Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers
Beillouin, D., Ben-Ari, T., Malezieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).CAS
Article
Google Scholar
Ditzler, L. et al. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 41, 26 (2021).Article
Google Scholar
Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R. & Kanyama-Phiri, G. Y. Biodiversity can support a greener revolution in Africa. Proc. Natl Acad. Sci. USA 107, 20840–20845 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS
CAS
PubMed
Article
Google Scholar
Rodriguez, C., Mårtensson, L.-M. D., Jensen, E. S. & Carlsson, G. Combining crop diversification practices can benefit cereal production in temperate climates. Agron. Sustain. Dev. 41, 48 (2021).Article
Google Scholar
Zeng, Z. H. et al. in Crop Rotations: Farming Practices, Monitoring and Environmental Benefits (ed. Ma, B. L.) Ch. 1, 51–70 (Nova Science Publishers, 2016).Cusworth, G., Garnett, T. & Lorimer, J. Legume dreams: the contested futures of sustainable plant-based food systems in Europe. Glob. Environ. Change 69, 102321 (2021).PubMed
PubMed Central
Article
Google Scholar
Reckling, M. et al. Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agron. Sustain. Dev. 38, 63 (2018).PubMed
PubMed Central
Article
Google Scholar
Snapp, S. S., Cox, C. M. & Peter, B. G. Multipurpose legumes for smallholders in sub-Saharan Africa: identification of promising ‘scale out’ options. Glob. Food Secur-Agr. 23, 22–32 (2019).Article
Google Scholar
Hegewald, H., Wensch-Dorendorf, M., Sieling, K. & Christen, O. Impacts of break crops and crop rotations on oilseed rape productivity: a review. Eur. J. Agron. 101, 63–77 (2018).Article
Google Scholar
Angus, J. F. et al. Break crops and rotations for wheat. Crop . Sci. 66, 523–552 (2015).
Google Scholar
Franke, A. C., van den Brand, G. J., Vanlauwe, B. & Giller, K. E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: a review. Agric. Ecosyst. Environ. 261, 172–185 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Preissel, S., Reckling, M., Schlaefke, N. & Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crops Res. 175, 64–79 (2015).Article
Google Scholar
Zhao, J. et al. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 245, 107659 (2020).Article
Google Scholar
Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS
PubMed
PubMed Central
Article
Google Scholar
Cernay, C., Makowski, D. & Pelzer, E. Preceding cultivation of grain legumes increases cereal yields under low nitrogen input conditions. Environ. Chem. Lett. 16, 631–636 (2018).CAS
Article
Google Scholar
Peoples, M. B. et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48, 1–17 (2009).CAS
Article
Google Scholar
Watson, C. A. et al. Grain legume production and use in European agricultural systems. Adv. Agron. 144, 235–303 (2017).Article
Google Scholar
Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production:The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).PubMed
Article
Google Scholar
Drinkwater, L. E., Wagoner, P. & Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396, 262–265 (1998).ADS
CAS
Article
Google Scholar
Smith, C. J. & Chalk, P. M. Grain legumes in crop rotations under low and variable rainfall: are observed short-term N benefits sustainable? Plant Soil 453, 271–279 (2020).CAS
Article
Google Scholar
Pullens, J. W. M., Sorensen, P., Melander, B. & Olesen, J. E. Legacy effects of soil fertility management on cereal dry matter and nitrogen grain yield of organic arable cropping systems. Eur. J. Agron. 122, 126169 (2021).CAS
Article
Google Scholar
Tognetti, P. M. et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl Acad. Sci. USA 118, 28 (2021).Article
Google Scholar
Kirkegaard, J., Christen, O., Krupinsky, J. & Layzell, D. Break crop benefits in temperate wheat production. Field Crops Res. 107, 185–195 (2008).Article
Google Scholar
Brisson, N. et al. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 119, 201–212 (2010).Article
Google Scholar
Anderson, R. L. Synergism: a rotation effect of improved growth efficiency. Adv. Agron. 112, 205–226 (2011).Article
Google Scholar
Bonilla-Cedrez, C., Chamberlin, J. & Hijmans, R. Fertilizer and grain prices constrain food production in sub-Saharan Africa. Nat. Food 2, 766–772 (2021).Article
Google Scholar
Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).ADS
CAS
PubMed
Article
Google Scholar
Barbieri, P., Pellerin, S., Seufert, V. & Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2, 378–385 (2019).Article
Google Scholar
Barbieri, P. et al. Global option space for organic agriculture is delimited by nitrogen availability. Nat. Food 2, 363–372 (2021).Article
Google Scholar
Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
