More stories

  • in

    An equation of state unifies diversity, productivity, abundance and biomass

    To derive the relationship among macro-level ecological variables, which would constitute an ecological analog of the thermodynamic equation of state, we introduce a fourth state variable, B, the total biomass in the community. The ecological analog of the thermodynamic equation of state, an expression for biomass, B, in terms of S, N, and E, arises if we combine METE with a scaling result from the metabolic theory of ecology (MTE)18,21. In particular, we assume the MTE scaling relationship between the metabolic rate, (varepsilon ,) of an individual organism and its mass, m: (varepsilon sim {m}^{3/4}). Without loss of generality22, units are normalized such that the smallest mass and the smallest metabolic rate within a censused plot are each assigned a value of 1. With this units convention, the proportionality constant in this scaling relationship can be assigned a value of 1. From the definition of the structure-function, it follows23 that averaging the biomass of individuals times the abundance of species, nε4/3, over the distribution R and multiplying by the number of species gives the total ecosystem biomass as a function of S, N, and E. Explicitly:$$B=Smathop{sum}limits_{n}nint dvarepsilon ,{varepsilon }^{4/3}R(n,varepsilon {{{{{rm{|}}}}}}S,N,E)$$
    (1)
    Both the sum and integral in the above equation can be calculated numerically, and Python code to do so for a given set of state variables S, N, and E, is available at github.com/micbru/equation of_ state/.We can also approximate the solution to Eq. 1 analytically (Supplementary Note 2) to reveal the predicted functional relationship among the four state variables. If E > > N > > S > > 1:$$B=cfrac{{E}^{4/3}}{{S}^{1/3}{{{{{rm{ln}}}}}}(1/beta )}$$
    (2)
    where (capprox (7/2)Gamma (7/3)) ≈ 4.17 and (beta) = ({lambda }_{1}+{lambda }_{2}) is estimated13,22 from the relationship (beta {{{{{rm{ln}}}}}}(1/beta )approx S/N). Equation 2 approximates the numerical result to within 10% for 5 of the 42 datasets analyzed here, corresponding to N/S greater than ~100 and E/N greater than ~25. Multiplying the right-hand side of Eq. 2 by (1-1.16{beta }^{1/3}) approximates the numerical result to within 10% for 33 of the 42 datasets analyzed here, corresponding to N/S greater than ~3 and E/N greater than ~5. The inequality requirements are not necessary for the numerical solution of Eq. 1, which is what is used below to test the prediction.Empirical values of E and B can be estimated from the same data. In particular, if measured metabolic rates of the individuals are denoted by ({varepsilon }_{i},) where i runs from 1 to N, then E is given by the sum over the ({varepsilon }_{i}) and B is given by the sum over the ({{varepsilon }_{i}}^{4/3}.) Similarly, if the mass, mi, of each individual is measured, then B is the sum over the mi and E is the sum over the mi3/4. In practice, for animal data, metabolic rate is often estimated by measuring mass and then using metabolic scaling, while for tree data, metabolic rate is estimated from measurements of individual tree basal areas, which are estimators5 of the ({varepsilon }_{i}).With E and B estimated from the same measurements, the question naturally arises as to whether a simple mathematical relationship holds between them, such as E = B3/4. If all the measured m’s, are identical, then all the calculated individual (varepsilon {{hbox{‘}}}s) are identical, and with our units convention we would have E = B. More generally, with variation in masses and metabolic rates, the only purely mathematical relationship we can write is inequality between E and B3/4: (E=sum {varepsilon }_{i}ge (sum {{{varepsilon }_{i}}^{4/3}})^{3/4}={B}^{3/4}). Our derived equation of state (Eq. 2) can be interpreted as expressing the theoretical prediction for the quantitative degree of inequality between E and B3/4 as a function of S and N.A test of Eq. 1 that compares observed and predicted values of biomass with data from 42 censused plots across a variety of habitats, spatial scales, and taxa is shown in Fig. 1. The 42 plots are listed and described in Table S2 and Supplementary Note 3. The communities censused include arthropods and plants, the habitats include both temperate and tropical, and the census plots range in area from 0.0064 to 50 ha. As seen in the figure, 99.4% of the variance in the observed values of B is explained by the predicted values of B.Fig. 1: A test of the ecological equation of state.Observed biomass is determined by either summing empirical masses of individuals or summing empirical metabolic rates raised to the ¾ power of each individual. Predicted biomass is determined from Eq. 1 using observed values of S, N, and E. The quantity ln(predicted biomass) explains 99.4% of the variance in observed biomass. Units of mass and metabolism are chosen such that the masses of the smallest individuals in each dataset are set to 1 and those individuals are also assigned a metabolic rate of 1. The shape of the marker indicates the type of data, and the lighter color corresponds to higher species richness. Data for all analyses come from tropical trees39,40,41,42,43,44,45, temperate trees30,31,32,33,46,47,48, temperate forest communities27,49, subalpine meadow flora28, and tropical island arthropods50.Full size imageFigure 2 addresses the possible concern that the success of Eq. 1 shown in Fig. 1 might simply reflect an approximate constancy, across all the datasets, of the ratio of E to B3/4. If that ratio were constant, then S and N would play no effective role in the equation of state. Equation 1 predicts that variation in the ratio depends on S and N in the approximate combination S1/4ln3/4(1/(beta (N/S))). In Fig. 2, the observed and predicted values of E/B3/4 calculated from Eq. 1, are compared, showing a nearly fourfold variation in that ratio across the datasets. The equation of state predicts 60% of the variance in the ratio.Fig. 2: The explanatory power of diversity and abundance.The observed ratio E/B3/4 is plotted against the ratio predicted by Eq. 1. Of the fourfold variability across ecosystems in that ratio, 60% is explained by the variability in the predicted combination of diversity and abundance. The shape of the marker indicates the type of data, and the lighter color corresponds to higher species richness. Data for all analyses come from tropical trees39,40,41,42,43,44,45, temperate trees30,31,32,33,46,47,48, temperate forest communities27,49, subalpine meadow flora28, and tropical island arthropods50.Full size imageFigure 3 shows the dependence on S and N of the predicted ratio E/B3/4 over empirically observed values of S, N, and E. We examined the case in which S is varied for two different fixed values of each of N and E (Fig. 3a) and N is varied for two different fixed values of S and E (Fig. 3b). The value of E does not have a large impact on the predicted ratio, particularly when E > > N. On the other hand, the predicted ratio depends more strongly on N and S.Fig. 3: The theoretical prediction for the ratio E/B3/4 as a function of S and N.The biomass B is predicted by holding E fixed along with one other state variable. In a N is fixed and S is varied, and in b S is fixed and N is varied. The fixed values are chosen to be roughly consistent within a range of the data considered. The color of the lines represents the corresponding fixed value of N or S, while the solid and dashed lines represent different fixed values of E.Full size imageThe total productivity of an ecological community is a focus of interest in ecology1, as a possible predictor of species diversity24 and more generally as a measure of ecosystem functioning25. By combining the METE and MTE frameworks, we can now generate explicit predictions for certain debated ecological relationships, including one between productivity and diversity. Interpreting total metabolic rate E in our theory as gross productivity, then in the limit 1 More

