More stories

  • in

    Putting pesticides on the map for pollinator research and conservation

    Overall strategyThe aim of this project was to synthesize publicly available data on land use, pesticide use, and toxicity to generate a ‘toolkit’ of data resources enabling improved landscape-scale research on pesticide-pollinator interactions. The main outcomes are several novel datasets covering ten major crops or crop groups in each of the 48 contiguous U.S. states:

    I)

    Average application rate (kg/ha/yr) of >500 common pesticide active ingredients (1997–2017),

    II)

    Aggregate bee toxic load (honey bee lethal doses/ha/yr) of all insecticides combined (1997–2014), (Note that this dataset ends in 2014 because after that year, data on seed-applied pesticides were excluded29, and these contribute significantly to bee toxic load21)

    III)

    Reclass tables relating these pesticide-use indicators to land use/land cover classes to enable the creation of maps predicting annual pesticide loading at 30–56 m resolution.

    An overview of the steps, inputs, and outcomes are provided in Fig. 1.Fig. 1Overview of the data synthesis workflow described in this paper.Full size imageData inputsA summary of input datasets is provided in Table 1.Table 1 Data inputs used in this study.Full size tablePesticide dataPesticide use data were last downloaded from the USGS National Pesticide Synthesis Project30,31 in June 2020. This dataset reports total kg applied of 508 common pesticide active ingredients by combinations of state, crop group, and year for the contiguous U.S. from 1992–2017 (crop groups explained in Table 2). The data are derived primarily from farmer surveys conducted by a private firm (Kynetec). For California, USGS obtains data from the state’s pesticide use reporting program32. USGS then aggregates and standardizes both data sources into a common national dataset that is released to the public and was used in this effort. The USGS dataset includes both a ‘high’ and a ‘low’ estimate of pesticide use, varying based on the treatment of missing values in the source data31. Because previous work on this dataset suggested that the ‘low’ estimate more closely matches independent pesticide estimates33, we used the ‘low’ estimate throughout, but assess the influence of this choice on the resulting estimates (see Technical Validation). While we focus on the ‘low’ estimate for the data and outputs presented in this manuscript, the workflow we developed can accommodate both the low and high estimates.Table 2 USGS crop categories in pesticide source data, based on metadata from USGS30,31 and personal communication with USGS staff scientists.Full size tableCrop area dataTo translate pesticide use estimates into average application rates, it was necessary to divide total kg of pesticide applied by the land area to which it was potentially applied. Crop area data were last downloaded from the Quick Stats Database of the USDA34 in May 2020, using data files downloaded from the ‘developer’ page. This USDA dataset contains crop acreage estimates generated from two sources: the Census of Agriculture (Census), which is comprehensive but conducted only once every five years35 and the crop survey conducted by the National Agricultural Statistics Service (NASS), which is an annual survey based on a representative sample of farmers in major production regions for a more limited subset of crops36.Honey bee toxicity dataTranslating insecticide application rates into estimates of bee toxic load (honey bee lethal doses/ha/yr) required toxicity values for each insecticide active ingredient in the USGS dataset. We used LD50 values for the honey bee (Apis mellifera) because this is the standard terrestrial insect species used in regulatory procedures, and so has the most comprehensive data available. This species is also of particular concern as an important provider of pollination services to agriculture. As previously reported21, the LD50 values were derived from two sources, the ECOTOX database37 of the U.S. Environmental Protection Agency (US-EPA), and the Pesticide Properties Database (PPDB)038. ECOTOX was queried in July 2017, by searching for all LD50 values for the honey bee (Apis mellifera) that were generated under laboratory conditions. Acute contact and oral LD50 values for the honey bee were recorded manually from the PPDB in June 2018.Land cover dataMapping pesticides to the landscape requires land use/land cover data indicating where crops are grown. We used the USDA Cropland Data Layer (CDL)39, a land cover dataset at 30–56 m resolution produced through remote sensing. This dataset is available starting in 2008 for states in the contiguous U.S., with some states (primarily in the Midwest and Mid-South) available back to the early 2000s.Data preparationRelating datasetsA major challenge in this data synthesis effort was relating the various data sources to each other, given that each dataset has unique nomenclature and organization. We created the following keys (summarized in Table 3) to facilitate joining datasets:

    I)

    USGS-USDA crop keys – Using documentation and metadata associated with the USGS pesticide dataset31,33,40, we created keys relating the USGS surveyed crop names (‘ePest’ crops) and the ten USGS crop categories to the large number of corresponding crop acreage data items in the Census and NASS datasets. For annual crops and hay crops we used ‘harvested acres,’ and for tree crops we used ‘acres bearing & non-bearing.’ These choices were made to maximize data availability and to correspond as closely as possible to the crop acreage from which the pesticide data were derived31. A separate key was developed for California because California pesticide data derives from different source data and covers a larger range of crops.

    II)

    USGS-CASRN compound key – Using USGS documentation as well as background information on pesticide active ingredients38,41, we generated keys relating USGS active ingredient names to chemical abstracts service (CAS) registry numbers to facilitate matching compounds to the ECOTOX and PPDB databases.

    III)

    USGS compound-category key – In this key we classified active ingredients into major groups (insecticides, fungicides, nematicides, etc.) and into mode-of-action classes on the basis of information from pesticide databases and resistance action committees38,41,42,43,44.

    IV)

    USGS-USDA compound key – To facilitate our data validation effort, we generated a key relating USGS compound names to USDA compound names, on the basis of information from several pesticide databases38,41.

    V)

    USGS-CDL land use-land cover keys – Using documentation from the USGS pesticide dataset describing the crop composition of each of the ten crop categories31, we created a key that matches these categories to land cover classes in the CDL. A separate key was developed for California given the differences in surveyed crops in this state, noted above.

