More stories

  • in

    Effects of foliar application of selenium and potassium-humate on oat growth in Baloza, North Sinai, Egypt

    Effects of Se and K-humate on nitrogen concentrationsThe N concentration in the soil varied in availability and total content in oat straw and seeds after the foliar application of Se and K-humate. Se alone increased the availability of N in the soil in the following order: Se3  > Se2  > Se1  > control. Thus, Se was found to increase the available N-soil in an application-rate-dependent manner (Table 2). The availability of N-soil after Se application was improved via the simultaneous application of K-humate with the same rate-dependence as observed with Se alone. Comparable results were found using the sum of means for analysis. The insignificant difference found between the sum of means for control and treatment at an Se concentration of 12 × 10−3 mM Se may reflect the relatively low concentration of Se used.Table 2 Effect of selenium and K-humate on nitrogen content.Full size tableThe total N-straw content increased as a result of an increased content of N-plant (Table 2). Differences were found to be insignificant between Se concentrations of 12 × 10−3 mM, 63 × 10−3 mM, and controls. Likewise, the simultaneous application of K-humate showed insignificant differences between Se concentrations of 63 × 10−3 mM and 88 × 10−3 mM. Insignificant differences were noted between the control and Se concentration of 12 × 10−3 mM and the Se concentration of 63 × 10−3 and 88 × 10−3 mM using the sum of means. The total N-seeds content increased for application rates of 12 × 10−3–88 × 10−3 mM, and the simultaneous application of K-humate augmented this increase. The application rate dependency of the effects of Se and K-humate application was identical to that observed in N-soil and N-straw. No significant differences among Se and K-humate applications were observed. An insignificant difference was observed among the sum of means for Se and K-humate applications at concentrations of 63 × 10−3 and 88 × 10−3 mM.The application of Se caused proportional increases in N-soil, N-straw, and N-seeds, and the simultaneous application of K-humate improved this effect. Previously, the application of Se resulted in an increase in the accumulation of NPK which altered N and K distribution. However, the distribution of P was not affected19. Furthermore, the application of Se ultimately resulted in an increase in the accumulation of N, calcium (Ca), K, and Mn20. A significant increase in concentrations of N and S in the rice grain plants grown under N-limiting conditions was also observed while the Ca that have been treated with Se regardless of N supply21. Thus, a synergistic interaction between Se and N in total grain proteins was reported21.Effects of Se and K-humate on PThe effect of applications of different Se concentrations without K-humate on the available P-soil showed a reduction in the following order: Se3  > Se2  > Se1  > control (Table 3). Thus, the foliar application rate of Se caused a rate-dependent increase in the available P-soil. Simultaneous application of K-humate further increased P-soil availability. A rate dependency similar to Se alone was also observed with simultaneous Se and K-humate application. A similar result was observed using the sum of means for data analysis. Significant differences were observed among all treatments.Table 3 Effect of selenium and K-humate on phosphorous content.Full size tableFoliar application of Se increased total P-straw. An insignificant difference was found between the control and Se concentrations of 12 × 10−3 and 63 × 10−3 mM, which was similar to findings observed after the application of K-humate. Moreover, insignificant differences were observed between the applications of Se and Se + K-humate. An insignificant effect was found between control and Se concentrations of (12 × 10−3 and 63 × 10−3 mM), and K-humate application using the sum of means.The application of Se having concentrations ranging from 12 × 10−3 to 88 × 10−3 mM resulted in increased P-seeds and the addition of K-humate augmented this effect (Table 3). The effect of Se and K-humate applications showed a decrease in the following order: Se3  > Se2  > Se1  > control. Insignificant differences between values were observed when Se was applied without K-humate at concentrations of 12 × 10−3 and 63 × 10−3 mM, and for the sum of means for Se and K-humate applications at concentrations of 12 × 10−3 and 63 × 10−3 mM. Thus, the application rate of Se caused a proportional increase in P-soil, P-straw, and P-seeds. Furthermore, the simultaneous application of K-humate augmented this effect.Consistently, concentrations of P and Ca increased in response to the application of selenite-Se (Na2SeO3⋅5H2O) to maize seedlings22, and the application of Se led to an increase in the accumulation of NPK, with alteration of N and K distribution. However, the distribution of P was not influenced19.Effects of the foliar application of Se and K-humate on KDifferent application rates of Se without humate increased K-soil and this effect showed a decrease in the following order: Se3  > Se2  > Se1 = control (Table 4). Again, the foliar application rate of Se causes a proportional increase, in this case, in K-soil. The application of K-humate with Se augmented this effect. A similar rate dependency was also observed with simultaneous application and when the sum of means was used. An insignificant difference was observed between the sum of means for controls and Se concentrations of 12 × 10−3 mM.Table 4 Effect of selenium and K-humate on potassium content.Full size tableThe foliar application of Se led to a slight increase in the total K-straw content (Table 4). An insignificant change was observed for Se concentrations from 12 × 10−3 to 88 × 10−3 mM, and similar results were found with the additional application of K-humate.The application of Se at concentrations from 12 × 10−3 to 88 × 10−3 mM resulted in a slight increase in K-seeds, and the additional application of K-humate only slightly increased the accumulation of K (Table 4). An insignificant difference was observed between Se alone and with K-humate. Similar findings were noted when the sum of means was used for analysis. Se application rates thus produce a proportional increase in K-soil but not in K-straw or K-seeds. Comparable data were noted after K-humate addition. Concentrations of K previously decreased in response to selenite-Se (Na2SeO3⋅5H2O) application to maize seedlings; however, magnesium (Mg) concentrations did not change22. Moreover, the application of Se led to the accumulation of NPK and altered N and K distribution without affecting the P distribution19. Consistently, the application of Se ultimately resulted in increasing K accumulation20.Effects of Se and K-humate application on oat growthApplication of Se improved the yield, which was assessed as kg × 10−3/feddan (Table 5). Higher concentrations of Se produced a higher yield of oat. The effect of Se showed a reduction in the following order: Se3  > Se2  > Se1  > control. The simultaneous application of K-humate increased the yield only slightly, resulting in insignificant differences. Similar findings were also observed when the sum of means was used. In contrast, seed production was not significantly affected, and plant length (m × 10–2) did not show a significant response. In contrast, Se application to potato plants enhanced tuber yield, plant growth, and quality compared with controls. Moreover, Se application along with different N additions ultimately increased potato productivity compared with Se or N alone23. Similarly, the grain yield increased when Se was applied; this application was significant at low levels24.Table 5 Effect of Se and K-humate application on oat growth.Full size tableEffects of Se and K-humate applications on OMS (%) and non-enzymatic antioxidants and total phenols in oat plantsThe total OMS content increased with increasing Se concentrations, perhaps due to stimulation of root growth or microbial biomass. This effect showed a decrease in the following order: Se3  > Se2  > Se1  > control. The addition of K-humate by foliar application significantly augmented the OMS content (%) (Table 6). Application of Se also increased the non-enzymatic antioxidant content; however, the increases were insignificant at Se concentrations of 12 × 10−3 and 63 × 10−3 mM. The highest values for non-enzymatic antioxidants were observed at Se concentrations of 88 × 10−3 mM. The application of K-humate along with Se did not significantly augment the effects observed after the application of Se alone. Analyses using the sum of means were completely consistent with these findings.Table 6 Effect of selenium and K-humate application on organic matter in soil (OMS), non-enzymatic antioxidant, and total phenols in oats.Full size tableSe positively enhanced the total phenol content with effects decreasing in the following order: Se3  > Se2  > Se1  > control. Furthermore, this effect was significantly amplified with the simultaneous application of K-humate. Analysis using the sum of means gave comparable results. Se enhances the ability of plants to cope with stress by stimulating plant cell antioxidant capacity though the upregulating of antioxidant enzymes, such as CAT, SOD, and GSH-Px. Se also increases the synthesis of PCs, GSH, proline, ascorbate, alkaloids, flavonoids, and carotenoids. Se may also induce the spontaneous dismutation of the superoxide radical into H2O2. Elevated antioxidant capacity can reduce lipid peroxidation by lowering ROS accumulation under metal-induced oxidative stress conditions25. Application of Se using foliar spray also induced an increase in the concentration of rosmarinic acid20.Effects of Se and K-humate applications on Se contentAfter the application of Se, Se-soil concentrations increased. The effects of Se concentrations decreased in the following order: Se3  > Se2  > Se1  > control. The additional application of K-humate significantly amplified these effects (Table 7). The treatment of K-humate that increased Se content in the soil may be owing to experimental errors, however, increasing Se content in either straw or seeds may be owing to the increased stimulating movement from soil to different parts of the plant. Se-straw content increased with increasing the Se foliar application; this effect decreased in the following order: Se3  > Se2  > Se1  > control. The simultaneous application of K-humate augmented the effects observed after the application of Se alone. Total Se concentration also increased Se-seeds like Se-straw for Se alone, Se with K-humate, and using the sum of means for analysis.Table 7 Effects of Se and K-humate applications on Se content.Full size tableEffects of Se and K-humate application on Cr contentThe highest concentrations of Cr were observed in control plants followed by Se2  > Se3  > Se1. In response to Se application, the Cr-straw content decreased (Table 8). The difference between Se2 and Se3 was insignificant. K-humate addition induced a notable increase in Cr-straw in the following order: control  > Se3  > Se2  > Se1. This may be owing to the increased stimulating movement of Cr from soil to different parts of the plant. Results obtained from Se treatments varied depending on the presence of K-humate. Cr-seeds decreased in the following order: Se2  > Se3  > Se2  > control. The addition of K-humate increased the Cr-seed content compared with Se alone; however, the difference between Se2 and Se3 was insignificant. Analysis using the sum of means did not produce significant differences.Table 8 Effects of Se and K-humate application on Cr content.Full size tableEffects of Se and K-humate applications on Fe contentVariable effects were produced using different application rates of Se on Fe-straw, and this effect was observed in the following order: Se3  > Se1  > control  > Se2 (Table 9). Differences were insignificant among control, Se1, and Se2. K-humate caused concentrations of Fe-straw to significantly increase in the following order: control  > Se3  > Se2  > Se1. Differences between control and Se3 as well as Se1 and Se2 were insignificant. Analysis using the sum of means was similar. Neither Se nor Se with K-humate applications produced significant changes in Fe-seeds. Analysis using the sum of means was similar. Low concentration of Se application may enhance plant productivity and encourage phytoremediation by improving plant tolerance to stress and enhancing photosynthesis25. Further, a significant increase was observed in concentrations of Fe and S in rice grain grown in N-limiting conditions while Ca that have been treated with Se regardless of N supply21.Table 9 Effects of Se and K-humate applications on Fe content.Full size tableEffects of Se and K-humate application on Mn contentApplication of Se reduced the Mn-straw content, and this effect was observed in the following order: control  > Se2  > Se1  > Se3. No significant difference was found between control and Se1 (Table 10). In contrast, K-humate addition further reduced Mn-straw concentrations in the following order: control  > Se1  > Se3  > Se2. The control and Se1 were not significantly different when using the sum of means for analysis. Likewise, no significant difference was seen between Se1 and Se3. Accumulation of Mn in seeds varied among treatments in the following order: control  > Se2  > Se3  > Se1. K-humate addition altered this order to be in the following order: control  > Se2  > Se1  > Se3. No significant differences were observed between Se2 and Se3 when the sum of means for analysis was used. Previously, the application of Se increased the concentrations of Mg and molybdenum in grains grown in 16 and 24 mM N compared with N-limited plants21.Table 10 Effects of Se and K-humate application on Mn content.Full size tableEffect of Se and K-humate applications on Zn content in oat plantsApplication of Se2—the middle concentration of Se—resulted in highest accumulation in Zn-straw, and this effect was observed in the following order: Se2  > Se1  > control  > Se3 (Table 11). The application of K-humate with Se resulted in some insignificant variations compared with the application of Se alone. Control, Se1, and Se3 were insignificantly different when the sum of means was used for the analysis. Concentrations of Zn in seeds were reduced after Se application. K-humate with Se foliar application altered the concentration of Zn in seeds with impacts in the following order: control  > Se3  > Se1  > Se2. The difference between Se1 and Se3 was insignificant. Additionally, insignificant differences in Zn concentrations after application of Se1, Se2, and Se3 were found when the sum of means was used for analysis. Low concentrations of Se possibly enhance plant productivity and phytoremediation capacity by improving the ability of plants to tolerate stress and enhancing photosynthesis25.Table 11 Effect of Se and K-humate applications on Zn containing oat plant.Full size tableEffects of Se and K-humate application on Cu contentIncreasing concentrations of Se from 12 × 10−3 to 88 × 10−3 mM increased the concentration of Cu-seed, and this effect was observed in the following order: Se1  > control  > Se2  > Se3 as it shown in Table 12. Application of Se with K-humate showed significant changes in the Cu-straw content in the following order: Se1  > Se2  > control  > Se3. No significant differences were observed using the sum of means for analyses. In contrast, the foliar application of Se resulted in increases in Cu-seed at concentrations of Se1 and Se3; however, at 63 × 10−3 mM (Se2), a reduction in Cu-seed was observed. K-humate with Se simultaneously resulted in increased Cu-seed content with impacts decreasing in the following order: Se3  > Se1  > control  > Se2. The sum of means analysis showed no significant variation between control and Se2. Previously, the application of Se led to a decrease in the concentrations of Cu in grains grown in 16 and 24 mm N compared with N-limited plants21.
    Table 12 Effects of Se and K-humate application on Cu content.Full size table More

