More stories

  • in

    Distribution and genetic diversity of Anisakis spp. in cetaceans from the Northeast Atlantic Ocean and the Mediterranean Sea

    Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: A habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mattiucci, S. & Nascetti, G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 66, 47–148 (2008).PubMed 
    Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and Anisakiasis: An ecological and evolutionary road map. Adv. Parasitol. 99, 93–263 (2018).PubMed 
    Article 

    Google Scholar 
    Colón-Llavina, M. M. et al. Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes. Parasitol. Res. 105, 1239–1252 (2009).PubMed 
    Article 

    Google Scholar 
    Iñiguez, A. M., Santos, C. P. & Vicente, A. C. P. Genetic characterization of Anisakis typica and Anisakis physeteris from marine mammals and fish from the Atlantic Ocean off Brazil. Vet. Parasitol. 165, 350–356 (2009).PubMed 
    Article 

    Google Scholar 
    Gomes, T. L. et al. Anisakis spp. in toothed and baleen whales from Japanese waters with notes on their potential role as biological tags. Parasitol. Int. 80, 102228 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Irigoitia, M. et al. Genetic identification of Anisakis spp. (Nematoda: Anisakidae) from cetaceans of the Southwestern Atlantic Ocean: Ecological and zoogeographical implications. Parasit. Res. 120, 1–13 (2021).Article 

    Google Scholar 
    Ugland, K. I., Strømnes, E., Berland, B. & Aspholm, P. E. Growth, fecundity and sex ratio of adult whaleworm (Anisakis simplex; Nematoda, Ascaridoidea, Anisakidae) in three whale species from the North-East Atlantic. Parasitol. Res. 92, 484–489 (2004).PubMed 
    Article 

    Google Scholar 
    Berland, B. Musings on nematode parasites. Fisken og Havet 11, 1–26 (2006).
    Google Scholar 
    Roca-Geronès, X., Alcover, M. M., Godínez-González, C., Montoliu, I. & Fisa, R. Hybrid genotype of Anisakis simplex (s.s.) and A. pegreffii identified in third- and fourth-stage larvae from sympatric and allopatric Spanish marine waters. Animals 11, 2458 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, J. Ulcers associated with larval Anisakis simplex B (Nematoda: Ascaridoidea) in the forestomach of harbour porpoises Phocoena phocoena (L.). Can. J. Zool. 67, 2270–2276 (1989).Article 

    Google Scholar 
    Abollo, E., Lopez, A., Gestal, C., Benavente, P. & Pascual, S. Macroparasites in cetaceans stranded on the northwestern Spanish Atlantic coast. Dis. Aquat. Org. 32, 227–231 (1998).CAS 
    Article 

    Google Scholar 
    Hrabar, J., Bočina, I., Gudan Kurilj, A., Đuras, M. & Mladineo, I. Gastric lesions in dolphins stranded along the Eastern Adriatic coast. Dis. Aquat. Organ. 125, 125–139 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pons-Bordas, C. et al. Recent increase of ulcerative lesions caused by Anisakis spp. in cetaceans from the north-east Atlantic. J. Helminthol. 94, E127 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ryeng, K. A., Lakemeyer, J., Roller, M., Wohlsein, P. & Sieber, U. Pathological findings in bycaught harbour porpoises (Phocoena phocoena) from the coast of Northern Norway. Polar Biol. 45, 45–57 (2021).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Paoletti, M., Levsen, A. & Nascetti, G. Reviewing biodiversity and epidemiological aspects of anisakid nematodes from the North East Atlantic Ocean. J. Helminthol. 91, 422–439 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mattiucci, S. et al. Novel polymorphic microsatellite loci in Anisakis pegreffii and A. simplex (s.s.) (Nematoda: Anisakidae): Implications for species recognition and population genetic analysis. Parasitology 146, 1387–1403 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shamsi, S., Sprohnle-Barrera, C. & Hossen, M. D. S. Occurrence of Anisakis spp. (Nematoda: Anisakidae) in a pygmy sperm whale Kogia breviceps (Cetacea: Kogiidae) in Australian waters. Dis. Aquat. Organ. 134, 65–74 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavallero, S., Nadler, S. A., Paggi, L., Barros, N. B. & D’Amelio, S. Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea. Parasitol. Res. 108, 781–792 (2011).PubMed 
    Article 

    Google Scholar 
    Klimpel, S. & Palm, H. W. Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In Progress in Parasitology, Parasitology Research Monographs Vol. 2 (ed. Mehlhorn, H.) 201–222 (Springer, 2011).
    Google Scholar 
    Li, L. et al. Molecular phylogeny and dating reveal a terrestrial origin in the early Carboniferous for Ascaridoid nematodes. Syst. Biol. 67, 888–900 (2018).PubMed 
    Article 

    Google Scholar 
    Shamsi, S. Recent advances in our knowledge of Australian anisakid nematodes. Int. J. Parasitol. Parasites Wildl. 3, 178–187 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–214 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Amelio, S. et al. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. Int. J. Parasitol. 30, 223–226 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valentini, A. et al. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J. Parasitol. 92, 156–166 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mattiucci, S. et al. No more time to stay ‘single’ in the detection of Anisakis pegreffii, A. simplex (s.s.) and hybridization events between them: A multi-marker nuclear genotyping approach. Parasitology 143, 998–1011 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palomba, M., Paoletti, M., Webb, S. C., Nascetti, G. & Mattiucci, S. A novel nuclear marker and development of an ARMS-PCR assay targeting the metallopeptidase 10 (nas 10) locus to identify the species of the Anisakis simplex (s. l.) complex (Nematoda, Anisakidae). Parasite 27, 39 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mladineo, I. et al. Anisakis simplex complex: Ecological significance of recombinant genotypes in an allopatric area of the Adriatic Sea inferred by genome-derived simple sequence repeats. Int. J. Parasitol. 47, 215–223 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bello, E., Paoletti, M., Webb, S. C., Nascetti, G. & Mattiucci, S. Cross-species utility of microsatellite loci for the genetic characterisation of Anisakis berlandi (Nematoda: Anisakidae). Parasite 27, 9 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bello, E. et al. Investigating the genetic structure of the parasites Anisakis pegreffii and A. berlandi (Nematoda: Anisakidae) in a sympatric area of the southern Pacific Ocean waters using a multilocus genotyping approach: First evidence of their interspecific hybridization. Infect. Genet. Evol. 92, 104887 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klapper, R. et al. Anisakid nematodes in beaked redfish (Sebastes mentella) from three fishing grounds in the North Atlantic, with special notes on distribution in the fish musculature. Vet. Parasit. 207, 72–80 (2015).Article 

    Google Scholar 
    Bušelić, I. et al. Geographic and host size variations as indicators of Anisakis pegreffii infection in European pilchard (Sardina pilchardus) from the Mediterranean Sea: Food safety implications. Int. J. Food Microb. 266, 126–132 (2018).Article 
    CAS 

    Google Scholar 
    Cipriani, P. et al. Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy Engraulis encrasicolus from the Mediterranean Sea: Fishing ground as a predictor of parasite distribution. Fish. Res. 202, 59–68 (2018).Article 

    Google Scholar 
    Cipriani, P. et al. The Mediterranean European hake, Merluccius merluccius: Detecting drivers influencing the Anisakis spp. larvae distribution. Fish. Res. 202, 79–89 (2018).Article 

