More stories

  • in

    The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wingfield, J. C. et al. Organism-environment interactions in a changing world: a mechanistic approach. J. Ornithol. 152, 279–288 (2011).Article 

    Google Scholar 
    Mendoza-Gonzalez, G., Martinez, M. L., Rojas-Soto, O. R., Vazquez, G. & Gallego-Fernandez, J. B. Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise. Glob. Change Biol. 19, 2524–2535 (2013).ADS 
    Article 

    Google Scholar 
    Saunders, S. P. et al. Community science validates climate suitability projections from ecological niche modeling. Ecol. Appl. 30, 17 (2020).Article 

    Google Scholar 
    Peterson, A. T., Cobos, M. E. & Jimenez-Garcia, D. Major challenges for correlational ecological niche model projections to future climate conditions. Ann. N. Y. Acad. Sci. 1429, 66–77 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mays, H. L. et al. Genomic analysis of demographic history and Ecological niche modeling in the endangered Sumatran Rhinoceros Dicerorhinus sumatrensis. Curr. Biol. 28, 70–76 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malcolm, R. J., Liu, C., Neilson, P. R., Hansen, L. & Hannah, L. A. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2005).Article 

    Google Scholar 
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).PubMed 
    Article 

    Google Scholar 
    Gotelli, J. N. & Stanton-Geddes, J. Climate change, genetic markers and species distribution modelling. J. Biogeogr. 42, 1577–1585 (2015).Article 

    Google Scholar 
    Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).PubMed 
    Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 
    Article 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rhone, B. et al. Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nat. Commun. 11, 5274 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, J. K., Lin, S. L., Li, J. T., Yu, J. H. & Jiang, H. S. Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau. Commun. Biol. 3, 9 (2020).Article 
    CAS 

    Google Scholar 
    Wu, Y. J. et al. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310–2323 (2013).Article 

    Google Scholar 
    del Hoyo, J., Elliott, A., Sargatal, J. & Christie, D. A. Handbook of the Birds of the World (Lynx Edicions, 2013).Qu, Y. et al. Lineage diversification and historical demography of a montane bird Garrulax elliotii – implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evolut. Biol. 11, 174 (2011).Article 

    Google Scholar 
    Qu, Y. et al. Long-term isolation and stability explain high genetic diversity in the Eastern Himalaya. Mol. Ecol. 23, 705–720 (2014).PubMed 
    Article 

    Google Scholar 
    Wang, W. J. et al. Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus). J. Biogeogr. 40, 1156–1169 (2013).Article 

    Google Scholar 
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Laine, V. N. et al. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat. Commun. 7, 9 (2016).Article 
    CAS 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 

    Google Scholar 
    Giorgetta, M. A. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).ADS 
    Article 

    Google Scholar 
    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).ADS 
    Article 

    Google Scholar 
    Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).ADS 
    Article 

    Google Scholar 
    Voldoire, A. et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).Article 

    Google Scholar 
    Frichot, E., Schoville, S. D., Bouchard, G. & Francois, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L. & Lasky, J. R. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol. Ecololgy 25, 104–120 (2016).CAS 
    Article 

    Google Scholar 
    Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27, 2215–2233 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, C. et al. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. Gigascience 3, 27 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pirri, F. et al. Selection-driven adaptation to the extreme Antarctic environment in Emperor penguin. Preprint at bioRxiv https://doi.org/10.1101/2021.12.14.471946 (2021).Wang, L. C. et al. Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologuein the acclimation of the plasma membrane to heat stess.J. Exp. Bot. 62, 3609–3620 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piñol, R. A. et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab. 33, 1389–1403 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guilherme, A. et al. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol. Metab. 16, 116–125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, Y., Guo, W., zhang, Y., Zhang, H. & Wu, C. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comp. Biochem. Physiol. Part D. 31, 100602 (2019).CAS 

    Google Scholar 
    Pizzagalli, M. D., Bensimon, A. & Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 288, 2784–2835 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Qu, Y. et al. Rapid phenotypic evolution with shallow genomic differentiation during early stages of high elevation adaptation in Eurasian Tree Sparrows. Natl Sci. Rev. 7, 113–127 (2020).PubMed 
    Article 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Chen, Y. et al. Large-scale genome-wide reveals climate adaptive variability in a cosmopolitan pest. Nat. Commun. 12, 7206 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarke, R. T., Rothery, P. & Raybould, A. F. Confidence limits for regression relationships between distance matrices: Estimating gene flow with distance. J. Agric. Biol. Environ. Stat. 7, 361–372 (2002).Article 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sanchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).Article 

    Google Scholar 
    Smith, T. B. et al. Genomic vulnerablity and soci-economic threats under climate change in an African rainforest bird. Evolut. Appl. 14, 1239–1247 (2021).Article 

    Google Scholar 
    Liu, B., Liang, E. Y., Liu, K. & Camarero, J. J. Species- and elevation-dependent growth responses to climate warming of mountain forests in the Qinling Mountains, central China. Forests 9, 11 (2018).
    Google Scholar 
    Dang, H. S., Zhang, Y. J., Zhang, K. R., Jiang, M. X. & Zhang, Q. F. Climate-growth relationships of subalpine fir (Abies fargesii) across the altitudinal range in the Shennongjia Mountains, central China. Clim. Change 117, 903–917 (2013).ADS 
    Article 

    Google Scholar 
    Lingua, E., Cherubini, P., Motta, R. & Nola, P. Spatial structure along an altitudinal gradient in the Italian central Alps suggests competition and facilitation among coniferous species. J. Veg. Sci. 19, 425–436 (2008).Article 

    Google Scholar 
    Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).Article 

    Google Scholar 
    Zhang, R. Z., Zheng, D., Yang, Q. Y. & Liu, Y. H. Physical Geography of Hengduan Mountains (Science Press, 1997).Liu, Y. et al. Sino-Himalayan mountains act as cradles of diversity and immigration centres in the diversification of parrotbills (Paradoxornithidae). J. Biogeogr. 43, 1488–1501 (2016).Bush, A. et al. Incorporating evolutionary adaptation in species distribution modeling reduces projected vulnerability to climate change. Ecol. Lett. 17, 1468–148 (2016).Article 

    Google Scholar 
    Sparks, M. M., Westley, A. A. H., Falke, J. A. & Quinn, T. P. Thermal adaptation and phenotypic plasticity in a warming world: insights from common garden experiments on Alaskan sockeye salmon. Glob. Change Biol. 23, 5203–5217 (2017).ADS 
    Article 

    Google Scholar 
    Merow, C., Wilson, A. M. & Jetz, W. Integrating occurrence data and expert maps for improved species range predictions. Glob. Ecol. Biogeogr. 26, 243–258 (2017).Article 