  • in

    A Physarum-inspired approach to the Euclidean Steiner tree problem

    Having introduced our novel explore-and-fuse method and the Physarum Steiner Algorithm we shall dedicate this section to discussing how the algorithm’s parameters influence the model, and how the method can be used towards diverse applications.In what follows we shall consider how different parameters such as the different shapes of cells, as well as their number, influence the results obtained by the Physarum Steiner Algorithm. We shall then conclude the section by studying different applications that our methods have.Cell shapeAlthough13 and6 considered diamond shaped CELLs, we shall consider here CELLs with other shapes. The primary benefit of square cells is that their shape allows for more cytoplasm to be placed on the grid. As a result, the foraging phase is very fast so using square cells tends to result in shorter run times than using diamond-shaped cells. In addition, large square cells are able to more completely cover the standard square grid than diamond-shaped cells. On the other hand, diamond-shaped cells result in less cytoplasm and more time spent in the foraging stage. This gives the cytoplasm time to move towards a centralized location which results in better solutions.Example A In order to illustrate the above point, in Fig. 3a.i., we begin with squares that are tightly packed. Since the squares are so tightly packed (1 apart), if any piece of cytoplasm in a square is moved, it will lead to a connection with a neighboring cell. As a result, all the points are found very quickly. In fact, many of the squares are connected and part of the network even if they are not close to any of the points, as shown in Fig. 3 (a.ii.). Shrinking these extra squares takes a long time and can also result in long paths which are far out of the way as seen in Fig. 3a.iii.Example B In contrast to Example A, in Fig. 3b, we consider diamond-shaped cells. The cells start off diamond-shaped and with less overall cytoplasm than the square cells. The cells then spend quite a few iterations in the foraging phase. Although this does take time, it allows the cytoplasm to move towards a centralized location around the active zones as seen in Fig. 3 (b.ii.). When the cell finally proceeds to the shrinking phase, there is less cytoplasm to remove and no out of the way paths, resulting in shorter solutions. The downside to this is the increased time which in some cases can be very long (over 100 million iterations) and in some cases the algorithm may not even complete.The effect of multiple cellsIn what follows we shall examine the effects of the number of cells used. We run 10 trials on 10 grids for a total of 100 trials on each cell size and number of cells. For each trial, we measure the total amount or area of cytoplasm that is initially spawned. This is used to normalize the search area which is the number of squares in the grid (for example a (100 times 100) grid has search area 10,000).Success rate: The algorithm may sometimes be unsuccessful at connecting all the points. For example, the cells may miss a point early on and move far away from that point, making it almost impossible to ever find that point. There may also simply not be enough cytoplasm for two far away cells to fuse into one. For each number of cells (1, 9, 25, 100), we try various sizes/amounts of cytoplasm and compute the proportion of trials (out of 100) that successfully terminate within 10 million iterations.Figure 4(a) Proportion of trials that are successful versus the search area as a percentage of cytoplasm for trials with 1, 9, 25, and 100 cells. (b) Length of solutions versus the search area as a percentage of cytoplasm. (c) Number of iterations versus the search area as a percentage of cytoplasm. Failed trails excluded from graphs.Full size imageIn Fig. 4a, we see that the black line (100 cells) extends much further to the right than the cyan line (one cell). Thus, the more cells there are, the larger of a search area we can explore. This is mainly because with more cells, we can spread out our cytoplasm instead of having it be concentrated in certain areas.Solution length Another important metric to consider is the solution length. We measure how good the solution is by counting the amount of cytoplasm when the algorithm terminates. We ignore any cytoplasm that is part of a disjoint cell that does not contain an active zone, or in other words is separate from the cell that actually forms the tree. In Fig. 4b, we see that as the search area as a percentage of cytoplasm increases, the quality of the solution improves. This is because there is comparatively less cytoplasm to begin with. In addition, we see that as the number of cells increases, it is possible to find a better solution. This correlates with the earlier result shown in Fig. 4a that using more cells allows solutions to be found with less cytoplasm. Trials with 100 cells found the shortest solutions (rightmost data point).Run time The last metric we consider is the run time. We consider the true number of iterations the algorithm runs for. By true iterations, we account for the fact that in a parallel algorithm or set of real-world Physarum organisms, multiple cells will be introducing and moving bubbles at the same time. As a result, the iteration count is scaled by the number of disjoint cells. In Fig. 4c, we see that the more cells there are, the lower the number of iterations. This may be because with more cells, the cytoplasm is more spread out and therefore there are less out of the way points which may take a very long time to find. From the above analysis, we see that using more cells allows us to explore bigger search areas, find shorter solutions, and solve problems faster.ApplicationsThe behavior of Physarum and the models it has inspired have found many different uses among which are drug repositioning, developing bio-computing chips, approximating highways layouts, and designing subway systems2,8,9,10. In order to illustrate the operation of the Physarum Steiner Algorithm and demonstrate its applicability to real world problems, we consider the following:

    sep0em

    Network design We use the algorithm to develop a road network in the United States.

    Obstacle-avoidance We use the algorithm to solve the obstacle-avoiding Euclidean Steiner tree problem.

    VLSI routing We use the algorithm to route connections between pads in chip design.

    Topological surfaces We discuss the algorithm’s adaptability to varying surfaces and boundaries by considering topological surfaces such as the sphere, torus, Klein bottle, and (mathbb{RP}mathbb{}^2).

    Road networks The Physarum Steiner Algorithm can be used to build a road network between the largest one hundred cities in the lower 48 United States (excluding Alaska and Hawaii). We use data32 containing the longitude and latitude of the 100 cities with the highest population to generate a rectangular grid of active zones.We spawn diamond-shaped cells of size 7 with a spacing of 1 as shown in Fig. 3. After many iterations, the final road network is shown in Fig. 5a. The algorithm is particularly suited to the problem of designing transportation systems because it first connects all the points before optimizing the network into a tree. The algorithm can thus be terminated early depending on how much redundant connectivity is desired in the transportation network.For example, in Fig. 5b, we have a network that still contains loops in high-traffic routes between the Bay Area, Los Angeles, and Las Vegas. If we allow the algorithm to continue running, we will get networks with fewer loops and eventually a tree.Figure 5Road network generated by the algorithm. (a) shows the final solution with no loops while (b) displays a solution that has some redundancy resulting from terminating the algorithm early.Full size imageWe believe that this algorithm can be applied to many similar problems such as designing fiber optic or electric cable networks. Moreover, as discussed in the last section, it will be very interesting to compare this study to that of33, where in vitro slime mold is used to investigate the construction of transportation networks over a USA map.Obstacle avoidance Due to the cellular automaton nature of this algorithm, it is straightforward to define boundaries or other obstacles that need to be avoided. This is very useful in cases where certain areas need to be avoided such as a lake or the boundary of a county. And, unlike the current standard obstacle-avoiding Euclidean Steiner algorithm27 which takes multiple hours for graphs with only 150 points, the run time of the Physarum Steiner Algorithm is not affected by the need to avoid obstacles.As an example, consider the boundary given in Fig. 6a. Here, the grey area represents the search area and the 100 white squares outlined in dark grey are the points. There are many possible real world situations similar to this. For example, the grey area could be a county and all the points represent homes that subscribe to a certain Internet service provider (ISP). The big white area in the center could be a lake and the smaller white area could be a dog park. The ISP company could utilize the Physarum Steiner Algorithm to find networks to lay fiber optic cables.Figure 6(a) Sample boundary map. Grey area is search area and small white squares are points. (b) Initial deployment of Physarum. (c) Solution at the end of the foraging stage. (d) The final network.Full size imageWe begin by deploying square Physarum cells of size 7 in Fig. 6b. In Fig. 6c, the cells begin to fuse, share intelligence, and find all the points. We choose a solution that still has some loops to increase reliability and ease of future modification to the network. Our final solution is shown in Fig. 6d. This solution is generated in 300,000 iterations and less than 30 seconds.VLSI Routing for VLSI (very large-scale integration) chip design19 is one of the largest real-world manifestations of the Steiner tree problem, especially as modern chips may contain upwards of 10 billion transistors. Solving the VLSI problem would require additional modification to the Physarum Steiner Algorithm since VLSI design is typically presented as a group Steiner tree problem and has very large problem sizes, the Physarum Steiner Algorithm. Due to the usage of a square grid in the Physarum Steiner Algorithm, the algorithm is easily applied to find rectilinear networks such as those required for routing chips. In addition, our empirical results suggest that it should scale well to the large problem sizes common in chip design. Using data from34, we consider a set of pads that need to be connected. In Fig. 7, we represent the pads as active zones and generate a tree between them.Figure 7(a) Graphical representation of 131-point VLSI data set34. (b) Routing solution obtained by the Physarum Steiner Algorithm.Full size imageTopological surfaces Finally, the Physarum Steiner Algorithm is easily applicable to finding Steiner trees on other topological surfaces. Given the nature of the algorithm, we are able to map coordinates on one edge to another. In Fig. 8, we use square identification spaces to find Steiner trees on the torus, sphere, Klein bottle, and (mathbb{RP}mathbb{}^2). These solutions on identification spaces can be seen on a torus and a sphere in Fig. 8a,b.Figure 8Steiner trees on topological surfaces we defined by identification space and obtained through our code. (a) Torus. (b) Sphere. (c) Klein Bottle. (d) (mathbb{RP}mathbb{}^2). Images generated using manim35.Full size imageConcluding remarksWe have presented here a novel explore-and-fuse approach to solve problems that cannot be solved by traditional divide-and-conquer.Our approach is inspired by Physarum, a unicellular slime mold capable of solving the traveling salesman and Steiner tree problems. Besides exhibiting individual intelligence, Physarum can also share information with other Physarum organisms through fusion. These characteristics of Physarum inspire us to spawn many Physarum organisms to independently explore the problem space and collect information in parallel before sharing the information with other organisms through fusion. Eventually, all the organisms fuse into one large Physarum that can then globally optimize using the knowledge collected earlier. Explore-and-fuse can be seen as a less rigid form of divide-and-conquer that can better handle problems that cannot be decomposed into independent subproblems.We demonstrate the explore-and-fuse approach on the Steiner tree problem by creating the Physarum Steiner Algorithm. This algorithm has the ability to incrementally find Steiner trees. The first solution tends to contain many loops that are removed with additional iterations of the algorithm. This incremental improvement is particularly useful for applications such as road and cable networks where some degree of redundancy in the connectivity is desired. In particular, it will be very interesting to compare our work to the the one done in33 where a protoplasmic network created by in vivo Physarum is considered to study and asses show the slime mold imitates the United States Interstate System. We foresee several applications of our algorithm in this direction, leading to similar findings to those appearing in the studies done in33.The algorithm operates on a rectilinear grid and is particularly applicable to rectilinear Steiner tree problems such as those that often arise in VLSI design. In addition, the algorithm performs well on the obstacle-avoidance Euclidean Steiner tree problem.In comparison to the existing Physarum-inspired Steiner tree algorithms described in Section “The Steiner tree problem”, the Physarum Steiner Algorithm uses a completely different mechanism. While the existing algorithms use a system of equations modeling the thickening of tubes as protoplasm flows through them, the Physarum Steiner Algorithm is based on modeling Physarum spatially moving around a grid and finding a tree between squares of the grid. In addition, it should be noted that the approach taking in existing algorithms would not work on the Euclidean Steiner tree problem as in the Euclidean Steiner tree problem, there are an infinite number of possible points that could be part of the Steiner tree (essentially any point in the plane). It would not be possible to write a system of equations representing the infinite possible points and edges. In the future, we believe further work could be done to improve the Physarum Steiner Algorithm. Since the Physarum Steiner Algorithm is an approximate algorithm, future improvements could be made so its approximations are closer to the actual optimal solution. In addition, it would be interesting to see this approach applied to other problems Physarum has been able to solve such as the traveling salesmen problem. More