Nowak, B., Nesme, T., David, C. & Pellerin, S. Disentangling the drivers of fertilising material inflows in organic farming. Nutr. Cycl. Agroecosyst. 96, 79–91 (2013).Article
Google Scholar
Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed
Article
Google Scholar
Mariotte, P. et al. Plant-soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).PubMed
Article
Google Scholar
Everwand, G., Cass, S., Dauber, J., Williams, M. & Stout, J. Legume crops and biodiversity. Legumes in Cropping Systems, 4, 55–69 (2017).Peoples, M. B., Giller, K. E., Jensen, E. S. & Herridge, D. F. Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses. Plant Soil 469, 1–14 (2021).CAS
Article
Google Scholar
Abalos, D., van Groenigen, J. W., Philippot, L., Lubbers, I. M. & De Deyn, G. B. Plant trait-based approaches to improve nitrogen cycling in agroecosystems. J. Appl. Ecol. 56, 2454–2466 (2019).Article
Google Scholar
Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).Article
Google Scholar
Pandey, A., Li, F., Askegaard, M., Rasmussen, I. A. & Olesen, J. E. Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agric. Ecosyst. Environ. 265, 350–362 (2018).CAS
Article
Google Scholar
Cook, R. J. Toward cropping systems that enhance productivity and sustainability. Proc. Natl Acad. Sci. USA 103, 18389–18394 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Gan, Y. T. et al. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 5, 13 (2014).
Google Scholar
Hufnagel, J., Reckling, M. & Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 40, 14 (2020).Article
Google Scholar
Ma, B. L. & Wu, W. in Crop Rotations: Farming Practices, Monitoring and Environmental Benefits (ed Ma B. L.) Ch. 1, 1–35 (Nova Science Publishers, 2016).Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F. & French, R. J. Break-crop benefits to wheat in Western Australia – insights from over three decades of research. Crop. Sci. 63, 1–16 (2012).
Google Scholar
Sileshi, G., Akinnifesi, F. K., Ajayi, O. C. & Place, F. Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant Soil 307, 1–19 (2008).CAS
Article
Google Scholar
Bullock, D. G. Crop rotation. Crit. Rev. Plant Sci. 11, 309–326 (1992).Article
Google Scholar
Danga, B. O., Ouma, J. P., Wakindiki, I. I. C. & Bar-Tal, A. Legume-wheat ration effects on residual soil moisture, nitrogen and wheat yield in tropical regions. Adv. Agron. 101, 315–349 (2009).Article
Google Scholar
Ghosh, P. K. et al. Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems – An Indian perspective: a review. J. Sustain. Agric. 30, 59–86 (2007).Article
Google Scholar
Karlen, D. L., Varvel, G. E., Bullock, D. G. & Cruse, R. M. Crop rotation for the 21st century. Adv. Agron. 53, 1–45 (1994).Article
Google Scholar
Martin, G. et al. Role of ley pastures in tomorrow’s cropping systems. A review. Agron. Sustain. Dev. 40, 17 (2020).Article
Google Scholar
Ruisi, P. et al. Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems. Ital. J. Agron. 12, 233–245 (2017).
Google Scholar
Ryan, J., Singh, M. & Pala, M. Long-term cereal-based rotation trials in the Mediterranean region: Implications for cropping sustainability. Adv. Agron. 97, 273–319 (2008).CAS
Article
Google Scholar
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Grp, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62, 1006–1012 (2009).PubMed
Article
Google Scholar
Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).ADS
CAS
PubMed
Article
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1247 (2014).Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436. (1999).FAO. World Programme of the Census of Agriculture 2020. Vol. 1 (2015).Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).CAS
PubMed
Article
Google Scholar
Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS
Article
Google Scholar
Yates, F. The analysis of experiments containing different crop rotations. Biometrics 10, 324–346 (1954).Article
Google Scholar
Zhao, J. et al. Dataset for evaluating global yield advantage and its drivers of legume-based rotations. Figshare, https://doi.org/10.6084/m9.figshare.20290923 (2022).Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article
Google Scholar
Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).Article
Google Scholar
Van Lissa, C. MetaForest: Exploring Heterogeneity in Meta-analysis Using Random Forests. (2017).Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–CO603 (2021).ADS
CAS
PubMed
Article
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH
Article
Google Scholar
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).PubMed
Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing v.4.0.3 (R Foundation for Statistical Computing, Vienna, Austria, 2021). More