  • in

    High-resolution global maps of tidal flat ecosystems from 1984 to 2019

    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225, https://doi.org/10.1038/s41586-018-0805-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bishop, M. J., Murray, N. J., Swearer, S. & Keith, D. A. In The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups (eds D. A. Keith, J. R. Ferrer-Paris, E. Nicholson, & R. T. Kingsford) (IUCN, 2020).Keith, D. A. et al. Earth’s ecosystems: a function-based typology for conservation and sustainability. Nature (In review).Murray, N. J., Phinn, S. R., Clemens, R. S., Roelfsema, C. M. & Fuller, R. A. Continental scale mapping of tidal flats across East Asia using the Landsat Archive. Remote Sensing 4, 3417–3426, https://doi.org/10.3390/Rs4113417 (2012).Article 

    Google Scholar 
    Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Fron. Ecol. Environ. 12, 267–272, https://doi.org/10.1890/130260 (2014).Article 

    Google Scholar 
    Murray, N. J., Ma, Z. & Fuller, R. A. Tidal flats of the Yellow Sea: A review of ecosystem status and anthropogenic threats. Austral Ecol. 40, 472–481, https://doi.org/10.1111/aec.12211 (2015).Article 

    Google Scholar 
    Dhanjal-Adams, K. et al. Distribution and protection of intertidal habitats in Australia. Emu 116, 208–214 (2015).Article 

    Google Scholar 
    Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749, https://doi.org/10.1126/science.abm9583 (2022).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gong, P. et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031 (2017).Article 

    Google Scholar 
    Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).Article 

    Google Scholar 
    Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci Total Environ 619–620, 249–257, https://doi.org/10.1016/j.scitotenv.2017.11.034 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ying, Q. et al. Global bare ground gain from 2000 to 2012 using Landsat imagery. Remote Sens. Environ. 194, 161–176, https://doi.org/10.1016/j.rse.2017.03.022 (2017).Article 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643, https://doi.org/10.1038/s41586-018-0411-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noble, S. et al. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units AU – Sayre, Roger. Journal of Operational Oceanography, 1–10, https://doi.org/10.1080/1755876X.2018.1529714 (2018).Sayre, R. et al. A global ecological classification of coastal segment units to complement marine biodiversity observation network assessments. Oceanography 34, 120–129 (2021).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853, https://doi.org/10.1126/science.1244693 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change 4, 730–735, https://doi.org/10.1038/nclimate2277 (2014).Article 

    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111, https://doi.org/10.1126/science.aau3445 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422, https://doi.org/10.1038/nature20584 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792, https://doi.org/10.1016/j.rse.2020.111792 (2020).Article 

    Google Scholar 
    Yamazaki, D., Trigg, M. A. & Ikeshima, D. Development of a global ~ 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 171, 337–351, https://doi.org/10.1016/j.rse.2015.10.014 (2015).Article 

    Google Scholar 
    Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361, https://doi.org/10.1016/j.rse.2014.10.015 (2015).Article 

    Google Scholar 
    Bunting, P. et al. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sensing 10, 1669 (2018).Article 

    Google Scholar 
    Worthington, T. A. et al. Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2, 429–443, https://doi.org/10.1016/j.oneear.2020.04.018 (2020).Article 