    Table 3 Keys generated to relate datasets.Full size tableProcessing crop area dataBecause of differences in the crops included in pesticide use estimates, crop acreage data were processed separately for California and for all other states, and then re-joined, as follows: Acreage data were first filtered to include only data at the state level, reporting total annual acreage for states in the contiguous U.S. after 1996. Acreage data were joined to the appropriate USGS-USDA crop key and only those crops represented in the pesticide dataset were retained. We then generated an acreage dataset with single rows for each combination of crop, state, and year using data from the Census when available (1997, 2002, 2007, 2012, 2017), data from NASS in non-Census years, and temporal interpolation to fill in remaining missing values (i.e. linear interpolation between values in the same state and crop in the nearest surrounding years). This process was repeated for California, using acreage data for only that state in combination with the CA crop key. Finally, acreage data in the two datasets were recombined, converted to hectares, and summed by USGS crop group.Processing honey bee toxicity dataProcessing for the honey bee toxicity data has been described in detail elsewhere21. Briefly, toxicity values were categorized as contact, oral, or other and standardized where possible into µg/bee. Records were retained if they represented acute exposure (4 days or less) for adult bees representing contact or oral LD50 values in µg/bee. To generate a consensus list of contact and oral LD50 values for all insecticides reported in the USGS dataset, we gave preference to point estimates and estimates generated through U.S. or E.U. regulatory procedures, taking a geometric mean if multiple such estimates were available. Unbounded estimates (“greater than” or “less than” some value) were only used when point estimates were unavailable, using the minimum (for “less than”) or the maximum (for “greater than”). If values for a compound were unavailable in both datasets, we used the median toxicity value for the insecticide mode-of-action group. And finally, in rare cases (n = 1/148 compounds for contact toxicity and 8/148 compounds for oral toxicity) we were still left without a toxicity estimate for a particular insecticide. In those cases, we used the median value for all insecticides.Data synthesisCompound-specific application rates for state-crop-year combinationsUSGS data on pesticide application were joined to data on crop area. Average pesticide application rates were calculated by dividing kg applied by crop area (ha) for each combination of compound, crop group, state, and year.Aggregate insecticide application rates for state-crop-year combinationsThe dataset from the previous step was filtered to include only insecticides, and then joined to LD50 data by compound name. Bee toxic load associated with each insecticide active ingredient was calculated by dividing the application rate by the contact or oral LD50 value (µg/bee) to generate a number of lethal doses applied per unit area. These values were then summed across compounds to generate estimates of kg and bee toxic load per ha for combinations of crop group, state, and year.Missing values were estimated using temporal interpolation, where possible (i.e. linear interpolation between values in the same state and crop group in the nearest surrounding years). This dataset ends in 2014 because after that year seed-applied pesticides were excluded from the source data29, and they constitute a major contribution to bee toxic load21.We focused bee toxic load on insecticides for three reasons. First, quality of LD50 data is highest for insecticides and uneven for fungicides and herbicides. Point estimates make up the majority of LD50 values for insecticides, whereas  100 µg/bee”, increasing the uncertainty of downstream estimates). Second, insecticides tend to have greater acute toxicity toward insects than fungicides and herbicides (median [IQR] LD50 = 100 [44–129] µg/bee for fungicides, 100 [75–112] µg/bee for herbicides, and 1.36 [0.16–12] µg/bee for insecticides). As a result, insecticides account for > 95% of bee toxic load nationally, even when herbicides and fungicides are included (and even though insecticides make up only 6.5% of pesticides applied on a weight basis). Third, focusing these values on insecticides increases their interpretability, reflecting efforts directed toward insect pest management, rather than a mix of insect, weed, and fungal pest management (which often have distinct dynamics and constraints for farmers).While we chose to include only insecticides in this aggregate value, users are welcome to adjust the workflow to include fungicides and herbicides if desired. To this end, we provide our best estimates for LD50 values for fungicides and herbicides in the USGS dataset (Table 4).Table 4 Data outputs generated by this study.Full size tableReclassification tablesTo generate reclassification tables for the CDL, the pesticide datasets described above were joined by crop group to CDL land use categories. The output of these processes was a set of reclassification tables for combinations of compound, state, and year. Also generated was a set of reclassification tables for aggregate insecticide use for combinations of state and year.Of the 131 land use categories in the CDL, 16 represent two crops grown sequentially in the same year (double crops, found on ~2% of U.S. cropland in 201245), which required a modified accounting in our workflow. Pesticide use practices on double crops are not well described, but one study suggested that pesticide expenditures on soybean grown after wheat were similar to pesticide expenditures in soybean grown alone46. Therefore, we assumed that pesticide use on double crops would be additive (e.g. for a wheat-soybean double crop, the annual pesticide use estimate was generated by summing pesticide use associated with wheat and soybean).Missing values in the reclassification tables resulted from several distinct issues. Some values were missing because a particular crop was not included in the underlying pesticide use survey (e.g. oats was not included in the Kynetec survey), or because the land use category was not a crop at all (e.g. deciduous forest). These two issues were indicated with values of ‘1’ in columns called ‘unsurveyed’ and ‘noncrop,’ respectively. For double crops, a value of 0.5 in the ‘unsurveyed’ column indicates that one of the crops was surveyed and the other was not. For compound-specific datasets, missing values may reflect that a given compound was not used in a state-crop group-year combination. For the aggregate insecticide dataset, even after interpolation there were some missing values, usually when a state had very little area of a particular crop or crop group.Finally, missing data for double crops were treated slightly differently in the aggregate vs. compound-specific reclassification tables. For the aggregate insecticide dataset, estimates for double crops were only included if estimates were available for both crops; otherwise the value was reported as missing. For the compound-specific datasets, estimates for double crops were included if there was an estimate for at least one of the crops, since specific compounds may be used in one crop but not another. More

  • in

    Genic distribution modelling predicts adaptation of the bank vole to climate change

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189 (2018).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).Article 

    Google Scholar 
    Bradshaw, A. D. & McNeilly, T. Evolutionary response to global climatic change. Ann. Bot. 67, 5–14 (1991).Article 

    Google Scholar 
    Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).Article 

    Google Scholar 
    Veron, S., Haevermans, T., Govaerts, R., Mouchet, M. & Pellens, R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 9, 1–12 (2019).Article 
    CAS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).PubMed 
    Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, K. J. & Whitlock, M. C. The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 30, 591–602 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17, 305–320 (2015).Article 
    CAS 

    Google Scholar 
    Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 

    Google Scholar 
    Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA 116, 2152–2157 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).Article 

    Google Scholar 
    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).PubMed 
    Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Resour. 18, 18–31 (2018).PubMed 
    Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. Proc. R. Soc. B 286, 20190486 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3, cov056 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, S. J. G. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 187, 153–160 (1979).Article 

    Google Scholar 
    Kotlík, P. et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B 281, 20140021 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Searle, J. B. et al. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. B 276, 4287–4294 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Escalante, M. A., Horníková, M., Marková, S. & Kotlík, P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol. Evol. 11, 8054–8070 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reischl, E., Dafre, A. L., Franco, J. L. & Wilhelm Filho, D. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 146, 22–53 (2007).Article 
    CAS 

    Google Scholar 
    Storz, J. F. & Wheat, C. W. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64, 2489–2509 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, R. et al. Different metabolizing ability of thiol reactants in human and rat blood. Biochemical and pharmacological implications. J. Biol. Chem. 276, 7004–7010 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vitturi, D. A. et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med. 55, 119–129 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petersen, A. G. et al. Hemoglobin polymerization via disulfide bond formation in the hypoxia-tolerant turtle Trachemys scripta: Implications for antioxidant defense and O2 transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R84–R93 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Paital, B. et al. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 7, 110–127 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jacobs, P. J., Oosthuizen, M. K., Mitchell, C., Blount, J. D. & Bennett, N. C. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 15, e0242279 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kotlík, P., Marková, S., Horníková, M., Escalante, M. A. & Searle, J. B. The bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Front. Ecol. Evol. 10, 866605 (2022).Article 

    Google Scholar 
    Strážnická, M., Marková, S., Searle, J. B. & Kotlík, P. Playing hide-and-seek in beta-globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene guplicates. Genes 9, 492 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stocker, T. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 11, 1504–1513 (2005).Article 

    Google Scholar 
    Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213, 63–72 (2008).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 

    Google Scholar 
    Warren, D. L. et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).Article 

    Google Scholar 
    Mayes, J. & Wheeler, D. Regional weather and climates of the British Isles—part 1: introduction. Weather 68, 3–8 (2013).Article 

    Google Scholar 
    Kotlík, P., Marková, S., Konczal, M., Babik, W. & Searle, J. B. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B 285, 20172624 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. N. Phytol. 222, 1757–1765 (2019).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Twenty-first International Conference on Machine Learning – ICML ’04 9, 83 (ACM Press, 2004).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Zeng, Y., Low, B. W. & Yeo, D. C. J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Modell. 341, 5–13 (2016).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 
    Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).Article 

