More stories

  • in

    The gill transcriptome of threatened European freshwater mussels

    Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nature Reviews Genetics 2010 11:10 11, 697–709 (2010).CAS 

    Google Scholar 
    Formenti, G. et al. The era of reference genomes in conservation genomics. Trends in Ecology and Evolution 37, 197–202 (2022).PubMed 
    Article 

    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Molecular Ecology 30, 62–82 (2021).PubMed 
    Article 

    Google Scholar 
    Meek, M. H. & Larson, W. A. The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era. Molecular Ecology Resources 19, 795–803 (2019).PubMed 
    Article 

    Google Scholar 
    McCartney, M. A. et al. The genome of the zebra mussel, Dreissena polymorpha: a resource for comparative genomics, invasion genetics, and biocontrol. G3 Genes|Genomes|Genetics 12 (2022).Vaughn, C. C., Nichols, S. J. & Spooner, D. E. Community and foodweb ecology of freshwater mussels. 27, 409–423, https://doi.org/10.1899/07-058.1 (2015).Vaughn, C. C. Ecosystem services provided by freshwater mussels. Hydrobiologia 2017 810:1 810, 15–27 (2017).
    Google Scholar 
    Lopes-Lima, M. et al. Biology and conservation of freshwater bivalves: Past, present and future perspectives. Hydrobiologia 735, 1–13 (2014).Article 

    Google Scholar 
    Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation. (Cambridge University Press, 2012).Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biological Reviews 92, 572–607 (2017).PubMed 
    Article 

    Google Scholar 
    Cuttelod, A., Seddon, M. & Neubert, E. European red list of non-marine molluscs. (Publications Office of the European Union Luxembourg, 2011).Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810, 1–14 (2018).Article 

    Google Scholar 
    Gomes-dos-Santos, A. et al. The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). DNA Research, https://doi.org/10.1093/dnares/dsab002 (2021).Smith, C. H. A High-Quality Reference Genome for a Parasitic Bivalve with Doubly Uniparental Inheritance (Bivalvia: Unionida). Genome Biology and Evolution 13 (2021).Rogers, R. L. et al. Gene family amplification facilitates adaptation in freshwater unionid bivalve Megalonaias nervosa. Molecular Ecology 30, 1155–1173 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Renaut, S. et al. Genome Survey of the Freshwater Mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) Using a Hybrid De Novo Assembly Approach. Genome Biology and Evolution 10, 1637–1646 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roznere, I., Sinn, B. T. & Watters, G. T. The Amblema plicata Transcriptome as a Resource to Assess Environmental Impacts on Freshwater Mussels. Freshwater Mollusk Biology and Conservation 21, 57–64 (2018).
    Google Scholar 
    Wang, R. et al. Rapid development of molecular resources for a freshwater mussel, Villosa lienosa (Bivalvia:Unionidae), using an RNA-seq-based approach. 31, 695–708, https://doi.org/10.1899/11-149.1 (2015).Luo, Y. et al. Transcriptomic Profiling of Differential Responses to Drought in Two Freshwater Mussel Species, the Giant Floater Pyganodon grandis and the Pondhorn Uniomerus tetralasmus. PLOS ONE 9, e89481 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Patnaik, B. B. et al. Sequencing, De Novo Assembly, and Annotation of the Transcriptome of the Endangered Freshwater Pearl Bivalve, Cristaria plicata, Provides Novel Insights into Functional Genes and Marker Discovery. PLOS ONE 11, e0148622 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Liu, Z. & Wu, W. Transcriptome analysis of the freshwater pearl mussel (Cristaria plicata) mantle unravels genes involved in the formation of shell and pearl. Molecular Genetics and Genomics 292, 343–352 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Q. et al. Histopathology, antioxidant responses, transcriptome and gene expression analysis in triangle sail mussel Hyriopsis cumingii after bacterial infection. Developmental & Comparative Immunology 124, 104175 (2021).CAS 
    Article 

    Google Scholar 
    Bertucci, A. et al. Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France. Environmental Science and Pollution Research 24, 27145–27159 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robertson, L. S., Galbraith, H. S., Iwanowicz, D., Blakeslee, C. J. & Cornman, R. S. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure. Environmental Toxicology and Chemistry 36, 2352–2366 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Capt, C. et al. Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics. Genome Biology and Evolution 10, 577–590 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang, D., Shen, J., Li, J. & Bai, Z. Integrated transcriptome analysis of immunological responses in the pearl sac of the triangle sail mussel (Hyriopsis cumingii) after mantle implantation. Fish & Shellfish Immunology 90, 385–394 (2019).CAS 
    Article 

    Google Scholar 
    Capt, C., Renaut, S., Stewart, D. T., Johnson, N. A. & Breton, S. Putative Mitochondrial Sex Determination in the Bivalvia: Insights From a Hybrid Transcriptome Assembly in Freshwater Mussels. Frontiers in Genetics 10, 840 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X., Bai, Z. & Li, J. The Mantle Exosome and MicroRNAs of Hyriopsis cumingii Involved in Nacre Color Formation. Marine Biotechnology 21, 634–642 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cornman, R. S., Robertson, L. S., Galbraith, H. & Blakeslee, C. Transcriptomic Analysis of the Mussel Elliptio complanata Identifies Candidate Stress-Response Genes and an Abundance of Novel or Noncoding Transcripts. PLOS ONE 9, e112420 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ganser, A. M., Newton, T. J. & Haro, R. J. Effects of elevated water temperature on physiological responses in adult freshwater mussels. Freshwater Biology 60, 1705–1716 (2015).Article 

    Google Scholar 
    Haney, A., Abdelrahman, H. & Stoeckel, J. A. Effects of thermal and hypoxic stress on respiratory patterns of three unionid species: implications for management and conservation. Hydrobiologia 847, 787–802 (2020).Article 

    Google Scholar 
    Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of Conservation Genetics and Ecology. Hydrobiologia 644, 69–88 (2010).Article 

    Google Scholar 
    Moorkens, E., Cordeiro, J., Seddon, M. B. & von Proschwitz, T. Woolnough, D. Margaritifera margaritifera (Freshwater Pearl Mussel). The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/12799/128686456 (2017).Lopes-Lima, M., Kebapçı, U. & van Damme, D. Unio crassus (Thick Shelled River Mussel). The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/22736/42465628 (2014).Lopes-Lima, M. & Seddon, M. B. Unio mancus. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/22737/42466471 (2014).Araujo, R. Unio delphinus. The IUCN Red List of Threatened Species https://www.iucnredlist.org/species/195510/8975648 (2011).Díaz, S. et al. IPBES, 2019: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2019).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Research 26, 1721–1729 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 2011 29:7 29, 644–652 (2011).CAS 

    Google Scholar 
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 44, D7–D19 (2016).CAS 
    Article 

    Google Scholar 
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 1–9 (2009).Article 
    CAS 

    Google Scholar 
    Davidson, N. M. & Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biology 15, 1–14 (2014).Article 
    CAS 

    Google Scholar 
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lang-Unnasch, N. Purification and properties of Plasmodium falciparum malate dehydrogenase. Molecular and Biochemical Parasitology 50, 17–25 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bateman, A. et al. UniProt: the universal protein knowledgebase. Nucleic Acids Research 45, D158–D169 (2017).CAS 
    Article 

    Google Scholar 
    Punta, M. et al. The Pfam protein families database. Nucleic Acids Research 40, D290–D301 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29–W37 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dainat, J., Hereñú, D. & Pucholt, P. AGAT: Another Gff Analysis Toolkit to handle annotations in any GTF/GFF format, https://doi.org/10.5281/zenodo.4205393 (2020).Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 35, D61–D65 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP375793 (2022). NCBI BioProject, https://identifiers.org/ncbi/bioproject:PRJNA839062 (2022).Gomes-dos-Santos, A. The gill transcriptome of threatened European freshwater mussels, figshare, https://doi.org/10.6084/m9.figshare.19787566.v2 (2022).Machado, A. M. et al. The male and female gonad transcriptome of the edible sea urchin, Paracentrotus lividus: Identification of sex-related and lipid biosynthesis genes. Aquaculture Reports 22, 100936 (2022).Article 

    Google Scholar 
    Machado, A. M. et al. Liver transcriptome resources of four commercially exploited teleost species. Scientific Data 7, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Lehner, B. & Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrological Processes 27, 2171–2186 (2013).ADS 
    Article 

    Google Scholar  More

  • in

    A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells

    Housman, G. et al. Drug resistance in cancer: An overview. Cancers 6(3), 1769 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vasan, N. Baselga, J. & Hyman, D. M. A View on Drug Resistance in Cancer, 11 (2019).Casás-Selves, M. & Degregori, J. How cancer shapes evolution and how evolution shapes cancer (2011).Dujon, A. M. et al. Identifying key questions in the ecology and evolution of cancer. Evol. Appl. 14, 4 (2021).
    Google Scholar 
    Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer (2014).Merlo, L. M. F., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6(12), 924–935 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ujvari, B., Roche, B. & Thomas, F. Ecology and Evolution of Cancer 1st edn. (Academic Press, 2017).
    Google Scholar 
    Brown, R. L. What evolvability really is. Brit. J. Philos. Sci. 65, 3 (2014).MathSciNet 
    Article 

    Google Scholar 
    Crother, B. I. & Murray, C. M. Early usage and meaning of evolvability. Ecol. Evol. 9, 7 (2019).Article 

    Google Scholar 
    Pigliucci, M. Is evolvability evolvable? (2008).Sniegowski, P. D. & Murphy, H. A. Evolvability (2006).Bukkuri, A. & Brown, J. S. Evolutionary game theory: Darwinian dynamics and the G function approach. MDPI Games 12(4), 1–19 (2021).MathSciNet 
    MATH 

    Google Scholar 
    Fisher, R. A. The Genetical Theory of Natural Selection (The Clarendon Press, 1930).MATH 
    Book 

    Google Scholar 
    Li, C. C. Fundamental theorem of natural selection. Nature 214(5087), 4 (1967).Article 

    Google Scholar 
    Vincent, T. L. & Brown, J. S. Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics (Cambridge University Press, 2005).MATH 
    Book 

    Google Scholar 
    Hanahan, D. & Weinberg, R. A. The next generation. Leading edge review hallmarks of cancer. Cell 144, 646–674 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pienta, K. J. et al. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin. Cancer Biol. 20, 1–15 (2020).
    Google Scholar 
    Virchow, R. As based upon physiological and pathological histology: Cellular pathology. Nutr. Rev. 47(1), 23–25 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Razmik, M., Bonnie, A. & David, M. Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers 10(4), 4 (2018).
    Google Scholar 
    Amend, S. R. et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuczler, M. D., Olseen, A. M., Pienta, K. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 20, 3–7 (2021).Article 
    CAS 