    Google Scholar 
    Levsen, A. et al. A survey of zoonotic nematodes of commercial key fish species from major European fishing grounds—Introducing the FP7 PARASITE exposure assessment study. Fish. Res. 202, 4–21 (2018).Article 

    Google Scholar 
    Gibson, D. I. et al. A survey of the helminth parasites of cetaceans stranded on the coast of England and Wales during the period 1990–1994. J. Zool. 244, 563–574 (1998).Article 

    Google Scholar 
    Mattiucci, S. et al. Evidence for a new species of Anisakis Dujardin, 1845: Morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Syst. Parasitol. 61, 157–171 (2005).PubMed 
    Article 

    Google Scholar 
    Blažeković, K., Pleić, I. L., Đuras, M., Gomerčić, T. & Mladineo, I. Three Anisakis spp. isolated from toothed whales stranded along the eastern Adriatic Sea coast. Int. J. Parasitol. 45, 17–31 (2015).PubMed 
    Article 

    Google Scholar 
    Mazzariol, S. et al. Multidisciplinary studies on a sick-leader syndrome-associated mass stranding of sperm whales (Physeter macrocephalus) along the Adriatic coast of Italy. Sci. Rep. 8, 11577 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gomerčić, M. et al. Bottlenose dolphin (Tursiops truncatus) depredation resulting in larynx strangulation with gill-net parts. Mar. Mammal Sci. 25, 392–401 (2009).Article 

    Google Scholar 
    Pyenson, N. The high fidelity of the cetacean stranding record: Insights into measuring diversity by integrating taphonomy and macroecology. Proc. R. Soc. B. 278, 3608–3616 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacLeod, C. D., Santos, B., López Fernandez, A. & Pierce, G. Relative prey size consumption in toothed whales: Implications for prey selection and level of specialisation. Mar. Ecol. Prog. Ser. 326, 295–307 (2006).ADS 
    Article 

    Google Scholar 
    Santos, M. B. et al. Pygmy sperm whales Kogia Breviceps in the Northeast Atlantic: New information on stomach contents and strandings. Mar. Mammal Sci. 22, 600–616 (2006).Article 

    Google Scholar 
    Covelo, P., Martínez-Cedeira, J., Llavona, A., Díaz, J. & López Fernandez, A. Strandings of Beaked Whales (Ziphiidae) in Galicia (NW Spain) between 1990 and 2013. J. Mar. Biol. Assoc. U. K. 1, 1–7 (2016).
    Google Scholar 
    Moura, J. et al. Stranding events of Kogia whales along the Brazilian Coast. PLoS ONE 11, e0146108 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordes, D. O. The causes of whale strandings. N. Z. Vet. J. 30, 21–24 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frantzis, A. Does acoustic testing strand whales?. Nature 392, 29 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Laist, D. W., Knowlton, A. R., Mead, J. G., Collet, A. S. & Podesta, M. Collisions between ships and whales. Mar. Mammal Sci. 17, 35–75 (2001).Article 

    Google Scholar 
    Jepson, P. D. et al. Gas-bubble lesions in stranded cetaceans. Nature 425, 575–576 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pierce, G. J., Santos, M. B., Smeenk, C., Saveliev, A. & Zuur, A. F. Historical trends in the incidence of strandings of sperm whales (Physeter macrocephalus) on North Sea coasts: An association with positive temperature anomalies. Fish. Res. 87, 219–228 (2007).Article 

    Google Scholar 
    Coombs, E. et al. What can cetacean stranding records tell us? A study of UK and Irish cetacean diversity over the past 100 years. Mar. Mammal Sci. 35, 1527–1555 (2019).Article 

    Google Scholar 
    Fossi, M. C., Baini, M., Panti, C. & Baulch, S. Chapter 6—Impacts of marine litter on cetaceans: A focus on plastic pollution. In Marine Mammal Ecotoxicology (eds Fossi, M. C. & Panti, C.) 147–184 (Academic Press, 2018).Chapter 

    Google Scholar 
    Alexiadou, P., Foskolos, I. & Frantzis, A. Ingestion of macroplastics by odontocetes of the Greek Seas, Eastern Mediterranean: Often deadly!. Mar. Poll. Bull. 146, 67–75 (2019).CAS 
    Article 

    Google Scholar 
    Nicol, C. et al. Anthropogenic threats to Wild Cetacean welfare and a tool to inform policy in this area. Vet. Sci. Res. J. 7, 57 (2020).
    Google Scholar 
    Abollo, E., Paggi, L., Pascual, S. & D’Amelio, S. Occurrence of recombinant genotypes of Anisakis simplex s.s. and Anisakis pegreffii (Nematoda: Anisakidae) in an area of sympatry. Infect. Genet. Evol. 3, 175–181 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marques, J. F., Cabral, H., Busi, M. & D’Amelio, S. Molecular identification of Anisakis species from Pleuronectiformes off the Portuguese coast. J. Helminthol. 80, 47–51 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, M. H., Cheon, D. & Choi, C. Molecular genotyping of Anisakis species from Korean sea fish by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP). Food Control 20, 623–626 (2009).CAS 
    Article 

    Google Scholar 
    Suzuki, J., Murata, R., Hosaka, M. & Araki, J. Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int. J. Food Microbiol. 137, 88–93 (2010).PubMed 
    Article 

    Google Scholar 
    Molina-Fernández, D. et al. Fishing area and fish size as risk factors of Anisakis infection in sardines (Sardina pilchardus) from Iberian waters, southwestern Europe. Int. J. Food Microb. 203, 27–34 (2015).Article 

    Google Scholar 
    Cipriani, P. et al. Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (s.s.) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic coast: Implications for food safety. Int. J. Food Microbiol. 198, 1–8 (2015).PubMed 
    Article 

    Google Scholar 
    Gómez-Mateos, M., Merino-Espinosa, G., Corpas-López, V., Valero-López, A. & Martín-Sánchez, J. A multi-restriction fragment length polymorphism genotyping approach including the beta-tubulin gene as a new differential nuclear marker for the recognition of the cryptic species Anisakis simplex s.s. and Anisakis pegreffii and their hybridization events. Vet. Parasitol. 283, 109162 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Klimpel, S., Busch, M. W., Kuhn, T., Rohde, A. & Palm, H. The Anisakis simplex complex off the South Shetland Islands (Antarctica): Endemic populations versus introduction through migratory hosts. Mar. Ecol. Progr. Ser. 40, 1–11 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    Santoro, M. et al. Helminth parasites of the dwarf sperm whale Kogia sima (Cetacea: Kogiidae) from the Mediterranean Sea, with implications on host ecology. Dis. Aquat. Organ. 129, 175–182 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mattiucci, S., Nascetti, G., Bullini, L., Orecchia, P. & Paggi, L. Genetic structure of Anisakis physeteris and its differentiation from the Anisakis simplex complex (Ascaridida: Anisakidae). Parasitology 93, 383–387 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palomba, M., Mattiucci, S., Crocetta, F., Osca, D. & Santoro, M. Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters. Sci. Rep. 11, 7135 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarke, M. R., Martins, H. R. & Pascoe, P. The diet of sperm whales (Physeter macrocephalus Linnaeus 1758) off the Azores. Philos. Trans. R. Soc. Lond. B. 339, 67–82 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Santos, M. & Pierce, G. A note on niche overlap in teuthophagous whales in the northern Northeast Atlantic. Phuket Mar. Biol. Cent. Res. Bull. 66, 291–298 (2005).
    Google Scholar 
    Rendell, L. & Frantzis, A. Mediterranean Sperm Whales, Physeter macrocephalus: The precarious state of a lost tribe. In Advances in Marine Biology (eds Notarbartolo di Sciara, G. et al.) 37–74 (Academic Press, 2016).
    Google Scholar 
    Foskolos, I., Koutouzi, N., Polychronidis, L., Alexiadou, P. & Frantzis, A. A taste for squid: the diet of sperm whales stranded in Greece, Eastern Mediterranean. Deep Sea Res. I Oceanogr. Res. Pap. 155, 103164 (2020).Article 

