More stories

  • in

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Short-term experimentsPotential toxic and cryoprotection effects of different CPA combinationsFocusing on toxicity bioassays (Figs. 1A, 2A), although there were certain CPA combinations that yielded significant abnormality percentages compared to controls, in general the CPA combinations did not yield any significant toxic effect. The use of Milli-Q Water instead of FSW did not enhance normal larval development after CPA exposure, neither did the addition of PVP at the concentrations tested, even in combination with trehalose (TRE) (p  > 0.05). In fact, the highest concentrations of PVP used in this experiment (9 and 12%) yielded significant abnormal development on exposed trochophores (Fig. 1A) (p  More

  • in

    The early arrival of spring doesn’t boost annual tree growth

    Dow, C. et al. Nature 608, 552–557 (2022).Article 

    Google Scholar 
    Friedlingstein, P. et al. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    Menzel, A. & Fabian, P. Nature 397, 659 (1999).Article 

    Google Scholar 
    Piao, S. et al. Nature Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Cuny, H. E. et al. Nature Plants 1, 15160 (2015).PubMed 
    Article 

    Google Scholar 
    Körner, C. Curr. Opin. Plant Biol. 25, 107–114 (2015).PubMed 
    Article 

    Google Scholar 
    Gessler, A. & Treydte, K. New Phytol. 209, 1338–1340 (2016).PubMed 
    Article 

    Google Scholar 
    Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. New Phytol. 232, 25–41 (2021).PubMed 
    Article 

    Google Scholar 
    Jiang, M. et al. Nature 580, 227–231 (2020).PubMed 
    Article 

    Google Scholar 
    Guillemot, J. et al. New Phytol. 214, 180–193 (2017).PubMed 
    Article 

    Google Scholar 
    Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. New Phytol. 221, 652–668 (2019).PubMed 
    Article 

    Google Scholar 
    Friend, A. D. et al. Annu. For. Sci. 76, 49 (2019).Article 

    Google Scholar 
    Zuidema, P. A., Poulter, B. & Frank, D. C. Trends Plant Sci. 23, 1006–1015 (2018).PubMed 
    Article 

    Google Scholar 
    Martínez-Sancho, E., Treydte, K., Lehmann, M. M., Rigling, A. & Fonti, P. New Phytol. https://doi.org/10.1111/nph.18224 (2022).Article 

    Google Scholar  More

  • in

    Boreal forest on the move

    Settele, J. et al. in Climate Change 2014 Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).
    Google Scholar 
    Rees, W. G. et al. Glob. Change Biol. 26, 3965–3977 (2020).Article 

    Google Scholar 
    Anderson, L. L., Hu, F. S., Nelson, D. S., Petit, R. J. & Paige, K. N. Proc. Natl Acad. Sci. USA 103, 12447–12450 (2006).PubMed 
    Article 

    Google Scholar 
    Clark, J. S., Lewis, M. & Horvath, L. Am. Nat. 157, 537–554 (2001).PubMed 
    Article 

    Google Scholar 
    Edwards, M., Hamilton, T. D., Elias, S. A., Bigelow, N. H. & Krumhardt, A. P. Arct. Antarct. Alp. Res. 35, 460–468 (2003).Article 

    Google Scholar  More

  • in

    Correction to: Patterns of genetic diversity and structure of a threatened palm species (Euterpe edulis Arecaceae) from the Brazilian Atlantic Forest

    Authors and AffiliationsDepartment of Agronomy, Universidade Federal do Espírito Santo, Alegre, BrazilAléxia Gonçalves Pereira, Marcia Flores da Silva Ferreira, Thamyres Cardoso da Silveira, José Henrique Soler-Guilhen, Guilherme Bravim Canal, Luziane Brandão Alves, Francine Alves Nogueira de Almeida & Adésio FerreiraDepartment of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, BrazilFernanda Amato GaiottoAuthorsAléxia Gonçalves PereiraMarcia Flores da Silva FerreiraThamyres Cardoso da SilveiraJosé Henrique Soler-GuilhenGuilherme Bravim CanalLuziane Brandão AlvesFrancine Alves Nogueira de AlmeidaFernanda Amato GaiottoAdésio FerreiraCorresponding authorCorrespondence to
    Marcia Flores da Silva Ferreira. More

