More stories

  • in

    The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics

    Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013;8:1–8.
    Google Scholar 
    United Nations Department of Economic and Social Affairs. World population prospects: the 2017 revision. 2017. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344:1090–2.PubMed 

    Google Scholar 
    Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol. 2020;29:299–308.PubMed 

    Google Scholar 
    Saad M, Eida A, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, le Roux X, Salles JF. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience. 2022;25:103821.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bounaffaa M, Florio A, le Roux X, Jayet PA. Economic and environmental analysis of maize inoculation by plant growth promoting rhizobacteria in the French Rhône-Alpes region. Ecol Econ. 2018;146:334–46.
    Google Scholar 
    Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil. 2014;378:1–33.CAS 

    Google Scholar 
    Mallon C, van Elsas J, Salles J. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23:719–29.CAS 
    PubMed 

    Google Scholar 
    Mawarda PC, le Roux X, van Elsas JD, Salles JF. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem.2020;148:1–13.
    Google Scholar 
    Mallon C, Poly F, le Roux X, Marring I, van Elsas J, Salles J. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology. 2015;96:915–26.PubMed 

    Google Scholar 
    Xing J, Jia X, Wang H, Ma B, Salles JF, Xu J. The legacy of bacterial invasions on soil native communities. Environ Microbiol. 2020;23:1–13.
    Google Scholar 
    Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.
    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;43:293–323.
    Google Scholar 
    Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    Sherr BF, Sherr EB, Berman T. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl Environ Microbiol. 1983;45:1196–201.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol. 2013;199:203–11.CAS 
    PubMed 

    Google Scholar 
    Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–18.CAS 

    Google Scholar 
    Long JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, et al. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS ONE. 2018;13:e0202941.PubMed 
    PubMed Central 

    Google Scholar 
    Iavicoli A, Boutet E, Buchala A, Métraux JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact. 2003;16:851–8.CAS 
    PubMed 

    Google Scholar 
    Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated pseudomonas fluorescens. Appl Environ Microbiol. 2010;76:5263–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 2013;7:2387–99.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jousset A, Scheu S, Bonkowski M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol. 2008;22:714–9.
    Google Scholar 
    Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mallon CA, le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mawarda PC, Lakke SL, Dirk van Elsas J, Salles JF. Temporal dynamics of the soil bacterial community following Bacillus invasion. iScience. 2022;25:1–17.
    Google Scholar 
    Yi Y, de Jong A, Spoelder J, Theo J, van Elsas JD, Kuipers OP. Draft genome sequence of Bacillus mycoides M2E15, a strain isolated from the endosphere of potato. Genome Announc. 2016;4:e00031.PubMed 
    PubMed Central 

    Google Scholar 
    Loznik B, Oosterkamp PJ. Fertilizer comprising protozoa and bacteria. World Intelectual Property Organization; 2017. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017105238.Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:1–11.
    Google Scholar 
    Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61:289–98.CAS 

    Google Scholar 
    Neher OT, Johnston MR, Zidack NK, Jacobsen BJ. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biol Control. 2009;48:140–6.
    Google Scholar 
    Gao Z. Soil protists: from traits to ecological functions. University of Utrecht; 2020. https://dspace.library.uu.nl/handle/1874/400054.Amacker N, Gao Z, Hu J, Jousset ALC, Kowalchuk GA, Geisen S. Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol. 2022;98:1–11.
    Google Scholar 
    Wright DA, Killham K, Glover LA, Prosser JI. Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol. 1995;61:3537–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright D, Killham K, Glover L, Biota JP-SS. The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. In: Brussaard L, Kooistra MJ, editors. Soil structure/soil biota interrelationships. Amsterdam: Elsevier; 1993.p.633–40.
    Google Scholar 
    Thewes S, Soldati T, Eichinger L. Editorial: amoebae as host models to study the interaction with pathogens. Front Cell Infect Microbiol. 2019;9:47.PubMed 
    PubMed Central 

    Google Scholar 
    Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere protists change metabolite profiles in Zea mays. Front Microbiol. 2018;9:857.PubMed 
    PubMed Central 

    Google Scholar 
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritz K. The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol. 2007;60:358–62.CAS 
    PubMed 

    Google Scholar 
    Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, et al. Biocontrol traits correlate with resistance to predation by protists in soil pseudomonads. Front Microbiol. 2020;11:3164.
    Google Scholar 
    Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1–7.
    Google Scholar 
    Hünninghaus M, Koller R, Kramer S, Marhan S, Kandeler E, Bonkowski M. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia. 2017;62:1–8.
    Google Scholar 
    van Elsas J, Chiurazzi M, Mallon C, Elhottova D, Krištůfek V, Salles J. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 

    Google Scholar 
    Horňák K, Corno G. Every coin has a back side: invasion by limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS ONE. 2012;7:e51576.PubMed 
    PubMed Central 

    Google Scholar 
    Gómez P, Paterson S, de Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:1–8.
    Google Scholar 
    Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19:726–39.CAS 
    PubMed 

    Google Scholar 
    Xiong W, Li R, Guo S, Karlsson I, Jiao Z, Xun W, et al. Microbial amendments alter protist communities within the soil microbiome. Soil Biol Biochem. 2019;135:379–82.CAS 

    Google Scholar 
    Schneider FD, Scheu S, Brose U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett. 2012;15:436–43.PubMed 

    Google Scholar 
    Brose U, Archambault P, Barnes AD, Bersier L-F, Boy T, Canning-Clode J, et al. Predator traits determine food-web architecture across ecosystems. Nat Ecol Evol. 2019;3:919–27.PubMed 

    Google Scholar 
    van Elsas JD, Trevors JT, Jansson JK, Nannipieri P, editors. Modern soil microbiology. 3rd ed. Boca Raton: CRC Press; 2019.Berga M, Székely AJ, Langenheder S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE. 2012;7:e365969.
    Google Scholar 
    Wang Z, Chen Z, Kowalchuk GA, Xu Z, Fu X, Kuramae EE. Succession of the resident soil microbial community in response to periodic inoculations. Appl Environ Microbiol. 2021;87:e00046.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).Wood, T. E. et al. in Ecosystem Consequences of Soil Warming: Microbes, Vegetation, Fauna and Soil Biogeochemistry (ed. Mohan, J.) Ch. 14 (Academic Press, 2019).Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Gestel, N. et al. Predicting soil carbon loss with warming. Nature 554, E4–E5 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–104 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).CAS 
    Article 

    Google Scholar 
    Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C. & LeBauer, D. S. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Glob. Change Biol. 22, 1690–1709 (2016).Article 

    Google Scholar 
    Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kimball, B. A. et al. Infrared heater system for warming tropical forest understory plants and soils. Ecol. Evol. 8, 1932–1944 (2018).DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00104 (2015)Bååth, E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. Glob. Change Biol. 24, 2850–2861 (2018).Article 

    Google Scholar 
    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).CAS 
    Article 

    Google Scholar 
    Ratkowsky, D. A., Olley, J., Mcmeekin, T. A. & Ball, A. Relationship between temperature and growth-rate of bacterial cultures. J. Bacteriol. 149, 1–5 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rinnan, R., Rousk, J., Yergeau, E., Kowalchuk, G. A. & Bååth, E. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Glob. Change Biol. 15, 2615–2625 (2009).Article 

    Google Scholar 
    Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob. Change Biol. https://doi.org/10.1111/gcb.14502 (2019).Li, J. Q., Bååth, E., Pei, J. M., Fang, C. M. & Nie, M. Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: an application of the square root (Ratkowsky) model. Glob. Change Biol. 27, 1281–1292 (2021).CAS 
    Article 

    Google Scholar 
    Rousk, J., Frey, S. D. & Bååth, E. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Glob. Change Biol. 18, 3252–3258 (2012).Article 

    Google Scholar 
    Nottingham, A. T. et al. Annual to decadal temperature adaptation of the soil bacterial community after translocation across an elevation gradient in the Andes. Soil Biol. Biochem. 158, 108217 (2021).CAS 
    Article 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).PubMed 
    Article 

    Google Scholar 
    Donhauser, J., Niklaus, P. A., Rousk, J., Larose, C. & Frey, B. Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils. Soil Biol. Biochem. 148, 107873 (2020).CAS 
    Article 

    Google Scholar 
    Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).Pold, G., Melillo, J. M. & DeAngelis, K. M. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00480 (2015).Zhou, J. Z. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083 (2016).Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).Oliverio, A. M., Bradford, M. A. & Fierer, N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob. Change Biol. 23, 2117–2129 (2017).Article 

    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Env. Resour. 43, 193–218 (2018).Article 

    Google Scholar 
    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. https://doi.org/10.3389/Fmicb.2013.00333 (2013).Pietikäinen, J., Pettersson, M. & Bååth, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 52, 49–58 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 
    Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).PubMed 
    Article 

    Google Scholar 
    LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lapebie, P., Lombard, V., Drula, E., Terrapon, N. & Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. https://doi.org/10.1038/s41467-019-10068-5 (2019).Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aydogan, E. L., Moser, G., Muller, C., Kampfer, P. & Glaeser, S. P. Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00144 (2018).Hu, D. Y., Zang, Y., Mao, Y. J. & Gao, B. L. Identification of molecular markers that are specific to the class thermoleophilia. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01185 (2019).Mohan, J. E. et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol. 10, 3–19 (2014).Article 

    Google Scholar 
    Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS 
    Article 

    Google Scholar 
    Reed, S. C. et al. Soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. Adv. Ecol. Res. 62, 225–252 (2020).Article 

    Google Scholar 
    Nottingham, A. T., Turner, B. L., Stott, A. W. & Tanner, E. V. J. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 80, 26–33 (2015).CAS 
    Article 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).Kemmitt, S. J. et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol. Biochem. 40, 61–73 (2008).CAS 
    Article 

    Google Scholar 
    Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fert. Soils 54, 11–19 (2018).CAS 
    Article 

    Google Scholar 
    Wallenstein, M., Allison, S., Ernakovich, J., Steinweg, J. M. & Sinsabaugh, R. in Soil Enzymology. Soil Biology Vol. 22 (eds Shukla, G. & Varma, A.) Ch. 13 (Springer, 2011).Zhou, X. Y., Chen, L., Xu, J. M. & Brookes, P. C. Soil biochemical properties and bacteria community in a repeatedly fumigated-incubated soil. Biol. Fert. Soils 56, 619–631 (2020).CAS 
    Article 