    Google Scholar 
    Mattiucci, S. et al. Genetic heterogeneity within Anisakis physeteris (sensu lato) (Nematoda: Anisakidae) from sperm whales, Physeter macrocephalus, from Mediterranean Sea (Apulian coast) and Atlantic Ocean (Canaries coast). Abstract of XXVI Congresso Nazionale SoIPa. Parassitologia 52, 357 (2010).
    Google Scholar 
    Mattiucci, S. et al. Genetic identification and insights into the ecology of Contracaecum rudolphii A and C. rudolphii B (Nematoda: Anisakidae) from cormorants and fish of aquatic ecosystems of Central Italy. Parasitol. Res. 119, 1243–1257 (2020).PubMed 
    Article 

    Google Scholar 
    Karvonen, A., Jokela, J. & Laine, A. L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).PubMed 
    Article 

    Google Scholar 
    Paggi, L. et al. A new species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae) from beaked whale (Ziphiidae): Allozyme and morphological evidence. Syst. Parasitol. 40, 161–174 (1998).Article 

    Google Scholar 
    Mattiucci, S., Paoletti, M. & Webb, S. C. Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: Morphological description, genetic relationships between congeners and ecological data. Syst. Parasitol. 74, 199–217 (2009).PubMed 
    Article 

    Google Scholar 
    Leatherwood, S. & Reeves, R. R. The Sierra Club Handbook of Whales and Dolphins 302 (Sierra Club Books, 1983).
    Google Scholar 
    Ross, G. J. B. The smaller cetaceans of the South East coast of southern Africa. Ann. Cape Prov. Mus. Nat. Hist. 15, 173–410 (1984).
    Google Scholar 
    Santos, B. et al. Feeding ecology of Cuvier’s beaked whale (Ziphius cavirostris): A review with new information on the diet of this species. J. Mar. Biol. Assoc. U. K. 81, 687–694 (2001).Article 

    Google Scholar 
    Lakemeyer, J. et al. Anisakid nematode species identification in harbour porpoises (Phocoena phocoena) from the North Sea, Baltic Sea and North Atlantic using RFLP analysis. Int. J. Parasitol. Parasites Wildl. 12, 93–98 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Højgaard, D. No significant development of Anisakis simplex (Nematoda, Anisakidae) eggs in the intestine of long-finned pilot whales, Globicephala melas (Traill, 1809). Sarsia 84, 479–482 (1999).Article 

    Google Scholar 
    Smith, J. W. & Wootten, R. Experimental studies on the migration of Anisakis sp. larvae (Nematoda: ascaridida) into the flesh of herring, Clupea harengus L. Int. J. Parasitol. 5, 133–136 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Iglesias, L., Valero, A., Benítez, R. & Adroher, F. J. In vitro cultivation of Anisakis simplex: Pepsin increases survival and moulting from fourth larval to adult stage. Parasitology 123, 285–291 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mladineo, I. & Poljak, V. Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species. Appl. Environ. Microbiol. 80, 1281–1290 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mladineo, I., Bušelić, I., Hrabar, J., Vrbatović, A. & Radonić, I. Population parameters and mito-nuclear mosaicism of Anisakis spp. in the Adriatic Sea. Mol. Biochem. Parasitol. 212, 46–54 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levsen, A. et al. Anisakis species composition and infection characteristics in Atlantic mackerel, Scomber scombrus, from major European fishing grounds—Reflecting changing fish host distribution and migration pattern. Fish. Res. 202, 112–121 (2018).Article 

    Google Scholar 
    Gay, M. et al. Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size. Fish. Res. 202, 90–102 (2018).Article 

    Google Scholar 
    Stevick, P. et al. Segregation of migration by feeding ground origin in North Atlantic humpback whales (Megaptera novaeangliae). J. Zool. 259, 231–237 (2003).Article 

    Google Scholar 
    Lambert, E. et al. Cetacean range and climate in the eastern North Atlantic: Future predictions and implications for conservation. Glob. Change Biol. 20, 1782–1793 (2014).ADS 
    Article 

    Google Scholar 
    Szesciorka, A. et al. Timing is everything: Drivers of interannual variability in blue whale migration. Sci. Rep. 10, 7710 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoelzel, A. R., Goldsworthy, S. D. & Fleischer, R. C. Population genetic structure. In Marine Mammal Biology: An Evolutionary Approach (ed. Hoelzel, A. R.) 1–134 (Blackwell Publishing, 2002).
    Google Scholar 
    Lahaye, V. et al. Long-term dietary segregation of common dolphins Delphinus delphis in the Bay of Biscay, determined using cadmium as an ecological tracer. Mar. Ecol. Prog. Ser. 305, 275–285 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattiucci, S. et al. Population genetic structure of the parasite Anisakis simplex (s.s.) collected in Clupea harengus L. from North East Atlantic fishing grounds. Fish. Res. 202, 103–111 (2018).Article 

    Google Scholar 
    Natoli, A. et al. Conservation genetics of the short-beaked common dolphin (Delphinus delphis) in the Mediterranean Sea and in the eastern North Atlantic Ocean. Conserv. Genet. 9, 1479–1487 (2008).Article 

    Google Scholar 
    Mazzariol, S. et al. Sometimes sperm whales (Physeter macrocephalus) cannot find their way back to the high seas: A multidisciplinary study on a mass stranding. PLoS ONE 6, e19417 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mazzariol, S. et al. Dolphin Morbillivirus associated with a mass stranding of sperm Whales, Italy. Emerg. Infect. Dis. 23, 144–146 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Podestà, M. et al. Cuvier’s beaked whale, Ziphius cavirostris, distribution and occurrence in the Mediterranean Sea: High-use areas and conservation threats. Adv. Mar. Biol. 75, 103–140 (2016).PubMed 
    Article 

    Google Scholar 
    Davies, K., Pagan, C. & Nadler, S. A. Host population expansion and the genetic architecture of the pinniped hookworm Uncinaria lucasi. J. Parasitol. 106, 383–391 (2020).PubMed 
    Article 

    Google Scholar 
    IJsseldijk, L. L., Brownlow, A. C. & Mazzariol, S. European best practice on cetacean post-mortem investigation and tissue sampling (ed. IJsseldijk, L. L., Brownlow, A. C., & Mazzariol, S.) 1–72 (ASCOBANS/ACCOBAMS, 2019).Nadler, S. A. & Hudspeth, D. S. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: Hypotheses of structural and sequence evolution. J. Parasitol. 86, 380–393 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zuckerkandl, E. & Pauling, L. Molecular disease, evolution, and genetic heterogeneity. In Horizons in Biochemistry (eds Kasha, M. & Pullman, B.) 189–225 (Academic Press, 1962).
    Google Scholar 
    Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weir, B. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Drivers of avian habitat use and detection of backyard birds in the Pacific Northwest during COVID-19 pandemic lockdowns

    Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).Article 

    Google Scholar 
    Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 74, 46–69 (2006).Article 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science (1979) 366, 120–124 (2019).CAS 

    Google Scholar 
    Isaksson, C. Impact of Urbanization on Birds https://doi.org/10.1007/978-3-319-91689-7_13 (2018).Article 

    Google Scholar 
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pipoly, I. et al. Extreme hot weather has stronger impacts on Avian reproduction in forests than in cities. Front. Ecol. Evol. 10, 1 (2022).Article 

    Google Scholar 
    Newberry, G. N., O’Connor, R. S. & Swanson, D. L. Urban rooftop-nesting Common Nighthawk chicks tolerate high temperatures by hyperthermia with relatively low rates of evaporative water loss. Condor 123, 016 (2021).Article 

    Google Scholar 
    da Silva, A., Valcu, M. & Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B: Biol. Sci. 370, 126 (2015).Article 

    Google Scholar 
    Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. 5, 55 (2017).Article 

    Google Scholar 
    van Doren, B. M. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. USA. 114, 11175–11180 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Miller, M. W. Apparent effects of light pollution on singing behavior of American Robins. Condor 108, 130–139 (2006).Article 

    Google Scholar 
    Nemeth, E. & Brumm, H. Birds and anthropogenic noise: Are urban songs adaptive?. Am. Nat. 176, 465 (2010).PubMed 
    Article 

    Google Scholar 
    Nemeth, E. et al. Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher-frequency songs in cities. Proc. R. Soc. B: Biol. Sci. 280, 20122798 (2013).Article 

    Google Scholar 
    Senzaki, M., Yamaura, Y., Francis, C. D. & Nakamura, F. Traffic noise reduces foraging efficiency in wild owls. Sci. Rep. 6, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Ornithol. Monogr. 74, 6–22 (2012).Article 

    Google Scholar 
    Sanderfoot, O. V. & Holloway, T. Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environ. Res. Lett. 12, 832. https://doi.org/10.1088/1748-9326/aa8051 (2017).CAS 
    Article 

    Google Scholar 
    Eeva, T. & Lehikoinen, E. Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia 102, 312–323 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    Tablado, Z. et al. Effect of human disturbance on bird telomere length: An experimental approach. Front. Ecol. Evol. 9, 1 (2022).Article 

    Google Scholar 
    Kang, W., Minor, E. S., Park, C. R. & Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 18, 857–870 (2015).Article 

    Google Scholar 
    Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).Article 

    Google Scholar 
    Estela, F. A. et al. Changes in the nocturnal activity of birds during the covid–19 pandemic lockdown in a neotropical city. Anim. Biodivers. Conserv. 44, 1 (2021).
    Google Scholar 
    Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108665. https://doi.org/10.1016/j.biocon.2020.108665 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z (2020).Article 
    PubMed 

    Google Scholar 
    Czech, K., Davy, A. & Wielechowski, M. Does the covid-19 pandemic change human mobility equally worldwide? Cross-country cluster analysis. Economies 9, 182 (2021).Article 

    Google Scholar 
    Galeazzi, A. et al. Human mobility in response to COVID-19 in France, Italy and UK. Sci. Rep. 11, 1 (2021).Article 
    CAS 

    Google Scholar 
    Joshi, Y. V. & Musalem, A. Lockdowns lose one third of their impact on mobility in a month. Sci. Rep. 11, 1 (2021).Article 
    CAS 

    Google Scholar 
    Dobbie, L. J., Hydes, T. J., Alam, U., Tahrani, A. & Cuthbertson, D. J. The impact of the COVID-19 pandemic on mobility trends and the associated rise in population-level physical inactivity: Insights From International Mobile Phone and National Survey Data. Front. Sports Active Living 4, 80 (2022).Article 

    Google Scholar 
    Basu, B. et al. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustain. Cities Soc. 65, 102597 (2021).Article 

    Google Scholar 
    Lecocq, T. et al. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science (1979) 369, 1338 (2020).
    Google Scholar 
    Terry, C., Rothendler, M., Zipf, L., Dietze, M. C. & Primack, R. B. Effects of the COVID-19 pandemic on noise pollution in three protected areas in metropolitan Boston (USA). Biol. Cons. 256, 109039 (2021).Article 

    Google Scholar 
    Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci U S A 117, 18984 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Archer, C. L., Cervone, G. & Golbazi, M. Changes in air quality and human mobility in the US during the COVID-19 pandemic. Bull. Atmosp. Sci. Technol. 1, 491–541. https://doi.org/10.1007/s42865-020-00019-0 (2020).Article 

    Google Scholar 
    Jiang, Z. et al. Modeling the impact of COVID-19 on air quality in Southern California: Implications for future control policies. Atmosp. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2020-1197 (2020).Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 7, 6696 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Hentati-Sundberg, J., Berglund, P. A., Hejdström, A. & Olsson, O. COVID-19 lockdown reveals tourists as seabird guardians. Biol. Conserv. 254, 108950 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science (1979) 370, 575 (2020).CAS 

    Google Scholar 
    Schrimpf, M. B. et al. Reduced human activity during COVID-19 alters avian land use across North America. Sci. Adv. 7, 5073 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2252 (2002).Article 

    Google Scholar 
    Gordo, O., Brotons, L., Herrando, S. & Gargallo, G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B: Biol. Sci. 288, 20202513 (2021).CAS 
    Article 

    Google Scholar 
    Johnson, D. H. In defense of indices: The Case of Bird Surveys. J. Wildl. Manag. 72, 857–868 (2008).Article 

    Google Scholar 
    Sanderfoot, O. V. & & Gardner, B.,. Wildfire smoke affects detection of birds in Washington State. Ornithol. Appl. 123, 28 (2021).
    Google Scholar 
    Sumasgutner, P. et al. Raptor research during the COVID-19 pandemic provides invaluable opportunities for conservation biology. Biol. Conserv. 260, 109149 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crimmins, T. M., Posthumus, E., Schaffer, S. & Prudic, K. L. COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. Biol. Conserv. 256, 109017 (2021).Article 

    Google Scholar 
    Basile, M., Russo, L. F., Russo, V. G., Senese, A. & Bernardo, N. Birds seen and not seen during the COVID-19 pandemic: The impact of lockdown measures on citizen science bird observations. Biol. Conserv. 256, 109079 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kishimoto, K. & Kobori, H. COVID-19 pandemic drives changes in participation in citizen science project “City Nature Challenge” in Tokyo. Biol. Conserv. 255, 109001 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282 (2009).Article 

    Google Scholar 
    Pacifici, K., Simons, T. R. & Pollock, K. H. Effects of vegetation and background noise on the detection process in auditory avian point-count surveys. Auk 125, 600–607 (2008).Article 

    Google Scholar 
    Mitchell, M. S. et al. Testing a priori hypotheses improves the reliability of wildlife research. J. Wildl. Manag. 82, 1568. https://doi.org/10.1002/jwmg.21568 (2018).Article 

    Google Scholar 
    Sells, S. N. et al. Increased scientific rigor will improve reliability of research and effectiveness of management. J. Wildl. Manag. 82, 485. https://doi.org/10.1002/jwmg.21413 (2018).Article 