    Google Scholar 
    Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    She, R., Chu, J. S. C., Wang, K., Pei, J. & Chen, N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Robinson, J. D., Bunnefeld, L., Hearn, J., Stone, G. N. & Hickerson, M. J. ABC inference of multi-population divergence with admixture from unphased population genomic data. Mol. Ecol. 23, 4458–4471 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nazareno, A. G., Bemmels, J. B., Dick, C. W. & Lohmann, L. G. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol. Ecol. Resour. 17, 1136–1147 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willing, E. M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessary require large sample size when using many SNP markers. PLoS One 7, e2649 (2012).Article 
    CAS 

    Google Scholar 
    Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: an Rpackage for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article 

    Google Scholar 
    Rellstab, C., Gugerli, F., Eckert, I. A., Hancock, M. A. & Holderegger, R. A practical guide to environmental assocaition analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).PubMed 
    Article 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).Article 

    Google Scholar 
    Anderson, R. P. & Raza, A. The effect of the extent of the study region on GISmodels of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393 (2010).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using crypticgeckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    Heming, N. M., Dambros, C. & Gutiérrez, E. E. ENMwizard: advanced techniques for Ecological Niche Modeling made easy. https://github.com/HemingNM/ENMwizard (2018).Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).Article 

    Google Scholar 
    Owens, H. L. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18 (2013).Article 

    Google Scholar 
    Akaike, H. New look at statistical-model identification. IEEE Trans. Autom. Control AC19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Bellard, C. et al. Will climate change promote future invasions? Glob. Change Biol. 19, 3740–3748 (2013).ADS 
    Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Anantharaman, R., Hall, K., Shah, V. B. & Edelman, A. Circuitscape in Julia: high performance connectivity modelling to support conservation decisions. Proc. JuliaCon Conf. 1, 58 (2020).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).Article 

    Google Scholar 
    Van Strien, M. J., Keller, D. & Holderegger, R. A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol. Ecol. 21, 4010–4023 (2012).Article 

    Google Scholar 
    Bartoń, K. MuMIn: multi-model inference, R package version 1.9.13 (2013).Zhang, G. et al. Comparative genomics reveal insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roesti, M., Kueng, B., Moser, D. & Berner, D. The genomics of ecological vicariance in threespine stickleback fish. Nat. Commun. 6, 8767 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Disentangling influence over group speed and direction reveals multiple patterns of influence in moving meerkat groups

    Strandburg-Peshkin, A., Papageorgiou, D., Crofoot, M. C. & Farine, D. R. Inferring influence and leadership in moving animal groups. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1746), 20170006 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Garland, J., Berdahl, A. M., Sun, J. & Bollt, E. M. Anatomy of leadership in collective behaviour. Chaos 28(7), 075308 (2018).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    King, A. J., Douglas, C. M. S., Huchard, E., Isaac, N. J. B. & Cowlishaw, G. Dominance and affiliation mediate despotism in a social primate. Curr. Biol. 18(23), 1833–1838 (2008).CAS 
    PubMed 

    Google Scholar 
    Lewis, J. S., Wartzok, D. & Heithaus, M. R. Highly dynamic fission–fusion species can exhibit leadership when traveling. Behav. Ecol. Sociobiol. 65(5), 1061–1069 (2011).
    Google Scholar 
    Van Belle, S., Estrada, A. & Garber, P. A. Collective group movement and leadership in wild black howler monkeys (Alouatta pigra). Behav. Ecol. Sociobiol. 67(1), 31–41 (2013).
    Google Scholar 
    Smith, J. E. et al. Collective movements, leadership and consensus costs at reunions in spotted hyaenas. Anim. Behav. 105, 187–200 (2015).
    Google Scholar 
    Kerth, G., Ebert, C. & Schmidtke, C. Group decision making in fission–fusion societies: Evidence from two-field experiments in Bechstein’s bats. Proc. R. Soc. B Biol. Sci. 273(1602), 2785–2790 (2006).
    Google Scholar 
    Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464(7290), 890–893 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Giuggioli, L., McKetterick, T. J. & Holderied, M. Delayed response and biosonar perception explain movement coordination in trawling bats. PLoS Comput. Biol. 11(3), e1004089 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pettit, B., Ákos, Z., Vicsek, T. & Biro, D. Speed determines leadership and leadership determines learning during pigeon flocking. Curr. Biol. 25(23), 3132–3137 (2015).CAS 
    PubMed 

    Google Scholar 
    Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. Group decisions. Shared decision-making drives collective movement in wild baboons. Science 348(6241), 1358–1361 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tokuyama, N. & Furuichi, T. Leadership of old females in collective departures in wild bonobos (Pan paniscus) at Wamba. Behav. Ecol. Sociobiol. 71(3), 55 (2017).
    Google Scholar 
    Montanari, D., O’Hearn, W. J., Hambuckers, J., Fischer, J. & Zinner, D. Coordination during group departures and progressions in the tolerant multi-level society of wild Guinea baboons (Papio papio). Sci. Rep. 11(1), 21938 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Papageorgiou, D. & Farine, D. R. Shared decision-making allows subordinates to lead when dominants monopolize resources. Sci. Adv. 6(48), 5881 (2020).ADS 

    Google Scholar 
    Bousquet, C. A. H., Sumpter, D. J. T. & Manser, M. B. Moving calls: A vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. Lond. B Biol. Sci. 278(1711), 1482–1488 (2011).
    Google Scholar 
    Stahl, J., Tolsma, P. H., Loonen, M. J. J. E. & Drent, R. H. Subordinates explore but dominants profit: Resource competition in high Arctic barnacle goose flocks. Anim. Behav. 61(1), 257–264 (2001).PubMed 

    Google Scholar 
    Boinski, S. Social manipulation within and between troops mediate primate group movement. In On the Move: How and Why Animals Travel in Groups (ed. Boinski, S.) (University of Chicago Press, 2000).
    Google Scholar 
    Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20(8), 449–456 (2005).PubMed 

    Google Scholar 
    Conradt, L. & Roper, T. J. Conflicts of interest and the evolution of decision sharing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1518), 807–819 (2009).PubMed 

    Google Scholar 
    Byrne, R. W. How monkeys find their way: Leadership, coordination, and cognitive maps of African baboons. In On the Move: How and Why Animals Travel in Groups (eds Boinski, S. & Garber, P. A.) (University of Chicago Press, 2000).
    Google Scholar 
    Conradt, L. & Roper, T. J. Deciding group movements: Where and when to go. Behav. Proc. 84, 675–677 (2010).
    Google Scholar 
    Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. PNAS 108(46), 18726–18731 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katz, Y., Tunstrøm, K., Ioannou, C. C., Huepe, C. & Couzin, I. D. Inferring the structure and dynamics of interactions in schooling fish. PNAS 108(46), 18720–18725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27(18), 2862–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doolan, S. P. & Macdonald, D. W. Breeding and juvenile survival among slender-tailed meerkats (Suricatu suricatta) in the south-western Kalahari: Ecological and social influences. J. Zool. 242(2), 309–327 (1997).
    Google Scholar 
    Clutton-Brock, T. H. & Manser, M. B. Meerkats: Cooperative breeding in the Kalahari. In Cooperative Breeding in Vertebrates (eds Koenig, W. D. & Dickinson, J. L.) (Cambridge University Press, 2016).
    Google Scholar 
    Doolan, S. & Macdonald, D. Diet and foraging behaviour of group living meerkats, Suricata suricatta, in the southern Kalahari. J. Zool. 239, 697–716 (1996).
    Google Scholar 
    Engesser, S. Function of ‘Close’ Calls in a Group Foraging Carnivore, Suricata suricatta (2011).Kranstauber, B., Gall, G. E. C., Vink, T., Clutton-Brock, T. & Manser, M. B. Long-term movements and home-range changes: Rapid territory shifts in meerkats. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13129 (2019).Article 
    PubMed 