    Google Scholar 
    Worthington, T. A. et al. A global typology of mangroves and its relevance for ecosystem services and deforestation. Scientific reports (2020).Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLOS ONE 12, e0179302, https://doi.org/10.1371/journal.pone.0179302 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 12, 40–45, https://doi.org/10.1038/s41561-018-0279-1 (2019).CAS 
    Article 

    Google Scholar 
    Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588, https://doi.org/10.1126/science.aat0636 (2018).MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Lyons, M. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sensing in Ecology and Conservation (2020).Li, J. et al. A global coral reef probability map generated using convolutional neural networks. Coral Reefs https://doi.org/10.1007/s00338-020-02005-6 (2020).Article 

    Google Scholar 
    Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73, https://doi.org/10.1038/s41586-019-1848-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291, https://doi.org/10.1126/science.aaf2201 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244, https://doi.org/10.1126/science.1257484 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv Biol 35, 325–335, https://doi.org/10.1111/cobi.13520 (2021).Article 
    PubMed 

    Google Scholar 
    Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).CAS 
    Article 

    Google Scholar 
    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob Chang Biol 26, 5844–5855, https://doi.org/10.1111/gcb.15275 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, A. C. & McLachlan, A. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ. Conserv. 29, 62–77, https://doi.org/10.1017/s037689290200005x (2002).Article 

    Google Scholar 
    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790, https://doi.org/10.1073/pnas.1606102113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill, N. K., Woodworth, B. K., Phinn, S. R., Murray, N. J. & Fuller, R. A. Global protected-area coverage and human pressure on tidal flats. Conserv Biol, https://doi.org/10.1111/cobi.13638 (2021).Murray, N. J. et al. Myanmar’s terrestrial ecosystems: Status, threats and conservation opportunities. Biol. Conserv. 252, 108834, https://doi.org/10.1016/j.biocon.2020.108834 (2020).Article 

    Google Scholar 
    Jackson, M. V. et al. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China. J Environ Manage 278, 111549, https://doi.org/10.1016/j.jenvman.2020.111549 (2021).Article 
    PubMed 

    Google Scholar 
    Davidson, N. C. & Finlayson, C. M. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Marine and Freshwater Research 70, 1195–1200, https://doi.org/10.1071/MF19010 (2019).Article 

    Google Scholar 
    Duan, H. et al. Identifying new sites of significance to waterbirds conservation and their habitat modification in the Yellow and Bohai Seas in China. Global Ecology and Conservation, e01031 (2020).Jung, M. et al. A global map of terrestrial habitat types. Scientific Data 7, 256, https://doi.org/10.1038/s41597-020-00599-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keith, D. et al. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups. (The International Union for the Conservation of Nature (IUCN), Gland, 2020).Fink, D. et al. Modeling avian full annual cycle distribution and population trends with citizen science data. Ecol. Appl. 30, e02056, https://doi.org/10.1002/eap.2056 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Convention on Biological Diversity. Indicators for the post-2020 Global Biodiversity Framework. (Convention on Biological Diversity, 2021).Murray, NJ. et al. High-resolution global maps of tidal flat ecosystems from 1984 to 2019, Figshare, https://doi.org/10.6084/m9.figshare.c.5884598.v1 (2022).Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. (US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, 2009).Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, Rg200410.1029/2005rg000183 (2007).Article 

    Google Scholar 
    Mcowen, C. et al. A global map of saltmarshes. Biodiversity Data Journal 5, https://doi.org/10.3897/BDJ.5.e11764 (2017).Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20, 154–159, https://doi.org/10.1111/j.1466-8238.2010.00584.x (2011).Article 

    Google Scholar 
    US Geological Survey. Product Guide: Landsat 4–7 Surface Reflectance (LEDAPS) Product (2018).US Geological Survey. Product Guide: Landsat 8 Surface Reflectance Code (LASRC) Product (2018).Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).Article 

    Google Scholar 
    Breiman, L. Random forests. Machine learning 45, 5–32 (2001).Article 

    Google Scholar 
    Murray, N. J. et al. Code and data supplement to “High-resolution global maps of tidal flat ecosystems from 1984 to 2019”. Zenodo https://doi.org/10.5281/zenodo.6332960 (2020).Congalton, R. G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. (CRC press, 2008).Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J. & Elith, J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens. Environ. 208, 145–153, https://doi.org/10.1016/j.rse.2018.02.026 (2018).Article 

    Google Scholar 
    Sagar, S., Roberts, D., Bala, B. & Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 195, 153–169, https://doi.org/10.1016/j.rse.2017.04.009 (2017).Article 

    Google Scholar 
    Lee, J. et al. The first national scale evaluation of organic carbon stocks and sequestration rates of coastal sediments along the West Sea, South Sea, and East Sea of South Korea. Sci Total Environ 793, 148568, https://doi.org/10.1016/j.scitotenv.2021.148568 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Z., Xu, N., Li, Y. & Li, Y. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sens. Environ. 269, 112799, https://doi.org/10.1016/j.rse.2021.112799 (2022).Article 

    Google Scholar 
    Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 12, 1–7 (2021).Article 

    Google Scholar 
    Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B-Biol. Sci. 370, 20140003, https://doi.org/10.1098/rstb.2014.0003 (2015).Article 

    Google Scholar 
    Keith, D. A. et al. The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters 8, 214–226, https://doi.org/10.1111/conl.12167 (2015).Article 

    Google Scholar 
    Spencer, T. et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Global and Planetary Change 139, 15–30 (2016).Article 

    Google Scholar 
    Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M. & Thomas, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sensing 14, 1034 (2022).Article 

    Google Scholar 
    US Geological Survey. Landsat 4–7 Collection 1 (C1) Surface Reflectance (LEDAPS) Product Guide. Version 3.0. (USGS, 2020).Xu, C. & Liu, W. Mapping and analyzing the annual dynamics of tidal flats in the conterminous United States from 1984 to 2020 using Google Earth Engine. Environmental Advances 7, 100147, https://doi.org/10.1016/j.envadv.2021.100147 (2022).Article 

    Google Scholar 
    Wang, X. X. et al. Rebound in China’s coastal wetlands following conservation and restoration. Nature Sustainability 4, 1076-+, https://doi.org/10.1038/s41893-021-00793-5 (2021).Article 

    Google Scholar 
    Fitton, J. M., Rennie, A. F., Hansom, J. D. & Muir, F. M. E. Remotely sensed mapping of the intertidal zone: a Sentinel-2 and Google Earth Engine methodology. Remote Sensing Applications: Society and Environment, 100499, https://doi.org/10.1016/j.rsase.2021.100499 (2021).Murray, N. J., Kennedy, E., Álvarez-Romero, J. G. & Lyons, M. B. Data freshness in ecology and conservation. Trends in Ecology and Evolution 36, 485–487, https://doi.org/10.1016/j.tree.2021.03.005 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Hinfluences severe disease-mediated population declines in two of the most common garden bird species in Great Britain

    Gregory, R. D. & van Strien, A. Wild bird indicators: Using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Urban bird feeding: Connecting people with nature. PLoS ONE 11, e0158717 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).Article 

    Google Scholar 
    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R. & de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 30, 205–214 (2014).PubMed 
    Article 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452), 443–449 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: Epizootiology and demographic impacts on àapapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).Article 

    Google Scholar 
    George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl. Acad. Sci. USA. 112, 14290–14294 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 36072 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng, T. L. et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 35, 1586–1597 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushton, S. P. et al. Disease threats posed by alien species: The role of a poxvirus in the decline of the native red squirrel in Britain. Epidemiol. Infect. 134, 521–533 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434), 1459–1463 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shutt, J. D. & Lees, A. C. Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biol. Conserv. 261, 109295 (2021).Article 

    Google Scholar 
    Van Doren, B. M. et al. Human activity shapes the wintering ecology of a migratory bird. Glob. Chang. Biol. 27, 2715–2727 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 2088 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lawson, B. et al. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170091 (2018).Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).Article 

    Google Scholar 
    Siriwardena, G. M. et al. The effect of supplementary winter seed food on breeding populations of farmland birds: Evidence from two large-scale experiments. J. Appl. Ecol. 44, 920–932 (2007).Article 

    Google Scholar 
    Kubasiewicz, L. M., Bunnefeld, N., Tulloch, A. I. T., Quine, C. P. & Park, K. J. Diversionary feeding: An effective management strategy for conservation conflict? Biodivers. Conserv. 25, 1–22 (2016).Article 

