic Information (eds Capineri, C. et al.) 35–44 (Ubiquity Press, 2016).Haklay, M. in Citizen Science (eds Haklay, M. et al.) 52–62 (UCL Press, 2018).Schade, S., Herding, W., Fellermann, A. & Kotsev, A. Joint statement on new opportunities for air quality sensing — lower-cost sensors for public authorities and citizen science initiatives. Res. Ideas Outcomes 5, e34059 (2019).
    Google Scholar 
    Moustard, F. et al. Using Sapelli in the field: methods and data for an inclusive citizen science. Front. Ecol. Evol https://doi.org/10.3389/fevo.2021.638870 (2021).Article 

    Google Scholar 
    Pettibone, L. et al. Transdisciplinary sustainability research and citizen science: options for mutual learning. GAIA — Ecol. Perspect. Sci. Soc. 27, 222–225 (2018).
    Google Scholar 
    Low, R., Schwerin, T. & Codsi, R. Citizen Science As A Tool For Transdisciplinary Research And Stakeholder Engagement (ESSOAr, 2020).Ottinger, G. in The Routledge Handbook of the Political Economy of Science (eds Tyfield, D., Lave, R., Randalls, S. & Thorpe, C.) 351–364 (Routledge, 2017).Rey-Mazón, P., Keysar, H., Dosemagen, S., D’Ignazio, C. & Blair, D. Public lab: community-based approaches to urban and environmental health and justice. Sci. Eng. Ethics 24, 971–997 (2018).
    Google Scholar 
    Brown, A., Franken, P., Bonner, S., Dolezal, N. & Moross, J. Safecast: successful citizen-science for radiation measurement and communication after Fukushima. J. Radiol. Prot. 36, S82–S101 (2016).
    Google Scholar 
    Pocock, M. J. O. et al. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. 56, 274–281 (2019).
    Google Scholar 
    Gollan, J., de Bruyn, L. L., Reid, N. & Wilkie, L. Can volunteers collect data that are comparable to professional scientists? A study of variables used in monitoring the outcomes of ecosystem rehabilitation. Environ. Manag. 50, 969–978 (2012).ADS 

    Google Scholar 
    van Noordwijk, T. C. G. E. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 373–395 (Springer International Publishing, 2021).Auerbach, J. et al. The problem with delineating narrow criteria for citizen science. Proc. Natl. Acad. Sci. USA 116, 15336–15337 (2019).
    Google Scholar 
    Gold, M., Wehn, U., Bilbao, A. & Hager, G. EU Citizen observatories landscape report II: addressing the challenges of awareness, acceptability, and sustainability. EU https://zenodo.org/record/4472670 (2020).WeObserve Consortium. Roadmap for the uptake of the citizen observatories’ knowledge base. WeObserve Consortium https://zenodo.org/record/4646774 (2021).UNECE. Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention). UNECE https://unece.org/fileadmin/DAM/env/pp/documents/cep43e.pdf (1998).UNECE. Draft updated recommendations on the more effective use of electronic information tools. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_E.pdf (2021).UNECE. Draft updated recommendations on the more effective use of electronic information tools, Addendum. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_Add.1_E.pdf (2021).UNEP. Measuring progress: environment and the SDGs. UNEP http://www.unep.org/resources/publication/measuring-progress-environment-and-sdgs (2021).SDSN TReNDS. Strengthening measurement of marine litter in Ghana. How citizen science is helping to measure progress on SDG 14.1.1b. SDSN TReNDS https://storymaps.arcgis.com/stories/2622af0a0c7d4c709c3d09f4cc249f7d (2021).Goudeseune, L. et al. Citizen science toolkit for biodiversity scientists. biodiversa https://zenodo.org/record/3979343 (2020).Veeckman, C., Talboom, S., Gijsel, L., Devoghel, H. & Duerinckx, A. Communication in citizen science. A practical guide to communication and engagement in citizen science. SCivil https://www.scivil.be/sites/default/files/paragraph/files/2020-01/Scivil%20Communication%20Guide.pdf (2019).Durham, E., Baker, S., Smith, M., Moore, E. & Morgan, V. BiodivERsA: stakeholder engagement handbook. biodiversa https://www.biodiversa.org/702 (2014).WeObserve Consortium. WeObserve Cookbook. WeObserve Consortium https://zenodo.org/record/5493543 (2021).Danielsen, F. et al. Testing focus groups as a tool for connecting Indigenous and local knowledge on abundance of natural resources with science-based land management systems. Conserv. Lett. 7, 380–389 (2014).
