More stories

  • in

    An equation of state unifies diversity, productivity, abundance and biomass

    To derive the relationship among macro-level ecological variables, which would constitute an ecological analog of the thermodynamic equation of state, we introduce a fourth state variable, B, the total biomass in the community. The ecological analog of the thermodynamic equation of state, an expression for biomass, B, in terms of S, N, and E, arises if we combine METE with a scaling result from the metabolic theory of ecology (MTE)18,21. In particular, we assume the MTE scaling relationship between the metabolic rate, (varepsilon ,) of an individual organism and its mass, m: (varepsilon sim {m}^{3/4}). Without loss of generality22, units are normalized such that the smallest mass and the smallest metabolic rate within a censused plot are each assigned a value of 1. With this units convention, the proportionality constant in this scaling relationship can be assigned a value of 1. From the definition of the structure-function, it follows23 that averaging the biomass of individuals times the abundance of species, nε4/3, over the distribution R and multiplying by the number of species gives the total ecosystem biomass as a function of S, N, and E. Explicitly:$$B=Smathop{sum}limits_{n}nint dvarepsilon ,{varepsilon }^{4/3}R(n,varepsilon {{{{{rm{|}}}}}}S,N,E)$$
    (1)
    Both the sum and integral in the above equation can be calculated numerically, and Python code to do so for a given set of state variables S, N, and E, is available at github.com/micbru/equation of_ state/.We can also approximate the solution to Eq. 1 analytically (Supplementary Note 2) to reveal the predicted functional relationship among the four state variables. If E > > N > > S > > 1:$$B=cfrac{{E}^{4/3}}{{S}^{1/3}{{{{{rm{ln}}}}}}(1/beta )}$$
    (2)
    where (capprox (7/2)Gamma (7/3)) ≈ 4.17 and (beta) = ({lambda }_{1}+{lambda }_{2}) is estimated13,22 from the relationship (beta {{{{{rm{ln}}}}}}(1/beta )approx S/N). Equation 2 approximates the numerical result to within 10% for 5 of the 42 datasets analyzed here, corresponding to N/S greater than ~100 and E/N greater than ~25. Multiplying the right-hand side of Eq. 2 by (1-1.16{beta }^{1/3}) approximates the numerical result to within 10% for 33 of the 42 datasets analyzed here, corresponding to N/S greater than ~3 and E/N greater than ~5. The inequality requirements are not necessary for the numerical solution of Eq. 1, which is what is used below to test the prediction.Empirical values of E and B can be estimated from the same data. In particular, if measured metabolic rates of the individuals are denoted by ({varepsilon }_{i},) where i runs from 1 to N, then E is given by the sum over the ({varepsilon }_{i}) and B is given by the sum over the ({{varepsilon }_{i}}^{4/3}.) Similarly, if the mass, mi, of each individual is measured, then B is the sum over the mi and E is the sum over the mi3/4. In practice, for animal data, metabolic rate is often estimated by measuring mass and then using metabolic scaling, while for tree data, metabolic rate is estimated from measurements of individual tree basal areas, which are estimators5 of the ({varepsilon }_{i}).With E and B estimated from the same measurements, the question naturally arises as to whether a simple mathematical relationship holds between them, such as E = B3/4. If all the measured m’s, are identical, then all the calculated individual (varepsilon {{hbox{‘}}}s) are identical, and with our units convention we would have E = B. More generally, with variation in masses and metabolic rates, the only purely mathematical relationship we can write is inequality between E and B3/4: (E=sum {varepsilon }_{i}ge (sum {{{varepsilon }_{i}}^{4/3}})^{3/4}={B}^{3/4}). Our derived equation of state (Eq. 2) can be interpreted as expressing the theoretical prediction for the quantitative degree of inequality between E and B3/4 as a function of S and N.A test of Eq. 1 that compares observed and predicted values of biomass with data from 42 censused plots across a variety of habitats, spatial scales, and taxa is shown in Fig. 1. The 42 plots are listed and described in Table S2 and Supplementary Note 3. The communities censused include arthropods and plants, the habitats include both temperate and tropical, and the census plots range in area from 0.0064 to 50 ha. As seen in the figure, 99.4% of the variance in the observed values of B is explained by the predicted values of B.Fig. 1: A test of the ecological equation of state.Observed biomass is determined by either summing empirical masses of individuals or summing empirical metabolic rates raised to the ¾ power of each individual. Predicted biomass is determined from Eq. 1 using observed values of S, N, and E. The quantity ln(predicted biomass) explains 99.4% of the variance in observed biomass. Units of mass and metabolism are chosen such that the masses of the smallest individuals in each dataset are set to 1 and those individuals are also assigned a metabolic rate of 1. The shape of the marker indicates the type of data, and the lighter color corresponds to higher species richness. Data for all analyses come from tropical trees39,40,41,42,43,44,45, temperate trees30,31,32,33,46,47,48, temperate forest communities27,49, subalpine meadow flora28, and tropical island arthropods50.Full size imageFigure 2 addresses the possible concern that the success of Eq. 1 shown in Fig. 1 might simply reflect an approximate constancy, across all the datasets, of the ratio of E to B3/4. If that ratio were constant, then S and N would play no effective role in the equation of state. Equation 1 predicts that variation in the ratio depends on S and N in the approximate combination S1/4ln3/4(1/(beta (N/S))). In Fig. 2, the observed and predicted values of E/B3/4 calculated from Eq. 1, are compared, showing a nearly fourfold variation in that ratio across the datasets. The equation of state predicts 60% of the variance in the ratio.Fig. 2: The explanatory power of diversity and abundance.The observed ratio E/B3/4 is plotted against the ratio predicted by Eq. 1. Of the fourfold variability across ecosystems in that ratio, 60% is explained by the variability in the predicted combination of diversity and abundance. The shape of the marker indicates the type of data, and the lighter color corresponds to higher species richness. Data for all analyses come from tropical trees39,40,41,42,43,44,45, temperate trees30,31,32,33,46,47,48, temperate forest communities27,49, subalpine meadow flora28, and tropical island arthropods50.Full size imageFigure 3 shows the dependence on S and N of the predicted ratio E/B3/4 over empirically observed values of S, N, and E. We examined the case in which S is varied for two different fixed values of each of N and E (Fig. 3a) and N is varied for two different fixed values of S and E (Fig. 3b). The value of E does not have a large impact on the predicted ratio, particularly when E > > N. On the other hand, the predicted ratio depends more strongly on N and S.Fig. 3: The theoretical prediction for the ratio E/B3/4 as a function of S and N.The biomass B is predicted by holding E fixed along with one other state variable. In a N is fixed and S is varied, and in b S is fixed and N is varied. The fixed values are chosen to be roughly consistent within a range of the data considered. The color of the lines represents the corresponding fixed value of N or S, while the solid and dashed lines represent different fixed values of E.Full size imageThe total productivity of an ecological community is a focus of interest in ecology1, as a possible predictor of species diversity24 and more generally as a measure of ecosystem functioning25. By combining the METE and MTE frameworks, we can now generate explicit predictions for certain debated ecological relationships, including one between productivity and diversity. Interpreting total metabolic rate E in our theory as gross productivity, then in the limit 1 More