    Google Scholar 
    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).Article 

    Google Scholar 
    Dufresne, J. L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article 

    Google Scholar 
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).Article 

    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).Article 

    Google Scholar  More

  • in

    Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China

    Galindo, I. & Alonso, C. African swine fever virus: A review. Viruses 9, 103 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Blome, S., Franzke, K. & Beer, M. African swine fever: A review of current knowledge. Virus Res. 2020, 198099 (2020).Article 
    CAS 

    Google Scholar 
    Li, X. & Tian, K. African swine fever in China. Vet. Rec. 183, 300 (2018).PubMed 
    Article 

    Google Scholar 
    Wang, T., Sun, Y. & Qiu, H. J. African swine fever: An unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 66–70 (2018).Article 

    Google Scholar 
    Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D. & Richt, J. A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 7, 215 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, S. et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 1, 221–228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woonwong, Y., Do, T. D. & Thanawongnuwech, R. The future of the pig industry after the introduction of African swine fever into Asia. Anim. Front. 10, 30–37 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mulieri, P. R. & Patitucci, L. D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 118, 1077–1086 (2019).PubMed 
    Article 

    Google Scholar 
    Escobar, L. E. Ecological niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions https://doi.org/10.1007/s10530-022-02838-y (2022).Article 

    Google Scholar 
    Wen, X. et al. Prediction of the potential distribution pattern of the great gerbil (Rhombomys opimus) under climate change based on ensemble modelling. Pest Manag. Sci. 78, 3128–3134 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, Y. et al. Evaluating the risk for Usutu virus circulation in Europe: Comparison of environmental niche models and epidemiological models. Int. J. Health Geogr. 17, 1–14 (2018).Article 

    Google Scholar 
    Naimi, B. & Araújo, M. B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    Georges, D. & Thuiller, W. An example of species distribution modeling with biomod2. https://r-forge.r-project.org/…/inst/doc/Simple_species_modelling.pdf?root=biomod (2013).Thuiller, W. BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Thuiller, W. Editorial commentary on “BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change”. Glob. Change Biol. 20, 3591–3592 (2014).ADS 
    Article 

    Google Scholar 
    Navarro-Cerrillo, R. M., Duque-Lazo, J., Manzanedo, R. D., Sánchez-Salguero, R. & Palacios-Rodriguez, G. Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: An ensemble niche-based approach. iForest Biogeosci. For. 11, 396–405 (2018).Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A., Dagnachew, A. & Muktar, Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci. Rep. 12, 1748 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2020).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2010).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Xiao-Ge, X. et al. Introduction of BCC models and its participation in CMIP6. Clim. Change Res. 5, 533–539 (2019).
    Google Scholar 
    Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 
    Article 

    Google Scholar 
    Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A. & Yimana, M. Global ecological niche modelling of current and future distribution of peste des petits ruminants virus (PPRv) with an ensemble modelling algorithm. Transbound Emerg. Dis. 68, 3601–3610 (2021).PubMed 
    Article 

    Google Scholar 
    Jori, F. & Bastos, A. D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).PubMed 
    Article 

    Google Scholar 
    Teklue, T., Sun, Y., Abid, M., Luo, Y. & Qiu, H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg. Dis. 67, 529–542 (2020).PubMed 
    Article 

    Google Scholar 
    Arias, M. et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chenais, E. et al. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manag. 5, 1–10 (2019).Article 

    Google Scholar 
    Quembo, C. J., Jori, F., Vosloo, W. & Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg. Dis. 65, 420–431 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. R. et al. Chikungunya fever: Atypical and lethal cases in the Western hemisphere: A Venezuelan experience. IDCases 2, 6–10 (2015).PubMed 
    Article 

    Google Scholar 
    Nuanualsuwan, S. et al. Persistence of African swine fever virus on porous and non-porous fomites at environmental temperatures. Porc. Health Manag. 8, 34 (2022).Article 

    Google Scholar 
    Davies, K. et al. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound Emerg. Dis. 64, 425–431 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, J. et al. Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9, 977 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Salari, L. S., Vatandoost, H., Telmadarraiy, Z., Entezar, M. R. & Kia, E. Seasonal activity of ticks and their importance in tick-borne infectious diseases in West Azerbaijan, Iran. J. Arthropod. Borne Dis. 2, 28–34 (2008).
    Google Scholar 
    Vial, L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16, 191–202 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jian, L. et al. WANG potential adaptability of soft tick vectors of African swine fever to China. Chin. J. Vect. Biol. Control 21, 317–320 (2010).
    Google Scholar 
    Cwynar, P., Stojkov, J. & Wlazlak, K. African swine fever status in Europe. Viruses 11, 310 (2019).PubMed Central 
    Article 

    Google Scholar 
    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).Article 

    Google Scholar  More

  • in

    Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591–600 (2000).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).Article 

    Google Scholar 
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).CAS 
    Article 

    Google Scholar 
    Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).Article 

    Google Scholar 
    Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).CAS 
    Article 

    Google Scholar 
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).Article 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377–387 (1997).CAS 
    Article 

    Google Scholar 
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).CAS 
    Article 

    Google Scholar 
    Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823–836 (2009).CAS 
    Article 

    Google Scholar 
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188–197 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).CAS 
    PubMed 

    Google Scholar 
    Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).Article 

    Google Scholar 
    Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).Article 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).Article 

    Google Scholar 
    Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).CAS 
    Article 

    Google Scholar 
    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).Article 

    Google Scholar 
    Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121–124 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R. & Šikić, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CAS 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465–2513 (2015).CAS 
    Article 

    Google Scholar 
    Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).CAS 
    Article 

    Google Scholar 
    Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Günther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30–38 (2010).Article 

    Google Scholar 
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Recapping and mite removal behaviour in Cuba: home to the world’s largest population of Varroa-resistant European honeybees