    Google Scholar 
    Kostecka, L. G., Pienta, K. J. & Amend, S. R. Polyaneuploid cancer cell dormancy: Lessons from evolutionary phyla. Front. Ecol. Evol. 9, 439 (2021).Article 

    Google Scholar 
    Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis—-a paradigm of self-renewal in cancer. Cell Biol. Int. 29(12), 1084–1097 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis—a parasexual somatic reduction division in cancer. Int. J. Hum. Genet. 7(1), 29–48 (2007).CAS 
    Article 

    Google Scholar 
    Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther. 3(2), 207–218 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Illidge, T. M., Cragg, M. S., Fringes, B., Olive, P. & Erenpreisa, J. A. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol. Int. 24(9), 621–633 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, S. et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1), 116–128 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6(11), 836–846 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hassel, C., Zhang, B., Dixon, M. & Calvi, B. R. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development (Cambridge) 141(1), 112–123 (2014).CAS 
    Article 

    Google Scholar 
    Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: Polyploidy with purpose. Genes Dev. 23(21), 2461–2477 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Basener, W. F. & Sanford, J. C. The fundamental theorem of natural selection with mutations. J. Math. Biol. 76(7), 1589–1622 (2018).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Frank, S. A. & Slatkin, M. Fisher’s fundamental theorem of natural selection. Trends Ecol. Evol. 7(3), 92–95 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lessard, S. Fisher’s fundamental theorem of natural selection revisited. Theor. Popul. Biol. 52(2), 119–136 (1997).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Das, P., Mukherjee, S. & Das, P. An investigation on Michaelis–Menten kinetics based complex dynamics of tumor-immune interaction. Chaos Solitons Fractals 1, 28 (2019).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Renee Fister, K. & Panetta, J. C. Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J. Appl. Math. 63, 6 (2003).MathSciNet 
    MATH 

    Google Scholar 
    López, Á. G., Seoane, J. M. & Sanjuán, M. A. F. Decay dynamics of tumors. PLoS One 11, 6 (2016).
    Google Scholar 
    Pienta, K. J., Hammarlund, E. U., Brown, J. S., Amend, S. R. & Axelrod, R. M. Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc. Natl. Acad. Sci. U.S.A. 118(7), 2 (2021).Article 
    CAS 

    Google Scholar 
    Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol. Appl. 13(7), 1626–1634 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittal, K. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer 116, 9 (2017).Article 
    CAS 

    Google Scholar 
    Cunningham, J. J., Bukkuri, A., Gatenby, R., Brown, J. S. & Gillies, R. J. Coupled source-sink habitats produce spatial and temporal variation of cancer cell molecular properties as an alternative to branched clonal evolution and stem cell paradigms. Front. Ecol. Evol. 9, 472 (2021).Article 

    Google Scholar 
    Fujiwara, M. & Diaz-Lopez, J. Constructing stage-structured matrix population models from life tables: Comparison of methods. PeerJ 5(10), 1–27 (2017).
    Google Scholar 
    Kendall, B. E. et al. Persistent problems in the construction of matrix population models. Ecol. Model. 406, 33–43 (2019).Article 

    Google Scholar 
    Law, R. & Edley, M. T. Transient dynamics of populations with age- and size-dependent vital rates. Ecology 71(5), 1863–1870 (1990).Article 

    Google Scholar 
    Velde, R. V. et al. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat. Commun. 11(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Salmina, K. et al. The cancer aneuploidy paradox: In the light of evolution. Genes 10(2), 83 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20(7), 404–416 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, A. K., Brown, J. S., Enderling, H., Basanta, D. & Whelan, C. J. The evolutionary ecology of dormancy in nature and in cancer. Front. Ecol. Evol. 9, 5 (2021).Article 

    Google Scholar 
    Geiser, F. Hibernation. Curr. Biol. 23(5), R188–R193 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lyman, C. P. & Chatfield, P. O. Physiology of hibernation in mammals. Physiol. Rev. 35(2), 403–425 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, K. C. et al. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin. Exp. Metas. 36(2), 97–108 (2019).Article 

    Google Scholar 
    Lin, K. C. et al. An: In vitro tumor swamp model of heterogeneous cellular and chemotherapeutic landscapes. Lab Chip 20(14), 2453–2464 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kawamura, E. et al. Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget 4(10), 1763–1776 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kostecka, L. G. et al. High KIFC1 expression is associated with poor prognosis in prostate cancer. Med. Oncol. 38, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Sekino, Y. et al. KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. Urol. Oncol. Semin. Original Investig. 35(1), 1–8 (2017).Article 

    Google Scholar 
    Xiao, Y. X. & Yang, W. X. KIFC1: A promising chemotherapy target for cancer treatment?. Oncotarget 7(30), 1–9 (2016).
    Google Scholar 
    Law, M. E., Corsino, P. E., Narayan, S. & Law, B. K. Cyclin-dependent kinase inhibitors as anticancer therapeutics. Mol. Pharmacol. 88, 5 (2015).Article 
    CAS 

    Google Scholar 
    Tadesse, S., Caldon, E. C., Tilley, W. & Wang, S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update (2019).Zhang, M. et al. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11, 5 (2021).CAS 

    Google Scholar 
    Kostecka, L. G., Pienta, K. J. & Amend, S. R. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med. Oncol. 38(11), 1–10 (2021).Article 
    CAS 

    Google Scholar 
    Strobl, M. A. R. et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Can. Res. 81, 4 (2021).Article 

    Google Scholar 
    West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: An evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 4, 55 (2018).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Spatial autocorrelation signatures of ecological determinants on plant community characteristics in high Andean wetlands

    Rudnick, D. A. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol. 16, 1–23 (2012).
    Google Scholar 
    Brudvig, L. A. Interpreting the effects of landscape connectivity on community diversity. J. Veg. Sci. 27, 4–5 (2016).Article 

    Google Scholar 
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 

    Google Scholar 
    Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).PubMed 
    Article 

    Google Scholar 
    Kuczynski, L. & Grenouillet, G. Community disassembly under global change: Evidence in favor of the stress-dominance hypothesis. Global Change Biol. 24, 4417–4427 (2018).ADS 
    Article 

    Google Scholar 
    Münkemüller, T. et al. From diversity indices to community assembly processes: A test with simulated data. Ecography 35, 468–480 (2012).Article 

    Google Scholar 
    Seabloom, E. W., BJørnstad, O. N., Bolker, B. M. & Reichman, O. J. Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands. Ecol. Monogr. 75, 199–214 (2005).Article 

    Google Scholar 
    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).PubMed 
    Article 

    Google Scholar 
    Fortin, M. J. & Dale, M. Spatial Analysis: A Guide for Ecologist (Cambridge Univ. Press., 2005).McIntire, E. J. B. & Fajardo, A. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90, 46–56 (2009).PubMed 
    Article 

    Google Scholar 
    Smith, T. W. & Lundholm, J. T. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33, 648–655 (2010).Article 

    Google Scholar 
    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).Article 

    Google Scholar 
    Dray, S. A new perspective about moran’s coefficient: Spatial autocorrelation as a linear regression problem. Geogr. Anal. 43, 127–141 (2011).Article 

    Google Scholar 
    Biswas, S. R., Mallik, A. U., Braithwaite, N. T. & Wagner, H. H. A conceptual framework for the spatial analysis of functional trait diversity. Oikos 125, 192–200 (2016).Article 

    Google Scholar 
    Biswas, S. R., MacDonald, R. L. & Chen, H. Y. H. Disturbance increases negative spatial autocorrelation in species diversity. Landsc. Ecol. 32, 823–834 (2017).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).Article 

    Google Scholar 
    Biswas, S. R., Xiang, J. & Li, H. Disturbance effects on spatial autocorrelation in biodiversity: An overview and a call for study. Diversity 13, 167 (2021).Article 

    Google Scholar 
    Bertin, A. et al. Effects of wind-driven spatial structure and environmental heterogeneity on high-altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshw. Biol. 60, 297–310 (2015).Article 

    Google Scholar 
    Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).PubMed 
    Article 

    Google Scholar 
    Souvignet, M., Oyarzún, R., Verbist, K. M. J., Gaese, H. & Heinrich, J. Hydro-meteorological trends in semi-arid north-central Chile (29–32°S): Water resources implications for a fragile Andean region. Hydrol. Sci. J. 57, 479–495 (2012).Article 

    Google Scholar 
    Montecinos, S., Gutiérrez, J. R., López-Cortés, F. & López, D. Climatic characteristics of the semi-arid Coquimbo Region in Chile. J. Arid Environ. 126, 7–11 (2016).ADS 
    Article 

    Google Scholar 
    Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. Biol. Sci. 284, 1–10 (2017).
    Google Scholar 
    Ruzzier, E. et al. From island biogeography to conservation: A multi-taxon and multi-taxonomic rank approach in the Tuscan archipelago. Land 10, 486 (2021).Article 

    Google Scholar 
    Siqueira, T. et al. Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology 101, e03014 (2020).PubMed 
    Article 

    Google Scholar 
    Anthelme, F. & Dangles, O. Plant–plant interactions in tropical alpine environments. Perspect. Plant Ecol. 14, 363–372 (2012).Article 

    Google Scholar 
    Gavini, S. S., Ezcurra, C. & Aizen, M. A. Plant–plant interactions promote alpine diversification. Evol. Ecol. 33, 195–209 (2019).Article 

    Google Scholar 
    Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kikvidze, Z. et al. The effects of foundation species on community assembly: A global study on alpine cushion plant communities. Ecology 96, 2064–2069 (2015).PubMed 
    Article 

    Google Scholar 
    Zhao, R. M., Zhang, H. & An, L. Z. Spatial patterns and interspecific relationships of two dominant cushion plants at three elevations on the Kunlun Mountain, China. Environ. Sci. Pollut. Res. 27, 17339–17349 (2020).CAS 
    Article 

    Google Scholar 
    Pugnaire, F. I., Losapio, G. & Schöb, C. Interacciones entre especies y el papel de las plantas cojín en ecosistemas de alta montaña bajo un clima cambiante. Ecosistemas 30, 2186 (2021).Article 

    Google Scholar 
    Cadotte, M. W. Dispersal and species diversity: A meta-analysis. Am. Nat. 167, 913–924 (2006).PubMed 
    Article 

    Google Scholar 
    Vellend, M. et al. Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol. Ecol. 23, 2890–2901 (2014).PubMed 
    Article 

    Google Scholar 
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 

    Google Scholar 
    Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, 2018).Wilsey, B. & Stirling, G. Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Plant Ecol. 190, 259–273 (2007).Article 

    Google Scholar 
    Schamp, B. S., Arnott, S. E. & Joslin, K. L. Dispersal strength influences zooplankton co-occurrence patterns in experimental mesocosms. Ecology 96, 1074–1083 (2015).PubMed 
    Article 

