More stories

  • in

    Free-living and particle-attached bacterial community composition, assembly processes and determinants across spatiotemporal scales in a macrotidal temperate estuary

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martiny, J. B. H. et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grossart, H. P. Ecological consequences of bacterioplankton lifestyles: Changes in concepts are needed. Environ. Microbiol. Rep. 2, 706–714 (2010).PubMed 
    Article 

    Google Scholar 
    Simon, M., Grossart, H. P., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211 (2002).Article 

    Google Scholar 
    Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implication for rapid particle dissolution. Nature 359, 139–141 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Grossart, H. P., Tang, K. W., Kiørboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol. Lett. 206, 194–200 (2007).Article 
    CAS 

    Google Scholar 
    Rieck, A., Herlemann, D. P. R., Jürgens, K. & Grossart, H. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karner, M. & Herndl, G. J. Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Mar. Biol. 113, 341–347 (1992).CAS 
    Article 

    Google Scholar 
    Lyons, M. M. & Dobbs, F. C. Differential utilization of carbon substrates by aggregate-associated and water-associated heterotrophic bacterial communities. Hydrobiologia 686, 181–193 (2012).CAS 
    Article 

    Google Scholar 
    Simon, H. M., Smith, M. W. & Herfort, L. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem. Front. Microbiol. 5, 466 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, M. W., Allen, L. Z., Allen, A. E., Herfort, L. & Simon, H. M. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front. Microbiol. 4, 120 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bižic-Ionescu, M. et al. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ. Microbiol. 17, 3500–3514 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hollibaugh, J. T., Wong, P. S. & Murrell, M. C. Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, California. Aquat. Microb. Ecol. 21, 103–114 (2000).Article 

    Google Scholar 
    Ortega-Retuerta, E., Joux, F., Jeffrey, W. H. & Ghiglione, J. F. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10, 2747–2759 (2013).ADS 
    Article 

    Google Scholar 
    Noble, P. A., Bidle, K. D. & Fletcher, M. Natural microbial community compositions compared by a back-propagating neural network and cluster analysis of 5S rRNA. Appl. Environ. Microbiol. 63, 1762–1770 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, J. & Ning, D. Stochastic community assembly: Does it matter in microbial ecology?. Microbiol. Mol. Biol. Rev. 81, e00002-17 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain, A., Balmonte, J. P., Singh, R., Bhaskar, P. V. & Krishnan, K. P. Spatially resolved assembly, connectivity and structure of particle-associated and free-living bacterial communities in a high Arctic fjord. FEMS Microbiol. Ecol. 97, 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Yao, Z. et al. Bacterial community assembly in a typical estuarine marsh. Appl. Environ. Microbiol. 85, e02602-18 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, J. et al. Assembly processes and source tracking of planktonic and benthic bacterial communities in the Yellow River estuary. Environ. Microbiol. 23, 2578–2591 (2021).PubMed 
    Article 

    Google Scholar 
    Balmonte, J. P. et al. Sharp contrasts between freshwater and marine microbial enzymatic capabilities, community composition, and DOM pools in a NE Greenland fjord. Limnol. Oceanogr. 65, 77–95 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Fortunato, C. S., Herfort, L., Zuber, P., Baptista, A. M. & Crump, B. C. Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J. 6, 554–563 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yawata, Y., Carrara, F., Menolascina, F. & Stocker, R. Constrained optimal foraging by marine bacterioplankton on particulate organic matter. Proc. Natl. Acad. Sci. USA 117, 25571–25579 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, Y. et al. The relationships between the free-living and particle-attached bacterial communities in response to elevated eutrophication. Front. Microbiol. 11, 423 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the grobal plankton interactome. Science (80-) 348, 1262073-1–10 (2015).Article 
    CAS 

    Google Scholar 
    Milici, M. et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front. Microbiol. 7, 649 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Cohesion: A method for quantifying the connectivity of microbial communities. ISME J. 11, 2426–2438 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).Article 

    Google Scholar 
    Labry, C. et al. High alkaline phosphatase activity in phosphate replete waters: The case of two macrotidal estuaries. Limnol. Oceanogr. 61, 1513–1529 (2016).ADS 
    Article 

    Google Scholar 
    Crump, B. C. et al. Quantity and quality of particulate organic matter controls bacterial production in the Columbia River estuary. Limnol. Oceanogr. 62, 2713–2731 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Canuel, E. A. & Hardison, A. K. Sources, ages, and alteration of organic matter in Estuaries. Ann. Rev. Mar. Sci. 8, 409–434 (2016).PubMed 
    Article 

    Google Scholar 
    He, W., Chen, M., Schlautman, M. A. & Hur, J. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review. Sci. Total Environ. 551–552, 415–428 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc. Natl. Acad. Sci. 108, 19473–19481 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Auffret, G. A. Dynamique sédimentaire de la marge continentale celtique-Evolution Cénozoïque-Spécificité du Pleistocène supérieur et de l’Holocène (Université de Bordeaux I, 1983).
    Google Scholar 
    Delmas, R. & Tréguer, P. Évolution saisonnière des nutriments dans un écosystème eutrophe d’Europe occidentale (la rade de Brest). Interactions marines et terrestres. Oceanol. Acta 6, 345–356 (1983).CAS 

    Google Scholar 
    Bassoullet, P. Etude de la dynamique des sédiments en suspension dans l’estuaire de l’Aulne (rade de Brest) (Université de Bretagne Occidentale, 1979).
    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen, E. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olesen, S. W., Duvallet, C. & Alm, E. J. dbOTU3: A new implementation of distribution-based OTU calling. PLoS ONE 12, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (2013).Whickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (2011).McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package (2022).Liu, C., Cui, Y., Li, X. & Yao, M. Microeco: An R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kandlikar, G. ranacapa: Utility Functions and ‘shiny’ App for Simple Environmental DNA Visualizations and Analyses (2021).Cao, Y. microbiomeMarker: microbiome biomarker analysis toolkit (2021).Tsirogiannis, C. & Brody, S. PhyloMeasures: Fast and Exact Algorithms for Computing Phylogenetic Biodiversity Measures (2017).McKnight, D. T. et al. Methods for normalizing microbiome data: An ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).Article 

    Google Scholar 
    Paradis, E. & Schliep, K. Ape 50: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2019).Article 
    PubMed 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Third English Edition) (Elsevier, 2012).MATH 

    Google Scholar 
    Stegen, J. C., Lin, X., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6, 370 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naimi, B. usdm: Uncertainty Analysis for Species Distribution Models (2017).Wu, W., Xu, Z., Dai, M., Gan, J. & Liu, H. Homogeneous selection shapes free-living and particle-associated bacterial communities in subtropical coastal waters. Divers. Distrib. 00, 1–14 (2020).
    Google Scholar 
    Wang, Y. et al. Patterns and processes of free-living and particle-associated bacterioplankton and archaeaplankton communities in a subtropical river-bay system in South China. Limnol. Oceanogr. 65, 161–179 (2020).
    Google Scholar 
    Zhou, L. et al. Environmental filtering dominates bacterioplankton community assembly in a highly urbanized estuarine ecosystem. Environ. Res. 196, 110934 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, E. B. & Stegen, J. C. Dispersal-based microbial community assembly decreases biogeochemical function. Processes 5, 65 (2017).Article 

    Google Scholar 
    Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science (80-) 348, 1261359 (2015).Article 
    CAS 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of verrucomicrobia. PLoS ONE 7, e35314 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reintjes, G., Arnosti, C., Fuchs, B. M. & Amann, R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 11, 1640–1650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, J., Meng, Z., Liu, X. & Zhang, X. H. Microbial assembly, interaction, functioning, activity and diversification: a review derived from community compositional data. Mar. Life Sci. Technol. 1, 112–128 (2019).ADS 
    Article 

    Google Scholar 
    Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1722–1734 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed 
    Article 

    Google Scholar 
    Liénart, C. et al. Dynamics of particulate organic matter composition in coastal systems: A spatio-temporal study at multi-systems scale. Prog. Oceanogr. 156, 221–239 (2017).Article 

    Google Scholar 
    Fraisse, S., Bormans, M. & Lagadeuc, Y. Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquat. Ecol. 47, 315–327 (2013).Article 

    Google Scholar 
    Treguer, P. & Queguiner, B. Seasonal variations in conservative and nonconservative mixing of nitrogen compounds in a West European macrotidal estuary. Oceanol. Acta 12, 371–380 (1989).CAS 

    Google Scholar 
    Grossart, H. P. & Tang, K. W. Communicative & integrative biology. Commun. Integr. Biol. 3, 491–494 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    We must get a grip on forest science — before it’s too late

    Climate models need to capture a full spectrum of data from forests such as the Brazilian Amazon.Credit: Florence Goisnard/AFP/Getty