    Google Scholar 
    Manser, M. B. et al. Vocal Complexity in Meerkats and Other Mongoose Species Vol. 46, 281 (Elsevier, 2014).
    Google Scholar 
    Gall, G. E. C. & Manser, M. B. Group cohesion in foraging meerkats: Follow the moving ‘vocal hot spot’. R. Soc. Open Sci. 4, 170004 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engesser, S. & Manser, M. B. Collective close calling mediates group cohesion in foraging meerkats via spatially determined differences in call rates. Anim. Behav. 185, 73–82 (2022).
    Google Scholar 
    Gall, G. E. C., Strandburg-Peshkin, A., Clutton-brock, T. & Manser, M. B. As dusk falls: Collective decisions about the return to sleeping sites in meerkats. Anim. Behav. 132, 91–99 (2017).
    Google Scholar 
    Townsend, S. W., Rasmussen, M., Clutton-Brock, T. & Manser, M. B. Flexible alarm calling in meerkats: The role of the social environment and predation urgency. Behav. Ecol. 23(6), 1360–1364 (2012).
    Google Scholar 
    Clutton-Brock, T. H. et al. Contributions to cooperative rearing in meerkats. Anim. Behav. 61(4), 705–710 (2001).
    Google Scholar 
    Griffin, A. S. et al. A genetic analysis of breeding success in the cooperative meerkat (Suricata suricatta). Behav. Ecol. 14(4), 472–480 (2003).
    Google Scholar 
    Thavarajah, N. K., Fenkes, M. & Clutton-Brock, T. H. The determinants of dominance relationships among subordinate females in the cooperatively breeding meerkat. Behaviour 151(1), 89–102 (2014).
    Google Scholar 
    Young, A. J. et al. Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proc. Natl. Acad. Sci. 103(32), 12005–12010 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hodge, S. J., Manica, A., Flower, T. P. & Clutton-Brock, T. H. Determinants of reproductive success in dominant female meerkats. J. Anim. Ecol. 77(1), 92–102 (2008).PubMed 

    Google Scholar 
    Bell, M. B. V. et al. Suppressing subordinate reproduction provides benefits to dominants in cooperative societies of meerkats. Nat. Commun. 22(5), 4499 (2014).ADS 

    Google Scholar 
    Bousquet, C. A. H. & Manser, M. B. Resolution of experimentally induced symmetrical conflicts of interest in meerkats. Anim. Behav. 81(6), 1101–1107 (2011).
    Google Scholar 
    Strandburg-Peshkin, A., Clutton-Brock, T. & Manser, M. B. Burrow usage patterns and decision-making in meerkat groups. Behav. Ecol. 31(2), 292–302 (2020).
    Google Scholar 
    Turbé, A. Foraging Decisions and Space Use in a Social Mammal, The Meerkat—Chapter 6: Leadership pby Lactating Female in Meerkats (University of Cambridge, 2006).
    Google Scholar 
    Barelli, C., Reichard, U., Boesch, C. & Heistermann, M. Female white-handed gibbons (Hylobates lar) lead group movements and have priority of access to food resources. Behaviour 145(7), 965–981 (2008).
    Google Scholar 
    Clutton-Brock, T. H. et al. Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. Afr. J. Ecol. 37(1), 69–80 (1999).
    Google Scholar 
    Kutsukake, N. & Clutton-Brock, T. H. Do meerkats engage in conflict management following aggression? Reconciliation, submission and avoidance. Anim. Behav. 75(4), 1441–1453 (2008).
    Google Scholar 
    Spong, G. F., Hodge, S. J., Young, A. J. & Clutton-Brock, T. H. Factors affecting the reproductive success of dominant male meerkats: Reproductive success in male meerkats. Mol. Ecol. 17(9), 2287–2299 (2008).PubMed 

    Google Scholar 
    Russell, A. F., Carlson, A. A., McIlrath, G. M., Jordan, N. R. & Clutton-Brock, T. Adaptive size modification in dominant female meerkats. Evolution 58(7), 1600–1607 (2004).PubMed 

    Google Scholar 
    R. Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2008).Pinheiro, J. & Bates, D. M. Mixed-Effects Models in S and S-PLUS (Springer-Verlag, 2000).MATH 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 50(3), 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. S., Patil, I. & Lüdecke, D. Methods and algorithms for correlation analysis in R. J. Open Source Softw. 5(51), 2306 (2020).ADS 

    Google Scholar 
    Farine, D. R., Strandburg-Peshkin, A., Couzin, I. D., Berger-Wolf, T. Y. & Crofoot, M. C. Individual variation in local interaction rules can explain emergent patterns of spatial organization in wild baboons. Proc. R. Soc. B 284(1853), 20162243 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Holekamp, K. E., Boydston, E. E. & Smale, L. Group tarvel in social carnivores. In On the Move (eds Boinski, S. & Garber, P. A.) (University of Chicago Press, 2000).
    Google Scholar 
    Fischhoff, I. R. et al. Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Anim. Behav. 73(5), 825–831 (2007).
    Google Scholar 
    Furrer, R. D., Kunc, H. P. & Manser, M. B. Variable initiators of group departure in a cooperative breeder: The influence of sex, age, state and foraging success. Anim. Behav. 84(1), 205–212 (2012).
    Google Scholar 
    Clutton-Brock, T. H. et al. Costs of cooperative behaviour in suricates (Suricata suricatta). Proc. R. Soc. B Biol. Sci. 265(1392), 185–190 (1998).CAS 

    Google Scholar 
    MacLeod, K. J. & Clutton-Brock, T. H. Low costs of allonursing in meerkats: Mitigation by behavioral change? Behav. Ecol. 26(3), 697–705 (2015).
    Google Scholar 
    Boinski, S. The coordination of spatial position: A field study of the vocal behaviour of adult female squirrel monkeys. Anim. Behav. 41(1), 89–102 (1991).
    Google Scholar 
    Bode, N. W. F., Franks, D. W. & Wood, A. J. Leading from the front? Social networks in navigating groups. Behav. Ecol. Sociobiol. 66(6), 835–843 (2012).
    Google Scholar 
    Reber, S. A., Townsend, S. W. & Manser, M. B. Social monitoring via close calls in meerkats. Proc. R. Soc. B Biol. Sci. 280(1765), 20131013 (2013).
    Google Scholar 
    Bracken, A. M., Christensen, C., O’Riain, M. J., Fürtbauer, I. & King, A. J. Flexible group cohesion and coordination, but robust leader–follower roles, in a wild social primate using urban space. Proc. R. Soc. B Biol. Sci. 289(1967), 20212141 (2022).
    Google Scholar  More