    Google Scholar 
    Troncoso, A. J., Bertin, A., Osorio, R., Arancio, G. & Gouin, N. Comparative population genetics of two dominant plant species of high Andean wetlands reveals complex evolutionary histories and conservation perspectives in Chile’s Norte Chico. Conserv. Genet. 18, 1047–1060 (2017).Article 

    Google Scholar 
    Pfeiffer, V. W. et al. Partitioning genetic and species diversity refines our understanding of species–genetic diversity relationships. Ecol. Evol. 8, 12351–12364 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 36, 393–402 (2013).Article 

    Google Scholar 
    Moritz, C. et al. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122, 1401–1410 (2013).
    Google Scholar 
    Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 81, 887–892 (2000).Article 

    Google Scholar 
    Stirling, G. & Wilsey, B. Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat. 158, 286–299 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stevens, R. D. & Willig, M. R. Geographical ecology at the community level: Perspectives on the diversity of new world bats. Ecology 83, 545–560 (2002).Article 

    Google Scholar 
    Wilsey, B. J. & Polley, H. W. Effects of seed additions and grazing history on diversity and productivity of subhumid grasslands. Ecology 84, 920–931 (2003).Article 

    Google Scholar 
    Ma, M. Species richness vs evenness: Independent relationship and different responses to edaphic factors. Oikos 111, 192–198 (2005).Article 

    Google Scholar 
    Schmitz, O. J. Effects of predator hunting mode on grassland ecosystem function. Science 319, 952–954 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stomp, M., Huisman, J., Mittelbach, G. G., Litchman, E. & Klausmeier, C. A. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92, 2096–2107 (2011).PubMed 
    Article 

    Google Scholar 
    Zhang, H. et al. The relationship between species richness and evenness in plant communities along a successional gradient: A study from sub-alpine meadows of the eastern Qinghai-Tibetan plateau, China. PLoS ONE 7, e49024 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001).
    Google Scholar 
    Young, K. R. in Climate Change and Biodiversity in the Tropical Andes (eds Herzog, S. K., Martinez, R., Jørgensen, P. M. & Tiessen, H.) Ch. 8, 128–140 (Inter-American Institute for Global Change Research, 2011).López-Angulo, J. et al. Determinants of high mountain plant diversity in the Chilean Andes: From regional to local spatial scales. PLoS ONE 13, e0200216 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    Hanski, I. Metapopulation Ecology (Oxford University Press, 1999).
    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed 
    Article 

    Google Scholar 
    Kunte, K. Competition and species diversity: Removal of dominant species increases diversity in Costa Rican butterfly communities. Oikos 117, 69–76 (2008).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article 

    Google Scholar 
    Kikvidze, Z. et al. Linking patterns and processes in alpine plant communities: A global study. Ecology 86, 1395–1400 (2005).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Heip, C. H. R., Herman, P. M. J. & Soetaert, K. Indices of diversity and evenness. Océanis 4, 61–87 (1998).
    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed 
    Article 

    Google Scholar 
    Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).Article 

    Google Scholar 
    Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user-defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the german biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beisel, J.-N., Usseglio-Polatera, P., Bachmann, V. & Moreteau, J.-C. A comparative analysis of evenness index sensitivity. Int. Rev. Hydrobiol. 88, 3–15 (2003).Article 

    Google Scholar 
    Fedor, P. & Zvaríková, M. in Encyclopedia of Ecology (ed Brian Fath) 337–346 (2019).Gatti, R. C., Amoroso, N. & Monaco, A. Estimating and comparing biodiversity with a single universal metric. Ecol. Model. 424, 8 (2020).
    Google Scholar 
    Lin, L., Deng, W., Huang, X. & Kang, B. Fish taxonomic, functional, and phylogenetic diversity and their vulnerabilities in the largest river in southeastern China. Ecol. Evol. 11, 11533–11548 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Squeo, F. A., Warner, B. G., Aravena, R. & Espinoza, D. Bofedales: High altitude peatlands of the central Andes. Rev. Chil. Hist. Nat. 79, 245–255 (2006).Article 

    Google Scholar 
    Villagrán-Mella, R., Aguayo, M., Parra, L. E. & González, A. Relación entre características del hábitat y estructura del ensamble de insectos en humedales palustres urbanos del centro-sur de Chile. Rev. Chil. Hist. Nat. 79, 195–211 (2006).Article 

    Google Scholar 
    Coronel, J. S., Declerck, S., Maldonado, M., Ollevier, F. & Brendonck, L. Temporary shallow pools in high-Andes ‘bofedal’ peatlands. Arch. Sci. 57, 85–96 (2004).CAS 

    Google Scholar 
    Wakeling, I. N. & Morris, J. J. A test of significance for partial least squares regression. J. Chemom. 7, 291–304 (1993).CAS 
    Article 

    Google Scholar 
    Foltête, J.-C., Clauzel, C. & Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Modell. Softw. 38, 316–327 (2012).Article 

    Google Scholar 
    Ricotta, C., Stanisci, A., Avena, G. C. & Blasi, C. Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecol. 1, 89–94 (2000).Article 

    Google Scholar 
    Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979).Article 

    Google Scholar 
    Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 82, 1205–1218 (2001).Article 

    Google Scholar 
    Bodin, Ö. & Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Model. 221, 2393–2405 (2010).Article 

    Google Scholar 
    Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null model analysis for ecological data. R package version 0.1.0. (R Foundation for Statistical Computing, 2015).Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. (R Foundation for Statistical Computing, 2020)Wagner, H. H. & Dray, S. Generating spatially constrained null models for irregularly spaced data using Moran spectral randomization methods. Methods Ecol. Evol. 6, 1169–1178 (2015).Article 

    Google Scholar 
    Monecke, A. & Leisch, F. semPLS: Structural equation modeling using partial least squares. J. Stat. Softw. 48, 1–32 (2012).Article 

    Google Scholar 
    Zhao, X., Li, Y., Song, H., Jia, Y. & Liu, J. Agents affecting the productivity of pine plantations on the Loess Plateau in China: A study based on structural equation modeling. Forests 11, 1328 (2020).Article 

    Google Scholar 
    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Gower, J. C. & Legendre, P. Metric and euclidean properties of dissimilarity coefficients. J. Classif. 3, 5–48 (1986).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).Article 

    Google Scholar 
    Lumley, T. & Miller, A. leaps: Regression subset selection. R package version 2.7. http://CRAN.R-project.org/package=leaps (2004).AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.3-1. (2019).Freestone, A. L. & Inouye, B. D. Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87, 2425–2432 (2006).PubMed 
    Article 

    Google Scholar 
    Li, F., Tonkin, J. D. & Haase, P. Local contribution to beta diversity is negatively linked with community-wide dispersal capacity in stream invertebrate communities. Ecol. Indic. 108, 105715 (2020).Article 

    Google Scholar 
    Vilmi, A., Karjalainen, S. M. & Heino, J. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Divers. Distrib. 23, 1042–1053 (2017).Article 

    Google Scholar 
    Baldeck, C. A., Tupayachi, R., Sinca, F., Jaramillo, N. J. E. & Asner, G. P. Environmental drivers of tree community turnover in western Amazonian forests. Ecography 39, 1089–1099 (2016).Article 

    Google Scholar 
    Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B. 366, 2351–2363 (2011).Article 

    Google Scholar 
    Segre, H. et al. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett. 17, 1400–1408 (2014).PubMed 
    Article 

    Google Scholar 
    Ceschin, F., Bini, L. M. & Padial, A. A. Correlates of fish and aquatic macrophyte beta diversity in the Upper Paraná River floodplain. Hydrobiologia 805, 377–389 (2018).CAS 
    Article 

    Google Scholar 
    Heino, J. et al. Unravelling the correlates of species richness and ecological uniqueness in a metacommunity of urban pond insects. Ecol. Indic. 73, 422–431 (2017).Article 

    Google Scholar 
    Leão, H., Siqueira, T., Torres, N. R. & Montag, L. F. D. A. Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecol. Indic. 111, 106039 (2020).Article 

    Google Scholar 
    Vega-Álvarez, J., García-Rodríguez, J. A. & Cayuela, L. Facilitation beyond species richness. J. Ecol. 107, 722–734 (2019).Article 

    Google Scholar  More

  • in

    Effects of decadal climate variability on spatiotemporal distribution of Indo-Pacific yellowfin tuna population

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).Article 

    Google Scholar 
    Muhling, B. A. et al. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. J. Mar. Syst. 148, 1–13 (2015).Article 

    Google Scholar 
    Erauskin-Extramiana, M. et al. Large-scale distribution of tuna species in a warming ocean. Glob. Change Biol. 25, 2043–2060 (2019).ADS 
    Article 

    Google Scholar 
    Cheung, W. W. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).ADS 
    Article 

    Google Scholar 
    Townhill, B. L., Couce, E., Bell, J., Reeves, S. & Yates, O. Climate change impacts on Atlantic oceanic island tuna fisheries. Front. Mar. Sci. 8, 140 (2021).Article 

    Google Scholar 
    Wu, Y. L., Lan, K. W. & Tian, Y. J. Determining the effect of multiscale climate indices on the global yellowfin tuna (Thunnus albacares) population using a time series analysis. Deep Sea Res. Part II Top. Stud. Oceanogr. 175, 104808 (2020).Article 

    Google Scholar 
    Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5(1), eaar6993 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lan, K. W., Evans, K. & Lee, M. A. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Clim. Change 119, 63–77 (2013).ADS 
    Article 

    Google Scholar 
    Lan, K. W., Chang, Y. J. & Wu, Y. L. Influence of oceanographic and climatic variability on the catch rate of yellowfin tuna (Thunnus albacares) cohorts in the Indian Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 175, 104681 (2019).Article 

    Google Scholar 
    Drinkwater, K. et al. Climate forcing on marine ecosystems. In Marine Ecosystems and Global Change 11–39 (2010).Lan, K. W., Wu, Y. L., Chen, L. C., Naimullah, M. & Lin, T. H. Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: A case study of bigeye tuna in the Pacific Ocean. Front. Mar. Sci. 8, 352 (2021).Article 

    Google Scholar 
    Li, S. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Chang. 10, 30–34 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Debertin, A. J., Irvine, J. R., Holt, C. A., Oka, G. & Trudel, M. Marine growth patterns of southern British Columbia chum salmon explained by interactions between density-dependent competition and changing climate. Can. J. Fish. Aquat. Sci. 74(7), 1077–1087 (2017).Article 

    Google Scholar 
    Di Lorenzo, E. et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032838 (2008).Article 