    Humanity’s understanding of how forests are responding to climate change is disconcertingly fragile. Take carbon fertilization, for example — the phenomenon by which plants absorb more carbon dioxide as its concentration in the atmosphere increases. This is one of the principal mechanisms by which nature has so far saved us from the worst of climate change, but there’s little understanding of its future trajectory. In fact, researchers don’t fully understand how climate change interacts with a multitude of forest processes. Complex, unsolved questions include how climate warming affects forest health; how it affects the performance of forests as a carbon sink; and whether it alters the ecosystem services that forests provide. Forests are our life-support system, and we should be more serious about taking their pulse.Six papers in this week’s Nature provide important insights into those questions. They also underline some of the challenges that must be overcome if we are to fully understand forests’ potential in the fight against climate change. These challenges are not only in the science itself, but also relate to how forest scientists collaborate, how they are funded (especially where data collection is concerned) and how they are trained.Forest science is an amalgam of disciplines. Ecologists and plant scientists measure tree growth, soil nutrients and other parameters in thousands of forest plots around the world. Physical scientists monitor factors such as forest height and above-ground forest biomass using remote-sensing data from drones or satellites. Experimental scientists investigate how forests might behave in a warming world by artificially altering factors such as temperature or carbon dioxide levels in experimental plots. Some of the data they generate are absorbed by yet another community: the modellers, who have created dynamic global vegetation models (DGVMs). These simulate how carbon and water cycles change with climate and, in turn, inform broader earth-system and climate models of the type that feed into policymaking.Different DGVMs make different predictions about how long forests will continue to absorb anthropogenic CO2. One reason for these differences is that models are sensitive to assumptions made about the processes in forests. There are many influences — including temperature, moisture, fire and nutrients — that are generally studied in isolation. Yet they interact with each other.Not all DGVMs account for the dampening effect that a lack of soil phosphorus can have on carbon fertilization, for example. Much of central and eastern Amazonia is poor in phosphorus, and research has shown that introducing phosphorus limitation into DGVMs can cut the carbon-fertilization effect1. This week, Hellen Fernanda Viana Cunha at the National Institute for Amazonian Research in Manaus, Brazil, and her colleagues report2 a powerful experimental demonstration of how the soil’s poor phosphorus content limits carbon absorption in an old-growth Amazonian forest.Models simulating the northward spread of boreal forest as temperatures rise are also missing key drivers3, according to Roman Dial at Alaska Pacific University in Anchorage and his colleagues. They report today that a white-spruce population has migrated surprisingly far north into the Arctic tundra. To explain this, it is necessary to take into account winter winds (which facilitate long-distance dispersal) along with the availability of deep snow and soil nutrients (which promote plant growth).Models are often based on a small number of ‘functional tree types’ — for example, ‘evergreen broadleaf’ or ‘evergreen needle leaf’. These are chosen as a proxy for the behaviour of the planet’s more than 60,000 known tree species. Yet ecologists are discovering that the biology of individual species matters when it comes to a tree’s response to climate change.David Bauman at the Environmental Change Institute at the University of Oxford, UK, and his co-workers reported in May that tree mortality on 24 moist tropical plots in northern Australia has doubled in the past 35 years (and life expectancy has halved), apparently owing to the increasing dryness of the air4. But that was an average of the 81 dominant tree species: mortality rates varied substantially between species, a variation that seemed to be related to the density of their wood.Peter Reich at the Institute for Global Change Biology at the University of Michigan in Ann Arbor and his colleagues now report that modest alterations in temperature and rainfall led to varying rates of growth and survival5 for different species in southern boreal-forest trees. The species that prospered were rare.Failure to examine multiple factors simultaneously means that scientists are making findings that challenge the assumptions in models. Spring is coming earlier for temperate forests and most models assume that, by prolonging the growing season, this increases woody-stem biomass. However, observational work carried out in temperate deciduous forests by Kristina Anderson-Teixeira at the Smithsonian Conservation Biology Institute in Front Royal, Virginia, and her colleagues found no sign of this happening6.Modellers are all too aware of the need to incorporate more complexity into their models, and of the potential that increasing amounts of computing power have to assist them in this endeavour. But they need more data.Continuity problemTo obtain comprehensive, valuable data for the models, continuous, long-term observations need to be made, and that depends on the availability of long-term funding. Achieving such continuity is a problem for both remote-sensing and ground-based operations. The former can cost hundreds of millions of dollars, but the value of its long-term data sets is immense, as demonstrated by a team led by Giovanni Forzieri at the University of Florence in Italy. The authors used 20 years of satellite data to show that nearly one-quarter of the world’s intact forests have already reached their critical threshold for abrupt decline7. But even field-based data collection, which costs a pittance by comparison, struggles to achieve financial security.Important ground-based operations include the Forest Global Earth Observatory (ForestGEO), part of the Smithsonian Tropical Research Institute, which is headquartered in Washington DC. This monitors 7.5 million individual trees in plots around the world. The amount of work that goes into this monitoring is formidable. For example, at present, ForestGEO is conducting the eighth five-yearly census of a plot in Peninsular Malaysia. This involves determining the species for each of the 350,000 trees (there are some 800 species growing there) and measuring the circumference of each trunk. It will take 16 skilled people a year to measure all the trees. Delays in the provision of funding to ForestGEO have held up similar censuses at plots in countries including Papua New Guinea, Vietnam, Brunei and Ecuador.

    A ForestGEO researcher making tree measurements at a forest plot in Barro Colorado Island, Panama.Credit: Jorge Aleman, STRI

    The future of the plots in North Queensland, which supplied Bauman with a rare 49 years’ worth of continuous data, is uncertain. They have been monitored since the mid-1970s by the Australian public research-funding agency CSIRO — initially every two years, then, more recently, every five years. In 2019, monitoring of the plots was switched to every 50 years because of funding shortages at CSIRO, leaving scientists searching for new sources of funding.Without continuity of funding, organizations such as ForestGEO can’t equip researchers with the requisite skills or collect data over periods longer than an individual’s time in a specific post or a funder’s cycle. “We have trained people and then lost them due to job insecurity,” says Stuart Davies, who leads ForestGEO.Different groups of forest researchers are trying to address these problems. ForestGEO is coordinating the Alliance for Tropical Forest Science in an effort to make it easier to share data, and to bolster the morale and careers of the skilled technicians and scientists — many of whom live in low- and middle-income countries — who do the bulk of the data collection.But we also need more-imaginative funding mechanisms that lift long-term observational plots out of three- to five-year funding cycles. Space agencies that fund remote-sensing satellites could collaborate with other funding agencies, for example, so that earth-observation missions include a fully funded component for ground-based data collection — which is, after all, crucial for calibrating their results. Journals, too, could do more to value and incentivise the production of long-term data sets.And there is a need for more interdisciplinarity. The US Department of Energy is funding a project called NGEE–Tropics (Next-Generation Ecosystem Experiments–Tropics) in which modellers will work with empirical researchers, both observational and experimental, who study tropical forests to create a full, process-rich model of such forests. This is encouraging, and the idea could be pushed further. What is needed is an initiative that pulls the disciplines together towards a goal of building a better understanding of forest processes. Among other things, such an initiative would encourage researchers in different disciplines to take each other’s data needs into account when planning their projects.For this to work, we need to remember that the edifice of forest science relies on the long-term data that scientists wring from forests over decades. Our chances of overcoming climate change are small, but they will diminish further if we forget the basics of monitoring our home planet. More

  • in

    Disentangling influence over group speed and direction reveals multiple patterns of influence in moving meerkat groups

    Strandburg-Peshkin, A., Papageorgiou, D., Crofoot, M. C. & Farine, D. R. Inferring influence and leadership in moving animal groups. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1746), 20170006 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Garland, J., Berdahl, A. M., Sun, J. & Bollt, E. M. Anatomy of leadership in collective behaviour. Chaos 28(7), 075308 (2018).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    King, A. J., Douglas, C. M. S., Huchard, E., Isaac, N. J. B. & Cowlishaw, G. Dominance and affiliation mediate despotism in a social primate. Curr. Biol. 18(23), 1833–1838 (2008).CAS 
    PubMed 

    Google Scholar 
    Lewis, J. S., Wartzok, D. & Heithaus, M. R. Highly dynamic fission–fusion species can exhibit leadership when traveling. Behav. Ecol. Sociobiol. 65(5), 1061–1069 (2011).
    Google Scholar 
    Van Belle, S., Estrada, A. & Garber, P. A. Collective group movement and leadership in wild black howler monkeys (Alouatta pigra). Behav. Ecol. Sociobiol. 67(1), 31–41 (2013).
    Google Scholar 
    Smith, J. E. et al. Collective movements, leadership and consensus costs at reunions in spotted hyaenas. Anim. Behav. 105, 187–200 (2015).
    Google Scholar 
    Kerth, G., Ebert, C. & Schmidtke, C. Group decision making in fission–fusion societies: Evidence from two-field experiments in Bechstein’s bats. Proc. R. Soc. B Biol. Sci. 273(1602), 2785–2790 (2006).
    Google Scholar 
    Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464(7290), 890–893 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Giuggioli, L., McKetterick, T. J. & Holderied, M. Delayed response and biosonar perception explain movement coordination in trawling bats. PLoS Comput. Biol. 11(3), e1004089 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pettit, B., Ákos, Z., Vicsek, T. & Biro, D. Speed determines leadership and leadership determines learning during pigeon flocking. Curr. Biol. 25(23), 3132–3137 (2015).CAS 
    PubMed 

    Google Scholar 
    Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. Group decisions. Shared decision-making drives collective movement in wild baboons. Science 348(6241), 1358–1361 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tokuyama, N. & Furuichi, T. Leadership of old females in collective departures in wild bonobos (Pan paniscus) at Wamba. Behav. Ecol. Sociobiol. 71(3), 55 (2017).
    Google Scholar 
    Montanari, D., O’Hearn, W. J., Hambuckers, J., Fischer, J. & Zinner, D. Coordination during group departures and progressions in the tolerant multi-level society of wild Guinea baboons (Papio papio). Sci. Rep. 11(1), 21938 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Papageorgiou, D. & Farine, D. R. Shared decision-making allows subordinates to lead when dominants monopolize resources. Sci. Adv. 6(48), 5881 (2020).ADS 