  • in

    Effects of maternal age and offspring sex on milk yield, composition and calf growth of red deer (Cervus elaphus)

    Trivers, R. L. Parental investment and sexual selection. in Sexual selection and the descent of man 136–179 (Aldine, 1972).Evans, R. M. The relationship between parental input and investment. Anim. Behav. 39, 797–798 (1990).Article 

    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    Willson, M. F. & Pianka, E. R. Sexual selection, sex ratio and mating system. Am. Nat. 97, 405–407 (1963).Article 

    Google Scholar 
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Major, M., Albon, S. D. & Guinness, F. E. Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56, 53–67 (1987).Article 

    Google Scholar 
    Kruuk, L. E. B., Clutton-Brock, T. H., Rose, K. E. & Guinness, F. E. Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc. R. Soc. B-Biol. Sci. 266, 1655–1661 (1999).CAS 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Reproductive success in male and female red deer. in Reproductive success 325–343 (University of Chicago Press, 1988).Pérez-Barbería, F. J. & Yearsley, J. M. Sexual selection for fighting skills as a driver of sexual segregation in polygynous ungulates: an evolutionary model. Anim. Behav. 80, 745–755 (2010).Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 15, e0233809 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nussey, D. H. et al. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174, 342–357 (2009).PubMed 
    Article 

    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behavior & Ecology (Stackpole Books, 1998).
    Google Scholar 
    Ricklefs, R. E. Evolutionary theories of aging: Confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152, 24–44 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).PubMed 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. in Bioenergetics of wild herbivores 215–238 (CRC-Press, 1985).Linn, J. G. Factors Affecting the Composition of Milk from Dairy Cows. in Designing Foods: Animal Product Options in the Marketplace (National Academies Press (US), 1988).Hinde, K., Power, M. L. & Oftedal, O. T. Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation. Am. J. Phys. Anthropol. 138, 148–157 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomendio, M., Clutton-Brock, T. H., Albon, S. D., Guinness, F. E. & Simpson, M. J. Mammalian sex ratios and variation in costs of rearing sons and daughters. Nature 343, 261–263 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Berube, C. H., Festa-Bianchet, M. & Jorgenson, J. T. Reproductive costs of sons and daughters in Rocky Mountain bighorn sheep. Behav. Ecol. 7, 60–68 (1996).Article 

    Google Scholar 
    Landete-Castillejos, T., García, A., López-Serrano, F. R. & Gallego, L. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 57, 267–274 (2005).Article 

    Google Scholar 
    Hinde, K. First-time macaque mothers bias milk composition in favor of sons. Curr. Biol. 17, R958–R959 (2007).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinde, K. Richer milk for sons but more milk for daughters: Sex-biased investment during lactation varies with maternal life history in rhesus macaques. Am. J. Hum. Biol. 21, 512–519 (2009).PubMed 
    Article 

    Google Scholar 
    Powe, C. E., Knott, C. D. & Conklin-Brittain, N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 22, 50–54 (2010).PubMed 
    Article 

    Google Scholar 
    Fujita, M. et al. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 149, 52–59 (2012).PubMed 
    Article 

    Google Scholar 
    Robert, K. A. & Braun, S. Milk composition during lactation suggests a mechanism for male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE 7, e51099 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. Bioenerg. Wild Herbiv. https://doi.org/10.1201/9781351070218-10 (2018).Article 

    Google Scholar 
    Rogers, G. & Stewart, J. The effects of some nutritional and non-nutritional factors on milk protein concentration and yield [dairy cattle]. Aust. J. Dairy Technol. 26–32 (1982).Lubritz, D. L., Forrest, K. & Robison, O. W. Age of cow and age of dam effects on milk production of hereford cows. J. Anim. Sci. 67, 2544–2549 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khan, M. S. & Shook, G. E. Effects of age on milk yield: Time trends and method of adjustment. J. Dairy Sci. 79, 1057–1064 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenness, R. Biochemical and nutritional aspects of milk and colostrum. in Lactation / edited by Bruce L. Larson ; written by Ralph R. Anderson … [et al.] 164–197 (Iowa State University, 1985).Ng-Kwai-Hang, K. F., Hayes, J. F., Moxley, J. E. & Monardes, H. G. Environmental influences on protein content and composition of bovine milk. J. Dairy Sci. 65, 1993–1998 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kroeker, E. M., Ng-Kwai-Hang, K. F., Hayes, J. F. & Moxley, J. E. Effect of β-lactoglobulin variant and environmental factors on variation in the detailed composition of bovine milk serum proteins. J. Dairy Sci. 68, 1637–1641 (1985).CAS 
    Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Water sprinkling as a tool for heat abatement in farmed Iberian red deer: Effects on calf growth and behaviour. PLoS ONE 16, e0249540 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Abecia, J. A. & Palacios, C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital. J. Anim. Sci. 17, 736–739 (2018).Article 

    Google Scholar 
    Hinde, K., Carpenter, A. J., Clay, J. S. & Bradford, B. J. Holsteins favor heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 9, e86169 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thakkar, S. K. et al. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. Am. J. Hum. Biol. 25, 770–779 (2013).PubMed 
    Article 

    Google Scholar 
    Quinn, E. A. No evidence for sex biases in milk macronutrients, energy, or breastfeeding frequency in a sample of Filipino mothers. Am. J. Phys. Anthropol. 152, 209–216 (2013).PubMed 

    Google Scholar 
    Ono, K. A. & Boness, D. J. Sexual dimorphism in sea lion pups: Differential maternal investment, or sex-specific differences in energy allocation?. Behav. Ecol. Sociobiol. 38, 31–41 (1996).Article 

    Google Scholar 
    Skibiel, A. L., Downing, L. M., Orr, T. J. & Hood, W. R. The evolution of the nutrient composition of mammalian milks. J. Anim. Ecol. 82, 1254–1264 (2013).PubMed 
    Article 

    Google Scholar 
    Mitoulas, L. R. et al. Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation. Br. J. Nutr. 88, 29–37 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenkins, T. C. & McGuire, M. A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 89, 1302–1310 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobbs, N. T., Baker, D. L., Bear, G. D. & Bowden, D. C. Ungulate grazing in sagebrush grassland: Effects of resource competition on secondary production. Ecol. Appl. 6, 218–227 (1996).Article 

    Google Scholar 
    Robbins, A. M., Robbins, M. M., Gerald-Steklis, N. & Steklis, H. D. Age-related patterns of reproductive success among female mountain gorillas. Am. J. Phys. Anthropol. 131, 511–521 (2006).PubMed 
    Article 

    Google Scholar 
    Sunderland, N., Heffernan, S., Thomson, S. & Hennessy, A. Maternal parity affects neonatal survival rate in a colony of captive bred baboons (Papio hamadryas). J. Med. Primatol. 37, 223–228 (2008).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Age-related body weight constraints on prenatal and milk provisioning in Iberian red deer (Cervus elaphus hispanicus) affect allocation of maternal resources. Theriogenology 71, 400–407 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bercovitch, F. B., Widdig, A. & Nürnberg, P. Maternal investment in rhesus macaques (Macaca mulatta): Reproductive costs and consequences of raising sons. Behav. Ecol. Sociobiol. 48, 1–11 (2000).Article 