    Google Scholar 
    Oceanic Fisheries Programme Pacific Community. Western and central Pacific fisheries commission tuna fishery yearbook (2020).IOTC. Report of the Twelfth Session of the Scientific Committee of the Indian Ocean Tuna Commsion. Victoria, Seychelles, 190 (2009).Pecoraro, C. et al. Putting all the pieces together: Integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev. Fish. Biol. Fish. 27(4), 811–841 (2017).Article 

    Google Scholar 
    Lee, Y. C., Nishida, T. & Mohri, M. Separation of the Taiwanese regular and deep tuna longliners in the Indian Ocean using bigeye tuna catch ratios. Fish. Sci. 71(6), 1256–1263 (2005).CAS 
    Article 

    Google Scholar 
    Marsac, F. Outlook of ocean climate variability in the west tropical Indian Ocean, 1997–2008. Working document for IOTC Indian Ocean Tuna Commission (2008).Lehodey, P., Chai, F. & Hampton, J. Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical-populations dynamics model. Fish Oceanogr. 12(4–5), 483–494 (2003).Article 

    Google Scholar 
    Torres-Faurrieta, L. K., Dreyfus-León, M. J. & Rivas, D. Recruitment forecasting of yellowfin tuna in the eastern Pacific Ocean with artificial neuronal networks. Ecol. Inform. 36, 106–113 (2016).Article 

    Google Scholar 
    Planque, B. et al. How does fishing alter marine populations and ecosystems sensitivity to climate?. J. Mar. Syst. 79(3–4), 403–417 (2010).Article 

    Google Scholar 
    Perry, R. I. et al. Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses. J. Mar. Syst. 79(3–4), 427–435 (2010).Article 

    Google Scholar 
    Sen Gupta, A. & McNeil, B. Variability and change in the ocean. In The Future of the World’s Climate 141–165 (2012).Welch, H., Pressey, R. L. & Reside, A. E. Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. J. Nat. Conserv. 41, 106–115 (2018).Article 

    Google Scholar 
    Shin, A., Yoon, S. C., Lee, S. I., Park, H. W. & Kim, S. The relationship between fishing characteristics of Pacific bluefin tuna (Thunnus orientalis) and ocean conditions around Jeju Island. Fish. Quat. Sci. 21, 1–12 (2018).
    Google Scholar 
    Monllor-Hurtado, A., Pennino, M. G. & Sanchez-Lizaso, J. L. Shift in tuna catches due to ocean warming. PLoS ONE 12, e0178196 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Arrizabalaga, H. et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 102–112 (2015).ADS 
    Article 

    Google Scholar 
    Yen, K. W. et al. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. Int. J. Remote Sens. 33(23), 7507–7522 (2012).Article 

    Google Scholar 
    Liu, Q. et al. Seasonal and intraseasonal thermocline variability in the central South China Sea. Geophys. Res. Lett. 28(23), 4467–4470 (2001).ADS 
    Article 

    Google Scholar 
    Schaefer, K. M., Fuller, D. W. & Block, B. A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar. Biol. 152, 503–525 (2007).Article 

    Google Scholar 
    Song, L. M. et al. Environmental preferences of longlining for yellowfin tuna (Thunnus albacares) in the tropical high seas of the Indian Ocean. Fish Oceanogr. 17, 239–253 (2008).Article 

    Google Scholar 
    Bismuto, E. et al. Molecular dynamics simulation of the acidic compact state of apomyoglobin from yellowfin tuna. Proteins 74, 273–290 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galli, G. L. J., Shiels, H. A. & Brill, R. W. Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol. Biochem. Zool. 82, 280–290 (2009).PubMed 
    Article 

    Google Scholar 
    Weng, K. C. et al. Habitat and behaviour of yellowfin tuna Thunnus albacares in the Gulf of Mexico determined using pop-up satellite archival tags. J. Fish Biol. 74, 1434–1449 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tseng, C. T. et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. Int. J. Remote Sens. 31, 4543–4558 (2010).Article 

    Google Scholar 
    Báez, J. C., Czerwinski, I. A. & Ramos, M. L. Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean. Fish Oceanogr. 29(6), 572–583 (2020).Article 

    Google Scholar 
    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).ADS 
    Article 

    Google Scholar 
    Messié, M. & Chavez, F. Global modes of sea surface temperature variability in relation to regional climate indices. J. Clim. 24, 4314–4331 (2011).ADS 
    Article 

    Google Scholar 
    Michael, P. E., Tuck, G. N., Strutton, P. & Hobday, A. Environmental associations with broad-scale Japanese and Taiwanese pelagic longline effort in the southern Indian and Atlantic Oceans. Fish. Oceanogr. 24(5), 478–493 (2015).Article 

    Google Scholar 
    Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Ñiquen, M. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiba, S. et al. Temperature and zooplankton size structure: climate control and basin-scale comparison in the North Pacific. Ecol. Evol. 5(4), 968–978 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, R. J. et al. Decadal diet shift in yellowfin tuna (Thunnus albacares) suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar. Ecol.-Prog. Ser. 497, 157–178 (2014).ADS 
    Article 

    Google Scholar 
    Deepa, J. S. et al. The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Clim. Dyn. 52, 5045–5058 (2019).Article 

    Google Scholar 
    Vibhute, A. et al. Decadal variability of tropical Indian Ocean Sea surface temperature and its impact on the Indian summer monsoon. Theor. Appl. Climatol. 141, 551–566 (2020).ADS 
    Article 

    Google Scholar 
    Ummenhofer, C. C., Biastoch, A. & Böning, C. W. Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. J. Clim. 30, 1739–1751 (2017).ADS 
    Article 

    Google Scholar 
    Latif, M. The ocean’s role in modeling and predicting decadal climate variations. In International Geophysics 645–665 (Academic Press, 2013).Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Xie, T., Li, J., Chen, K., Zhang, Y. & Sun, C. Origin of Indian Ocean multidecadal climate variability: Role of the North Atlantic Oscillation. Clim. Dyn. 56, 3277–3294 (2021).Article 

    Google Scholar 
    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciannelli, L. et al. Climate forcing, food web structure and community dynamics in pelagic marine ecosystems. In Aquatic Food Webs: An Ecosystem Approach 143–169 (Oxford University Press, Oxford, 2005).Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).ADS 
    Article 

    Google Scholar 
    Zuo, H., Balmaseda, M., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea-ice: A description of the system and assessment. Ocean Sci. 15(3), 779–808 (2019).ADS 
    Article 

    Google Scholar 
    Harley, S. J., Myers, R. A. & Dunn, A. Is catch-per-unit-effort proportional to abundance?. Can J. Fish. Aquat. Sci. 58, 1760–1772 (2001).Article 

    Google Scholar 
    Guyomard, D., Desruisseaux, M., Poisson, F., Taquet, M., Petit, M. GAM analysis of operational and environmental factors affecting swordfish (Xiphias gladius) catch and CPUE of the Reunion Island longline fishery, in the South Western Indian Ocean. IOTC-2004-WPB-08, 38 (2004).Su, N. J., Sun, C. L., Punt, A. E., Yeh, S. Z. & DiNardo, G. Modelling the impacts of environmental variation on the distribution of blue marlin, Makaira nigricans, in the Pacific Ocean. ICES J. Mar. Sci. 68, 1072–1080 (2011).Article 

    Google Scholar 
    Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65(1), 23–28 (2000).MATH 
    Article 

    Google Scholar 
    Weaver, B. & Koopman, R. An SPSS macro to compute confidence intervals for Pearson’s correlation. Quant. Methods Psychol. 10(1), 29–39 (2014).Article 

    Google Scholar 
    Naimullah, M. et al. Effect of the El Niño-Southern Oscillation (ENSO) cycle on the catches and habitat patterns of three swimming crabs in the Taiwan Strait. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.763543 (2021).Article 

    Google Scholar 
    Chen, X. J., Li, G., Feng, B. & Tian, S. Q. Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. J. Oceanogr. 65, 93–102 (2009).Article 

    Google Scholar 
    Urich, D. L. & Graham, J. P. Applying habitat evaluation procedures (HEP) to wildlife area planning in Missouri. Wildl. Soc. Bull. 11(3), 215–222 (1983).
    Google Scholar 
    Chen, X. J., Tian, S. Q., Chen, Y. & Liu, B. L. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fish. Bull. 108, 1–14 (2010).
    Google Scholar 
    Tian, S. Q., Chen, X. J., Chen, Y., Xu, L. X. & Dai, X. J. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fish Res. 95, 181–188 (2009).Article 

    Google Scholar 
    Rouyer, T., Sadykov, A., Ohlberger, J. & Stenseth, N. C. Does increasing mortality change the response of fish populations to environmental fluctuations?. Ecol. Lett. 15, 658–665 (2012).PubMed 
    Article 

    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 11, 561–566 (2004).ADS 
    Article 

    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Amer. Meteorol. Soc. 79, 61–78 (1998).ADS 
    Article 

    Google Scholar  More

  • in

    Empirical support for sequential imprinting during downstream migration in Atlantic salmon (Salmo salar) smolts

    Lucas, M. & Baras, E. Migration of Freshwater Fishes (Wiley, 2008).
    Google Scholar 
    Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. Animal Migration: A Synthesis (Oxford University Press, 2011).Book 

    Google Scholar 
    Hendry, A. P. et al. The evolution of philopatry and dispersal. Evolution Illuminated. Salmon and Their Relatives, 52–91 (2004).Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).Article 

    Google Scholar 
    Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L): A review of aspects of their life histories. Ecol. Freshwater Fish 12, 1–59. https://doi.org/10.1034/j.1600-0633.2003.00010.x (2003).Article 

    Google Scholar 
    VÄHÄ, J. P., Erkinaro, J., Niemelä, E. & Primmer, C. R. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16, 2638–2654 (2007).Article 

    Google Scholar 
    Hansen, L. P., Jonsson, N. & Jonsson, B. Oceanic migration in homing Atlantic salmon. Anim. Behav. 45, 927–941 (1993).Article 

    Google Scholar 
    Keefer, M. L. & Caudill, C. C. Homing and straying by anadromous salmonids: A review of mechanisms and rates. Rev. Fish Biol. Fish. 24, 333–368 (2014).Article 

    Google Scholar 
    Neave, F. Ocean migrations of Pacific salmon. J. Fish. Board Canada 21, 1227–1244 (1964).Article 

    Google Scholar 
    Lohmann, K. J. & Lohmann, C. M. There and back again: Natal homing by magnetic navigation in sea turtles and salmon. J. Exp. Biol. 222, 184077 (2019).Article 

    Google Scholar 
    Scholz, A. T., Horrall, R. M., Cooper, J. C. & Hasler, A. D. Imprinting to chemical cues: The basis for home stream selection in salmon. Science 192, 1247–1249 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    Hasler, A. D. & Wisby, W. J. Discrimination of stream odors by fishes and its relation to parent stream behavior. Am. Nat. 85, 223–238 (1951).CAS 
    Article 