    Google Scholar 
    Elliott, K. C., McCright, A. M., Allen, S. & Dietz, T. Values in environmental research: citizens’ views of scientists who acknowledge values. PLoS ONE 12, e0186049 (2017).
    Google Scholar 
    Yamamoto, Y. T. Values, objectivity and credibility of scientists in a contentious natural resource debate. Public. Underst. Sci. 21, 101–125 (2012).
    Google Scholar 
    Danielsen, F. et al. in Handbook of Citizen Science in Ecology and Conservation (eds Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F.) 25–29 (Univ. California Press, 2020).Eicken, H. et al. Connecting top-down and bottom-up approaches in environmental observing. BioScience 71, 467–483 (2021). This article highlights the benefits of linking community- and science/policy-led approaches.
    Google Scholar 
    Slough, T. et al. Adoption of community monitoring improves common pool resource management across contexts. Proc. Natl Acad. Sci. USA 118, e2015367118 (2021).
    Google Scholar 
    Wilderman, C. C., Barron, A. & Imgrund, L. Top down or bottom up? ALLARM’s experience with two operational models for community science. In 4th Natl Monitoring Conf. (National Water Quality Monitoring Council, 2004).Johnson, N. et al. Community-based monitoring and Indigenous knowledge in a changing Arctic: a review for the sustaining Arctic Observing Networks. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1314 (2016).Lau, J. D., Gurney, G. G. & Cinner, J. Environmental justice in coastal systems: perspectives from communities confronting change. Glob. Environ. Change 66, 102208 (2021).
    Google Scholar 
    Lyver, P. O. B. et al. An Indigenous community-based monitoring system for assessing forest health in New Zealand. Biodivers. Conserv. 26, 3183–3212 (2017).
    Google Scholar 
    Cuyler, C. et al. Using local ecological knowledge as evidence to guide management: a community-led harvest calculator for muskoxen in Greenland. Conserv. Sci. Pract. 2, e159 (2020).
    Google Scholar 
    Fox, J. A. Social accountability: what does the evidence really say? World Dev. 72, 346–361 (2015).
    Google Scholar 
    Wheeler, H. C. et al. The need for transformative changes in the use of Indigenous knowledge along with science for environmental decision-making in the Arctic. People Nat. 2, 544–556 (2020).
    Google Scholar 
    Storey, R. G., Wright-Stow, A., Kin, E., Davies-Colley, R. J. & Stott, R. Volunteer stream monitoring: do the data quality and monitoring experience support increased community involvement in freshwater decision making? Ecol. Soc. 21, art32 (2016).
    Google Scholar 
    Brofeldt, S. et al. Community-based monitoring of tropical forest crimes and forest resources using information and communication technology — experiences from Prey Lang, Cambodia. Citiz. Sci. Theory Pract. 3, 4 (2018).
    Google Scholar 
    Menton, M. & Le Billon, P. Environmental Defenders: Deadly Struggles For Life And Territory (Routledge, 2021).Eastman, L. B., Hidalgo-Ruz, V., Macaya-Caquilpán, V., Núñez, P. & Thiel, M. The potential for young citizen scientist projects: a case study of Chilean schoolchildren collecting data on marine litter. J. Integr. Coast. Zone Manag. 14, 569–579 (2014).
    Google Scholar 
    Hidalgo-Ruz, V. & Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar. Environ. Res. 87–88, 12–18 (2013).
    Google Scholar 
    Kruse, K., Kiessling, T., Knickmeier, K., Thiel, M. & Parchmann, I. in Engaging Learners with Chemistry (eds Ilka P., Shirley S. & Jan A.) 225–240 (Royal Society of Chemistry, 2020).Wichman, C. S. et al. Promoting pro-environmental behavior through citizen science? A case study with Chilean schoolchildren on marine plastic pollution. Mar. Policy 141, 105035 (2022).
    Google Scholar 
    Bravo, M. et al. Anthropogenic debris on beaches in the SE Pacific (Chile): results from a national survey supported by volunteers. Mar. Pollut. Bull. 58, 1718–1726 (2009).
    Google Scholar 
    Hidalgo-Ruz, V. et al. Spatio-temporal variation of anthropogenic marine debris on Chilean beaches. Mar. Pollut. Bull. 126, 516–524 (2018).