    We confirm that Cuba is home to the world’s largest European honeybee population that has naturally become Varroa-resistant, with an estimated 220,000 colonies being maintained without any form of chemical treatment for over two decades19 although some drone-trapping occurred during the early years of the transition period This is despite the presence of the K-haplotype of the mite20 and the widespread occurrence of DWV19 throughout Cuba. Hence, the Cuban honeybee population is the first major case of Varroa-resistant European bees occupying an entire country of a large size (109,884 km2). In Europe the proportion of varroa-resistant honeybee populations in each country is highly variable21,22, but they still consist of small, isolated populations within any country. For example, the second largest known area of European Varroa-resistant honeybees is in North Wales, UK where 104 beekeepers have managed around 500 honey bee colonies over an area of 2500 km2 without treatment for over a decade23.It has long been established that sub-Sharan African and Africanised honeybees are Varroa-resistant and both populations cover much larger areas than Cuba, but these honeybee races are not capable of thriving in temperate regions or are rejected by beekeepers in Northern hemispheres. However, previous studies on African/Africanised and European honeybees4,5,6,9 all appear to have evolved with the same resistance mechanism7 and Cuban honeybees follow this pattern showing high recapping behaviour, high mite removal behaviour and low mite reproduction (Figs. 1, 4, Table 1).The strongest evidence that increased recapping behaviour is a direct response to the presence of Varroa, is the very low recapping rates in Varroa-naïve colonies. This is evidenced by the recapping baseline data that has now been collected from four different Varroa-naïve (Varroa free) honeybee populations (Australia, UK [two populations] and Hawaii [this study]) all producing similar results (Fig. 1). Across the four populations, a total of 9542 worker cells from 15 colonies have been studied with an average recapping rate of 2.0% (+ SD 3.2). Interestingly, only two of the colonies had atypical recapping rates of 8.5% and 10.7%, from Australia and Kauai respectively. This may suggest increased sensitivity in these colonies as no obvious causes e.g., wax moth or dead pupa, were detected in either colony. The data summary in Fig. 1 indicates that even in Varroa-treated populations the workers are still able to detect mite infested cells, but the average consistently falls significantly below that found in resistant populations. That is, in non-infested worker cells recapping rates are significantly higher in resistant populations in comparison to susceptible populations (Fig. 1) t4, 5 = − 4.185, p = 0.0023 as well as for infested cells t4, 5 = − 6.905, p = 0.00007.The ability of Cuban honeybees to detect infested cells causes not only high recapping levels but also high removal rates of artificially mite-infested cells. A mean removal rate of 81% is among one of the highest recorded in Apis mellifera7. The average control rate of 45% is driven by three colonies that all removed more than 75% of the controls, while the average of the remaining seven colonies was 28%. During the mite-removal studies in March 2022 natural Varroa infestation was 23%, whereas in December 2021 it was only 13%. This is due to decreasing worker brood rearing, caused by a shortage of nectar during the annual dry season. During this time there is an increase in hygienic behaviour in the colonies24, which could help explain the higher-than-expected removal of control cells.The reproductive ability of Varroa to produce viable i.e., mated, female offspring (r) in infested worker cells in resistant colonies in South Africa4 (r = 0.9), Brazil4 (r = 0.8), Mexico18 (r = 0.73), Europe3 (r = 0.84) is similar to the 0.87 found in Cuba (this study). In Cuba ‘r’ reduces to 0.77 when both single and multiple infested cells are considered. This reduction in mite reproduction, relative to susceptible colonies that have values of r greater than one, is directly linked to the increased ability of resistant workers to both detect and remove, by cannibalisation, the infested pupa. Hence, this ensures the invading mite fails to reproduce7 or reduces mite fertility due to the recapping process4. Although, in this study no significant difference was found in the reproduction of Varroa in recapped or non-recapped cells, supporting the findings of two previous studies5,9. Therefore, recapping may be playing a minor role in resistance. However, recapping remains the best indicator or ‘proxy’ of resistance within the vast majority of honeybee populations since it’s easier, quicker, and it requires less skill to measure recapping rates than mite removal rates. However, recapping is a highly variable trait7, hence both many cells (200–300) per colony and many colonies ( > 10) per population ideally need to be studied to help reduce the variablity, also in temperate countries measuring recapping when mite-infestation rates peak in autumn maximises detecting infested cells since the recapping of cells is spatially associated with infested cells11.Despite the current focus on what is happening in worker cells, studies focusing on the role of recapping in drone brood are still in their infancy with. Currently, data is only available from South Africa9 (Fig. 1) and now Cuba (this study). Interestingly, both studies indicate no significant difference in recapping rates between infested and non-infested brood. This is caused by some colonies performing no recapping of drone brood, while some colonies do recap cells but in a non-targeted manner. Whereas there is a significant increase in the size of the recapped area between infested (3.1 mm) and non-infested (2.3 mm) worker cells (Fig. 3), this does not occur in drone brood, as it appears that the holes are entirely exploratory. However, the lack of removal of infested drone brood may be playing an important role in mite-resistance (see below).The mite infestation of worker cells currently varies between 23 and 13% in Cuba (this study), roughly 25 years after it was first detected (1996). Whereas, in Mexico and Brazil, infestation rates of worker brood have fallen from around 20% in 1996/1999 down to 4% in 2018/197. Although, Varroa was first detected in Brazil much earlier, in 197225 and the Africanised honeybees adapted to the mite and spread northward replacing the susceptible European colonies. Therefore, we predict that the worker infestation rate in Cuba will continue to fall over the next 20 years, especially if high mite-removal rates persist. Correspondingly, we would expect to see the infestation rates of the drone brood (currently at 40%) to remain high as mites potentially avoid reproduction in worker cells. This potentially is a key, but currently overlooked part, of the resistance mechanism. Since an empirical model26 indicated that negative mite population growth occurs in (resistant) Africanised honeybee colonies only when the initial drone cells are present. This is thought to arise because mites also show a tenfold preference to reproduce in drone cells (which comprises only 1–5% of all the honeybee brood) and they soon become overcrowded as the mite population increases. This leads to inter-mite competition for the limited food and space, causing an increase in mite mortality27, resulting in negative reproductive success for mites entering these overcrowded drone cells. Thus, mite population growth in drone brood cells is limited by a density-dependent mechanism. In Cuba it has been observed that strong colonies typically with drone brood do not weaken during the drought season, whereas colonies without drone brood are weak and often die during the drought (APP personal comm).Although Cuban beekeepers have been aware of their mite-resistant honeybees for 15 to 20 years’, Cuba’s situation has only recently come to light16,18. The main reason for Varroa-resistance in Cuba is due to the centralised decision to allow natural resistance to evolve, as also was done successfully in South Africa3, rather than becoming locked into using miticides, as has happened throughout the Northern hemisphere. The CIAPI and Veterinarian Services central decision to ‘not treat’ was greatly assisted by all Cuban beekeepers being professional, registered and embedded within a strong locally based beekeeping community where colony movement and exchange of queens is within each province.There is also a large feral population and due to Cuba’s sub-tropical climate, queens are replaced annually in managed colonies because of almost continuous egg-laying, similar to honeybees in Hawaii. This rapid queen turnover speeds up natural selection relative to honeybee populations in more temperate climates. Finally, Cuba’s 60-year ban on honeybee importation has helped isolate the country from been invaded by Africanised bees which has occurred in many nearby regions (eg. Mexico, Southern USA, Puerto Rico, neighbouring Dominican Republic13 and Haiti (D. Macdonald, Apiary Inspector, Min. of Agi BC, Canada, pers. Comm.). Cuba has many managed European colonies coupled with many queen rearing stations. These colonies are productive and mild mannered. Thus, Cuba is an excellent example of the power of natural selection in honeybees when they are allowed to adapt naturally to Varroa with minimal human interference. More

  • in

    Iron-dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms the basis for a sustainable bioremediation system