    Google Scholar 
    Harden Jones, F. R. Fish Migration. (Edward Arnold, 1968).Donaldson, L. R. & Allen, G. H. Return of silver salmon, Oncorhynchus kisutch (Walbaum) to point of release. Trans. Am. Fish. Soc. 87, 13–22 (1958).Article 

    Google Scholar 
    Quinn, T. P. A review of homing and straying of wild and hatchery-produced salmon. Fish. Res. 18, 29–44 (1993).Article 

    Google Scholar 
    Hansen, L. P. & Jonsson, B. Homing of Atlantic salmon: Effects of juvenile learning on transplanted post-spawners. Animal Behav. 47, 220 (1994).Article 

    Google Scholar 
    Nevitt, G. A., Dittman, A. H., Quinn, T. P. & Moody, W. J. Evidence for a peripheral olfactory memory in imprinted salmon. Proc. Natl. Acad. Sci. 91, 4288–4292. https://doi.org/10.1073/pnas.91.10.4288 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dittman, A. H., Quinn, T. P. & Nevitt, G. A. Timing of imprinting to natural and artificial odors by coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 53, 434–442 (1996).Article 

    Google Scholar 
    Morin, P.-P., Dodson, J. J. & Doré, F. Y. Cardiac responses to a natural odorant as evidence of a sensitive period for Olfactory imprinting in young Atlantic Salmon, Salmo salar. Can. J. Fish. Aquat. Sci. 46, 122–130. https://doi.org/10.1139/f89-016 (1989).Article 

    Google Scholar 
    Gunnerød, T., Hvidsten, N. & Heggberget, T. Open sea releases of Atlantic salmon smolts, Salmo salar, in central Norway, 1973–83. Can. J. Fish. Aquat. Sci. 45, 1340–1345 (1988).Article 

    Google Scholar 
    Heggberget, T. G., Hvidsten, N. A., Gunnerød, T. B. & Møkkelgjerd, P. I. Distribution of adult recaptures from hatchery-reared Atlantic salmon (Salmo salar) smolts released in and off-shore of the River Surna, western Norway. Aquaculture 98, 89–96 (1991).Article 

    Google Scholar 
    Solazzi, M. F., Nickelson, T. E. & Johnson, S. L. Survival, contribution, and return of hatchery Coho Salmon (Oncorhynchus kisutch) released into freshwater, Estuarine, and Marine environments. Can. J. Fish. Aquat. Sci. 48, 248–253. https://doi.org/10.1139/f91-034 (1991).Article 

    Google Scholar 
    Sturrock, A. M. et al. Eight decades of hatchery salmon releases in the California Central Valley: Factors influencing straying and resilience. Fisheries 44, 433–444 (2019).Article 

    Google Scholar 
    Chapman, D. et al. Homing in sockeye and Chinook salmon transported around part of their smolt migration route in the Columbia River. North Am. J. Fish. Manag. 17, 101–113 (1997).Article 

    Google Scholar 
    Bond, M. H. et al. Combined effects of barge transportation, river environment, and rearing location on straying and migration of adult Snake River fall-run Chinook Salmon. Trans. Am. Fish. Soc. 146, 60–73. https://doi.org/10.1080/00028487.2016.1235614 (2017).Article 

    Google Scholar 
    Hesthagen, T., Larsen, B. M. & Fiske, P. Liming restores Atlantic salmon (Salmo salar) populations in acidified Norwegian rivers. Can. J. Fish. Aquat. Sci. 68, 224–231. https://doi.org/10.1139/f10-133 (2011).Article 

    Google Scholar 
    Haraldstad, T., Höglund, E., Kroglund, F., Haugen, T. O. & Forseth, T. Common mechanisms for guidance efficiency of descending A tlantic salmon smolts in small and large hydroelectric power plants. River Res. Appl. https://doi.org/10.1002/rra.3360 (2018).Article 

    Google Scholar 
    Thorstad, E. B., Økland, F., Kroglund, F. & Jepsen, N. Upstream migration of Atlantic salmon at a power station on the River Nidelva Southern Norway. Fish. Manag. Ecol. 10, 139–146. https://doi.org/10.1046/j.1365-2400.2003.00335.x (2003).Article 

    Google Scholar 
    Fjeldstad, H.-P., Barlaup, B. T., Stickler, M., Gabrielsen, S.-E. & Alfredsen, K. Removal of weirs and the influence on physical habitat for salmonids in a Norwegian river. River Res. Appl. 28, 753–763. https://doi.org/10.1002/rra.1529 (2012).Article 

    Google Scholar 
    Wolf, P. a trap for the capture of fish and other organisms moving downstream. Trans. Am. Fish. Soc. 80, 41–45. https://doi.org/10.1577/1548-8659(1950)80[41:ATFTCO]2.0.CO;2 (1951).Article 

    Google Scholar 
    Johansen, K. When the Solution Becomes a Problem: A Study of Smolt Migration in the Regulated River of Nidelva in Agder county, Norway. MSc thesis, University of Agder, (2021).R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 (1974).ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Anderson, D. R. Model-Based Interference in the Life Sciences: A Primer on Evidence (Springer, 2008).Book 

    Google Scholar 
    Jonsson, B., Jonsson, N. & Hansen, L. P. Does juvenile experience affect migration and spawning of adult Atlantic salmon?. Behav. Ecol. Sociobiol. 26, 225–230 (1990).Article 

    Google Scholar 
    Thorstad, E., Heggberget, T. & Økland, F. Migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., before, during and after spawning in a Norwegian river. Aquac. Res. 29, 419–428 (1998).Article 

    Google Scholar 
    Aarestrup, K. et al. Prespawning migratory behaviour and spawning success of sea-ranched Atlantic salmon, Salmo salar L., in the River Gudenaa, Denmark. Fish. Manag. Ecol. 7, 387–400 (2000).Article 

    Google Scholar 
    Thorstad, E. B. et al. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Rev. Fish Biol. Fish. 18, 345–371 (2008).Article 

    Google Scholar 
    Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish Fish. 19, 340 (2017).Article 

    Google Scholar 
    Čada, G. F. The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries 26, 14–23 (2001).Article 

    Google Scholar 
    Quaranta, E. et al. Hydropower case study collection: Innovative Low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction: Digitalization and governing systems. Sustainability 12, 8873 (2020).Article 

    Google Scholar 
    Lusardi, R. A. & Moyle, P. B. Two-way trap and haul as a conservation strategy for anadromous salmonids. Fisheries 42, 478–487 (2017).Article 

    Google Scholar 
    Keefer, M. L., Caudill, C. C., Peery, C. A. & Lee, S. R. Transporting juvenile salmon around dams impairs adult migration. Ecol. Appl. 18, 1888–1900. https://doi.org/10.1890/07-0710.1 (2008).Article 
    PubMed 

    Google Scholar 
    Haraldstad, T., Haugen, T. O., Olsen, E. M., Forseth, T. & Höglund, E. Hydropower-induced selection of behavioural traits in Atlantic salmon (Salmo salar). Sci. Rep. 11, 1–9 (2021).Article 

    Google Scholar 
    Waples, R. S. & Hendry, A. P. Special issue: Evolutionary perspectives on salmonid conservation and management. Evolut. Appl. 1, 183–188. https://doi.org/10.1111/j.1752-4571.2008.00035.x (2008).Article 

    Google Scholar 
    Jonsson, B., Jonsson, N. & Hansen, L. P. Atlantic salmon straying from the River Imsa. J. Fish Biol. 62, 641–657. https://doi.org/10.1046/j.0022-1112.2003.00053.x (2003).Article 

    Google Scholar 
    Brown, C. Fish intelligence, sentience and ethics. Anim. Cogn. 18, 1–17 (2015).Article 

    Google Scholar  More

  • in

    Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds

    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).PubMed 

    Google Scholar 
    Tian, L. & Benton, M. J. Predicting biotic responses to future climate warming with classic ecogeographic rules. Curr. Biol. 30, R744–R749 (2020).CAS 
    PubMed 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).Salewski, V. & Watt, C. Bergmann’s rule: a biophysiological rule examined in birds. Oikos 126, 161–172 (2017).
    Google Scholar 
    Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 
    Ashton, K. G., Tracy, M. C. & De Queiroz, A. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415 (2000).PubMed 

    Google Scholar 
    Ashton, K. G. Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Glob. Ecol. Biogeogr. 11, 505–523 (2002).
    Google Scholar 
    Nudds, R. L. & Oswald, S. A. An interspecific test of Allen’s rule: evolutionary implications for endothermic species. Evolution (N. Y) 61, 2839–2848 (2007).CAS 

    Google Scholar 
    Symonds, M. R. E. & Tattersall, G. J. Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am. Nat. 176, 188–197 (2010).PubMed 

    Google Scholar 
    Cardilini, A. P. A., Buchanan, K. L., Sherman, C. D. H., Cassey, P. & Symonds, M. R. E. Tests of ecogeographical relationships in a non-native species: what rules avian morphology? Oecologia 181, 783–793 (2016).ADS 
    PubMed 