    Google Scholar 
    Honorato-Zimmer, D. et al. Mountain streams flushing litter to the sea — Andean rivers as conduits for plastic pollution. Environ. Pollut. 291, 118166 (2021).
    Google Scholar 
    Amenábar Cristi, M. et al. The rise and demise of plastic shopping bags in Chile — broad and informal coalition supporting ban as a first step to reduce single-use plastics. Ocean. Coast. Manag. 187, 105079 (2020).
    Google Scholar 
    Kiessling, T. et al. Plastic Pirates sample litter at rivers in Germany — riverside litter and litter sources estimated by schoolchildren. Environ. Pollut. 245, 545–557 (2019).
    Google Scholar 
    Kiessling, T. et al. Schoolchildren discover hotspots of floating plastic litter in rivers using a large-scale collaborative approach. Sci. Total. Environ. 789, 147849 (2021).ADS 

    Google Scholar  More

  • in

    Mild movement sequence repetition in five primate species and evidence for a taxonomic divide in cognitive mechanisms

    Study subjectsWe conducted foraging experiments on strepsirrhines (Nindividuals = 18) at the Duke Lemur Center (DLC), North Carolina, from February to November 201513. Our sample includes six fat-tailed dwarf lemurs (3–16 years of age, 3 males, 3 females), six gray mouse lemurs (3–7 years of age, all female), and six aye-ayes (17–32 years of age, 2 males, 4 females). Because these species are solitary and nocturnal, most animals were housed singly and were kept on a reversed light cycle such that they were active and could be tested during the day. Housing conditions were similar for all individuals, and they were all fed daily in a similar manner with a diet that included fruits, vegetables, meal worms, and monkey chow (details in13).All vervet data were collected on wild animals (Nindividuals = 12) at Lake Nabugabo, Uganda (0°22′–12° S and 31°54′ E) during four separate field seasons (April-June 2013, Double Trapezoid array, M group15; June–September 2013, Pentagon array, M group24; August–September 2015, Z-array, M group12; July–August 2017, Pentagon array, KS group25). M group was composed of between 21–28 individuals, containing 2–3 adult males, 7–9 adult females, 2 subadult males, 1–3 subadult females, and 9–12 juveniles and infants. KS group was composed of 39–40 individuals including 5 adult males, 11 adult females, 3 sub-adult males, 5 sub-adult females, and 15–16 juveniles and infants. All individuals were reliably identified based on natural features (details in12,15,24,25). Outside of foraging experiments, wild vervets were not provision fed.All Japanese macaque data (Nindividuals = 10) were collected at the Awajishima Monkey Centre (AMC), Awaji Island, Japan (34°14′43.6″ N and 134°52′59.9″ E) between July and August 2019 (Z-array26). AMC is a privately-run tourist and conservation center visited by a large group of free-ranging Japanese macaques (~ 400 individuals) called the “Awajishima group”47. The group is composed of different-aged individuals of both sexes, with bachelor males and bachelor male groups living around the periphery48. The Awajishima group forages on wild foods for much of their dietary requirements but is also provision-fed a combination of wheat and soybeans, supplemented with peanuts, fruits, and vegetables twice daily for ~ 10 months of the year (details in47,49,50).Study designNavigation arraysThe strepsirrhines and vervets were tested on a “double-trapezoid” shaped multi-destination array with six feeding platforms13,15, modified from17 (Fig. 1a), where there were 720 possible routes (6!). Three different double-trapezoid arrays were built to account for differences in body size: one for the smaller dwarf and mouse lemurs, one for the mid-sized aye-ayes, and one for the larger, wild vervets. Arrays were scaled such that the distance from platform 1–2 (the shortest distance between targets) was approximately twice the body length of the subject species. Vervets were additionally tested on a Z-shaped array with six feeding platforms (720 possible routes, Fig. 1b12), and a pentagon-shaped array with five feeding platforms (120 possible routes, Fig. 1c24,25,46). Japanese macaques were tested on an identically sized Z-array26.Figure 1Design of the navigational arrays used, with (a) the Double Trapezoid array used for Cheirogaleus medius, Microcebus murinus, Daubentonia madagascariensis, and Chlorocebus pygerythrus. Three different arrays were built and scaled to the body size of animals (see “Methods”). (b) The Z-array used for C. pygerythrus and Macaca fuscata. The same size array was used for both species because they are similar in adult body lengths (vervet mean range from four sites: 34.5–42.6 cm51, Japanese macaque mean range from six sites: 48.9–59.7 cm52. (c) The Pentagon used for C. pygerythrus. Distances here are unitless but roughly proportional to the body size of each