    Google Scholar 
    López-Quintanilla, M. Comportamiento Social y Maternofilial del Ciervo en Cautividad (Universidad de Castilla-La Mancha, 2022).
    Google Scholar 
    Adam, C. L., Kyle, C. E. & Young, P. Growth and reproductive development of red deer calves (Cervus elaphus) born out-of-season. Anim. Sci. 55, 265–270 (1992).Article 

    Google Scholar 
    Landete-Castillejos, T., Garcia, A. & Gallego, L. Calf growth in captive Iberian red deer (Cervus elaphus hispanicus): Effects of birth date and hind milk production and composition. J. Anim. Sci. 79, 1085–1092 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Great expectations – dominance, breeding success and offspring sex-ratios in red deer. Anim. Behav. 34, 460–471 (1986).Article 

    Google Scholar 
    Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).ADS 
    Article 

    Google Scholar 
    Youngner, V. B. & McKell, C. M. The Biology and Utilization of Grasses (Academic Press, 1972).
    Google Scholar 
    Pinares-Patiño, C. S. Methane emission from forage-fed sheep, a study of variation between animals. PhD thesis. Massey University, Wellington, New Zealand. (Massey University, 2000).van Tassell, C. P., Wiggans, G. R. & Norman, H. D. Method R estimates of heritability for milk, fat, and protein yields of United States dairy cattle. J. Dairy Sci. 82, 2231–2237 (1999).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. J. Anim. Sci. 78, 2771–2777 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrin, D. R. 709. The calorific value of milk of different species. J. Dairy Res. 25, 215–220 (1958).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing, v. 3.4.1. (R Foundation for Statistical Computing, 2017).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1–131. Retrieved on 229 July 2017 from http://CRAN.R-project.org/package=nlme. (2017).Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    The impact of summer drought on peat soil microbiome structure and function-A multi-proxy-comparison

    Different proxies for changes in structure and/or function of microbiomes have been developed, allowing assessing microbiome dynamics at multiple levels. However, the lack and differences in understanding the microbiome dynamics are due to the differences in the choice of proxies in different studies and the limitations of proxies themselves. Here, using both amplicon and metatranscriptomic sequencings, we compared four different proxies (16/18S rRNA genes, 16/18S rRNA transcripts, mRNA taxonomy and mRNA function) to reveal the impact of a severe summer drought in 2018 on prokaryotic and eukaryotic microbiome structures and functions in two rewetted fen peatlands in northern Germany. We found that both prokaryotic and eukaryotic microbiome compositions were significantly different between dry and wet months. Interestingly, mRNA proxies showed stronger and more significant impacts of drought for prokaryotes, while 18S rRNA transcript and mRNA taxonomy showed stronger drought impacts for eukaryotes. Accordingly, by comparing the accuracy of microbiome changes in predicting dry and wet months under different proxies, we found that mRNA proxies performed better for prokaryotes, while 18S rRNA transcript and mRNA taxonomy performed better for eukaryotes. In both cases, rRNA gene proxies showed much lower to the lowest accuracy, suggesting the drawback of DNA based approaches. To our knowledge, this is the first study comparing all these proxies to reveal the dynamics of both prokaryotic and eukaryotic microbiomes in soils. This study shows that microbiomes are sensitive to (extreme) weather changes in rewetted fens, and the associated microbial changes might contribute to ecological consequences. More

  • in

    Wildfire-dependent changes in soil microbiome diversity and function

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    Google Scholar 
    Higuera, P. E. & Abatzoglou, J. T. Record‐setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. https://doi.org/10.1111/gcb.15388 (2020).Parks, S. A. & Abatzoglou, J. T. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 47, e2020GL089858 (2020).Benavides-Solorio, J. D. D. & MacDonald, L. H. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int. J. Wildl. Fire 14, 457–474 (2005).
    Google Scholar 
    Pierson, D. N., Robichaud, P. R., Rhoades, C. C. & Brown, R. E. Soil carbon and nitrogen eroded after severe wildfire and erosion mitigation treatments. Int. J. Wildl. Fire 28, 814–821 (2019).CAS 

    Google Scholar 
    Rhoades, C. C., Entwistles, D. & Butler, D. The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. Int. J. Wildl. Fire 20, 430–442 (2011).CAS 

    Google Scholar 
    Chambers, M. E., Fornwalt, P. J., Malone, S. L. & Battaglia, M. A. Patterns of conifer regeneration following high severity wildfire in ponderosa pine – dominated forests of the Colorado Front Range. For. Ecol. Manage. 378, 57–67 (2016).
    Google Scholar 
    Rhoades, C. C. et al. The legacy of a severe wildfire on stream nitrogen and carbon in headwater catchments. Ecosystems 22, 643–657 (2019).CAS 

    Google Scholar 
    Strickland, M. S., Lauber, C., Fierer, N. & Bradford, M. A. Testing the functional significance of microbial community composition. Ecology 90, 441–451 (2009).PubMed 

    Google Scholar 
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 

    Google Scholar 
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).CAS 
    PubMed 

    Google Scholar 
    Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. 220, 166–184 (2005).
    Google Scholar 
    Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).
    Google Scholar 
    Pulido-Chavez, M. F., Alvarado, E. C., DeLuca, T. H., Edmonds, R. L. & Glassman, S. I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manage. 485, 118923 (2021).
    Google Scholar 
    Villadas, P. J. et al. The soil microbiome of the Laurel Forest in Garajonay National Park (La Gomera, Canary Islands): comparing unburned and burned habitats after a wildfire. Forests 10, 1051 (2019).
    Google Scholar 
    Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).
    Google Scholar 
    Ibáñez, T. S., Wardle, D. A., Gundale, M. J. & Nilsson, M.-C. Effects of soil abiotic and biotic factors on tree seedling regeneration following a boreal forest wildfire. Ecosystems https://doi.org/10.1007/s10021-021-00666-0 (2021).Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).CAS 

    Google Scholar 
    Brown, S. P. et al. Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appalachian Mountains. For. Ecol. Manage. 451, 117520 (2019).
    Google Scholar 
    Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Knelman, J. E., Schmidt, S. K., Garayburu-Caruso, V., Kumar, S. & Graham, E. B. Multiple, compounding disturbances in a forest ecosystem: fire increases susceptibility of soil edaphic properties, bacterial community structure, and function to change with extreme precipitation event. Soil Syst. 3, 1–1, 40 (2019).Zhang, L. et al. Habitat heterogeneity induced by pyrogenic organic matter in wildfire-perturbed soils mediates bacterial community assembly processes. ISME J. 5, 1943–1955 (2021).
    Google Scholar 
    Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. https://doi.org/10.1038/ismej.2014.36 (2014).Yang, S. et al. Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. Glob. Change Biol. 26, 431–442 (2020).
    Google Scholar 
    Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High‐severity wildfire leads to multi‐decadal impacts on soil biogeochemistry in mixed‐conifer forests. Ecol. Appl. 30, eap.2072 (2020).
    Google Scholar 
    Pérez-Valera, E., Goberna, M. & Verdú, M. Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biol. Biochem. 129, 80–89 (2019).
    Google Scholar 
    SantaCruz-Calvo, L., González-López, J. & Manzanera, M. Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil. Int. J. Syst. Evol. Microbiol. 63, 4174–4180 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mongodin, E. F. et al. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet. 2, 2094–2106 (2006).CAS 