    Google Scholar 
    Alhajeri, B. H., Fourcade, Y., Upham, N. S. & Alhaddad, H. A global test of Allen’s rule in rodents. Glob. Ecol. Biogeogr. 29, 2248–2260 (2020).
    Google Scholar 
    McNab, B. K. On the ecological significance of Bergmann’s rule. Ecology 52, 845–854 (1971).
    Google Scholar 
    Meiri, S., Dayan, T. & Simberloff, D. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588 (2004).
    Google Scholar 
    Gohli, J. & Voje, K. L. An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evol. Biol. 16, 1–12 (2016).
    Google Scholar 
    Freeman, B. G. Little evidence for Bergmann’s rule body size clines in passerines along tropical elevational gradients. J. Biogeogr. 44, 502–510 (2017).
    Google Scholar 
    Riemer, K., Guralnick, R. P. & White, E. No general relationship between mass and temperature in endothermic species. Elife 7, e27166 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174 (1999).
    Google Scholar 
    Watt, C., Mitchell, S. & Salewski, V. Bergmann’s rule; a concept cluster? Oikos 119, 89–100 (2010).
    Google Scholar 
    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390 (1970).
    Google Scholar 
    Cartar, R. V. & Morrison, R. I. G. Metabolic correlates of leg length in breeding arctic shorebirds: the cost of getting high. J. Biogeogr. 32, 377–382 (2005).
    Google Scholar 
    Friedman, N. R., Harmáčková, L., Economo, E. P. & Remeš, V. Smaller beaks for colder winters: thermoregulation drives beak size evolution in Australasian songbirds. Evolution (N. Y). 71, 2120–2129 (2017).Fan, L., Cai, T., Xiong, Y., Song, G. & Lei, F. Bergmann’s rule and Allen’s rule in two passerine birds in China. Avian. Res. 10, 1–11 (2019).
    Google Scholar 
    Romano, A., Séchaud, R. & Roulin, A. Geographical variation in bill size provides evidence for Allen’s rule in a cosmopolitan raptor. Glob. Ecol. Biogeogr. 29, 65–75 (2020).
    Google Scholar 
    Romano, A., Séchaud, R. & Roulin, A. Generalized evidence for Bergmann’s rule: body size variation in a cosmopolitan owl genus. J. Biogeogr. 48, 51–63 (2021).
    Google Scholar 
    Gardner, J. L. et al. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Chang. Responses 3, 1–11 (2016).
    Google Scholar 
    Greenberg, R. & Danner, R. M. The influence of the california marine layer on bill size in a generalist songbird. Evolution (N. Y) 66, 3825–3835 (2012).
    Google Scholar 
    Greenberg, R., Danner, R., Olsen, B. & Luther, D. High summer temperature explains bill size variation in salt marsh sparrows. Ecography (Cop.) 35, 146–152 (2012).
    Google Scholar 
    Klir, J. J. & Heath, J. E. An infrared thermographic study of surface temperature in relation to external thermal stress in three species of foxes: the red fox (Vulpes vulpes), Arctic fox, and kit fox (Vulpes macrotis). Physiol. Zool. 65, 1011–1021 (1992).
    Google Scholar 
    Ballentine, B. & Greenberg, R. Common garden experiment reveals genetic control of phenotypic divergence between swamp sparrow subspecies that lack divergence in neutral genotypes. PLoS One 5, 1–6 (2010).
    Google Scholar 
    Nord, A. & Giroud, S. Lifelong effects of thermal challenges during development in birds and mammals. Front. Physiol. 11, 1–9 (2020).
    Google Scholar 
    Riek, A. & Geiser, F. Developmental phenotypic plasticity in a marsupial. J. Exp. Biol. 215, 1552–1558 (2012).PubMed 

    Google Scholar 
    Cunningham, S. J., Martin, R. O., Hojem, C. L. & Hockey, P. A. R. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of common fiscals. PLoS One 8, e74613 (2013).Mariette, M. M. & Buchanan, K. L. Prenatal acoustic communication programs offspring for high posthatching temperatures in a songbird. Science 353, 812–814 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nord, A. & Nilsson, J. Å. Incubation temperature affects growth and energy metabolism in blue tit nestlings. Am. Nat. 178, 639–651 (2011).PubMed 

    Google Scholar 
    Serrat, M. A. Allen’s rule revisited: temperature influences bone elongation during a critical period of postnatal development. Anat. Rec. 296, 1534–1545 (2013).
    Google Scholar 
    Larson, E. R. et al. Nest microclimate predicts bill growth in the Adelaide rosella (Aves: Psittaculidae). Biol. J. Linn. Soc. 124, 339–349 (2018).
    Google Scholar 
    Burness, G., Huard, J. R., Malcolm, E. & Tattersall, G. J. Post-hatch heat warms adult beaks: irreversible physiological plasticity in Japanese quail. Proc. R. Soc. B Biol. Sci. 280, 20131436 (2013).Husby, A., Hille, S. M. & Visser, M. E. Testing mechanisms of bergmann’s rule: phenotypic decline but no genetic change in body size in three passerine bird populations. Am. Nat. 178, 202–213 (2011).PubMed 

    Google Scholar 
    Cresswell, W., Clark, J. A. & Macleod, R. How climate change might influence the starvation-predation risk trade-off response. Proc. R. Soc. B Biol. Sci. 276, 3553–3560 (2009).CAS 

    Google Scholar 
    McNamara, J. M., Higginson, A. D. & Verhulst, S. The influence of the starvation-predation trade-off on the relationship between ambient temperature and body size among endotherms. J. Biogeogr. 43, 809–819 (2016).PubMed 

    Google Scholar 
    Dickman, C. R. Body size, prey size, and community structure in insectivorous mammals. Ecology 69, 569–580 (1988).
    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cohen, J. E., Pimm, S. L., Yodzis, P., & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).
    Google Scholar 
    McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Díaz, M. et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One 8, e64634 (2013).Gosler, A. G., Greenwood, J. J. D. & Perrins, C. Predation risk and the cost of being fat. Nature 377, 621–623 (1995).ADS 
    CAS 

    Google Scholar 
    Anderson, A. M. et al. Consistent declines in wing lengths of Calidridine sandpipers suggest a rapid morphometric response to environmental change. PLoS One 14, 1–21 (2019).CAS 

    Google Scholar 
    Milá, B., Wayne, R. K. & Smith, T. B. Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica Coronata). Condor 110, 335–344 (2008).
    Google Scholar 
    O’Hara, P. D., Fernández, G., Haase, B., de la Cueva, H. & Lank, D. B. Differential migration in western sandpipers with respect to body size and wing length. Condor 108, 225–232 (2006).
    Google Scholar 
    Ketterson, E. D. & Nolan, V. Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junco hyemalis hyemalis). Ecology 57, 679–693 (1976).
    Google Scholar 
    Nebel, S. Differential migration of shorebirds in the East Asian-Australasian Flyway. Emu 107, 14–18 (2007).
    Google Scholar 
    Elner, R. W. & Seaman, D. A. Calidrid conservation: unrequited needs. Wader Study Gr. Bull. 100, 30–34 (2003).
    Google Scholar 
    Greenberg, R. Dissimilar bill shapes in new world tropical versus temperate forest foliage-gleaning birds. Oecologia 49, 143–147 (1981).ADS 
    PubMed 

    Google Scholar 
    Nebel, S. Latitudinal clines in bill length and sex ratio in a migratory shorebird: a case of resource partitioning? Acta Oecologica 28, 33–38 (2005).ADS 

    Google Scholar 
    Mathot, K. J., Smith, B. D. & Elner, R. W. Latitudinal clines in food distribution correlate with differential migration in the Western Sandpiper. Ecology 88, 781–791 (2007).PubMed 

    Google Scholar 
    Duijns, S. et al. Sex-specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning. Ecol. Evol. 4, 4009–4018 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, J. R., Nebel, S. & Minton, C. D. T. Migration ecology and morphometrics of two Bar-tailed Godwit populations in Australia. Emu 107, 262–274 (2007).
    Google Scholar 
    Nebel, S., Rogers, K. G., Minton, C. D. T. & Rogers, D. I. Is geographical variation in the size of Australian shorebirds consistent with hypotheses on differential migration? Emu 113, 99–111 (2013).
    Google Scholar 
    Beltran, R. S., Burns, J. M. & Breed, G. A. Convergence of biannual moulting strategies across birds and mammals. Proc. R. Soc. B Biol. Sci. 285, 20180318 (2018).Tattersall, G. J., Arnaout, B. & Symonds, M. R. E. The evolution of the avian bill as a thermoregulatory organ. Biol. Rev. 92, 1630–1656 (2017).PubMed 

    Google Scholar 
    Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103, 97–103 (2003).
    Google Scholar 
    Rogers, D. I., Piersma, T. & Hassell, C. J. Roost availability may constrain shorebird distribution: Exploring the energetic costs of roosting and disturbance around a tropical bay. Biol. Conserv. 133, 225–235 (2006).
    Google Scholar 
    Danner, R. M. & Greenberg, R. A critical season approach to Allen’s rule: Bill size declines with winter temperature in a cold temperate environment. J. Biogeogr. 42, 114–120 (2015).
    Google Scholar 
    Buchholz, R. Thermoregulatory role of the unfeathered head and neck in male wild turkeys. Auk 113, 310–318 (1996).
    Google Scholar 
    Marchant, S. & Higgins, P. J. (eds.) Handbook of Australian, New Zealand and Antarctic Birds. Volume 2: Raptors to Lapwings (Oxford University Press, 1993).Higgins, P. J. & Davies, S. J. J. F. (eds.) Handbook of Australian, New Zealand and Antarctic Birds. Volume 3: Snipe to Pigeons (Oxford University Press, 1996).Andrew, S. C., Hurley, L. L., Mariette, M. M. & Griffith, S. C. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).CAS 
    PubMed 

    Google Scholar 
    Morrick, Z. N. et al. Differential population trends align with migratory connectivity in an endangered shorebird. Conserv. Sci. Pract. 4, 1–13 (2022).
    Google Scholar 
    Hassell, C., Southey, I., Boyle, A. & Yang, H.-Y. Red knot Calidris canutus: subspecies and migration in the East Asian-Australasian flyway – where do all the red knot go? BirdingASIA 16, 89–93 (2011).
    Google Scholar 
    Battley, P. F. et al. Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J. Avian Biol. 43, 21–32 (2012).
    Google Scholar 
    Aharon-Rotman, Y., Buchanan, K. L., Clark, N. J., Klaassen, M. & Buttemer, W. A. Why fly the extra mile? Using stress biomarkers to assess wintering habitat quality in migratory shorebirds. Oecologia 182, 385–395 (2016).ADS 
    PubMed 

    Google Scholar 
    Aharon-Rotman, Y., Gosbell, K., Minton, C. & Klaassen, M. Why fly the extra mile? Latitudinal trend in migratory fuel deposition rate as driver of trans-equatorial long-distance migration. Ecol. Evol. 6, 6616–6624 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hollands, D. & Minton, C. Waders: The Shorebirds of Australia (Bloomings Books, 2012).Siepielski, A. M. et al. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc. R. Soc. B Biol. Sci. 286, 20191332 (2019).Ho, C. K., Pennings, S. C. & Carefoot, T. H. Is diet quality an overlooked mechanism for Bergmann’s rule? Am. Nat. 175, 269–276 (2010).PubMed 

    Google Scholar 
    Piersma, T. et al. Fuel storage rates in Red Knots worldwide: facing the severest ecological constraint in tropical intertidal environments? In Birds of Two Worlds: Ecology and Evolution of Migration (eds Greenburg, R. & Marra, P. P.) (Smithsonian Institution Press, 2005).Hedenström, A. & Rosén, M. Predator versus prey: on aerial hunting and escape strategies in birds. Behav. Ecol. 12, 150–156 (2001).
    Google Scholar 
    Van Den Hout, P. J., Mathot, K. J., Maas, L. R. M. & Piersma, T. Predator escape tactics in birds: linking ecology and aerodynamics. Behav. Ecol. 21, 16–25 (2010).
    Google Scholar 
    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
    Google Scholar 
    Cain, K. E. et al. Conspicuous plumage does not increase predation risk: a continent-wide test using model songbirds. Am. Nat. 193, 359–372 (2019).PubMed 