    Google Scholar 
    Lawson, B. et al. A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect. Genet. Evol. 11, 1638–1645 (2011).PubMed 
    Article 

    Google Scholar 
    Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5, e12215 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forrester, D. J. & Foster, G. W. Trichomonosis. In: Parasitic Diseases of Wild Birds 120–153 (Wiley-Blackwell, 2008).Lawson, B. et al. Evidence of spread of the emerging infectious disease, finch trichomonosis, by migrating birds. EcoHealth 8, 143–153 (2011).PubMed 
    Article 

    Google Scholar 
    Lawson, B. et al. The emergence and spread of finch trichomonosis in the British Isles. Philos. Trans. R. Soc. B Biol. Sci. 367, 2852–2863 (2012).Article 

    Google Scholar 
    Woodward, I. D. et al. BirdTrends 2020: Trends in numbers, breeding success and survival for UK breeding birds. Research Report 732. BTO, Thetford. (2020).Enoksson, B. Age- and sex-related differences in dominance and foraging behaviour of nuthatches Sitta europaea. Anim. Behav. 36, 231–238 (1988).Article 

    Google Scholar 
    Tarvin, K. A. & Woolfenden, G. E. Patterns of dominance and aggressive behavior in blue jays at a feeder. Condor 99, 434–444 (1997).Article 

    Google Scholar 
    Brittingham, M. C. & Temple, S. A. Use of winter feeders by black-capped chickadees. Wildl. Soc. 56, 103–110 (1992).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    Musgrove, A. J. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 106, 64–100 (2013).
    Google Scholar 
    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland. (T & AD Poyser, 2002).Main, I. G. The partial migration of Fennoscandian Greenfinches Carduelis chloris. Ringing Migr. 20, 167–180 (2000).Article 

    Google Scholar 
    Lack, P. C. The Atlas of Wintering Birds in Britain and Ireland. (T. & A.D. Poyser, 1986).Robinson, R. A. BirdFacts: profiles of birds occurring in Britain & Ireland. BTO, Thetford (2005). Available at: http://www.bto.org/birdfacts. Accessed: 15 May 2022.Tratalos, J. et al. Bird densities are associated with household densities. Glob. Chang. Biol. 13, 1685–1695 (2007).ADS 
    Article 

    Google Scholar 
    Gregory, R. D. Broad-scale habitat use of sparrows, finches and buntings in Britain. Die Vogelwelt 120, 47–57 (1999).
    Google Scholar 
    Newton, I. Finches. New Naturalist Series, Volume: 55. (HarperCollins, 1972).Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).Article 

    Google Scholar 
    Crick, H. Q. P. A bird-habitat coding system for use in Britain and Ireland incorporating aspects of land-management and human activity. Bird Study 39, 1–12 (1992).Article 

    Google Scholar 
    Davies, Z. G. et al. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 142, 761–771 (2009).Article 

    Google Scholar 
    Balmer, D. E. et al. Bird Atlas 2007–11: The breeding and wintering birds of Britain and Ireland. (BTO Books, 2013).Lawson, B. et al. Epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7, 294–306 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svensson, L. Identification guide to European passerines, 4th edition. (BTO, 1992).Jenni, L. & Winkler, R. Moult and ageing of European passerines, 2nd edition. (Helm, 2020).Baillie, S. R. The contribution of ringing to the conservation and management of bird populations: A review. Ardea 89, 167–184 (2001).
    Google Scholar 
    Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: A hierarchical perspective (Academic Press, 2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2020).Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (eds. Hornik, K., Leisch, F. & Zeileis, A.) (2003).Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R package version 0.6–1. (2020).Robinson, R. A., Morrison, C. A. & Baillie, S. R. Integrating demographic data: Towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361–1372 (2014).Article 

    Google Scholar 
    Newson, S. E., Evans, K. L., Noble, D. G., Greenwood, J. J. D. & Gaston, K. J. Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. J. Appl. Ecol. 45, 1330–1338 (2008).Article 

    Google Scholar 
    Newson, S. E., Massimino, D., Johnston, A., Baillie, S. R. & Pearce-Higgins, J. W. Should we account for detectability in population trends? Bird Study 60, 384–390 (2013).Article 

    Google Scholar 
    Crick, H. Q. P., Baillie, S. R. & Leech, D. I. The UK Nest Record Scheme: its value for science and conservation. Bird Study 50, 254–270 (2003).Article 

    Google Scholar 
    Abadi, F., Gimenez, O., Arlettaz, R. & Schaub, M. An assessment of integrated population models: Bias, accuracy, and violation of the assumption of independence. Ecology 91, 7–14 (2010).PubMed 
    Article 

    Google Scholar 
    Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 89, e01364 (2019).Article 

    Google Scholar 
    Weegman, M. D., Arnold, T. W., Clark, R. G. & Schaub, M. Partial and complete dependency among data sets has minimal consequence on estimates from integrated population models. Ecol. Appl. 31, e02258 (2021).Article 

    Google Scholar 
    Koons, D. N., Iles, D. T., Schaub, M. & Caswell, H. A life-history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol. Lett. 19, 1023–1031 (2016).PubMed 
    Article 

    Google Scholar 
    Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol Appl. 27, 2102–2115 (2017).PubMed 
    Article 

    Google Scholar 
    Caswell, H. Matrix population models: Construction, analysis and interpretation. (Sinauer Associates, 2001).Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).Article 

    Google Scholar 
    Stanbury, A. et al. The status of our bird populations: The fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Lehikoinen, A., Lehikoinen, E., Valkama, J., Väisänen, R. A. & Isomursu, M. Impacts of trichomonosis epidemics on greenfinch Chloris chloris and chaffinch Fringilla coelebs populations in Finland. Ibis 155, 357–366 (2013).Article 

    Google Scholar 
    PECBMS. EBCC/BirdLife/RSPB/CSO’ Pan-European Common Bird Monitoring Scheme. (2021). Available at: https://pecbms.info/. (Accessed: 14th July 2022)Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change. (European Bird Census Council and Lynx Edicions, 2020).Rijks, J. M. et al. Trichomonosis in greenfinches (Chloris chloris) in the Netherlands 2009–2017: A concealed threat. Front. Vet. Sci. 6, 425 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boele, A. et al. Broedvogels in Nederland in 2020. Sovonrapport 2022/05. (Sovon Vogelonderzoek Nederland, Nijmegen., 2022).Jones, D. The Birds at My Table: Why We Feed Wild Birds and Why It Matters. (Cornell University Press, 2018).Pennycott, T. W. et al. Causes of death of wild birds of the family fringillidae in Britain. Vet. Rec. 143, 155–158 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouwman, K. M. & Hawley, D. M. Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biol. Lett. 6, 462–465 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson, B. et al. Acute necrotising pneumonitis associated with Suttonella ornithocola infection in tits (Paridae). Vet. J. 188, 96–100 (2011).PubMed 
    Article 

    Google Scholar 
    Clewley, G. D., Robinson, R. A. & Clark, J. A. Estimating mortality rates among passerines caught for ringing with mist nets using data from previously ringed birds. Ecol. Evol. 8, 5164–5172 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francis, M. L. et al. Effects of supplementary feeding on interspecific dominance hierarchies in garden birds. PLoS ONE 13, e0202152 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wojczulanis-Jakubas, K., Kulpińska, M. & Minias, P. Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter. J. Ethol. 33, 159–163 (2015).Article 

    Google Scholar 
    Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa. Volume VIII: Crows to Finches. (Oxford University Press, 1994).Brook, B. W. & Bradshaw, C. J. A. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87, 1445–1451 (2006).PubMed 
    Article 

    Google Scholar 
    Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. USA. 97, 5303–5306 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochachka, W. M., Dobson, A. P., Hawley, D. M. & Dhondt, A. A. Host population dynamics in the face of an evolving pathogen. J. Anim. Ecol. 90, 1480–1491 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J. F. et al. The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140, 1234–1245 (2013).PubMed 
    Article 

    Google Scholar 
    Orros, M. E. & Fellowes, M. D. E. Wild bird feeding in an urban area: Intensity, economics and numbers of individuals supported. Acta Ornithol. 50, 43–58 (2015).Article 

    Google Scholar 
    Dirren, S., Borel, S., Wolfrum, N. & Korner-Nievergelt, F. Trichomonas gallinae infections in the naïve host Montifringilla nivalis subsp nivalis. J. Ornithol. 163, 333–337 (2022).Article 