species tested. Created in R version 4.0.4 and ProCreate.Full size imageFor strepsirrhine trials, DLC staff captured individuals in their enclosures and transported them in padded crates to the testing room. The dwarf and mouse lemur array was set up in a specially designed box (0.91 × 1.83 m) with a small compartment to contain strepsirrhines for rebaiting between trials. The aye-aye array was set up on the ground in a room measuring 2.44 × 4.27 m, where subjects stayed during the duration of their daily trials13. Vervet and macaque trials occurred when individual monkeys voluntarily left their group to participate in foraging experiments alone. Vervet arrays were set up using wooden feeding platforms (0.75 m long, 0.75 m wide × 0.75 m high) placed in an outdoor clearing measuring roughly 10 × 14 m in the home range of the study group. Japanese macaque arrays were also set up using small wooden feeding tables (0.40 m long, 0.30 m wide, 0.21 m high), covered in green plastic labeled with the platform number. Two identical arrays were built in neighbouring provision-feeding fields at the AMC (Near Lower Field: ~ 10 × 35 m, and Far Lower Field: ~ 15 × 45 m).In these studies, all platforms were baited with a single food item. The reward used varied by species (strepsirrhines: grape piece, apple piece, honey, agave nectar, or nut butters, vervets: slice of banana, piece of popcorn; macaques: single peanut or piece of sweet potato). Strepsirrhines have sensory adaptations for using olfaction to locate food53, while the cercopithecoids are heavily reliant on vision to locate resources54, so we ensured that each platform was baited with identical food items within a trial that smelled and looked the same to avoid biasing where the animals chose to go. Platforms for the wild monkeys were not rebaited between trials until all animals were ≥ 20 m away and the entire sequence could be rebaited before their return15,24,25,26.For all species, we started a trial when the tested individual entered the array and took the reward at a platform. We then recorded each successive platform visit (including revisits to empty platforms) until all rewards had been collected ending the trial. In our analyses, we included a total of 852 trials collected over six navigational experiments, completed by 40 unique individuals (18 lemurs, 12 vervets, 10 macaques) (Table 2).Table 2 Individuals and trial sample size included in the analysis.Full size tableData simulationsIn addition to empirically collected data, we simulated agents learning to travel efficiently in the same set of arrays using a simple iterative-reinforcement learning model based on the one used by Reynolds et al.6 to test for traplining behavior in bumblebees. In this model, agents move randomly between locations in an array until they visit all locations, then reset for another trial. If the agent completed a trial by travelling less distance than on previous trials, the probability of the agent repeating location-to-location transitions that occurred in that trial increased for future trials by a reinforcement factor. Initial transition probabilities were inversely proportional to the distance between two locations. Unlike Reynolds et al.6 our simulated agents started at a random location and were not required to return to that location to complete the trial. This matches the trial structure used in our experiments (open-TSP), and reflects multiple central place foraging patterns in primates55. Finally, agents could not return to the location they had just come from, using an “avoid the last location” behavioral heuristic observed in nectivores56,57, which prevented agents from getting stuck in “loops” between two locations (S1 Simulation Validation).Within each of the arrays used to collect empirical data, we ran simulations with reinforcement factors of 1 (no reinforcement), 1.2 (mild reinforcement), and 2 (strong reinforcement). For each array and reinforcement factor combination, we ran 100 agents that each completed 120 trials, where there was an equal probability of starting each trial at any location. Then, for each array and reinforcement factor combination, we ran 100 additional simulations per species tested in the given array, where the probability of starting a trial at any location was equal to the empirically observed location-starting probabilities of the respective species.These simulations were designed to help us test predictions of our two hypotheses regarding primate learning and decision making within the arrays. If primates learn to solve navigational arrays efficiently by reinforcing movements between platform pairs, they should exhibit overall greater receptiveness in their sequences of location visits than reinforcement factor 1 simulations, and a greater decrease over time in total distance travelled to complete the arrays. If