    Google Scholar 
    Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldana, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).
    Google Scholar 
    Gotmark, F. & Post, P. Prey selection by sparrowhawks, Accipiter nisus: relative predation risk for breeding passerine birds in relation to their size, ecology and behaviour. Philos. Trans. R. Soc. B Biol. Sci. 351, 1559–1577 (1996).ADS 

    Google Scholar 
    McQueen, A. et al. Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecol. Lett. 22, 1838–1849 (2019).PubMed 

    Google Scholar 
    Martínez, A. E. & Zenil, R. T. Foraging guild influences dependence on heterospecific alarm calls in Amazonian bird flocks. Behav. Ecol. 23, 544–550 (2012).
    Google Scholar 
    Gauthreaux, S. A. The ecological significance of behavioral dominance. In Social Behavior. Perspectives in Ethology, vol 3 (eds Bateson, P. P. G. & Klopfer, P. H.) (Springer, 1978).Friedman, N. R. et al. Evolution of a multifunctional trait: Shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc. R. Soc. B Biol. Sci. 286, 20192474 (2019).Campbell-Tennant, D. J. E., Gardner, J. L., Kearney, M. R. & Symonds, M. R. E. Climate-related spatial and temporal variation in bill morphology over the past century in Australian parrots. J. Biogeogr. 42, 1163–1175 (2015).
    Google Scholar 
    Sullivan, T. N., Meyers, M. A. & Arzt, E. Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5, 1–9 (2019).
    Google Scholar 
    Gosler, A. G., Greenwood, J. J. D., Baker, J. K. & Davidson, N. C. The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird. Study 45, 92–103 (1998).
    Google Scholar 
    Tattersall, G. J., Chaves, J. A. & Danner, R. M. Thermoregulatory windows in Darwin’s finches. Funct. Ecol. 32, 358–368 (2018).
    Google Scholar 
    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 

    Google Scholar 
    Minton, C. The history and achievements of the Victorian Wader Study Group. Stilt 50, 285–294 (2006).
    Google Scholar 
    Minton, C. The history of wader studies in north-west Australia. Stilt 50, 224–234 (2006).
    Google Scholar 
    Lowe, K. W. The Australian Bird Bander’s Manual (Australian Bird and Bat Banding Scemes, Australian National Parks and Wildlife Services, 1989).Aarif, K. M. Some aspects of feeding ecology of the lesser sand plover Charadrius mongolus in three different zones in the Kadalundy Estuary, Kerala, South India. Podoces 4, 100–1007 (2009).
    Google Scholar 
    Bates, D., Maechler, M. & Bolker, B. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Rue, H. et al. Bayesian computing with INLA: a review. Annu. Rev. Stat. Its Appl. 4, 395–421 (2017).ADS 

    Google Scholar 
    Li, D., Dinnage, R., Nell, L. A., Helmus, M. R. & Ives, A. R. phyr: an r package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).
    Google Scholar 
    Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. Penalising model component complexity: a principled, practical approach to constructing priors. Stat. Sci. 32, 1–28 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schliep, K. Phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 

    Google Scholar 
    McQueen, A et al. Data from: thermal adaptation best explains Bergmann’s and Allen’s rule across ecologically diverse shorebirds. Dryad Dataset. https://doi.org/10.5061/dryad.xsj3tx9j5.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325, 468–470 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Greenberg, R., Cadena, V., Danner, R. M. & Tattersall, G. Heat loss may explain bill size differences between birds occupying different habitats. PLoS One 7, 1–9 (2012).
    Google Scholar 
    Ryeland, J., Weston, M. A. & Symonds, M. R. E. Bill size mediates behavioural thermoregulation in birds. Funct. Ecol. 31, 885–893 (2017).
    Google Scholar 
    Pavlovic, G., Weston, M. A. & Symonds, M. R. E. Morphology and geography predict the use of heat conservation behaviours across birds. Funct. Ecol. 33, 286–296 (2019).
    Google Scholar  More

  • in

    Accurate phenology analyses require bud traits and energy budgets

    Peñuelas, J. & Filella, I. Phenology. Responses to a warming world. Science 294, 793–795 (2001).PubMed 
    Article 

    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 
    Article 

    Google Scholar 
    Ramos-Jiliberto, R., Moisset de Espanés, P., Franco-Cisterna, M., Petanidou, T. & Vázquez, D. P. Phenology determines the robustness of plant-pollinator networks. Sci. Rep. 8, 14873 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chuine, I. Why does phenology drive species distribution? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3149–3160 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chmielewski, F.-M. in Phenology: An Integrative Environmental Science 2nd edn (ed. Schwartz M. D.) 539–561 (Springer, 2013).Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).Article 

    Google Scholar 
    Katelaris, C. H. & Beggs, P. J. Climate change: allergens and allergic diseases. Intern. Med. J. 48, 129–134 (2018).PubMed 
    Article 

    Google Scholar 
    Schwartz, M. D. (ed.) Phenology: An Integrative Environmental Science 2nd edn (Springer, 2013).Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).Article 

    Google Scholar 
    Vitasse, Y. et al. Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses. Agric. For. Meteorol. 149, 735–744 (2009).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the Northern Hemisphere during 1982-2012. PLoS ONE 11, e0157134 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).PubMed 
    Article 

    Google Scholar 
    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zohner, C. M., Mo, L., Pugh, T. A. M., Bastin, J.-F. & Crowther, T. W. Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees. Glob. Change Biol. https://doi.org/10.1111/gcb.15098 (2020).Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl Acad. Sci. USA 117, 10397–10405 (2020).Zohner, C. M., Benito, B. M., Svenning, J.-C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).Article 

    Google Scholar 
    Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).PubMed 
    Article 

    Google Scholar 
    Papagiannopoulou, C. et al. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 12, 74016 (2017).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seyednasrollah, B., Swenson, J. J., Domec, J.-C. & Clark, J. S. Leaf phenology paradox: why warming matters most where it is already warm. Remote Sens. Environ. 209, 446–455 (2018).Article 

    Google Scholar 
    Chuine, I., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).PubMed 
    Article 

    Google Scholar 
    Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res 132, 1–8 (2013).Article 

    Google Scholar 
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).PubMed 
    Article 

    Google Scholar 
    Caffarra, A., Donnelly, A. & Chuine, I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim. Res. 46, 159–170 (2011).Article 

    Google Scholar 
    Körner, C. & Basler, D. Plant science. Phenology under global warming. Science 327, 1461–1462 (2010).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).Article 

    Google Scholar 
    Singh, R. K., Svystun, T., AlDahmash, B., Jönsson, A. M. & Bhalerao, R. P. Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytol. 213, 511–524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brelsford, C. C., Nybakken, L., Kotilainen, T. K. & Robson, T. M. The influence of spectral composition on spring and autumn phenology in trees. Tree Physiol. 39, 925–950 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strømme, C. B. et al. UV-B and temperature enhancement affect spring and autumn phenology in Populus tremula. Plant Cell Environ. 38, 867–877 (2015).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).Article 

    Google Scholar 
    Huang, Y., Jiang, N., Shen, M. & Guo, L. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecol. Indic. 112, 106161 (2020).Article 

    Google Scholar 
    Meng, F. et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 100, e02775 (2019).PubMed 
    Article 

    Google Scholar 
    Zhang, S., Isabel, N., Huang, J.-G., Ren, H. & Rossi, S. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break. Int. J. Biometeorol. 63, 1631–1640 (2019).PubMed 
    Article 

    Google Scholar 
    Meng, L. et al. Divergent responses of spring phenology to daytime and nighttime warming. Agric. For. Meteorol. 281, 107832 (2020).Article 

    Google Scholar 
    Bigler, C. & Vitasse, Y. Daily maximum temperatures induce lagged effects on leaf unfolding in temperate woody species across large elevational gradients. Front. Plant Sci. 10, 398 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytol. 212, 590–597 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vitasse, Y. et al. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytol. https://doi.org/10.1111/nph.17606 (2021).Azeez, A. et al. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nat. Commun. 12, 1123 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamer, P. The heat balance of apple buds and blossoms. Part I. Heat transfer in the outdoor environment. Agric. For. Meteorol. 35, 339–352 (1985).Article 

    Google Scholar 
    Landsberg, J. J., Butler, D. R. & Thorpe, M. R. Apple bud and blossom temperatures. J. Horticultural Sci. 49, 227–239 (1974).Article 

    Google Scholar 
    Grace, J. The temperature of buds may be higher than you thought. N. Phytol. 170, 1–3 (2006).Article 

    Google Scholar 
    Muir, C. D. tealeaves: an R package for modelling leaf temperature using energy budgets. AoB Plants 11, plz054 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knohl, A., Schulze, E.-D., Kolle, O. & Buchmann, N. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric. For. Meteorol. 118, 151–167 (2003).Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, B. N., Stoll, R., Pardyjak, E. R. & Miller, N. E. A new three-dimensional energy balance model for complex plant canopy geometries: Model development and improved validation strategies. Agric. For. Meteorol. 218-219, 146–160 (2016).Article 

    Google Scholar 
    Michaletz, S. T. & Johnson, E. A. A heat transfer model of crown scorch in forest fires. Can. J. For. Res. 36, 2839–2851 (2006).Article 

    Google Scholar 
    Sanchez‐Lorenzo, A. et al. Reassessment and update of long‐term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).Pfeifroth, U., Sanchez‐Lorenzo, A., Manara, V., Trentmann, J. & Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface‐ and satellite-based data records. J. Geophys. Res. Atmos. 123, 1735–1754 (2018).Article 

    Google Scholar 
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).Article 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ma, Q., Huang, J.-G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2019).Article 

    Google Scholar 
    Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1920816117 (2020).Xiao, L. et al. Estimating spring frost and its impact on yield across winter wheat in China. Agric. For. Meteorol. 260–261, 154–164 (2018).Article 

    Google Scholar 
    Unterberger, C. et al. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 13, e0200201 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Leolini, L. et al. Late spring frost impacts on future grapevine distribution in Europe. Field Crops Res. 222, 197–208 (2018).Article 

    Google Scholar 
    Greco, S. et al. Late spring frost in mediterranean beech forests: extended crown dieback and short-term effects on moth communities. Forests 9, 388 (2018).Article 

    Google Scholar 
    Augspurger, C. K. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 23, 1031–1039 (2009).Article 

    Google Scholar 
    Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H. & Zhang, Y. P. Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling. Glob. Ecol. Biogeogr. 26, 998–1007 (2017).Article 

    Google Scholar 
    Jones, H. G. Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology (Cambridge Univ. Press, 2013).University Of East Anglia Climatic Research Unit (CRU) & Harris, I. C. CRU JRA v1.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901–Dec.2017, 2019; https://catalogue.ceda.ac.uk/uuid/13f3635174794bb98cf8ac4b0ee8f4edDupleix, A., Sousa Meneses, D., de, Hughes, M. & Marchal, R. Mid-infrared absorption properties of green wood. Wood Sci. Technol. 47, 1231–1241 (2013).CAS 
    Article 