    Google Scholar 
    Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 165, 128–138 (2013).Article 

    Google Scholar 
    Silvertown, J., Buesching, C., Jacobson, S. & Rebelo, T. Citizen science and nature conservation. in Key Topics in Conservation Biology 2 (eds. Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Baillie, S. R., Wernham, C. V. & Clark, J. A. Development of the British and Irish ringing scheme and its role in conservation biology. Ringing Migr. 19, S5–S19 (1999).Article 

    Google Scholar 
    Greenwood, J. J. D. Citizens, science and bird conservation. J. Ornithol. 148, S77–S124 (2007).Article 

    Google Scholar 
    Horns, J. J., Adler, F. R. & Şekercioğlu, Ç. H. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 221, 151–159 (2018).Article 

    Google Scholar 
    Ryan, R. L., Kaplan, R. & Grese, R. E. Predicting volunteer commitment in environmental stewardship programmes. J. Environ. Plan. Manag. 44, 629–648 (2001).Article 

    Google Scholar 
    Maund, P. R. et al. What motivates the masses: Understanding why people contribute to conservation citizen science projects. Biol. Conserv. 246, 108587 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, V. Y. & Greig, E. I. Young adults’ motivations to feed wild birds and influences on their potential participation in citizen science: An exploratory study. Biol. Conserv. 235, 295–307 (2019).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Human–nature interactions and the consequences and drivers of provisioning wildlife. Philos.Trans. R. Soc. B Biol. Sci. 373, 20170092 (2018).Article 

    Google Scholar 
    Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).Article 

    Google Scholar 
    Rocha, G. & Quillfeldt, P. Effect of supplementary food on age ratios of European turtle doves (Streptopelia turtur L.). Anim. Biodivers. Conserv. 38, 11–21 (2015).Article 

    Google Scholar  More

  • in

    Ecological succession of the sponge cryptofauna in Hawaiian reefs add new insights to detritus production by pioneering species

    Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: Integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).
    Google Scholar 
    Cowles, H. C. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Part I. Geographical relations of the Dune Floras. Bot. Gaz. 27, 95–117 (1899).Article 

    Google Scholar 
    Gleason, H. A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53, 7–26 (1926).Article 

    Google Scholar 
    Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    Budowski, G. Studies on Forest Succession in Costa Rica und Panama. Ph.D. Thesis, Yale University, New Haven (1961).Opler, P. A., Baker, H. G. & Frankie, G. W. Plant reproductive characteristics during secondary succession in neotropical lowland forest ecosystems. Biotropica 12, 40–46 (1980).Article 

    Google Scholar 
    Clements, F. E. Plant Succession: An Analysis of Development in Vegetation (Carnegie Institute, Washington, 1916).Book 

    Google Scholar 
    Grigg, R. W. & Maragos, J. E. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55, 387–395 (1974).Article 

    Google Scholar 
    Tomascik, T., Van Woesik, R. & Mah, A. J. Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15, 169–175 (1996).ADS 
    Article 

    Google Scholar 
    McClanahan, T. R. Primary succession of coral-reef algae: Differing patterns on fished versus unfished reefs. J. Exp. Mar. Biol. Ecol. 218, 77–102 (1997).Article 

    Google Scholar 
    Reaka-Kudia, M. L. The global biodiversity of coral reefs: A comparison with rain forests. In Biodiversity II: Understanding and Proteting our Biological Resources (eds Reaka-Kudla, M. et al.) 83–108 (Joseph Henry Press, 1997).
    Google Scholar 
    Ginsburg, R. N. Geological and biological roles of cavities in coral reefs. In Perspectives on Coral Reefs (ed. Barnes, D. J.) 148–153 (Australian Institute of Marine Science, Manuka, A.C.T., Australia, 1983).Fautin, D. et al. An overview of marine biodiversity in United States waters. PLoS ONE 5, e11914 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pearman, J. K., Anlauf, H., Irigoien, X. & Carvalho, S. Please mind the gap—Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar. Environ. Res. 118, 20–30 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobluk, D. R. & Van Soest, R. W. M. Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bull. Mar. Sci. 44, 1207–1235 (1989).
    Google Scholar 
    Richter, C. & Wunsch, M. Cavity-dwelling suspension feeders in coral reefs – A new link in reef trophodynamics. Mar. Ecol. Prog. Ser. 188, 105–116 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Wunsch, M., Al-Moghrabi, S. M. & Kötter, I. Communities of coral reef Cavities in Jordan, Gulf of Aqaba (Red Sea). In Proceedings of 9th International Coral Reef Symposium, Vol. 1 (2000).Kornder, N. A. et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs 40, 1137–1153 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Goeij, J. M. & Van Duyl, F. C. Coral cavities are sinks of dissolved organic carbon (DOC). Limnol. Oceanogr. 52, 2608–2617 (2007).ADS 
    Article 

    Google Scholar 
    Slattery, M., Gochfeld, D. J., Easson, C. G. & O’Donahue, L. R. K. Facilitation of coral reef biodiversity and health by cave sponge communities. Mar. Ecol. Prog. Ser. 476, 71–86 (2013).ADS 
    Article 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science (80-) 342, 108–110 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Rix, L. et al. Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar. Ecol. Prog. Ser. 589, 85–96 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Lesser, M. P. & Pawlik, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (Springer, 2017). https://doi.org/10.1007/978-3-319-59008-0_8.Choi, D. R. Ecological succession of reef cavity-dwellers (coelobites) in coral rubble. Bull. Mar. Sci. 35, 72–79 (1984).
    Google Scholar 
    Jackson, J. B. C. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies. Am. Nat. 111, 743–767 (1977).Article 

    Google Scholar 
    Kobluk, D. R. Cryptic faunas in reefs: Ecology and geologic importance. Palaios 3, 379–390 (1988).ADS 
    Article 

    Google Scholar 
    Hooper, J. N. A. & Van Soest, R. W. M. Class Demospongiae Sollas, 1885. In Systema Porifera (2002). https://doi.org/10.1007/978-1-4615-0747-5_3.Rützler, K. The role of sponges in the mesoamerican barrier-reef ecosystem, Belize. Adv. Mar. Biol. 61, 211–271 (2012).PubMed 
    Article 

    Google Scholar 
    Wulff, J. Ecological interactions and the distribution, abundance, and diversity of sponges. Adv. Mar. Biol. 61, 273–344 (2012).PubMed 
    Article 

    Google Scholar 
    Riesgo, A. et al. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zool. Scr. 43, 101–117 (2014).Article 

    Google Scholar 
    Pawlik, J. R., Chanas, B., Toonen, R. J. & Fenical, W. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127, 183–194 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Leong, W. & Pawlik, J. R. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Mar. Ecol. Prog. Ser. 406, 71–78 (2010).ADS 
    Article 

    Google Scholar 
    Maldonado, M. & Bergquist, P. R. Phylum porifera. In Atlas of Marine Invertebrates (ed. Young, C.) 21–50 (Academic, 2002).
    Google Scholar 
    Lanna, E. & Klautau, M. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J. Mar. Biol. Assoc. U. K. 98, 505–514 (2018).Article 

    Google Scholar 
    Lanna, E., Monteiro, L. C. & Klautau, M. Life cycle of Paraleucilla magna Klautau, Monteiro and Borojevic, 2004 (Porifera, Calcarea). In Porifera Research: Biodiversity, Innovation and Sustainability 413–418 (2007).Calazans, V. P. S. B. & Lanna, E. Influence of endogenous and exogenous factors on the reproductive output of a cryptogenic calcareous sponge. Mar. Biodivers. 49, 2837–2850 (2019).Article 

    Google Scholar 
    Zimmerman, T. L. & Martin, J. W. Artificial reef matrix structures (ARMS): An inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res. 16, 59–64 (2004).Article 

    Google Scholar 
    Brainard, R. et al. Autonomous reef monitoring structures (ARMS): A tool for monitoring indices of biodiversity in the Pacific Islands. In 11th Pacific Science Inter-Congress, Papeete, Tahiti (2009).Knowlton, N. et al. Coral reef biodiversity. In Life in the World’s Oceans: Diversity, Distribution, and Abundance 65–74 (2010). https://doi.org/10.1002/9781444325508.ch4.Timmers, M. A., Vicente, J., Webb, M., Jury, C. P. & Toonen, R. J. Sponging up diversity: Evaluating metabarcoding performance for a taxonomically challenging phylum within a complex cryptobenthic community. Environ. DNA https://doi.org/10.1002/edn3.163 (2020).Article 