    Google Scholar 
    Strimas-Mackey, M., E. Miller, and W. Hochachka. auk: eBird Data Extraction and Processing with AWK. R package version 0.3.0. (2018) https://cornelllabofornithology.github.io/auk/R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/.U.S. Environmental Protection Agency (EPA). Air Quality System Data Mart (2020). https://www.epa.gov/airdataKaragulian, F. et al. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 120, 475. https://doi.org/10.1016/j.atmosenv.2015.08.087 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ito, K., Thurston, G. D. & Silverman, R. A. Characterization of PM25, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J. Exposure Sci. Environ. Epidemiol. 17, S45–S60 (2007).CAS 
    Article 

    Google Scholar 
    Google LLC “Google COVID-19 Community Mobility Reports”. https://www.google.com/covid19/mobility/ Accessed: November 1, 2020.Waze “Global Mobility Report”. https://www.waze.com Accessed: May 22, 2020.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R package version 1.17 (2019). https://CRAN.R-project.org/package=ncdf4Esri “USA NLCD Land Cover” [imagery layer]. Esri Inc (2019). https://www.arcgis.com/home/item.html?id=3ccf118ed80748909eb85c6d262b426f.Esri Inc. ArcMap (Version 10.8.1). Esri Inc. Redlands, California, USA (2020). https://desktop.arcgis.com/en/arcmap/.Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43(10), 1–23 (2011).Article 

    Google Scholar 
    Efford, M. G. & Dawson, D. K. Occupancy in continuous habitat. Ecosphere 3, 1 (2012).Article 

    Google Scholar 
    Lee, B. P. Y. H., Davies, Z. G. & Struebig, M. J. Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia. Environ. Res. Lett. 12, 094022 (2017).ADS 
    Article 

    Google Scholar 
    Leonard, R. J. & Hochuli, D. F. Exhausting all avenues: why impacts of air pollution should be part of road ecology. Front. Ecol. Environ. 15, 443. https://doi.org/10.1002/fee.1521 (2017).Article 

    Google Scholar 
    Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 1 (2019).CAS 
    Article 

    Google Scholar 
    Cleary, G. P. et al. Avian assemblages at bird baths: A comparison of urban and rural bird baths in Australia. PLoS ONE 11, e0150899 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bailey, L. L., Mackenzie, D. I. & Nichols, J. D. Advances and applications of occupancy models. Methods Ecol. Evol. 5, 1269 (2014).Article 

    Google Scholar 
    Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 1. https://doi.org/10.1098/rsbl.2018.0082 (2018).Article 

    Google Scholar  More

  • in

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 
    Article 

    Google Scholar 
    Wright, S. J. et al. Plant responses to fertilization experiments in lowland, species rich, tropical forests. Ecology 99, 1129–1138 (2018).PubMed 
    Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization depend on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    Sun, Y. et al. Diagnosing phosphorus limitation in natural terrestrial ecosystems in carbon cycle models. Earths Future 5, 730–749 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhang, Q. et al. Nitrogen and phosphorus limitations significantly reduce allowable CO2 emissions. Geophys. Lett. 41, 632–637 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystem: a meta analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Jordan, C. F. The nutrient balance of an Amazonian rainforest. Ecology 63, 647–654 (1982).CAS 
    Article 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).CAS 
    Article 
    ADS 

    Google Scholar 
    Crews, T. E. et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76, 1408–1424 (1995).Article 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).Article 

    Google Scholar 
    Dalling, J. W. et al. in Tropical Tree Physiology (Springer, 2016).Herrera, R. R. & Medina, E. Amazon ecosystems, their structure and functioning with particular emphasis on nutrients. Interciencia 3, 223–231 (1978).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. et al. Basin wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Article 
    ADS 

    Google Scholar 
    Mercado, L. et al. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3316–3329 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Yang, X. et al. The effects of phosphorus cycle dynamics carbon sources and sink in the Amazon region: a modelling study using ELM v1. J. Geophys. Res. Biogeosci. 124, 3686–3698 (2019).CAS 
    Article 

    Google Scholar 
    Sollins, P. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79, 23–30 (1998).Article 

    Google Scholar 
    Alvarez-Clare, S. et al. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94, 1540–1551 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, S. J. et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92, 1616–1625 (2011).PubMed 
    Article 

    Google Scholar 
    Sayer, E. J. et al. Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15, 387–400 (2012).CAS 
    Article 

    Google Scholar 
    Ganade, G. & Brown, V. Succession in old pastures of central Amazonia: role of soil fertility and plant litter. Ecology 83, 743–754 (2002).Article 

    Google Scholar 
    Markewitz, D. et al. Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. Biol. Fertil. Soils 48, 665–678 (2012).Article 

    Google Scholar 
    Davidson, E. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).Article 

    Google Scholar 
    Massad, T. et al. Interactions between fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172, 219–229 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Newbery, D. M. et al. Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest? New Phytol. 156, 297–311 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mirmanto, E. et al. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1825–1829 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2020).Article 
    CAS 

    Google Scholar 
    Quesada, C. A. et al. Soils of Amazonia with particular reference to the rainfor sites. Biogeosciences 8, 1415–1440 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    Giardina, C. et al. Primary production and carbon allocation in relation to nutrient supply in a tropical experiment forest. Glob. Change Biol. 9, 1438–1450 (2003).Article 
    ADS 

    Google Scholar 
    Rowland, L. et al. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytol. 214, 1064–1077 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vicca, S. et al. Fertile forests produce biomass more efficiently. Ecol. Lett. 15, 520–526 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–826 (2004).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hinsinger, P. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv. Agron. 64, 225–265 (1998).CAS 
    Article 

    Google Scholar 
    Van Langehove, L. et al. Rapid root assimilation of added phosphorus in a lowland tropical rainforest of French Guiana. Soil Biol. Biochem. 140, 107646 (2019).Article 
    CAS 

    Google Scholar 
    Martins, N. P. et al. Fine roots stimulate nutrient release during early stages of litter decomposition in a central Amazon rainforest. Plant Soil 469, 287–303 (2021).CAS 
    Article 

    Google Scholar 
    Cordeiro, A. L. et al. Fine root dynamics vary with soil and precipitation in a low-nutrient tropical forest in the central Amazonia. Plant Environ. Interact. 220, 3–16 (2020).Article 

    Google Scholar 
    Yavitt, J. Soil fertility and fine root dynamics in response to four years of nutrient (N,P, K) fertilization in a lowland tropical moist forest, Panamá. Austral. Ecol. 36, 433–445 (2011).Article 

    Google Scholar 
    Wurzburger, N. & Wright, S. J. Fine root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).PubMed 
    Article 

    Google Scholar 
    Waring, B. G., Aviles, D. P., Murray, J. G. & Powers, J. S. Plant community responses to stand level nutrient fertilization in a secondary tropical dry forest. Ecology 100, e02691 (2019).PubMed 
    Article 

    Google Scholar 
    Jansens, I. A. et al. Reductions of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Alvarez Claire, S. et al. Do foliar, litter, and root nitrogen and phosphorus concentration reflect nutrient limitation in a lowland tropical wet forest? PLoS ONE 10, e0123796 (2015).Article 
    CAS 

    Google Scholar 
    Bouma, T. in Advances in Photosynthesis and Respiration Vol. 18 (eds Lambers, H. & Ribas-Carbo, M.) 177–194 (Springer, 2005).Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Change Biol. 15, 1255–1274 (2009).Article 
    ADS 