    Google Scholar 
    Bourguignon, N., Isaac, P., Alvarez, H., Amoroso, M. J. & Ferrero, M. A. Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains. J. Basic Microbiol. 54, 1288–1294 (2014).CAS 
    PubMed 

    Google Scholar 
    Fischer, M. S. et al. Pyrolyzed substrates induce aromatic compound metabolism in the post-fire fungus, Pyronema domesticum. Front. Microbiol. 12, 729289 (2021).PubMed 

    Google Scholar 
    Arora, P. K. & Sharma, A. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG. Front. Microbiol. 6:551, 1–6 (2015).Ren, L. et al. Insight into metabolic versatility of an aromatic compounds-degrading Arthrobacter sp. YC-RL1. Front. Microbiol. 9:2438, 1–15 (2018).Cobo-Díaz, J. F. et al. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire. Microb. Ecol. 69, 895–904 (2015).PubMed 

    Google Scholar 
    Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. ISME J. https://doi.org/10.1038/s41396-022-01232-9 (2022).Adkins, J., Docherty, K. M., Gutknecht, J. L. M. & Miesel, J. R. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Sci. Total Environ. 745, 140957 (2020).CAS 
    PubMed 

    Google Scholar 
    Newton, G. L., Buchmeier, N. & Fahey, R. C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72, 471–494 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reina-Bueno, M. et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 12, 207 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    Musto, H. et al. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett. 573, 73–77 (2004).CAS 
    PubMed 

    Google Scholar 
    Yakovchuk, P. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mooshammer, M. et al. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Sci. Adv. 3, e1602781 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl Acad. Sci. USA 118, 1–10 e2016810118 (2020).Long, A. M., Hou, S., Ignacio-Espinoza, J. C. & Fuhrman, J. A. Benchmarking microbial growth rate predictions from metagenomes. ISME J. 15, 183–195 (2021).CAS 
    PubMed 

    Google Scholar 
    Karlin, S., Mrázek, J., Campbell, A. & Kaiser, D. Characterizations of highly expressed genes of four fast-growing bacteria. J. Bacteriol. 183, 5025–5040 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).CAS 
    PubMed 

    Google Scholar 
    Faria, S. R. et al. Wildfire-induced alterations of topsoil organic matter and their recovery in Mediterranean eucalypt stands detected with biogeochemical markers. Eur. J. Soil Sci. 66, 699–713 (2015).CAS 

    Google Scholar 
    Chen, H., Rhoades, C. C. & Chow, A. T. Characteristics of soil organic matter 14 years after a wildfire: a pyrolysis-gas-chromatography mass spectrometry (Py-GC-MS) study. J. Anal. Appl. Pyrolysis 152, 104922 (2020).CAS 

    Google Scholar 
    Knicker, H. Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quat. Int. 243, 251–263 (2011).
    Google Scholar 
    Bahureksa, W. et al. Nitrogen enrichment during soil organic matter burning and molecular evidence of Maillard reactions. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c06745 (2022).Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).CAS 

    Google Scholar 
    LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).CAS 

    Google Scholar 
    Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds – from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).CAS 
    PubMed 

    Google Scholar 
    Pingree, M. R. A. & DeLuca, T. H. Function of wildfire-deposited pyrogenic carbon in terrestrial ecosystems. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00053 (2017).Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, 1–21 e00076-18 (2018).Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A. & Sun, F. Alignment-free (d_2^ast) oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 45, 39–53 (2017).Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).CAS 

    Google Scholar 
    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS 
    PubMed 

    Google Scholar 
    Hewelke, E. et al. Soil functional responses to natural ecosystem restoration of a pine forest peucedano-pinetum after a fire. Forests 11, 286 (2020).
    Google Scholar 
    Mahoney, D. P. & LaFavre, J. S. Coniochaeta extramundana, with a synopsis of other Coniochaeta species. Mycologia 73, 931–952 (1981).
    Google Scholar 
    Yang, T. et al. Distinct fungal successional trajectories following wildfire between soil horizons in a cold‐temperate forest. New Phytol. 227, 572–587 (2020).CAS 
    PubMed 

    Google Scholar 
    Steindorff, A. S. et al. Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environ. Microbiol. 23, 99–109 (2021).CAS 
    PubMed 

    Google Scholar 
    Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P. & Narasimha, G. Fungal laccases and their applications in bioremediation. Enzyme Res. 2014, 1–21 163242 (2014).Bouskill, N. J., Mekonnen, Z., Zhu, Q., Grant, R. & Riley, W. J. Microbial contribution to post-fire tundra ecosystem recovery over the 21st century. Commun. Earth Environ. 3, 26 (2022).
    Google Scholar 
    Yeager, C. M., Northup, D. E., Grow, C. C., Barns, S. M. & Kuske, C. R. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl. Environ. Microbiol. 71, 2713–2722 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, N. L. et al. Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75, 2046–2056 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fraile, P., Benada, O., Cajthaml, T., Baldrian, P. & Lladó, S. Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl. Environ. Microbiol. 82, 560–569 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the Phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596 (2011).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).CAS 

    Google Scholar 
    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1–14 (2018).
    Google Scholar 
    Smith, S. E. & Read, D. Mycorrhizal symbiosis. Soil Sci. 137, 204 (1984).
    Google Scholar 
    Douglas, R. B., Parker, V. T. & Cullings, K. W. Belowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. For. Ecol. Manage. 208, 303–317 (2005).
    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. https://doi.org/10.1038/s41396-021-01159-7 (2022).Marx, D. H., Bryan, W. C. & Cordell, C. E. Survival and growth of pine seedlings with Pisolithus ectomycorrhizae after two years on reforestation sites in North Carolina and Florida. For. Science. 23, 363–373 (1977).
    Google Scholar 
    Franco, A. R., Sousa, N. R., Ramos, M. A., Oliveira, R. S. & Castro, P. M. L. Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal. Microb. Ecol. 68, 761–772 (2014).PubMed 

    Google Scholar 
    Kipfmueller, K. F. & Baker, W. L. A fire history of a subalpine forest in south-eastern Wyoming, USA. J. Biogeogr. 27, 71–85 (2000).
    Google Scholar 
    Key, C. H. & Benson, N. C. Landscape Assessment (LA) Sampling and Analysis Methods General Techical Report (USDA Forest Service, 2006).Parson, A., Robichaud, P. R., Lewis, S. A., Napper, C. & Clark, J. T. Field Guide for Mapping Post-fire Soil Burn Severity General Technical Report (USDA Forest Service, 2010); https://doi.org/10.2737/RMRS-GTR-243Miesel, J. R., Hockaday, W. C., Kolka, R. K. & Townsend, P. A. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region. J. Geophys. Res. Biogeosci. 120, 1124–1141 (2015).CAS 

    Google Scholar 
    Bundy, L. G. & Meisinger, J. J., Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.) in Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties 951–984 (Macmillan, 2018). https://doi.org/10.2136/sssabookser5.2.c41McDowell, W. H. et al. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biol. Biochem. 38, 1933–1942 (2006).CAS 

