More stories

  • in

    Spatial and temporal variation in New Hampshire bat diets

    Whitaker, J. O., McCracken, G. F. & Siemers, B. M. Food habits analysis of insectivorous bats. in Ecological and Behavioral Methods for the Study of Bats. 567–592. (2011).Clare, E. L., Barber, B. R., Sweeney, B. W., Hebert, P. D. N. & Fenton, M. B. Eating local: Influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol. Ecol. 20(8), 1772–1780. https://doi.org/10.1111/j.1365-294X.2011.05040.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Clare, E. L. et al. The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Mol. Ecol. 23(15), 3618–3632. https://doi.org/10.1111/mec.12542 (2014).Article 
    PubMed 

    Google Scholar 
    Wray, A. K. et al. Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance. Mol. Ecol. https://doi.org/10.1111/mec.15769 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agosta, S. J., Morton, D. & Kuhn, K. M. Feeding ecology of the bat Eptesicus fuscus: ‘Preferred’ prey abundance as one factor influencing prey selection and diet breadth. J. Zool. 260(2), 169–177. https://doi.org/10.1017/S0952836903003601 (2003).Article 

    Google Scholar 
    Clare, E. L., Symondson, W. O. C. & Fenton, M. B. An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Mol. Ecol. 23(15), 3633–3647. https://doi.org/10.1111/mec.12519 (2014).Article 
    PubMed 

    Google Scholar 
    O’Rourke, D. R. et al. Lord of the Diptera (and moths and a spider): Molecular diet analyses and foraging ecology of Indiana bats in Illinois. Front. Ecol. Evol. 9, 12 (2021).ADS 

    Google Scholar 
    Hope, P. R. et al. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Front. Zool. 11(1), 39. https://doi.org/10.1186/1742-9994-11-39 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Table for five, please: Dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).Article 

    Google Scholar 
    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).CAS 
    Article 

    Google Scholar 
    Barclay, R. M. R. Population structure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand. J. Anim. Ecol. 60(1), 165. https://doi.org/10.2307/5452 (1991).Article 

    Google Scholar 
    Fraser, E. E. & Fenton, M. B. Age and food hardness affect food handling by insectivorous bats. Can. J. Zool. 85, 985–993 (2007).Article 

    Google Scholar 
    von Frenckell, B. & Barclay, R. M. R. Bat activity over calm and turbulent water. Can. J. Zool. 65, 219–222 (1987).Article 

    Google Scholar 
    Kaupas, L. A. & Barclay, R. M. R. Temperature-dependent consumption of spiders by little brown bats (Myotis lucifugus), but not northern long-eared bats (M. septentrionalis), in northern Canada. Can. J. Zool. 96(3), 261 (2018).Article 

    Google Scholar 
    Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    Kunz, T. H. & Whitaker, J. O. An evaluation of fecal analysis for determining food habits of insectivorous bats. Can. J. Zool. 61, 1317–1321 (1983).Article 

    Google Scholar 
    Hamilton, I. M. & Barclay, R. M. R. Diets of juvenile, yearling, and adult big brown bats (Eptesicus fuscus) in Southeastern Alberta. J. Mammal. 79(3), 764. https://doi.org/10.2307/1383087 (1998).Article 

    Google Scholar 
    Moosman, P. R., Thomas, H. H. & Veilleux, J. P. Food habits of eastern small-footed bats (Myotis leibii) in New Hampshire. Am. Midl. Nat. 158(2), 354–360 (2007).Article 

    Google Scholar 
    Ober, H. K. & Hayes, J. P. Prey selection by bats in forests of Western Oregon. J. Mammal. 89(5), 1191–1200. https://doi.org/10.1644/08-MAMM-A-025.1 (2008).Article 

    Google Scholar 
    Long, B. L., Kurta, A. & Clemans, D. L. Analysis of DNA from feces to identify prey of big brown bats (Eptesicus fuscus) caught in apple orchards. Am. Midl. Nat. 170(2), 287–297 (2013).Article 

    Google Scholar 
    Gordon, R. et al. Molecular diet analysis finds an insectivorous desert bat community dominated by resource sharing despite diverse echolocation and foraging strategies. Ecol. Evol. 9, 3117–3129 (2019).Article 

    Google Scholar 
    Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).Article 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: Emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).Article 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323(5911), 227–227. https://doi.org/10.1126/science.1163874 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frick, W. F. et al. Disease alters macroecological patterns of North American bats: Disease alters macroecology of bats. Glob. Ecol. Biogeogr. 24(7), 741–749. https://doi.org/10.1111/geb.12290 (2015).Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).Article 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Anthony, E. L. P. & Kunz, T. H. Feeding strategies of the little brown bat, Myotis lucifugus, Southern New Hampshire. Ecology 58(4), 775–786. https://doi.org/10.2307/1936213 (1977).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    Article 

    Google Scholar 
    Jusino, M. A. et al. An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Mol. Ecol. Resour. 19, 176–190 (2019).CAS 
    Article 

    Google Scholar 
    O’Rourke, D. R., Bokulich, N. A., Jusino, M. A., MacManes, M. D., & Foster, J. T. A total crapshoot? Evaluating bioinformatic decisions in animal diet metabarcoding analyses. Ecol. Evolut. https://doi.org/10.1002/ece3.6594 (2020).Langwig, K. E. et al. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. B Biol. Sci. 372, 2160044 (2017).Article 

    Google Scholar 
    Maslo, B., Valent, M., Gumbs, J. F. & Frick, W. F. Conservation implications of ameliorating survival of little brown bats with white-nose syndrome. Ecol. Appl. 25, 1832–1840 (2015).Article 

    Google Scholar 
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329(5992), 679–682. https://doi.org/10.1126/science.1188594 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Turner, G. G., Reeder, D. M. & Coleman, J. T. H. A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Res. News 52, 13–27 (2011).
    Google Scholar 
    Coleman, J. et al. A National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose Syndrome in Bats. https://s3.us-west-2.amazonaws.com/prod-is-cms-assets/wns/prod/b0634260-77d3-11e8-b37b-4f3513704a5e-white-nose_syndrome_national_plan_may_2011.pdf (2011).Szymanski, J. A., Runge, M. C., Parkin, M. J. & Armstrong, M. White-Nose Syndrome Management: Report on Structured Decision Making Initiative. Vol. 51. http://pubs.er.usgs.gov/publication/70003465 (2009).Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).ADS 
    Article 

    Google Scholar 
    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332(6025), 41–42. https://doi.org/10.1126/science.1201366 (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    Agosta, S. J. & Morton, D. Diet of the big brown bat, Eptesicus fuscus, from Pennsylvania and Western Maryland. Northeast. Nat. 10(1), 89–104 (2003).Article 