    Google Scholar 
    Sanchez-Julia, M. & Turner, B. L. Abiotic contribution to phenol oxidase activity across a manganese gradient in tropical forest soils. Biogeochemistry https://doi.org/10.1007/s10533-021-00764-0 (2021).Razavi, B. S., Liu, S. B. & Kuzyakov, Y. Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes. Soil Biol. Biochem. 105, 236–243 (2017).CAS 
    Article 

    Google Scholar 
    Pinney, M. M. et al. Parallel molecular mechanisms for enzyme temperature adaptation. Science 371, eaay2784 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fanin, N. et al. Soil enzymes in response to climate warming: mechanisms and feedbacks. Funct. Ecol. https://doi.org/10.1111/1365-2435.14027 (2022).Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob. Change Biol. 19, 2804–2813 (2013).Article 

    Google Scholar 
    Freeman, C., Ostle, N. & Kang, H. An enzymic ‘latch’ on a global carbon store. Nature 409, 149 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. USA 114, 11458–11463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Condit, R., Perez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. https://doi.org/10.1186/s40663-017-0103-1 (2017).Woodring, W. P. Geology of Barro Colorado Island. Smithson. Misc. Collect. 135, 1–39 (1958).
    Google Scholar 
    Sanchez, P. A. & Logan, T. J. Myths and science about the chemistry and fertility of soils in the tropics. SSSA Spec. Publ. 29, 35–46 (1992).CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).CAS 
    Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    Jenkinson, D. S., Brookes, P. C. & Powlson, D. S. Measuring soil microbial biomass. Soil Biol. Biochem. 36, 5–7 (2004).CAS 
    Article 

    Google Scholar 
    Kouno, K., Tuchiya, Y. & Ando, T. Measurement of soil microbial biomass phosphorus by an anion-exchange membrane method. Soil Biol. Biochem. 27, 1353–1357 (1995).CAS 
    Article 

    Google Scholar 
    Tabatabai, M. A. in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (ed. Page, A.L.) 778–833 (SSSA, 1994).Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).CAS 
    Article 

    Google Scholar 
    Price, N. & Stevens, L. Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins (Oxford Univ. Press, 1999).Hagerty, S. B., Allison, S. D. & Schimel, J. P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry 140, 269–283 (2018).CAS 
    Article 

    Google Scholar 
    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395–398 (2013).CAS 
    Article 

    Google Scholar 
    Spohn, M. et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97, 168–175 (2016).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).Article 

    Google Scholar 
    Geyer, K. M., Dijkstra, P., Sinsabaugh, R. & Frey, S. D. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128, 79–88 (2019).CAS 
    Article 

    Google Scholar 
    Bååth, E., Pettersson, M. & Söderberg, K. H. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol. Biochem. 33, 1571–1574 (2001).Article 

    Google Scholar 
    Bárcenas-Moreno, G., Gomez-Brandon, M., Rousk, J. & Bååth, E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob. Change Biol. 15, 2950–2957 (2009).Article 

    Google Scholar 
    Smirnova, E., Huzurbazar, S. & Jafari, F. PERFect: PERmutation Filtering test for microbiome data. Biostatistics 20, 615–631 (2019).PubMed 
    Article 

    Google Scholar 
    Alberdi, A. & Gilbert, M. T. P. hilldiv: an R package for the integral analysis of diversity based on Hill numbers. Preprint at bioRxiv https://doi.org/10.1101/545665 (2019).Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package, R Package version 2 https://cran.r-project.org/web/packages/vegan/ (2018).Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Roesch, L. F. W. et al. PIME: a package for discovery of novel differences among microbial communities. Mol. Ecol. Resour. 20, 415–428 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, D.W. labdsv: Ordination and multivariate analysis for ecology. R package version 2.0-1 https://cran.r-project.org/web/packages/labdsv/ (2019).Cao, Y. et al. microbiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics 38, 4027–4029 (2022).Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. Peerj 3, e1319 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327 (2020).PubMed 
    Article 

    Google Scholar  More

  • in

    Assessing mammal trapping standards in wild boar drop-net capture

    Dubois, S. et al. International consensus principles for ethical wildlife control. Conserv. Biol. 31(4), 753–760 (2017).PubMed 
    Article 

    Google Scholar 
    Frank, B. & Glikman, J. A. Human–wildlife conflicts and the need to include coexistence. In Human–Wildlife Interactions (eds Frank, B. et al.) 1–19 (Cambridge University Press, 2019).
    Google Scholar 
    Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707 (2009).CAS 
    Article 

    Google Scholar 
    Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum. Wildl. Interact. 5, 79–99 (2011).
    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 157 (2017).Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!—Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Vajas, P. et al. Many, large and early: Hunting pressure on wild boar relates to simple metrics of hunting effort. Sci. Total Environ. 698, 134251. https://doi.org/10.1016/j.scitotenv.2019.134251 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Licoppe, A. et al. Wild boar/feral pig in (peri-)urban areas. Managing wild boar in human-dominated landscapes. in International Union of Game Biologists (IUGB)—Congress IUGB 2013, 1–31 (2013).Torres-Blas, I. et al. Assessing methods to live-capture wild boars (Sus scrofa) in urban and peri-urban environments. Vet. Rec. 187, e85. https://doi.org/10.1136/vr.105766 (2020).Article 
    PubMed 

    Google Scholar 
    Adams, C. E. Urban Wildlife Management (CRC Press, 2016).
    Google Scholar 
    Conejero, C. et al. Past experiences drive citizen perception of wild boar in urban areas. Mamm. Biol. 96, 68–72 (2019).Article 

    Google Scholar 
    Lewis, J. S., VerCauteren, K. C., Denkhaus, R. M. & Mayer, J. J. Wild pig populations along the urban gradient. In Invasive Wild Pigs in North America (eds VerCauteren, K. C. et al.) 439–463 (CRC Press, 2019).Chapter 

    Google Scholar 
    Massei, G. et al. Effect of the GnRH vaccine GonaCon on the fertility, physiology and behaviour of wild boar. Wildl. Res. 35, 540–547 (2008).CAS 
    Article 

    Google Scholar 
    Náhlik, A. et al. Wild boar management in Europe: Knowledge and practice. In Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 339–353 (Cambridge University Press, 2017).Chapter 

    Google Scholar 
    Croft, S., Franzetti, B., Gill, R. & Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS One 15, e0238429. https://doi.org/10.1371/journal.pone.0238429 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Crespo, C. et al. Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS One 13, e0202289. https://doi.org/10.1371/journal.pone.0202289 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schemnitz, S. D., Batcheller, G. R., Lovallo, M. J., White, H. B. & Fall, M. W. Capturing and handling wild animals. In Research and Management Techniques for Wildlife and Habitats (ed. Silvy, N. J.) 232–269 (John Hopkins University Press, 2009).
    Google Scholar 
    ECGCGRF (European Community, Government of Canada, and Government of the Russian Federation). Agreement on international humane trapping standards. Off. J. Eur. Communities 42, 43–57 (1997).
    Google Scholar 
    Anonymous. International agreement in the form of an agreed minute between the European Community and the United States of America on humane trapping standards. Off. J. Eur. Communities L219, 26–37 (1998).
    Google Scholar 
    ISO 10990-4. Methods for testing killing trap systems used on land and underwater. in Animal (Mammal) Traps—Part 4 (International Organization for Standardization, 1999).ISO 10990-5. Methods for testing restraining traps. in Animal (Mammal) Traps—Part 5 (International Organization for Standardization, 1999).Proulx, G., Cattet, M., Serfass, T. L. & Baker, S. E. Updating the AIHTS trapping standards to improve animal welfare and capture efficiency and selectivity. Animals 10, 1–26 (2020).Article 

    Google Scholar 
    Proulx, G. Mammal Trapping—Wildlife Management, Animal Welfare and International Standards (Alpha Wildlife Publications, 2022).
    Google Scholar 
    Iossa, G., Soulsbury, C. & Harris, S. Mammal trapping: A review of animal welfare standards of killing and restraining traps. Anim. Welf. 16, 335–352 (2007).CAS 

    Google Scholar 
    Muñoz-Igualada, J., Shivik, J. A., Domínguez, F. G., Lara, J. & González, L. M. Evaluation of cage-traps and cable restraint devices to capture red foxes in Spain. J. Wildl. Manag. 72, 830–836 (2008).Article 

    Google Scholar 
    Trap Research and Development Committee. Best Trapping Practices (Fur Institute of Canada, 2018).
    Google Scholar 
    Virgós, E. et al. A poor international standard for trap selectivity threatens global carnivore and biodiversity conservation. Biodivers. Conserv. 25, 1409–1419 (2016).Article 

    Google Scholar 
    Barasona, J. A., López-Olvera, J. R., Beltrán-Beck, B., Gortázar, C. & Vicente, J. Trap-effectiveness and response to tiletamine-zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Vet. Res. 9, 107 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shury, T. Physical capture and restraint. In Zoo Animal and Wildlife Immobilization and Anesthesia (eds West, G. et al.) 109–124 (Wiley Blackwell, 2015).
    Google Scholar 
    Webb, S. L., Lewis, J. S., Hewitt, D. G., Hellickson, M. W. & Bryant, F. C. Assessing the helicopter and net gun as a capture technique for white-tailed deer. J. Wildl. Manag. 72, 310–314 (2008).Article 

    Google Scholar 
    López-Olvera, J. R. et al. Comparative evaluation of effort, capture and handling effects of drive nets to capture roe deer (Capreolus capreolus), Southern chamois (Rupicapra pyrenaica) and Spanish ibex (Capra pyrenaica). Eur. J. Wildl. Res. 55, 193–202 (2009).Article 

    Google Scholar 
    Breed, D. et al. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. 7, 1–21 (2019).Article 
    CAS 

    Google Scholar 
    Mentaberre, G. et al. Azaperone and sudden death of drive net-captured southern chamois. Eur. J. Wildl. Res. 58, 489–493 (2012).Article 