    Google Scholar 
    Aragão, L. E. O. et al. Above and below ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).Article 
    ADS 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. & Lloyd, J. in Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin (eds Nagy, L. et al.) 267–299 (Springer, 2016).Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary production, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. 93, 223–247 (2018).PubMed 
    Article 

    Google Scholar 
    De Oliveira, A. & Mori, S. A. A central Amazonia terra firme forest. I. High tree species richness on poor soils. Biodivers. Conserv. 8, 1219–1244 (1999).Article 

    Google Scholar 
    Ferreira, S. J. F., Luizão, F. J. & Dallarosa, R. L. G. Throughfall and rainfall interception by an upland forest submitted to selective logging in Central Amazonia [Portuguese]. Acta Amaz. 35, 55–62 (2005).Article 

    Google Scholar 
    Tanaka, L. D. S., Satyamurty, P. & Machado, L. A. T. Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol. 34, 3574–3584 (2014).Article 

    Google Scholar 
    Duque, A. et al. Insights into regional patterns of Amazonian forest structure and dominance from three large terra firme forest dynamics plots. Biodivers. Conserv. 26, 669–686 (2017).Article 

    Google Scholar 
    Martins, D. L. et al. Soil induced impacts on forest structure drive coarse wood debris stocks across central Amazonia. Plant Ecol. Divers. 8, 229–241 (2014).Article 

    Google Scholar 
    Metcalfe, D. B. et al. A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurent accuracy. New Phytol. 174, 697–703 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chave, J. et al. Improved allometric to estimate the above ground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).Article 
    ADS 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Global Wood Density Database https://doi.org/10.5061/dryad.234 (2009).Higuchi, N. & Carvalho, J. A. in Anais do Seminário: Emissão e Sequestro de CO2—Uma Nova Oportunidade de Negócios para o Brasil (CVRD, 1994).Brienen, R. J. W., Philips, O. L. & Zagt, R. J. Long term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Malhado, A. C. M. et al. Seasonal leaf dynamics in an Amazonian tropical forest. Forest Ecol. Manag. 258, 1161–1165 (2009).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bates, D., Marcher, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Moraes, A. C. M. et al. Fine Litterfall Production and Nutrient Composition Data from a Fertilized Site in Central Amazon, Brazil (NERC, 2020).Cunha, H. F. V. et al. Fine Root Biomass in Fertilised Plots in the Central Amazon, 2017–2019 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Tree Census and Diameter Increment in Fertilised Plots in the Central Amazon, 2017–2020 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Leaf Area Index (LAI) in Fertilised Plots in the Central Amazon, 2017–2018 (NERC Environmental Information Data Centre, 2021). More

  • in

    Reviewing the ecological impacts of offshore wind farms

    International Energy Agency. Offshore Wind Outlook 2019. https://iea.blob.core.windows.net/assets/495ab264-4ddf-4b68-b9c0-514295ff40a7/Offshore_Wind_Outlook_2019.pdf (2019).United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. (E/CN.3/2016/2/Rev.1). 49. (New York: United Nations Economic and Social Council, 2016).Copping, A. et al. Annex IV State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. https://tethys.pnnl.gov/sites/default/files/publications/Annex-IV-2016-State-of-the-Science-Report_MR.pdf. Accessed 27 Feb 2020. (2016).Dean, N. Performance factors. Nature Energy 5, 5–5 (2020).Article 

    Google Scholar 
    Global Wind Energy Council. Globarl offshore wind report 2020. https://gwec.net/wp-content/uploads/dlm_uploads/2020/08/GWEC-offshore-wind-2020-5.pdf (2020).Jansen, M. et al. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 5, 614–622 (2020).Article 

    Google Scholar 
    IRENA. Global Renewables Outlook: Energy transformation 2050 (Edition: 2020), International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-238-3. www.irena.org/publications (2020).Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 6, 555–565 (2021).Article 

    Google Scholar 
    IRENA. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (2019).European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11.12.2019 COM(2019) 640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (2019).European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. Brussels, 19.11.2020 COM(2020) 741 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A741%3AFIN (2020).European Parliament. European Parliament resolution of 14 March 2019 on climate change – a European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy in accordance with the Paris Agreement (2019/2582(RSP)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019IP0217 (2019).Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882–30891 (2020).CAS 
    Article 

    Google Scholar 
    Copping, A. E., Freeman, M. C., Gorton, A. M. & Hemery, L. G. Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development. J. Marine Sci. Eng. 8, 172 (2020).Article 

    Google Scholar 
    WWF. Environmental Impacts of Offshore Wind Power Production in the North Sea. A Literature Overview. https://tethys.pnnl.gov/sites/default/files/publications/WWF-OSW-Environmental-Impacts.pdf (2014).Cook, A. S. C. P., Humphreys, E. M., Bennet, F., Masden, E. A. & Burton, N. H. K. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environ. Res. 140, 278–288 (2018).CAS 
    Article 

    Google Scholar 
    Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).Article 

    Google Scholar 
    Stelzenmüller, V. et al. Operationalizing risk-based cumulative effect assessments in the marine environment. Sci. Total Environ. 724, 138118 (2020).Article 
    CAS 

    Google Scholar 
    Ehler, C. & Douvere, F. in Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris: UNESCO. 99pp. (2009).Borja, A. et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Marine Pollut. Bull. 76, 16–27 (2013).CAS 
    Article 

    Google Scholar 
    Peters, J. L., Remmers, T., Wheeler, A. J., Murphy, J. & Cummins, V. A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices. Renew. Sustain. Energy Rev. 128, 109916 (2020).Article 

    Google Scholar 
    Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A. & Olang, T. A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 70, 161–184 (2017).Article 

    Google Scholar 
    Xiao, Y. & Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Education Res. 39, 93–112 (2017).Article 

    Google Scholar 
    Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).Article 

    Google Scholar 
    Pullin, A. & Stewart, G. Guidelines for Systematic Review in Environmental Management. Conserv. Biol. 20, 1647–1656 (2007).Article 

    Google Scholar 
    van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S. & Rees, J. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental Shelf Res. 85, 60–72 (2014).Article 

    Google Scholar 
    De Backer, A., Van Hoey, G., Coates, D., Vanaverbeke, J. & Hostens, K. Similar diversity-disturbance responses to different physical impacts: Three cases of small-scale biodiversity increase in the Belgian part of the North Sea. Marine Pollut. Bull. 84, 251–262 (2014).Article 
    CAS 

    Google Scholar 
    Floeter, J. et al. Pelagic effects of offshore wind farm foundations in the stratified North Sea. Prog. Oceanograph. 156, 154–173 (2017).Article 

    Google Scholar 
    Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; A compilation. Environ. Res. Lett. 6, 035101 (2011).Article 

    Google Scholar 
    Bray, L. et al. Expected effects of offshore wind farms on Mediterranean Marine Life. J. Marine Sci. Eng. 4, 18 (2016).Article 

    Google Scholar 
    Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Marine Sci. 77, 1092–1108 (2019).Article 

    Google Scholar 
    Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind Energy 12, 203–212 (2009).Article 

    Google Scholar 
    Hall, R., João, E. & Knapp, C. W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 83, 106404 (2020).Article 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A Global Review of Cumulative Pressure and Impact Assessments in Marine Environments. Front. Marine Sci. 3, 00153 (2016).Article 