    Google Scholar 
    Brown, V. A., Braun de Torrez, E. & McCracken, G. F. Crop pests eaten by bats in organic pecan orchards. Crop Prot. 67, 66–71 (2015).Article 

    Google Scholar 
    Williams-Guillén, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a Neotropical agroforestry system. Science 320(5872), 70–70. https://doi.org/10.1126/science.1152944 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Held, D. W. & Ray, C. H. Asiatic garden beetle Maladera castanea (Coleoptera: Scarabaeidae) grubs found in damaged turf in Alabama. Fla. Entomol. 92(4), 670–672 (2009).Article 

    Google Scholar 
    Forschler, B. T. & Gardner, W. A. A review of the scientific literature on the biology and distribution of the genus Phyllophaga (Coleoptera: Scarabaeidae) in the Southeastern United States. J. Entomol. Sci. 25(4), 628–651. https://doi.org/10.18474/0749-8004-25.4.628 (1990).Article 

    Google Scholar 
    United States Forest Service. White Grubs in Forest Tree Nurseries and Plantations. Vol. 4. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev2_043588.pdf (1961).Chandler, D. University of New Hampshire—Entomology Collection. UNH Insect and Arachnid Collections. https://duncan.unh.edu/ento/home.php (2020).United States Forest Service. The Early Warning System for Forest Health Threads in the United States. https://www.fs.fed.us/foresthealth/publications/EWS_final_draft.pdf (2004).Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. bold: The barcode of life data system. http://www.barcodinglife.org. Mol. Ecol. Notes 7, 355–364 (2007).Robeson, M. S. et al. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. bioRxiv. https://doi.org/10.1101/2020.10.05.326504 (2020).Article 

    Google Scholar 
    Chamberlain, S. BOLD: Interface to BOLD Systems API. (2017).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).Article 

    Google Scholar 
    Beule, L. & Karlovsky, P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ 8, e9593 (2020).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2018).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    McKinney, W. Data structures for statistical computing in Python. Proc. Python Sci. Conf. https://doi.org/10.25080/Majora-92bf1922-00a (2010).Article 

    Google Scholar 
    McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).Article 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    Article 

    Google Scholar 
    Battaglia, T. btools: A Suite of R Function for All Types of Microbial Diversity Analyses. (2020).Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2017).Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).Article 

    Google Scholar 
    Ogle, D. H. & Wheeler, P. FSA: Fisheries Stock Analysis. (2018).Bisanz, J. E. qiime2R: Importing QIIME2 Artifacts and Associated Data into R Sessions. (2018).Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2018).Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. (2018).Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    Grolemund, G., & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40(3). https://www.jstatsoft.org/index.php/jss/article/view/v040i03/v40i03.pdf (2011).Makiyama, K. magicfor: Magic Functions to Obtain Results from for Loops. (2016).Bates, D. & Maechler, M. Matrix: Sparse and Dense Matrix Classes and Methods. (2018).Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of Paired Comparisons. (2019).Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. (2017).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).Wickham, H. Reshaping data with the reshape Package. J. Stat. Softw. 21(1), 1–20. https://doi.org/10.18637/jss.v021.i12 (2007).MathSciNet 
    Article 

    Google Scholar 
    Wickham, H. scales: Scale Functions for Visualization. (2018).Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).Article 

    Google Scholar 
    Wickham, H. et al. svglite: An ‘SVG’ Graphics Device. (2020).Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. (2017).Strochak, S., Ueyama, K. & Williams, A. urbnmapr: State and County Shapefiles in sf and Tibble Format. (2020).Bittinger, K. usedist: Distance Matrix Utilities. (2020). More

  • in

    Australia’s catastrophic rabbit invasion sparked by a few dozen British bunnies

    Rabbits have had a disastrous impact on Australian agriculture and native plants.Credit: Bettman/Getty

    A genomic analysis has helped to show that Australia’s invasive rabbit population probably originated from a shipment of two dozen wild English rabbits that arrived near Melbourne on Christmas Day, 1859. The study also finds that the herd’s wild ancestry probably gave it an advantage over previous arrivals.Rabbits have invaded most of the Australian continent and have had a disastrous impact on ecosystems, threatening some 300 species of plants and animals, and causing hundreds of millions of dollars’ worth of damage to the agriculture industry a year. “That single event triggered this enormous catastrophe, ecologically and economically, in Australia,” says Francis Jiggins, an evolutionary geneticist at the University of Cambridge, UK, and study co-author.Breeding like rabbitsHistorical records suggest that the first European rabbits (Oryctolagus cuniculus) in Australia arrived in Sydney in 1788, with the first colonizers. Ships bringing rabbits continued to dock along the coast for decades, but it wasn’t until the second half of the nineteenth century that the population expanded significantly, spreading across the country at a rate of 100 kilometres a year.Historical records also suggest that the rabbit expansion followed a shipment of animals that arrived for a certain Thomas Austin at Barwon Park, southwest of what is now Melbourne. His brother had trapped them around their family property in Baltonsborough in southwest England.Joel Alves, an evolutionary geneticist at the University of Oxford, UK, and his colleagues wanted to find out whether genomic data corroborated the records. They analysed genetic data from 179 wild rabbits caught across Australia and in New Zealand, France and the United Kingdom, as well as 8 domestic rabbits of different breeds.They found that most rabbits in mainland Australia were genetically similar, with mixed wild and domestic ancestry. Australian rabbits also shared more rare alleles with rabbits from southwest England than with those from elsewhere in the United Kingdom, suggesting they originated in Baltonsborough. Looking specifically at mitochondrial DNA, which is inherited from the mother, the researchers concluded that most mainland Australian rabbits descended from about five females, introduced from Europe.The researchers also found that the rabbits’ genetic diversity declined the further from Barwon Park the animals were caught, and that alleles that are rare or absent in wild rabbits increased. The researchers say these patterns are consistent with the idea that most rabbits across Australia originated from Barwon Park. The team report their findings in the Proceedings of the National Academy of Sciences on 22 August1.“This is a very exciting paper on a very important and well-studied topic,” says Martin Nuñez, who researches ecological invasions at the University of Houston in Texas. Using genetics to understand how unwanted animal invasions start can help to predict future invasions, he says.Perfect stormOverall, the team says that the rabbits’ wild ancestry was an important factor in triggering their invasion of the continent. “Wild rabbits are different,” says Alves. They exhibit traits such as fleeing stressful environments and burrow-digging, meaning that they were probably better at evading predators and surviving in difficult terrain than are domestic rabbits, he says. Historical records suggest that Austin requested wild rabbits, and that previous arrivals were largely domestic breeds.The expansion of Australian pastoral lands and widespread suppression of predators around that time would have also helped their expansion. “It was like a perfect storm,” says Alves. “You have the right rabbits in the right place at the right time, with the right changes in the environment.”“The genetic analyses appear very sound,” says rabbit geneticist Amy Iannella, a consultant based in Adelaide, Australia. She adds that although the country’s rabbit populations probably originated in Barwon Park, their rapid expansion might have been aided by people transporting the animals to other parts of the country, where they also began spreading. Rabbits are typically communal animals that rely on shelter for survival and juveniles rarely travel further than 1 kilometre, she says. “The idea of rabbits moving fast enough at the invasion front to colonize Australia so quickly from a single release, well that feels extreme to me, given what we know about rabbit ecology.” More