  • in

    Consistent predator-prey biomass scaling in complex food webs

    Here we provide a unified analysis of predator-prey biomass scaling in complex food webs. Doing so reveals a consistent sub-linear scaling pattern across levels of organization – from populations within webs to whole ecosystems – for freshwater, marine and terrestrial systems. This regularity in sub-linear predator-prey scaling among complex food webs from diverse ecosystem types has important implications for understanding energy flows in natural systems across large spatial gradients.Within food webs, predator-prey biomass scaling was characterised by a near three-quarter power scaling relationship ((bar{k}) = 0.71 across ecosystem types), revealing an approximately three-fold increase in predator biomass for every five-fold increase in prey biomass. When summing all predator and prey biomasses within a food web (Fig. 4), predator-prey scaling across webs followed a similar sub-linear scaling regime, with k ranging from 0.65 to 0.67 between ecosystem types. That is, biomass pyramids became systematically more bottom-heavy as pyramid size increased along a biomass gradient (Fig. 1a). These ecosystem-level patterns are quantitatively consistent with previous analysis of predator-prey biomass scaling among distinct trophic groups, which also found sub-linear scaling with k values between 0.66 to about 0.768,17,18. The approach we introduce here permits expanding these analyses to more complex omnivorous feeding relations both among populations within webs and across webs in diverse ecosystems. The similarity in the scaling exponents (and overlap in confidence intervals) of within- and across-web scaling suggest the existence of a general sub-linear scaling pattern, possibly signifying that fundamental constraints apply across levels of biological organization.These results beg the question: where do these sub-linear scaling patterns originate? We are not aware of any ecological theory that is sufficiently general to encompass the diversity of community types in which sub-linear biomass scaling is observed (Appendix S2). Size spectrum theory, which aims to explain the observation that, for whole ecosystems, biomass is approximately evenly distributed across logarithmic body size classes19,20 would appear to be particularity relevant. However, static size spectrum models typically assume that the predator-prey body mass ratio (PPmR) and trophic transfer efficiency (ratio of predator to prey production), whilst inherently variable21,22, do not vary systematically with prey biomass19,23. These measures indicate from which size class energy is obtained relative to predator body mass, and how efficiently that energy is utilized by any given predator to maintain its biomass. While these variables are thought to drive size spectra scaling3, they do not appear to be consistent with predator-prey biomass scaling observed in natural communities. Assuming both an even distribution of biomass across size classes, and a constant PPmR or transfer efficiency across a prey biomass gradient suggests an unchanging trophic biomass pyramid (all else being equal; Appendix S2), Therefore it is not clear how current size-spectrum models might account for sub-linear predator-prey biomass scaling.Predator-prey theory, on the other hand, which models the dynamics of feeding interactions, has traditionally focused on two distinct trophic levels, rather than on networks of highly omnivorous food webs24. Equilibrium predictions from a range of simple predator-prey models are also not consistent with sub-linear predator-prey scaling without additional and likely questionable assumptions (Appendix S2). Although predator-prey theory can be made to accord with our observed patterns, it requires tuning the scaling of prey growth or other terms of the model. Furthermore, questions remain about how best to simulate a biomass gradient as well as how models should be generalized to multi-trophic food webs (Appendix S2).Despite the lack of any general mechanism, it is reasonable to assume that predator biomass, at steady state, is maintained in proportion to prey production8,10. This would suggest that as prey biomass increases, their total production should scale near ~¾ to match the predator biomass they support. Density-dependent processes, such as competition for resources and other negative interactions among prey species, could thus cause per capita growth to decline sub-exponentially. We observed that changes in prey biomass were primarily driven by changes in prey density, rather than average prey body size, consistent with density dependent effects driving the sub-linear nature of predator-prey biomass relations, rather than allometric body mass effects. Clearly, however, ecological theory has further work yet to knit together the various patterns and processes to explain the consistency and generality of predator-prey scaling patterns.Addressing predator-prey biomass scaling from a food web perspective allowed us to assess which node properties were associated with greater predator-prey biomass ratios. Our results go beyond prior theoretical studies6,7 to provide empirical evidence that populations of highly omnivorous predators, as well as predator populations that feed down the food web on smaller, more productive, prey (i.e. a high predator-to-prey body mass ratio), tend to attain higher biomass stocks than predicted by their prey biomass alone. Interestingly, the role of these variables in driving predator biomass deviations appear to vary between ecosystem types: predator biomass increases more strongly with PPmR in rock pool webs, whereas predator omnivory only proved to correlate with predator biomass residuals in soil webs (Fig. 3). Further research would be instructive to understand if these are general patterns across different types of terrestrial and aquatic ecosystems. For instance, whilst rock pool webs display very similar network topology and PPmR scaling as open marine webs25,26, we might expect different scaling patterns in pelagic marine webs where trophic interactions take place in three dimensions21, where ontogenetic diet shifts are common27, and where food chains are long13. Adapting our food-web approach to quantify biomass scaling among size classes would likely be informative for tackling these additional complexities. Whilst predator biomass was associated with PPmR and omnivory (in soil webs), the consistent sub-linear predator-prey scaling regime within ecosystem types and across levels of organization, suggests that density dependent population growth might be the overriding driver of predator-prey biomass scaling.The regularity in predator-prey scaling we observed could provide insight into baselines for the biomass structure of natural communities, which could be informative for assessing the effects of environmental impacts within ecological communities and ecological status. For instance within webs, deviations away from these baselines in the form of smaller power-law exponents (shallower slopes) could reflect local perturbations (e.g. acidification, warming, over-exploitation) which have a disproportionate impact among larger organisms at higher trophic levels28. Predator-prey biomass scaling could therefore offer a complementary approach to body size distributions and size spectra for evaluating ecosystem health29. A similar approach could be applied for scaling relations within species, where the same species occur in multiple webs. Doing so could reveal how the biomass of a given predator species responds to variation in prey availability. For instance, among the stream food webs studied here, two common fish species displayed the characteristic near ¾-power scaling pattern, whilst the biomass of salmonids, and particularly brown trout (Salmo trutta), was invariant with prey biomass across webs (Fig. S4). These results are consistent with previous work in these sites which has highlighted the importance of terrestrial prey for subsidizing the biomass production of these apex predators30,31. Deviations from the expected general scaling pattern could therefore be valuable for identifying the importance of environmental factors that permit some species an ‘escape’ from the predator-prey power law (see also32), and offers promising avenues for future research.Our study, which takes a first step towards investigating predator-prey biomass scaling in complex food webs, has some notable limitations. First, information on the weighting of feeding links was not available for the food webs studied here, and a more comprehensive investigation should require specific interactions strengths and vulnerabilities of each species, data that is, as yet, unavailable. Although our results are robust to alternative assumptions in how these factors are treated (Table S5), any systematic variation in feeding interactions could play an important role. Second, information on the biomass of all basal resources was also not generally available, so our analysis focused on higher trophic predators feeding on (animal) prey. While our approach may equally apply more generally to consumers and resources (e.g. aquatic snails feeding on biofilm), further work is required to test the generality of the empirical patterns we observed using more detailed datasets where this information, and data on interaction strengths, is widely available.Overall, our study reveals a consistent sub-linear predator-prey scaling regime in complex food webs and makes a strong case for the existence of a systematic form of density-dependent population growth that governs the biomass structure of freshwater, marine and terrestrial ecosystems. The highly conserved predator-prey scaling we observed within and across food webs implies a relatively simple scaling-up of predator and prey population biomasses across levels of biological organization. These general patterns in energy flow between predator and prey could facilitate improvements in modelling trophic structure and community dynamics, as well as the corresponding ecosystem functions4,5. Our findings suggest sub-linear predator-prey biomass scaling holds within complex omnivorous food webs, urging ecologists to understand the origin of this large scale, cross-system pattern. More