  • in

    Even modest climate change may lead to major transitions in boreal forests

    Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).Article 

    Google Scholar 
    Wang, Y., Hogg, H. E., Price, T. D., Edwards, J. & Williamson, T. Past and projected future changes in moisture conditions in the Canadian boreal forest. Forestry Chron. 90, 678–691 (2014).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Lu, P., Parker, W. C., Colombo, S. J. & Skeates, D. A. Temperature-induced growing season drought threatens survival and height growth of white spruce in southern Ontario, Canada. Forest Ecol. Manag. 448, 355–363 (2019).Article 

    Google Scholar 
    Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).ADS 
    Article 

    Google Scholar 
    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Clim. 27, 7921–7948 (2014).ADS 
    Article 

    Google Scholar 
    Tam, B. Y. et al. CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Can. Water Resour. J. 44, 90–107 (2019).Article 

    Google Scholar 
    Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Chang. Biol. 17, 927–942 (2011).ADS 
    Article 

    Google Scholar 
    Zhao, J., Hartmann, H., Trumbore, S., Ziegler, W. & Zhang, Y. High temperature causes negative whole-plant carbon balance under mild drought. New Phytol. 200, 330–339 (2013).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).Article 

    Google Scholar 
    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    Article 

    Google Scholar 
    Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007 (2018).ADS 
    Article 

    Google Scholar 
    Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).ADS 
    Article 

    Google Scholar 
    Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).ADS 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).ADS 
    Article 

    Google Scholar 
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article 

    Google Scholar 
    Rodgers, V. L., Smith, N. G., Hoeppner, S. S. & Dukes, J. S. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species. AoB Plants 10, ply003 (2018).Article 

    Google Scholar 
    Moyes, A. B., Castanha, C., Germino, M. J. & Kueppers, L. M. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia 171, 271–282 (2013).ADS 
    Article 

    Google Scholar 
    Balducci, L. et al. How do drought and warming influence survival and wood traits of Picea mariana saplings? J. Exp. Bot. 66, 377–389 (2015).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Chang. 5, 148–152 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Coursolle, C. et al. Moving towards carbon neutrality: CO2 exchange of a black spruce forest ecosystem during the first 10 years of recovery after harvest. Can. J. Forest Res. 42, 1908–1918 (2012).CAS 
    Article 

    Google Scholar 
    Khomik, M., Williams, C. A., Vanderhoof, M. K., MacLean, R. G. & Dillen, S. Y. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition. Tree Physiol. 34, 686–700 (2014).Article 

    Google Scholar 
    Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Friedman, S. K. & Reich, P. B. Regional legacies of logging: departure from presettlement forest conditions in northern Minnesota. Ecol. Appl. 15, 726–744 (2005).Article 

    Google Scholar 
    Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 9.0.1 for Phase 2 https://www.fia.fs.fed.us/library/database-documentation/ (Forest Service, US Department of Agriculture, 2022).Cumming, S. G. et al. A gap analysis of tree species representation in the protected areas of the Canadian boreal forest: applying a new assemblage of digital Forest Resource Inventory data. Can. J. Forest Res. 45, 163–173 (2015).Article 

    Google Scholar 
    Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 28, 396–401 (2013).Article 

    Google Scholar 
    Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).ADS 
    Article 

    Google Scholar 
    Stralberg, D. et al. Climate‐change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Etterson, J. R., Cornett, M. W., White, M. A. & Kavajecz, L. C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 30, e02092 (2020).Article 

    Google Scholar 
    Solarik, K. A., Cazelles, K., Messier, C., Bergeron, Y. & Gravel, D. Priority effects will impede range shifts of temperate tree species into the boreal forest. J. Ecol. 108, 1155–1173 (2020).Article 

    Google Scholar 
    Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A. & Reich, P. B. Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open‐air experimental warming and reduced rainfall in a southern boreal forest. Glob. Chang. Biol. 26, 746–759 (2020).ADS 
    Article 

    Google Scholar 
    Perala, D. A. How endemic injuries affect early growth of aspen suckers. Can. J. Forest Res. 14, 755–762 (1984).Article 