    Google Scholar 
    Vicente, J. et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs https://doi.org/10.1007/s00338-021-02109-7 (2021).Article 

    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13 (2015).Article 

    Google Scholar 
    Franklin, E. C., Jokiel, P. L. & Donahue, M. J. Predictive modeling of coral distribution and abundance in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 481, 121–132 (2013).ADS 
    Article 

    Google Scholar 
    Jury, C. et al. Experimental reef communities persist under future ocean acidification and warming. Res. Sq. (2021).Gorospe, K. D. et al. Local biomass baselines and the recovery potential for Hawaiian coral reef fish communities. Front. Mar. Sci. 5, 162 (2018).Article 

    Google Scholar 
    Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl. Acad. Sci. 118(39), e2103275118 (2021).
    Wörheide, G. & Erpenbeck, D. DNA taxonomy of sponges—Progress and perspectives. J. Mar. Biol. Assoc. U. K. 87, 1629–1633 (2007).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020). https://doi.org/10.1017/CBO9781107415324.004.Oksanen, J. et al. Package vegan. Community Ecology Packaging version 2, 1-295 (2013).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models (2020).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Ribeiro, B., Padua, A., Paiva, P. C., Custódio, M. R. & Klautau, M. Exploitation of micro refuges and epibiosis: Survival strategies of a calcareous sponge. J. Mar. Biol. Assoc. U. K. 98, 495–503 (2018).Article 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne’ohe bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49, 1–42 (2011).
    Google Scholar 
    Barnes, D. K. A., Ashton, G. V., Morley, S. A. & Peck, L. S. 1 °C warming increases spatial competition frequency and complexity in Antarctic marine macrofauna. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    Maldonado, M., Giraud, K. & Carmona, C. Effects of sediment on the survival of asexually produced sponge recruits. Mar. Biol. 154, 631–641 (2008).CAS 
    Article 

    Google Scholar 
    Eckman, J. E. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28, 241–257 (1983).ADS 
    Article 

    Google Scholar 
    Palardy, J. E. & Witman, J. D. Water flow drives biodiversity by mediating rarity in marine benthic communities. Ecol. Lett. 14, 63–68 (2011).PubMed 
    Article 

    Google Scholar 
    Falter, J. L., Atkinson, M. J. & Merrifield, M. A. Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr. 49, 1820–1831 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Sale, P. F. Coexistence of coral reef fishes—A lottery for living space. Environ. Biol. Fish. 3, 85–102 (1978).Article 

    Google Scholar 
    Karlson, R. H. & Jackson, J. B. C. Competitive networks and community structure: A simulation study. Ecology 62, 670–678 (1981).Article 

    Google Scholar 
    Hixon, M. A. Predation as a process structuring coral reef fish communities. In The Ecology of Fishes on Coral Reefs (1991). https://doi.org/10.1016/b978-0-08-092551-6.50022-2.Hobson, E. S. Feeding patterns among tropical reef fishes. Am. Sci. 63, 382–392 (1975).ADS 

    Google Scholar 
    Bailey-Brock, J. H. Fouling community development on an artificial reef in Hawaiian waters. Bull. Mar. Sci. 44, 580–591 (1989).
    Google Scholar 
    Vicente, J., Toonen, R. J. & Bowen, B. W. Hawaiian green turtles graze on bioeroding sponges at Maunalua Bay, O‘ahu, Hawai‘i, Galaxea. J. Coral Reef Stud. 21, 3–4 (2019).Article 

    Google Scholar 
    Vicente, J., Osberg, A., Marty, M. J., Rice, K. & Toonen, R. J. Influence of sponge palatability on the feeding preferences of the endemic Hawaiian tiger cowrie for indigenous and introduced sponges. Mar. Ecol. Prog. Ser. 647, 109–122 (2020).ADS 
    Article 

    Google Scholar 
    Klumpp, D., McKinnon, A. & Mundy, C. Motile cryptofauna of a coral reef: Abundance, distribution and trophic potential. Mar. Ecol. Prog. Ser. 45, 95–108 (1988).ADS 
    Article 

    Google Scholar 
    Carpenter, R. C. Invertebrate predators and grazers. In Life and Death of Coral Reefs (1997). https://doi.org/10.1007/978-1-4615-5995-5_9.Glynn, P. W. & Enochs, I. C. Invertebrates and their roles in coral reef ecosystems. In Coral Reefs: An Ecosystem in Transition (2011). https://doi.org/10.1007/978-94-007-0114-4_18.Ďuriš, Z., Horká, I., Juračka, P. J., Petrusek, A. & Sandford, F. These squatters are not innocent: The evidence of parasitism in Sponge-Inhabiting shrimps. PLoS ONE 6, e21987 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pawlik, J. R. A sponge-eating worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae). Mar. Ecol. 4, 65–79 (1983).ADS 
    Article 

    Google Scholar 
    Degoeij, J. M. et al. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J. Exp. Biol. 212, 3892–3900 (2009).CAS 
    Article 

    Google Scholar 
    Alexander, B. E. et al. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9, e109486 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).ADS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science (80-). 364, 1189–1192 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Buss, L. W. & Jackson, J. B. C. Competitive networks: Nontransitive competitive relationships in cryptic coral reef environments. Am. Nat. 113, 223–234 (1979).Article 

    Google Scholar 
    Vicente, J., Ríos, J. A., Zea, S. & Toonen, R. J. Molecular and morphological congruence of three new cryptic Neopetrosia spp in the Caribbean. PeerJ 7, e6371–e6381 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics

    Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013;8:1–8.
    Google Scholar 
    United Nations Department of Economic and Social Affairs. World population prospects: the 2017 revision. 2017. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344:1090–2.PubMed 

    Google Scholar 
    Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol. 2020;29:299–308.PubMed 

    Google Scholar 
    Saad M, Eida A, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, le Roux X, Salles JF. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience. 2022;25:103821.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bounaffaa M, Florio A, le Roux X, Jayet PA. Economic and environmental analysis of maize inoculation by plant growth promoting rhizobacteria in the French Rhône-Alpes region. Ecol Econ. 2018;146:334–46.
    Google Scholar 
    Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil. 2014;378:1–33.CAS 

    Google Scholar 
    Mallon C, van Elsas J, Salles J. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23:719–29.CAS 
    PubMed 

    Google Scholar 
    Mawarda PC, le Roux X, van Elsas JD, Salles JF. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem.2020;148:1–13.
    Google Scholar 
    Mallon C, Poly F, le Roux X, Marring I, van Elsas J, Salles J. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology. 2015;96:915–26.PubMed 

    Google Scholar 
    Xing J, Jia X, Wang H, Ma B, Salles JF, Xu J. The legacy of bacterial invasions on soil native communities. Environ Microbiol. 2020;23:1–13.
    Google Scholar 
    Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.
    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;43:293–323.
    Google Scholar 
    Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    Sherr BF, Sherr EB, Berman T. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl Environ Microbiol. 1983;45:1196–201.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol. 2013;199:203–11.CAS 
    PubMed 

    Google Scholar 
    Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–18.CAS 

    Google Scholar 
    Long JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, et al. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS ONE. 2018;13:e0202941.PubMed 
    PubMed Central 

    Google Scholar 
    Iavicoli A, Boutet E, Buchala A, Métraux JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact. 2003;16:851–8.CAS 
    PubMed 

    Google Scholar 
    Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated pseudomonas fluorescens. Appl Environ Microbiol. 2010;76:5263–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 2013;7:2387–99.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jousset A, Scheu S, Bonkowski M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol. 2008;22:714–9.
    Google Scholar 
    Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mallon CA, le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mawarda PC, Lakke SL, Dirk van Elsas J, Salles JF. Temporal dynamics of the soil bacterial community following Bacillus invasion. iScience. 2022;25:1–17.
    Google Scholar 
    Yi Y, de Jong A, Spoelder J, Theo J, van Elsas JD, Kuipers OP. Draft genome sequence of Bacillus mycoides M2E15, a strain isolated from the endosphere of potato. Genome Announc. 2016;4:e00031.PubMed 
    PubMed Central 

    Google Scholar 
    Loznik B, Oosterkamp PJ. Fertilizer comprising protozoa and bacteria. World Intelectual Property Organization; 2017. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017105238.Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:1–11.
    Google Scholar 
    Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61:289–98.CAS 