    Google Scholar 
    Gaskamp, J. A., Gee, K. L., Campbell, T. A., Silvy, N. J. & Webb, S. L. Effectiveness and efficiency of corral traps, drop nets and suspended traps for capturing wild pigs (Sus scrofa). Animals 11, 1565 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, S. E., Macdonald, D. W. & Ellwood, S. A. Double standards in spring trap welfare. In Proceedings of the Ninth International Conference on Urban Pests (eds Daivies, C. & Pfeiffer, W. H.) 139–145 (Pureprint Group, 2017).
    Google Scholar 
    López-Olvera, J. R., Castillo-Contreras, R., González-Crespo, C., Conejero, C. & Mentaberre, G. Wild boar is not welcome in the city. Barcelona Metròpolis 103, 22–23 (2017).
    Google Scholar 
    Conejero, C. et al. Conflicto o habituación: las dos caras de la percepción social del jabalí urbano. in Proceedings of XIV Congreso de la Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM, 2019).Conferencia Sectorial de Medio Ambiente. Directrices Técnicas para la Captura de Especies Cinegéticas Predadoras: Homologación de Métodos y Acreditación de Usuarios (Ministerio para la Transición Ecológica y el Reto Demográfico de España, 2011).Generalitat de Catalunya—Government of Catalonia. Decret 56/2014 relatiu a l’homologació de mètodes de captura en viu d’espècies cinegètiques depredadores i d’espècies exòtiques invasores depredadores i l’acreditació de les persones que en són usuàries. Diari Oficial de la Generalitat de Catalunya 6609 (2014).Fahlman, Å. et al. Wild boar behaviour during live-trap capture in a corral-style trap: Implications for animal welfare. Acta Vet. Scand. 62, 1–11 (2020).Article 

    Google Scholar 
    Sharp, T. & Saunders, G. A Model for Assessing the Relative Humaneness of Pest Animal Control Methods (Australian Government—Department of Agriculture, Fisheries and Forestry [New Millennium Print], 2011).
    Google Scholar 
    Ziegler, L., Fischer, D., Nesseler, A. & Lierz, M. Validation of the live trap ‘Krefelder Fuchsfalle’ in combination with electronic trap sensors based on AIHTS standards. Eur. J. Wildl. Res. 64, 17 (2018).Article 

    Google Scholar 
    Marco, I. et al. Capture myopathy in little bustards after trapping and marking. J. Wildl. Dis. 42, 889–891 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rideout, C. B. Comparison of techniques for capturing mountain goats. J. Wildl. Manag. 38, 573 (1974).Article 

    Google Scholar 
    Jedrzejewski, W. & Kamler, J. F. Modified drop-net for capturing ungulates. Wildl. Soc. Bull. 32, 1305–1308 (2004).Article 

    Google Scholar 
    Gaskamp, J. A. Use of drop-nets for wild pig damage and disease abatement. Master’s thesis, available electronically from https://hdl.handle.net/1969.1/148198 (Texas A&M University, 2012).Lavelle, M. J. et al. When pigs fly: Reducing injury and flight response when capturing wild pigs. Appl. Anim. Behav. Sci. 215, 21–25 (2019).Article 

    Google Scholar 
    Masilkova, M. et al. Observation of rescue behaviour in wild boar (Sus scrofa). Sci. Rep. 11, 16217 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).Article 

    Google Scholar 
    Manfredo, M., Teel, T. & Bright, A. Why are public values toward wildlife changing?. Hum. Dimens. Wildl. 8, 287–306 (2003).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabañeros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar  More

  • in

    Increased drought effects on the phenology of autumn leaf senescence

    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 
    Article 

    Google Scholar 
    Piao, S. L. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    Article 

    Google Scholar 
    Penuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).CAS 
    Article 

    Google Scholar 
    Garonna, I. et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Change Biol. 20, 3457–3470 (2014).Article 

    Google Scholar 
    Piao, S. L. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    Article 

    Google Scholar 
    Zhao, Y. et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl Acad. Sci. USA 113, 1949–1954 (2016).CAS 
    Article 

    Google Scholar 
    Keskitalo, J., Bergquist, G., Gardestrom, P. & Jansson, S. A cellular timetable of autumn senescence. Plant Physiol. 139, 1635–1648 (2005).CAS 
    Article 

    Google Scholar 
    Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).Article 

    Google Scholar 
    Wu, C. Y. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 8, 1092–1096 (2018).CAS 
    Article 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).CAS 
    Article 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).CAS 
    Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Liu, L. B. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).CAS 
    Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Piao, S. L. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).CAS 
    Article 

    Google Scholar 
    Fu, Y. S. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    Article 

    Google Scholar 
    Seastedt, T. R. & Knapp, A. K. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).CAS 
    Article 

    Google Scholar 
    Korner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).CAS 
    Article 

    Google Scholar 
    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).CAS 
    Article 

    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought. New Phytol. 178, 719–739 (2008).Article 

    Google Scholar 
    Nolan, R. H. et al. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Plant Cell Environ. 40, 3122–3134 (2017).CAS 
    Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 
    Article 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).CAS 
    Article 

    Google Scholar 
    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).CAS 
    Article 

    Google Scholar 
    Kannenberg, S. A., Driscoll, A. W., Szejner, P., Anderegg, W. R. L. & Ehleringer, J. R. Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2118052118 (2021).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. https://doi.org/10.1038/s41467-017-02690-y (2018).Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS 
    Article 

    Google Scholar 
    Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 189, 71–80 (2014).Article 

    Google Scholar 
    Zhang, X. Y. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ. 156, 457–472 (2015).Article 

    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).Article 

    Google Scholar 
    White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).Article 

    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M., Price, D. T., Kurz, W. A. & Wu, C. Y. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. J. Geophys. Res. 117, G03032 (2012).
    Google Scholar 
    Muñoz, S. ERA5-Land Monthly Averaged Data from 1981 to Present (C3S CDS, date accessed:10-8-2021); https://doi.org/10.24381/cds.68d2bb30Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Müller, W. A. et al. A Higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 10, 1383–1413 (2018).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    Article 

    Google Scholar 
    Allen, R. G., Smith, M., Pereira, L. S. & Perrier, A. An update for the calculation of reference evapotranspiration. ICID Bull. 43, 64–92 (1994).
    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01112-8 (2021).Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).CAS 
    Article 

    Google Scholar 
    Peng, J., Wu, C. Y., Zhang, X. Y., Wang, X. Y. & Gonsamo, A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Change Biol. 25, 2174–2188 (2019).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Beaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 × 0.25 Degree Version 2.0 (GES DISC, 2015); https://doi.org/10.5067/342OHQM9AK6QBeaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 ×0.25 Degree Version 2.1 (GES DISC, 2016); https://doi.org/10.5067/E7TYRXPJKWOQZheng, Y. et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12, 2725–2746 (2020).Article 

    Google Scholar 
    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. https://doi.org/10.1038/srep15956 (2015).Li, Y. et al. Estimating global ecosystem isohydry/anisohydry using active and passive microwave satellite data. J. Geophys. Res. 122, 3306–3321 (2017).Article 

    Google Scholar 
    Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).Article 

    Google Scholar 
    Botta, A., Viovy, N., Ciais, P., Friedlingstein, P. & Monfray, P. A global prognostic scheme of leaf onset using satellite data. Glob. Change Biol. 6, 709–725 (2000).Article 

    Google Scholar  More

  • in

    Ecological succession of the sponge cryptofauna in Hawaiian reefs add new insights to detritus production by pioneering species

    Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: Integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).
    Google Scholar 
    Cowles, H. C. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Part I. Geographical relations of the Dune Floras. Bot. Gaz. 27, 95–117 (1899).Article 

    Google Scholar 
    Gleason, H. A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53, 7–26 (1926).Article 

    Google Scholar 
    Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    Budowski, G. Studies on Forest Succession in Costa Rica und Panama. Ph.D. Thesis, Yale University, New Haven (1961).Opler, P. A., Baker, H. G. & Frankie, G. W. Plant reproductive characteristics during secondary succession in neotropical lowland forest ecosystems. Biotropica 12, 40–46 (1980).Article 

    Google Scholar 
    Clements, F. E. Plant Succession: An Analysis of Development in Vegetation (Carnegie Institute, Washington, 1916).Book 

    Google Scholar 
    Grigg, R. W. & Maragos, J. E. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55, 387–395 (1974).Article 

    Google Scholar 
    Tomascik, T., Van Woesik, R. & Mah, A. J. Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15, 169–175 (1996).ADS 
    Article 

    Google Scholar 
    McClanahan, T. R. Primary succession of coral-reef algae: Differing patterns on fished versus unfished reefs. J. Exp. Mar. Biol. Ecol. 218, 77–102 (1997).Article 

    Google Scholar 
    Reaka-Kudia, M. L. The global biodiversity of coral reefs: A comparison with rain forests. In Biodiversity II: Understanding and Proteting our Biological Resources (eds Reaka-Kudla, M. et al.) 83–108 (Joseph Henry Press, 1997).
    Google Scholar 
    Ginsburg, R. N. Geological and biological roles of cavities in coral reefs. In Perspectives on Coral Reefs (ed. Barnes, D. J.) 148–153 (Australian Institute of Marine Science, Manuka, A.C.T., Australia, 1983).Fautin, D. et al. An overview of marine biodiversity in United States waters. PLoS ONE 5, e11914 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pearman, J. K., Anlauf, H., Irigoien, X. & Carvalho, S. Please mind the gap—Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar. Environ. Res. 118, 20–30 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobluk, D. R. & Van Soest, R. W. M. Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bull. Mar. Sci. 44, 1207–1235 (1989).
    Google Scholar 
    Richter, C. & Wunsch, M. Cavity-dwelling suspension feeders in coral reefs – A new link in reef trophodynamics. Mar. Ecol. Prog. Ser. 188, 105–116 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Wunsch, M., Al-Moghrabi, S. M. & Kötter, I. Communities of coral reef Cavities in Jordan, Gulf of Aqaba (Red Sea). In Proceedings of 9th International Coral Reef Symposium, Vol. 1 (2000).Kornder, N. A. et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs 40, 1137–1153 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Goeij, J. M. & Van Duyl, F. C. Coral cavities are sinks of dissolved organic carbon (DOC). Limnol. Oceanogr. 52, 2608–2617 (2007).ADS 
    Article 

    Google Scholar 
    Slattery, M., Gochfeld, D. J., Easson, C. G. & O’Donahue, L. R. K. Facilitation of coral reef biodiversity and health by cave sponge communities. Mar. Ecol. Prog. Ser. 476, 71–86 (2013).ADS 
    Article 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science (80-) 342, 108–110 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Rix, L. et al. Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar. Ecol. Prog. Ser. 589, 85–96 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Lesser, M. P. & Pawlik, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (Springer, 2017). https://doi.org/10.1007/978-3-319-59008-0_8.Choi, D. R. Ecological succession of reef cavity-dwellers (coelobites) in coral rubble. Bull. Mar. Sci. 35, 72–79 (1984).
    Google Scholar 
    Jackson, J. B. C. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies. Am. Nat. 111, 743–767 (1977).Article 

    Google Scholar 
    Kobluk, D. R. Cryptic faunas in reefs: Ecology and geologic importance. Palaios 3, 379–390 (1988).ADS 
    Article 