    Google Scholar 
    Buckman, R. E. Effects of prescribed burning on hazel in Minnesota. Ecology 45, 626–629 (1964).Article 

    Google Scholar 
    Harvey, B. D. & Bergeron, Y. Site patterns of natural regeneration following clear-cutting in northwestern Quebec. Can. J. Forest Res. 19, 1458–1469 (1989).Article 

    Google Scholar 
    Harris, I. et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Peters, M. P., Prasad, A. M., Matthews, S. N. & Iverson, L. R. Climate Change Tree Atlas, Version 4 https://www.nrs.fs.fed.us/atlas (Northern Research Station and Northern Institute of Applied Climate Science, US Forest Service, 2020)Niinemets, Ü. & Valladares, F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 76, 521–547 (2006).Article 

    Google Scholar  More

  • in

    Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40. https://doi.org/10.1126/science.281.5374.237CAS 
    Article 
    PubMed 

    Google Scholar 
    Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9. https://doi.org/10.1126/science.1153213CAS 
    Article 
    PubMed 

    Google Scholar 
    Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349:aac4722. https://doi.org/10.1126/science.aac4722Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences. 2010;7:979–1005. https://doi.org/10.5194/bg-7-979-2010CAS 
    Article 

    Google Scholar 
    Henson SA, Cael BB, Allen SR, Dutkiewicz S. Future phytoplankton diversity in a changing climate. Nat Commun. 2021;12:5372. https://doi.org/10.1038/s41467-021-25699-wCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8. https://doi.org/10.1126/science.1224836CAS 
    Article 
    PubMed 

    Google Scholar 
    Collins S, Boyd PW, Doblin MA. Evolution, microbes, and changing ocean conditions. Annu Rev Mar Sci. 2020;12:181–208. https://doi.org/10.1146/annurev-marine-010318-095311Article 

    Google Scholar 
    Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719. https://doi.org/10.1038/s41467-018-03906-5CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck KT, Riebesell U, Reusch TBH. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5:346–51. https://doi.org/10.1038/ngeo1441CAS 
    Article 

    Google Scholar 
    Jin P, Gao K, Beardall J. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution. 2013;67:1869–78. https://doi.org/10.1111/evo.12112CAS 
    Article 
    PubMed 

    Google Scholar 
    Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30. https://doi.org/10.1038/nclimate2379CAS 
    Article 

    Google Scholar 
    Listmann L, LeRoch M, Schlüter L, Thomas MK, Reusch TBH. Swift thermal reaction norm evolution in a key marine phytoplankton species. Evol Appl. 2016;9:1156–64. https://doi.org/10.1111/eva.12362Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167. https://doi.org/10.1016/j.scitotenv.2021.145167CAS 
    Article 
    PubMed 

    Google Scholar 
    Brennan GL, Colegrave N, Collins S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc Natl Acad Sci USA. 2017;114:9930–5. https://doi.org/10.1073/pnas.1703375114CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang S, Wu Y, Lin L, Wang D. Molecular insights into the circadian clock in marine diatoms. Acta Oceano Sin. 2022;41:1–12. https://doi.org/10.1007/s13131-021-1962-4Article 

    Google Scholar 
    Nagelkerken I, Connell SD. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci USA. 2015;112:13272–7. https://doi.org/10.1073/pnas.1510856112CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-a review. Glob Change Biol. 2018;24:2239–61. https://doi.org/10.1111/gcb.14102Article 

    Google Scholar 
    Matsuda Y, Nakajima K, Tachibana M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res. 2011;109:191–203. https://doi.org/10.1007/s11120-011-9623-7CAS 
    Article 
    PubMed 

    Google Scholar 
    Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, et al. CO2-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. Plant Physiol. 2012;158:499–513. https://doi.org/10.1104/pp.111.190249CAS 
    Article 
    PubMed 

    Google Scholar 
    Hennon GMM, Ashworth J, Groussman RD, Berthiaume C, Morales RL, Baliga NS, et al. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nat Clim Change. 2015;5:761–5. https://doi.org/10.1038/nclimate2683CAS 
    Article 

    Google Scholar 
    Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84. https://doi.org/10.1038/nclimate1989CAS 
    Article 