    Google Scholar 
    Neher OT, Johnston MR, Zidack NK, Jacobsen BJ. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biol Control. 2009;48:140–6.
    Google Scholar 
    Gao Z. Soil protists: from traits to ecological functions. University of Utrecht; 2020. https://dspace.library.uu.nl/handle/1874/400054.Amacker N, Gao Z, Hu J, Jousset ALC, Kowalchuk GA, Geisen S. Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol. 2022;98:1–11.
    Google Scholar 
    Wright DA, Killham K, Glover LA, Prosser JI. Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol. 1995;61:3537–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright D, Killham K, Glover L, Biota JP-SS. The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. In: Brussaard L, Kooistra MJ, editors. Soil structure/soil biota interrelationships. Amsterdam: Elsevier; 1993.p.633–40.
    Google Scholar 
    Thewes S, Soldati T, Eichinger L. Editorial: amoebae as host models to study the interaction with pathogens. Front Cell Infect Microbiol. 2019;9:47.PubMed 
    PubMed Central 

    Google Scholar 
    Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere protists change metabolite profiles in Zea mays. Front Microbiol. 2018;9:857.PubMed 
    PubMed Central 

    Google Scholar 
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritz K. The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol. 2007;60:358–62.CAS 
    PubMed 

    Google Scholar 
    Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, et al. Biocontrol traits correlate with resistance to predation by protists in soil pseudomonads. Front Microbiol. 2020;11:3164.
    Google Scholar 
    Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1–7.
    Google Scholar 
    Hünninghaus M, Koller R, Kramer S, Marhan S, Kandeler E, Bonkowski M. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia. 2017;62:1–8.
    Google Scholar 
    van Elsas J, Chiurazzi M, Mallon C, Elhottova D, Krištůfek V, Salles J. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 

    Google Scholar 
    Horňák K, Corno G. Every coin has a back side: invasion by limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS ONE. 2012;7:e51576.PubMed 
    PubMed Central 

    Google Scholar 
    Gómez P, Paterson S, de Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:1–8.
    Google Scholar 
    Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19:726–39.CAS 
    PubMed 

    Google Scholar 
    Xiong W, Li R, Guo S, Karlsson I, Jiao Z, Xun W, et al. Microbial amendments alter protist communities within the soil microbiome. Soil Biol Biochem. 2019;135:379–82.CAS 

    Google Scholar 
    Schneider FD, Scheu S, Brose U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett. 2012;15:436–43.PubMed 

    Google Scholar 
    Brose U, Archambault P, Barnes AD, Bersier L-F, Boy T, Canning-Clode J, et al. Predator traits determine food-web architecture across ecosystems. Nat Ecol Evol. 2019;3:919–27.PubMed 

    Google Scholar 
    van Elsas JD, Trevors JT, Jansson JK, Nannipieri P, editors. Modern soil microbiology. 3rd ed. Boca Raton: CRC Press; 2019.Berga M, Székely AJ, Langenheder S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE. 2012;7:e365969.
    Google Scholar 
    Wang Z, Chen Z, Kowalchuk GA, Xu Z, Fu X, Kuramae EE. Succession of the resident soil microbial community in response to periodic inoculations. Appl Environ Microbiol. 2021;87:e00046.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Climate legacies of dryland forests

    Land use changes has led to the disappearance of trees from many dryland landscapes in recent centuries, like in western North American and northern China, often accompanied by desertification. Reforestation has the potential to restore these ecosystems and help keep more carbon in soils, especially when natural regeneration is being outpaced by human pressures.
    Your institute does not have access to this article More

  • in

    Increased drought effects on the phenology of autumn leaf senescence

    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 
    Article 

    Google Scholar 
    Piao, S. L. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    Article 

    Google Scholar 
    Penuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).CAS 
    Article 

    Google Scholar 
    Garonna, I. et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Change Biol. 20, 3457–3470 (2014).Article 

    Google Scholar 
    Piao, S. L. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    Article 

    Google Scholar 
    Zhao, Y. et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl Acad. Sci. USA 113, 1949–1954 (2016).CAS 
    Article 

    Google Scholar 
    Keskitalo, J., Bergquist, G., Gardestrom, P. & Jansson, S. A cellular timetable of autumn senescence. Plant Physiol. 139, 1635–1648 (2005).CAS 
    Article 

    Google Scholar 
    Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).Article 

    Google Scholar 
    Wu, C. Y. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 8, 1092–1096 (2018).CAS 
    Article 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).CAS 
    Article 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).CAS 
    Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Liu, L. B. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).CAS 
    Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Piao, S. L. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).CAS 
    Article 

    Google Scholar 
    Fu, Y. S. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    Article 

    Google Scholar 
    Seastedt, T. R. & Knapp, A. K. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).CAS 
    Article 

    Google Scholar 
    Korner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).CAS 
    Article 

    Google Scholar 
    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).CAS 
    Article 

    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought. New Phytol. 178, 719–739 (2008).Article 

    Google Scholar 
    Nolan, R. H. et al. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Plant Cell Environ. 40, 3122–3134 (2017).CAS 
    Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 
    Article 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).CAS 
    Article 

    Google Scholar 
    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).CAS 
    Article 

    Google Scholar 
    Kannenberg, S. A., Driscoll, A. W., Szejner, P., Anderegg, W. R. L. & Ehleringer, J. R. Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2118052118 (2021).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. https://doi.org/10.1038/s41467-017-02690-y (2018).Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS 
    Article 

    Google Scholar 
    Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 189, 71–80 (2014).Article 

    Google Scholar 
    Zhang, X. Y. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ. 156, 457–472 (2015).Article 

    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).Article 

    Google Scholar 
    White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).Article 

    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M., Price, D. T., Kurz, W. A. & Wu, C. Y. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. J. Geophys. Res. 117, G03032 (2012).
    Google Scholar 
    Muñoz, S. ERA5-Land Monthly Averaged Data from 1981 to Present (C3S CDS, date accessed:10-8-2021); https://doi.org/10.24381/cds.68d2bb30Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Müller, W. A. et al. A Higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 10, 1383–1413 (2018).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    Article 

    Google Scholar 
    Allen, R. G., Smith, M., Pereira, L. S. & Perrier, A. An update for the calculation of reference evapotranspiration. ICID Bull. 43, 64–92 (1994).
    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01112-8 (2021).Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).CAS 
    Article 

    Google Scholar 
    Peng, J., Wu, C. Y., Zhang, X. Y., Wang, X. Y. & Gonsamo, A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Change Biol. 25, 2174–2188 (2019).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Beaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 × 0.25 Degree Version 2.0 (GES DISC, 2015); https://doi.org/10.5067/342OHQM9AK6QBeaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 ×0.25 Degree Version 2.1 (GES DISC, 2016); https://doi.org/10.5067/E7TYRXPJKWOQZheng, Y. et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12, 2725–2746 (2020).Article 

    Google Scholar 
    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. https://doi.org/10.1038/srep15956 (2015).Li, Y. et al. Estimating global ecosystem isohydry/anisohydry using active and passive microwave satellite data. J. Geophys. Res. 122, 3306–3321 (2017).Article 

    Google Scholar 
    Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).Article 

    Google Scholar 
    Botta, A., Viovy, N., Ciais, P., Friedlingstein, P. & Monfray, P. A global prognostic scheme of leaf onset using satellite data. Glob. Change Biol. 6, 709–725 (2000).Article 

    Google Scholar  More

  • in

    Assessing mammal trapping standards in wild boar drop-net capture

    Dubois, S. et al. International consensus principles for ethical wildlife control. Conserv. Biol. 31(4), 753–760 (2017).PubMed 
    Article 

    Google Scholar 
    Frank, B. & Glikman, J. A. Human–wildlife conflicts and the need to include coexistence. In Human–Wildlife Interactions (eds Frank, B. et al.) 1–19 (Cambridge University Press, 2019).
    Google Scholar 
    Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707 (2009).CAS 
    Article 

    Google Scholar 
    Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum. Wildl. Interact. 5, 79–99 (2011).
    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 157 (2017).Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!—Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Vajas, P. et al. Many, large and early: Hunting pressure on wild boar relates to simple metrics of hunting effort. Sci. Total Environ. 698, 134251. https://doi.org/10.1016/j.scitotenv.2019.134251 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Licoppe, A. et al. Wild boar/feral pig in (peri-)urban areas. Managing wild boar in human-dominated landscapes. in International Union of Game Biologists (IUGB)—Congress IUGB 2013, 1–31 (2013).Torres-Blas, I. et al. Assessing methods to live-capture wild boars (Sus scrofa) in urban and peri-urban environments. Vet. Rec. 187, e85. https://doi.org/10.1136/vr.105766 (2020).Article 
    PubMed 

