Mediterranean moth diversity is sensitive to increasing temperatures and drought under climate change
IPCC (ed.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 18, 1481–1493. https://doi.org/10.1007/s10113-018-1290-1 (2018).Article
Google Scholar
Tuel, A. & Eltahir, E. A. B. Why is the Mediterranean a climate change hot spot?. J. Clim. 33, 5829–5843. https://doi.org/10.1175/JCLI-D-19-0910.1 (2020).ADS
Article
Google Scholar
Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638. https://doi.org/10.1038/s41559-020-01303-0 (2020).Article
PubMed
Google Scholar
Ruffault, J. et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 10, 13790. https://doi.org/10.1038/s41598-020-70069-z (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Tramblay, Y. et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210, 103348. https://doi.org/10.1016/j.earscirev.2020.103348 (2020).Article
Google Scholar
Nistor, M.-M. & Mîndrescu, M. Climate change effect on groundwater resources in Emilia-Romagna region: an improved assessment through NISTOR-CEGW method. Quatern. Int. 504, 214–228. https://doi.org/10.1016/j.quaint.2017.11.018 (2019).Article
Google Scholar
Paoletti, E. Impact of ozone on Mediterranean forests: a review. Environ. Pollut. (Barking Essex: 1987) 144, 463–474. https://doi.org/10.1016/j.envpol.2005.12.051 (2006).CAS
Article
Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).Article
PubMed
PubMed Central
Google Scholar
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2002549117 (2021).Article
PubMed
PubMed Central
Google Scholar
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102. https://doi.org/10.1038/s41586-022-04644-x (2022).CAS
Article
PubMed
Google Scholar
Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946. https://doi.org/10.1038/s41467-021-26181-3 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. 15, 168–180. https://doi.org/10.1111/icad.12555 (2021).Article
Google Scholar
Hoshika, Y. et al. Species-specific variation of photosynthesis and mesophyll conductance to ozone and drought in three Mediterranean oaks. Physiol. Plant. 174, e13639. https://doi.org/10.1111/ppl.13639 (2022).CAS
Article
PubMed
PubMed Central
Google Scholar
Haberstroh, S. et al. Terpenoid emissions of two Mediterranean woody species in response to drought stress. Front. Plant Sci. 9, 1071. https://doi.org/10.3389/fpls.2018.01071 (2018).Article
PubMed
PubMed Central
Google Scholar
Toscano, S., Ferrante, A. & Romano, D. Response of Mediterranean ornamental plants to drought stress. Horticulturae 5, 6. https://doi.org/10.3390/horticulturae5010006 (2019).Article
Google Scholar
Gely, C., Laurance, S. G. W. & Stork, N. E. How do herbivorous insects respond to drought stress in trees?. Biol. Rev. Camb. Philos. Soc. 95, 434–448. https://doi.org/10.1111/brv.12571 (2020).Article
PubMed
Google Scholar
Teixeira, N. C., Valim, J. O. S., Oliveira, M. G. A. & Campos, W. G. Combined effects of soil silicon and drought stress on host plant chemical and ultrastructural quality for leaf-chewing and sap-sucking insects. J. Agro. Crop Sci. 206, 187–201. https://doi.org/10.1111/jac.12386 (2020).CAS
Article
Google Scholar
Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 5680. https://doi.org/10.1038/s41598-019-42171-4 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Haeler, E., Fiedler, K. & Grill, A. What prolongs a butterfly’s life?: Trade-offs between dormancy, fecundity and body size. PLoS ONE 9, e111955. https://doi.org/10.1371/journal.pone.0111955 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Yela, J. L. & Herrera, C. M. Seasonality and life cycles of woody plant-feeding noctuid moths (Lepidoptera: Noctuidae) in Mediterranean habitats. Ecol. Entomol. 18, 259–269. https://doi.org/10.1111/j.1365-2311.1993.tb01099.x (1993).Article
Google Scholar
Uhl, B., Wölfling, M. & Fiedler, K. Local, forest stand and landscape-scale correlates of plant communities in isolated coastal forest reserves. Plant Biosyst. 155, 457–469. https://doi.org/10.1080/11263504.2020.1762776 (2021).Article
Google Scholar
Andreatta, G. Proposal for the establishment of a “silvio-museum” in the Ravenna historical pinewoods. Forest@-J. Silvicult. For. Ecol. 7, 237–246 (2011).
Google Scholar
Wölfling, M., Uhl, B. & Fiedler, K. Multi-decadal surveys in a Mediterranean forest reserve: Do succession and isolation drive moth species richness?. Nat. Conserv. 35, 25–40. https://doi.org/10.3897/natureconservation.35.32934 (2019).Article
Google Scholar
Uhl, B., Wölfling, M. & Fiedler, K. Understanding small-scale insect diversity patterns inside two nature reserves: the role of local and landscape factors. Biodivers Conserv 29, 2399–2418. https://doi.org/10.1007/s10531-020-01981-z (2020).Article
Google Scholar
Uhl, B., Wölfling, M., Fiala, B. & Fiedler, K. Micro-moth communities mirror environmental stress gradients within a Mediterranean nature reserve. Basic Appl. Ecol. 17, 273–281. https://doi.org/10.1016/j.baae.2015.10.002 (2016).Article
Google Scholar
Axmacher, J. C. & Fiedler, K. Manual versus automatic moth sampling at equal light sources: a comparison of catches from Mt. Kilimanjaro. J. Lepidopterists’ Soc. 58, 196–202 (2004).