    Iron and carbon dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms a synthetic phototrophic communityThe synthetic microalgal-bacterial community based on the active exchange of iron and carbon was developed by screening multiple siderophore producer bacteria and dye decolorizer algae (Fig. 1; refer to Supplementary Data S1 for detailed results). Out of seven bacterial isolates obtained from untreated textile wastewater, five showed relatively high siderophore production in CAS agar plates and broth (Fig. S1). In broth, Serratia plymuthica PW1, Serratia liquefaciens PW71, and Ralstonia pickettii PW2 produced siderophores in decreasing order of concentration, i.e., 15.26 ± 1.3  > 13.28 ± 0.9  > 10.85 ± 0.7 µMmL−1 (Table 1). Arnow’s assay confirmed that S. plymuthica PW1 (81.10 ± 9.8 µMmL−1), R. pickettii PW2 (97.43 ± 16.8 µMmL−1), and S. liquefaciens PW71 (103.1 ± 8.3 µMmL−1) produced catecholate-type siderophores. On the other hand, Csaky’s assay confirmed that Stenotrophomonas maltophilia PW5 (37.86 ± 0.4 µMmL−1) and Stenotrophomonas maltophilia PW6 (17.73 ± 0.2 µMmL−1) produced hydroxamate-type of siderophores. Out of the five algal species, only freshwater microalgae Chlorella sorokiniana and Scenedesmus sp. showed the highest dye degradation potential; therefore, they were selected for further experiments (Data S1).Fig. 1: The study design explains different stages of experiments to develop a phototrophic community of previously non-associated algae and bacteria.The stages include (A) isolation of bacterial strains from textile wastewater collected from Panipat Industrial area, Haryana (India); B cultivation of freshwater and marine algal strains; C assessment of siderophore production in bacterial strains using Schwyn and Neilands’s universal Chrome Azurol S (CAS) assay; D assessment of dye degradation potential of algae strains using Acid Black 1 (AB1) dye; E interaction study between siderophore producing bacteria and dye degrader microalgae to identify bacterial strains that could sustain on algae-derived DOM secreted in algal exudates; F algal-bacterial co-culturability assessment to study different types of microbial interactions viz. antagonism, mutualism, or no interaction between the two organisms, and G identification of algal-bacterial model phototrophic community based on the active exchange of iron and DOM (refer to Data S1 for detailed results).Full size imageTable 1 Characterization of siderophore production in bacterial strains isolated from textile wastewater.Full size tableAfter that, the sterile exudates from C. sorokiniana and Scenedesmus sp. were used as the sole source of dissolved organic matter for bacterial growth and selection of appropriate microalgal-bacterial partners comprising the phototrophic community (Fig. 1E; Data S2). All five bacterial isolates grew well on the exudate of C. sorokiniana as a sole source of carbon. On the contrary, on exudates of Scenedesmus sp., S. plymuthica PW1 showed moderate growth in 20 h, while the growth of R. pickettii PW2 and S. liquefaciens PW71 remained insignificant. S. maltophilia PW5 and PW6 failed to grow in the exudate of Scenedesmus sp. (Fig. S2B).Finally, the compatibility between the phototrophic community of selected microalgae (C. sorokiniana/ Scenedesmus sp.) and siderophore-producer bacteria (S. plymuthica PW1/ R. pickettii PW2/ S. liquefaciens PW71) was tested by co-culturing them in iron limiting BBM media (BBM-Fe; without EDTA) (Fig. 1F). In the absence of EDTA, Fe precipitates rapidly as iron oxyhydroxides and becomes unavailable to microbes. Microalgal growth curves in co-culture assays were used to measure and compare population characteristics such as carrying capacity ‘k’, growth rate ‘r’, etc., in axenic and consortium setups. Algal growth parameters in co-culture with a bacterial partner were used to categorize their interaction as putative mutualistic, antagonistic, and neutral (Data S1, Tables S1 and S2) [42]. Under iron-limiting conditions, axenic C. sorokiniana experienced iron stress as the cell growth was 4.2 ± 0.4 × 106 cells mL−1 after 200 h incubation. On the other hand, axenic Scenedesmus sp. showed a significantly higher growth (11.3 ± 1.2 × 106 cells mL−1) than C. sorokiniana suggesting an effective iron uptake mechanism under iron-limiting conditions (k; t-test, p = 0.001) (Table S1). In contrast to the axenic microalgal culture, C. sorokiniana in co-culture with R. pickettii PW2 showed a significant increase in cell count at 200 h (6.2 ± 0.85 × 106 cells mL−1) (auc; p = 0.000). However, S. plymuthica PW1 exerted a negative effect on C. sorokiniana (Fig. 2A), as indicated by its significant increase in doubling time (p = 0.009) and reduction in auc (p = 0.001) (Fig. 3A). While S. liquefaciens PW71 remained neutral to C. sorokiniana (auc; p = 0.430) (Fig. 2A, Table 2). On the other hand, the interaction of Scenedesmus sp. with both R. pickettii PW2 and S. liquefaciens PW71 was neutral, while S. plymuthica PW1 showed a negative effect (Figs. 2A and 3A).Fig. 2: Assessment of algal and bacterial growth in co-culture experiments.A The growth curves represent the difference in the growth of C. sorokiniana when grown axenically or in co-culture with S. plymuthica PW1, R. pickettii PW2, and S. liquefaciens PW71 under iron limiting conditions. Whereas, the effect of bacteria on the growth of Scenedesmus sp. was less prominent. The difference in the CFUs of bacterial strains in axenic culture and co-culture suggests the growth-promoting effect of C. sorokiniana on S. plymuthica PW1 and R. pickettii PW2. B Anion-exchange chromatography suggests a difference in the glycosyl composition in the EPS of C. sorokiniana and Scenedesmus sp. C The area under curve (auc) of S. plymuthica PW1 and R. pickettii PW2 obtained after growth curves in different sugars. Here, ‘a’, ‘b’, etc., represent grouping after Tukey’s post hoc test.Full size imageFig. 3: Assessment of algal growth parameters in the algal-bacterial phototrophic community under iron-limiting conditions.A The confidence interval plots represent the significant difference in the growth parameters i.e., growth rate ‘r’, carrying capacity ‘k’, doubling time ‘Dt’, and area under curve ‘auc’, of C. sorokiniana (left panel) and Scenedesmus sp. (right panel) in algal-bacterial co-cultures w.r.t. to axenic culture (horizontal blue dashed line). The symbols ‘*’ and ‘**’ represent p values with statistical significance of ‘p  More