  • in

    The impact of summer drought on peat soil microbiome structure and function-A multi-proxy-comparison

    Different proxies for changes in structure and/or function of microbiomes have been developed, allowing assessing microbiome dynamics at multiple levels. However, the lack and differences in understanding the microbiome dynamics are due to the differences in the choice of proxies in different studies and the limitations of proxies themselves. Here, using both amplicon and metatranscriptomic sequencings, we compared four different proxies (16/18S rRNA genes, 16/18S rRNA transcripts, mRNA taxonomy and mRNA function) to reveal the impact of a severe summer drought in 2018 on prokaryotic and eukaryotic microbiome structures and functions in two rewetted fen peatlands in northern Germany. We found that both prokaryotic and eukaryotic microbiome compositions were significantly different between dry and wet months. Interestingly, mRNA proxies showed stronger and more significant impacts of drought for prokaryotes, while 18S rRNA transcript and mRNA taxonomy showed stronger drought impacts for eukaryotes. Accordingly, by comparing the accuracy of microbiome changes in predicting dry and wet months under different proxies, we found that mRNA proxies performed better for prokaryotes, while 18S rRNA transcript and mRNA taxonomy performed better for eukaryotes. In both cases, rRNA gene proxies showed much lower to the lowest accuracy, suggesting the drawback of DNA based approaches. To our knowledge, this is the first study comparing all these proxies to reveal the dynamics of both prokaryotic and eukaryotic microbiomes in soils. This study shows that microbiomes are sensitive to (extreme) weather changes in rewetted fens, and the associated microbial changes might contribute to ecological consequences. More

  • in

    Convergence in phosphorus constraints to photosynthesis in forests around the world

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).ADS 
    Article 

    Google Scholar 
    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. L. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, D. A. et al. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences 14, 4663–4690 (2017).ADS 
    Article 

    Google Scholar 
    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reed, S. C. et al. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. N. Phytologist 208, 324–329 (2015).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea – how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Kattge, J. et al. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).ADS 
    Article 

    Google Scholar 
    Rogers, A. The use and misuse of Vc,max in Earth System Models. Photosynthesis Res. 119, 15–29 (2014).CAS 
    Article 

    Google Scholar 
    Field, C. B. & Mooney, H. A. in On the economy of plant form and function. (ed T. J. Givnish) 25-55. (Cambridge University Press, 1986).Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Raven, J. A. Rubisco: still the most abundant protein of Earth? N. Phytologist 198, 1–3 (2013).CAS 
    Article 

    Google Scholar 
    Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).ADS 
    PubMed 
    Article 

    Google Scholar 
    Thornton, P. E. et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, GB4018 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    Reich, P. B. et al. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Achat, D. L. et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry 131, 173–202 (2016).CAS 
    Article 

    Google Scholar 
    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carstensen, A. et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 177, 271–284 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ. 38, 1142–1156 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. (CSIRO Publishing, 2000).Brooks, A. et al. Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynthesis Res. 15, 133–141 (1988).CAS 
    Article 

    Google Scholar 
    Chen, J. L. et al. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).ADS 
    PubMed 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soong, J. L. et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 10, 2302 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Norby, R. J. et al. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. N. Phytologist 215, 1425–1437 (2017).CAS 
    Article 

    Google Scholar 
    Crous, K. Y. et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. N. Phytologist 215, 992–1008 (2017).CAS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interactions 9, 17 (2005).Augusto, L. et al. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).ADS 
    Article 

    Google Scholar 
    Lambers, H. et al. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 347, 7–27 (2011).Article 
    CAS 

    Google Scholar 
    Yan, L. et al. Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence. N. Phytologist 223, 1621–1633 (2019).CAS 
    Article 

    Google Scholar 
    Yang, X. & Post, W. M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8, 2907–2916 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Duursma, R. A. Plantecophys – An R package for analysing and modelling leaf gas exchange data. Plos One 10, e0143346 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE. Geoscientific Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V-cmax) on global gross primary production. N. Phytologist 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637–645 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Neter, J. et al. Applied Linear Statistical Models, 4th ed., (McGraw-Hill, 1996).Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evolution 4, 202–209 (2020).Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 490, 123–456 (2018).
    Google Scholar 
    Thornton, P. E. et al. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nat. Clim. Chang. 7, 496-+ (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Wieder, W. R. et al. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evolution 4, 3218–3235 (2014).Article 

    Google Scholar 
    Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. N. Phytologist 196, 1098–1108 (2012).CAS 
    Article 

    Google Scholar 
    Jiang, M. K. et al. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytologist 222, 1223–1229 (2019).Article 

    Google Scholar 
    Leuning, R. Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax. J. Exp. Bot. 48, 345–347 (1997).CAS 
    Article 

    Google Scholar 
    Bonardi, V. et al. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437, 1179–1182 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seiler, C. et al. Are terrestrial biosphere models fit for simulating the global land carbon sink? J. Adv. Model Earth Syst. 14, e2021MS002946 (2022).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts. Geophys. Res. Lett. 45, 8231–8240 (2018).ADS 
    Article 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Wang, Y. P. et al. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, X. J. et al. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Lett. 43, 7205–7214 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).ADS 
    Article 

    Google Scholar 
    Bloomfield, K. J. et al. Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia). Biogeosciences 11, 7331–7347 (2014).ADS 
    Article 

    Google Scholar 
    Cernusak, L. A. et al. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).ADS 
    Article 

    Google Scholar 
    Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. N. Phytologist 214, 1002–1018 (2017).CAS 
    Article 

    Google Scholar 
    Rowland, L. et al. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Glob. Change Biol. 21, 4662–4672 (2015).ADS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecol. Diversity 7, 189–203 (2014).Article 

    Google Scholar 
    Kenzo, T. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    van de Weg, M. J. et al. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168, 23–34 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kenzo, T. et al. Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. Jpn. Agriculture Res. Q. 46, 167–180 (2012).Article 

    Google Scholar 
    Domingues, T. F. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Verryckt, L. T. et al. Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth Syst. Sci. Data 14, 5–18 (2022).ADS 
    Article 

    Google Scholar 
    Santiago, L. S. & Mulkey, S. S. A test of gas exchange measurements on excised canopy branches of ten tropical tree species. Photosynthetica 41, 343–347 (2003).CAS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Linking leaf and tree water use with an individual-tree model. Tree Physiol. 27, 1687–1699 (2007).PubMed 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Townsend, A. R. et al. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B. et al. Leaf structure (specific leaf area) modulates photosynthesis- nitrogen relations: evidence from within and across species and functional groups. Funct. Ecol. 12, 948–958 (1998).Article 

    Google Scholar 
    Rogers, A. et al. Improving representation of photosynthesis in Earth System Models. N. Phytologist 204, 12–14 (2014).Article 

    Google Scholar 
    Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. N. Phytologist 222, 768–784 (2019).CAS 
    Article 

    Google Scholar 
    Warton, D. I. et al. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).PubMed 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    Tian, H. Q. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Physiological responses to low CO2 over prolonged drought as primers for forest–grassland transitions

    Bond, W. Open Ecosystems (Oxford Univ. Press, 2019).Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article 

    Google Scholar 
    Haverd, V. et al. Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences 13, 761–779 (2016).CAS 
    Article 

    Google Scholar 
    Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol. 35, 451–463 (2010).Article 

    Google Scholar 
    Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).CAS 
    Article 

    Google Scholar 
    Mitchell, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. N. Phytol. 197, 862–872 (2013).CAS 
    Article 

    Google Scholar 
    Schutz, A. E. N., Bond, W. J. & Cramer, M. D. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160, 235–246 (2009).PubMed 
    Article 