  • in

    We must get a grip on forest science — before it’s too late

    Climate models need to capture a full spectrum of data from forests such as the Brazilian Amazon.Credit: Florence Goisnard/AFP/Getty

    Humanity’s understanding of how forests are responding to climate change is disconcertingly fragile. Take carbon fertilization, for example — the phenomenon by which plants absorb more carbon dioxide as its concentration in the atmosphere increases. This is one of the principal mechanisms by which nature has so far saved us from the worst of climate change, but there’s little understanding of its future trajectory. In fact, researchers don’t fully understand how climate change interacts with a multitude of forest processes. Complex, unsolved questions include how climate warming affects forest health; how it affects the performance of forests as a carbon sink; and whether it alters the ecosystem services that forests provide. Forests are our life-support system, and we should be more serious about taking their pulse.Six papers in this week’s Nature provide important insights into those questions. They also underline some of the challenges that must be overcome if we are to fully understand forests’ potential in the fight against climate change. These challenges are not only in the science itself, but also relate to how forest scientists collaborate, how they are funded (especially where data collection is concerned) and how they are trained.Forest science is an amalgam of disciplines. Ecologists and plant scientists measure tree growth, soil nutrients and other parameters in thousands of forest plots around the world. Physical scientists monitor factors such as forest height and above-ground forest biomass using remote-sensing data from drones or satellites. Experimental scientists investigate how forests might behave in a warming world by artificially altering factors such as temperature or carbon dioxide levels in experimental plots. Some of the data they generate are absorbed by yet another community: the modellers, who have created dynamic global vegetation models (DGVMs). These simulate how carbon and water cycles change with climate and, in turn, inform broader earth-system and climate models of the type that feed into policymaking.Different DGVMs make different predictions about how long forests will continue to absorb anthropogenic CO2. One reason for these differences is that models are sensitive to assumptions made about the processes in forests. There are many influences — including temperature, moisture, fire and nutrients — that are generally studied in isolation. Yet they interact with each other.Not all DGVMs account for the dampening effect that a lack of soil phosphorus can have on carbon fertilization, for example. Much of central and eastern Amazonia is poor in phosphorus, and research has shown that introducing phosphorus limitation into DGVMs can cut the carbon-fertilization effect1. This week, Hellen Fernanda Viana Cunha at the National Institute for Amazonian Research in Manaus, Brazil, and her colleagues report2 a powerful experimental demonstration of how the soil’s poor phosphorus content limits carbon absorption in an old-growth Amazonian forest.Models simulating the northward spread of boreal forest as temperatures rise are also missing key drivers3, according to Roman Dial at Alaska Pacific University in Anchorage and his colleagues. They report today that a white-spruce population has migrated surprisingly far north into the Arctic tundra. To explain this, it is necessary to take into account winter winds (which facilitate long-distance dispersal) along with the availability of deep snow and soil nutrients (which promote plant growth).Models are often based on a small number of ‘functional tree types’ — for example, ‘evergreen broadleaf’ or ‘evergreen needle leaf’. These are chosen as a proxy for the behaviour of the planet’s more than 60,000 known tree species. Yet ecologists are discovering that the biology of individual species matters when it comes to a tree’s response to climate change.David Bauman at the Environmental Change Institute at the University of Oxford, UK, and his co-workers reported in May that tree mortality on 24 moist tropical plots in northern Australia has doubled in the past 35 years (and life expectancy has halved), apparently owing to the increasing dryness of the air4. But that was an average of the 81 dominant tree species: mortality rates varied substantially between species, a variation that seemed to be related to the density of their wood.Peter Reich at the Institute for Global Change Biology at the University of Michigan in Ann Arbor and his colleagues now report that modest alterations in temperature and rainfall led to varying rates of growth and survival5 for different species in southern boreal-forest trees. The species that prospered were rare.Failure to examine multiple factors simultaneously means that scientists are making findings that challenge the assumptions in models. Spring is coming earlier for temperate forests and most models assume that, by prolonging the growing season, this increases woody-stem biomass. However, observational work carried out in temperate deciduous forests by Kristina Anderson-Teixeira at the Smithsonian Conservation Biology Institute in Front Royal, Virginia, and her colleagues found no sign of this happening6.Modellers are all too aware of the need to incorporate more complexity into their models, and of the potential that increasing amounts of computing power have to assist them in this endeavour. But they need more data.Continuity problemTo obtain comprehensive, valuable data for the models, continuous, long-term observations need to be made, and that depends on the availability of long-term funding. Achieving such continuity is a problem for both remote-sensing and ground-based operations. The former can cost hundreds of millions of dollars, but the value of its long-term data sets is immense, as demonstrated by a team led by Giovanni Forzieri at the University of Florence in Italy. The authors used 20 years of satellite data to show that nearly one-quarter of the world’s intact forests have already reached their critical threshold for abrupt decline7. But even field-based data collection, which costs a pittance by comparison, struggles to achieve financial security.Important ground-based operations include the Forest Global Earth Observatory (ForestGEO), part of the Smithsonian Tropical Research Institute, which is headquartered in Washington DC. This monitors 7.5 million individual trees in plots around the world. The amount of work that goes into this monitoring is formidable. For example, at present, ForestGEO is conducting the eighth five-yearly census of a plot in Peninsular Malaysia. This involves determining the species for each of the 350,000 trees (there are some 800 species growing there) and measuring the circumference of each trunk. It will take 16 skilled people a year to measure all the trees. Delays in the provision of funding to ForestGEO have held up similar censuses at plots in countries including Papua New Guinea, Vietnam, Brunei and Ecuador.

    A ForestGEO researcher making tree measurements at a forest plot in Barro Colorado Island, Panama.Credit: Jorge Aleman, STRI