    Google Scholar 
    Nõges, P. et al. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 540, 43–52 (2016).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).CAS 
    Article 

    Google Scholar 
    Gușatu, L. F. et al. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. Sci. Rep. 11, 10125 (2021).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region. PLoS ONE 12, e0180501 (2017).Article 
    CAS 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Marine Policy 48, 172–183 (2014).Article 

    Google Scholar 
    Iglesias, G., Tercero, J. A., Simas, T., Machado, I. & Cruz, E. Environmental Effects. In Wave and Tidal Energy (eds Greaves, D. & Iglesias, G.). https://doi.org/10.1002/9781119014492.ch9 (2018).Causon, P. D. & Gill, A. B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind farms. Environ. Sci. Policy 89, 340–347 (2018).Article 

    Google Scholar 
    Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Report for Ocean Energy Systems (OES). 323 pp., (2020).Gill, A. B. Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615 (2005).Article 

    Google Scholar 
    Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: A case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).Article 

    Google Scholar 
    Skov, H. et al. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol. Lett. 12, 20160804 (2016).Article 

    Google Scholar 
    Vanermen, N. et al. Attracted to the outside: a meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry. ICES J. Marine Sci. 77, 701–710 (2020).Article 

    Google Scholar 
    Frank, B. Research on marine mammals summary and discussion of research results. In Offshore Wind Energy: Research on Environmental Impacts. 77–86 https://doi.org/10.1007/978-3-540-34677-7_8 (2006).Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. Royal Soc. B.: Biol Sci. 284, 20170829 (2017).Article 

    Google Scholar 
    Wilson, J. C. et al. Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign? Energies 3, 1383–1422 (2010).Article 

    Google Scholar 
    Busch, M., Kannen, A., Garthe, S. & Jessopp, M. Consequences of a cumulative perspective on marine environmental impacts: Offshore wind farming and seabirds at North Sea scale in context of the EU Marine Strategy Framework Directive. Ocean Coastal Manag. 71, 213–224 (2013).Article 

    Google Scholar 
    Garthe, S., Markones, N. & Corman, A.-M. Possible impacts of offshore wind farms on seabirds: a pilot study in Northern Gannets in the southern North Sea. J. Ornithol. 158, 345–349 (2017).Article 

    Google Scholar 
    Brandt, M. J., Diederichs, A., Betke, K. & Nehls, G. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Marine Ecol. Prog. Ser. 421, 205–216 (2011).Article 

    Google Scholar 
    Wilhelmsson, D., Malm, T. & Öhman, M. C. The influence of offshore windpower on demersal fish. ICES J. Marine Sci. 63, 775–784 (2006).Article 

    Google Scholar 
    Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecol. Progr. Ser. 485, 199–210 (2013).Article 

    Google Scholar 
    van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Marine Environ. Res. 126, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis. Oceanography 33, 48–57 (2020).Article 

    Google Scholar 
    Zettler, M. L. & Pollehne, F. The Impact of Wind Engine Constructions on Benthic Growth Patterns in the Western Baltic. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel, J. & Peters, W.). 201–222 (Springer Berlin Heidelberg, 2006).Wilhelmsson, D. Marine environmental aspects of offshore wind power development. (Nova Science Publishers, Inc, 2010).Teilmann, J. & Carstensen, J. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic – Evidence of slow recovery. Environ. Res. Lett. 7, 045101 (2012).Article 

    Google Scholar 
    Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Marine Syst. 212, 103434 (2020).Article 

    Google Scholar 
    Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: a synthesis of 4 years of research. Hydrobiologia 727, 121–136 (2014).CAS 
    Article 

    Google Scholar 
    Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).Article 

    Google Scholar 
    Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Marine Ecol. Prog. Ser. 554, 173–182 (2016).Article 

    Google Scholar 
    Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).Article 

    Google Scholar 
    Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals. J. Acoustical Soc. Am. 125, 3766–3773 (2009).Article 

    Google Scholar 
    Kastelein, R. A., Jennings, N., Kommeren, A., Helder-Hoek, L. & Schop, J. Acoustic dose-behavioral response relationship in sea bass (Dicentrarchus labrax) exposed to playbacks of pile driving sounds. Marine Environ. Res. 130, 315–324 (2017).CAS 
    Article 

    Google Scholar 
    Vanermen, N. et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol. Hydrobiologia 756, 155–167 (2015).Article 

    Google Scholar 
    Wahlberg, M. & Westerberg., H. Hearing in fish and their reactions to sounds from offshore wind farms. Marine Ecol. Prog. Ser. 288, 295–309 (2005).Article 

    Google Scholar 
    Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 90, 2672–2679 (2009).Article 

    Google Scholar 
    Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).Article 

    Google Scholar 
    Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Marine Ecol. Prog. Ser. 596, 213–232 (2018).Article 

    Google Scholar 
    Masden, E. A., Haydon, D. T., Fox, A. D. & Furness, R. W. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollut. Bull. 60, 1085–1091 (2010).CAS 
    Article 

    Google Scholar 
    Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total Environ. 824, 153803 (2022).CAS 
    Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Rice, J. et al. Indicators for Sea-floor Integrity under the European Marine Strategy Framework Directive. Ecol. Indicators 12, 174–184 (2012).Article 

    Google Scholar 
    Teixeira, H. et al. A Catalogue of Marine Biodiversity Indicators. Front. Marine Sci. 3, 00207 (2016).Article 

    Google Scholar 
    Brabant, R., Vanermen, N., Stienen, E. & Degraer, S. Towards a cumulative collision risk assessment of local and migrating birds in North Sea offshore wind farms. Hydrobiologia 756, 63–74 (2015).Article 

    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).Article 

    Google Scholar 
    Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M. & Adams, J. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. J. Environ. Manag. 227, 229–247 (2018).Article 

    Google Scholar 
    Graham, I. et al. Harbour porpoise responses to pile-driving diminish over time. R. Soc. Open Sci. 6, 190335 (2019).Article 

    Google Scholar 
    Lindeboom, H. J. & Degraer, S. In Long-term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy (eds Gijs van Kuik & Joachim Peinke) 77–81 (Springer International Publishing, 2016).Stenberg, C. et al. Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecol. Prog. Ser. 528, 257–265 (2015).Article 

    Google Scholar 
    Salvador, S., Gimeno, L. & Sanz Larruga, F. J. The influence of regulatory framework on environmental impact assessment in the development of offshore wind farms in Spain: Issues, challenges and solutions. Ocean Coastal Manag. 161, 165–176 (2018).Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosyst. 10, 8 (2014).Article 

    Google Scholar 
    Apolonia, M., Fofack-Garcia, R., Noble, D. R., Hodges, J. & Correia da Fonseca, F. X. Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy. Energies 14, 4896 (2021).Article 

    Google Scholar 
    Borja, A. et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Front. Marine Sci. 7, 00037 (2020).Article 

    Google Scholar 
    European Commission, Directorate-General for Environment, Guidance document on wind energy developments and EU nature legislation, Publications Office of the European Union https://data.europa.eu/doi/10.2779/095188 (2021).O’Hagan, A. M. & Lewis, A. W. The existing law and policy framework for ocean energy development in Ireland. Marine Policy 35, 772–783 (2011).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Marine Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Borgwardt, F. et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396–1408 (2019).Article 
    CAS 