    Google Scholar 
    Thomas, G. W., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., Sumner, M. E. (Eds.) in Methods of Soil Analysis: Part 3 Chemical Methods, 5.3 475–490 (1996).Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 

    Google Scholar 
    Tolić, N. et al. Formularity: software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 

    Google Scholar 
    Bramer, L. M. et al. ftmsRanalysis: an R package for exploratory data analysis and interactive visualization of FT-MS data. PLoS Comput. Biol. 16, e1007654 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg, U. et al. UNITE: a database providing web‐based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068 (2005).PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Oksanen, J. et al. (2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=veganMcMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Joshi, N. & Fass, J. Sickle: A Sliding-window, Adaptive, Quality-based Trimming Tool for Fastq Files, v1.33 (2011).Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M., Walker, J. M. (Ed.) BUSCO: assessing genome assembly and annotation completeness. Gene prediction 227–245 (Humana Press, 2019). https://doi.org/10.1007/978-1-4939-9173-0_14Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 

    Google Scholar 
    Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. RnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8, 1–13 (2019).CAS 

    Google Scholar 
    Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, 699–704 (2014).
    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 

    Google Scholar 
    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 
    PubMed 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Smid, M. et al. Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons. BMC Bioinformatics 19, 236 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    PubMed 

    Google Scholar 
    Guo, J., Vik, D., Pratama, A. A., Roux, S. & Sullivan, M. B. Viral Sequence Identification SOP with VirSorter2 (2021); protocols.io. https://doi.org/10.17504/protocols.io.btv8nn9wBland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Physiological responses to low CO2 over prolonged drought as primers for forest–grassland transitions

    Bond, W. Open Ecosystems (Oxford Univ. Press, 2019).Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article 

    Google Scholar 
    Haverd, V. et al. Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences 13, 761–779 (2016).CAS 
    Article 

    Google Scholar 
    Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol. 35, 451–463 (2010).Article 

    Google Scholar 
    Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).CAS 
    Article 

    Google Scholar 
    Mitchell, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. N. Phytol. 197, 862–872 (2013).CAS 
    Article 

    Google Scholar 
    Schutz, A. E. N., Bond, W. J. & Cramer, M. D. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160, 235–246 (2009).PubMed 
    Article 

    Google Scholar 
    Wigley, B., Cramer, M. & Bond, W. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).Article 

    Google Scholar 
    Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A. & Consortium, C. G. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spriggs, E. L., Christin, P.-A. & Edwards, E. J. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE 9, e97722 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKay, R. M. et al. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Phil. Trans. R. Soc. A 374, 20140301 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).CAS 
    Article 

    Google Scholar 
    Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bellasio, C. & Farquhar, G. D. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. N. Phytol. 223, 150–166 (2019).CAS 
    Article 

    Google Scholar 
    Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO(2) on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS 
    Article 

    Google Scholar 
    Ward, J. K., Tissue, D. T., Thomas, R. B. & Strain, B. R. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob. Change Biol. 5, 857–867 (1999).Article 

    Google Scholar 
    Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).Article 

    Google Scholar 
    February, E. C. & Higgins, S. I. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S. Afr. J. Bot. 76, 517–523 (2010).Article 

    Google Scholar 
    February, E. C., Higgins, S. I., Bond, W. J. & Swemmer, L. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94, 1155–1164 (2013).PubMed 
    Article 

    Google Scholar 
    Fynn, R. W. S. & Naiken, J. Different responses of Eragrostis curvula and Themeda triandra to rapid- and slow-release fertilisers: insights into their ecology and implications for fertiliser selection in pot experiments. Afr. J. Range Forage Sci. 26, 43–46 (2009).Article 

    Google Scholar 
    Osmolovskaya, N. et al. Methodology of drought stress research: experimental setup and physiological characterization. Int. J. Mol. Sci. 19, 4089 (2018).PubMed Central 
    Article 

    Google Scholar 
    Quirk, J., Bellasio, C., Johnson, D. A., Osborne, C. P. & Beerling, D. J. C4 savanna grasses fail to maintain assimilation in drying soil under low CO2 compared with C3 trees despite lower leaf water demand. Funct. Ecol. 33, 388–398 (2019).Article 

    Google Scholar 
    Taylor, S. H. et al. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Glob. Change Biol. 20, 1992–2003 (2014).Article 

    Google Scholar 
    Bellasio, C., Quirk, J. & Beerling, D. J. Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Sci. 274, 181–192 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kipchirchir, K. O., Ngugi, K. R., Mwangi, M. S., Njomo, K. G. & Raphael, W. Water stress tolerance of six rangeland grasses in the Kenyan semi-arid rangelands. Am. J. Agric. For. 3, 222–229 (2015).
    Google Scholar 
    Kadioglu, A. & Terzi, R. A dehydration avoidance mechanism: leaf rolling. Bot. Rev. 73, 290–302 (2007).Article 

    Google Scholar 
    Bittman, S. & Simpson, G. M. Drought effect on leaf conductance and leaf rolling in forage grasses. Crop Sci. 29, 338–344 (1989).Article 

    Google Scholar 
    O’Toole, J. C. & Cruz, R. T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 65, 428–432 (1980).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Redmann, R. E. Adaptation of grasses to water stress—leaf rolling and stomate distribution. Ann. Mo. Bot. Gard. 72, 833–842 (1985).Article 

    Google Scholar 
    Volder, A., Tjoelker, M. G. & Briske, D. D. Contrasting physiological responsiveness of establishing trees and a C4 grass to rainfall events, intensified summer drought, and warming in oak savanna. Glob. Change Biol. 16, 3349–3362 (2010).Article 

    Google Scholar 
    Medeiros, J. S. & Ward, J. K. Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function. N. Phytol. 199, 738–748 (2013).CAS 
    Article 

    Google Scholar 
    Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nackley, L. L. et al. CO2 enrichment does not entirely ameliorate Vachellia karroo drought inhibition: a missing mechanism explaining savanna bush encroachment. Environ. Exp. Bot. 155, 98–106 (2018).CAS 
    Article 

    Google Scholar 
    Apgaua, D. M. et al. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Tree Physiol. 39, 1806–1820 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bond, W. J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641–659 (2008).Article 

    Google Scholar 
    Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).Article 

    Google Scholar 
    Dohn, J. et al. Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J. Ecol. 101, 202–209 (2013).Article 

    Google Scholar 
    Jacobsen, J. V., Hanson, A. D. & Chandler, P. C. Water stress enhances expression of an α-amylase gene in barley leaves. Plant Physiol. 80, 350–359 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brodersen, C. & McElrone, A. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00108 (2013).Chitarra, W. et al. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta 239, 887–899 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hasibeder, R., Fuchslueger, L., Richter, A. & Bahn, M. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. N. Phytol. 205, 1117–1127 (2015).CAS 
    Article 

    Google Scholar 
    Bradford, K. J. & Hsiao, T. C. in Physiological Plant Ecology II: Water Relations and Carbon Assimilation (eds Lange, O. L. et al.) 263–324 (Springer Berlin Heidelberg, 1982).Knox, K. J. E. & Clarke, P. J. Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Funct. Ecol. 19, 690–698 (2005).Article 