  • in

    Spatial point patterns generation on remote sensing data using convolutional neural networks with further statistical analysis

    Appel, M., Lahn, F., Buytaert, W. & Pebesma, E. Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using SCIDB and GDAL. ISPRS J. Photogramm. Remote Sens. 138, 47–56 (2018).ADS 
    Article 

    Google Scholar 
    Audebert, N., Saux, B. L. & Lefvre, S. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 140, 20–32 (2018).ADS 
    Article 

    Google Scholar 
    Ball J. E., Anderson D. T., & Chan C. S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. https://doi.org/10.1117/1.JRS.11.042609 (2017).Proceedings of the Royal Society B: Biological Sciences. Vol. 282. 20141657 (2015).Velázquez, E., Paine, C. T., May, F. & Wiegand, T. Linking trait similarity to interspecific spatial associations in a moist tropical forest. J. Veg. Sci. 26, 1068–1079 (2015).Article 

    Google Scholar 
    Ben-Said, M. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecol. Process. 10, 1–23 (2021).Article 

    Google Scholar 
    Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).Article 

    Google Scholar 
    Pielou, E.C. Mathematical Ecology; Number 574.50151 P613 1977. (Wiley, 1977).Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Brown, C., Law, R., Illian, J. B. & Burslem, D. F. Linking ecological processes with spatial and non-spatial patterns in plant communities. J. Ecol. 99, 1402–1414 (2011).Article 

    Google Scholar 
    Detto, M. & Muller-Landau, H. C. Fitting ecological process models to spatial patterns using scalewise variances and moment equations. Am. Nat. 181, E68–E82 (2013).Article 

    Google Scholar 
    May, F., Huth, A., & Wiegand, T. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest. Proceedings. Biological sciences 282(1802), 20141657. https://doi.org/10.1098/rspb.2014.1657 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kerr, J. T. & Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 18, 299–305 (2003).Article 

    Google Scholar 
    Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P. & Saatchi, S. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32, 203–221 (2008).Article 

    Google Scholar 
    He, J., Zhang, L., Wang, Q. & Li, Z. Using diffusion geometric coordinates for hyperspectral imagery representation. IEEE Geosci. Remote Sens. Lett. 6(4), 767–771 (2009).ADS 
    Article 

    Google Scholar 
    Lechner, A.M., Foody, G.M., & Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2.5, 405–412 (2020).Arévalo, P., Olofsson, P. & Woodcock, C. E. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sens. Environ. 238, 111051 (2020).ADS 
    Article 

    Google Scholar 
    Gillespie, T.W. et al. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32.2, 203–221 (2008).Lausch, A., Erasmi, S., King, D. J., Magdon, P. & Heurich, M. Understanding forest health with remote sensing-part II—A review of approaches and data models. Remote Sens. 9(2), 129 (2017).ADS 
    Article 

    Google Scholar 
    Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., et al. Monitoring vegetation systems in the Great Plains with ERTS. in NASA Special Publication. Vol. 351. 309 (1974).Chen, J. M. & Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 15, 421–429 (1992).Article 

    Google Scholar 
    Zha, Y., Gao, J. & Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24, 583–594 (2003).Article 

    Google Scholar 
    Zhao, S. et al. Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. Int. J. Appl. Earth Obs. Geoinf. 12, 351–358 (2010).ADS 

    Google Scholar 
    Gao, B. C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).ADS 
    Article 

    Google Scholar 
    Wan, Z. & Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).ADS 
    Article 

    Google Scholar 
    Xu, H., Wang, Y., Guan, H., Shi, T. & Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sensing 11, 2345 (2019).ADS 
    Article 

    Google Scholar 
    List of Top 10 Sources of Free Remote Sensing Data (2017).USGS Earth Explorer: Download Free Landsat Imagery (2021).Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote. Sens. 65, 2–16 (2010).ADS 
    Article 

    Google Scholar 
    Li, M., Zang, S., Zhang, B., Li, S. & Wu, C. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 47, 389–411 (2014).Article 

    Google Scholar 
    Gómez-Chova, L., Tuia, D., Moser, G. & Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 103, 1560–1584 (2015).Article 

    Google Scholar 
    Alajlan, N., Bazi, Y., Melgani, F. & Yager, R. R. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images. Inf. Sci. 217, 39–55 (2012).Article 

    Google Scholar 
    Csillik, O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens. 9, 243 (2017).ADS 
    Article 

    Google Scholar 
    Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18, 18 (2018).ADS 
    Article 

    Google Scholar 
    Jiang, S., Zhao, H., Wu, W., & Tan, Q. A novel framework for remote sensing image scene classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42 (2018).Baddeley, A. Spatial Point Process Modelling and Its Applications. Vol. 20. (Publicacions de la Universitat Jaume I, 2004).Vasudevan, K., Eckel, S., Fleischer, F., Schmidt, V. & Cook, F. Statistical analysis of spatial point patterns on deep seismic reflection data: A preliminary test. Geophys. J. Int. 171, 823–840 (2007).ADS 
    Article 

    Google Scholar 
    Cheng, Y. & Luo, J. Statistical analysis of metastable pitting events on carbon steel. Br. Corros. J. 35, 125–130 (2000).CAS 
    Article 

    Google Scholar 
    Velázquez, E., Martínez, I., Getzin, S., Moloney, K. A. & Wiegand, T. An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39, 1042–1055 (2016).Article 

    Google Scholar 
    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).Article 

    Google Scholar 
    Stoyan, D., & Penttinen, A. Recent applications of point process methods in forestry statistics. Stat. Sci. 2000, 61–78 (2000).Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns. Vol. 70. (Wiley, 2008).Brodrick, P. G., Davies, A. B. & Asner, G. P. Uncovering ecological patterns with convolutional neural networks. Trends Ecol. Evol. 34, 734–745 (2019).Article 

    Google Scholar 
    Liu, S., Luo, H., Tu, Y., He, Z., & Li, J. Wide contextual residual network with active learning for remote sensing image classification. in IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. 7145–7148 (IEEE, 2018).Lee, H. & Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26, 4843–4855 (2017).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Cheng, G., Xie, X., Han, J., Guo, L. & Xia, G. S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 3735–3756 (2020).ADS 
    Article 