primates are pre-disposed to navigate arrays using heuristics, they should exhibit shorter distances travelled on initial trials than in simulations.Data analysisFrom the raw sequences of locations visited in each trial, we calculated two metrics: minimum distance traveled, and the proportion of platform revisits that occurred within identical 3-platform visit sequences (determinism-DET)18. All calculations were done using R version 4.0.458 and packages rstan59 and tidyverse60. A fully reproducible data notebook containing this work, as well as all analyzed data, is available at https://github.com/aqvining/Do-Primates-Trapline. All figures were created by AQV in R version 4.0.4 and ProCreate.Distance traveledTo calculate minimum distance traveled, we created a distance matrix for each resource array containing the relative linear distance between any two resource locations. These minimum linear distances approximate the distances traveled by the animals, which may not necessarily be linear. We then summed the linear distances for all transitions made in a trial. Because resource arrays were scaled to the subject species’ body size, these relative distances were standardized.DeterminismGiven a sequence of observations, Ayers et al.63 defines determinism (DET) as the proportion of all matching observation-pairs (recurrences) that occur within matching sub-sequences of observations (repeats) of a given length (minL). This metric has been previously used to distinguish sequences of resource visitation generated by traplining behaviour from sequences generated by known processes of random movement within a given resource array18,61,62. It has several advantages in the analysis of foraging patterns, including the ability to detect repeated sequences between non-consecutive foraging bouts, imperfect repeats in sequences (i.e., omission or addition of a particular site), and distinguishing between forward- and reverse-order sequence repeats63.We adapted the methods of63 to calculate the number of recurrences and repeats generated by the sequence of location visits in each trial of our experiments and simulations. Based on an analysis of the sensitivity of DET scores to the parameterization of minL, we set minL to three for our calculations (S2 Sensitivity Analysis).Statistical analysesLearning ratesWe modelled distance travelled as a function of trial number, species, and individual. Metrics of animal performance on learned tasks are known to follow power functions over time and experience64, so we a priori applied log transformations to distance travelled and trial number, then fit a linear model. Thus, in the resulting model, the intercept can be interpreted as an estimated distance travelled on the first trial and the slope can be interpreted as the exponent of a learning curve. We modelled species and individual effects on the intercept by summing an estimated grand mean (µ0), species level deviation (µsp,j), and individual level deviation (µid,i). We treated species and individual level effects on the learning rate parameter (slope) the same way, summing a grand mean (b0), species level deviation (bsp,j), and individual level deviation (bid,i). We estimated additional parameters for the variance of individual level deviations in intercept and slope (σµID and σbID, respectively). Finally, after finding residuals in an initial analysis to have variances predicted by trial number and species, we estimated a separate error variance for each species (σε,sp) and weighted the standard deviations of the resulting error distributions by dividing them by the square root of one plus the trial number.We set regularizing priors on the model parameters, assuming distances travelled would remain within one order of magnitude of the most efficient route, but not setting any strict boundaries. For the grand mean of the intercept, we used a normal distribution centered around twice the minimum possible distance required to visit all platforms in the array, with a variance of one. For the grand mean of the slope and all species and individual level deviations to the slope and intercept, we used normal distributions centered at zero with variance of one. For all error terms, we used half-cauchy priors with a location parameter of zero and a scale parameter of one. The full, hierarchical definition of the model is given in Eq. (1).$$Distance sim {mu }_{0}+ {mu }_{sp,j}+ {mu }_{id, i}+left({b}_{0}+ {b}_{sp, j}+ {b}_{id,i}right)Trial+ epsilon$$$${mu }_{0} sim mathrm{N}(4.78, 1)$$$${mu }_{sp}, {b}_{0}, {b}_{sp} sim mathrm{N}(mathrm{0,1})$$$${mu }_{id} sim mathrm{N}(0, {sigma }_{mu ID})$$$${b}_{id} sim mathrm{N}(0, {sigma }_{bID})$$$$epsilon sim mathrm{N}(0, {sigma }_{epsilon ,sp}/sqrt[2]{1+Trial})$$$${sigma }_{mu ID}, {sigma }_{bID}, {sigma }_{epsilon } sim mathrm{Half Cauchy}(mathrm{0,1})$$DeterminismTo compare DET between species, and between empirical and simulated data, we created a binomial model of expected repeats generated in a trial given the number of recurrences (Eq. 2).