    Google Scholar 
    Bousquet, C. A. H., Sumpter, D. J. T. & Manser, M. B. Moving calls: A vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. Lond. B Biol. Sci. 278(1711), 1482–1488 (2011).
    Google Scholar 
    Stahl, J., Tolsma, P. H., Loonen, M. J. J. E. & Drent, R. H. Subordinates explore but dominants profit: Resource competition in high Arctic barnacle goose flocks. Anim. Behav. 61(1), 257–264 (2001).PubMed 

    Google Scholar 
    Boinski, S. Social manipulation within and between troops mediate primate group movement. In On the Move: How and Why Animals Travel in Groups (ed. Boinski, S.) (University of Chicago Press, 2000).
    Google Scholar 
    Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20(8), 449–456 (2005).PubMed 

    Google Scholar 
    Conradt, L. & Roper, T. J. Conflicts of interest and the evolution of decision sharing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1518), 807–819 (2009).PubMed 

    Google Scholar 
    Byrne, R. W. How monkeys find their way: Leadership, coordination, and cognitive maps of African baboons. In On the Move: How and Why Animals Travel in Groups (eds Boinski, S. & Garber, P. A.) (University of Chicago Press, 2000).
    Google Scholar 
    Conradt, L. & Roper, T. J. Deciding group movements: Where and when to go. Behav. Proc. 84, 675–677 (2010).
    Google Scholar 
    Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. PNAS 108(46), 18726–18731 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katz, Y., Tunstrøm, K., Ioannou, C. C., Huepe, C. & Couzin, I. D. Inferring the structure and dynamics of interactions in schooling fish. PNAS 108(46), 18720–18725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27(18), 2862–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doolan, S. P. & Macdonald, D. W. Breeding and juvenile survival among slender-tailed meerkats (Suricatu suricatta) in the south-western Kalahari: Ecological and social influences. J. Zool. 242(2), 309–327 (1997).
    Google Scholar 
    Clutton-Brock, T. H. & Manser, M. B. Meerkats: Cooperative breeding in the Kalahari. In Cooperative Breeding in Vertebrates (eds Koenig, W. D. & Dickinson, J. L.) (Cambridge University Press, 2016).
    Google Scholar 
    Doolan, S. & Macdonald, D. Diet and foraging behaviour of group living meerkats, Suricata suricatta, in the southern Kalahari. J. Zool. 239, 697–716 (1996).
    Google Scholar 
    Engesser, S. Function of ‘Close’ Calls in a Group Foraging Carnivore, Suricata suricatta (2011).Kranstauber, B., Gall, G. E. C., Vink, T., Clutton-Brock, T. & Manser, M. B. Long-term movements and home-range changes: Rapid territory shifts in meerkats. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13129 (2019).Article 
    PubMed 

    Google Scholar 
    Manser, M. B. et al. Vocal Complexity in Meerkats and Other Mongoose Species Vol. 46, 281 (Elsevier, 2014).
    Google Scholar 
    Gall, G. E. C. & Manser, M. B. Group cohesion in foraging meerkats: Follow the moving ‘vocal hot spot’. R. Soc. Open Sci. 4, 170004 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engesser, S. & Manser, M. B. Collective close calling mediates group cohesion in foraging meerkats via spatially determined differences in call rates. Anim. Behav. 185, 73–82 (2022).
    Google Scholar 
    Gall, G. E. C., Strandburg-Peshkin, A., Clutton-brock, T. & Manser, M. B. As dusk falls: Collective decisions about the return to sleeping sites in meerkats. Anim. Behav. 132, 91–99 (2017).
    Google Scholar 
    Townsend, S. W., Rasmussen, M., Clutton-Brock, T. & Manser, M. B. Flexible alarm calling in meerkats: The role of the social environment and predation urgency. Behav. Ecol. 23(6), 1360–1364 (2012).
    Google Scholar 
    Clutton-Brock, T. H. et al. Contributions to cooperative rearing in meerkats. Anim. Behav. 61(4), 705–710 (2001).
    Google Scholar 
    Griffin, A. S. et al. A genetic analysis of breeding success in the cooperative meerkat (Suricata suricatta). Behav. Ecol. 14(4), 472–480 (2003).
    Google Scholar 
    Thavarajah, N. K., Fenkes, M. & Clutton-Brock, T. H. The determinants of dominance relationships among subordinate females in the cooperatively breeding meerkat. Behaviour 151(1), 89–102 (2014).
    Google Scholar 
    Young, A. J. et al. Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proc. Natl. Acad. Sci. 103(32), 12005–12010 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hodge, S. J., Manica, A., Flower, T. P. & Clutton-Brock, T. H. Determinants of reproductive success in dominant female meerkats. J. Anim. Ecol. 77(1), 92–102 (2008).PubMed 

    Google Scholar 
    Bell, M. B. V. et al. Suppressing subordinate reproduction provides benefits to dominants in cooperative societies of meerkats. Nat. Commun. 22(5), 4499 (2014).ADS 

    Google Scholar 
    Bousquet, C. A. H. & Manser, M. B. Resolution of experimentally induced symmetrical conflicts of interest in meerkats. Anim. Behav. 81(6), 1101–1107 (2011).
    Google Scholar 
    Strandburg-Peshkin, A., Clutton-Brock, T. & Manser, M. B. Burrow usage patterns and decision-making in meerkat groups. Behav. Ecol. 31(2), 292–302 (2020).
    Google Scholar 
    Turbé, A. Foraging Decisions and Space Use in a Social Mammal, The Meerkat—Chapter 6: Leadership pby Lactating Female in Meerkats (University of Cambridge, 2006).
    Google Scholar 
    Barelli, C., Reichard, U., Boesch, C. & Heistermann, M. Female white-handed gibbons (Hylobates lar) lead group movements and have priority of access to food resources. Behaviour 145(7), 965–981 (2008).
    Google Scholar 
    Clutton-Brock, T. H. et al. Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. Afr. J. Ecol. 37(1), 69–80 (1999).
    Google Scholar 
    Kutsukake, N. & Clutton-Brock, T. H. Do meerkats engage in conflict management following aggression? Reconciliation, submission and avoidance. Anim. Behav. 75(4), 1441–1453 (2008).
    Google Scholar 
    Spong, G. F., Hodge, S. J., Young, A. J. & Clutton-Brock, T. H. Factors affecting the reproductive success of dominant male meerkats: Reproductive success in male meerkats. Mol. Ecol. 17(9), 2287–2299 (2008).PubMed 

    Google Scholar 
    Russell, A. F., Carlson, A. A., McIlrath, G. M., Jordan, N. R. & Clutton-Brock, T. Adaptive size modification in dominant female meerkats. Evolution 58(7), 1600–1607 (2004).PubMed 

    Google Scholar 
    R. Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2008).Pinheiro, J. & Bates, D. M. Mixed-Effects Models in S and S-PLUS (Springer-Verlag, 2000).MATH 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 50(3), 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. S., Patil, I. & Lüdecke, D. Methods and algorithms for correlation analysis in R. J. Open Source Softw. 5(51), 2306 (2020).ADS 

    Google Scholar 
    Farine, D. R., Strandburg-Peshkin, A., Couzin, I. D., Berger-Wolf, T. Y. & Crofoot, M. C. Individual variation in local interaction rules can explain emergent patterns of spatial organization in wild baboons. Proc. R. Soc. B 284(1853), 20162243 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Holekamp, K. E., Boydston, E. E. & Smale, L. Group tarvel in social carnivores. In On the Move (eds Boinski, S. & Garber, P. A.) (University of Chicago Press, 2000).
    Google Scholar 
    Fischhoff, I. R. et al. Social relationships and reproductive state influence leadership roles in movements of plains zebra, Equus burchellii. Anim. Behav. 73(5), 825–831 (2007).
    Google Scholar 
    Furrer, R. D., Kunc, H. P. & Manser, M. B. Variable initiators of group departure in a cooperative breeder: The influence of sex, age, state and foraging success. Anim. Behav. 84(1), 205–212 (2012).
    Google Scholar 
    Clutton-Brock, T. H. et al. Costs of cooperative behaviour in suricates (Suricata suricatta). Proc. R. Soc. B Biol. Sci. 265(1392), 185–190 (1998).CAS 

    Google Scholar 
    MacLeod, K. J. & Clutton-Brock, T. H. Low costs of allonursing in meerkats: Mitigation by behavioral change? Behav. Ecol. 26(3), 697–705 (2015).
    Google Scholar 
    Boinski, S. The coordination of spatial position: A field study of the vocal behaviour of adult female squirrel monkeys. Anim. Behav. 41(1), 89–102 (1991).
    Google Scholar 
    Bode, N. W. F., Franks, D. W. & Wood, A. J. Leading from the front? Social networks in navigating groups. Behav. Ecol. Sociobiol. 66(6), 835–843 (2012).
    Google Scholar 
    Reber, S. A., Townsend, S. W. & Manser, M. B. Social monitoring via close calls in meerkats. Proc. R. Soc. B Biol. Sci. 280(1765), 20131013 (2013).
    Google Scholar 
    Bracken, A. M., Christensen, C., O’Riain, M. J., Fürtbauer, I. & King, A. J. Flexible group cohesion and coordination, but robust leader–follower roles, in a wild social primate using urban space. Proc. R. Soc. B Biol. Sci. 289(1967), 20212141 (2022).
    Google Scholar  More

  • in

    A paradigm shift in the quantification of wave energy attenuation due to saltmarshes based on their standing biomass