    Google Scholar 
    Wigley, B., Cramer, M. & Bond, W. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).Article 

    Google Scholar 
    Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A. & Consortium, C. G. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spriggs, E. L., Christin, P.-A. & Edwards, E. J. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE 9, e97722 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKay, R. M. et al. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Phil. Trans. R. Soc. A 374, 20140301 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).CAS 
    Article 

    Google Scholar 
    Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bellasio, C. & Farquhar, G. D. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. N. Phytol. 223, 150–166 (2019).CAS 
    Article 

    Google Scholar 
    Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO(2) on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS 
    Article 

    Google Scholar 
    Ward, J. K., Tissue, D. T., Thomas, R. B. & Strain, B. R. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob. Change Biol. 5, 857–867 (1999).Article 

    Google Scholar 
    Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).Article 

    Google Scholar 
    February, E. C. & Higgins, S. I. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S. Afr. J. Bot. 76, 517–523 (2010).Article 

    Google Scholar 
    February, E. C., Higgins, S. I., Bond, W. J. & Swemmer, L. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94, 1155–1164 (2013).PubMed 
    Article 

    Google Scholar 
    Fynn, R. W. S. & Naiken, J. Different responses of Eragrostis curvula and Themeda triandra to rapid- and slow-release fertilisers: insights into their ecology and implications for fertiliser selection in pot experiments. Afr. J. Range Forage Sci. 26, 43–46 (2009).Article 

    Google Scholar 
    Osmolovskaya, N. et al. Methodology of drought stress research: experimental setup and physiological characterization. Int. J. Mol. Sci. 19, 4089 (2018).PubMed Central 
    Article 

    Google Scholar 
    Quirk, J., Bellasio, C., Johnson, D. A., Osborne, C. P. & Beerling, D. J. C4 savanna grasses fail to maintain assimilation in drying soil under low CO2 compared with C3 trees despite lower leaf water demand. Funct. Ecol. 33, 388–398 (2019).Article 

    Google Scholar 
    Taylor, S. H. et al. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Glob. Change Biol. 20, 1992–2003 (2014).Article 

    Google Scholar 
    Bellasio, C., Quirk, J. & Beerling, D. J. Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Sci. 274, 181–192 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kipchirchir, K. O., Ngugi, K. R., Mwangi, M. S., Njomo, K. G. & Raphael, W. Water stress tolerance of six rangeland grasses in the Kenyan semi-arid rangelands. Am. J. Agric. For. 3, 222–229 (2015).
    Google Scholar 
    Kadioglu, A. & Terzi, R. A dehydration avoidance mechanism: leaf rolling. Bot. Rev. 73, 290–302 (2007).Article 

    Google Scholar 
    Bittman, S. & Simpson, G. M. Drought effect on leaf conductance and leaf rolling in forage grasses. Crop Sci. 29, 338–344 (1989).Article 

    Google Scholar 
    O’Toole, J. C. & Cruz, R. T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 65, 428–432 (1980).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Redmann, R. E. Adaptation of grasses to water stress—leaf rolling and stomate distribution. Ann. Mo. Bot. Gard. 72, 833–842 (1985).Article 

    Google Scholar 
    Volder, A., Tjoelker, M. G. & Briske, D. D. Contrasting physiological responsiveness of establishing trees and a C4 grass to rainfall events, intensified summer drought, and warming in oak savanna. Glob. Change Biol. 16, 3349–3362 (2010).Article 

    Google Scholar 
    Medeiros, J. S. & Ward, J. K. Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function. N. Phytol. 199, 738–748 (2013).CAS 
    Article 

    Google Scholar 
    Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nackley, L. L. et al. CO2 enrichment does not entirely ameliorate Vachellia karroo drought inhibition: a missing mechanism explaining savanna bush encroachment. Environ. Exp. Bot. 155, 98–106 (2018).CAS 
    Article 

    Google Scholar 
    Apgaua, D. M. et al. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Tree Physiol. 39, 1806–1820 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bond, W. J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641–659 (2008).Article 

    Google Scholar 
    Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).Article 

    Google Scholar 
    Dohn, J. et al. Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J. Ecol. 101, 202–209 (2013).Article 

    Google Scholar 
    Jacobsen, J. V., Hanson, A. D. & Chandler, P. C. Water stress enhances expression of an α-amylase gene in barley leaves. Plant Physiol. 80, 350–359 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brodersen, C. & McElrone, A. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00108 (2013).Chitarra, W. et al. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta 239, 887–899 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hasibeder, R., Fuchslueger, L., Richter, A. & Bahn, M. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. N. Phytol. 205, 1117–1127 (2015).CAS 
    Article 

    Google Scholar 
    Bradford, K. J. & Hsiao, T. C. in Physiological Plant Ecology II: Water Relations and Carbon Assimilation (eds Lange, O. L. et al.) 263–324 (Springer Berlin Heidelberg, 1982).Knox, K. J. E. & Clarke, P. J. Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Funct. Ecol. 19, 690–698 (2005).Article 

    Google Scholar 
    Hoffmann, W. A., Orthen, B. & Franco, A. C. Constraints to seedling success of savanna and forest trees across the savanna–forest boundary. Oecologia 140, 252–260 (2004).PubMed 
    Article 

    Google Scholar 
    Palacio, S., Maestro, M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).CAS 
    Article 

    Google Scholar 
    Hoffmann, W. A., Bazzaz, F. A., Chatterton, N. J., Harrison, P. A. & Jackson, R. B. Elevated CO2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galvez, D. A., Landhausser, S. M. & Tyree, M. T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol. 31, 250–257 (2011).PubMed 
    Article 

    Google Scholar 
    Poorter, H. et al. A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. N. Phytol. https://doi.org/10.1111/nph.17802 (2022).Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiter, S. et al. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. N. Phytol. 195, 653–666 (2012).Article 

    Google Scholar 
    Quirk, J., Bellasio, C., Johnson, D. A. & Beerling, D. J. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. Ann. Bot. Lond. 124, 77–90 (2019).Article 
    CAS 

    Google Scholar 
    Davies, J. et al. in AGU Fall Meeting Abstracts EP41D-2374. https://ui.adsabs.harvard.edu/abs/2019AGUFMEP41D2374D/abstractMills, A. J., Rogers, K. H., Stalmans, M. & Witkowski, E. T. F. A framework for exploring the determinants of savanna and grassland distribution. BioScience 56, 579–589 (2006).Article 

    Google Scholar 
    Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. N. Phytol. 216, 1151–1160 (2017).CAS 
    Article 

    Google Scholar 
    Cardoso, A. W. et al. Winners and losers: tropical forest tree seedling survival across a West African forest–savanna transition. Ecol. Evol. 6, 3417–3429 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mitchard, E. T. A. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0406 (2013).Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Change 5, 823–829 (2015).Article 

    Google Scholar 
    Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. B 367, 601–612 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ripley, B. S., Gilbert, M. E., Ibrahim, D. G. & Osborne, C. P. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58, 1351–1363 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    McAusland, L. et al. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. N. Phytol. 211, 1209–1220 (2016).Article 

    Google Scholar 
    Osborne, C. P. & Sack, L. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B 367, 583–600 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pearcy, R. W. & Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984).CAS 
    Article 

    Google Scholar 
    Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. N. Phytol. 201, 908–915 (2014).CAS 
    Article 

    Google Scholar 
    Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).Article 

    Google Scholar 
    Polley, H. W., Johnson, H. B., Marino, B. D. & Mayeux, H. S. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361, 61–64 (1993).Article 

    Google Scholar 
    Stevens, N., Lehmann, C. E., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).Article 

    Google Scholar 
    Charles-Dominique, T., Midgley, G. F., Tomlinson, K. W. & Bond, W. J. Steal the light: shade vs fire adapted vegetation in forest–savanna mosaics. N. Phytol. 218, 1419–1429 (2018).Article 

    Google Scholar 
    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bellasio, C., Fini, A. & Ferrini, F. Evaluation of a high throughput starch analysis optimised for wood. PLoS ONE 9, e86645 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kozloski, G. V., Rocha, J. B., Ribeiro Filho, H. M. N. & Perottoni, J. Comparison of acid and amyloglucosidase hydrolysis for estimation of non‐structural polysaccharides in feed samples. J. Sci. Food Agric. 79, 1112–1116 (1999).CAS 
    Article 

    Google Scholar 
    Bellasio, C., Beerling, D. J. & Griffiths, H. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant Cell Environ. 39, 1180–1197 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bellasio, C., Beerling, D. J. & Griffiths, H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. Plant Cell Environ. 39, 1164–1179 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ethier, G. J. & Livingston, N. J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. Plant Cell Environ. 27, 137–153 (2004).CAS 
    Article 