    Google Scholar 
    Gao K, Beardall J, Häder DP, Hall-Spencer JM, Gao G, Hutchins DA. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front Mar Sci. 2019;6:322. https://doi.org/10.3389/fmars.2019.00322Article 

    Google Scholar 
    Tu L, Su P, Zhang Z, Gao L, Wang J, Hu T, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat Commun. 2020;11:971. https://doi.org/10.1038/s41467-020-14776-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Treves H, Siemiatkowska B, Luzarowska U, Murik O, Fernandez-Pozo N, Moraes TA, et al. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nat Plants. 2020;6:1031–43. https://doi.org/10.1038/s41477-020-0729-9CAS 
    Article 
    PubMed 

    Google Scholar 
    Van den Bergh B, Swings T, Fauvart M, Michels J. Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol Mol Biol Rev. 2018;82:e00008–18.PubMed 
    PubMed Central 

    Google Scholar 
    Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457–69. https://doi.org/10.1038/nrg1088CAS 
    Article 
    PubMed 

    Google Scholar 
    Colegrave N, Collins S. Experimental evolution: experimental evolution and evolvability. Heredity. 2008;100:464–70. https://doi.org/10.1038/sj.hdy.6801095CAS 
    Article 
    PubMed 

    Google Scholar 
    Jin P, Ji Y, Huang Q, Li P, Pan J, Lu H, et al. A reduction in metabolism explains the trade‐offs associated with the long‐term adaptation of phytoplankton to high CO2 concentrations. N Phytol. 2022;233:2155–67. https://doi.org/10.1111/nph.17917CAS 
    Article 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9. https://doi.org/10.1073/pnas.1307701110CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, Mcllvin MR, et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat Commun. 2015;6:8155. https://doi.org/10.1038/ncomms9155Article 
    PubMed 

    Google Scholar 
    Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol Lett. 2016;19:133–42.Article 

    Google Scholar 
    Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–54. https://doi.org/10.1126/science.aan5712CAS 
    Article 
    PubMed 

    Google Scholar 
    Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. On the origin and spread of an adaptive allele in deer mice. Science. 2009;325:1095–8. https://doi.org/10.1126/science.1175826CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534:102–5. https://doi.org/10.1038/nature17951CAS 
    Article 
    PubMed 

    Google Scholar 
    Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun. 2019;10:5821. https://doi.org/10.1038/s41467-019-13767-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai YT, Yeung CK, Omland KE, Pang EL, Hao Y, Liao BY, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci USA. 2019;116:2152–7. https://doi.org/10.1073/pnas.1813597116Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–92. https://doi.org/10.1038/nature08057CAS 
    Article 
    PubMed 

    Google Scholar 
    Rastogi A, Vieira FRJ, Deton-Cabanillas AF, Veluchamy A, Cantrel C, Wang G, et al. A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum. ISME J. 2020;14:347–63. https://doi.org/10.1038/s41396-019-0528-3Article 
    PubMed 

    Google Scholar 
    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771. https://doi.org/10.1038/s41598-018-36091-yCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton S, Jenkins J, Buckling A, Schaum CE, Smirnoff N, Raven JA, et al. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol Lett. 2020;23:722–33.Article 

    Google Scholar 
    Guillard RR, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol. 1962;8:229–39. https://doi.org/10.1139/m62-029CAS 
    Article 
    PubMed 

    Google Scholar 
    Huysman MJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, et al. Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol. 2010;11:R17. https://doi.org/10.1186/gb-2010-11-2-r17CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC; 2021.Jiang H, Gao K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol. 2004;40:651–4. https://doi.org/10.1111/j.1529-8817.2004.03112.xCAS 
    Article 

    Google Scholar 
    Pérez EB, Pina IC, Rodríguez LP. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J. 2008;40:520–5. https://doi.org/10.1016/j.bej.2008.02.007CAS 
    Article 