    Experimental set-upFour vegetation species were selected: Spartina maritima, Salicornia europaea, Halimione portulacoides and Juncus maritimus. These species were chosen for a broad representation of the biomechanical properties and morphological characteristics of saltmarsh species42,43. Plants were collected in Cantabrian estuaries in late summer and early autumn (from early September to late October) during low tide (please refer to the “Methods” section). A total of 105 boxes were collected, of which 94 boxes were used to build a 9.05 m long and 0.58 m wide meadow in a flume (Fig. 1). Five boxes were used to directly estimate the meadow standing biomass in the field (Sample 1 in Table 1), leaving 6 extra boxes for possible contingencies.Figure 1(A) Shows a sketch of the experimental flume, where the vegetation box distribution in the 100% and 50% density cases is displayed in the two upper panels and a lateral view in the bottom panel. The green boxes indicate the vegetated area in each case. Free surface sensors are displayed by blue lines and numbers. (B) Shows the four species within the flume. From left to right: view of the Spartina sp. frontal edge, aerial view of Salicornia sp., frontal view of Juncus sp. and top view of the Halimione sp. rear edge.Full size imageTable 1 Standing biomass (g/m2) and plant height (m) for the four species.Full size tableExperiments were conducted in a flume 20.71 m long and 0.58 m wide at the University of Cantabria. The flume is equipped with a piston wave maker at its left end and a dissipation beach at the rear end. The 94 vegetation boxes used to create a meadow were introduced into the flume following the pattern shown in panel A of Fig. 1 to minimize any edge effects along the edges of the boxes. To ensure a smooth transition from the bottom of the channel to the vegetated area, two false bottoms were constructed with wood, and a thin sediment layer was glued to the wood to mimic the field roughness.Three meadow densities per species were considered. The meadow density directly determined in the field was chosen under the 100% density scenario. To consider a second meadow density, and therefore a second standing biomass value, plants were removed from half of the boxes following the pattern shown in Panel A of Fig. 1 to prevent creating preferential flow channels along the meadow. This case was considered the 50% density scenario. The study of these two biomass scenarios for each vegetation species is carried out with the aim of covering a wide range of standing biomass values, including low values that may be more representative of meadow winter conditions, thus facilitating the applicability of obtained results. Finally, a second cut was made, in which all plants were removed, resulting in the final scenario with a zero density. Plants were cut from above to avoid any damage along the meadow surface (as shown in Supplementary Fig. S2). In each cut, plants in 5 boxes along the leading edge and in 5 boxes at the center of the meadow were collected to quantify the standing biomass (Samples 2 and 3 for the first cut and Sample 4 and 5 for the second cut in Table 1). Therefore, the standing biomass could be monitored throughout the entire duration of the experiments, from the field until the second cut, when all plants were removed.Once located in the flume, the meadow was evaluated under regular and random wave conditions considering three water depths, i.e., h = 0.20, 0.30 and 0.40 m. Regular waves were generated using Stokes II-, III- and V-order and Cnoidal theories when applicable. Wave heights ranging from 0.05 to 0.15 m and wave periods varying between 1.5 and 4 s were considered. Random waves were generated using a Jonswap spectrum with a peak enhancement factor of 3.3, a significant wave height varying between 0.05 and 0.15 m and a peak wave period ranging from 1.8 to 4.8 s (please refer to Supplementary Table S1). Additionally, all wave conditions were considered under the zero-density scenario with bare soil for each species. The wave height evolution along the flume was recorded using 15 capacitive free surface gauges, as shown in Fig. 1 (please refer to Supplementary Table S2 for detailed coordinates).Meadow characteristics analysisThe characteristics of the vegetation meadows were analyzed by measuring the standing biomass throughout the full duration of the experiments and by measuring the individual plant height (please refer to the “Methods” section). The mean standing biomass value obtained for each species was considered the value associated with the 100% density scenario. Then, half of the standing biomass value was considered under the 50% density scenarios since half of the boxes was randomly cut, and the standing biomass values obtained after the second cut agreed with those obtained after the first cut and in the field, as indicated in Table 1. The plant height for each species was also measured (please refer to the “Methods” section), and the resultant mean value detailed in Table 1 was considered.Wave height attenuation analysisWave height attenuation analysis was performed following previous studies reported in the literature assessing the capacity by fitting a damping coefficient6,7,35,44. The18 formulation was used for regular waves, and that of19 was used for random waves (please refer to the “Methods” section). Cases with a zero density were also considered in this analysis to quantify the influence of bare soil friction by determining the corresponding damping coefficient, ({beta }_{B}). Consequently, β was obtained in the 100% and 50% density cases and the cases without vegetation (please refer to Supplementary Tables S3, S4 and S5 to find the obtained coefficients for all cases). This allowed the determination of a new damping coefficient isolating the effect of the standing biomass, ({beta }_{SB}), following24 (please refer to the “Methods” section). Figure 2 shows an example of wave height attenuation analysis for the four species and the different densities under wave condition JS07 (Supplementary Table S1).Figure 2Analysis of wave attenuation under wave condition JS07 for Spartina sp. 100% (S100), 50% (S050) and zero density (S000); Salicornia sp. 100% (L100), 50% (L050) and zero density (L000); Juncus sp. 100% (J100), 50% (J050) and zero density (J000); and Halimione sp. 100% (H100), 50% (H050) and zero density (H000). The damping coefficients for the bare soil cases, ({beta }_{B}), are displayed in blue. The damping coefficients for the 100% and 50% density cases, (beta ), are displayed in dark and light green, respectively. The damping coefficients obtained after subtracting the dissipation obtained in the bare soil cases, ({beta }_{SB}), are displayed in black and dark gray. 95% confidence interval is shown in brackets and correlation coefficient (({rho }^{2})) for each fit is also displayed.Full size imageThe damping coefficients for the bare soil cases shown in Fig. 2, ({beta }_{B}), are consistent with the soil properties observed in the field. Spartina sp. was collected in a muddy area, whereas the other three species were collected in areas with coarser sediments and exhibited a mixture of sand and mud. For all species, wave dissipation was significantly higher under the 100% density scenario than that under the 50% density cases, as expected, highlighting the importance of the standing biomass in wave energy dissipation. It was also observed that bottom friction-induced dissipation plays a more important role for the pioneer species, i.e., Spartina sp. and Salicornia sp., than for the upper marsh species, i.e., Juncus sp. and Halimione sp., which can dissipate wave energy to a greater extent.The importance of wave parameters in the resultant wave attenuation has been highlighted by several works in the literature. Therefore, not only vegetation characteristics but also incident wave conditions determine the coastal protection capacity. Figure 3 shows a comparison of the obtained wave height attenuation due to Halimione sp. under the different wave conditions.Figure 3Analysis of wave attenuation under the different irregular wave conditions for the Halimione sp. 100% (H100) and zero-density (H000) cases. The top panel shows two cases with different h but equal Hs and Tp values (JS01 and JS08), the middle panel shows two cases with different Tp but equal h and Hs values (JS10 and JS11), and the bottom panel shows two cases with different Hs but equal h and Tp values (JS09 and JS12). 95% confidence interval is shown in brackets and correlation coefficient (({rho }^{2})) for each fit is also displayed.Full size imageThe top panel in Fig. 3 shows two cases where Hs and Tp are equal, i.e., JS01 and JS08 in Supplementary Table S1, and two water depths are considered, namely, h = 0.2 and 0.3 m. As can be observed, wave damping is higher for the smallest water depth, where most of the water column is covered by vegetation since the mean vegetation height for Halimione sp. reaches 0.187 m (Table 1). The importance of the water depth with respect to the plant height in terms of wave height attenuation has been reported by several authors44,45,46 who have highlighted this aspect based on the submergence ratio, i.e., the plant height divided by the water depth, revealing higher attenuation at lower submergence ratios on a consistent basis. Bottom friction attenuation is also higher for the smallest water depth, as expected.The middle panel of Fig. 3 shows two cases with equal h and Hs but different Tp values, namely, JS10 and JS11 in Supplementary Table S1. Wave height attenuation is higher for the shortest wave period, as well as the damping produced by bottom friction. This is in line with previous studies, such as35 and44, who conducted experiments involving simulated and real saltmarshes, respectively. Finally, the bottom panel of Fig. 3 shows two cases with different Hs but equal h and Tp values, i.e., JS09 and JS12 in Supplementary Table S1. As widely reported in the literature, e.g.,7,47,48, wave height attenuation increases with the wave height, as shown in the bottom panel of Fig. 3. Bottom friction also increases with the wave height, as expected.A set of damping coefficients was obtained via the 288 tests conducted in the laboratory, 144 tests involving regular waves and 144 tests involving random waves. Additionally, in all cases, the damping coefficient considering the isolated effect of the standing biomass, ({beta }_{SB}), was determined. The relationship of these damping coefficients to the measured standing biomass is explored in the next section with the aim of establishing a new relationship to estimate the wave damping effect of the different saltmarsh species based on the standing biomass, without the need for data fitting.Wave damping coefficient as a function of the standing biomassThe mean standing biomass obtained for the different species, Table 1, is considered here to analyze the relationship with the wave damping coefficients obtained by fitting18 formulation to wave heights measured along the meadow for regular waves and19 formulation for random waves. The plant height was highly variable among the different species (Table 1), ranging from 0.170 m for Spartina sp. to 0.714 m for Juncus sp. Then, some species were submerged at all tested water depths, while other species remained above water in all tests. In the latter cases, there remained a portion of each plant above the water level, thus not contributing to wave attenuation. To consider the actual interaction between the standing biomass and flow conditions and assuming a uniform vertical distribution, the effective standing biomass, (ESB), can be defined as follows:$$ESB=DryWeight*frac{minleft{{h}_{v},hright}}{{h}_{v}}$$
    (1)