    Google Scholar 
    Hoffmann, W. A., Orthen, B. & Franco, A. C. Constraints to seedling success of savanna and forest trees across the savanna–forest boundary. Oecologia 140, 252–260 (2004).PubMed 
    Article 

    Google Scholar 
    Palacio, S., Maestro, M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).CAS 
    Article 

    Google Scholar 
    Hoffmann, W. A., Bazzaz, F. A., Chatterton, N. J., Harrison, P. A. & Jackson, R. B. Elevated CO2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galvez, D. A., Landhausser, S. M. & Tyree, M. T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol. 31, 250–257 (2011).PubMed 
    Article 

    Google Scholar 
    Poorter, H. et al. A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. N. Phytol. https://doi.org/10.1111/nph.17802 (2022).Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiter, S. et al. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. N. Phytol. 195, 653–666 (2012).Article 

    Google Scholar 
    Quirk, J., Bellasio, C., Johnson, D. A. & Beerling, D. J. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. Ann. Bot. Lond. 124, 77–90 (2019).Article 
    CAS 

    Google Scholar 
    Davies, J. et al. in AGU Fall Meeting Abstracts EP41D-2374. https://ui.adsabs.harvard.edu/abs/2019AGUFMEP41D2374D/abstractMills, A. J., Rogers, K. H., Stalmans, M. & Witkowski, E. T. F. A framework for exploring the determinants of savanna and grassland distribution. BioScience 56, 579–589 (2006).Article 

    Google Scholar 
    Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. N. Phytol. 216, 1151–1160 (2017).CAS 
    Article 

    Google Scholar 
    Cardoso, A. W. et al. Winners and losers: tropical forest tree seedling survival across a West African forest–savanna transition. Ecol. Evol. 6, 3417–3429 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mitchard, E. T. A. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0406 (2013).Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Change 5, 823–829 (2015).Article 

    Google Scholar 
    Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. B 367, 601–612 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ripley, B. S., Gilbert, M. E., Ibrahim, D. G. & Osborne, C. P. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58, 1351–1363 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    McAusland, L. et al. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. N. Phytol. 211, 1209–1220 (2016).Article 

    Google Scholar 
    Osborne, C. P. & Sack, L. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B 367, 583–600 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pearcy, R. W. & Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984).CAS 
    Article 

    Google Scholar 
    Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. N. Phytol. 201, 908–915 (2014).CAS 
    Article 

    Google Scholar 
    Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).Article 

    Google Scholar 
    Polley, H. W., Johnson, H. B., Marino, B. D. & Mayeux, H. S. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361, 61–64 (1993).Article 

    Google Scholar 
    Stevens, N., Lehmann, C. E., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).Article 

    Google Scholar 
    Charles-Dominique, T., Midgley, G. F., Tomlinson, K. W. & Bond, W. J. Steal the light: shade vs fire adapted vegetation in forest–savanna mosaics. N. Phytol. 218, 1419–1429 (2018).Article 

    Google Scholar 
    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bellasio, C., Fini, A. & Ferrini, F. Evaluation of a high throughput starch analysis optimised for wood. PLoS ONE 9, e86645 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kozloski, G. V., Rocha, J. B., Ribeiro Filho, H. M. N. & Perottoni, J. Comparison of acid and amyloglucosidase hydrolysis for estimation of non‐structural polysaccharides in feed samples. J. Sci. Food Agric. 79, 1112–1116 (1999).CAS 
    Article 

    Google Scholar 
    Bellasio, C., Beerling, D. J. & Griffiths, H. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant Cell Environ. 39, 1180–1197 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bellasio, C., Beerling, D. J. & Griffiths, H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. Plant Cell Environ. 39, 1164–1179 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ethier, G. J. & Livingston, N. J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. Plant Cell Environ. 27, 137–153 (2004).CAS 
    Article 

    Google Scholar 
    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis (CSIRO, 2000).Bellasio, C. & Griffiths, H. Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ. 37, 1046–1058 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fini, A., Bellasio, C., Pollastri, S., Tattini, M. & Ferrini, F. Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J. Arid Environ. 89, 21–29 (2013).Article 

    Google Scholar 
    Ghannoum, O., Caemmerer, S. V. & Conroy, J. P. The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Funct. Plant Biol. 29, 1337–1348 (2002).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Fungal succession on the decomposition of three plant species from a Brazilian mangrove

    Raghukumar, S. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast. Ocean. Mar. Ecosyst. Mar. Fungi. https://doi.org/10.1007/978-3-319-54304-8 (2017).Article 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 
    Article 

    Google Scholar 
    Sebastianes, F. L. D. S. et al. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 59, 153–166 (2013).CAS 
    Article 

    Google Scholar 
    Holguin, G. et al. Mangrove health in an arid environment encroached by urban development—A case study. Sci. Total Environ. 363, 260–274 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schaeffer-Novelli, Y., Cintrón-Molero, G. & Adaime, R. R. Variability of Mangrove ecosystems along the Brazilian coast variability of mangrove ecosystems along the Brazilian Coast. Estuaries 13, 204–218 (1990).Article 

    Google Scholar 
    Baskaran, R., Mohan, P., Sivakumar, K., Ragavan, P. & Sachithanandam, V. Phyllosphere microbial populations of ten true mangrove species of the Andaman Island. Int. J. Microbiol. Res. 3, 124–127 (2012).
    Google Scholar 
    Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285, 19–32 (1994).CAS 
    Article 

    Google Scholar 
    Taketani, R. G., Moitinho, M. A., Mauchline, T. H. & Melo, I. S. Co-occurrence patterns of litter decomposing communities in mangroves indicate a robust community resistant to disturbances. PeerJ 6, e5710 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schmit, J. P. & Mueller, G. M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 16, 99–111 (2007).Article 

    Google Scholar 
    Hawksworth, D. L. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 50, 9–18 (2004).
    Google Scholar 
    Valderrama, B. et al. Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico. Revista Mexicana de Biodiversidad 87, 18–28 (2016).Article 

    Google Scholar 
    Marano, A. V., Pires-Zottarelli, C. L. A., Barrera, M. D., Steciow, M. M. & Gleason, F. H. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream. Hydrobiologia 659, 93–109 (2011).Article 

    Google Scholar 
    Pascoal, C. & Cassio, F. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70, 5266–5273 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moitinho, M. A., Bononi, L., Souza, D. T., Melo, I. S. & Taketani, R. G. Bacterial succession decreases network complexity during plant material decomposition in mangroves. Microb. Ecol. https://doi.org/10.1007/s00248-018-1190-4 (2018).Article 
    PubMed 

    Google Scholar 
    Tan, T. K., Leong, W. F. & Jones, E. B. G. Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can. J. Bot. 67, 2686–2691 (1989).Article 

    Google Scholar 
    Ananda, K. & Sridhar, K. R. Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr. Sci. 80, 1431–1437 (2004).
    Google Scholar 
    Maria, G. L., Sridhar, K. R. & Bärlocher, F. Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Bot. Mar. 49, 450–455 (2006).CAS 
    Article 