    Google Scholar 
    Lewy, D., & Mandziuk, J. An overview of mixing augmentation methods and augmentation strategies. arXiv preprint arXiv:2107.09887 (2021).Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q.V. Autoaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018).Naveed, H. Survey: Image mixing and deleting for data augmentation. arXiv preprint arXiv:2106.07085 (2021).Freeman, I., Roese-Koerner, L. & Kummert, A. Effnet: An efficient structure for convolutional neural networks. 25th IEEE international conference on image processing (ICIP). IEEE 2018, 6–10 (2018).
    Google Scholar 
    LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).Article 

    Google Scholar 
    Raeisi, M., Bonneu, F. & Gabriel, E. A spatio-temporal multi-scale model for Geyer saturation point process: Application to forest fire occurrences. Spatial Stat. 41, 100492 (2021).MathSciNet 
    Article 

    Google Scholar 
    Baddeley, A. Analysing spatial point patterns in R. in Workshop Notes Version. Vol. 3 (2008). More

  • in

    The European Green Deal misses Europe’s subterranean biodiversity hotspots

    European Commission. Communication From The Commission To The European Parliament, The European Council, The Council, The European Economic And Social Committee And The Committee Of The Regions: The European Green Deal (European Commission, 2019).European Commission. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions: EU Biodiversity Strategy for 2030 (European Commission, 2020).Fan, P. et al. Proc. Natl Acad. Sci. USA 119, e2108038119 (2022).CAS 
    Article 

    Google Scholar 
    Schwarz, U. Hydropower Projects on the Balkan Rivers – Update. RiverWatch & EuroNatur; https://balkanrivers.net/sites/default/files/Hydropower%20dams%20in%20the%20Balkan230915_FINAL_EdUS.pdf (2015).Knez, S., Štrbac, S. & Podbregar, I. Energy Sustain. Soc. 12, 1 (2022).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    Zagmajster, M. et al. Glob. Ecol. Biogeogr. 23, 1135–1145 (2014).Article 

    Google Scholar 
    Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. Nat. Commun. 12, 3688 (2021).CAS 
    Article 

    Google Scholar 
    Bregović, P., Fišer, C. & Zagmajster, M. Ecol. Evol. 9, 11606–11618 (2019).Article 

    Google Scholar 
    Bilandžija, H., Morton, B., Podnar, M. & Cetković, H. Front. Zool. 10, 5 (2013).Article 

    Google Scholar 
    Griebler, C. & Avramov, M. Freshw. Sci. 34, 355–367 (2015).Article 

    Google Scholar 
    Mammola, S. et al. Bioscience 69, 641–650 (2019).Article 

    Google Scholar 
    Jaćimović, N. et al. Vodoprivreda 47, 29–40 (2015).
    Google Scholar 
    Borko, Š., Altermatt, F., Zagmajster, M. & Fišer, C. Divers. Distrib. https://doi.org/10.1111/ddi.13500 (2022).European Commission. Evaluation of the EU Biodiversity Strategy to 2020 (European Commission, 2020); https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/1832-Evaluation-of-the-EU-Biodiversity-Strategy-to-2020_en More

  • in

    Citizen science monitoring reveals links between honeybee health, pesticide exposure and seasonal availability of floral resources

    The Insect Pollinators Initiative & Vanbergen, A. J. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. https://doi.org/10.1038/s41467-019-08974-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459. https://doi.org/10.1038/ncomms12459 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. TREE 25, 345–353 (2010).PubMed 

    Google Scholar 
    Becher, M. A., Osborne, J. L., Thorbek, P., Kennedy, P. J. & Grimm, V. REVIEW: Towards a systems approach for understanding honeybee decline: A stocktaking and synthesis of existing models. J. Appl. Ecol. 50, 868–880 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becher, M. A. et al. BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J. Appl. Ecol. 51, 470–482 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549. https://doi.org/10.1038/nature21709 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conti, I. et al. Sugar and protein content in different monofloral pollens – Building a database. Bull. Insectol. 69, 318–320 (2016).
    Google Scholar 
    Rodney, S. & Kramer, V. J. Probabilistic assessment of nectar requirements for nectar-foraging honey bees. Apidologie 51, 180–200 (2020).Article 

    Google Scholar 
    Cartar, R. V. Colony energy-reuirements affect response to predation risk in foraging bumble bees. Ethology 87, 90–96 (1991).Article 

    Google Scholar 
    Cook, S. M., Awmack, C. S., Murray, D. A. & Williams, I. H. Are honey bees’ foraging preferences affected by pollen amino acid composition?. Ecol. Entomol. 28, 622–627 (2003).Article 

    Google Scholar 
    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88. https://doi.org/10.1038/nature16532 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do Pollen quality and diversity matter?. PLoS ONE https://doi.org/10.1371/journal.pone.0072016 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bayo, F. et al. Are bee diseases linked to pesticides?—A brief review. Environ. Int. 89–90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. Lond. B Biol. Sci. 282, 20150299. https://doi.org/10.1098/rspb.2015.0299 (2015).CAS 
    Article 

    Google Scholar 
    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honeybees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    PPDB. The pesticide properties DataBase (PPDB) (Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2013).Belden, J. B. The acute toxicity of pesticide mixtures to honeybees. Integr. Environ. Assess. Manag. https://doi.org/10.1002/ieam.4595 (2022).Article 
    PubMed 

    Google Scholar 
    Battisti, L. et al. Is glyphosate toxic to bees? A meta-analytical review. Sci. Tot. Environ. 767, 145397. https://doi.org/10.1016/j.scitotenv.2021.145397 (2021).CAS 
    Article 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article 

    Google Scholar 
    Carvell, C. et al. Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481–489 (2006).Article 

    Google Scholar 
    Carmona, C. P. et al. Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Funct. Ecol. 34, 1448–1460 (2020).Article 

    Google Scholar 
    Storkey, J. & Westbury, D. B. Managing arable weeds for biodiversity. Pest Manag. Sci. 63, 517–523 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutchinson, L. A. et al. Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agric. Ecosyst. Environ. 315, 107447. https://doi.org/10.1016/j.agee.2021.107447 (2021).Article 

    Google Scholar 
    Requier, F., Odoux, J. F., Henry, M. & Bretagnolle, V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J. Appl. Ecol. 54, 1161–1170 (2017).Article 

    Google Scholar 
    Alburaki, M., Gregorc, A., Adamczyk, J. & Stewart, S. D. Insights on pollen diversity of honey bee (Apis mellifera L.) colonies Located in various agricultural landscapes. Southwest. Nat. 63, 49–58 (2018).Article 