    Google Scholar 
    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis (CSIRO, 2000).Bellasio, C. & Griffiths, H. Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ. 37, 1046–1058 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fini, A., Bellasio, C., Pollastri, S., Tattini, M. & Ferrini, F. Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J. Arid Environ. 89, 21–29 (2013).Article 

    Google Scholar 
    Ghannoum, O., Caemmerer, S. V. & Conroy, J. P. The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Funct. Plant Biol. 29, 1337–1348 (2002).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Wildfire-dependent changes in soil microbiome diversity and function

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    Google Scholar 
    Higuera, P. E. & Abatzoglou, J. T. Record‐setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. https://doi.org/10.1111/gcb.15388 (2020).Parks, S. A. & Abatzoglou, J. T. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 47, e2020GL089858 (2020).Benavides-Solorio, J. D. D. & MacDonald, L. H. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int. J. Wildl. Fire 14, 457–474 (2005).
    Google Scholar 
    Pierson, D. N., Robichaud, P. R., Rhoades, C. C. & Brown, R. E. Soil carbon and nitrogen eroded after severe wildfire and erosion mitigation treatments. Int. J. Wildl. Fire 28, 814–821 (2019).CAS 

    Google Scholar 
    Rhoades, C. C., Entwistles, D. & Butler, D. The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. Int. J. Wildl. Fire 20, 430–442 (2011).CAS 

    Google Scholar 
    Chambers, M. E., Fornwalt, P. J., Malone, S. L. & Battaglia, M. A. Patterns of conifer regeneration following high severity wildfire in ponderosa pine – dominated forests of the Colorado Front Range. For. Ecol. Manage. 378, 57–67 (2016).
    Google Scholar 
    Rhoades, C. C. et al. The legacy of a severe wildfire on stream nitrogen and carbon in headwater catchments. Ecosystems 22, 643–657 (2019).CAS 

    Google Scholar 
    Strickland, M. S., Lauber, C., Fierer, N. & Bradford, M. A. Testing the functional significance of microbial community composition. Ecology 90, 441–451 (2009).PubMed 

    Google Scholar 
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 

    Google Scholar 
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).CAS 
    PubMed 

    Google Scholar 
    Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. 220, 166–184 (2005).
    Google Scholar 
    Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).
    Google Scholar 
    Pulido-Chavez, M. F., Alvarado, E. C., DeLuca, T. H., Edmonds, R. L. & Glassman, S. I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manage. 485, 118923 (2021).
    Google Scholar 
    Villadas, P. J. et al. The soil microbiome of the Laurel Forest in Garajonay National Park (La Gomera, Canary Islands): comparing unburned and burned habitats after a wildfire. Forests 10, 1051 (2019).
    Google Scholar 
    Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).
    Google Scholar 
    Ibáñez, T. S., Wardle, D. A., Gundale, M. J. & Nilsson, M.-C. Effects of soil abiotic and biotic factors on tree seedling regeneration following a boreal forest wildfire. Ecosystems https://doi.org/10.1007/s10021-021-00666-0 (2021).Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).CAS 

    Google Scholar 
    Brown, S. P. et al. Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appalachian Mountains. For. Ecol. Manage. 451, 117520 (2019).
    Google Scholar 
    Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Knelman, J. E., Schmidt, S. K., Garayburu-Caruso, V., Kumar, S. & Graham, E. B. Multiple, compounding disturbances in a forest ecosystem: fire increases susceptibility of soil edaphic properties, bacterial community structure, and function to change with extreme precipitation event. Soil Syst. 3, 1–1, 40 (2019).Zhang, L. et al. Habitat heterogeneity induced by pyrogenic organic matter in wildfire-perturbed soils mediates bacterial community assembly processes. ISME J. 5, 1943–1955 (2021).
    Google Scholar 
    Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. https://doi.org/10.1038/ismej.2014.36 (2014).Yang, S. et al. Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. Glob. Change Biol. 26, 431–442 (2020).
    Google Scholar 
    Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High‐severity wildfire leads to multi‐decadal impacts on soil biogeochemistry in mixed‐conifer forests. Ecol. Appl. 30, eap.2072 (2020).
    Google Scholar 
    Pérez-Valera, E., Goberna, M. & Verdú, M. Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biol. Biochem. 129, 80–89 (2019).
    Google Scholar 
    SantaCruz-Calvo, L., González-López, J. & Manzanera, M. Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil. Int. J. Syst. Evol. Microbiol. 63, 4174–4180 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mongodin, E. F. et al. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet. 2, 2094–2106 (2006).CAS 

    Google Scholar 
    Bourguignon, N., Isaac, P., Alvarez, H., Amoroso, M. J. & Ferrero, M. A. Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains. J. Basic Microbiol. 54, 1288–1294 (2014).CAS 
    PubMed 

    Google Scholar 
    Fischer, M. S. et al. Pyrolyzed substrates induce aromatic compound metabolism in the post-fire fungus, Pyronema domesticum. Front. Microbiol. 12, 729289 (2021).PubMed 

    Google Scholar 
    Arora, P. K. & Sharma, A. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG. Front. Microbiol. 6:551, 1–6 (2015).Ren, L. et al. Insight into metabolic versatility of an aromatic compounds-degrading Arthrobacter sp. YC-RL1. Front. Microbiol. 9:2438, 1–15 (2018).Cobo-Díaz, J. F. et al. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire. Microb. Ecol. 69, 895–904 (2015).PubMed 

    Google Scholar 
    Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. ISME J. https://doi.org/10.1038/s41396-022-01232-9 (2022).Adkins, J., Docherty, K. M., Gutknecht, J. L. M. & Miesel, J. R. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Sci. Total Environ. 745, 140957 (2020).CAS 
    PubMed 

    Google Scholar 
    Newton, G. L., Buchmeier, N. & Fahey, R. C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72, 471–494 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reina-Bueno, M. et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 12, 207 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    Musto, H. et al. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett. 573, 73–77 (2004).CAS 
    PubMed 

    Google Scholar 
    Yakovchuk, P. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mooshammer, M. et al. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Sci. Adv. 3, e1602781 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl Acad. Sci. USA 118, 1–10 e2016810118 (2020).Long, A. M., Hou, S., Ignacio-Espinoza, J. C. & Fuhrman, J. A. Benchmarking microbial growth rate predictions from metagenomes. ISME J. 15, 183–195 (2021).CAS 
    PubMed 

    Google Scholar 
    Karlin, S., Mrázek, J., Campbell, A. & Kaiser, D. Characterizations of highly expressed genes of four fast-growing bacteria. J. Bacteriol. 183, 5025–5040 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).CAS 
    PubMed 

    Google Scholar 
    Faria, S. R. et al. Wildfire-induced alterations of topsoil organic matter and their recovery in Mediterranean eucalypt stands detected with biogeochemical markers. Eur. J. Soil Sci. 66, 699–713 (2015).CAS 

    Google Scholar 
    Chen, H., Rhoades, C. C. & Chow, A. T. Characteristics of soil organic matter 14 years after a wildfire: a pyrolysis-gas-chromatography mass spectrometry (Py-GC-MS) study. J. Anal. Appl. Pyrolysis 152, 104922 (2020).CAS 

    Google Scholar 
    Knicker, H. Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quat. Int. 243, 251–263 (2011).
    Google Scholar 
    Bahureksa, W. et al. Nitrogen enrichment during soil organic matter burning and molecular evidence of Maillard reactions. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c06745 (2022).Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).CAS 

    Google Scholar 
    LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).CAS 

    Google Scholar 
    Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds – from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).CAS 
    PubMed 

    Google Scholar 
    Pingree, M. R. A. & DeLuca, T. H. Function of wildfire-deposited pyrogenic carbon in terrestrial ecosystems. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00053 (2017).Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, 1–21 e00076-18 (2018).Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A. & Sun, F. Alignment-free (d_2^ast) oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 45, 39–53 (2017).Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).CAS 

    Google Scholar 
    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS 
    PubMed 

    Google Scholar 
    Hewelke, E. et al. Soil functional responses to natural ecosystem restoration of a pine forest peucedano-pinetum after a fire. Forests 11, 286 (2020).
    Google Scholar 
    Mahoney, D. P. & LaFavre, J. S. Coniochaeta extramundana, with a synopsis of other Coniochaeta species. Mycologia 73, 931–952 (1981).
    Google Scholar 
    Yang, T. et al. Distinct fungal successional trajectories following wildfire between soil horizons in a cold‐temperate forest. New Phytol. 227, 572–587 (2020).CAS 
    PubMed 