    Google Scholar 
    Hooper, J. N. A. & Van Soest, R. W. M. Class Demospongiae Sollas, 1885. In Systema Porifera (2002). https://doi.org/10.1007/978-1-4615-0747-5_3.Rützler, K. The role of sponges in the mesoamerican barrier-reef ecosystem, Belize. Adv. Mar. Biol. 61, 211–271 (2012).PubMed 
    Article 

    Google Scholar 
    Wulff, J. Ecological interactions and the distribution, abundance, and diversity of sponges. Adv. Mar. Biol. 61, 273–344 (2012).PubMed 
    Article 

    Google Scholar 
    Riesgo, A. et al. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zool. Scr. 43, 101–117 (2014).Article 

    Google Scholar 
    Pawlik, J. R., Chanas, B., Toonen, R. J. & Fenical, W. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127, 183–194 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Leong, W. & Pawlik, J. R. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Mar. Ecol. Prog. Ser. 406, 71–78 (2010).ADS 
    Article 

    Google Scholar 
    Maldonado, M. & Bergquist, P. R. Phylum porifera. In Atlas of Marine Invertebrates (ed. Young, C.) 21–50 (Academic, 2002).
    Google Scholar 
    Lanna, E. & Klautau, M. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J. Mar. Biol. Assoc. U. K. 98, 505–514 (2018).Article 

    Google Scholar 
    Lanna, E., Monteiro, L. C. & Klautau, M. Life cycle of Paraleucilla magna Klautau, Monteiro and Borojevic, 2004 (Porifera, Calcarea). In Porifera Research: Biodiversity, Innovation and Sustainability 413–418 (2007).Calazans, V. P. S. B. & Lanna, E. Influence of endogenous and exogenous factors on the reproductive output of a cryptogenic calcareous sponge. Mar. Biodivers. 49, 2837–2850 (2019).Article 

    Google Scholar 
    Zimmerman, T. L. & Martin, J. W. Artificial reef matrix structures (ARMS): An inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res. 16, 59–64 (2004).Article 

    Google Scholar 
    Brainard, R. et al. Autonomous reef monitoring structures (ARMS): A tool for monitoring indices of biodiversity in the Pacific Islands. In 11th Pacific Science Inter-Congress, Papeete, Tahiti (2009).Knowlton, N. et al. Coral reef biodiversity. In Life in the World’s Oceans: Diversity, Distribution, and Abundance 65–74 (2010). https://doi.org/10.1002/9781444325508.ch4.Timmers, M. A., Vicente, J., Webb, M., Jury, C. P. & Toonen, R. J. Sponging up diversity: Evaluating metabarcoding performance for a taxonomically challenging phylum within a complex cryptobenthic community. Environ. DNA https://doi.org/10.1002/edn3.163 (2020).Article 

    Google Scholar 
    Vicente, J. et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs https://doi.org/10.1007/s00338-021-02109-7 (2021).Article 

    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13 (2015).Article 

    Google Scholar 
    Franklin, E. C., Jokiel, P. L. & Donahue, M. J. Predictive modeling of coral distribution and abundance in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 481, 121–132 (2013).ADS 
    Article 

    Google Scholar 
    Jury, C. et al. Experimental reef communities persist under future ocean acidification and warming. Res. Sq. (2021).Gorospe, K. D. et al. Local biomass baselines and the recovery potential for Hawaiian coral reef fish communities. Front. Mar. Sci. 5, 162 (2018).Article 

    Google Scholar 
    Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl. Acad. Sci. 118(39), e2103275118 (2021).
    Wörheide, G. & Erpenbeck, D. DNA taxonomy of sponges—Progress and perspectives. J. Mar. Biol. Assoc. U. K. 87, 1629–1633 (2007).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020). https://doi.org/10.1017/CBO9781107415324.004.Oksanen, J. et al. Package vegan. Community Ecology Packaging version 2, 1-295 (2013).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models (2020).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Ribeiro, B., Padua, A., Paiva, P. C., Custódio, M. R. & Klautau, M. Exploitation of micro refuges and epibiosis: Survival strategies of a calcareous sponge. J. Mar. Biol. Assoc. U. K. 98, 495–503 (2018).Article 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne’ohe bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49, 1–42 (2011).
    Google Scholar 
    Barnes, D. K. A., Ashton, G. V., Morley, S. A. & Peck, L. S. 1 °C warming increases spatial competition frequency and complexity in Antarctic marine macrofauna. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    Maldonado, M., Giraud, K. & Carmona, C. Effects of sediment on the survival of asexually produced sponge recruits. Mar. Biol. 154, 631–641 (2008).CAS 
    Article 

    Google Scholar 
    Eckman, J. E. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28, 241–257 (1983).ADS 
    Article 

    Google Scholar 
    Palardy, J. E. & Witman, J. D. Water flow drives biodiversity by mediating rarity in marine benthic communities. Ecol. Lett. 14, 63–68 (2011).PubMed 
    Article 

    Google Scholar 
    Falter, J. L., Atkinson, M. J. & Merrifield, M. A. Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr. 49, 1820–1831 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Sale, P. F. Coexistence of coral reef fishes—A lottery for living space. Environ. Biol. Fish. 3, 85–102 (1978).Article 

    Google Scholar 
    Karlson, R. H. & Jackson, J. B. C. Competitive networks and community structure: A simulation study. Ecology 62, 670–678 (1981).Article 

    Google Scholar 
    Hixon, M. A. Predation as a process structuring coral reef fish communities. In The Ecology of Fishes on Coral Reefs (1991). https://doi.org/10.1016/b978-0-08-092551-6.50022-2.Hobson, E. S. Feeding patterns among tropical reef fishes. Am. Sci. 63, 382–392 (1975).ADS 

    Google Scholar 
    Bailey-Brock, J. H. Fouling community development on an artificial reef in Hawaiian waters. Bull. Mar. Sci. 44, 580–591 (1989).
    Google Scholar 
    Vicente, J., Toonen, R. J. & Bowen, B. W. Hawaiian green turtles graze on bioeroding sponges at Maunalua Bay, O‘ahu, Hawai‘i, Galaxea. J. Coral Reef Stud. 21, 3–4 (2019).Article 

    Google Scholar 
    Vicente, J., Osberg, A., Marty, M. J., Rice, K. & Toonen, R. J. Influence of sponge palatability on the feeding preferences of the endemic Hawaiian tiger cowrie for indigenous and introduced sponges. Mar. Ecol. Prog. Ser. 647, 109–122 (2020).ADS 
    Article 

    Google Scholar 
    Klumpp, D., McKinnon, A. & Mundy, C. Motile cryptofauna of a coral reef: Abundance, distribution and trophic potential. Mar. Ecol. Prog. Ser. 45, 95–108 (1988).ADS 
    Article 

    Google Scholar 
    Carpenter, R. C. Invertebrate predators and grazers. In Life and Death of Coral Reefs (1997). https://doi.org/10.1007/978-1-4615-5995-5_9.Glynn, P. W. & Enochs, I. C. Invertebrates and their roles in coral reef ecosystems. In Coral Reefs: An Ecosystem in Transition (2011). https://doi.org/10.1007/978-94-007-0114-4_18.Ďuriš, Z., Horká, I., Juračka, P. J., Petrusek, A. & Sandford, F. These squatters are not innocent: The evidence of parasitism in Sponge-Inhabiting shrimps. PLoS ONE 6, e21987 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pawlik, J. R. A sponge-eating worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae). Mar. Ecol. 4, 65–79 (1983).ADS 
    Article 

    Google Scholar 
    Degoeij, J. M. et al. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J. Exp. Biol. 212, 3892–3900 (2009).CAS 
    Article 

    Google Scholar 
    Alexander, B. E. et al. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9, e109486 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).ADS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science (80-). 364, 1189–1192 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Buss, L. W. & Jackson, J. B. C. Competitive networks: Nontransitive competitive relationships in cryptic coral reef environments. Am. Nat. 113, 223–234 (1979).Article 

    Google Scholar 
    Vicente, J., Ríos, J. A., Zea, S. & Toonen, R. J. Molecular and morphological congruence of three new cryptic Neopetrosia spp in the Caribbean. PeerJ 7, e6371–e6381 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Hinfluences severe disease-mediated population declines in two of the most common garden bird species in Great Britain

    Gregory, R. D. & van Strien, A. Wild bird indicators: Using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Urban bird feeding: Connecting people with nature. PLoS ONE 11, e0158717 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).Article 

    Google Scholar 
    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R. & de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 30, 205–214 (2014).PubMed 
    Article 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452), 443–449 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: Epizootiology and demographic impacts on àapapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).Article 

    Google Scholar 
    George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl. Acad. Sci. USA. 112, 14290–14294 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 36072 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng, T. L. et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 35, 1586–1597 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushton, S. P. et al. Disease threats posed by alien species: The role of a poxvirus in the decline of the native red squirrel in Britain. Epidemiol. Infect. 134, 521–533 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434), 1459–1463 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shutt, J. D. & Lees, A. C. Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biol. Conserv. 261, 109295 (2021).Article 

    Google Scholar 
    Van Doren, B. M. et al. Human activity shapes the wintering ecology of a migratory bird. Glob. Chang. Biol. 27, 2715–2727 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 2088 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lawson, B. et al. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170091 (2018).Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).Article 

    Google Scholar 
    Siriwardena, G. M. et al. The effect of supplementary winter seed food on breeding populations of farmland birds: Evidence from two large-scale experiments. J. Appl. Ecol. 44, 920–932 (2007).Article 

    Google Scholar 
    Kubasiewicz, L. M., Bunnefeld, N., Tulloch, A. I. T., Quine, C. P. & Park, K. J. Diversionary feeding: An effective management strategy for conservation conflict? Biodivers. Conserv. 25, 1–22 (2016).Article 

    Google Scholar 
    Lawson, B. et al. A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect. Genet. Evol. 11, 1638–1645 (2011).PubMed 
    Article 

    Google Scholar 
    Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5, e12215 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forrester, D. J. & Foster, G. W. Trichomonosis. In: Parasitic Diseases of Wild Birds 120–153 (Wiley-Blackwell, 2008).Lawson, B. et al. Evidence of spread of the emerging infectious disease, finch trichomonosis, by migrating birds. EcoHealth 8, 143–153 (2011).PubMed 
    Article 

    Google Scholar 
    Lawson, B. et al. The emergence and spread of finch trichomonosis in the British Isles. Philos. Trans. R. Soc. B Biol. Sci. 367, 2852–2863 (2012).Article 