  • in

    Maladaptive evolution or how a beneficial mutation may get lost due to nepotism

    Our model results indicate that in species with a strict social dominance hierarchy where social rank is determined by nepotism, a beneficial mutation occurring in a low-ranking female is not very likely to get established. This outcome emerged despite the immense advantage of the modeled mutation, which doubled its carrier’s survival probability. Moreover, the reproductive skew in our model (see Supplementary Fig. 1) was less radical than the skew reported for the spotted hyena females21, which means that in the model, low-ranking females had a relatively higher reproductive success potential than in reality. In other words, our model may be underestimating the severity of the negative selection a low rank induces.It is reasonable to assume that a low-ranking mutant female in a female dominant society would produce very few surviving offspring due to her low rank and ensuing lack of access to resources. Thus, this female would have only a slight chance to transmit the mutation to the next generation. If this female does reproduce successfully and produces a female which also inherits the mutation, chances of this daughter to pass on the mutation are also slim, as her rank would be even lower than that of her mother. However, if the young produced is a male and has inherited the mutation, chances of transmitting the mutation may increase depending on the male’s reproduction odds. As demonstrated by the four scenarios, the reduction in mutation establishment with decreasing mutant female’s rank became more and more prominent with increasing restrictions on male reproduction. In all four scenarios, the mutation establishment rate median was zero for the lowest ranking mutants, and in all cases but Scenario I, it was 41. Although female dominance hierarchy exists in a few of these species (e.g., Peruvian squirrel monkey41, ring-tailed lemur (Lemur catta)39,42, Verreaux’s sifaka (Propithecus verreauxi))13,25, we did not find any studies indicating female reproductive skew in any of them. Holekamp and Engh25, who reviewed the more classical female dominant species, also reported no evidence for female reproductive skew.This seemingly lack of female reproductive skew among most female dominant species is quite surprising in light of the rather common correlation between social rank and female reproductive success in male dominant species. To mention a few, considerable female reproductive skew is found in baboons (Papio spp), macaques (macaca spp.), feral horses (Equus caballus) and plains zebras (Equus burchelli)8,15,19.Holekamp and Smale28 state that “reproductive skew among female spotted hyenas appears to be greater than that documented among females of male-dominated species characterized by plural breeding”. They suggest that the key determinant of reproductive success among females in this species is rank-related priority of access to food resources. This high priority is reinforced by female dominance over males and is particularly important as this species resides in an environment in which prey availability is seasonal and scarce at times21. Our study suggests that this extreme difference in reproductive success, which, unlike in male-dominated species, is determined by nepotism rather than by physical characters, may induce a handicap on the entire population preventing the establishment of beneficial mutations. This may also hinder adaptation to a changing environment. However, our study results indicate that male equal access to females may, at least partially, counter the inhibition effect on a beneficial mutation establishment. More research is necessary in order to investigate female reproductive skew in species with a social structure similar to that of the spotted hyena, which is characterized by female dominance over males, plural breeding, and a strict female linear social hierarchy determined by nepotism.One intriguing possibility for testing this model’s validity would be an empirical study, provided that the value of some adaptive trait can be measured. In the case of the spotted hyena such a trait may refer to hunting success or physical capabilities. It is well established that adult female spotted hyenas are larger and more aggressive than adult males21, but little attention has been allocated to the study of individual physical differences among females of different ranks. Smith et al.43 studied within clan aggression in the context of the fission-fusion behavior characterizing the spotted hyena clans. Their results indicate more frequent aggression and resulting fissions occurring during times of food shortage. Rank was found to be the major correlate of an aggressive incident result. If it is possible to identify low-ranking females with some beneficial trait (independent of rank), it would be interesting to follow such females’ inclusive reproductive success along time, and even more so, the reproductive success of their sons.Another possible path around the conflict this model suggests would be through the selection of male admission into new clans. Male admission into clans is often constrained by severe aggression of resident immigrant males which may prevent or delay male admission21,26. Such behavior may in fact promote mutant male chances, at least in the case of a mutation that improves physical capabilities.One last, though not very likely possible detour around this difficulty is the occurrence of dominance rank exchanges. Such rank improvements are not very common among female dominated societies, except for in the case of aging females who may clear the way for their daughters44. However, Straus and Holekamp44 found that individuals who repeatedly form coalitions with their top allies are likely to improve their position, and, according to Strauss and Holekamp44, “facilitate revolutionary social change”. It should be kept in mind that not only are such incidents rather rare, but they are unlikely to turn a very low-ranking female into a high-ranking one, especially not when group size is large.More empirical and theoretical research should shed more light on this intriguing question of possible maladaptive evolution. Our model, in line with a few other models such as that of Holman31, suggests that evolution may not always lead to the best solution. As in every process, a local optimum may get evolution trapped and prevent further advance to better optima. More

  • in

    Social Support and Network Formation in a Small-Scale Horticulturalist Population