    Google Scholar 
    Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Honeybee nutrition is linked to landscape composition. Ecol. Evol. 4, 4195–4206 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cole, L. J., Brocklehurst, S., Robertson, D., Harrison, W. & McCracken, D. I. Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 246, 157–167 (2017).Article 

    Google Scholar 
    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. Lond. B Biol. Sci. 270, 569–575 (2003).Article 

    Google Scholar 
    Woodcock, B. A. et al. Enhancing floral resources for pollinators in productive agricultural grasslands. Biol. Conserv. 171, 44–51 (2014).Article 

    Google Scholar 
    Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. App. 25, 881–890 (2015).Article 

    Google Scholar 
    Ausseil, A. G. E., Dymond, J. R. & Newstrom, L. Mapping floral resources for honey bees in New Zealand at the catchment scale. Ecol. Appl. 28, 1182–1196. https://doi.org/10.1002/eap.1717 (2018).Article 
    PubMed 

    Google Scholar 
    Kamo, T. et al. A DNA barcoding method for identifying and quantifying the composition of pollen species collected by European honeybees, Apis mellifera (Hymenoptera: Apidae). Appl. Entomol. Zool. 53, 353–361 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurnberger, F., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Mol. Ecol. 28, 3602–3611 (2019).PubMed 
    Article 

    Google Scholar 
    Richardson, R. T. et al. Applications of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. https://doi.org/10.3732/apps.1400066 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, A. E. et al. Integration of DNA extraction, metabarcoding and an informatics pipeline to underpin a national citizen science honey monitoring scheme. MethodsX 8, 101303. https://doi.org/10.1016/j.mex.2021.101303 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, L. et al. Shifts in honeybee foraging reveal historical changes in floral resources. Commun. Biol. 4, 37. https://doi.org/10.1038/s42003-020-01562-4 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barroso-Arevalo, S., Vicente-Rubiano, M., Ruiz, J. A., Bentabol, A. & Sanchez-Vizcaino, J. M. Does pollen diversity influence honey bee colony health?. Sp. J. Agric. Res. https://doi.org/10.5424/sjar/2019173-13991 (2019).Article 

    Google Scholar 
    Bansch, S., Tscharntke, T., Ratnieks, F. L. W., Hartel, S. & Westphal, C. Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2019.106792 (2020).Article 

    Google Scholar 
    Danner, N., Molitor, A. M., Schiele, S., Hartel, S. & Steffan-Dewenter, I. Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecol. Appl. 26, 1920–1929 (2016).PubMed 
    Article 

    Google Scholar 
    EFSA. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2014).
    Google Scholar 
    Hatjina, F. et al. Citizen scientist initiative for measuring varroa damage thresholds: Common efforts for data collection—CSI varroa. Bee World 98, 132–135 (2021).Article 

    Google Scholar 
    Gratzer, K. & Brodschneider, R. How and why beekeepers participate in the INSIGNIA citizen science honey bee environmental monitoring project. Environ. Sci. Pollut. Res. 28, 37995–38006 (2021).Article 

    Google Scholar 
    Brodschneider, R. et al. CSI pollen: Diversity of honey bee collected pollen studied by citizen scientists. Insects 12, 987. https://doi.org/10.3390/insects12110987 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodschneider, R. et al. A citizen science supported study on seasonal diversity and monoflorality of pollen collected by honey bees in Austria. Sci. Rep. https://doi.org/10.1038/s41598-019-53016-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).Article 
    PubMed 

    Google Scholar 
    Nagaharu, U. Genome analysis in brassica with special reference to the experimental formation of B. Napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389–452 (1935).
    Google Scholar 
    Herbertsson, L., Lindstrom, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).Article 

    Google Scholar 
    Magrach, A., Gonzalez-Varo, J. P., Boiffier, M., Vila, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).PubMed 
    Article 

    Google Scholar 
    Adams-Groom, B., Martin, P. & Banon, A. Pollen characterization of English honey from Worcestershire, West Midlands (UK). Bee World https://doi.org/10.1080/0005772X.2019.1698105 (2019).Article 

    Google Scholar 
    Smart, M. D. et al. A comparison of honey bee-collected pollen from working agricultural lands using light microscopy and ITS metabarcoding. Environ. Entomol. 46, 38–49 (2017).CAS 
    PubMed 

    Google Scholar 
    Danner, N., Keller, A., Hartel, S. & Steffan-Dewenter, I. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE https://doi.org/10.1371/journal.pone.0183716 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piroux, M. et al. Correlating the pollens gathered by Apis mellifera with the landscape features in Western France. Appl. Ecol. Environ. Res. 12, 423–439 (2014).Article 

    Google Scholar 
    Di Pasquale, G. et al. Variations in the availability of pollen resources affect honey bee health. PLoS ONE https://doi.org/10.1371/journal.pone.0162818 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donkersley, P. et al. Nutritional composition of honey bee food stores vary with floral composition. Oecologia 185, 749–761 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, R. F. et al. Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and pollen deposition. Landsc. Ecol. 35, 513–527 (2020).Article 

    Google Scholar 
    LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. https://doi.org/10.1098/rsos.190279 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egan, P. A. et al. Plant toxin levels in nectar vary spatially across native and introduced populations. J. Ecol. 104, 1106–1115 (2016).CAS 
    Article 

    Google Scholar 
    Flombaum, P., Sala, O. E. & Rastetter, E. B. Interactions among resource partitioning, sampling effect, and facilitation on the biodiversity effect: A modeling approach. Oecologia 174, 559–566 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C. & Stanley, D. A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE https://doi.org/10.1371/journal.pone.0225743 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature https://doi.org/10.1038/s41586-021-03787-7 (2021).Article 
    PubMed 

    Google Scholar 
    Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jarvis, S. G. et al. CEH land cover plus: Pesticides 2012-2017 (England, Scotland and Wales). NERC Environmental Information Data Centre. https://doi.org/10.5285/99a2d3a8-1c7d-421e-ac9f-87a2c37bda62 (2020).Simon-Delso, N. et al. Honeybee colony disorder in crop areas: The role of pesticides and viruses. PLoS ONE https://doi.org/10.1371/journal.pone.0103073 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. G., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    FERA. PUS STAT: Pesticide usage surveys. https://secure.fera.defra.gov.uk/pusstats/myindex.cfm (2015).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UKCEH. Land cover plus: Crops © NERC (CEH) 2019. (Remote Sensing Applications Consultants Ltd., 2019).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Kovach, J., Petzoldt, C., Degni, J. & Tette, J. A method to measure the environmental impact of pesticides, Vol. 139 1–8 (New York Food and Life Sciences Bulletin, 1992).Juraske, R., Antón, A. & Castells, F. Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere 70, 1748–1755 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, H. M., Fryday, S. L., Harkin, S. & Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45, 545–553. https://doi.org/10.1007/s13592-014-0273-6 (2014).CAS 
    Article 