$$Repeats sim binom(Recursions, DET)$$$$DET= {logit}^{-1}(alpha)$$$$alpha={a}_{0}+Sp+Src+ Int+ID$$$${a}_{0}, Sp, Src, Int sim mathrm{N}(0, 1)$$$$ID sim mathrm{N}(0, {sigma }_{ID})$$$${sigma }_{ID}sim mathrm{Half Cauchy}(mathrm{0,1})$$where a0 is the mean intercept, Sp is one of four coefficients determined by the species (simulations are of the “species” which was used to assign its starting-location probabilities), Src is one of four coefficients determined by the source (empirical data and each level of reinforcement factor), Int is one of 16 interaction coefficients (each possible combination of Sp and Src), and ID is a varying effect of the individual. Because the length of a sequence affects DET, we limit our analysis of DET to the sequences generated by a subject’s or an agent’s first ten trials. Subjects that completed fewer than ten trials were excluded from this portion of the analysis. More

  • in

    An equation of state unifies diversity, productivity, abundance and biomass

    To derive the relationship among macro-level ecological variables, which would constitute an ecological analog of the thermodynamic equation of state, we introduce a fourth state variable, B, the total biomass in the community. The ecological analog of the thermodynamic equation of state, an expression for biomass, B, in terms of S, N, and E, arises if we combine METE with a scaling result from the metabolic theory of ecology (MTE)18,21. In particular, we assume the MTE scaling relationship between the metabolic rate, (varepsilon ,) of an individual organism and its mass, m: (varepsilon sim {m}^{3/4}). Without loss of generality22, units are normalized such that the smallest mass and the smallest metabolic rate within a censused plot are each assigned a value of 1. With this units convention, the proportionality constant in this scaling relationship can be assigned a value of 1. From the definition of the structure-function, it follows23 that averaging the biomass of individuals times the abundance of species, nε4/3, over the distribution R and multiplying by the number of species gives the total ecosystem biomass as a function of S, N, and E. Explicitly:$$B=Smathop{sum}limits_{n}nint dvarepsilon ,{varepsilon }^{4/3}R(n,varepsilon {{{{{rm{|}}}}}}S,N,E)$$
    (1)
    Both the sum and integral in the above equation can be calculated numerically, and Python code to do so for a given set of state variables S, N, and E, is available at github.com/micbru/equation of_ state/.We can also approximate the solution to Eq. 1 analytically (Supplementary Note 2) to reveal the predicted functional relationship among the four state variables. If E > > N > > S > > 1:$$B=cfrac{{E}^{4/3}}{{S}^{1/3}{{{{{rm{ln}}}}}}(1/beta )}$$
    (2)
    where (capprox (7/2)Gamma (7/3)) ≈ 4.17 and (beta) = ({lambda }_{1}+{lambda }_{2}) is estimated13,22 from the relationship (beta {{{{{rm{ln}}}}}}(1/beta )approx S/N). Equation 2 approximates the numerical result to within 10% for 5 of the 42 datasets analyzed here, corresponding to N/S greater than ~100 and E/N greater than ~25. Multiplying the right-hand side of Eq. 2 by (1-1.16{beta }^{1/3}) approximates the numerical result to within 10% for 33 of the 42 datasets analyzed here, corresponding to N/S greater than ~3 and E/N greater than ~5. The inequality requirements are not necessary for the numerical solution of Eq. 1, which is what is used below to test the prediction.Empirical values of E and B can be estimated from the same data. In particular, if measured metabolic rates of the individuals are denoted by ({varepsilon }_{i},) where i runs from 1 to N, then E is given by the sum over the ({varepsilon }_{i}) and B is given by the sum over the ({{varepsilon }_{i}}^{4/3}.) Similarly, if the mass, mi, of each individual is measured, then B is the sum over the mi and E is the sum over the mi3/4. In practice, for animal data, metabolic rate is often estimated by measuring mass and then using metabolic scaling, while for tree data, metabolic rate is estimated from measurements of individual tree basal areas, which are estimators5 of the ({varepsilon }_{i}).With E and B estimated from the same measurements, the question naturally arises as to whether a simple mathematical relationship holds between them, such as E = B3/4. If all the measured m’s, are identical, then all the calculated individual (varepsilon {{hbox{‘}}}s) are identical, and with our units convention we would have E = B. More generally, with variation in masses and metabolic rates, the only purely mathematical relationship we can write is inequality between E and B3/4: (E=sum {varepsilon }_{i}ge (sum {{{varepsilon }_{i}}^{4/3}})^{3/4}={B}^{3/4}). Our