    Human evolutionary research has historically conceptualised social support as a purely dyadic phenomenon (e.g., see Refs. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16). That is, given some trait pertaining to two persons i and j — e.g., their genetic relatedness, history of helping each other, physical proximity, or difference in wealth — does i help j? Both elegant and tractable, this dyad-centric view of social support evokes classic theoretical models of cooperation as a “Prisoner’s Dilemma” within a void consisting only of ego (i) and alter (j)17. Yet it also belies the fact that aid relationships (i.e., who helps who) constitute complex networks of supportive social bonds that emanate throughout entire human communities.Members of such networks may, in principle, unilaterally help whomever they wish. And their decisions to help — or to not help — specific others comprise a dynamic, supra-dyadic relational context that shapes one’s plausible set of aid targets at the micro level18,19,20,21,22. Put simply, in social support networks, aid is targeted and interdependent across dyads such that the patterning of cooperation among multiple alters jointly affects whom any one network member helps. This sociocentric (i.e., whole network) view of social support is distinct from the perspective taken by evolutionary graph theorists who study the emergence of cooperation on network structure and other spatial substrates (e.g., square grids) that may be fixed or dynamic (e.g., see Refs. 23,24,25). And it is distinct from the perspective taken by analysts of egocentric (i.e., personal) networks who study how the arrangement of intimate relationships exclusively between one’s closest contacts (e.g., the extent to which one’s friends are also friends) eases access to help (e.g., see Martí, Bolíbar, and Lozares26).Differences between the dyad-centric and the sociocentric perspectives on social support are not merely cosmetic. Indeed, the dyad-centric stance of human evolutionary research has led to a situation wherein the relational context of helping behaviour is underexplored. And this has, in turn, impaired understanding of the relative importance of fundamental evolutionary mechanisms to the structuring of cooperative relationships in human communities.Specifically, human evolutionary research on helping behaviour generally takes the theories of kin selection and reciprocal altruism as lodestars. In so doing, sociometric data from subsistence societies across the globe have been used to investigate whether consanguinity (i.e., genetic kinship) and reciprocity govern aid unconditionally and in relation to multiple social and demographic factors. These include affinity (i.e., marriage-based kinship), physical proximity, relative need, homophily (e.g., based on age and gender), social closeness, friendship, religiosity, reputation, conflict, status, and anthropometric measurements such as size, height, and strength. And, on balance, evidence1,2,3,4,5,6,7,8,9,10,13,14,16,27,28,29,30,31,32,33 suggests that helping family and responding in kind when helped are the primary mechanisms by which humans informally distribute resources vital to day-to-day survival (e.g., advice, information, food, money, durables, and physical assistance).However, despite laudable exceptions2,7,15,28,29,30,31,32,33,34 and perhaps due to the influence of methodological trends in the wider behavioural ecology literature on relationships between animals (see Refs. 35,36,37), human evolutionary studies of real helping behaviour have typically relied on non-network methods — namely, monadic regression, dyadic regression, and permutation tests (e.g., see Refs. 1,2,3,5,6,8,9,10,11,12,13,14,16,27). Respectively, these techniques treat the supra-dyadic structure of social support networks as ignorable, reducible to dyads, or a nuisance to be corrected for38. Yet, sociocentric research by sociologists39,40,41,42,43,44,45,46,47,48,49 firmly establishes that humans create and maintain relationships in accordance with factors intrinsic to the supra-dyadic arrangement of network structure itself (e.g., processes of degree-reinforcement and group formation involving at least three persons). And this sociological research makes clear that network-structure-related dynamics can operate simultaneously and independently of non-network factors (e.g., age and kinship).Ultimately, reliance on methods that disregard complex interdependences between aid obscures the extent to which helping family and responding in kind when helped outrank the dynamics of the cooperative system within which decisions to assist specific individuals take place. This uncertainty represents a substantial gap in our scientific understanding of altruism. Accordingly, here I tackle a major point of interest in evolutionary anthropology and human behavioural ecology50 specifically through the lens of the sociology of social networks18,21,51, asking:RQ: How important is helping family and responding in kind when helped relative to supra-dyadic, network-structure-related constraints on the provision of aid?The Current StudyTo answer my research question, I use Koster’s27 recently-released cross-sectional data on genetic relatedness and the habitual provision of tangible aid (e.g., firewood, food, valuable items, and/or physical assistance). Re-analysed here due to their exceptional detail and measurement quality in addition to their broad relevance to the scientific community (see Methods), these data were collected in 2013 and concern a complete population. Specifically, they cover all 108 adult (18+) residents (11,556 ordered dyads) of the 32 households of Arang Dak — a remote village of 279 indigenous Mayangna and Miskito swidden (i.e., “slash-and-burn”) horticulturalists. Arang Dak sits on the Lakus River in Nicaragua’s Bosawás Biosphere Reserve, a neotropical forest in the Department of Jinotega.In total, the tangible aid network that I analyse — i.e., x(t2013)— consists of 1,485 asymmetric aid relationships between the adult residents of Arang Dak. Of the 1,485 aid relationships, 1,422 are verified by the source and the recipient of help. That is, xij(t2013) = 1 if villager i reported in 2013 that they give tangible aid to villager j at least once per month and villager j reported in 2013 that they receive tangible aid from villager i at least once per month. Still, note that Koster’s27 data document self-reported resource flows as opposed to observed transfers. Named sources and targets of aid are based on the village roster — not freely recalled from memory. See Methods for a summary of the data and details on the measurement of the network and kinship.Modelling StrategyTo analyse tangible aid in relation to supra-dyadic network structure (Fig. 1), I use generative network models following Redhead and von Rueden32 and von Rueden et al.33, amongst other human evolutionary scientists2,7,15,28,29,30,31,32,33,34. Specially, I rely on Stochastic Actor-Oriented Models (SAOMs) which are used for observational (i.e., non-causal) analyses of the temporal evolution of networks.Put simply, SAOMs are akin to multinomial logistic regression. More formally, SAOMs are simulations of individual network members’ choices between outgoing relationships with different rewards and costs. These simulations are calibrated or “tuned” to the observed network data. That is, conditional on x (i.e., the observed states of a dynamic network), SAOMs simulate network evolution between successive observations or “snapshots” of the network at (M) discrete time points — i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right)) — as a continuous-time, Markovian process of repeated, asynchronous, and sequential tie changes. The Markovian process is defined on the space of all possible directed graphs for a set of N = {1, …, n} network members40,42,44,52,53,54,55.SAOMs decompose change between successive network observations into its smallest possible unit. Specifically, “change” means creating one outgoing tie if it does not exist, dropping one outgoing tie if it does, or doing nothing (i.e., maintaining the status quo network). More formally, during a SAOM simulation, focal actors i (ego) myopically modify just one of their outgoing relationships with some alter j in the set of network members N (i.e., j ∈ N, j ≠ i). The change made by i is the change that maximises a utility or “evaluation” function. In this respect, the evaluation function captures the “attractiveness”44 of tie changes — where “attraction” means “…something like ‘sending a tie to [an actor j] with a higher probability if all other circumstances are equal.’” (Snijders and Lomi56, p. 5).The evaluation function itself is a weighted sum of parameter estimates (widehat{beta }) and their associated covariates k (i.e., SAOM “effects”44) plus a Gumbel-distributed variable used to capture random influences55. The simulated tie changes or “ministeps”44 made by i shift the network between adjacent (unobserved) states. These states differ, at most, by the presence/absence of a single tie40,42. And the probabilities of the ministeps — a large number of which are required to bring one observation of the network to the next (i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right))) — are given by a multinomial logit which uses the evaluation function as the linear predictor.Each covariate k used to specify the evaluation function summarises some structural (i.e., purely network-related) feature or non-structural feature of i’s immediate (i.e., local) network — e.g., the sum of the in-degrees of i’s alters, the number of reciprocated dyads that i is embedded in, or i’s number of outgoing ties weighted by genetic relatedness. These features correspond to theoretical mechanisms of interest (e.g., preferential attachment, reciprocal altruism, or kin selection) and generally take the form of unstandardised sums.SAOM parameter estimates (widehat{beta }) (log odds ratios) summarise the association between the covariates and the simulated tie changes or “ministeps”. Specifically, should a focal actor i have the opportunity to make a ministep in departure from some current (i.e., status-quo) network state x in transit to a new network state x±ij — i.e., the adjacent network defined by i’s addition/subtraction of the tie xij to/from x — ({widehat{beta }}_{k}) is the log odds of choosing between two different versions of x±ij in relation to some covariate k. For example, ({widehat{beta }}_{{rm{Reciprocity}}}=1.7) would indicate that the log odds of i creating and maintaining the supportive relation xij is, conditional on the other covariates k, larger by 1.7 when xij reciprocates a tie (i.e., xji) compared to when xij does not reciprocate a tie (i.e., reciprocated ties are more “attractive”). In contrast, ({widehat{beta }}_{{rm{Reciprocity}}}=-1.7) would indicate that the log odds of xij is, conditional on the other effects, smaller by −1.7 when xij reciprocates a tie compared to when xij does not reciprocate a tie (i.e., reciprocated ties are less “attractive”).Given the longitudinal nature of the model, the gain in the evaluation function for a ministep is determined by the difference Δ in the value of the statistic s for a covariate k — i.e., Δk,ij(x, x±ij) = sk,i(x±ij) − sk,i(x) — incurred through the addition/subtraction of xij to/from x (see Block et