    The future of the plots in North Queensland, which supplied Bauman with a rare 49 years’ worth of continuous data, is uncertain. They have been monitored since the mid-1970s by the Australian public research-funding agency CSIRO — initially every two years, then, more recently, every five years. In 2019, monitoring of the plots was switched to every 50 years because of funding shortages at CSIRO, leaving scientists searching for new sources of funding.Without continuity of funding, organizations such as ForestGEO can’t equip researchers with the requisite skills or collect data over periods longer than an individual’s time in a specific post or a funder’s cycle. “We have trained people and then lost them due to job insecurity,” says Stuart Davies, who leads ForestGEO.Different groups of forest researchers are trying to address these problems. ForestGEO is coordinating the Alliance for Tropical Forest Science in an effort to make it easier to share data, and to bolster the morale and careers of the skilled technicians and scientists — many of whom live in low- and middle-income countries — who do the bulk of the data collection.But we also need more-imaginative funding mechanisms that lift long-term observational plots out of three- to five-year funding cycles. Space agencies that fund remote-sensing satellites could collaborate with other funding agencies, for example, so that earth-observation missions include a fully funded component for ground-based data collection — which is, after all, crucial for calibrating their results. Journals, too, could do more to value and incentivise the production of long-term data sets.And there is a need for more interdisciplinarity. The US Department of Energy is funding a project called NGEE–Tropics (Next-Generation Ecosystem Experiments–Tropics) in which modellers will work with empirical researchers, both observational and experimental, who study tropical forests to create a full, process-rich model of such forests. This is encouraging, and the idea could be pushed further. What is needed is an initiative that pulls the disciplines together towards a goal of building a better understanding of forest processes. Among other things, such an initiative would encourage researchers in different disciplines to take each other’s data needs into account when planning their projects.For this to work, we need to remember that the edifice of forest science relies on the long-term data that scientists wring from forests over decades. Our chances of overcoming climate change are small, but they will diminish further if we forget the basics of monitoring our home planet. More

  • in

    Effectiveness of protected areas influenced by socio-economic context

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).CAS 
    Article 

    Google Scholar 
    IPBES Secretariat Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Bruner, A. G., Gullison, R. E., Rice, R. E. & Fonseca, G. A. Bda Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).CAS 
    Article 

    Google Scholar 
    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).Article 

    Google Scholar 
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–293 (2012).CAS 
    Article 

    Google Scholar 
    Conference of the Parties, The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets, COP-10 Decision X/2 (CBD, 2010).Protected Planet Report 2018 (UNEP-WCMC IUCN & NGS, 2018).Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).Article 

    Google Scholar 
    Joppa, L. N., Bailie, J. E. M. & Robinson, J. G. Protected Areas: Are They Safeguarding Biodiversity?. (Wiley Blackwell, 2016).Book 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).Article 

    Google Scholar 
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).Article 

    Google Scholar 
    Ferraro, P. J. & Pattanayak, S. K. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biol. 4, 482–488 (2006).CAS 
    Article 

    Google Scholar 
    Polaina, E., González-Suárez, M. & Revilla, E. Socioeconomic correlates of global mammalian conservation status. Ecosphere 6, 1–34. (2015).Article 

    Google Scholar 
    Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Philos. Trans. R. Soc. Lond. Biol. Sci. 370, 20140270 (2015).Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. U.S.A. 116, 23209–23215 (2019).CAS 
    Article 

    Google Scholar 
    McGinnis, M. D. & Ostrom, E. Social-ecological system framework: initial changes and continuing challenges. Ecol. Soc. 19, 30 (2014).Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).CAS 
    Article 

    Google Scholar 
    Palomo, I. et al. Incorporating the social-ecological approach in protected areas in the anthropocene. BioScience 64, 181–191 (2014).Article 

    Google Scholar 
    Poteete, A. R., Janssen, M. A., & Ostrom, E. Working Together: Collective Action, the Commons, and Multiple Methods in Practice (Princeton Univ. Press, 2010).Wilson, D. S., Ostrom, E. & Cox, M. E. Generalizing the core design principles for the efficacy of groups. J. Econ. Behav. Organ. 90, S21–S32 (2013).Article 

    Google Scholar 
    Tebet, G., Trimble, M. & Pereira Medeiros, R. Using Ostrom’s principles to assess institutional dynamics of conservation: lessons from a marine protected area in Brazil. Mar. Policy 88, 174–181 (2018).Article 

    Google Scholar 
    Ban, N. C. et al. Social and ecological effectiveness of large marine protected areas. Glob. Environ. Change 43, 82–91 (2017).Article 

    Google Scholar 
    Fleischman, F. D. et al. Governing large-scale social-ecological systems: lessons from five cases. Int. J. Commons 8, 428–456 (2014).Article 

    Google Scholar 
    Faff, R., Ho, Y. K., Lin, W. & Yap, C. M. Diminishing marginal returns from R&D investment: evidence from manufacturing firms. Appl. Econ. 45, 611–622 (2013).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).Article 

    Google Scholar 
    Irwin, K., Mulder, L. & Simpson, B. The detrimental effects of sanctions on intragroup trust: comparing punishments and rewards. Soc. Psychol. Q. 77, 253–272 (2014).Article 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225. (2015).Article 

    Google Scholar 
    Urban, M. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    Article 

    Google Scholar 
    Lovett, G. M. et al. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Ann. N. Y. Acad. Sci. 1162, 99–135 (2009).CAS 
    Article 

    Google Scholar 
    Backhaus, T., Snape, J. & Lazorchak, J. The impact of chemical pollution on biodiversity and ecosystem services: the need for an improved understanding. Integr. Environ. Assess. Manag. 8, 575–576 (2012).CAS 
    Article 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 
    CAS 

    Google Scholar 
    Calabrese, A. et al. Conservation status of Asian elephants: the influence of habitat and governance. Biodivers. Conserv. 26, 2067–2081 (2017).Article 

    Google Scholar 
    Shaffer, L. J., Khadka, K. K., Van Den Hoek, J. & Naithani, K. J. Human–elephant conflict: a review of current management strategies and future directions. Front. Ecol. Evol. 6, 235 (2019).Article 

    Google Scholar 
    Klaassen, R. H. G. et al. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83, 176–184 (2014).Article 

    Google Scholar 
    Güneralp, P. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).Article 

    Google Scholar 
    Sherry, T.W., Johnson, M.D. & Strong, A. in Birds of Two Worlds. The Ecology and Evolution of Migration (eds Greenberg, R. & Marra, P. P.) 414–425 (The John Hopkins Univ. Press, 2005).Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & Van Bommel, F. P. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article 

    Google Scholar 
    Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).CAS 
    Article 

    Google Scholar 
    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    Article 

    Google Scholar 
    Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).Lacroix, K. & Richards, G. An alternative policy evaluation of the British Columbia carbon tax: broadening the application of Elinor Ostrom’s design principles for managing common-pool resources. Ecol. Soc. 20, 38 (2015).Article 

    Google Scholar 
    Bennett, N. J. et al. Mainstreaming the social sciences in conservation. Conserv. Biol. 31, 56–66 (2017).Article 

    Google Scholar 
    Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).Resasco, J. Meta-analysis on a decade of testing corridor efficacy: what new have we learned? Curr. Landsc. Ecol. Rep. 4, 61–69 (2019).Article 

    Google Scholar 
    Andrade, G. S. M. & Rhodes, J. R. Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. https://doi.org/10.5751/ES-05216-170414 (2012).Morell, V. Massive wolf kill disrupts long-running Yellowstone Park study. Science 375, 482–482 (2022).CAS 
    Article 

    Google Scholar 
    Post, G. & Geldmann, J. Exceptional responders in conservation. Conserv. Biol. 32, 576–583 (2018).Article 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).CAS 
    Article 

    Google Scholar 
    Ostrom, E. A general framework for analyzing sustainability of social–ecological systems. Science 325, 419–422 (2009).CAS 
    Article 