    where (DryWeight) denotes the measured dry weight for each species (g/m2), ({h}_{v}) is the mean plant height and (h) is the water depth. Additionally, in the submerged cases, the same (ESB) value will impact flow differently depending on the submergence ratio, (SR), as defined in Eq. (2). To consider this effect, the standing biomass ratio, (SBR) in Eq. (3), can be defined as follows:$$SR=frac{{h}_{v}}{h}, ;;where ;; SR=1 ;;for ;;{h}_{v} >h$$
    (2)
    $$SBR=ESB*SR$$
    (3)
    Figure 4 shows the relationship between (SBR) and the measured wave damping coefficient, (beta ). The results for regular and random waves are displayed for each water depth, and a linear fit was found under each condition.Figure 4Wave damping coefficient, (beta ), as a function of the standing biomass ratio, (SBR), under all regular (left panels) and random (right panels) wave conditions. Each panel shows the wave trains assessed at each water depth, h = 0.20, 0.30 and 0.40 m. The results for the 100% density case are marked with circles and those for the 50% density case are marked with squares. The linear fitting results obtained under each wave condition are also displayed.Full size imageUnder each wave condition, a linear fitting relationship between (beta ) and (SBR) was obtained for the eight (SBR) values, as shown in Fig. 4. For similar (SBR) values, the highest (beta ) values were consistently obtained at the smallest water depth, highlighting the notable influence of this parameter on the obtained wave attenuation. Following previous works, such as those of24 and25, who considered the vegetation submerged solid volume fraction to estimate the resulting wave attenuation and established a common relationship for different water depths, the volumetric standing biomass, (VSB), can be defined as follows:$$VSB= SBR*frac{1}{h}$$
    (4)
    (VSB) is expressed in units of g/m3, which is the weight per unit volume. Exploring the relationship of (beta ) with this new parameter, it was found that the results for the three water depths could be fitted with a single linear relationship, as shown in Fig. 5. However, despite the linear trend observed in Fig. 5, notable data scatter was observed for each (VSB) value. Each of these groups corresponds to a certain water depth and (SBR) value, which were determined under different wave heights and wave periods.Figure 5Wave damping coefficient, (beta ), as a function of the volumetric standing biomass, (VSB), under all regular (top panel) and random (bottom panel) wave conditions. The obtained linear fitting results are displayed in both panels. 95% confidence interval is shown in brackets and correlation coefficient (({rho }^{2})) for each fit is also displayed.Full size imageFinally, to account for the characteristics of the incident wave conditions, including the wave height and period, two nondimensional parameters were considered. The first parameter, considering the wave height, is the relative wave height, defined as the ratio of the incident wave height to the water depth, (H/h). Previous studies have highlighted the importance of this parameter in the resultant wave attenuation (e.g.24,44). Under random wave conditions, the considered wave height is ({H}_{rms}), according to wave attenuation analysis. The second parameter, considering the effect of the different wave periods and the importance of the number of wave lengths inside the vegetation length49, is the relative meadow length, defined as the ratio of the meadow length to the wave length, ({L}_{v}/L). To ensure consistency with the above wave attenuation analysis, in which the wave damping amount per unit length was obtained, the unit meadow length was considered here. Thus, the hydraulic standing biomass, (HSB), can be defined as:$$HSB=VSB*frac{H}{h}*frac{{L}_{v}}{L}$$
    (5)
    Figure 6 shows the relationship obtained between (beta ) and this new variable under all regular and random conditions following the linear fitting relationship of (beta =A*HSB+B), where (A) and (B) are fitting constants with units of (g/m2)−1 and m−1, respectively.Figure 6Wave damping coefficient, (beta ), as a function of the hydraulic standing biomass, (HSB), under all regular (top panel) and random (bottom panel) wave conditions. Both panels show linear fitting results obtained without considering the saturation point, indicated by the black solid line, and those obtained considering the saturation point, indicated by the gray solid line. The black dashed line indicates the saturation point. 95% confidence interval is shown in brackets and correlation coefficient (({rho }^{2})) for each fit is also displayed.Full size imageThe linear fitting results obtained between (beta ) and (HSB) under regular and random wave conditions are shown in Fig. 6 as solid black lines and expressed as Eqs. (6) and (7), respectively, where values between brackets are the 95% confidence interval for each coefficient.$$beta =9.206cdot {10}^{-4} left(9.006cdot {10}^{-5}right)*HSB+0.103 (0.021)$$
    (6)
    $$beta =1.192 cdot {10}^{-3} left(9.124 cdot {10}^{-5}right)*HSB+0.071 (0.016)$$
    (7)
    The inclusion of incident wave condition characteristics reduces the resulting data scatter, highlighting the role of the wave height and period in the obtained wave attenuation, as described in the previous section. An interesting aspect observed in Fig. 6 is that the four cases with the highest wave damping coefficients yielded similar values for the different (HSB) values. Under regular wave conditions, the mean (beta ) value for these four cases is 0.76, and under random wave conditions, the value reaches 0.68. This may indicate that the damping coefficient has reached its maximum value and no longer increases with increasing (HSB) value. To analyze this aspect in more detail, the wave height evolution measured for the four tests in which (beta ) reaches its maximum value are plotted (as shown in Supplementary Fig. S3). These tests correspond to Halimione sp. with a density of 100% and the shallowest water depth, h = 0.20 m. This species achieved the highest standing biomass value among the species considered in these experiments, and for h = 0.20 m, almost the entire water column was covered by vegetation. For these tests, a notable wave height attenuation was observed, where the wave height strongly decayed along the first 5 m of vegetation, and the wave height entirely dissipated along the last 4 m (as shown in Supplementary Fig. S3). The wave damping equation cannot suitably reproduce the strong wave decay within this few meters. Then, an almost constant wave damping coefficient value is reached under the different considered wave conditions, and a saturation regime is observed, in which the wave height beyond the meadow can be assumed to be negligible. To consider this phenomenon, a two-section fitting relationship is proposed, as shown in Fig. 6. The value of the saturation damping coefficient, chosen as the mean value of the four cases analyzed, is plotted as a dashed gray line, and a linear fit is obtained for the remaining data. The two-section fitting relationship is expressed in Eqs. (8) and (9) for both regular and random waves, respectively, where values between brackets are the 95% confidence interval for each coefficient.$$beta =left{begin{array}{ll}1.020 cdot {10}^{-3}left(1.112 cdot {10}^{-4}right)*HSB+0.088 ; (0.020) \ 0.758; (0.027)end{array}right. begin{array}{l} ;;0 < HSB < 659\ ;; HSB > 659end{array}$$
    (8)
    $$beta =left{begin{array}{l}1.310cdot {10}^{-3}left(1.232cdot {10}^{-4}right)*HSB+0.059; (0.017) \ 0.684 ;(0.066)end{array}right. begin{array}{l};;0474end{array}$$
    (9)
    All damping coefficients considered in the previous analysis were obtained without subtracting any additional source of dissipation such as bottom and wall friction. Previous works, such as24, highlighted the high importance of considering any other sources of wave dissipation besides the effect of vegetation elements when quantifying the wave height attenuation capacity. In this case, the flume walls were made of glass, and the friction induced by these walls could be considered negligible. However, bottom friction could be significant, as observed in tests run after removing all vegetation stems. Then, the wave damping coefficient obtained after subtracting the bottom friction contribution, ({beta }_{SB}), is studied here. Figure 7 shows the relationship obtained between this damping coefficient, ({beta }_{SB}), and hydraulic standing biomass, (HSB).Figure 7Wave damping coefficient, ({beta }_{SB}), as a function of the hydraulic standing biomass, (HSB), under all regular (top panel) and random (bottom panel) wave conditions. Both panels show linear fitting results obtained without considering the saturation point, indicated by the black solid line, and those obtained considering the saturation point, indicated by the gray solid line. The black dashed line indicates the saturation point. 95% confidence interval is shown in brackets and correlation coefficient (({rho }^{2})) for each fit is also displayed.Full size imageA linear relationship was also obtained for ({beta }_{SB}), revealing correlation coefficients similar to those obtained when analyzing (beta ). The obtained linear relationships under regular and random wave conditions are expressed as Eqs. (10) and (11), respectively, where values between brackets are the 95% confidence interval for each coefficient. A two-section fitting relationship, Eqs. (12) and (13), was also included considering the saturation regime obtained in the Halimione sp. 100% density and h = 0.20 m cases with a ({beta }_{SB}=) 0.69 and 0.63 under regular and random wave conditions, respectively.$${beta }_{SB}=1.051*{10}^{-3} left(7.063cdot {10}^{-5}right)*HSB$$
    (10)
    $${beta }_{SB}=1.296*{10}^{-3} left(6.894cdot {10}^{-5}right)*HSB$$
    (11)
    $${beta }_{SB}=left{begin{array}{l}1.151cdot {10}^{-3} left(7.445cdot {10}^{-5}right)*HSB \ 0.685 ;(0.047)end{array}right. begin{array}{l} ;; 0599end{array}$$
    (12)
    $${beta }_{SB}=left{begin{array}{l}1.396cdot {10}^{-3}left(7.919cdot {10}^{-5}right)*HSB \ 0.631 ;left(0.055right)end{array}right. begin{array}{l};; 0451end{array}$$
    (13)
    As can be noted, the ({beta }_{SB}) values are significantly lower than those obtained for (beta ), especially in the shallowest water depth cases where bottom friction is the highest, as discussed above. The estimation of (beta ) and ({beta }_{SB}) allows two possible approaches to determine the wave damping effect of a saltmarsh. The first approach, based on (beta ), includes wave damping induced by the combined effect of vegetation and bottom friction. Therefore, the consideration of (beta ) in analytical or numerical analysis could provide the total dissipation induced by the species under study, and sediment characteristics are not necessary for analysis. Considering that saltmarsh species grow in muddy to sandy environments and that the major contribution to the obtained wave attenuation is associated with vegetation, this approach may be the best option if soil properties are not thoroughly characterized.The second approach relies on the definition of ({beta }_{SB}). In this case, the wave damping contributions of vegetation drag and bottom friction are separated. Then, ({beta }_{SB}) can be used in cases where the effect of both momentum sinks can be separately evaluated. To quantify the wave damping contribution of vegetation drag only, ({beta }_{SB}) can be used, and then, the additional friction due to the bottom effect can be added considering the soil properties in each case. This second approach assumes a linear sum of both momentum sinks and could be applicable when soil properties are thoroughly characterized. More