derived equation of state (Eq. 2) can be interpreted as expressing the theoretical prediction for the quantitative degree of inequality between E and B3/4 as a function of S and N.A test of Eq. 1 that compares observed and predicted values of biomass with data from 42 censused plots across a variety of habitats, spatial scales, and taxa is shown in Fig. 1. The 42 plots are listed and described in Table S2 and Supplementary Note 3. The communities censused include arthropods and plants, the habitats include both temperate and tropical, and the census plots range in area from 0.0064 to 50 ha. As seen in the figure, 99.4% of the variance in the observed values of B is explained by the predicted values of B.Fig. 1: A test of the ecological equation of state.Observed biomass is determined by either summing empirical masses of individuals or summing empirical metabolic rates raised to the ¾ power of each individual. Predicted biomass is determined from Eq. 1 using observed values of S, N, and E. The quantity ln(predicted biomass) explains 99.4% of the variance in observed biomass. Units of mass and metabolism are chosen such that the masses of the smallest individuals in each dataset are set to 1 and those individuals are also assigned a metabolic rate of 1. The shape of the marker indicates the type of data, and the lighter color corresponds to higher species richness. Data for all analyses come from tropical trees39,40,41,42,43,44,45, temperate trees30,31,32,33,46,47,48, temperate forest communities27,49, subalpine meadow flora28, and tropical island arthropods50.Full size imageFigure 2 addresses the possible concern that the success of Eq. 1 shown in Fig. 1 might simply reflect an approximate constancy, across all the datasets, of the ratio of E to B3/4. If that ratio were constant, then S and N would play no effective role in the equation of state. Equation 1 predicts that variation in the ratio depends on S and N in the approximate combination S1/4ln3/4(1/(beta (N/S))). In Fig. 2, the observed and predicted values of E/B3/4 calculated from Eq. 1, are compared, showing a nearly fourfold variation in that ratio across the datasets. The equation of state predicts 60% of the variance in the ratio.Fig. 2: The explanatory power of diversity and abundance.The observed ratio E/B3/4 is plotted against the ratio predicted by Eq. 1. Of the fourfold variability across ecosystems in that ratio, 60% is explained by the variability in the predicted combination of diversity and abundance. The shape of the marker indicates the type of data, and the lighter color corresponds to higher species richness. Data for all analyses come from tropical trees39,40,41,42,43,44,45, temperate trees30,31,32,33,46,47,48, temperate forest communities27,49, subalpine meadow flora28, and tropical island arthropods50.Full size imageFigure 3 shows the dependence on S and N of the predicted ratio E/B3/4 over empirically observed values of S, N, and E. We examined the case in which S is varied for two different fixed values of each of N and E (Fig. 3a) and N is varied for two different fixed values of S and E (Fig. 3b). The value of E does not have a large impact on the predicted ratio, particularly when E > > N. On the other hand, the predicted ratio depends more strongly on N and S.Fig. 3: The theoretical prediction for the ratio E/B3/4 as a function of S and N.The biomass B is predicted by holding E fixed along with one other state variable. In a N is fixed and S is varied, and in b S is fixed and N is varied. The fixed values are chosen to be roughly consistent within a range of the data considered. The color of the lines represents the corresponding fixed value of N or S, while the solid and dashed lines represent different fixed values of E.Full size imageThe total productivity of an ecological community is a focus of interest in ecology1, as a possible predictor of species diversity24 and more generally as a measure of ecosystem functioning25. By combining the METE and MTE frameworks, we can now generate explicit predictions for certain debated ecological relationships, including one between productivity and diversity. Interpreting total metabolic rate E in our theory as gross productivity, then in the limit 1 More

  • in

    Initial community composition determines the long-term dynamics of a microbial cross-feeding interaction by modulating niche availability