    Google Scholar 
    Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycprrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mcmurdie, P. J. & Holmes, S. phyloseq : An R package for reproducible interactive analysis and graphics of microbiome census data. 8, (2013).Oksanen, P. Vegan 1.17-0. (2010).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Hamilton, N. E. & Ferry, M. {ggtern}: Ternary diagrams using {ggplot2}. J. Stat. Softw. Code Snippets 87, 1–17 (2018).
    Google Scholar 
    Hanski, I. Communities of bumblebees: Testing the core-satellite species hypothesis. Annales Zoologici Fennici 65–73 (1982).Gumiere, T. et al. A probabilistic model to identify the core microbial community. bioRxiv. https://doi.org/10.1101/491183 (2018).Article 

    Google Scholar 
    Salazar, G. EcolUtils: Utilities for community ecology analysis. (2019).Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).Book 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Promputtha, I. et al. Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Diversity 30, 23–36 (2008).
    Google Scholar 
    Kodsueb, R., McKenzie, E. H. C., Lumyong, S. & Hyde, K. D. Fungal succession on woody litter of Magnolia liliifera (Magnoliaceae). Fungal Diversity 30, 55–72 (2008).
    Google Scholar 
    Voriskova, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Osono, T. Phyllosphere fungi on leaf litter of Fagus crenata: Occurrence, colonization, and succession. Can. J. Bot. 80, 460–469 (2002).Article 

    Google Scholar 
    Osono, T. et al. Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Diversity 36, 101–119 (2009).
    Google Scholar 
    Costa, I. P. M. W., Maia, L. C. & Cavalcanti, M. A. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz. J. Microbiol. 43, 1165–1173 (2012).Article 

    Google Scholar 
    Sobrado, M. A. Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. 422–427 (2004). https://doi.org/10.1007/s00468-004-0320-4.Dias, A. C. F. et al. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests. Braz. J. Microbiol. 43, (2012).Moitinho, M. A. et al. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane. Braz. J. Microbiol. 50, 1041–1050 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barroso-Matos, T., Bernini, E. & Rezende, C. E. Descomposición de hojas de mangle en el estuario del Río Paraíba do Sul Rio de Janeiro, Brasil. Lat. Am. J. Aquat. Res. 40, 398–407 (2012).Article 

    Google Scholar 
    Sessegolo, G. C. & Lana, P. C. Lagunculana racemosa Leaves in a Mangrove of Paranaguä Bay (Southeastern Brazil). Bot. Mar. 34, 285–289 (1991).Article 

    Google Scholar 
    Miura, T. et al. Diversity of fungi on decomposing leaf litter in a sugarcane plantation and their response to tillage practice and bagasse mulching: implications for management effects on litter decomposition. Microb. Ecol. 70, 646–658 (2015).PubMed 
    Article 

    Google Scholar 
    Behnke-Borowczyk, J. & Wołowska, D. The identification of fungal species in dead wood of oak. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 17, 17–23 (2018).Article 

    Google Scholar 
    Simões, M. F. et al. Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—A metagenomic approach. Genom. Proteom. Bioinform. 13, 310–320 (2015).Article 

    Google Scholar 
    Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 22, 955–974 (2007).Article 

    Google Scholar 
    Zhang, W. et al. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. CATENA 161, 85–95 (2018).CAS 
    Article 

    Google Scholar 
    Jones, E. B. G. & Choeyklin, R. Ecology of marine and freshwater basidiomycetes. in Ecology of Saprotrophic Basidiomycetes 301–324 (2007).Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 6, 1749–1762 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, X. et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Biores. Technol. 170, 183–195 (2014).CAS 
    Article 

    Google Scholar 
    Koivusaari, P. et al. Fungi originating from tree leaves contribute to fungal diversity of litter in streams. Front. Microbiol. 10, (2019).Raudabaugh, D. B. et al. Coniella lustricola, a new species from submerged detritus. Mycol. Prog. 17, 191–203 (2018).Article 

    Google Scholar 
    Arfi, Y. et al. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp. Nat. Commun. 4, (2013). More

  • in

    Convergence in phosphorus constraints to photosynthesis in forests around the world

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).ADS 
    Article 

    Google Scholar 
    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. L. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, D. A. et al. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences 14, 4663–4690 (2017).ADS 
    Article 

    Google Scholar 
    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reed, S. C. et al. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. N. Phytologist 208, 324–329 (2015).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea – how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Kattge, J. et al. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).ADS 
    Article 

    Google Scholar 
    Rogers, A. The use and misuse of Vc,max in Earth System Models. Photosynthesis Res. 119, 15–29 (2014).CAS 
    Article 

    Google Scholar 
    Field, C. B. & Mooney, H. A. in On the economy of plant form and function. (ed T. J. Givnish) 25-55. (Cambridge University Press, 1986).Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Raven, J. A. Rubisco: still the most abundant protein of Earth? N. Phytologist 198, 1–3 (2013).CAS 
    Article 

    Google Scholar 
    Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).ADS 
    PubMed 
    Article 

    Google Scholar 
    Thornton, P. E. et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, GB4018 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    Reich, P. B. et al. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Achat, D. L. et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry 131, 173–202 (2016).CAS 
    Article 

    Google Scholar 
    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carstensen, A. et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 177, 271–284 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ. 38, 1142–1156 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. (CSIRO Publishing, 2000).Brooks, A. et al. Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynthesis Res. 15, 133–141 (1988).CAS 
    Article 

    Google Scholar 
    Chen, J. L. et al. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).ADS 
    PubMed 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soong, J. L. et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 10, 2302 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Norby, R. J. et al. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. N. Phytologist 215, 1425–1437 (2017).CAS 
    Article 

    Google Scholar 
    Crous, K. Y. et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. N. Phytologist 215, 992–1008 (2017).CAS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interactions 9, 17 (2005).Augusto, L. et al. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).ADS 
    Article 

    Google Scholar 
    Lambers, H. et al. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 347, 7–27 (2011).Article 
    CAS 

    Google Scholar 
    Yan, L. et al. Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence. N. Phytologist 223, 1621–1633 (2019).CAS 
    Article 

    Google Scholar 
    Yang, X. & Post, W. M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8, 2907–2916 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Duursma, R. A. Plantecophys – An R package for analysing and modelling leaf gas exchange data. Plos One 10, e0143346 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE. Geoscientific Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V-cmax) on global gross primary production. N. Phytologist 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637–645 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Neter, J. et al. Applied Linear Statistical Models, 4th ed., (McGraw-Hill, 1996).Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evolution 4, 202–209 (2020).Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 490, 123–456 (2018).
    Google Scholar 
    Thornton, P. E. et al. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nat. Clim. Chang. 7, 496-+ (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Wieder, W. R. et al. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evolution 4, 3218–3235 (2014).Article 

    Google Scholar 
    Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. N. Phytologist 196, 1098–1108 (2012).CAS 
    Article 

    Google Scholar 
    Jiang, M. K. et al. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytologist 222, 1223–1229 (2019).Article 

    Google Scholar 
    Leuning, R. Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax. J. Exp. Bot. 48, 345–347 (1997).CAS 
    Article 