    Google Scholar 
    Kline, M. A., Waring, T. M. & Salerno, J. D. Designing cultural multilevel selection research for sustainability science. Sustainability Sci. 13, 9–19 (2017).Article 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).Article 

    Google Scholar 
    The World Database on Protected Areas (WDPA) (IUCN & UNEP‐WCMC, 2018); https://www.protectedplanet.net/en/search-areas?geo_type=country&filters%5Bdb_type%5D%5B%5D=wdpaCoad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Living Planet Database (LPD) (Zoological Society of London, 2018); http://www.livingplanetindex.orgKühl, H., Williamson, L., Sanz, C. M., Morgan, D. & Boesch, C. Launch of A.P.E.S. database. Gorilla Journal 34, 20–21 (2007).
    Google Scholar 
    Koerner, S. E., Poulsen, J. R., Blanchard, E. J., Okouyi, J. & Clark, C. J. Vertebrate community composition and diversity declines along a defaunation gradient radiating from rural villages in Gabon. J. Appl. Ecol. 54, 805–814 (2017).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl Acad. Sci. U.S.A. 112, 14894–14899 (2015).CAS 
    Article 

    Google Scholar 
    Barr, D., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 1–43 (2014).
    Google Scholar 
    Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).Article 

    Google Scholar 
    McElreath, R. in Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).Bürkner, P. C. (2017). brms: an R package for Bayesian multilevel models using Stan. J. Stat. Software https://doi.org/10.18637/jss.v080.i01 (2017).Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019).Gelman, A., Carlin, J. B. B., Stern, H. S. S. & Rubin, D. B. B. Bayesian Data Analysis (CRC Press, 2014).Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, 2019); www.protectedplanet.netChamberlain, S. rphylopic: Get ‘Silhouettes’ of ‘Organisms’ from ‘Phylopic’. R version 0.3.3.91 https://github.com/sckott/rphylopic (2022). More

  • in

    Prevalent emergence of reciprocity among cross-feeding bacteria

    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci. 2015;112:6449–54.CAS 
    Article 

    Google Scholar 
    D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports. 2018;35:455–88.Article 

    Google Scholar 
    Garcia SL, Buck M, McMahon KD, Grossart H-P, Eiler A, Warnecke F. Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Mol Ecology. 2015;24:4449–59.CAS 
    Article 

    Google Scholar 
    Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, et al. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecology. 2020;96:1–14.D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: Selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution. 2014;68:2559–70.Article 

    Google Scholar 
    Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci. 2014;111:17941–6.CAS 
    Article 

    Google Scholar 
    Pande S, Kost C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 2017;25:349–61.CAS 
    Article 

    Google Scholar 
    Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. Philos Trans R Soc B: Biological Sci. 2020;375:20190250.CAS 
    Article 

    Google Scholar 
    Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microbial Cell Factories. 2012;11:122.CAS 
    Article 

    Google Scholar 
    Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science. 2020;369:eaba0165.CAS 
    Article 

    Google Scholar 
    Zomorrodi AR, Segrè D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun. 2017;8:1563.Article 

    Google Scholar 
    D’Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genetics. 2016;12:e1006364.Article 

    Google Scholar 
    Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr Biology. 2021;31:5547–57.CAS 
    Article 

    Google Scholar 
    Jiang X, Zerfaß C, Feng S, Eichmann R, Asally M, Schäfer P, et al. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J. 2018;12:1443–56.CAS 
    Article 

    Google Scholar 
    Konstantinidis D, Pereira F, Geissen E-M, Grkovska K, Kafkia E, Jouhten P, et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol Syst Biology. 2021;17:e10189.CAS 
    Article 

    Google Scholar 
    Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci. 2018;115:12000–4.CAS 
    Article 

    Google Scholar 
    Giri S, Waschina S, Kaleta C, Kost C. Defining division of labor in microbial communities. J Mol Biol. 2019;431:4712–31.CAS 
    Article 

    Google Scholar 
    Sanchez A, Gore J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLOS Biology. 2013;11:e1001547.CAS 
    Article 

    Google Scholar 
    Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biology. 2020;30:3580–3590.e7.CAS 
    Article 

    Google Scholar 
    McNally CP, Borenstein E. Metabolic model-based analysis of the emergence of bacterial cross-feeding via extensive gene loss. BMC Syst Biology. 2018;12:69.Article 

    Google Scholar 
    Estrela S, Morris JJ, Kerr B. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies. Environ Microbiol. 2016;18:1415–27.Article 

    Google Scholar 
    Libby E, Hébert-Dufresne L, Hosseini S-R, Wagner A. Syntrophy emerges spontaneously in complex metabolic systems. PLOS Comput Biology. 2019;15:e1007169.Article 

    Google Scholar 
    Rabbers I, Gottstein W, Feist A, Teusink B, Bruggeman FJ, Bachmann H Selection for cell yield does not reduce overflow metabolism in E. coli. bioRxiv. 2021:2021.05.24.445453.Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.Article 

    Google Scholar 
    Gude S, Pherribo GJ, Taga ME. Emergence of metabolite provisioning as a by-product of evolved biological functions. mSystems. 2020;5:e00259–20.CAS 
    Article 

    Google Scholar 
    Campbell K, Herrera-Dominguez L, Correia-Melo C, Zelezniak A, Ralser M. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Current Opinion in. Syst Biology. 2018;8:97–108.
    Google Scholar 
    Morris JJ. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genetics. 2015;31:475–82.CAS 
    Article 

    Google Scholar 
    van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 2021;15:688–701.Article 

    Google Scholar 
    Shitut S, Ahsendorf T, Pande S, Egbert M, Kost C. Nanotube-mediated cross-feeding couples the metabolism of interacting bacterial cells. Environ Microbiol. 2019;21:1306–20.CAS 
    Article 

    Google Scholar 
    Klee SM, Sinn JP, Finley M, Allman EL, Smith PB, Aimufua O, et al. Erwinia amylovora auxotrophic mutant exometabolomics and virulence on apples. Appl Environ Microbiol. 2019;85:e00935–19.CAS 
    Article 

    Google Scholar 
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.CAS 
    Article 

    Google Scholar 
    Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M The exometabolome of two model strains of the Roseobacter group: A marketplace of microbial metabolites. Front Microbiol. 2017;8.Pinu FR, Granucci N, Daniell J, Han T-L, Carneiro S, Rocha I, et al. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics. 2018;14:43.Article 

    Google Scholar 
    Shiio I, Ôtsuka S-I, Takahashi M. Effect of biotin on the bacterial formation of glutamic acid: I. Glutamate formation and cellular permeability of amino acids. J Biochem. 1962;51:56–62.CAS 
    Article 

    Google Scholar 
    Konings WN, Poolman B, Driessen AJM. Can the excretion of metabolites by bacteria be manipulated? FEMS Microbiol Rev. 1992;8:93–108.CAS 
    Article 

    Google Scholar 
    Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat Commun. 2019;10:3354.Article 