    Google Scholar 
    Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE https://doi.org/10.1371/journal.pone.0072587 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ridley, L. et al. Pesticide usage survey report 295. Arable crops in the United Kingdom 2020 (Food & Environment Research Agency, 2020).Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    R Core Development Team. R: Version 3.6.3. A language and environment for statistical computing. R Foundation for Statistical Computing, Bristol, UK. http://cran.r-project.org (2021).Pinheiro, J. C., Bates, D. & DebRoy, S. The R core team nlme: Linear and nonlinear mixed effects models. R Package nlme Version 3, 1–83 (2007).
    Google Scholar  More

  • in

    Tropical tree species differ in damage and mortality from lightning

    Dale, V. H. et al. Climate change and forest disturbances. BioScience 51, 723 (2001).Article 

    Google Scholar 
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).Article 

    Google Scholar 
    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 
    Article 

    Google Scholar 
    Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).CAS 
    Article 

    Google Scholar 
    Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).Article 

    Google Scholar 
    Gora, E. M. et al. A mechanistic and empirically supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).Article 

    Google Scholar 
    Gora, E. M., Burchfield, J. C., Muller‐Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning‐caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).Article 

    Google Scholar 
    Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).Article 

    Google Scholar 
    Maxwell, H. Observations on trees, as conductors of lightning. Mem. Am. Acad. Arts Sci. 2, 143 (1793).
    Google Scholar 
    Covert, R. N. Why an oak is often struck by lightning: a method of protecting trees against lightning. Mon. Weather Rev. 52, 492–493 (1924).Article 

    Google Scholar 
    Taylor, A. R. Lightning damage to forest trees in Montana. Weatherwise 17, 61–65 (1964).Article 

    Google Scholar 
    Furtado, C. X. Lightning injuries to trees. J. Malays. Branch R. Asiat. Soc. 13, 157–162 (1935).
    Google Scholar 
    Magnusson, W. E., Lima, A. P. & De Lima, O. Group lightning mortality of trees in a neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).Article 

    Google Scholar 
    Yanoviak, S. P., Gora, E. M., Burchfield, J. M., Bitzer, P. M. & Detto, M. Quantification and identification of lightning damage in tropical forests. Ecol. Evol. 7, 5111–5122 (2017).Article 

    Google Scholar 
    Makela, J., Karvinen, E., Porjo, N., Makela, A. & Tuomi, T. Attachment of natural lightning flashes to trees: preliminary statistical characteristics. J. Light. Res. 1, 9–21 (2009).Article 

    Google Scholar 
    Yanoviak, S. P. in Treetops at Risk (eds Lowman, M. et al.) 147–153 (Springer, 2013).Gora, E. M., Bitzer, P. M., Burchfield, J. C., Schnitzer, S. A. & Yanoviak, S. P. Effects of lightning on trees: a predictive model based on in situ electrical resistivity. Ecol. Evol. 7, 8523–8534 (2017).Article 

    Google Scholar 
    Orville, R. E. Photograph of a close lightning flash. Science 162, 666–667 (1968).CAS 
    Article 

    Google Scholar 
    Gora, E. M. & Yanoviak, S. P. Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Can. J. For. Res. 45, 236–245 (2015).Article 

    Google Scholar 
    Hietz, P., Rosner, S., Hietz-Seifert, U. & Wright, S. J. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol. 213, 170–180 (2017).CAS 
    Article 

    Google Scholar 
    Clarke, P. J. et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol. 197, 19–35 (2013).CAS 
    Article 

    Google Scholar 
    Kozlowski, T. T. & Pallardy, S. G. Physiology of Woody Plants (Academic Press, 1997).Bruijning, M. et al. Surviving in a cosexual world: a cost–benefit analysis of dioecy in tropical trees. Am. Nat. 189, 297–314 (2017).Article 

    Google Scholar 
    Visser, M. D. et al. Strict mast fruiting for a tropical dipterocarp tree: a demographic cost–benefit analysis of delayed reproduction and seed predation. J. Ecol. 99, 1033–1044 (2011).Article 

    Google Scholar 
    Charles, A. E. Coconut lightning strike. Papua New Guin. Agric. J. 12, 192–195 (1960).
    Google Scholar 
    Sharples, A. Lightning storms and their significance in relation to diseases of Cocos nucifera and Hevea brasilensis. Ann. Appl. Biol. 20, 1–22 (1933).Article 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).Article 

    Google Scholar 
    Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459–12464 (2018).CAS 
    Article 

    Google Scholar 
    Poorter, L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 181, 890–900 (2009).Article 

    Google Scholar 
    Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutiérrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation, and plant mortality in a tropical forest. Ecology 102, e03541 (2021).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Brooks, M. E. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 (2019).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Condit, R. et al. Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, 2019 version. Dryad https://doi.org/10.15146/5xcp-0d46 (2019).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).Article 

    Google Scholar 
    Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 70 (2020).Article 

    Google Scholar 
    Gora, E. M. et al. Data from: A mechanistic and empirically-supported lightning risk model for forest trees. Dryad https://doi.org/10.5061/dryad.c59zw3r48 (2020). More

  • in

    Greater bee diversity is needed to maintain crop pollination over time

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 
    Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc. Biol. Sci. 287, 20202063 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).PubMed 
    Article 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, A. D. et al. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150279 (2016).Article 

    Google Scholar 
    Manning, P. & Cutler, G. C. Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric. Ecosyst. Environ. 264, 9–14 (2018).Article 

    Google Scholar 
    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. Camb. Philos. Soc. 94, 1220–1245 (2019).PubMed 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).Article 
    CAS 

    Google Scholar 
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782 (2018).PubMed 
    Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 
    Article 

    Google Scholar 
    Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).PubMed 
    Article 

    Google Scholar 
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).Article 

    Google Scholar 
    Lohbeck, M., Bongers, F., Martinez-Ramos, M. & Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97, 2772–2779 (2016).PubMed 
    Article 

    Google Scholar 
    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).Article 

    Google Scholar 
    Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. Biol. Sci. 286, 20191189 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).Article 

    Google Scholar 
    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642 (2003).Article 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).Article 

    Google Scholar 
    Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. Biol. Sci. 285, 20180038 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Qiu, J. & Cardinale, B. J. Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101, e03166 (2020).Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albrecht, J. et al. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582–1593 (2021).PubMed 
    Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shanafelt, D. W. et al. Biodiversity, productivity, and the spatial insurance hypothesis revisited. J. Theor. Biol. 380, 426–435 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).Article 

    Google Scholar 
    Herrera, C. M. Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. Lond. 35, 95–125 (1988).Article 