    Google Scholar 
    Bonardi, V. et al. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437, 1179–1182 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seiler, C. et al. Are terrestrial biosphere models fit for simulating the global land carbon sink? J. Adv. Model Earth Syst. 14, e2021MS002946 (2022).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts. Geophys. Res. Lett. 45, 8231–8240 (2018).ADS 
    Article 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Wang, Y. P. et al. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, X. J. et al. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Lett. 43, 7205–7214 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).ADS 
    Article 

    Google Scholar 
    Bloomfield, K. J. et al. Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia). Biogeosciences 11, 7331–7347 (2014).ADS 
    Article 

    Google Scholar 
    Cernusak, L. A. et al. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).ADS 
    Article 

    Google Scholar 
    Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. N. Phytologist 214, 1002–1018 (2017).CAS 
    Article 

    Google Scholar 
    Rowland, L. et al. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Glob. Change Biol. 21, 4662–4672 (2015).ADS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecol. Diversity 7, 189–203 (2014).Article 

    Google Scholar 
    Kenzo, T. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    van de Weg, M. J. et al. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168, 23–34 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kenzo, T. et al. Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. Jpn. Agriculture Res. Q. 46, 167–180 (2012).Article 

    Google Scholar 
    Domingues, T. F. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Verryckt, L. T. et al. Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth Syst. Sci. Data 14, 5–18 (2022).ADS 
    Article 

    Google Scholar 
    Santiago, L. S. & Mulkey, S. S. A test of gas exchange measurements on excised canopy branches of ten tropical tree species. Photosynthetica 41, 343–347 (2003).CAS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Linking leaf and tree water use with an individual-tree model. Tree Physiol. 27, 1687–1699 (2007).PubMed 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Townsend, A. R. et al. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B. et al. Leaf structure (specific leaf area) modulates photosynthesis- nitrogen relations: evidence from within and across species and functional groups. Funct. Ecol. 12, 948–958 (1998).Article 

    Google Scholar 
    Rogers, A. et al. Improving representation of photosynthesis in Earth System Models. N. Phytologist 204, 12–14 (2014).Article 

    Google Scholar 
    Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. N. Phytologist 222, 768–784 (2019).CAS 
    Article 

    Google Scholar 
    Warton, D. I. et al. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).PubMed 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    Tian, H. Q. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Initial community composition determines the long-term dynamics of a microbial cross-feeding interaction by modulating niche availability

    The generalist accumulates extracellular nitriteWe first tested whether the generalist accumulates substantial extracellular nitrite under our experimental conditions, and thus creates a niche for the specialist. To accomplish this, we grew the generalist alone in bioreactors with anoxic ACS medium amended with 12 mM nitrate as the growth-limiting substrate and measured the extracellular concentrations of nitrate and nitrite over time. We performed these experiments at pH 6.5 (strong nitrite toxicity) and 7.5 (weak nitrite toxicity).We observed a substantial accumulation of extracellular nitrite regardless of the pH (Fig. 3A, B). When grown at pH 6.5 (strong nitrite toxicity), extracellular nitrite accumulated to a concentration comparable to the initial nitrate concentration (measured maximum extracellular nitrite concentration, 11.8 mM; measured initial nitrate concentration, 12.0 mM) and was subsequently consumed to below the detection limit (Fig. 3A). When grown at pH 7.5 (weak nitrite toxicity), extracellular nitrite again accumulated to a concentration comparable to the initial nitrate concentration (measured maximum extracellular nitrite concentration, 11.7 mM; measured initial nitrate concentration, 12.9 mM) and was subsequently consumed to below the detection limit (Fig. 3B). During growth at pH 6.5, substantial nitrite consumption did not begin until a prolonged period of time after nitrate consumption was complete, resulting in a relatively long duration of nitrite availability (Fig. 3A). During growth at pH 7.5, in contrast, substantial nitrite consumption began immediately after nitrate consumption was complete, resulting in a relatively short duration of nitrite availability (Fig. 3B). The longer duration of nitrite availability at pH 6.5 indicates that the duration of the niche created by the generalist for the specialist depends on pH.Fig. 3: Growth and nitrogen oxide dynamics of the generalist in batch culture.We grew the generalist alone in a bioreactor at A pH 7.5 (weak nitrite toxicity) or B pH 6.5 (strong nitrite toxicity) under anoxic conditions with nitrate as the growth-limiting substrate. Blue squares are measured extracellular nitrate concentrations, yellow triangles are measured extracellular nitrite concentrations, and black circles are measured cell densities. We measured extracellular nitrate and nitrite concentrations with IC and cell densities with FC. C Measured durations of nitrite availability for the generalist growing in batch culture. We grew the generalist alone in 96-well microtiter plates under anoxic conditions with nitrate as the growth-limiting substrate. Open symbols are durations of nitrite availability at pH 6.5 and closed symbols are durations of nitrite availability at pH 7.5. Each symbol is an independent biological replicate.Full size imageTo routinely quantify the duration of nitrite availability, we grew the generalist alone with varying amounts of nitrate as the growth-limiting substrate. We then quantified the length of time from when the growth rate with nitrate was maximum to when the growth rate with nitrite was maximum. This cell density-based proxy measure is valid because the growth of the generalist is directly linked to the consumption of nitrate and nitrite (Fig. 3A, B). The cell density of the generalist was initially linearly correlated with nitrate consumption at both pH 6.5 (strong nitrite toxicity) (two-sided Pearson correlation test; r = −0.96, p = 1.5 × 10–8, n = 15) (Fig. 3A) and 7.5 (weak nitrite toxicity) (two-sided Pearson correlation test; r = −1.00, p = 2.2 × 10–16, n = 30) (Fig. 3B). After nitrate was depleted, the cell density of the generalist became linearly correlated with nitrite consumption at both pH 6.5 (strong nitrite toxicity) (two-sided Pearson correlation test; r = −0.97, p = 3 × 10–4, n = 7) (Fig. 3A) and 7.5 (weak nitrite toxicity) (two-sided Pearson correlation test; r = −0.97, p = 6.8 × 10–10, n = 16) (Fig. 3B). We further validated our cell density-based approach by testing for concordance with our IC-based direct measures of the duration of nitrite availability. We observed a significant positive and linear relationship between the cell density- and IC-based measures (two-sided Pearson correlation test; r = 0.999, p = 0.023, n = 3) (linear regression model; slope = 1.19, intercept = −2.31, r2 = 0.99) (Supplementary Fig. S2), which further validates our cell density-based approach to routinely estimate the duration of nitrite availability.Using our cell density-based approach, we found that the duration of nitrite availability was significantly longer at pH 6.5 (strong nitrite toxicity) than at 7.5 (weak nitrite toxicity) regardless of the initial nitrate concentration (two-sample two-sided t-tests; Holm-adjusted p  0.92, Holm-adjusted p  0.6), and thus followed model predictions (Fig. 4A). However, when the specialist was initially rare (measured initial log rS/Gs of –3.19, –2.65, and –0.88), the relative abundances of the specialist continuously decreased between the third and twelfth transfers (Mann–Kendall trend tests; tau = –0.61 to –0.89, p  0 were dominated by phenotype C (dominant ancestral phenotype with a long time delay between nitrate and nitrite consumption), while generalist isolates from co-cultures with initial rS/Gs  More