    The generalist accumulates extracellular nitriteWe first tested whether the generalist accumulates substantial extracellular nitrite under our experimental conditions, and thus creates a niche for the specialist. To accomplish this, we grew the generalist alone in bioreactors with anoxic ACS medium amended with 12 mM nitrate as the growth-limiting substrate and measured the extracellular concentrations of nitrate and nitrite over time. We performed these experiments at pH 6.5 (strong nitrite toxicity) and 7.5 (weak nitrite toxicity).We observed a substantial accumulation of extracellular nitrite regardless of the pH (Fig. 3A, B). When grown at pH 6.5 (strong nitrite toxicity), extracellular nitrite accumulated to a concentration comparable to the initial nitrate concentration (measured maximum extracellular nitrite concentration, 11.8 mM; measured initial nitrate concentration, 12.0 mM) and was subsequently consumed to below the detection limit (Fig. 3A). When grown at pH 7.5 (weak nitrite toxicity), extracellular nitrite again accumulated to a concentration comparable to the initial nitrate concentration (measured maximum extracellular nitrite concentration, 11.7 mM; measured initial nitrate concentration, 12.9 mM) and was subsequently consumed to below the detection limit (Fig. 3B). During growth at pH 6.5, substantial nitrite consumption did not begin until a prolonged period of time after nitrate consumption was complete, resulting in a relatively long duration of nitrite availability (Fig. 3A). During growth at pH 7.5, in contrast, substantial nitrite consumption began immediately after nitrate consumption was complete, resulting in a relatively short duration of nitrite availability (Fig. 3B). The longer duration of nitrite availability at pH 6.5 indicates that the duration of the niche created by the generalist for the specialist depends on pH.Fig. 3: Growth and nitrogen oxide dynamics of the generalist in batch culture.We grew the generalist alone in a bioreactor at A pH 7.5 (weak nitrite toxicity) or B pH 6.5 (strong nitrite toxicity) under anoxic conditions with nitrate as the growth-limiting substrate. Blue squares are measured extracellular nitrate concentrations, yellow triangles are measured extracellular nitrite concentrations, and black circles are measured cell densities. We measured extracellular nitrate and nitrite concentrations with IC and cell densities with FC. C Measured durations of nitrite availability for the generalist growing in batch culture. We grew the generalist alone in 96-well microtiter plates under anoxic conditions with nitrate as the growth-limiting substrate. Open symbols are durations of nitrite availability at pH 6.5 and closed symbols are durations of nitrite availability at pH 7.5. Each symbol is an independent biological replicate.Full size imageTo routinely quantify the duration of nitrite availability, we grew the generalist alone with varying amounts of nitrate as the growth-limiting substrate. We then quantified the length of time from when the growth rate with nitrate was maximum to when the growth rate with nitrite was maximum. This cell density-based proxy measure is valid because the growth of the generalist is directly linked to the consumption of nitrate and nitrite (Fig. 3A, B). The cell density of the generalist was initially linearly correlated with nitrate consumption at both pH 6.5 (strong nitrite toxicity) (two-sided Pearson correlation test; r = −0.96, p = 1.5 × 10–8, n = 15) (Fig. 3A) and 7.5 (weak nitrite toxicity) (two-sided Pearson correlation test; r = −1.00, p = 2.2 × 10–16, n = 30) (Fig. 3B). After nitrate was depleted, the cell density of the generalist became linearly correlated with nitrite consumption at both pH 6.5 (strong nitrite toxicity) (two-sided Pearson correlation test; r = −0.97, p = 3 × 10–4, n = 7) (Fig. 3A) and 7.5 (weak nitrite toxicity) (two-sided Pearson correlation test; r = −0.97, p = 6.8 × 10–10, n = 16) (Fig. 3B). We further validated our cell density-based approach by testing for concordance with our IC-based direct measures of the duration of nitrite availability. We observed a significant positive and linear relationship between the cell density- and IC-based measures (two-sided Pearson correlation test; r = 0.999, p = 0.023, n = 3) (linear regression model; slope = 1.19, intercept = −2.31, r2 = 0.99) (Supplementary Fig. S2), which further validates our cell density-based approach to routinely estimate the duration of nitrite availability.Using our cell density-based approach, we found that the duration of nitrite availability was significantly longer at pH 6.5 (strong nitrite toxicity) than at 7.5 (weak nitrite toxicity) regardless of the initial nitrate concentration (two-sample two-sided t-tests; Holm-adjusted p  0.92, Holm-adjusted p  0.6), and thus followed model predictions (Fig. 4A). However, when the specialist was initially rare (measured initial log rS/Gs of –3.19, –2.65, and –0.88), the relative abundances of the specialist continuously decreased between the third and twelfth transfers (Mann–Kendall trend tests; tau = –0.61 to –0.89, p  0 were dominated by phenotype C (dominant ancestral phenotype with a long time delay between nitrate and nitrite consumption), while generalist isolates from co-cultures with initial rS/Gs  More