    Google Scholar 
    Woodward, I. D. et al. BirdTrends 2020: Trends in numbers, breeding success and survival for UK breeding birds. Research Report 732. BTO, Thetford. (2020).Enoksson, B. Age- and sex-related differences in dominance and foraging behaviour of nuthatches Sitta europaea. Anim. Behav. 36, 231–238 (1988).Article 

    Google Scholar 
    Tarvin, K. A. & Woolfenden, G. E. Patterns of dominance and aggressive behavior in blue jays at a feeder. Condor 99, 434–444 (1997).Article 

    Google Scholar 
    Brittingham, M. C. & Temple, S. A. Use of winter feeders by black-capped chickadees. Wildl. Soc. 56, 103–110 (1992).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    Musgrove, A. J. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 106, 64–100 (2013).
    Google Scholar 
    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland. (T & AD Poyser, 2002).Main, I. G. The partial migration of Fennoscandian Greenfinches Carduelis chloris. Ringing Migr. 20, 167–180 (2000).Article 

    Google Scholar 
    Lack, P. C. The Atlas of Wintering Birds in Britain and Ireland. (T. & A.D. Poyser, 1986).Robinson, R. A. BirdFacts: profiles of birds occurring in Britain & Ireland. BTO, Thetford (2005). Available at: http://www.bto.org/birdfacts. Accessed: 15 May 2022.Tratalos, J. et al. Bird densities are associated with household densities. Glob. Chang. Biol. 13, 1685–1695 (2007).ADS 
    Article 

    Google Scholar 
    Gregory, R. D. Broad-scale habitat use of sparrows, finches and buntings in Britain. Die Vogelwelt 120, 47–57 (1999).
    Google Scholar 
    Newton, I. Finches. New Naturalist Series, Volume: 55. (HarperCollins, 1972).Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).Article 

    Google Scholar 
    Crick, H. Q. P. A bird-habitat coding system for use in Britain and Ireland incorporating aspects of land-management and human activity. Bird Study 39, 1–12 (1992).Article 

    Google Scholar 
    Davies, Z. G. et al. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 142, 761–771 (2009).Article 

    Google Scholar 
    Balmer, D. E. et al. Bird Atlas 2007–11: The breeding and wintering birds of Britain and Ireland. (BTO Books, 2013).Lawson, B. et al. Epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7, 294–306 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svensson, L. Identification guide to European passerines, 4th edition. (BTO, 1992).Jenni, L. & Winkler, R. Moult and ageing of European passerines, 2nd edition. (Helm, 2020).Baillie, S. R. The contribution of ringing to the conservation and management of bird populations: A review. Ardea 89, 167–184 (2001).
    Google Scholar 
    Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: A hierarchical perspective (Academic Press, 2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2020).Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (eds. Hornik, K., Leisch, F. & Zeileis, A.) (2003).Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R package version 0.6–1. (2020).Robinson, R. A., Morrison, C. A. & Baillie, S. R. Integrating demographic data: Towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361–1372 (2014).Article 

    Google Scholar 
    Newson, S. E., Evans, K. L., Noble, D. G., Greenwood, J. J. D. & Gaston, K. J. Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. J. Appl. Ecol. 45, 1330–1338 (2008).Article 

    Google Scholar 
    Newson, S. E., Massimino, D., Johnston, A., Baillie, S. R. & Pearce-Higgins, J. W. Should we account for detectability in population trends? Bird Study 60, 384–390 (2013).Article 

    Google Scholar 
    Crick, H. Q. P., Baillie, S. R. & Leech, D. I. The UK Nest Record Scheme: its value for science and conservation. Bird Study 50, 254–270 (2003).Article 

    Google Scholar 
    Abadi, F., Gimenez, O., Arlettaz, R. & Schaub, M. An assessment of integrated population models: Bias, accuracy, and violation of the assumption of independence. Ecology 91, 7–14 (2010).PubMed 
    Article 

    Google Scholar 
    Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 89, e01364 (2019).Article 

    Google Scholar 
    Weegman, M. D., Arnold, T. W., Clark, R. G. & Schaub, M. Partial and complete dependency among data sets has minimal consequence on estimates from integrated population models. Ecol. Appl. 31, e02258 (2021).Article 

    Google Scholar 
    Koons, D. N., Iles, D. T., Schaub, M. & Caswell, H. A life-history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol. Lett. 19, 1023–1031 (2016).PubMed 
    Article 

    Google Scholar 
    Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol Appl. 27, 2102–2115 (2017).PubMed 
    Article 

    Google Scholar 
    Caswell, H. Matrix population models: Construction, analysis and interpretation. (Sinauer Associates, 2001).Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).Article 

    Google Scholar 
    Stanbury, A. et al. The status of our bird populations: The fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Lehikoinen, A., Lehikoinen, E., Valkama, J., Väisänen, R. A. & Isomursu, M. Impacts of trichomonosis epidemics on greenfinch Chloris chloris and chaffinch Fringilla coelebs populations in Finland. Ibis 155, 357–366 (2013).Article 

    Google Scholar 
    PECBMS. EBCC/BirdLife/RSPB/CSO’ Pan-European Common Bird Monitoring Scheme. (2021). Available at: https://pecbms.info/. (Accessed: 14th July 2022)Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change. (European Bird Census Council and Lynx Edicions, 2020).Rijks, J. M. et al. Trichomonosis in greenfinches (Chloris chloris) in the Netherlands 2009–2017: A concealed threat. Front. Vet. Sci. 6, 425 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boele, A. et al. Broedvogels in Nederland in 2020. Sovonrapport 2022/05. (Sovon Vogelonderzoek Nederland, Nijmegen., 2022).Jones, D. The Birds at My Table: Why We Feed Wild Birds and Why It Matters. (Cornell University Press, 2018).Pennycott, T. W. et al. Causes of death of wild birds of the family fringillidae in Britain. Vet. Rec. 143, 155–158 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouwman, K. M. & Hawley, D. M. Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biol. Lett. 6, 462–465 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson, B. et al. Acute necrotising pneumonitis associated with Suttonella ornithocola infection in tits (Paridae). Vet. J. 188, 96–100 (2011).PubMed 
    Article 

    Google Scholar 
    Clewley, G. D., Robinson, R. A. & Clark, J. A. Estimating mortality rates among passerines caught for ringing with mist nets using data from previously ringed birds. Ecol. Evol. 8, 5164–5172 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francis, M. L. et al. Effects of supplementary feeding on interspecific dominance hierarchies in garden birds. PLoS ONE 13, e0202152 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wojczulanis-Jakubas, K., Kulpińska, M. & Minias, P. Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter. J. Ethol. 33, 159–163 (2015).Article 

    Google Scholar 
    Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa. Volume VIII: Crows to Finches. (Oxford University Press, 1994).Brook, B. W. & Bradshaw, C. J. A. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87, 1445–1451 (2006).PubMed 
    Article 

    Google Scholar 
    Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. USA. 97, 5303–5306 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochachka, W. M., Dobson, A. P., Hawley, D. M. & Dhondt, A. A. Host population dynamics in the face of an evolving pathogen. J. Anim. Ecol. 90, 1480–1491 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J. F. et al. The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140, 1234–1245 (2013).PubMed 
    Article 

    Google Scholar 
    Orros, M. E. & Fellowes, M. D. E. Wild bird feeding in an urban area: Intensity, economics and numbers of individuals supported. Acta Ornithol. 50, 43–58 (2015).Article 

    Google Scholar 
    Dirren, S., Borel, S., Wolfrum, N. & Korner-Nievergelt, F. Trichomonas gallinae infections in the naïve host Montifringilla nivalis subsp nivalis. J. Ornithol. 163, 333–337 (2022).Article 

    Google Scholar 
    Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 165, 128–138 (2013).Article 

    Google Scholar 
    Silvertown, J., Buesching, C., Jacobson, S. & Rebelo, T. Citizen science and nature conservation. in Key Topics in Conservation Biology 2 (eds. Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Baillie, S. R., Wernham, C. V. & Clark, J. A. Development of the British and Irish ringing scheme and its role in conservation biology. Ringing Migr. 19, S5–S19 (1999).Article 

    Google Scholar 
    Greenwood, J. J. D. Citizens, science and bird conservation. J. Ornithol. 148, S77–S124 (2007).Article 

    Google Scholar 
    Horns, J. J., Adler, F. R. & Şekercioğlu, Ç. H. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 221, 151–159 (2018).Article 

    Google Scholar 
    Ryan, R. L., Kaplan, R. & Grese, R. E. Predicting volunteer commitment in environmental stewardship programmes. J. Environ. Plan. Manag. 44, 629–648 (2001).Article 

    Google Scholar 
    Maund, P. R. et al. What motivates the masses: Understanding why people contribute to conservation citizen science projects. Biol. Conserv. 246, 108587 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, V. Y. & Greig, E. I. Young adults’ motivations to feed wild birds and influences on their potential participation in citizen science: An exploratory study. Biol. Conserv. 235, 295–307 (2019).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Human–nature interactions and the consequences and drivers of provisioning wildlife. Philos.Trans. R. Soc. B Biol. Sci. 373, 20170092 (2018).Article 

    Google Scholar 
    Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).Article 

    Google Scholar 
    Rocha, G. & Quillfeldt, P. Effect of supplementary food on age ratios of European turtle doves (Streptopelia turtur L.). Anim. Biodivers. Conserv. 38, 11–21 (2015).Article 

    Google Scholar  More

  • in

    A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States

    Smol, J. P. & Stoermer, E. F. The Diatoms: Application for the Environmental and Earth Sciences (Cambridge University Press, 2010).Charles, D. F. Relationships between surface sediment diatom assemblages and lake water characteristics in Adirondack lakes. Ecology 66, 994–111 (1985).Article 

    Google Scholar 
    Whitehead, D. R., Charles, D. F., Jackson, S. T., Reed S. E. & Sheehan, M. C. In Diatoms and Lake Acidity (eds J. P. Smol et al.) 251–274 (W. Junk, 1986).Whitehead, D. R. et al. The developmental history of Adirondack (N.Y.) lakes. J. Paleolimnol. 2, 185–206 (1989).ADS 
    Article 

    Google Scholar 
    Whitehead, D. R., Charles, D. F. & Goldstein, R. A. The PIRLA project (Paleoecological Investigation of Recent Lake Acidification): an introduction to the synthesis of the project. J. Paleolimnol. 3, 187–194 (1990).ADS 
    Article 

    Google Scholar 
    Dixit, S. S. et al. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol. 8, 27–47 (1993).ADS 
    Article 