    Google Scholar 
    McCormack, M. L., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95, 2224–2235 (2014).PubMed 
    Article 

    Google Scholar 
    Wright, K. W., Vanderbilt, K. L., Inouye, D. W., Bertelsen, C. D. & Crimmins, T. M. Turnover and reliability of flower communities in extreme environments: insights from long-term phenology data sets. J. Arid Environ. 115, 27–34 (2015).Article 

    Google Scholar 
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).PubMed 
    Article 

    Google Scholar 
    Iserbyt, S. & Rasmont, P. The effect of climatic variation on abundance and diversity of bumblebees: a ten years survey in a mountain hotspot. Ann. Soc. Entomol. Fr. 48, 261–273 (2012).Article 

    Google Scholar 
    Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ernest, S. K. M. & Brown, J. H. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).Article 

    Google Scholar 
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Awasthi, A., Singh, M., Soni, S. K., Singh, R. & Kalra, A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 8, 2445–2452 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: Insurance effects during the first decade of the Sabah biodiversity experiment. Proc. Biol. Sci. 283, 20161451 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl Acad. Sci. USA 112, 3427–3432 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).PubMed 
    Article 

    Google Scholar 
    Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).Article 

    Google Scholar 
    Baumgärtner, S. The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model. 20, 87–127 (2007).Article 

    Google Scholar 
    Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 323–356 (Academic Press, 2019).Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).Article 

    Google Scholar 
    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).PubMed 
    Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Liu, D., Chang, P.-H. S., Power, S. A., Bell, J. N. B. & Manning, P. Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytol. 232, 1238–1249 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).PubMed 
    Article 

    Google Scholar 
    Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020: Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).PubMed 
    Article 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. The effects of honey bee and bumble bee pollination on fruit set and abortion of cucumber and watermelon. Am. Bee. J. 137, 386–391 (1997).
    Google Scholar 
    Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113 (2007).PubMed 
    Article 

    Google Scholar 
    Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H. & Marini, L. Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280, 16–23 (2019).Article 

    Google Scholar 
    Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. Seed production in watermelon: a comparison between two commercially available pollinators. HortScience 33, 28–30 (1998).Article 

    Google Scholar 
    Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. Biol. Sci. 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sáez, A. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc. Biol. Sci. 289, 20220086 (2022).PubMed 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A. M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. Biol. Sci. 280, 20122767 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Houlahan, J. E. et al. Negative relationships between species richness and temporal variability are common but weak in natural systems. Ecology 99, 2592–2604 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Winfree, R. Global change, biodiversity, and ecosystem services: what can we learn from studies of pollination? Basic Appl. Ecol. 14, 453–460 (2013).Article 

    Google Scholar 
    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).PubMed 
    Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).PubMed 
    Article 

    Google Scholar 
    Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).PubMed 
    Article 

    Google Scholar 
    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms (Wiley, 2004).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. R package version 0.7.0 https://doi.org/10.5281/zenodo.3952174 (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Brooks, M. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 https://glmmtmb.github.io/glmmTMB/ (2022).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia

    Discovery and historiography of USNM PAL V 11367With basic image enhancement tools (e.g., Adobe Photoshop), we were able to better resolve the original but faded specimen label in the collections associated with USNM PAL V 11367 (Fig. 1 and Related file 1). Specifically, we were able to make the now-faded handwritten notes legible (Fig. 1A,B), revealing critical information about the specimen. The widespread availability of image enhancement for faded fieldnotes and labels provides a new source of information for uncovering legacy issues in museum collections (e.g.21,22,23), especially in cases where locality data or collecting information cannot be well resolved.Accession files with this specimen (Related file 1) show that it was gifted from Arthur M. Ames to the United States National Museum (now the National Museum of Natural History, Smithsonian Institution) on 15 October 1925, and approved by George P. Merrill, head curator of geology from 1917 to 1929. Prior to its accession to the museum, an anonymous individual identified the tooth as belonging to Desmostylus hesperus. Forty years later, on 17 November 1965, Charles A. Repenning reidentified this specimen as Paleoparadoxia sp. (Fig. 1A,B), an assertion that was incorporated into its catalog information. According to the label, USNM PAL V 11367 was collected in the city of Corona, Riverside County, California, yet no precise information of its geological provenance was recorded. On the backside of the label, there are notes (Fig. 1B) referring to the US Geologic Survey Corona South 7.5′ quadrangle map for Riverside and Orange counties, California24. However, no geographic location, exact horizon, nor lithology was stated, and the specimen’s collector, A. M. Ames, lived in Santa Barbara, California but died on 25 August 193921,22,23.In nearly a century after its discovery, the only mention of USNM PAL V 11367 was by Panofsky25, who listed it in a catalog of desmostylian tooth specimens used as a comparative basis for a mandible restoration of the “Stanford specimen” N. repenningi. Panofsky25 identified USNM PAL V 11367 as a left m2 with six main cusps, with no additional cusps (Table 1 in25), while also stating that this specimen has “an open lake in the center of each of the seven cusps” (25: p. 103). The inconsistency of this description differs from our own, which we attribute to differences in morphological criteria or a typographic error.Geological horizon and age of USNM PAL V 11367In this paper, we refer to the “Topanga” Formation following recent studies20,26,27 of this geologic unit. This formation was originally based on a sequence of marine sandstones exposed in an anticline just west of Old Topanga Canyon in the central Santa Monica Mountains of Los Angeles County, California28. After its initial description, the name of the formation was applied to a much thicker and heterogeneous sequence of sedimentary and volcanic rocks29. Campbell et al.30 compiled the history and chronology of changes in usage of “Topanga” in the Miocene stratigraphic nomenclature in Southern California, showing that the criteria of continuous deposition and shared provenance were not demonstrated in every instance. Campbell et al.30 argued that strata assigned to the Topanga Formation in the Los Angeles Basin and eastern Ventura Basin areas are different from other units that have also been referred to the Topanga Formation in Orange County or in the Santa Monica Mountains of Los Angeles and Ventura counties. To distinguish these units, here we follow recent studies20,26,27 and use the name of “Topanga” Formation for the early to middle Miocene rocks bearing fossil marine mammals20,26,31,32,33 in Southern California.According to the collections records (Fig. 1), USNM PAL V 11367 was collected in the city of Corona, Riverside County, California, USA. This city is in the western part of Riverside County, comprising an approximate area of 100 km234. Previously, Panofsky25 suggested that USNM PAL V 11367 would have derived from the Temblor Formation (14.8 to 15.8 Ma35), likely as a guess based on the prevalence of desmostylian teeth recovered from this unit in central California, yet today there are no Temblor Formation outcrops mapped near Corona24,36; the closest Temblor outcrops are located in Fresno and Kern counties37, approximately 200 km away.The geologic maps of Riverside County24,36,38 indicate that the city limits of Corona encompass a wide variety of sedimentary rocks from the Jurassic to the Holocene in age, but only a few marine deposits, such as the Jurassic Bedford Canyon Formation and the middle Miocene “Topanga” Formation are exposed24,39. Specifically, the marine sandstones of the “Topanga” Formation occur within the fault zone at the southeast and northwest of Corona.Outside of Riverside County, the “Topanga” Formation has yielded a diverse assemblage of fossil marine vertebrates in Southern California20,26,31, including desmostylians referred to Desmostylus hesperus and Paleoparadoxia sp. in Orange County (Supplementary 1). USNM PAL V 11367 represents the second reported fossil marine mammal from Riverside County. Previously, an isolated record of “Cetacea indet.” was mentioned from the Zanclean stage Imperial Formation40 and Supplementary Data 2), which is exposed far east of Corona’s city limits.In assessing the age of the “Topanga” Formation in Southern California, Boessenecker and Churchill26,31 argued that the land mammals (late Hemingfordian North American Land Mammal Age, represented by Aepycamelus, Copemys and Merychippus; 17.5–15.9 Ma35,41), benthic foraminifera, fossil mollusks, and K/Ar dating all placed the age range between 17.5 and 15 Ma for this geological unit41 in Orange County. More recently, Velez-Juarbe20 revised the age of “Topanga” Formation in this county to 16.5–14.5 Ma based on new foraminiferal zones presented in Ogg et al.42.We propose that USNM PAL V 11367 derives from exposures of the “Topanga” Formation in Riverside County. If this mapped unit in Riverside can be correlated with “Topanga” Formation units in Orange County, it would imply a middle Miocene age, likely 16.5–14.5 Ma20, and given the morphological similarities of this isolated tooth with more complete paleoparadoxiid material in Orange County with stronger age constraints, we think a middle Miocene age for USNM PAL V 11367 is warranted. Given the reduced distribution of outcrops of the “Topanga” Formation24,36 in Corona, we identify two potential localities for USNM PAL V 11367 (Fig. 3). These two localities are situated in urbanized areas, less than 21 km apart, in the northwest and the southeast corners of Corona’s city limits (see Fig. 3B). Both are notably less than 40 km apart from the type locality of N. cecilialina in Orange County, but we urge skepticism for a direct correlation as the marine units of Riverside County requires detailed stratigraphic revision to determine their age constraints; they likely belong to a different depositional basin than “Topanga” Formation exposures in westward Southern California counties.Morphological variation and potential diversity of PaleoparadoxiidaeOur comparisons reveal considerable morphological variation in the arrangement and number of dental cusps across Paleoparadoxiidae (Fig. 4). The cusps arrangement for the m2-3 of Archaeoparadoxia and Paleoparadoxia were previously reported by Inuzuka et al.43 (Fig. 4B), but the addition of another specimen (USNM PAL V 11367) reveals larger morphological variability than previously known for the genus Neoparadoxia (Fig. 4C). Specifically, the holotype of N. cecilialina displays slightly different configurations between its right and left m2, driven mainly by the position of the hypoconulid in occlusal view (Fig. 4C). USNM PAL V 11367, the second known Neoparadoxia m2 (or the first m3), is comparable in size and shape with the same teeth in the type specimen of N. cecilialina, especially the right m2. Both the Smithsonian and LACM specimens display a horizontal alignment of the extra cusp, the hypoconulid, and the entoconid; nevertheless, USNM PAL V 11367 shows a tighter configuration, lacking a wide internal spacing between cusps characteristic of the type specimen of N. cecilialina (Fig. 4C). Given the known ontogenetic changes that affect the dental nomenclature in desmostylians32,44, the addition of more comparative material should help discriminate between competing statements of homology45. The identification of USNM PAL V 11367 from the “Topanga” Formation of Corona represents a second diagnostic record of Neoparadoxia from three separate Middle Miocene units in Southern California, reaffirming its presence as a Middle Miocene taxon: USNM PAL V 11367 from the “Topanga” Formation of Riverside County; Neoparapdoxia (LACM 6920) from the Altamira Shale46; Neoparadoxia from the Topanga Formation of Orange County46,47; and the holotype of N. cecilialina from the lower part of Monterey Formation in the Capistrano syncline, Orange County46. It is possible that other records of Palaeoparadoxiidae from Orange County (e.g.47) and elsewhere in California may represent Neoparadoxia. For example, Awalt et al.32 noted that a palaeoparadoxiid from Orange County identified by Panofsky as Paleoparadoxia sp. (LACM 131889)25 is better referred to Paleoparadoxidae sp., pending a more detailed evaluation of this material, which differs in clear ways from N. ceciliana. One of the benefits of continued descriptive work on desmostylian material from well-constrained stratigraphic contexts in Southern California will be the biostratigraphic opportunities for cross-basin comparisons, especially for exposures of the “Topanga” Formation.Parham et al.46 emphasized that Neoparadoxia occurs widely in middle Miocene units across California: besides the aforementioned ones, Parham et al.46 noted records of this genus from the Sharktooth Hill Bonebed (LACM 120023), the Altamira Shale (LACM 6920), and the Ladera Sandstone15 (UCMP 81302). To date, Neoparadoxia is only known from California, yet it is likely that other paleoparadoxiid material tentatively assigned to other genera may expand the geographic range of this taxon. Interestingly, on the west side of the Pacific (Russia–Japan) and some parts of the east side of the Pacific (Oregon–Washington), Desmostylus spp. and paleoparadoxiids rarely co-occurred from the same formation48,49, yet there are many geological units in South California where desmostylids and paleoparadoxiids co-occurred (e.g., Santa Margarita Formation50,51, Rosarito Beach Formation52, Tortugas Formation51, and Temblor Formation3,4). The abundance of new material from the “Topanga” Formation from Orange and Riverside counties should contribute to the discussion of desmostylian environmental preferences48,53.Lastly, like other marine mammal lineages, desmostylian body sizes reached their maximum body size late in their evolutionary history54. By the middle to late Miocene, desmostylians were the largest herbivorous marine mammals along the North Pacific coastlines54, although they likely competed ecologically with co-occurring sirenians, which later eclipsed desmostylians in body size and survived until historical times in the North Pacific Ocean55. Specifically, in the “Topanga” Formation of Orange County, desmostylians co-occurred with sirenians such as Metaxytherium arctodites56, an ecological association that likely was repeated elsewhere in the mid-Miocene of California (e.g., coeval deposits of the Round Mountain Silt). Given the improving stratigraphic picture of Southern California marine mammal-bearing localities, future work on desmostylian paleoecology could test hypotheses of competition with taxonomic co-occurrence data grounded in strong comparative taphonomic and sedimentological frameworks. More