al.42 and Ripley et al.44 on “change statistics”). Accordingly, ({widehat{beta }}_{{rm{Reciprocity}}}=1.7), for example, is the value that xij positively contributes to the evaluation function when xij increases the network statistic sk,i(x) underlying the Reciprocity effect by the value of one (i.e., ΔReciprocity,ij (x, x±ij) = sReciprocity,i(x±ij) − sReciprocity,i (x) = 1 − 0 = 1).The probabilities of network members being selected for a ministep is governed by a separate “rate” function. And the baseline rate parameter λ is a kind of intercept for the amount of network change between successive observations of the analysed network. Larger baseline rates indicate that, on average, more simulated tie changes were made to bring one observation of the network to the next (i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right))).However, as the data from Nicaragua are from a single point in time (i.e., 2013), I use the cross-sectional or stationary Stochastic Actor-Oriented Model (cf. von Rueden et al.33). Accordingly, Arang Dak’s tangible aid network is assumed to be in “short-term dynamic equilibrium.” As Snijders and Steglich40 (p. 265) discuss in detail, “this ‘short-term equilibrium’ specification of the SAOM is achieved by requiring that the observed network is both the centre and the starting value of a longitudinal network evolution process in which the number of change opportunities per actor [i.e., λ] is fixed to some high (but not too high) value.”Practically speaking, this means that the cross-sectionally observed network is used as the beginning and the target state for a SAOM simulation — i.e., (xleft({t}_{2013}right)to xleft({t}_{2013}right)) — during which actors are allowed to make, on average, very many changes (i.e., λ) to their portfolio of outgoing ties. These simulated tie changes produce a distribution of synthetic networks with properties that are, on average, similar to those of the cross-sectionally observed network in a converged SAOM — where the target properties correspond to the researcher-chosen SAOM effects k. Put simply, “[cross-sectional] SAOMs assume that the network structure, although changing, is in a stochastically stable state.” (Krause, Huisman, and Snijders57, p. 36–37). Thus, the estimated parameters (widehat{beta }) continue to summarise the rules by which ministeps unfold. However, the asynchronous, sequential, simulated tie changes, in a sense, “cancel out” and thus hold the network in “short-term dynamic equilibrium”40,42. Formally, the cross-sectional SAOM is defined as a stationary distribution of a Markov Chain with transition probabilities given by the multinomial logit used to model change between adjacent network states40,42.The rate parameter λ is fixed at 36 for my analysis. The value of 36 is the maximum observed out-degree in the source-recipient-verified tangible aid network x(t2013). Accordingly, under λ = 36, all members of the tangible aid network have, on average, at least one opportunity to modify their entire portfolio of outgoing ties during the simulations. Nevertheless, to ensure the robustness of my results, I also fit a second set of models for which λ was fixed to 108 (i.e., thrice the maximum out-degree).Model SpecificationTo assess the importance of kinship and reciprocity to hypothetical decisions to help others (i.e., ministeps), I use four archetypal specifications of the SAOM’s evaluation function. These model specifications feature nested sets of covariates (i.e., the SAOM “effects”44). And, using language found in prior evolutionary studies3,5, I refer to these archetypal specifications as the “Conventional Model” (Model 1) of aid, the “Extended Model” (Model 2) of aid, the “Networked Aid Model (Limited)” (Model 3), and the “Networked Aid Model (Comprehensive)” (Model 4).The first specification (i.e., Model 1) comes from Hackman et al.3 and Kasper and Borgerhoff Mulder5 who respectively label it the “Human Behavioural Ecology” and “Conventional” model. This specification is comprised of just four dyadic covariates — one each for consanguinity (i.e., Wright’s coefficient of genetic relatedness), affinity (i.e., Wright’s coefficient of genetic relatedness between i’s spouse s and his/her blood relative j), the receipt of aid, and geographic distance. The first three covariates are used to test long-standing predictions of helping in order to reap indirect and direct fitness benefits in line with the theories of kin selection and reciprocal altruism (see Refs. 1,5,27,58,59 for primers). And the fourth covariate is used to adjust for tolerated scrounging — i.e., what Jaeggi and Gurven4 (p. 2) define as aid resulting from one’s inability to monopolise resources due to costs imposed by the resource-poor — where a covariate for distance operationalises pressure to help imposed by those who are spatially close4.The second specification (i.e., Model 2) reflects Kasper and Borgerhoff Mulder’s5 and Thomas et al.’s9 extensions to the conventional model (see also Page et al.16). Specifically, and following important work by Allen-Arave, Gurven, and Hill1, Hooper et al.14, and Nolin7, it is distinguished by nuanced tests of kin selection and reciprocal altruism via interactions between: (i) consanguinity and the receipt of aid; (ii) consanguinity and relative need; and (iii) consanguinity and geographic distance. Furthermore, Kasper and Borgerhoff Mulder’s5 and Thomas et al.’s9 extended model includes covariates for the non-network-related attributes of individuals (e.g., gender, wealth, and physical size), thus adjusting for homophily, trait-based popularity, trait-based activity, and local context (e.g., results from a gift-giving game9 or, in the present case, infidelity and discrimination based on skin-tone27).The third specification (i.e., Model 4) is my revision of the second. It is geared to make the relational context of aid explicit. This is done using nine covariates that account for the breadth of sociologists’ contemporary understanding of supra-dyadic interdependence between positive-valence (i.e., not based on disliking or aggression), asymmetric social relationships39,40,41,42,43,44,45,46,47,48,49. In keeping with the nature of the SAOM, each of these covariates summarises some structural feature of a villager’s immediate (i.e., local) network (e.g., the number of transitive triads that she is embedded in). Accordingly, each structural covariate is used to capture a form of self-organisation — i.e., network formation driven by an individual’s selection of alters in response to network structure itself (Lusher et al.49, p. 10–11 and 23–27).Specifically, the covariates added in the third specification reflect predictions derived from three fundamental sociological theories of the emergence of non-romantic relationships. The first is structural balance theory which posits that individuals create and maintain ties that move groups of three people from an intransitive to a transitive state (i.e., transitive closure), the latter of which is understood to be more psychologically harmonious or “balanced” (see Refs. 39,43,47,48,60,61,62 for primers). The second is Simmelian tie theory which posits that, once formed, individuals will maintain relationships embedded in maximally-cohesive groups of three people such that 3-cliques (i.e., fully-reciprocated triads) are resistant to dissolution (see Refs. 43,48,63 for primers). The third is social exchange theory (as it relates to structured reciprocity) which posits that individuals will unilaterally give benefits to others in response to benefits received such that indirect reciprocity (i.e., returns to generosity) and generalised reciprocity (i.e. paying-it-forward) in groups of three people encourage cyclic closure — i.e., the simplest form of chain-generalised exchange (see Refs. 19,20,43 for primers). Furthermore, the third specification reflects the broad prediction that individuals vary in their propensity to send and receive relationships based on their structural position alone (e.g., popularity-biased attachment) leading to dispersion in the distribution of in-degrees and out-degrees (see Refs. 39,44,49 for primers) — especially for ties with an inherent cost to their maintenance39,42.Last, I consider a fourth specification (i.e., Model 3) that uses a subset of the nine network-structure-related covariates included in Model 4. This limited set of structural effects typifies the specifications used in prior human evolutionary studies of empirical help that present generative models of entire networks2,7,15,28,29,30,31,32,33,34. Specifically, the fourth specification features just three network-structure-related covariates to account for structural balance theory, self-reinforcing in-degree (i.e., popularity-bias), and the interplay between in-degree and out-degree.Descriptive statistics for the relevant attributes of the 108 residents of Arang Dak appear in Table 1. Formulae used to calculate the network statistics sk,i(x) underlying each effect k used to specify my SAOMs, alongside verbal descriptions to aid reader interpretation, appear in Online-Only Table 1. See Methods for additional rationale behind the third specification.Table 1 Descriptive statistics for the monadic and dyadic attributes of the residents of Arang Dak.Full size tableModel ComparisonCompared to prior human evolutionary research on social support networks, I take two novel approaches to gauging the importance of kinship and reciprocity to help. First, I use a technique41 specifically designed to measure the relative importance of individual effects in SAOMs (see Methods). And second, I evaluate each specification’s ability to produce synthetic graphs with topologies representative of the structure of the analysed tangible aid network64.Judging model specifications using topological properties reflects one of the core purposes of methods such as the SAOM and the Exponential Random Graph Model (ERGM) — i.e., to explain the emergence of global network structure (see Refs. 40,42,46,47,49 also Refs. 18,48), not simply the state of individual dyads (i.e., is aid given or not?). Admittedly, explaining global network structure is not a stated primary aim of dyadic-centric or sociocentric studies of help by human evolutionary scientists, including those wherein authors rely on SAOMs or ERGMs2,7,15,28,29,30,31,32,33,34. Still, topological reproduction is an important, strong test of the relative quality of the four archetypal specifications as each encodes the set of rules presumed to govern network members’ decisions about whom to help.To clarify, recall that here it is assumed, a priori, that network members can, in principle, cooperate with whomever they wish, that their cooperative decisions are intertwined across multiple scales, and that their micro-level decisions ultimately give rise to macro-level patterns of supportive social bonds (see Refs. 18,19,20,21,22). The macro-level patterns generated by SAOMs and ERGMs can differ dramatically based on specification40,46,47,49,64,65. Thus, the empirical relevance of a candidate model rests with its ability to produce synthetic graphs similar to the observed structure40,42,46,47,48,49,64. Ultimately, divergence between the real and simulated graphs suggests that a candidate specification is suspect as it does not describe how some network of interest could have formed. More