  • in

    The abundance and persistence of Caprinae populations

    Given Caprinae life history and plausible combinations of mean recruitment and adult female survivorship, we evaluated population persistence and estimated population MVP. The values describing adult female survivorship and recruitment, plus the variability we employed match values found in other populations of Caprinae. We do not pool data across different Caprinae populations or species. Our approach and results directly inform the conservation and management of many Caprinae, especially those for which the acquisition of demographic data remains beyond reach.Our work embodies the characteristics of a high-quality PVA: clear objectives, appropriate demographic data, model structure matching species life histories, stochasticity, examination of extinction probability, appropriate time interval, use of mean values and associated variability6. As with most ecological models, the quest for more data remains problematic, not debilitating, and is addressed by creatively and aptly using existing information to generate meaningful results3.Wildlife agencies generate lamb:adult female ratios from Caprinae surveys, recognizing that yearlings can be mistaken for adult females, causing miscounts. Excluding yearlings from the ratio’s denominator assumes that no miscounts are occurring, yet an unknown and inconsistent number of yearlings remain in the adult female category across survey events. For these reasons, surveyors of other species, like Dall’s sheep and caribou, pool counts of yearlings and adult females, generating lamb:“adult female-like” ratios instead15,23,24,25.Managers of Caprinae populations can follow these precedents and produce lamb:(adult female + yearling) ratios. Consistency would help standardize methods for building comparisons and meta-analyses across populations of Caprinae, while reducing variability across surveys due to differing techniques.Typically, metrics like elasticity (proportional) and sensitivity (additive) describe the influences of demographic parameters on population growth13,14,22,26. For Caprinae, when adult female survivorship is 0.90 and recruitment 0.30, the elasticity in survivorship and recruitment are 0.61 (90% CIs 0.40–0.75) and 0.24 (90% CIs 0.13–0.40) respectively (elasticity in young adult survivorship is 0.16 (90% CIs 0.12–0.21). For ungulates in general, the elasticity values for survival tend to be higher than those for recruitment27. Our results match this pattern, as the elasticity results indicate that a change in adult survival has a 2.5 times greater effect on λ than an equivalent change in recruitment. Relatedly, other theoretical work reports that demographic parameters with more temporal variability have lower elasticities, indicating less impact on population fitness (e.g.28,29).Our work centers on applications. Since most management actions affect these demographic parameters simultaneously, at issue is the practicality (e.g. feasibility and affordability) of management to increase these parameters, and understanding how such changes could impact λ. For example, imagine a population with mean recruitment of 0.30 and adult survival 0.85, with a biologist interested in increasing recruitment or adult female survival to acquire λ ≥ 1. The answer is to increase either value by 0.02 (Fig. 1, Supplementary Data S1). Similarly, one can set a λ target and determine the amount of recruitment and adult female survival necessary for acquiring it (Fig. 1, Supplementary Data S1).Minimum abundance targetA minimum population of 50 adult females meets the persistence criteria, given intermediate levels of recruitment and survival producing λ ~ 1 (Table 2). The risk of population collapse wanes as populations increase above the minimum threshold (Table 2; Fig. 1). For example, a population of ~ 100 adult females always meets persistence criteria (Table 2). Populations of adult females should be somewhat larger than 50 when modest declines (λ ~ 0.97) are suspected, providing a cushion to address the causes of decline, and mitigate further reductions.Translocation of 5 adult females during each of 5 years, or 10 in each of 3 years, requires a starting abundance of 70 adult females for the population to maintain the persistence criteria, never reach a lower confidence interval of 0, and for the population to return to the starting population size within 30 years. If managers mistakenly target a population having  More

  • in

    Effectiveness of protected areas influenced by socio-economic context

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).CAS 
    Article 

    Google Scholar 
    IPBES Secretariat Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Bruner, A. G., Gullison, R. E., Rice, R. E. & Fonseca, G. A. Bda Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).CAS 
    Article 

    Google Scholar 
    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).Article 

    Google Scholar 
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–293 (2012).CAS 
    Article 

    Google Scholar 
    Conference of the Parties, The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets, COP-10 Decision X/2 (CBD, 2010).Protected Planet Report 2018 (UNEP-WCMC IUCN & NGS, 2018).Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).Article 

    Google Scholar 
    Joppa, L. N., Bailie, J. E. M. & Robinson, J. G. Protected Areas: Are They Safeguarding Biodiversity?. (Wiley Blackwell, 2016).Book 

    Google Scholar 
    Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article 

    Google Scholar 
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).Article 

    Google Scholar 
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).Article 

    Google Scholar 
    Ferraro, P. J. & Pattanayak, S. K. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biol. 4, 482–488 (2006).CAS 
    Article 

    Google Scholar 
    Polaina, E., González-Suárez, M. & Revilla, E. Socioeconomic correlates of global mammalian conservation status. Ecosphere 6, 1–34. (2015).Article 

    Google Scholar 
    Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Philos. Trans. R. Soc. Lond. Biol. Sci. 370, 20140270 (2015).Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. U.S.A. 116, 23209–23215 (2019).CAS 
    Article 

    Google Scholar 
    McGinnis, M. D. & Ostrom, E. Social-ecological system framework: initial changes and continuing challenges. Ecol. Soc. 19, 30 (2014).Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).CAS 
    Article 

    Google Scholar 
    Palomo, I. et al. Incorporating the social-ecological approach in protected areas in the anthropocene. BioScience 64, 181–191 (2014).Article 

    Google Scholar 
    Poteete, A. R., Janssen, M. A., & Ostrom, E. Working Together: Collective Action, the Commons, and Multiple Methods in Practice (Princeton Univ. Press, 2010).Wilson, D. S., Ostrom, E. & Cox, M. E. Generalizing the core design principles for the efficacy of groups. J. Econ. Behav. Organ. 90, S21–S32 (2013).Article 

    Google Scholar 
    Tebet, G., Trimble, M. & Pereira Medeiros, R. Using Ostrom’s principles to assess institutional dynamics of conservation: lessons from a marine protected area in Brazil. Mar. Policy 88, 174–181 (2018).Article 

    Google Scholar 
    Ban, N. C. et al. Social and ecological effectiveness of large marine protected areas. Glob. Environ. Change 43, 82–91 (2017).Article 

    Google Scholar 
    Fleischman, F. D. et al. Governing large-scale social-ecological systems: lessons from five cases. Int. J. Commons 8, 428–456 (2014).Article 

    Google Scholar 
    Faff, R., Ho, Y. K., Lin, W. & Yap, C. M. Diminishing marginal returns from R&D investment: evidence from manufacturing firms. Appl. Econ. 45, 611–622 (2013).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).Article 

    Google Scholar 
    Irwin, K., Mulder, L. & Simpson, B. The detrimental effects of sanctions on intragroup trust: comparing punishments and rewards. Soc. Psychol. Q. 77, 253–272 (2014).Article 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225. (2015).Article 

    Google Scholar 
    Urban, M. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    Article 

    Google Scholar 
    Lovett, G. M. et al. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Ann. N. Y. Acad. Sci. 1162, 99–135 (2009).CAS 
    Article 

    Google Scholar 
    Backhaus, T., Snape, J. & Lazorchak, J. The impact of chemical pollution on biodiversity and ecosystem services: the need for an improved understanding. Integr. Environ. Assess. Manag. 8, 575–576 (2012).CAS 
    Article 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 
    CAS 

    Google Scholar 
    Calabrese, A. et al. Conservation status of Asian elephants: the influence of habitat and governance. Biodivers. Conserv. 26, 2067–2081 (2017).Article 

    Google Scholar 
    Shaffer, L. J., Khadka, K. K., Van Den Hoek, J. & Naithani, K. J. Human–elephant conflict: a review of current management strategies and future directions. Front. Ecol. Evol. 6, 235 (2019).Article 

    Google Scholar 
    Klaassen, R. H. G. et al. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83, 176–184 (2014).Article 

    Google Scholar 
    Güneralp, P. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).Article 

    Google Scholar 
    Sherry, T.W., Johnson, M.D. & Strong, A. in Birds of Two Worlds. The Ecology and Evolution of Migration (eds Greenberg, R. & Marra, P. P.) 414–425 (The John Hopkins Univ. Press, 2005).Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & Van Bommel, F. P. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article 

    Google Scholar 
    Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).CAS 
    Article 

    Google Scholar 
    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    Article 

    Google Scholar 
    Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).Lacroix, K. & Richards, G. An alternative policy evaluation of the British Columbia carbon tax: broadening the application of Elinor Ostrom’s design principles for managing common-pool resources. Ecol. Soc. 20, 38 (2015).Article 

    Google Scholar 
    Bennett, N. J. et al. Mainstreaming the social sciences in conservation. Conserv. Biol. 31, 56–66 (2017).Article 