    Google Scholar 
    Steindorff, A. S. et al. Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environ. Microbiol. 23, 99–109 (2021).CAS 
    PubMed 

    Google Scholar 
    Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P. & Narasimha, G. Fungal laccases and their applications in bioremediation. Enzyme Res. 2014, 1–21 163242 (2014).Bouskill, N. J., Mekonnen, Z., Zhu, Q., Grant, R. & Riley, W. J. Microbial contribution to post-fire tundra ecosystem recovery over the 21st century. Commun. Earth Environ. 3, 26 (2022).
    Google Scholar 
    Yeager, C. M., Northup, D. E., Grow, C. C., Barns, S. M. & Kuske, C. R. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl. Environ. Microbiol. 71, 2713–2722 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, N. L. et al. Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75, 2046–2056 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fraile, P., Benada, O., Cajthaml, T., Baldrian, P. & Lladó, S. Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl. Environ. Microbiol. 82, 560–569 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the Phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596 (2011).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).CAS 

    Google Scholar 
    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1–14 (2018).
    Google Scholar 
    Smith, S. E. & Read, D. Mycorrhizal symbiosis. Soil Sci. 137, 204 (1984).
    Google Scholar 
    Douglas, R. B., Parker, V. T. & Cullings, K. W. Belowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. For. Ecol. Manage. 208, 303–317 (2005).
    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. https://doi.org/10.1038/s41396-021-01159-7 (2022).Marx, D. H., Bryan, W. C. & Cordell, C. E. Survival and growth of pine seedlings with Pisolithus ectomycorrhizae after two years on reforestation sites in North Carolina and Florida. For. Science. 23, 363–373 (1977).
    Google Scholar 
    Franco, A. R., Sousa, N. R., Ramos, M. A., Oliveira, R. S. & Castro, P. M. L. Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal. Microb. Ecol. 68, 761–772 (2014).PubMed 

    Google Scholar 
    Kipfmueller, K. F. & Baker, W. L. A fire history of a subalpine forest in south-eastern Wyoming, USA. J. Biogeogr. 27, 71–85 (2000).
    Google Scholar 
    Key, C. H. & Benson, N. C. Landscape Assessment (LA) Sampling and Analysis Methods General Techical Report (USDA Forest Service, 2006).Parson, A., Robichaud, P. R., Lewis, S. A., Napper, C. & Clark, J. T. Field Guide for Mapping Post-fire Soil Burn Severity General Technical Report (USDA Forest Service, 2010); https://doi.org/10.2737/RMRS-GTR-243Miesel, J. R., Hockaday, W. C., Kolka, R. K. & Townsend, P. A. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region. J. Geophys. Res. Biogeosci. 120, 1124–1141 (2015).CAS 

    Google Scholar 
    Bundy, L. G. & Meisinger, J. J., Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.) in Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties 951–984 (Macmillan, 2018). https://doi.org/10.2136/sssabookser5.2.c41McDowell, W. H. et al. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biol. Biochem. 38, 1933–1942 (2006).CAS 

    Google Scholar 
    Thomas, G. W., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., Sumner, M. E. (Eds.) in Methods of Soil Analysis: Part 3 Chemical Methods, 5.3 475–490 (1996).Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 

    Google Scholar 
    Tolić, N. et al. Formularity: software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 

    Google Scholar 
    Bramer, L. M. et al. ftmsRanalysis: an R package for exploratory data analysis and interactive visualization of FT-MS data. PLoS Comput. Biol. 16, e1007654 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg, U. et al. UNITE: a database providing web‐based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068 (2005).PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Oksanen, J. et al. (2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=veganMcMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Joshi, N. & Fass, J. Sickle: A Sliding-window, Adaptive, Quality-based Trimming Tool for Fastq Files, v1.33 (2011).Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M., Walker, J. M. (Ed.) BUSCO: assessing genome assembly and annotation completeness. Gene prediction 227–245 (Humana Press, 2019). https://doi.org/10.1007/978-1-4939-9173-0_14Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 

    Google Scholar 
    Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. RnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8, 1–13 (2019).CAS 

    Google Scholar 
    Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, 699–704 (2014).
    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 

    Google Scholar 
    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 
    PubMed 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Smid, M. et al. Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons. BMC Bioinformatics 19, 236 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    PubMed 

    Google Scholar 
    Guo, J., Vik, D., Pratama, A. A., Roux, S. & Sullivan, M. B. Viral Sequence Identification SOP with VirSorter2 (2021); protocols.io. https://doi.org/10.17504/protocols.io.btv8nn9wBland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Mild movement sequence repetition in five primate species and evidence for a taxonomic divide in cognitive mechanisms