    Google Scholar 
    Howard, R. & Stull, R. IR radiation from trees to a ski run: a case study. J. Appl. Meteorol. Climatol. 52, 1525–1539 (2013).Article 

    Google Scholar 
    Monteith, J. L. & Unsworth, M. H. Principles of Environmental Physics. Plants, Animals, and the Atmosphere 4th edn (Elsevier/Academic Press, 2013).Bergman, T. L., Incropera, F. P. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (J. Wiley & Sons, 2011).Jacobs, A., Heusinkveld, B. G. & Kessel, G. Simulating of leaf wetness duration within a potato canopy. NJAS Wagening. J. Life Sci. 53, 151–166 (2005).Article 

    Google Scholar 
    Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).Article 

    Google Scholar 
    Muñoz Sabater, J. Copernicus Climate Change Service: ERA5-Land hourly data from 1981 to present, 2019; https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-landKusch, E. & Davy, R. KrigR – A tool for downloading and statistically downscaling climate reanalysis data. Environ. Res. Lett. 17, 024005 (2022).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/ More

  • in

    Large carnivores and naturalness affect forest recreational value

    Nash, R. Wilderness and the American Mind (Yale University Press, 1982).
    Google Scholar 
    Kirchhoff, T. & Vicenzotti, V. A historical and systematic survey of European perceptions of wilderness. Environ. Values 23, 443–464 (2014).Article 

    Google Scholar 
    Aplet, G., Thomson, J. & Wilbert, M. Indicators of wildness: Using attributes of the land to assess the context of wilderness in Wilderness Science in a Time of Change (eds. McCool, S.F., Cole, D.N., Borrie, W.T., O’Loughlin, J.) 89–98 (USDA Forest Service, RMRS-P-15-Vol-2, 2000).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watson, J. E. et al. Protect the last of the wild. Nature 563, 27–30 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayward, M. W. et al. Reintroducing rewilding to restoration: Rejecting the search for novelty. Biol. Conserv. 233, 255–259 (2019).Article 

    Google Scholar 
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soulé, M. & Noss, R. Rewilding and biodiversity: Complementary goals for continental conservation. Wild Earth 8, 18–28 (1998).
    Google Scholar 
    Torres, A. et al. Measuring rewilding progress. Philos. Trans. R. Soc. Lond. B 373, 20170433 (2018).Article 

    Google Scholar 
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Fish, R., Church, A. & Winter, M. Conceptualising cultural ecosystem services: A novel framework for research and critical engagement. Ecosyst. Serv. 21B, 208–217 (2016).Article 

    Google Scholar 
    Nilsson, K. et al. Forests, Trees and Human Health (Springer, 2011).Book 

    Google Scholar 
    Cheesbrough, A. E., Garvin, T. & Nykiforuk, C. I. J. Everyday wild: Urban natural areas, health, and well-being. Health Place 56, 43–52 (2019).PubMed 
    Article 

    Google Scholar 
    Child, M. F. Wildness, infinity and freedom. Ecol. Econ. 186, 107055 (2021).Article 

    Google Scholar 
    Lev, E., Kahn, P. H. Jr., Chen, H. & Esperum, G. Relatively wild urban parks can promote human resilience and flourishing: A case study of Discovery Park, Seattle, Wasshington. Front. Sustain. Cities 2, 2 (2020).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).PubMed 
    Article 

    Google Scholar 
    Giergiczny, M., Czajkowski, M., Żylicz, T. & Angelstam, P. Choice experiment assessment of public preferences for forest structural attributes. Ecol. Econ. 119, 8–23 (2015).Article 

    Google Scholar 
    Sabatini, F. M. et al. Where are Europe’s last primary forests?. Divers. Distrib. 24, 1426–1439 (2018).Article 

    Google Scholar 
    Kirby, K. & Watkins, C. Europe’s changing woods and forests: from wildwood to managed landscapes. CABI (2015).Schirpke, U., Meisch, C. & Tappeiner, U. Symbolic species as a cultural ecosystem service in the European Alps: Insights and open issues. Landsc. Ecol. 33, 711–730 (2018).Article 

    Google Scholar 
    Bruskotter, J. T. & Wilson, R. S. Determining where the wild things will be: Using psychological theory to find tolerance for large carnivores. Conserv. Lett. 7, 158–165 (2014).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617 (2021).Article 

    Google Scholar 
    Røskaft, E., Händel, B., Bjerke, T. & Kaltenborn, B. P. Human attitudes towards large carnivores in Norway. Wildl. Biol. 13, 172–186 (2007).Article 

    Google Scholar 
    Arbieu, U. et al. Attitudes towards returning wolves (Canis lupus) in Germany: Exposure, information sources and trust matter. Biol. Conserv. 234, 202–210 (2019).Article 

    Google Scholar 
    Gundersen, V. S. & Frivold, L. H. Public preferences for forest structures: A review of quantitative surveys from Finland, Norway and Sweden. Urban For. Urban Green. 7, 241–258 (2008).Article 

    Google Scholar 
    Filyushkina, A., Agimass, F., Lundhede, T., Strange, N. & Jacobsen, J. B. Preferences for variation in forest characteristics: Does diversity between stands matter?. Ecol. Econ. 140, 22–29 (2017).Article 

    Google Scholar 
    Lozano, J. et al. Human-carnivore relations: A systematic review. Biol. Conserv. 237, 480–492 (2019).Article 

    Google Scholar 
    Rode, J., Flinzberger, L., Karutz, R., Berghöfer, A. & Schröter-Schlaack, C. Why so negative? Exploring the socio-economic impacts of large carnivores from a European perspective. Biol. Conserv. 255, 108918 (2021).Article 

    Google Scholar 
    Gren, M., Häggmark-Svensson, T., Elofsson, K. & Engelmann, M. Economics of wildlife management—An overview. Eur. J. Wildl. Res. 64, 1–6 (2018).Article 

    Google Scholar 
    Wilson, E. O. Biophilia and the conservation ethic in The Biophilia Hypothesis (eds. Kellert, S.R. & Wilson, E.O.) 31–41 (Island Press, 1993).Thompson, S. C. G. & Barton, M. A. Ecocentric and anthropocentric attitudes toward the environment. J. Environ. Psychol. 14, 149–157 (1994).Article 

    Google Scholar 
    Kaltenborn, B. P. & Bjerke, T. Associations between environmental value orientations and landscape preferences. Landsc. Urban Plan. 59, 1–11 (2002).Article 

    Google Scholar 
    Bjerke, T. & Kaltenborn, B. P. The relationship of ecocentric and anthropocentric motives to attitudes toward large carnivores. J. Environ. Psychol. 19, 415–421 (1999).Article 

    Google Scholar 
    Johansson, M., Ferreira, I. A., Støen, O. G., Frank, J. & Flykt, A. Targeting human fear of large carnivores—Many ideas but few known effects. Biol. Conserv. 201, 261–269 (2016).Article 

    Google Scholar 
    Bauer, N., Wallner, A. & Hunziker, M. The change of European landscapes: Human–nature relationships, public attitudes towards rewilding, and the implications for landscape management in Switzerland. J. Environ. Manag. 90, 2910–2920 (2009).Article 

    Google Scholar 
    Arts, K., Fischer, A. & Van der Wal, R. The promise of wilderness between paradise and hell: A cultural-historical exploration of a Dutch National Park. Landsc. Res. 37, 239–256 (2012).Article 

    Google Scholar 
    De Groot, W. T. & van den Born, R. J. G. Visions of nature and landscape preferences:an exploration in the Netherlands. Landsc. Urban Plan. 63, 127–138 (2003).Article 

    Google Scholar 
    Bombieri, G. et al. Brown bear attacks on humans: A worldwide perspective. Sci. Rep. 9, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Johansson, M., Sjöström, M., Karlsson, J. & Brännlund, R. Is human fear affecting public willingness to pay for the management and conservation of large carnivores?. Soc. Nat. Resour. 25, 610–620 (2012).Article 

    Google Scholar 
    Dressel, S., Sandström, C. & Ericsson, G. A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. Conserv. Biol. 29, 565–574 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trajçe, A. et al. All carnivores are not equal in the rural people’s view. Should we develop conservation plans for functional guilds or individual species in the face of conflicts?. Glob. Ecol. Conserv. 19, e00677 (2019).Article 

    Google Scholar 
    Eriksson, M., Sandström, C. & Ericsson, G. Direct experience and attitude change towards bears and wolves. Wildl. Biol. 21, 131–137 (2015).Article 

    Google Scholar 
    Methorst, J., Arbieu, U., Bonn, A., Böhning-Gaese, K. & Müller, T. Non-material contributions of wildlife to human well-being: A systematic review. Environ. Res. Lett. 15, 093005 (2020).ADS 
    Article 

    Google Scholar 
    Russell, R. et al. Humans and nature: How knowing and experiencing nature affect well-being. Annu. Rev. Environ. Resour. 38, 473–502 (2013).Article 

    Google Scholar 
    Maller, C., Mumaw, L. & Cooke, B. Health and social benefits of living with ‘wild’ nature in Rewilding (eds. Pettorelli, N., Durant, S. M. & du Toit, J. T.) 165–181 (Cambridge University Press, 2019).Nevin, O. T., Swain, P. & Convery, I. Bears, place-making, and authenticity in British Columbia. Nat. Areas J. 34, 216–221 (2014).Article 

    Google Scholar 
    Schnitzler, A. Towards a new European wilderness: Embracing unmanaged forest growth and the decolonisation of nature. Landsc. Urban Plan. 126, 74–80 (2014).Article 

    Google Scholar 
    Hensher, D., Rose, J. & Greene, D. Applied Choice Analysis (Cambridge University Press, 2005).MATH 
    Book 

    Google Scholar 
    Johnston, R. J. et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 4, 319–405 (2017).
    Google Scholar 
    Riera, P. et al. Non-market valuation of forest goods and services: Good practice guidelines. J. For. Econ. 18, 259–270 (2012).
    Google Scholar 
    Larsen, J. B. & Nielsen, A. B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice. For. Ecol. Manag. 238, 107–117 (2007).Article 

    Google Scholar 
    Ferrini, S. & Scarpa, R. Designs with a priori information for nonmarket valuation with choice experiments: A Monte Carlo study. J. Environ. Econ. Manag. 53, 342–363 (2007).MATH 
    Article 

    Google Scholar 
    McFadden, D. The measurement of urban travel demand. J. Public Econ. 3, 303–328 (1974).Article 

    Google Scholar 
    Train, K. Discrete Choice Methods with Simulation (Cambridge University Press, 2009).MATH 

    Google Scholar  More