    Google Scholar 
    Dixit, S. S. & Smol, J. P. Diatom evidence of past water quality changes in Adirondack seepage lakes (New York, USA). Diatom Res. 1, 113–129 (1995).Article 

    Google Scholar 
    Allen, A. P. et al. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Can. J. Fish. Aquat. 56, 2029–2040 (1999).Article 

    Google Scholar 
    Pither, J. & Aarssen, L. W. The evolutionary species pool hypothesis and patterns of freshwater diatom diversity along a pH gradient. J. Biogeogr. 32, 503–513 (2005).Article 

    Google Scholar 
    Winegardner, A. K., Legendre, P., Beisner, B. E. & Gregory-Eaves, I. Diatom diversity patterns over the past c. 150 years across the conterminous United States of America: Identifying mechanisms behind beta diversity. Global Ecol. Biogeogr. 26, 1303–1315 (2017).Article 

    Google Scholar 
    Dixit, S. S. & Smol, J. P. Diatoms as indicators in the Environmental Monitoring and Assessment Program-Surface Waters (EMAP-SW). Environ. Monit. Assess. 31, 275–37 (1994).PubMed 

    Google Scholar 
    Dixit, S. S. et al. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can. J. Fish. Aquatic Sci. 56, 131–152 (1999).Article 

    Google Scholar 
    Stevenson, R. J., Zalack, J. & Wolin, J. A multimetric index of lake diatom condition using surface sediment assemblages. Freshw. Sci. 32, 1005–1025 (2013).Article 

    Google Scholar 
    Liu, B. & Stevenson, R. J. Improving assessment accuracy for lake biological condition by classifying lakes with diatom typology, varying metrics and modeling multimetric indices. Sci. Total Environ. 609, 263–271 (2017).ADS 
    Article 

    Google Scholar 
    Herlihy, A. T. et al. Using multiple approaches to develop nutrient criteria for lakes in the conterminous USA. Freshw. Sci. 32, 367–384 (2013).Article 

    Google Scholar 
    Bachmann, R. W., Hoyer, M. V. & Canfield, D. E. The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnol. Oceanogr. 58, 945–950 (2013).ADS 
    Article 

    Google Scholar 
    McDonald, C. P. et al. Comment on Bachmann et al. (2013): A nonrepresentative sample cannot describe the extent of cultural eutrophication of natural lakes in the United States. Limnol. Oceanogr. 59, 2226–2230 (2014).ADS 
    Article 

    Google Scholar 
    Smith, V. H. et al. Comment: Cultural eutrophication of natural lakes in the United States is real and widespread. Limnol. Oceanogr. 59, 2217–2225 (2014).ADS 
    Article 

    Google Scholar 
    Bachmann, R. W., Hoyer, M. V. & Canfield, D. E. Response to comments: Quantification of the extent of cultural eutrophication of natural lakes in the United States. Limnol. Oceanogr. 59, 2231–2239 (2014).ADS 
    Article 

    Google Scholar 
    Bachmann, R. W., Hoyer, M. V., Croteau, A. C. & Canfield, D. E. Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes. Environ. Monit. Assess. 189, 206 (2017).Article 

    Google Scholar 
    Stager, J. C., Leavitt, P. R. & Dixit, S. S. Assessing impacts of past human activity on the water quality of Upper Saranac lake, New York. Lake Reserv. Manag. 13, 175–184 (1997).Article 

    Google Scholar 
    Dixit, S. S., Dixit, A. S., Smol, J. P., Hughes, R. M. & Paulsen, S. G. Water Quality Changes from Human Activities in Three Northeastern USA Lakes. Lake Reserv. Manag. 16, 35–321 (2000).Article 

    Google Scholar 
    Köster, D. et al. Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes. Aquat. Ecosyst. Health 8, 117–131 (2005).Article 

    Google Scholar 
    Enache, M. D., Charles, D. F., Belton, T. J. & Callinan, C. W. Total phosphorus changes in New York and New Jersey lakes (USA) inferred from sediment cores. Lake Reserv. Manag. 28, 293–310 (2012).Article 

    Google Scholar 
    Rowell, H. C. et al. Quantitative paleolimnological inference models applied to a high-resolution biostratigraphic study of lake degradation and recovery, Onondaga Lake, New York (USA). J Paleolimnol. 55, 241–258 (2016).Article 

    Google Scholar 
    Tyree, M. A., Bishop, I. W., Hawkins, C. P., Mitchell, R. & Spaulding, S. A. Reduction of taxonomic bias in diatom species data. Limnol. Oceanogr. Methods 18, 271–279 (2020).Article 

    Google Scholar 
    Stribling, J. B., Pavlik, K. L., Holdsworth, S. M. & Leppo, E. W. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. J. North Am. Benthol. Soc. 27, 906–919 (2008).Article 

    Google Scholar 
    Thomson, S. A. et al. Towards a global list of accepted species II. Consequences of inadequate taxonomic list governance. Org. Divers. Evol. 21, 623–630 (2021).Article 

    Google Scholar 
    Spaulding, S. A. et al. Diatoms of North America https://diatoms.org/ (2020).Lee, S. S., Bishop, I. W., Spaulding, S. A., Mitchell, R. M. & Yuan, L. L. Taxonomic harmonization may reveal a stronger association between diatom assemblages and total phosphorus in large datasets. Ecol. Indic. 102, 166–174 (2019).Article 

    Google Scholar 
    Cumming, B. F. et al. How Much Acidification Has Occurred in Adirondack Region Lakes (New York, USA) since Preindustrial Times? Can. J. Fish. Aquat. 49, 128–141 (1992).Article 

    Google Scholar 
    Larsen, D. P., Stevens, D. L., Selle, A. R. & Paulsen, S. G. Environmental Monitoring and Assessment Program, EMAP-Surface Waters: A northeast lakes pilot. Lake Reserv. Manag. 7, 1–11 (1991).Article 

    Google Scholar 
    Hughes, R. M., Paulsen, S. G. & Stoddard, J. L. EMAP-surface waters: A multiassemblage, probability survey of ecological integrity in the USA. Hydrobiologia 422, 429–443 (2000).Article 

    Google Scholar 
    Larsen, D. P., Thornton, K. W., Urquhart, N. S. & Paulsen, S. G. The role of sample surveys for monitoring the condition of the nation’s lakes. Environ. Monit. Assess. 32, 101–34 (1994).Article 

    Google Scholar 
    U.S. Environmental Protection Agency. Environmental Monitoring & Assessment Program. Northeast Lakes 1991-94 Data Sets. https://archive.epa.gov/emap/archive-emap/web/html/nelakes.html (2016).U.S. Environmental Protection Agency. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes. Report No. EPA-841-R-09-001. (U.S. Environmental Protection Agency, 2009).U.S. Environmental Protection Agency. 2012 National Lakes Assessment. Field Operations Manual. Report No. EPA 841-B-11-003. (U.S. Environmental Protection Agency, 2011)Charles, D. F., Knowles, C. & Davis, R. S. Protocols for the Analysis of Algal Samples Collected as Part of the U.S. Geological Survey National Water-Quality Assessment Program. https://water.usgs.gov/nawqa/protocols/algprotocol/algprotocol.pdf Report (2002).Krammer, K. Diatoms of Europe V. 1. (Gantner Verlag, 2000)Lange-Bertalot, H. Diatoms of Europe V. 2. (Gantner Verlag, 2001)Krammer, K. Diatoms of Europe V. 3. (Gantner Verlag, 2002)Krammer, K. Diatoms of Europe V. 4. (Gantner Verlag, 2003)Siver, P. A. & Hamilton, P. B. Iconographia Diatomologica V. 22. (Gantner Verlag, 2011).Levkov, Z., Metzeltin, D. & Pavlov, A. Diatoms of Europe V. 7. (Gantner Verlag, 2013)Levkov, Z., Mitić-Kopanja, D. & Reichardt, E. Diatoms of Europe V. 8. (Koeltz Botanical Books, 2016).Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. Freshwater Benthic Diatoms of Central Europe (Koeltz Botanical Books, 2017).Guiry, M. D. & Guiry, G. M. AlgaeBase https://www.algaebase.org (2021).Kociolek, J. P. et al. DiatomBase http://www.diatombase.org (2021).De Cáceres, M. Package ‘indicspecies’ https://cran.r-project.org/web/packages/indicspecies/indicspecies.pdf (2020).Legendre, P. & Birks, H. J. B. In Tracking Environmental Change Using Lake Sediments. V. 5: Data Handling and Numerical Techniques (eds Birks H. J. B. et al.) 201–248 (Springer Dordrecht, 2012).Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    Article 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’ https://cran.r-project.org/web/packages/vegan/vegan.pdf (2020).Spaulding, S. A. Diatom Laboratory: Research Labs & Groups: INSTAAR: CU-Boulder https://instaar.colorado.edu/research/labs-groups/diatom-laboratory//research-detail (2021).Conservation Gateway. Northeast Lake and Pond Classification System. http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/freshwater/Pages/Northeast-Lakes.aspx (2021).Soranno, P. & Cheruvelil, K. LAGOS-NE-LIMNO v1.087.3: A module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. Lakes: 1925–2013. Environmental Data Initiative https://doi.org/10.6073/pasta/08c6f9311929f4874b01bcc64eb3b2d7 (2019).U.S. Geological Survey. National Hydrography Dataset (NHD). USGS Unnumbered Series. (U.S. Geological Survey, 2001).Potapova, M. G., Lee, S. S., Spaulding, S. A. & Schulte, N. O. A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States. U.S. EPA Office of Research and Development (ORD) https://doi.org/10.23719/1524246 (2022).U.S. Environmental Protection Agency. National Aquatic Resource Surveys. National Lakes Assessment 2007 (data and metadata files) https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys (2010).U.S. Environmental Protection Agency. National Aquatic Resource Surveys. National Lakes Assessment 2017 (data and metadata files). http://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys (2021). More

  • in

    Genetic, maternal, and environmental influences on sociality in a pedigreed primate population