    Study subjectsWe conducted foraging experiments on strepsirrhines (Nindividuals = 18) at the Duke Lemur Center (DLC), North Carolina, from February to November 201513. Our sample includes six fat-tailed dwarf lemurs (3–16 years of age, 3 males, 3 females), six gray mouse lemurs (3–7 years of age, all female), and six aye-ayes (17–32 years of age, 2 males, 4 females). Because these species are solitary and nocturnal, most animals were housed singly and were kept on a reversed light cycle such that they were active and could be tested during the day. Housing conditions were similar for all individuals, and they were all fed daily in a similar manner with a diet that included fruits, vegetables, meal worms, and monkey chow (details in13).All vervet data were collected on wild animals (Nindividuals = 12) at Lake Nabugabo, Uganda (0°22′–12° S and 31°54′ E) during four separate field seasons (April-June 2013, Double Trapezoid array, M group15; June–September 2013, Pentagon array, M group24; August–September 2015, Z-array, M group12; July–August 2017, Pentagon array, KS group25). M group was composed of between 21–28 individuals, containing 2–3 adult males, 7–9 adult females, 2 subadult males, 1–3 subadult females, and 9–12 juveniles and infants. KS group was composed of 39–40 individuals including 5 adult males, 11 adult females, 3 sub-adult males, 5 sub-adult females, and 15–16 juveniles and infants. All individuals were reliably identified based on natural features (details in12,15,24,25). Outside of foraging experiments, wild vervets were not provision fed.All Japanese macaque data (Nindividuals = 10) were collected at the Awajishima Monkey Centre (AMC), Awaji Island, Japan (34°14′43.6″ N and 134°52′59.9″ E) between July and August 2019 (Z-array26). AMC is a privately-run tourist and conservation center visited by a large group of free-ranging Japanese macaques (~ 400 individuals) called the “Awajishima group”47. The group is composed of different-aged individuals of both sexes, with bachelor males and bachelor male groups living around the periphery48. The Awajishima group forages on wild foods for much of their dietary requirements but is also provision-fed a combination of wheat and soybeans, supplemented with peanuts, fruits, and vegetables twice daily for ~ 10 months of the year (details in47,49,50).Study designNavigation arraysThe strepsirrhines and vervets were tested on a “double-trapezoid” shaped multi-destination array with six feeding platforms13,15, modified from17 (Fig. 1a), where there were 720 possible routes (6!). Three different double-trapezoid arrays were built to account for differences in body size: one for the smaller dwarf and mouse lemurs, one for the mid-sized aye-ayes, and one for the larger, wild vervets. Arrays were scaled such that the distance from platform 1–2 (the shortest distance between targets) was approximately twice the body length of the subject species. Vervets were additionally tested on a Z-shaped array with six feeding platforms (720 possible routes, Fig. 1b12), and a pentagon-shaped array with five feeding platforms (120 possible routes, Fig. 1c24,25,46). Japanese macaques were tested on an identically sized Z-array26.Figure 1Design of the navigational arrays used, with (a) the Double Trapezoid array used for Cheirogaleus medius, Microcebus murinus, Daubentonia madagascariensis, and Chlorocebus pygerythrus. Three different arrays were built and scaled to the body size of animals (see “Methods”). (b) The Z-array used for C. pygerythrus and Macaca fuscata. The same size array was used for both species because they are similar in adult body lengths (vervet mean range from four sites: 34.5–42.6 cm51, Japanese macaque mean range from six sites: 48.9–59.7 cm52. (c) The Pentagon used for C. pygerythrus. Distances here are unitless but roughly proportional to the body size of each species tested. Created in R version 4.0.4 and ProCreate.Full size imageFor strepsirrhine trials, DLC staff captured individuals in their enclosures and transported them in padded crates to the testing room. The dwarf and mouse lemur array was set up in a specially designed box (0.91 × 1.83 m) with a small compartment to contain strepsirrhines for rebaiting between trials. The aye-aye array was set up on the ground in a room measuring 2.44 × 4.27 m, where subjects stayed during the duration of their daily trials13. Vervet and macaque trials occurred when individual monkeys voluntarily left their group to participate in foraging experiments alone. Vervet arrays were set up using wooden feeding platforms (0.75 m long, 0.75 m wide × 0.75 m high) placed in an outdoor clearing measuring roughly 10 × 14 m in the home range of the study group. Japanese macaque arrays were also set up using small wooden feeding tables (0.40 m long, 0.30 m wide, 0.21 m high), covered in green plastic labeled with the platform number. Two identical arrays were built in neighbouring provision-feeding fields at the AMC (Near Lower Field: ~ 10 × 35 m, and Far Lower Field: ~ 15 × 45 m).In these studies, all platforms were baited with a single food item. The reward used varied by species (strepsirrhines: grape piece, apple piece, honey, agave nectar, or nut butters, vervets: slice of banana, piece of popcorn; macaques: single peanut or piece of sweet potato). Strepsirrhines have sensory adaptations for using olfaction to locate food53, while the cercopithecoids are heavily reliant on vision to locate resources54, so we ensured that each platform was baited with identical food items within a trial that smelled and looked the same to avoid biasing where the animals chose to go. Platforms for the wild monkeys were not rebaited between trials until all animals were ≥ 20 m away and the entire sequence could be rebaited before their return15,24,25,26.For all species, we started a trial when the tested individual entered the array and took the reward at a platform. We then recorded each successive platform visit (including revisits to empty platforms) until all rewards had been collected ending the trial. In our analyses, we included a total of 852 trials collected over six navigational experiments, completed by 40 unique individuals (18 lemurs, 12 vervets, 10 macaques) (Table 2).Table 2 Individuals and trial sample size included in the analysis.Full size tableData simulationsIn addition to empirically collected data, we simulated agents learning to travel efficiently in the same set of arrays using a simple iterative-reinforcement learning model based on the one used by Reynolds et al.6 to test for traplining behavior in bumblebees. In this model, agents move randomly between locations in an array until they visit all locations, then reset for another trial. If the agent completed a trial by travelling less distance than on previous trials, the probability of the agent repeating location-to-location transitions that occurred in that trial increased for future trials by a reinforcement factor. Initial transition probabilities were inversely proportional to the distance between two locations. Unlike Reynolds et al.6 our simulated agents started at a random location and were not required to return to that location to complete the trial. This matches the trial structure used in our experiments (open-TSP), and reflects multiple central place foraging patterns in primates55. Finally, agents could not return to the location they had just come from, using an “avoid the last location” behavioral heuristic observed in nectivores56,57, which prevented agents from getting stuck in “loops” between two locations (S1 Simulation Validation).Within each of the arrays used to collect empirical data, we ran simulations with reinforcement factors of 1 (no reinforcement), 1.2 (mild reinforcement), and 2 (strong reinforcement). For each array and reinforcement factor combination, we ran 100 agents that each completed 120 trials, where there was an equal probability of starting each trial at any location. Then, for each array and reinforcement factor combination, we ran 100 additional simulations per species tested in the given array, where the probability of starting a trial at any location was equal to the empirically observed location-starting probabilities of the respective species.These simulations were designed to help us test predictions of our two hypotheses regarding primate learning and decision making within the arrays. If primates learn to solve navigational arrays efficiently by reinforcing movements between platform pairs, they should exhibit overall greater receptiveness in their sequences of location visits than reinforcement factor 1 simulations, and a greater decrease over time in total distance travelled to complete the arrays. If primates are pre-disposed to navigate arrays using heuristics, they should exhibit shorter distances travelled on initial trials than in simulations.Data analysisFrom the raw sequences of locations visited in each trial, we calculated two metrics: minimum distance traveled, and the proportion of platform revisits that occurred within identical 3-platform visit sequences (determinism-DET)18. All calculations were done using R version 4.0.458 and packages rstan59 and tidyverse60. A fully reproducible data notebook containing this work, as well as all analyzed data, is available at https://github.com/aqvining/Do-Primates-Trapline. All figures were created by AQV in R version 4.0.4 and ProCreate.Distance traveledTo calculate minimum distance traveled, we created a distance matrix for each resource array containing the relative linear distance between any two resource locations. These minimum linear distances approximate the distances traveled by the animals, which may not necessarily be linear. We then summed the linear distances for all transitions made in a trial. Because resource arrays were scaled to the subject species’ body size, these relative distances were standardized.DeterminismGiven a sequence of observations, Ayers et al.63 defines determinism (DET) as the proportion of all matching observation-pairs (recurrences) that occur within matching sub-sequences of observations (repeats) of a given length (minL). This metric has been previously used to distinguish sequences of resource visitation generated by traplining behaviour from sequences generated by known processes of random movement within a given resource array18,61,62. It has several advantages in the analysis of foraging patterns, including the ability to detect repeated sequences between non-consecutive foraging bouts, imperfect repeats in sequences (i.e., omission or addition of a particular site), and distinguishing between forward- and reverse-order sequence repeats63.We adapted the methods of63 to calculate the number of recurrences and repeats generated by the sequence of location visits in each trial of our experiments and simulations. Based on an analysis of the sensitivity of DET scores to the parameterization of minL, we set minL to three for our calculations (S2 Sensitivity Analysis).Statistical analysesLearning ratesWe modelled distance travelled as a function of trial number, species, and individual. Metrics of animal performance on learned tasks are known to follow power functions over time and experience64, so we a priori applied log transformations to distance travelled and trial number, then fit a linear model. Thus, in the resulting model, the intercept can be interpreted as an estimated distance travelled on the first trial and the slope can be interpreted as the exponent of a learning curve. We modelled species and individual effects on the intercept by summing an estimated grand mean (µ0), species level deviation (µsp,j), and individual level deviation (µid,i). We treated species and individual level effects on the learning rate parameter (slope) the same way, summing a grand mean (b0), species level deviation (bsp,j), and individual level deviation (bid,i). We estimated additional parameters for the variance of individual level deviations in intercept and slope (σµID and σbID, respectively). Finally, after finding residuals in an initial analysis to have variances predicted by trial number and species, we estimated a separate error variance for each species (σε,sp) and weighted the standard deviations of the resulting error distributions by dividing them by the square root of one plus the trial number.We set regularizing priors on the model parameters, assuming distances travelled would remain within one order of magnitude of the most efficient route, but not setting any strict boundaries. For the grand mean of the intercept, we used a normal distribution centered around twice the minimum possible distance required to visit all platforms in the array, with a variance of one. For the grand mean of the slope and all species and individual level deviations to the slope and intercept, we used normal distributions centered at zero with variance of one. For all error terms, we used half-cauchy priors with a location parameter of zero and a scale parameter of one. The full, hierarchical definition of the model is given in Eq. (1).$$Distance sim {mu }_{0}+ {mu }_{sp,j}+ {mu }_{id, i}+left({b}_{0}+ {b}_{sp, j}+ {b}_{id,i}right)Trial+ epsilon$$$${mu }_{0} sim mathrm{N}(4.78, 1)$$$${mu }_{sp}, {b}_{0}, {b}_{sp} sim mathrm{N}(mathrm{0,1})$$$${mu }_{id} sim mathrm{N}(0, {sigma }_{mu ID})$$$${b}_{id} sim mathrm{N}(0, {sigma }_{bID})$$$$epsilon sim mathrm{N}(0, {sigma }_{epsilon ,sp}/sqrt[2]{1+Trial})$$$${sigma }_{mu ID}, {sigma }_{bID}, {sigma }_{epsilon } sim mathrm{Half Cauchy}(mathrm{0,1})$$DeterminismTo compare DET between species, and between empirical and simulated data, we created a binomial model of expected repeats generated in a trial given the number of recurrences (Eq. 2).$$Repeats sim binom(Recursions, DET)$$$$DET= {logit}^{-1}(alpha)$$$$alpha={a}_{0}+Sp+Src+ Int+ID$$$${a}_{0}, Sp, Src, Int sim mathrm{N}(0, 1)$$$$ID sim mathrm{N}(0, {sigma }_{ID})$$$${sigma }_{ID}sim mathrm{Half Cauchy}(mathrm{0,1})$$where a0 is the mean intercept, Sp is one of four coefficients determined by the species (simulations are of the “species” which was used to assign its starting-location probabilities), Src is one of four coefficients determined by the source (empirical data and each level of reinforcement factor), Int is one of 16 interaction coefficients (each possible combination of Sp and Src), and ID is a varying effect of the individual. Because the length of a sequence affects DET, we limit our analysis of DET to the sequences generated by a subject’s or an agent’s first ten trials. Subjects that completed fewer than ten trials were excluded from this portion of the analysis. More