    Google Scholar 
    Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).Resasco, J. Meta-analysis on a decade of testing corridor efficacy: what new have we learned? Curr. Landsc. Ecol. Rep. 4, 61–69 (2019).Article 

    Google Scholar 
    Andrade, G. S. M. & Rhodes, J. R. Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. https://doi.org/10.5751/ES-05216-170414 (2012).Morell, V. Massive wolf kill disrupts long-running Yellowstone Park study. Science 375, 482–482 (2022).CAS 
    Article 

    Google Scholar 
    Post, G. & Geldmann, J. Exceptional responders in conservation. Conserv. Biol. 32, 576–583 (2018).Article 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).CAS 
    Article 

    Google Scholar 
    Ostrom, E. A general framework for analyzing sustainability of social–ecological systems. Science 325, 419–422 (2009).CAS 
    Article 

    Google Scholar 
    Kline, M. A., Waring, T. M. & Salerno, J. D. Designing cultural multilevel selection research for sustainability science. Sustainability Sci. 13, 9–19 (2017).Article 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).Article 

    Google Scholar 
    The World Database on Protected Areas (WDPA) (IUCN & UNEP‐WCMC, 2018); https://www.protectedplanet.net/en/search-areas?geo_type=country&filters%5Bdb_type%5D%5B%5D=wdpaCoad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015).Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Living Planet Database (LPD) (Zoological Society of London, 2018); http://www.livingplanetindex.orgKühl, H., Williamson, L., Sanz, C. M., Morgan, D. & Boesch, C. Launch of A.P.E.S. database. Gorilla Journal 34, 20–21 (2007).
    Google Scholar 
    Koerner, S. E., Poulsen, J. R., Blanchard, E. J., Okouyi, J. & Clark, C. J. Vertebrate community composition and diversity declines along a defaunation gradient radiating from rural villages in Gabon. J. Appl. Ecol. 54, 805–814 (2017).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl Acad. Sci. U.S.A. 112, 14894–14899 (2015).CAS 
    Article 

    Google Scholar 
    Barr, D., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 1–43 (2014).
    Google Scholar 
    Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).Article 

    Google Scholar 
    McElreath, R. in Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).Bürkner, P. C. (2017). brms: an R package for Bayesian multilevel models using Stan. J. Stat. Software https://doi.org/10.18637/jss.v080.i01 (2017).Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019).Gelman, A., Carlin, J. B. B., Stern, H. S. S. & Rubin, D. B. B. Bayesian Data Analysis (CRC Press, 2014).Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, 2019); www.protectedplanet.netChamberlain, S. rphylopic: Get ‘Silhouettes’ of ‘Organisms’ from ‘Phylopic’. R version 0.3.3.91 https://github.com/sckott/rphylopic (2022). More

  • in

    The microbiome of a bacterivorous marine choanoflagellate contains a resource-demanding obligate bacterial associate

    Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bjorbækmo, M. F. M., Evenstad, A., Røsæg, L. L., Krabberød, A. K. & Logares, R. The planktonic protist interactome: where do we stand after a century of research? ISME J. 14, 544–559 (2020).PubMed 
    Article 

    Google Scholar 
    Pandolfi, J. M., Staples, T. L. & Kiessling, W. Increased extinction in the emergence of novel ecological communities. Science 370, 220–222 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jürgens, K. & Massana, R. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (John Wiley & Sons, 2008).Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite–mutualist continuum. Nat. Rev. Microbiol. 19, 623–638 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buck, K. R., Chavez, F. P. & Thomsen, H. A. Choanoflagellates of the central California waters: abundance and distribution. Ophelia 33, 179–186 (1991).Article 

    Google Scholar 
    Leadbeater, B. S. C. The Choanoflagellates: Evolution, Biology and Ecology (Cambridge Univ. Press, 2015).de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Alegado, R. A. et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 1, e00013 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Woznica, A. et al. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc. Natl Acad. Sci. USA 113, 7894–7899 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woznica, A., Gerdt, J. P., Hulett, R. E., Clardy, J. & King, N. Mating in the closest living relatives of animals is induced by a bacterial chondroitinase. Cell 170, 1175–1183.e11 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Needham, D. M. et al. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Phil. Trans. R. Soc. Lond. B 374, 20190086 (2019).CAS 
    Article 

    Google Scholar 
    Frank, N., Helge Abuldhauge, T. & Daniel, J. R. Bridging the gap between morphological species and molecular barcodes – exemplified by loricate choanoflagellates. Eur. J. Protistol. 57, 26–37 (2017).Article 

    Google Scholar 
    Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldin, C. et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin. Microbiol. Rev. 30, 115–190 (2017).PubMed 
    Article 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenski, R. E. in Advances in Microbial Ecology (ed. Marshall, K. C.) 1–44 (Springer, 1988).Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vincent, F., Sheyn, U., Porat, Z., Schatz, D. & Vardi, A. Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc. Natl Acad. Sci. USA 118, e2021586118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J 15, 41–54 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canbäck, B., Tamas, I. & Andersson, S. G. E. A phylogenomic study of endosymbiotic bacteria. Mol. Biol. Evol. 21, 1110–1122 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).Article 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12, 263–273 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 8, e46497 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild. Prochlorococcus. Science 344, 416–420 (2014).CAS 
    PubMed 

    Google Scholar 
    Toft, C. & Andersson, S. G. E. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat. Rev. Genet. 11, 465–475 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiu, J. & Luo, Z.-Q. Legionella and Coxiella effectors: strength in diversity and activity. Nat. Rev. Microbiol. 15, 591–605 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boamah, D. K., Zhou, G., Ensminger, A. W. & O’Connor, T. J. From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol. 7, 477 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graf, J. S. et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 591, 445–450 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi, J., DeLong, E. F., Béjà, O., González, J. M. & Pedrós-Alió, C. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80, 929–954 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brunet, T. et al. Light-regulated collective contractility in a multicellular choanoflagellate. Science 366, 326–334 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmitz-Esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol. 186, 683–691 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George, E. E. et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr. Biol. 30, 925–933.e3 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog. 15, e1007801–e1007801 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Major, P., Embley, T. M. & Williams, T. A. Phylogenetic diversity of NTT nucleotide transport proteins in free-living and parasitic bacteria and eukaryotes. Genome Biol. Evol. 9, 480–487 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trentmann, O., Decker, C., Winkler, H. H. & Neuhaus, H. E. Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties. Eur. J. Biochem. 267, 4098–4105 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, G., Meredith, T. C. & Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 16, 779–785 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bertani, B. & Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8, ESP-0001–2018 (2018).Article 

    Google Scholar 
    Russell, D. G., Vanderven, B. C., Glennie, S., Mwandumba, H. & Heyderman, R. S. The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat. Rev. Immunol. 9, 594–600 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6, 339–367 (2014).Article 

    Google Scholar 
    Omsland, A. & Heinzen, R. A. Life on the outside: the rescue of Coxiella burnetii from its host cell. Annu. Rev. Microbiol. 65, 111–128 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5, e114 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. Biol. Sci. 275, 293–299 (2008).PubMed 

    Google Scholar 
    Schulz, F. & Horn, M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol. 25, 339–346 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamann, E. et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature 534, 254–258 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seah, B. K. B. et al. Sulfur-oxidizing symbionts without canonical genes for autotrophic CO2 fixation. mBio 10, e01112-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salonen, I. S., Chronopoulou, P.-M., Bird, C., Reichart, G.-J. & Koho, K. A. Enrichment of intracellular sulphur cycle-associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. Sci. Rep. 9, 11692 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vallesi, A. et al. A new species of the γ-Proteobacterium Francisella, F. adeliensis sp. nov., endocytobiont in an Antarctic marine ciliate and potential evolutionary forerunner of pathogenic species. Microb. Ecol. 77, 587–596 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tashyreva, D. et al. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9, e02447-17 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, R. A. & Zehr, J. P. Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu. Rev. Microbiol. 73, 435–456 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, Y.-C. et al. Distribution patterns and phylogeny of marine stramenopiles in the North Pacific Ocean. Appl. Environ. Microbiol. 78, 3387–3399 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, E. et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc. Natl Acad. Sci. USA 108, 1496–1500 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wylezich, C., Karpov, S. A., Mylnikov, A. P., Anderson, R. & Jürgens, K. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol. 12, 271 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson, A. C. C. & Duncan, R. P. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc. Natl Acad. Sci. USA 112, 10255–10261 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Newton, H. J. et al. Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect. Immun. 75, 5575–5585 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boch, J., Bonas, U. & Lahaye, T. TAL effectors–pathogen strategies and plant resistance engineering. New Phytol. 204, 823–832 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmitz-Esser, S. et al. The genome of the amoeba symbiont ‘Candidatus Amoebophilus asiaticus’ reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol. 192, 1045–1057 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abby, S. S. et al. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6, 23080 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bratanis, E., Andersson, T., Lood, R. & Bukowska-Faniband, E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00662 (2020).Rose, J., Caron, D., Sieracki, M. & Poulton, N. Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquat. Microb. Ecol. 34, 263–277 (2004).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2 : high resolution sample inference from amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nelson, M. C., Morrison, H. G., Benjamino, J., Grim, S. L. & Graf, J. Analysis, optimization and verification of illumina-generated 16S rRNA gene amplicon surveys. PLoS ONE 9, e94249 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, F. & Zhang, C.-T. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics 9, 79 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Karp, P. D. et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 17, 877–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elbourne, L. D. H., Tetu, S. G., Hassan, K. A. & Paulsen, I. T. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 45, D320–D324 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandoz, K. M. et al. Transcriptional profiling of Coxiella burnetii reveals extensive cell wall remodeling in the small cell variant developmental form. PLoS ONE 11, e0149957 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rekha, S. et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl Acad. Sci. USA 100, 5455–5460 (2003).Article 
    CAS 