    Google Scholar 
    Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community-wide study. PLoS One. 2013;8:e63091 https://doi.org/10.1371/journal.pone.0063091CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeng X, Jin P, Jiang Y, Yang H, Zhong J, Liang Z, et al. Light alters the responses of two marine diatoms to increased warming. Mar Environ Res. 2020;154:104871. https://doi.org/10.1016/j.marenvres.2019.104871CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.CAS 
    Article 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. https://doi.org/10.1093/nar/gkq603CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. https://doi.org/10.1038/nbt.3122CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gifford RM. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol. 2003;30:171–86. https://doi.org/10.1071/FP02083Article 
    PubMed 

    Google Scholar 
    Jassby AD, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr. 1976;21:540–7. https://doi.org/10.4319/lo.1976.21.4.0540CAS 
    Article 

    Google Scholar  More

  • in

    Author Correction: High and rising economic costs of biological invasions worldwide

    Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, FranceChristophe Diagne, Anne-Charlotte Vaissière & Franck CourchampUnité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA, UMR 7208), Muséum national d’Histoire naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, FranceBoris LeroyISEM, Univ. Montpellier, CNRS, IRD, Montpellier, FranceRodolphe E. GozlanMIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, FranceDavid RoizInstitute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech RepublicIvan JarićDepartment of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech RepublicIvan JarićCEE-M, UMR5211, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, FranceJean-Michel SallesGlobal Ecology, College of Science and Engineering, Flinders University, Adelaide, South Australia, AustraliaCorey J. A. Bradshaw More

  • in

    Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil

    Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64(2), 161–182. https://doi.org/10.1111/ejss.12025 (2013).Article 

    Google Scholar 
    Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 9750. https://doi.org/10.7717/peerj.9750 (2020).Article 

    Google Scholar 
    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 6464. https://doi.org/10.1126/science.aax4851 (2019).CAS 
    Article 

    Google Scholar 
    Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).CAS 
    Article 

    Google Scholar 
    Angst, G. et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun. Biol. 2, UNSP 441 (2019).Article 

    Google Scholar 
    Bohlen, P. J. & Edwards, C. A. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol. Biochem. 27, 341–348 (1995).CAS 
    Article 

    Google Scholar 
    Bossuyt, H., Six, J. & Hendrix, P. F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 37, 251–258 (2005).CAS 
    Article 

    Google Scholar 
    Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, W., Gonzalez, G. & Zou, X. M. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Appl. Soil Ecol. 150, 103473. https://doi.org/10.1016/j.apsoil.2019.103473 (2020).Article 

    Google Scholar 
    Kruck, S., Joschko, M., Schultz-Sternberg, R., Kroschewski, B. & Tessmann, J. A classification scheme for earthworm populations (Lumbricidae) in cultivated agricultural soils in Brandenburg, Germany. J. Plan Nutr. Soil Sci. 169, 651–660 (2006).Article 

    Google Scholar 
    Westernacher, E. & Raff, O. Orientation behaviour of earthworms (Lumbricidae) toward different crops. Biol. Fertil. Soils 3, 131–133 (1987).
    Google Scholar 
    Coppens, F., Garnier, P., Degryze, S., Merckx, R. & Recous, S. Soil moisture, carbon and nitrogen dynamics following incorporation versus surface application of labelled residues in soil columns. Eur. J. Soil Sci. 57, 894–905 (2006).CAS 
    Article 

    Google Scholar 
    Angers, D. A. & Recous, S. Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 189, 197–203 (1997).CAS 
    Article 

    Google Scholar 
    Iqbal, A., Garnier, P., Lashermes, G. & Recous, S. A new equation to simulate the contact between soil and maize residues of different sizes during their decomposition. Biol. Fertil. Soils 50, 645–655 (2014).CAS 
    Article 

    Google Scholar 
    Šimek, M. & Pižl, V. Soil CO2 flux affected by Aporrectodea caliginosa earthworms. Cent. Eur. J. Biol. 5, 364–370 (2010).
    Google Scholar 
    Potthoff, M., Joergensenb, R. G. & Woltersc, V. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought. Soil Biol. Biochem. 33, 583–591 (2001).CAS 
    Article 

    Google Scholar 
    Bernard, L. et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 6, 213–122 (2012).CAS 
    Article 

    Google Scholar 
    Borken, W., Gründel, S. & Beese, F. Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol. Fertil. Soils 32, 142–148 (2000).CAS 
    Article 

