Empirical analysis of the role of the environmental accountability system in energy conservation and emission reduction in China
Arora, V. K. et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. https://doi.org/10.1029/2010GL046270 (2011).Article
Google Scholar
Tutak, M. & Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J. Clean. Prod. 345, 131076 (2022).Article
Google Scholar
Acheampong, A. O. & Boateng, E. B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 225, 833–856 (2019).Article
Google Scholar
Zhou, L. A. Governing China’s local officials: An analysis of promotion tournament model. Econ. Res. J. 07, 36–50 (2007) (in Chinese).
Google Scholar
Luo, Z. & Qi, B. The effects of environmental regulation on industrial transfer and upgrading and banking synergetic development—Evidence from water pollution control in the Yangtze River Basin. Econ. Res. J. 56(02), 174–189 (2021).
Google Scholar
Blumstein, C., Krieg, B., Schipper, L. & York, C. Overcoming social and institutional barriers to energy conservation. Energy 5(4), 355–371 (1980).Article
Google Scholar
Zhang, L. Energy conservation and emission reduction: An inevitable choice of China’s energy strategy. Sustain. Energy 6, 21–30 (2016).ADS
Article
Google Scholar
Bhuiyan, M. A. H., Siwar, C., Ismail, S. M. & Islam, R. The role of government for ecotourism development: Focusing on east coast economic region. J. Soc. Sci. 7(4), 557 (2011).
Google Scholar
Fan, G., Su, M. & Cao, J. An economic analysis of consumption and carbon emission responsibility. Econ. Res. J. 45(01), 4–14 (2010) (in Chinese).
Google Scholar
Xie, J. G. & Jiang, P. S. Embodied energy in international trade of China: Calculation and decomposition. China Econ. Q. 13(04), 1365–1392 (2014) (in Chinese).
Google Scholar
Wu, J., Cui, C., Mei, X., Xu, Q. & Zhang, P. Migration of manufacturing industries and transfer of carbon emissions embodied in trade: Empirical evidence from China and Thailand. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-14674-z (2021).Article
Google Scholar
Porter, M. E. & Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 9(4), 97–118 (1995).Article
Google Scholar
Zhang, X. P. & Cheng, X. M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 68(10), 2706–2712 (2009).Article
Google Scholar
Wang, B. & Liu, G. T. Energy conservation, emission reduction and green economic growth in China: From the perspective of total factor productivity. China Ind. Econ. 05, 57–69 (2015) (in Chinese).
Google Scholar
Cheng, Y. Q., Wang, Z. Y., Zhang, S. Z., Ye, X. Y. & Jiang, H. M. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. Acta Geogr. Sin. 68(10), 1418–1431 (2013) (in Chinese).
Google Scholar
Peng, X. & Cui, H. R. Research on the effects of energy structure adjustment in China on Carbon Intensity. J. Dalian Univ. Technol. (Soc. Sci. Ed.) 37(01), 11–16 (2016) (in Chinese).
Google Scholar
Xiao, T. & Liu, H. Empirical research on industrial structure adjustment and energy conservation and emission reduction. Economist 09, 58–68 (2014) (in Chinese).
Google Scholar
Sheng, P., He, Y. & Guo, X. The impact of urbanization on energy consumption and efficiency. Energy Environ. 28(7), 673–686 (2017).Article
Google Scholar
Sun, H., Samuel, C. A., Amissah, J. C. K., Taghizadeh-Hesary, F. & Mensah, I. A. Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries. Energy 212, 118637 (2020).Article
Google Scholar
He, J. K. Economic analysis and effectiveness evaluation on China’s CO2 emission mitigation target. Stud. Sci. Sci. 01, 9–17 (2011) (in Chinese).
Google Scholar
Meng, W. et al. Study on the developmental strategy of the energy saving and environmental protection industry in China. Strat. Study CAE 18(04), 1–8 (2016) (in Chinese).
Google Scholar
He, J., Wang, M. M., Zhang, Z. L., Li, M. & Shi, H. X. Equal attention should be paid to boyh construction and operation of buildings for energy efficiency and emission reduction: Findings from current data on resource and environment loads in China’s building industry. Sci. Technol. Rev. 36(05), 8–13 (2018) (in Chinese).
Google Scholar
Xie, C. X. & Gao, Y. B. Research on innovative development path of energy conservation and emission reduction from the perspective of low carbon economy. China Resour. Compr. Util. 37(12), 92–94 (2019) (in Chinese).
Google Scholar
Dong, J. F., Deng, C., Wang, X. M. & Zhang, X. L. Multilevel index decomposition of energy-related carbon emissions and their decoupling from economic growth in Northwest China. Energies 9(9), 680 (2016).Article
Google Scholar
Duan, Y. Q. & Xu, S. L. Command-based environmental regulation and heavy polluters’ investment: incentive or disincentive? A quasi-Natural experiment based on the new environmental protection law. J. Financ. Dev. Res. 07, 54–61 (2021) (in Chinese).
Google Scholar
Cai, W. & Xu, F. The impact of the new environmental protection law on eco-innovation: Evidence from green patent data of Chinese listed companies. Environ. Sci. Pollut. Res. 29(7), 10047–10062 (2022).Article
Google Scholar
Ning, Y. et al. Energy conservation and emission reduction path selection in China: A simulation based on bi-level multi-objective optimization model. Energy Policy 137, 111116 (2020).Article
Google Scholar
Hughes, S., Giest, S. & Tozer, L. Accountability and data-driven urban climate governance. Nat. Clim. Change 10(12), 1085–1090 (2020).ADS
Article
Google Scholar
Feng, L., Chen, Z. & Chen, H. Does the central environmental protection inspectorate accountability system improve environmental quality?. Sustainability 14(11), 6575 (2022).Article
Google Scholar
Ulucak, R. How do environmental technologies affect green growth? Evidence from BRICS economies. Sci. Total Environ. 712, 136504 (2020).ADS
PubMed
Article
Google Scholar
Shahbaz, M., Raghutla, C., Chittedi, K. R., Jiao, Z. & Vo, X. V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 207, 118162 (2020).Article
Google Scholar
Yang, Y. & Niu, X. Impact of the new “Environmental Protection Law” on the efficiency of listed companies in heavily polluting industries in China: Based on the research perspective of “Porter Hypothesis”. Manag. Rev. 33(10), 55–69 (2021).