    Study subjectsSubjects in our study are individually recognized wild capuchins found in and around the Lomas Barbudal Biological Reserve in Guanacaste, Costa Rica. This population has been under observation since 1990 (Perry 2012; Perry et al. 2012), including near continuous observation from January 2002 through March 2020.Data collectionWe use proximity data on subjects collected during group scan sampling between January 2001 and March 2020 (Altmann 1974). Included in scans are the identity of the subject, and the identity of other individuals within approximately 4 meters of them. Scans have been collected on all individuals in study groups since 2002, and on all adults and subadults since 2001. Scans are taken opportunistically, without regard to time of day. At least 10 min separate consecutive scans of the same individual to reduce the non-independence of scans taken close in time.Data in this manuscript were collected by 124 observers, with an average of 7.1 data collectors per month. Observers typically work in teams of two to three and rotate across different groups to reduce potential observer bias. Observers also rotate across observer teams to avoid observer drift in coding, since observer teams could potentially start to code behaviors differently from each other in the absence of overlap in observer composition.Initial pedigree constructionOf the 376 individuals in our behavioral dataset, 280 (74.5%) were first seen within three months of their births, and we could confidently assign maternity to them based on demographic (pregnancies) and behavioral data (primary nursing) even prior to genotyping. Of the remaining individuals, 41 (10.9%) were males of unknown origin that immigrated into our study population, while the rest were natal to our study groups but were first seen as older infants ( >3 months), juveniles, or (sub)adults (14.6%) and required genotyping to assign/confirm maternity. Paternity was assigned based on genetic information when possible (but see Non-genotyped individuals).In total, 287 subjects (76.3%) had two assigned parents, 37 had one assigned parent (9.8%), and 52 (13.8%) had no assigned parent based on demographic, behavioral, and/or genetic parentage information. Most individuals with no assigned parents were immigrant males (78.9%).GenotypingInformation on genetic parentage assignment (at up to 18 microsatellite loci) in our study population is available from previously published work (1996–2005 (Muniz et al. 2006), 2005–2012 (Godoy et al. 2016b)). Partial genotypes (up to 14 loci) have been generated for individuals in this study which more recently entered the study population through birth or immigration (n = 91, 2012–2020) (See SI File 1). Briefly, DNA was extracted primarily from non-invasively collected fecal samples, and occasionally from tissue samples obtained from deceased individuals, then amplified at up to 18 autosomal tetranucleotide microsatellite loci (Muniz and Vigilant 2008) using either a 1-step or 2-step PCR protocol (Arandjelovic et al. 2009). There were no significant deviations from Hardy-Weinberg equilibrium, and no evidence of linkage disequilibrium between loci was found (Muniz 2008).DNA samples were run at a minimum in triplicate, but additional PCRs were performed on low quality samples (e.g., with low quantities of DNA). Genotypes at each of the loci were assigned to be heterozygous when each allele was seen at least twice in independent PCRs, and assigned as homozygous when the allele was seen in at least three independent PCRs in absence of a second allele.Amplicons were analyzed using an ABI PRISM3100 automated sequencer and GeneMapper Software (Applied Biosystems, Foster City, CA, USA). Likelihood-based parentage assignments were performed using CERVUS 2.0 or 3.0 (Marshall et al. 1998; Kalinowski et al. 2007). The average exclusionary power of the 18 microsatellites was 0.9888 for the first parent and 0.9998 for second parent (Muniz et al. 2006).Individuals with unknown parents (e.g., immigrant males, founders) were genotyped twice (i.e., using two independent DNA samples) following the procedures described above to guard against sample mix up. Known mother-offspring pairs were confirmed by ascertaining the absence of Mendelian mismatches across all loci for the pair, though one mismatch was allowed to account for null alleles, mutations, and genotyping errors. We detected one null allele in the population in 19 individuals and traced it back to a male who was either the father or grandfather of those individuals (Muniz et al. 2006; Godoy et al. 2016b).Candidate males for paternity assignment were chosen based on group membership around the time of an infant’s conception (typically 1–10 males). In cases when conceptions occurred prior to the habituation of a study group, we used the identities of all adult males present when the group was first observed. Candidate mothers were similarly chosen for individuals that were first seen as older infants, juveniles, or (sub)adults. For individuals born post-group habituation, CERVUS has always assigned paternity from the pool of potential candidate fathers. Parent-offspring pairs and trios were allowed one mismatch (excluding those at the locus with the known null allele).Pedigree updatingNon-genotyped individualsDuring stable tenures, alpha males in our population sire approximately 73% of infants born in their groups, including 90% of offspring born to unrelated females (Godoy et al. 2016a). There is strong evidence of inbreeding avoidance between alpha males and their female descendants, with relatedness to females as the primary factor constraining alpha male monopolization of paternity within groups (Muniz et al. 2006, 2010; Godoy et al. 2016a, 2016b; Wikberg et al. 2017, 2018). We used this information to update our pedigree, filling missing father information with the identity of the alpha male around the time of a non-genotyped individual’s conception, but only if their mother was not the daughter or granddaughter of the alpha male (i.e., with inbreeding avoidance). This approach allowed us to assign presumed paternity to 21 non-genotyped individuals (5.6% of subjects) who were natal to our study groups.Individuals with missing or incomplete parentageOut of the original four study groups (from which fissions led to eight additional study groups), we lacked parentage information (i.e., neither parent was sampled) for 12 individuals first seen at the time of habituation. We had incomplete parentage on an additional 11 adults (i.e., only one parent was sampled). We used the software program COLONY version 2.0.6.7 to look for evidence of whether these individuals were related to each other at the level of full sibling (Jones and Wang 2010). We also looked for potential full sibling pairs among the non-natal immigrant males in the population, since co-migrant males are typically kin (Perry 2012; Wikberg et al. 2014, 2018). We assigned five full sibling pairs among co-migrant males, and four full sibling pairs among natal founders. For any remaining co-migrant males and natal founder pairs that were not assigned as full siblings, we assumed these to be either paternal (migrants) or maternal (natal) half siblings, as is typical in this study population (Perry 2012). These assignments are likely to have some error. However, based on what we know about kinship in capuchins, it would introduce more error to assume that these pairs are unrelated.We pruned our modified population pedigree using the R package pedantics version 1.01 (Morrissey and Wilson 2010), to include only individuals that were linked to the subjects in our behavioral dataset. The reduction in missing data can improve convergence and mixing of models (Hadfield 2010). The pruned pedigree contained 419 individuals, with 353 maternities, 354 paternities, 209 full sibships, 413 maternal half sibships, and 1496 paternal half sibships. Maximum pedigree depth was six generations (mean = 3.03).Sociality measures (response variables)We generated two related proximity-based measures of sociality—(1) whether an individual was seen in proximity of another monkey (within ~4 meters) during a scan (i.e., they were not alone), and (2) the number of partners an individual has nearby (within ~4 meters) during a scan. The former is measure of the propensity of an individual to be social versus alone, while the latter is more indicative of the gregariousness of an individual. These two phenotypes are not independent, as they are generated from the same data (Fig. 1a).Fig. 1: Distribution of sociality, sampling, group size, and alpha tenure length.The scatterplot in a shows the proportion of scans per individual per month where the subjects were recorded in proximity of others on the x-axis, and the average number of social partners per scan per month for subjects on the y-axis. The sizes of the circles in a are proportional to sample size (range: 5–317 scans per data point). The figure in b shows the number of calendar years of data sampling per subject (range: 1–20), c variation in group size, and d the number of calendar years represented by different alpha tenures in the dataset. Note that d does not represent the full diversity of alpha tenure lengths in the population, only within the dataset: some tenure lengths are left-truncated as data from 1990–2000 are not included in this dataset. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016) and cowplot version 1.1.1 (Wilke 2020). The capuchin image was generated in R using sketcher version 0.1.3 (Tsuda 2020) based on an image taken by Nicholas Schleissmann.Full size imageWe compiled the scans of individuals by month (mean: 31.9, range: 5–317 scans per month) so that we had counts of (1) the total number of scans where an individual was social and (2) the total number of partners an individual had. With these counts we could look at the (1) proportion of time spent social (versus alone) and (2) the average number of partners an individual had, while still preserving information about sampling density (number of scans).To be included in any month, subjects needed to have at least five scan samples in that period. As we are interested in the repeatability of our measures of social behavior, subjects had to have at least six months of data to be included.We excluded dependent infants (less than one year of age) as potential social partners of their mothers. We also excluded these dependent infants as subjects, since an infant is expected to be in close proximity of its mother, particularly during the first half of their first year of life (Godoy 2010; Perry 2012). Including data from infants would likely introduce upward bias to heritability estimates, because mothers and their dependent offspring (whom share high relatedness) would often be in close proximity of each other, and their measures of proximity to others would thus also be highly correlated.On average, subjects spent just over half of their sampled time within approximately four meters of another monkey (mean: 0.539, standard deviation: 0.193) and had approximately one social partner per scan (mean: 1.057, standard deviation: 0.619) (Fig. 1a). Our dataset consisted of 22,138 monthly sociality scores on 376 subjects generated from 641 140 scans (mean: 56.5 months per subject, range: 6–184 months per subject). Almost all subjects (99.7%, i.e., all but one) were represented by data across more than one calendar year (25, 50, 75% quantiles: 4, 7, 10 different years of data collection) (Fig. 1b).Fixed effectsWe included age (as a cubic function) and sex in our models, as well as their interaction to account for differences in how male and female capuchins sexually mature and age. Age in our dataset was right-skewed with higher representation at younger ages (mean: 9.3 years, standard deviation: 6.9) (Fig. 2). To put the ages in developmental context, mean age at first live birth is around 6.3 years for females in this population, though females can begin reproducing in their 5th year (Perry et al. 2012). Males as young as six years old have been known to sire offspring (Godoy et al. 2016b), but males tend to not reach full adult size until their 10th year (Jack et al. 2014).Fig. 2: Sociality as a function of age and sex.Circles represent individual monthly data. The sizes of the circles are proportional to sample size (range: 5–317 shows per data point). Circles in a represent the proportion of time individuals were seen in proximity of others (not alone) per month, while in b represent the average number of partners for individuals per month. Solid lines represent estimated sociality scores based on age and sex, with all other fixed effects set to the mean. The two x-axes represent age as z-scores and in years. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016).Full size imageSeasonal environmental changes, such as in food abundance, or temperature and rain, can lead to changes in how individuals cluster near others, for example, because of how food resources become distributed in the environment. For example, in black-crested gibbons (Nomascus concolor), group averages of dyadic proximity have been documented to decrease from the dry season to wet season, with increased average group proximity during cold months and lowered proximity during warm months (Guan et al. 2013). We account for seasonal variation by modelling monthly changes as a sine wave, through inclusion of the sine and cosine functions of a transformed month variable (See SI File 1 for further details).Central America is a region of ENSO-related precipitation, where the El Niño-Southern Oscillation (ENSO) has an impact on large scale patterns of temperature and precipitation (Ropelewski and Halpert 1987). Bimonthly rainfall anomalies are linked with both the warm El Niño and cool La Niña phases in a neighboring tropical dry forest in Costa Rica, where long-term monitoring of wild white-faced capuchins has shown declines in reproductive output associated with El Niño-like conditions (Campos et al. 2015). To account for the large-scale influence of ENSO on group dynamics, we included a factor variable for three different ENSO phases (Average/Neutral, Cool/La Niña, and Warm/El Niño). We used the bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index (MEI.v2) obtained from the Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration (https://psl.noaa.gov/enso/mei/, retrieved: 2021-11-06) to determine the different phases. MEI.v2 is a composite index of five different variables (sea level pressure, sea surface temperature, surface zonal winds, surface meridional winds, and Outgoing Longwave Radiation) used to create a time series of ENSO conditions from 1979 to present (Zhang et al. 2019). Warm phases correspond to MEI.v2 values of 0.5 or higher, while cool phases correspond to values of −0.5 or lower.Demographic differences between groups and within groups across time can also lead to variation in behavior. For example, group size has been found to correlate with the amount of time that individuals spend grooming in various primate species (Dunbar 1991; Lehmann et al. 2007). Group size is also associated with higher sociality measures such as both the number of strong and weak ties that individuals form in diverse clades of primates (Schülke et al. 2022). We attempt to account for variation that arises from such demographic differences by including group size (mean: 24.7, standard deviation: 7.9) (Fig. 1c) as a fixed effect.In our models, group size and cubic age were centered and scaled to a mean of zero and a standard deviation of one.Random effectsAll models include the identity of the subject (VID, n = 376) as a random factor, as well as subject identity nested within year (VID:Year, n = 3150), the identity of each subject’s mother (VM, n = 142), maternal identity nested within group of residence within year of data collection (VM:GroupAlpha:Year, n = 2085), and a special variable known as the animal term to account for additive genetic variance (VA). These components contribute to long- and/or short-term repeatability of individuals. All models also include year of data collection (VYear, n = 20), month nested within year (VMonth:Year, n = 224), and the identity of each subject’s group of residence both across years (VGroupAlpha, n = 56) and within years (VGroupAlpha:Year, n = 200).VID in the models (since the models also additionally estimate VM and VA) can be thought of as estimating the “permanent environment variance” (i.e., VPE) of an individual, which is the “individual-specific variation in environmental conditions that permanently affect the phenotype (e.g. early-life conditions)” (Dingemanse et al. 2010). VID:Year captures the variance explained by the repeated sampling of the same individuals within a particular year. We use it to estimate the proportion of the phenotypic variance due to similarity in the trait within individuals from data taken closer in time (within the same year). During such a relatively short period, individuals are more likely to be stable in important social traits such as kin availability, dominance rank for adults, and maternal dominance rank for infants and young juveniles.VM estimates the variance explained by maternal effects (m2), specifically similarity between maternal siblings. Maternal identities were not available for all subjects, namely 11 immigrant males of unknown origin who were not assigned by COLONY as having a full sibling. We created unique dummy codes for their maternal identities, so that no two of these individuals shared the same mother. We additionally nested maternal identities (VM:GroupAlpha:Year) to account for similarity between maternal siblings residing in the same group in the same year. Such a nested structure might capture potential upward biases on heritability due to maternal kin biases in spatial association among siblings residing in the same group.We estimate h2 in our models by fitting a random effects term (VA), referred to as the animal term, which in the R package MCMCglmm links to the identities of individuals in our population pedigree (Hadfield 2010; see below for details on the implementation of the models in MCMCglmm). Inclusion of the animal term provides our models with an additive genetic variance component based on the estimated coefficients of relatedness between individuals in our pedigree. In short, if animals that share more alleles are also more like each other in their behavior, then variation in the behavior may well be due to genetic variation in the population (under the assumption that phenotypic similarity is not due to a shared environment, or is adequately controlled for by fixed and random effects in the model).VYear and VMonth:Year were included in order to account for temporal variation in sociality scores not captured by the fixed effects of seasonality or ENSO phase. These could arise from, for example, observer drift in coding (i.e., measurement error) or prevailing environmental conditions (e.g., drought) that could lead to changes to how individuals cluster near others. There were 218 unique observer combinations across the 224 months represented in the dataset, so VMonth:Year should also capture variance due to any differences between observer teams, though we cannot separate out the unique influence of observers.VGroupAlpha represents variance arising from the different alpha tenures within groups in our study population. VGroupAlpha captures both variance due to group of residence effects and the additional influence of alpha tenures within those groups. In capuchins, alpha males are ‘keystone’ individuals, whose influence is disproportionate relative to that of others in the population, and thus play important roles in establishing group dynamics (Jack and Fedigan 2018). Including group of residence, as defined by alpha tenure, is also important because it helps to account for the higher relatedness within groups within alpha tenures which results from high male reproductive skew toward alpha males. At Lomas Barbudal, males can remain in their alpha position for upwards of 18 years. Alpha tenures in this dataset spanned one to 14 years (Fig. 1d), so we additionally nested the identity of alpha males per group within years (VGroupAlpha:Year) so as to separate the within-year and across-year influences of group of residence.Statistical methodsWe ran analyses in R 4.1.2 (R Core Team 2021), using a Bayesian method with the R package MCMCglmm version 2.32 (Hadfield 2010). Data and code used to run all models is provided in the Supplementary Information.For our binary response variable (social versus alone), which was pooled into monthly units, we fit models with a binomial distribution and logit link function (family = “multinomial2”), with the number of scans each individual was documented social (‘successes’) versus the number of times alone (‘failures’).For our other response variable (number of partners), which was also pooled into monthly units, we fit models with a Poisson distribution (family = “poisson”), with the total number (sum) of partners per month. We included the natural log of the number of scans per month as a fixed effect to account for sampling effort. We set a strong prior for the log of sampling effort so that the rate at which events occurred was 1 (i.e., we could look at average number of partners per scan).We used a parameter-expanded prior (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000) and two inverse Wishart priors (V = 1, nu = 0.002; V = 1, nu = 0.02) for the G structures in our models (i.e., random effects variance components). The prior on the residual variance component was set to one for both the binomial and Poisson models. Estimates for variance components were robust against the choice of prior (SI Fig. 3). We therefore only report findings from models run with parameter-expanded priors in the main text.Pilot runs (thin = 10, burnin = 3000, nitt = 13,000) indicated that autocorrelation values would remain high for some variance components in models run with parameter-expanded priors, even with large thinning intervals. We therefore increased the number of iterations to guarantee effective sample sizes of at least 1000, but ideally closer to 4000. All models were run with a long burn-in period of at least 10,000 iterations.We ran multiple chains (n = 4) of each model and assessed convergence of the chains visually (SI Files 2a-b), as well as through the Gelman-Rubin criterion implemented via the ‘gelman.diag’ function from the coda package in R (version 0.19-4) (Plummer et al. 2006). Scale reduction factors were below 1.02, signifying good convergence. We used Heidelberger and Welch’s convergence diagnostic test for stationarity to check convergence of each chain using the ‘heidel.diag’ function from the coda package. Results are presented from the first chain of each model.Reduced modelsInclusion of fixed effects can potentially have an impact on the estimates of variance components in models because total phenotypic variance (VP) is estimated (and partitioned among the different random effects) after conditioning on the fixed effects. Heritability estimates, for example, can be higher because the variance explained by the fixed effects structure (VFE) is not included in VP, thus making the relative contribution of VA to VP larger compared to the same model without fixed effects (Wilson 2008). Conversely, not adequately controlling for relevant fixed effects that contribute to phenotypic variance among and within individuals may potentially lead to an underestimation of VA and associated heritability (h2).We ran multiple reduced versions of our models to look at the impact of fixed effects on our variance components. We began with an intercept-only version (i.e., no fixed effects), then built-up complexity by adding in versions with the properties of the individuals first (age, sex), then properties of the group (group size), and subsequently environmental properties (seasonality, ENSO phases). Outputs for these reduced models are provided in the Supplementary Information (SI Table 2, SI Table 3).We provide the deviance information criterion (DIC) values for models (automatically generated by the MCMCglmm package). DIC is a generalization for multi-level models of the Akaike Information Criterion (AIC); and as in AIC, lower DIC values indicate better fit.Transformations from unobserved latent scale to observed data scaleOutputs from our MCMCglmm models were on the unobserved latent scale. We used the R package QGglmm (version 0.7.4) to additionally compute parameters of interest on the observed data scale (de Villemereuil et al. 2016; de Villemereuil 2018). We used the functions ‘QCicc’ to compute Intra-Class Correlation (ICC) coefficients and ‘QGparams’ to compute additive genetic variance and thus narrow-sense heritability (h2) on the observed data scale. We implemented the ‘QGparams’ and ‘QGicc’ functions with parameters model = ‘binomN.logit’ and n.obs = 32 (the average number of scans per subject per month in our dataset) for the binomial model and model = ‘Poisson.log’ for the Poisson model. The choice of value for n.obs is somewhat arbitrary, and we show the consequences for changes in values of this parameter (i.e., higher estimates with increasing values of n.obs) in SI Fig. 4.Closed form solutions in QGglmm are not available for integrating over posterior distributions generated from binomial models with logit link functions (de Villemereuil 2016). Consequently, using the ‘QGicc’ function is particularly slow. We therefore estimate ICCs from our binomial models using a random subset of the posterior (n = 1000 iterations).The code used for transforming the MCMCglmm outputs from the latent scale to the original data scale are available online (see DATA AVAILABILITY).Repeatability and the proportion of variance explained by variance componentsTotal phenotypic variance (VP) was the sum of estimates from all variance components and residual variance in a model (VP = VID + VID:Year + VM + VM:GroupAlpha:Year + VA + VGroupAlpha + VGroupAlpha:Year + VMonth:Year + VYear + Vresidual). The proportion of variance explained by each variance component was calculated by including its estimate in the numerator while including total phenotypic variance in the denominator. So, for example the proportion of variance explained by year of data collection was calculated as (left( {frac{{V_{Year}}}{{V_P}}} right)).Long-term repeatability was calculated with the sum of VID, VM, and VA in the numerator. Short-term repeatability was calculated similarly but with inclusion of within-series variances (VID + VM + VA + VID:Year + VM:GroupAlpha:Year) in the numerator to capture additional consistency in among-individual differences resulting from greater environmental similarity within a time series (i.e., year).We report posterior modes and 95% Highest Posterior Density intervals (i.e., 95HPDI in square brackets). Unless mentioned otherwise, we present results on the unobserved latent scale, and without the variance from the fixed effects (VFE) incorporated into VP. For completeness, estimates with VFE included in VP and transformations to the observed data scale are also provided in SI Table 3. More