    Google Scholar 
    Kochanowski K, Okano H, Patsalo V, Williamson J, Sauer U, Hwa T. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation. Mol Syst Biology. 2021;17:e10064.CAS 
    Article 

    Google Scholar 
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.CAS 
    Article 

    Google Scholar 
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biology. 2006;2:2006.0008.Article 

    Google Scholar 
    Thomason LC, Costantino N, Court DL E. coli genome manipulation by P1 transduction. Curr Protocols Mol Biology. 2007;79:1.17.1-1.8.Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun. 2015;6:6238.CAS 
    Article 

    Google Scholar 
    Oña L, Giri S, Avermann N, Kreienbaum M, Thormann KM, Kost C. Obligate cross-feeding expands the metabolic niche of bacteria. Nat Ecology Evolut. 2021;5:1224–32.Article 

    Google Scholar 
    Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods. 2005;2:443–8.CAS 
    Article 

    Google Scholar 
    Vanstockem M, Michiels K, Vanderleyden J, Van Gool AP. Transposon Mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: Physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiology. 1987;53:410–5.CAS 
    Article 

    Google Scholar  More

  • in

    The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate

    Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bjorbækmo, M. F. M., Evenstad, A., Røsæg, L. L., Krabberød, A. K. & Logares, R. The planktonic protist interactome: where do we stand after a century of research? ISME J. 14, 544–559 (2020).PubMed 
    Article 

    Google Scholar 
    Pandolfi, J. M., Staples, T. L. & Kiessling, W. Increased extinction in the emergence of novel ecological communities. Science 370, 220–222 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jürgens, K. & Massana, R. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (John Wiley & Sons, 2008).Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite–mutualist continuum. Nat. Rev. Microbiol. 19, 623–638 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buck, K. R., Chavez, F. P. & Thomsen, H. A. Choanoflagellates of the central California waters: abundance and distribution. Ophelia 33, 179–186 (1991).Article 

    Google Scholar 
    Leadbeater, B. S. C. The Choanoflagellates: Evolution, Biology and Ecology (Cambridge Univ. Press, 2015).de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Alegado, R. A. et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 1, e00013 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Woznica, A. et al. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc. Natl Acad. Sci. USA 113, 7894–7899 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woznica, A., Gerdt, J. P., Hulett, R. E., Clardy, J. & King, N. Mating in the closest living relatives of animals is induced by a bacterial chondroitinase. Cell 170, 1175–1183.e11 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. Lond. B 374, 20190086 (2019).CAS 
    Article 

    Google Scholar 
    Frank, N., Helge Abuldhauge, T. & Daniel, J. R. Bridging the gap between morphological species and molecular barcodes – exemplified by loricate choanoflagellates. Eur. J. Protistol. 57, 26–37 (2017).Article 

    Google Scholar 
    Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldin, C. et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin. Microbiol. Rev. 30, 115–190 (2017).PubMed 
    Article 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenski, R. E. in Advances in Microbial Ecology (ed. Marshall, K. C.) 1–44 (Springer, 1988).Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vincent, F., Sheyn, U., Porat, Z., Schatz, D. & Vardi, A. Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc. Natl Acad. Sci. USA 118, e2021586118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J 15, 41–54 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canbäck, B., Tamas, I. & Andersson, S. G. E. A phylogenomic study of endosymbiotic bacteria. Mol. Biol. Evol. 21, 1110–1122 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).Article 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12, 263–273 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 8, e46497 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild. Prochlorococcus. Science 344, 416–420 (2014).CAS 
    PubMed 

    Google Scholar 
    Toft, C. & Andersson, S. G. E. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat. Rev. Genet. 11, 465–475 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiu, J. & Luo, Z.-Q. Legionella and Coxiella effectors: strength in diversity and activity. Nat. Rev. Microbiol. 15, 591–605 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boamah, D. K., Zhou, G., Ensminger, A. W. & O’Connor, T. J. From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol. 7, 477 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graf, J. S. et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 591, 445–450 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi, J., DeLong, E. F., Béjà, O., González, J. M. & Pedrós-Alió, C. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80, 929–954 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brunet, T. et al. Light-regulated collective contractility in a multicellular choanoflagellate. Science 366, 326–334 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol. 186, 683–691 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George, E. E. et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr. Biol. 30, 925–933.e3 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog. 15, e1007801–e1007801 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Major, P., Embley, T. M. & Williams, T. A. Phylogenetic diversity of NTT nucleotide transport proteins in free-living and parasitic bacteria and eukaryotes. Genome Biol. Evol. 9, 480–487 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trentmann, O., Decker, C., Winkler, H. H. & Neuhaus, H. E. Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties. Eur. J. Biochem. 267, 4098–4105 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, G., Meredith, T. C. & Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 16, 779–785 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bertani, B. & Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8, ESP-0001–2018 (2018).Article 

    Google Scholar 
    Russell, D. G., Vanderven, B. C., Glennie, S., Mwandumba, H. & Heyderman, R. S. The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat. Rev. Immunol. 9, 594–600 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6, 339–367 (2014).Article 

    Google Scholar 
    Omsland, A. & Heinzen, R. A. Life on the outside: the rescue of Coxiella burnetii from its host cell. Annu. Rev. Microbiol. 65, 111–128 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5, e114 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. Biol. Sci. 275, 293–299 (2008).PubMed 

    Google Scholar 
    Schulz, F. & Horn, M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol. 25, 339–346 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamann, E. et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature 534, 254–258 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seah, B. K. B. et al. Sulfur-oxidizing symbionts without canonical genes for autotrophic CO2 fixation. mBio 10, e01112-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salonen, I. S., Chronopoulou, P.-M., Bird, C., Reichart, G.-J. & Koho, K. A. Enrichment of intracellular sulphur cycle-associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. Sci. Rep. 9, 11692 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vallesi, A. et al. A new species of the γ-Proteobacterium Francisella, F. adeliensis sp. nov., endocytobiont in an Antarctic marine ciliate and potential evolutionary forerunner of pathogenic species. Microb. Ecol. 77, 587–596 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tashyreva, D. et al. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9, e02447-17 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, R. A. & Zehr, J. P. Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu. Rev. Microbiol. 73, 435–456 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, Y.-C. et al. Distribution patterns and phylogeny of marine stramenopiles in the North Pacific Ocean. Appl. Environ. Microbiol. 78, 3387–3399 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, E. et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc. Natl Acad. Sci. USA 108, 1496–1500 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wylezich, C., Karpov, S. A., Mylnikov, A. P., Anderson, R. & Jürgens, K. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol. 12, 271 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson, A. C. C. & Duncan, R. P. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc. Natl Acad. Sci. USA 112, 10255–10261 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Newton, H. J. et al. Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect. Immun. 75, 5575–5585 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boch, J., Bonas, U. & Lahaye, T. TAL effectors–pathogen strategies and plant resistance engineering. New Phytol. 204, 823–832 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmitz-Esser, S. et al. The genome of the amoeba symbiont ‘Candidatus Amoebophilus asiaticus’ reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol. 192, 1045–1057 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abby, S. S. et al. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6, 23080 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bratanis, E., Andersson, T., Lood, R. & Bukowska-Faniband, E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00662 (2020).Rose, J., Caron, D., Sieracki, M. & Poulton, N. Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquat. Microb. Ecol. 34, 263–277 (2004).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2 : high resolution sample inference from amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nelson, M. C., Morrison, H. G., Benjamino, J., Grim, S. L. & Graf, J. Analysis, optimization and verification of illumina-generated 16S rRNA gene amplicon surveys. PLoS ONE 9, e94249 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, F. & Zhang, C.-T. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics 9, 79 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Karp, P. D. et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 17, 877–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elbourne, L. D. H., Tetu, S. G., Hassan, K. A. & Paulsen, I. T. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 45, D320–D324 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandoz, K. M. et al. Transcriptional profiling of Coxiella burnetii reveals extensive cell wall remodeling in the small cell variant developmental form. PLoS ONE 11, e0149957 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rekha, S. et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl Acad. Sci. USA 100, 5455–5460 (2003).Article 
    CAS 