Google Scholar
Wong, C. W., Wong, C. Y., Boon-Itt, S. & Tang, A. K. Strategies for building environmental transparency and accountability. Sustainability 13(16), 9116 (2021).Article
Google Scholar
Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524(7565), 335–338 (2015).ADS
PubMed
Article
Google Scholar
Litman, T. Comprehensive evaluation of energy conservation and emission reduction policies. Transp. Res. Part A Policy Pract. 47, 153–166 (2013).Article
Google Scholar
Zhou, P., Ang, B. W. & Han, J. Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 32(1), 194–201 (2010).Article
Google Scholar
Steg, L. Promoting household energy conservation. Energy Policy 36(12), 4449–4453 (2008).Article
Google Scholar
Yang, Q. & Liu, H. J. Regional difference decomposition and influence factors of China’s carbon dioxide emissions. J. Quant. Tech. Econ. 29(05), 36–49 (2012) (in Chinese).
Google Scholar
Yao, L. J. & Sun, C. Y. Italy’s low carbon economic development policy. Sci. Technol. Ind. China 11, 58–60 (2007) (in Chinese).
Google Scholar
Li, L. et al. Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy 39(6), 3669–3679 (2011).Article
Google Scholar
Dong, F. et al. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 129, 187–201 (2018).Article
Google Scholar
Li, X., Hu, Z., Cao, J. & Xu, X. The impact of environmental accountability on air pollution: A public attention perspective. Energy Policy 161, 112733 (2022).Article
Google Scholar
Ehrlich, P. R. & Holdren, J. P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 171(3977), 1212–1217 (1971).ADS
PubMed
Article
Google Scholar
York, R., Rosa, E. A. & Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 46(3), 351–365 (2003).Article
Google Scholar
Shao, S., Yang, L. L. & Cao, J. H. Study on influencing of CO2 emissions from industrial energy consumption: An empirical analysis based on STIRPAT model and industrial sectors’ dynamic panel data in Shanghai. J. Finance Econ. 36(11), 16–27 (2010) (in Chinese).
Google Scholar
Tseng, S. W. Analysis of energy-related carbon emissions in Inner Mongolia, China. Sustainability 11(24), 7008 (2019).Article
Google Scholar
Lin, B. & Ouyang, X. Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry. Energy 68, 688–697 (2014).Article
Google Scholar
Wang, D., He, W. & Shi, R. How to achieve the dual-control targets of China’s CO2 emission reduction in 2030? Future trends and prospective decomposition. J. Clean. Prod. 213, 1251–1263 (2019).Article
Google Scholar
Card, D., & Krueger, A. B. Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania (1993).Abadie, A. & Gardeazabal, J. The economic costs of conflict: A case study of the Basque Country. Am. Econ. Rev. 93(1), 113–132 (2003).Article
Google Scholar
Kaul, A., Klößner, S., Pfeifer, G. & Schieler, M. Standard synthetic control methods: The case of using all preintervention outcomes together with covariates. J. Bus. Econ. Stat. 40(3), 1362–1376 (2022).MathSciNet
Article
Google Scholar
Lin, B. Q. & Li, J. L. Transformation of China’s energy structure under environmental governance constraints: A peak value analysis of coal and carbon dioxide. Soc. Sci. China 09, 84–107 (2015) (in Chinese).
Google Scholar
Long, X., Naminse, E. Y., Du, J. & Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 52, 680–688 (2015).Article
Google Scholar
Zhang, W., Zhu, Q. G. & Gao, H. Upgrading of industrial structure, optimizing of energy structure, and low carbon development of industrial system. Econ. Res. J. 51(12), 62–75 (2016) (in Chinese).
Google Scholar
Wen, Z., Zhang, L., Hou, J. & Liu, H. Mediating effect test procedure and it application. Acta Psychol. Sin. 36(5), 614–620 (2004).
Google Scholar
He, Y., Yu, W. L. & Yang, M. Z. CEOs with rich career experience, corporate risk-taking and the value of enterprises. China Ind. Econ. 09, 155–173 (2019) (in Chinese).
Google Scholar
Zhou, D. Q., Wang, Q., Su, B., Zhou, P. & Yao, L. X. Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis. Appl. Energy 166, 201–209 (2016).Article
Google Scholar
Waheed, R., Sarwar, S. & Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 5, 1103–1115 (2019).Article
Google Scholar
Yang, Y., Zhou, Y., Poon, J. & He, Z. China’s carbon dioxide emission and driving factors: A spatial analysis. J. Clean. Prod. 211, 640–651 (2019).Article
Google Scholar
Apergis, N. & Payne, J. E. Coal consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 38(3), 1353–1359 (2010).Article
Google Scholar
Mujtaba, A., Jena, P. K., Bekun, F. V. & Sahu, P. K. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries. Renew. Sustain. Energy Rev. 160, 112300 (2022).Article
Google Scholar
Wolde-Rufael, Y. Coal consumption and economic growth revisited. Appl. Energy 87(1), 160–167 (2010).Article
Google Scholar More