    Google Scholar 
    Bushnell, B. BBMap Short Read Aligner (Univ. California, Berkeley, 2016); http://sourceforge.net/projects/bbmapAnders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aylward, F. O. & Santoro, A. E. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415–20 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.1900v1 (2016).Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, S.-H., Ha, S.-M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110, 1281–1286 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, I., Ouk Kim, Y., Park, S.-C. & Chun, J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seemann, T. barrnap 0.9: Rapid Ribosomal RNA Prediction (2018); https://github.com/tseemann/barrnapFu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warren, D. L., Geneva, A. J. & Lanfear, R. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Mol. Biol. Evol. 34, 1016–1020 (2017).CAS 
    PubMed 

    Google Scholar 
    Bi, D. et al. SecReT4: a web-based bacterial type IV secretion system resource. Nucleic Acids Res. 41, D660–D665 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & DeLong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Philosof, A. & Béjà, O. Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ. Microbiol. Rep. 5, 475–482 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boeuf, D., Audic, S., Brillet-Guéguen, L., Caron, C. & Jeanthon, C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database 2015, bav080 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Demir-Hilton, E. et al. Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J. 5, 1095–1107 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time-series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).PubMed 
    Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC. Syst. Biol. 5, S15 (2011).
    Google Scholar 
    Choi, H. M. T. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145, dev165753 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schramm, A., Fuchs, B. M., Nielsen, J. L., Tonolla, M. & Stahl, D. A. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4, 713–720 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral

    Gregg T. M., Mead L., Burns J. H., Takabayashi M. Puka mai he ko ‘a: the significance of corals in Hawaiian culture. In: Ethnobiology of Corals and Coral Reefs). (Springer, 2015).Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hochachka P. W., Somero G. N. Biochemical adaptation: mechanism and process in physiological evolution. (Oxford university press, 2002).Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).PubMed 
    Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).ADS 
    Article 

    Google Scholar 
    Coles, S. L., Jokiel, P. L. & Lewis, C. R. Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac. Sci. 30, 159–166 (1976).
    Google Scholar 
    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr. Biol. 28, 2570–2580 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Glynn, P. W. Coral reef bleaching: ecological perspectives. Coral Reefs 12, 1–17 (1993).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).ADS 
    Article 

    Google Scholar 
    Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 1–11 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rivera, H. E. et al. A framework for understanding gene expression plasticity and its influence on stress tolerance. Mol. Ecol. 30, 1381–1397 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury C. & Lirman D. Genotype by environment interactions in coral bleaching. Proceedings of the Royal Society B: Biological Sciences 288, 20210177 (2021).Drury, C., Manzello, D. & Lirman, D. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. PLoS ONE 12, e0174000 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Todd, P. A. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).PubMed 
    Article 

    Google Scholar 
    Eirin-Lopez J. M. & Putnam H. M. Marine environmental epigenetics. Annual review of marine science 11, 335–368 (2019).Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evolut. Appl. 9, 1165–1178 (2016).CAS 
    Article 

    Google Scholar 
    Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. 115, 13342–13346 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez‐Casariego, J. A., Cunning, R., Baker, A. C. & Eirin‐Lopez, J. M. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol. Ecol. 31, 588–602 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Meyer, E., Aglyamova, G. & Matz, M. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA‐Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).CAS 
    PubMed 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, G., Abbott, E. & Matz, M. Meta‐analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. 29, 2855–2870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Traylor-Knowles, N., Rose, N. H., Sheets, E. A. & Palumbi, S. R. Early transcriptional responses during heat stress in the coral Acropora hyacinthus. Biol. Bull. 232, 91–100 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Majerová, E., Carey, F. C., Drury, C. & Gates, R. D. Preconditioning improves bleaching tolerance in the reef‐building coral Pocillopora acuta through modulations in the programmed cell death pathways. Mol. Ecol. 30, 3560–3574 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Vidal-Dupiol, J. et al. Thermal stress triggers broad Pocillopora damicornis transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted immuno-suppression response. PLoS ONE 9, e107672 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).PubMed 
    Article 

    Google Scholar 
    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. 112, 2307–2313 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    National Academies of Sciences E, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs. (The National Academies Press, 2019).Kellett M., Hoffmann A. A., Mckechnie S. W. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct. Ecol. 19, 853–858 (2005).Gerken, A. R., Eller, O. C., Hahn, D. A. & Morgan, T. J. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long-and short-term thermal acclimation. Proc. Natl Acad. Sci. 112, 4399–4404 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calosi, P., Bilton, D. T. & Spicer, J. I. Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4, 99–102 (2008).PubMed 
    Article 

    Google Scholar 
    Nyamukondiwa, C., Terblanche, J. S., Marshall, K. & Sinclair, B. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evolut. Biol. 24, 1927–1938 (2011).CAS 
    Article 

    Google Scholar 
    Bellantuono, A. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Resistance to thermal stress in corals without changes in symbiont composition. Proc. R. Soc. Lond. B: Biol. Sci. 279, 1100–1107 (2011).
    Google Scholar 
    DeMerlis, A. et al. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs, 41, 1–11 (2022).Oliver, T. & Palumbi, S. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).ADS 
    Article 

    Google Scholar 
    Klepac, C. & Barshis, D. Reduced thermal tolerance of massive coral species in a highly variable environment. Proc. R. Soc. B 287, 20201379 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi. PeerJ 3, e1136 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cunning, R., Ritson-Williams, R. & Gates, R. D. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Innis, T., Cunning, R., Ritson-Williams, R., Wall, C. & Gates, R. Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Coral Reefs 37, 423–430 (2018).ADS 
    Article 

    Google Scholar 
    Wall C. B., Ritson-Williams R., Popp B. N., Gates R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kane ‘ohe Bay, Hawai ‘i. Coral Reefs 10, 757–769 (2020).Article 

    Google Scholar 
    Drury, C. et al. Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral. Commun. Biol. 5, 1–10 (2022).Article 
    CAS 

    Google Scholar 
    Dilworth J., Caruso C., Kahkejian V. A., Baker A. C., Drury C. Host genotype and stable differences in algal symbiont communities explain patterns of thermal stress response of Montipora capitata following thermal pre-exposure and across multiple bleaching events. Coral Reefs 40, 151–163 (2020).Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thomas, L. & Palumbi, S. R. The genomics of recovery from coral bleaching. Proc. R. Soc. Lond. B: Biol. Sci. 284, 20171790 (2017).
    Google Scholar 
    Bertucci, A., Foret, S., Ball, E. & Miller, D. J. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light‐enhanced calcification in corals. Mol. Ecol. 24, 4489–4504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Drury, C. Resilience in reef-building corals: the ecological and evolutionary importance of the host response to thermal stress. Mol. Ecol. 00, 1–18 (2019).CAS 

    Google Scholar 
    Whitehead, A. & Crawford, D. L. Neutral and adaptive variation in gene expression. Proc. Natl Acad. Sci. 103, 5425–5430 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 1–6 (2016).
    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress‐responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance? Trends Ecol. Evol. 35, 874–885 (2020).PubMed 
    Article 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Negative relationship between thermal tolerance and plasticity in tolerance emerges during experimental evolution in a widespread marine invertebrate. Evolut. Appl. 14, 2114–2123 (2021).Article 

    Google Scholar 
    Roach T.N., Dilworth J., Jones A.D., Quinn R.A., Drury C. Metabolomic signatures of coral bleaching history. Nat. Ecol. Evol. 5, 1–9 (2021).Snider, J., Thibault, G. & Houry, W. A. The AAA+ superfamily of functionally diverse proteins. Genome Biol. 9, 1–8 (2008).Article 
    CAS 

    Google Scholar 
    Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobbs, G. A., Zhou, B., Cox, A. D. & Campbell, S. L. Rho GTPases, oxidation, and cell redox control. Small GTPases 5, e28579 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Majerová E., Drury C. A BI-1 mediated cascade improves redox homeostasis during thermal stress and prevents oxidative damage in a preconditioned reef-building coral. bioRxiv, (2021).Coleman, M. & Olson, M. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ. 9, 493–504 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Opalińska, M. & Jańska, H. AAA proteases: guardians of mitochondrial function and homeostasis. Cells 7, 163 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. 8, 1–14 (2020).Barott, K. L. et al. Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc. Natl Acad. Sci. 118, 1–8 (2021).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A. et al. Multi-omic characterization of the thermal stress phenome in the stony coral Montipora capitata. PeerJ 9, e12335 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shumaker, A. et al. Genome analysis of the rice coral Montipora capitata. Sci. Rep. 9, 2571 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leggat, W., Heron, S. F., Fordyce, A., Suggett, D. J. & Ainsworth, T. D. Experiment Degree Heating Week (eDHW) as a novel metric to reconcile and validate past and future global coral bleaching studies. J. Environ. Manag. 301, 113919 (2022).Article 

    Google Scholar 
    Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PloS ONE 10, e0146021 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Philip, D. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14, 927–930 (2003).Wright, R. M. et al. Positive genetic associations among fitness traits support evolvability of a reef-building coral under multiple stressors. Glob. Change Biol. 25, 3294–3304 (2019).ADS 
    Article 

    Google Scholar 
    Drury C., Dilworth J., Majerová E., Caruso C., Greer J. B. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral [dataset]. Zenodo https://doi.org/10.5281/zenodo.6877825 (2022). More