    Google Scholar 
    Adams, C. E. Urban Wildlife Management (CRC Press, 2016).
    Google Scholar 
    Conejero, C. et al. Past experiences drive citizen perception of wild boar in urban areas. Mamm. Biol. 96, 68–72 (2019).Article 

    Google Scholar 
    Lewis, J. S., VerCauteren, K. C., Denkhaus, R. M. & Mayer, J. J. Wild pig populations along the urban gradient. In Invasive Wild Pigs in North America (eds VerCauteren, K. C. et al.) 439–463 (CRC Press, 2019).Chapter 

    Google Scholar 
    Massei, G. et al. Effect of the GnRH vaccine GonaCon on the fertility, physiology and behaviour of wild boar. Wildl. Res. 35, 540–547 (2008).CAS 
    Article 

    Google Scholar 
    Náhlik, A. et al. Wild boar management in Europe: Knowledge and practice. In Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 339–353 (Cambridge University Press, 2017).Chapter 

    Google Scholar 
    Croft, S., Franzetti, B., Gill, R. & Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS One 15, e0238429. https://doi.org/10.1371/journal.pone.0238429 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Crespo, C. et al. Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS One 13, e0202289. https://doi.org/10.1371/journal.pone.0202289 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schemnitz, S. D., Batcheller, G. R., Lovallo, M. J., White, H. B. & Fall, M. W. Capturing and handling wild animals. In Research and Management Techniques for Wildlife and Habitats (ed. Silvy, N. J.) 232–269 (John Hopkins University Press, 2009).
    Google Scholar 
    ECGCGRF (European Community, Government of Canada, and Government of the Russian Federation). Agreement on international humane trapping standards. Off. J. Eur. Communities 42, 43–57 (1997).
    Google Scholar 
    Anonymous. International agreement in the form of an agreed minute between the European Community and the United States of America on humane trapping standards. Off. J. Eur. Communities L219, 26–37 (1998).
    Google Scholar 
    ISO 10990-4. Methods for testing killing trap systems used on land and underwater. in Animal (Mammal) Traps—Part 4 (International Organization for Standardization, 1999).ISO 10990-5. Methods for testing restraining traps. in Animal (Mammal) Traps—Part 5 (International Organization for Standardization, 1999).Proulx, G., Cattet, M., Serfass, T. L. & Baker, S. E. Updating the AIHTS trapping standards to improve animal welfare and capture efficiency and selectivity. Animals 10, 1–26 (2020).Article 

    Google Scholar 
    Proulx, G. Mammal Trapping—Wildlife Management, Animal Welfare and International Standards (Alpha Wildlife Publications, 2022).
    Google Scholar 
    Iossa, G., Soulsbury, C. & Harris, S. Mammal trapping: A review of animal welfare standards of killing and restraining traps. Anim. Welf. 16, 335–352 (2007).CAS 

    Google Scholar 
    Muñoz-Igualada, J., Shivik, J. A., Domínguez, F. G., Lara, J. & González, L. M. Evaluation of cage-traps and cable restraint devices to capture red foxes in Spain. J. Wildl. Manag. 72, 830–836 (2008).Article 

    Google Scholar 
    Trap Research and Development Committee. Best Trapping Practices (Fur Institute of Canada, 2018).
    Google Scholar 
    Virgós, E. et al. A poor international standard for trap selectivity threatens global carnivore and biodiversity conservation. Biodivers. Conserv. 25, 1409–1419 (2016).Article 

    Google Scholar 
    Barasona, J. A., López-Olvera, J. R., Beltrán-Beck, B., Gortázar, C. & Vicente, J. Trap-effectiveness and response to tiletamine-zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Vet. Res. 9, 107 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shury, T. Physical capture and restraint. In Zoo Animal and Wildlife Immobilization and Anesthesia (eds West, G. et al.) 109–124 (Wiley Blackwell, 2015).
    Google Scholar 
    Webb, S. L., Lewis, J. S., Hewitt, D. G., Hellickson, M. W. & Bryant, F. C. Assessing the helicopter and net gun as a capture technique for white-tailed deer. J. Wildl. Manag. 72, 310–314 (2008).Article 

    Google Scholar 
    López-Olvera, J. R. et al. Comparative evaluation of effort, capture and handling effects of drive nets to capture roe deer (Capreolus capreolus), Southern chamois (Rupicapra pyrenaica) and Spanish ibex (Capra pyrenaica). Eur. J. Wildl. Res. 55, 193–202 (2009).Article 

    Google Scholar 
    Breed, D. et al. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. 7, 1–21 (2019).Article 
    CAS 

    Google Scholar 
    Mentaberre, G. et al. Azaperone and sudden death of drive net-captured southern chamois. Eur. J. Wildl. Res. 58, 489–493 (2012).Article 

    Google Scholar 
    Gaskamp, J. A., Gee, K. L., Campbell, T. A., Silvy, N. J. & Webb, S. L. Effectiveness and efficiency of corral traps, drop nets and suspended traps for capturing wild pigs (Sus scrofa). Animals 11, 1565 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, S. E., Macdonald, D. W. & Ellwood, S. A. Double standards in spring trap welfare. In Proceedings of the Ninth International Conference on Urban Pests (eds Daivies, C. & Pfeiffer, W. H.) 139–145 (Pureprint Group, 2017).
    Google Scholar 
    López-Olvera, J. R., Castillo-Contreras, R., González-Crespo, C., Conejero, C. & Mentaberre, G. Wild boar is not welcome in the city. Barcelona Metròpolis 103, 22–23 (2017).
    Google Scholar 
    Conejero, C. et al. Conflicto o habituación: las dos caras de la percepción social del jabalí urbano. in Proceedings of XIV Congreso de la Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM, 2019).Conferencia Sectorial de Medio Ambiente. Directrices Técnicas para la Captura de Especies Cinegéticas Predadoras: Homologación de Métodos y Acreditación de Usuarios (Ministerio para la Transición Ecológica y el Reto Demográfico de España, 2011).Generalitat de Catalunya—Government of Catalonia. Decret 56/2014 relatiu a l’homologació de mètodes de captura en viu d’espècies cinegètiques depredadores i d’espècies exòtiques invasores depredadores i l’acreditació de les persones que en són usuàries. Diari Oficial de la Generalitat de Catalunya 6609 (2014).Fahlman, Å. et al. Wild boar behaviour during live-trap capture in a corral-style trap: Implications for animal welfare. Acta Vet. Scand. 62, 1–11 (2020).Article 

    Google Scholar 
    Sharp, T. & Saunders, G. A Model for Assessing the Relative Humaneness of Pest Animal Control Methods (Australian Government—Department of Agriculture, Fisheries and Forestry [New Millennium Print], 2011).
    Google Scholar 
    Ziegler, L., Fischer, D., Nesseler, A. & Lierz, M. Validation of the live trap ‘Krefelder Fuchsfalle’ in combination with electronic trap sensors based on AIHTS standards. Eur. J. Wildl. Res. 64, 17 (2018).Article 

    Google Scholar 
    Marco, I. et al. Capture myopathy in little bustards after trapping and marking. J. Wildl. Dis. 42, 889–891 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rideout, C. B. Comparison of techniques for capturing mountain goats. J. Wildl. Manag. 38, 573 (1974).Article 

    Google Scholar 
    Jedrzejewski, W. & Kamler, J. F. Modified drop-net for capturing ungulates. Wildl. Soc. Bull. 32, 1305–1308 (2004).Article 

    Google Scholar 
    Gaskamp, J. A. Use of drop-nets for wild pig damage and disease abatement. Master’s thesis, available electronically from https://hdl.handle.net/1969.1/148198 (Texas A&M University, 2012).Lavelle, M. J. et al. When pigs fly: Reducing injury and flight response when capturing wild pigs. Appl. Anim. Behav. Sci. 215, 21–25 (2019).Article 

    Google Scholar 
    Masilkova, M. et al. Observation of rescue behaviour in wild boar (Sus scrofa). Sci. Rep. 11, 16217 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).Article 

    Google Scholar 
    Manfredo, M., Teel, T. & Bright, A. Why are public values toward wildlife changing?. Hum. Dimens. Wildl. 8, 287–306 (2003).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabañeros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar  More