    Google Scholar 
    Martin, A. Short-term and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol. Fertil. Soils 11, 234–238 (1991).Article 

    Google Scholar 
    Moreau-Valancogne, P., Bertrand, M., Holmstrup, M. & Roger-Estrade, J. Integration of thermal time and hydrotime models to describe the development and growth of temperate earthworms. Soil Biol. Biochem. 63, 50–60. https://doi.org/10.1016/j.soilbio.2013.03.022 (2013).CAS 
    Article 

    Google Scholar 
    Lubbers, I. M., van Groenigen, K. J., Brussaard, L. & van Groenigen, J. W. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity. Sci. Rep. 5, 13787 (2015).ADS 
    Article 

    Google Scholar 
    Joschko, M. et al. Spatial analysis of earthworm biodiversity at the regional scale. Agric. Ecosyst. Environ. 112, 367–380 (2006).Article 

    Google Scholar 
    Kanianska, R., Jad’ud’ova, J., Makovnikova, J. & Kizekova, M. Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability 8, 906 (2016).Article 

    Google Scholar 
    Chertov, O. et al. Romul_Hum model of soil organic matter formation coupled with soil biota activity. III Parameterisation of earthworm activity. Ecol. Model. 345, 140–149 (2017).CAS 
    Article 

    Google Scholar 
    Pelosi, C., Bertrand, M., Makowski, D. & Roger-Estrade, J. WORMDYN: A model of Lumbricus terrestris population dynamics in agricultural fields. Ecol. Model. 218, 219–234 (2008).Article 

    Google Scholar 
    Fisk, M. C., Fahey, T. J., Groffman, P. M. & Bohlen, P. J. Earthworm invasion, fine-root distributions, and soil respiration in north temperate forests. Ecosystems 7, 55–62 (2004).Article 

    Google Scholar 
    Rizhiya, E. et al. Earthworm activity as a determinant for N2O emission from crop residue. Soil Biol. Biochem. 39, 2058–2069 (2007).CAS 
    Article 

    Google Scholar 
    Snyder, B. A., Boots, B. & Hendrix, P. F. Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native north American millipedes (Pseudopolydesmus erasus, Polydesmidae): Effects on carbon cycling and soil structure. Soil Biol. Biochem. 41, 1442–1449 (2009).CAS 
    Article 

    Google Scholar 
    Chapuis-Lardy, L. et al. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl. Soil Ecol. 45, 201–208 (2010).Article 

    Google Scholar 
    Bertora, C., van Vliet, P. C. J., Hummelink, E. W. J. & van Groenigen, J. W. Do earthworms increase N2O emissions in ploughed grassland?. Soil Biol. Biochem. 39, 632–640 (2007).CAS 
    Article 

    Google Scholar 
    Binet, F., Fayolle, L. & Pussard, M. Significance of earthworms in stimulating soil microbial activity. Biol. Fertil. Soils 27, 79–84 (1998).Article 

    Google Scholar 
    Butenschoen, O. et al. Endogeic earthworms alter carbon translocation by fungi at the soil–litter interface. Soil Biol. Biochem. 39, 2854–2864 (2007).CAS 
    Article 

    Google Scholar 
    Cortez, J., Hameed, R. & Bouche, M. B. C-transfer and N-transfer in soil with or without earthworms fed with C-14 labelled and N-15 labelled wheat straw. Soil Biol. Biochem. 21, 491–497 (1989).Article 

    Google Scholar 
    Marhan, S., Langel, R., Kandeler, E. & Scheu, S. Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). Eur. J. Soil Biol. 43, S201–S208 (2007).CAS 
    Article 

    Google Scholar 
    Scheu, S. Effects of litter (beech and stinging nettle) and earthworms (Octolasion lacteum) on carbon and nutrient cycling in beech forests on a basalt-limestone gradient: A laboratory experiment. Biol. Fertil. Soils 24, 384–393 (1997).CAS 
    Article 

    Google Scholar 
    Wolters, V. & Schaefer, M. Effects of burrowing by the earthworm Aporrectodea caliginosa (Savigny) on beech litter decomposition in an agricultural and in a forest soil. Geoderma 56, 627–632 (1993).ADS 
    Article 

    Google Scholar  More