    Google Scholar 
    Bushnell, B. BBMap Short Read Aligner (Univ. California, Berkeley, 2016); http://sourceforge.net/projects/bbmapAnders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aylward, F. O. & Santoro, A. E. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415–20 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.1900v1 (2016).Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, S.-H., Ha, S.-M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110, 1281–1286 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, I., Ouk Kim, Y., Park, S.-C. & Chun, J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seemann, T. barrnap 0.9: Rapid Ribosomal RNA Prediction (2018); https://github.com/tseemann/barrnapFu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warren, D. L., Geneva, A. J. & Lanfear, R. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Mol. Biol. Evol. 34, 1016–1020 (2017).CAS 
    PubMed 

    Google Scholar 
    Bi, D. et al. SecReT4: a web-based bacterial type IV secretion system resource. Nucleic Acids Res. 41, D660–D665 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & DeLong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Philosof, A. & Béjà, O. Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ. Microbiol. Rep. 5, 475–482 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boeuf, D., Audic, S., Brillet-Guéguen, L., Caron, C. & Jeanthon, C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database 2015, bav080 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Demir-Hilton, E. et al. Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J. 5, 1095–1107 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time-series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).PubMed 
    Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC. Syst. Biol. 5, S15 (2011).
    Google Scholar 
    Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schramm, A., Fuchs, B. M., Nielsen, J. L., Tonolla, M. & Stahl, D. A. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4, 713–720 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The abundance and persistence of Caprinae populations

    Given Caprinae life history and plausible combinations of mean recruitment and adult female survivorship, we evaluated population persistence and estimated population MVP. The values describing adult female survivorship and recruitment, plus the variability we employed match values found in other populations of Caprinae. We do not pool data across different Caprinae populations or species. Our approach and results directly inform the conservation and management of many Caprinae, especially those for which the acquisition of demographic data remains beyond reach.Our work embodies the characteristics of a high-quality PVA: clear objectives, appropriate demographic data, model structure matching species life histories, stochasticity, examination of extinction probability, appropriate time interval, use of mean values and associated variability6. As with most ecological models, the quest for more data remains problematic, not debilitating, and is addressed by creatively and aptly using existing information to generate meaningful results3.Wildlife agencies generate lamb:adult female ratios from Caprinae surveys, recognizing that yearlings can be mistaken for adult females, causing miscounts. Excluding yearlings from the ratio’s denominator assumes that no miscounts are occurring, yet an unknown and inconsistent number of yearlings remain in the adult female category across survey events. For these reasons, surveyors of other species, like Dall’s sheep and caribou, pool counts of yearlings and adult females, generating lamb:“adult female-like” ratios instead15,23,24,25.Managers of Caprinae populations can follow these precedents and produce lamb:(adult female + yearling) ratios. Consistency would help standardize methods for building comparisons and meta-analyses across populations of Caprinae, while reducing variability across surveys due to differing techniques.Typically, metrics like elasticity (proportional) and sensitivity (additive) describe the influences of demographic parameters on population growth13,14,22,26. For Caprinae, when adult female survivorship is 0.90 and recruitment 0.30, the elasticity in survivorship and recruitment are 0.61 (90% CIs 0.40–0.75) and 0.24 (90% CIs 0.13–0.40) respectively (elasticity in young adult survivorship is 0.16 (90% CIs 0.12–0.21). For ungulates in general, the elasticity values for survival tend to be higher than those for recruitment27. Our results match this pattern, as the elasticity results indicate that a change in adult survival has a 2.5 times greater effect on λ than an equivalent change in recruitment. Relatedly, other theoretical work reports that demographic parameters with more temporal variability have lower elasticities, indicating less impact on population fitness (e.g.28,29).Our work centers on applications. Since most management actions affect these demographic parameters simultaneously, at issue is the practicality (e.g. feasibility and affordability) of management to increase these parameters, and understanding how such changes could impact λ. For example, imagine a population with mean recruitment of 0.30 and adult survival 0.85, with a biologist interested in increasing recruitment or adult female survival to acquire λ ≥ 1. The answer is to increase either value by 0.02 (Fig. 1, Supplementary Data S1). Similarly, one can set a λ target and determine the amount of recruitment and adult female survival necessary for acquiring it (Fig. 1, Supplementary Data S1).Minimum abundance targetA minimum population of 50 adult females meets the persistence criteria, given intermediate levels of recruitment and survival producing λ ~ 1 (Table 2). The risk of population collapse wanes as populations increase above the minimum threshold (Table 2; Fig. 1). For example, a population of ~ 100 adult females always meets persistence criteria (Table 2). Populations of adult females should be somewhat larger than 50 when modest declines (λ ~ 0.97) are suspected, providing a cushion to address the causes of decline, and mitigate further reductions.Translocation of 5 adult females during each of 5 years, or 10 in each of 3 years, requires a starting abundance of 70 adult females for the population to maintain the persistence criteria, never reach a lower confidence interval of 0, and for the population to return to the starting population size within 30 years. If managers mistakenly target a population having  More

  • in

    Even a small nuclear war threatens food security

    Nuclear weapons obliterate targets. The soot ejected into the stratosphere spreads, changing global weather patterns. When weapons are especially high yielding, the resultant soot could trigger global famine.About 66 million years ago, roughly three-quarters of all species on Earth died when a 10–15-km-diameter asteroid travelling at 72,000 km h−1 struck at Chicxulub, Mexico1. Sulfates and soot lofted high in the atmosphere, cutting off sunlight. The Earth cooled, weather changed and primary productivity crashed. While the best-known victims of the asteroid impact were dinosaurs, the resultant food scarcity impacted the entire Earth; those not affected immediately by the impact eventually died from starvation. Any mechanism that can loft massive quantities of aerosols high into the atmosphere, such as massive volcanic explosions2 or nuclear wars3, can interfere with the weather globally and change world food security. More