Google Scholar
Brehm, G. & Axmacher, J. C. A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ. Entomol. 35, 757–764. https://doi.org/10.1603/0046-225X-35.3.757 (2006).Article
Google Scholar
van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281. https://doi.org/10.1016/j.biocon.2011.06.004 (2011).Article
Google Scholar
Niermann, J. & Brehm, G. The number of moths caught by light traps is affected more by microhabitat than the type of UV lamp used in grassland habitat. Eur. J. Entomol. 119, 36–42 ; https://doi.org/10.14411/eje.2022.004 (2022).Potocky, P. et al. Life-history traits of Central European moths: gradients of variation and their association with rarity and threats. Insect Conserv. Divers. 11, 493–505. https://doi.org/10.1111/icad.12291 (2018).Article
Google Scholar
R Core Team. R package version 2.5–7 https://www.r-project.org/ (2021).McLeod, A. I. Kendall: Kendall rank correlation and Mann-Kendall trend test https://CRAN.R-project.org/package=Kendall (2011).Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article
Google Scholar
Pike, N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol. Evol. 2, 278–282. https://doi.org/10.1111/j.2041-210X.2010.00061.x (2011).Article
Google Scholar
Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://cran.r-project.org/web/packages/vegan/index.html (2020).De Luca, P., Messori, G., Faranda, D., Ward, P. J. & Coumou, D. Compound warm–dry and cold–wet events over the Mediterranean. Earth System Dynamics 11(3), 793–805 (2020).ADS
Article
Google Scholar
Manning, C. et al. Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environ. Res. Lett. 14(9), 094006 (2019).ADS
Article
Google Scholar
Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4, 19–32. https://doi.org/10.1042/ETLS20190134 (2020).Article
PubMed
PubMed Central
Google Scholar
Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).Article
PubMed
Google Scholar
Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285. https://doi.org/10.1111/j.1365-2656.2012.02029.x (2013).Article
PubMed
Google Scholar
Conrad, K. F., Woiwod, I. P. & Perry, J. N. Long-term decline in abundance and distribution of the garden tiger moth (Arctia caja) in Great Britain. Biol. Conserv. 106, 329–337. https://doi.org/10.1016/S0006-3207(01)00258-0 (2002).Article
Google Scholar
Mathbout, S., Lopez-Bustins, J. A., Royé, D., Martin-Vide, J. & Benhamrouche, A. Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int. J. Climatol. 40, 1435–1455. https://doi.org/10.1002/joc.6278 (2020).Article
Google Scholar
Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184. https://doi.org/10.1111/1365-2664.12959 (2018).Article
Google Scholar
Thomsen, P. F. et al. Resource specialists lead local insect community turnover associated with temperature – analysis of an 18-year full-seasonal record of moths and beetles. J. Anim. Ecol. 85, 251–261. https://doi.org/10.1111/1365-2656.12452 (2016).Article
PubMed
Google Scholar
Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. https://doi.org/10.1016/j.cois.2016.07.002 (2016).Article
PubMed
Google Scholar
Du Plessis, H., Schlemmer, M.-L. & van den Berg, J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects https://doi.org/10.3390/insects11040228 (2020).Article
PubMed
PubMed Central
Google Scholar
Jallow, M. F. A. & Matsumura, M. Influence of temperature on the rate of development of Helicoverpa armigera (Huebner) (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 36, 427–430. https://doi.org/10.1303/aez.2001.427 (2001).Article
Google Scholar
Mironidis, G. K. & Savopoulou-Soultani, M. Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ. Entomol. 37, 16–28. https://doi.org/10.1093/ee/37.1.16 (2008).CAS
Article
PubMed
Google Scholar
Sokame, B. M. et al. Influence of temperature on the interaction for resource utilization between Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and a community of Lepidopteran maize stemborers larvae. Insects https://doi.org/10.3390/insects11020073 (2020).Article
PubMed
PubMed Central
Google Scholar
Johansson, F., Orizaola, G. & Nilsson-Örtman, V. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Sci. Rep. 10, 8822. https://doi.org/10.1038/s41598-020-65608-7 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
White, T. C. R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63, 90–105. https://doi.org/10.1007/BF00379790 (1984).ADS
CAS
Article
PubMed
Google Scholar
Price, P. W. The plant vigor hypothesis and herbivore attack. Oikos 62, 244. https://doi.org/10.2307/3545270 (1991).Article
Google Scholar
Sarfraz, R. M., Dosdall, L. M. & Keddie, A. B. Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. Eur. J. Entomol. 106, 583–594. https://doi.org/10.14411/eje.2009.073 (2009).CAS
Article
Google Scholar More