    Google Scholar 
    Copping, A., Hanna, L., Van Cleve, B., Blake, K. & Anderson, R. M. Environmental Risk Evaluation System-an Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments. Estuaries Coasts 38, S287–S302 (2015).Article 

    Google Scholar 
    Lüdeke, J. Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation. J. Environ. Assess. Policy Manag. 19, 1750005 (2017).Article 

    Google Scholar 
    Boehlert, G. W. & Gill, A. B. Environmental and ecological effects of ocean renewable energy development: a current synthesis. J. Oceanograph. 23, 68–81 (2010).Article 

    Google Scholar 
    Hammar, L., Wikström, A. & Molander, S. Assessing ecological risks of offshore wind power on Kattegat cod. Renew. Energy 66, 414–424 (2014).Article 

    Google Scholar 
    Nunneri, C., Lenhart, H. J., Burkhard, B. & Windhorst, W. Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ. Change 8, 31–43 (2008).Article 

    Google Scholar 
    Hutchison, Z. L. et al. Offshore Wind Energy and Benthic Habitat Changes: Lessons from Block Island Wind Farm. Oceanography 33, 58–69 (2020).Article 

    Google Scholar 
    Pirttimaa, P. & Cruz, E. Ocean energy and the environment: Research and strategic actions. European Technology and Innovation Platform for Ocean Energy (ETIP Ocean), pp.36. https://www.etipocean.eu/assets/Uploads/ETIP-Ocean-Ocean-energy-and-the-environment.pdf (2020).Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: A detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).Article 

    Google Scholar 
    Mangi, S. C. The Impact of Offshore Wind Farms on Marine Ecosystems: A Review Taking an Ecosystem Services Perspective. Proceedings of the IEEE 101, 999–1009, (2013).Pınarbaşı, K. et al. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Sci. Total Environ. 667, 306–317 (2019).Article 
    CAS 

    Google Scholar 
    Maldonado, A. D. et al. A Bayesian Network model to identify suitable areas for offshore wave energy farms, in the framework of ecosystem approach to marine spatial planning. Sci. Total Environ. 838, 156037 (2022).CAS 
    Article 

    Google Scholar 
    Stelzenmüller, V., Gimpel, A., Letschert, J., Kraan, C. & DÖRING, R. Research for PECH Committee – Impact of the use of offshore wind and other marine renewables on European fisheries. European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/652212/IPOL_STU(2020)652212_EN.pdf (2020).Galparsoro, I. et al. A new framework and tool for ecological risk assessment of wave energy converters projects. Renew. Sustain. Energy Rev. 151, 111539 (2021).Article 

    Google Scholar 
    Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L. & Lehikoinen, A. Bayesian Networks in Environmental Risk Assessment: A Review. Integr. Environ. Assess. Manag. 17, 62–78 (2020).Article 

    Google Scholar 
    González, D. A., Gleeson, J. & McCarthy, E. Designing and developing a web tool to support Strategic Environmental Assessment. Environ. Modell. Softw. 111, 472–482 (2019).Article 

    Google Scholar 
    Pınarbaşı, K. et al. Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Marine Policy 83, 83–91 (2017).Article 

    Google Scholar 
    Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Marine Policy 108, 103658 (2019).Article 

    Google Scholar  More

  • in

    Warm springs alter timing but not total growth of temperate deciduous trees

    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Finzi, A. C. et al. Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change. Ecol. Monogr. 90, e01423 (2020).Article 

    Google Scholar 
    Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Chang. Biol. 17, 886–897 (2011).Article 
    ADS 

    Google Scholar 
    Zhou, S. et al. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agric. For. Meteorol. 226–227, 246–256 (2016).Article 
    ADS 

    Google Scholar 
    Fu, Z. et al. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob. Chang. Biol. 25, 3381–3394 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    Savage, J. A. & Chuine, I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytol. 230, 1700–1715 (2021).PubMed 
    Article 

    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Xue, B.-L. et al. Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochem. Cycles 31, 821–835 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17, 765–777 (2014).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 18, 566–584 (2012).Article 
    ADS 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).Article 
    ADS 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ahlström, A., Schurgers, G., Arneth, A. & Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 7, 044008 (2012).Article 
    ADS 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 
    ADS 

    Google Scholar 
    Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lu, X. & Keenan, T. F. No evidence for a negative effect of growing season photosynthesis on leaf senescence timing. Glob. Chang. Biol. 28, 3083–3093 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Oishi, A. C. et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric. For. Meteorol. 252, 269–282 (2018).Article 
    ADS 

    Google Scholar 
    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210, 459–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, J.-G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17, 696–707 (2008).Article 

    Google Scholar 
    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 6, 397–404 (2022).PubMed 
    Article 

    Google Scholar 
    Zweifel, R. et al. Why trees grow at night. New Phytol. 231, 2174–2185 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tumajer, J., Scharnweber, T., Smiljanic, M. & Wilmking, M. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. New Phytol. 233, 2429–2441 (2022).PubMed 
    Article 

    Google Scholar 
    Etzold, S. et al. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Lett. 25, 427–439 (2022).PubMed 
    Article 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zohner, C. M., Renner, S. S., Sebald, V. & Crowther, T. W. How changes in spring and autumn phenology translate into growth-experimental evidence of asymmetric effects. J. Ecol. 109, 2717–2728 (2021).Article 

    Google Scholar 
    Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science 376, 758–761 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helcoski, R. et al. Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytol. 223, 1204–1216 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evol. 5, 243–254 (2015).PubMed 
    Article 

    Google Scholar 
    D’Orangeville, L. et al. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiol. 42, 304–316 (2022).PubMed 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elmore, A. J., Nelson, D. M. & Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nat. Plants 2, 16133 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, J. C. & Conciatori, F. Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Can. J. For. Res. 36, 2317–2330 (2006).Article 

    Google Scholar 
    Roibu, C.-C. et al. The climatic response of tree ring width components of ash (Fraxinus excelsior L.) and common oak (Quercus robur L.) from eastern Europe. Forests 11, 600 (2020).Article 

    Google Scholar 
    Kern, Z. et al. Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quat. Int. 293, 257–267 (2013).Article 

    Google Scholar 
    Trumbore, S., Gaudinski, J. B., Hanson, P. J. & Southon, J. R. Quantifying ecosystem-atmosphere carbon exchange with a 14C label. Eos. Trans. Am. Geophys. Union 83, 265–268 (2002).Article 
    ADS 

    Google Scholar 
    Del Mar Delgado, M. et al. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc. Natl Acad. Sci. USA 117, 31249–31258 (2020).Article 
    CAS 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 28, 245–266 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Banbury Morgan, R. et al. Global patterns of forest autotrophic carbon fluxes. Glob. Chang. Biol. 27, 2840–2855 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Churkina, G., Schimel, D., Braswell, B. H. & Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 11, 1777–1787 (2005).Article 
    ADS 

    Google Scholar 
    Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Chang. 12, 97–102 (2022).CAS 
    Article 
    ADS 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. CATENA 196, 104936 (2021).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2022).Article 
    ADS 

    Google Scholar 
    Bourg, N. A., McShea, W. J., Thompson, J. R., McGarvey, J. C. & Shen, X. Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot. Ecology 94, 2111–2112 (2013).Article 

    Google Scholar 
    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Davies, S. J. et al. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907 (2021).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    Herrmann, V. et al. Tree circumference dynamics in four forests characterized using automated dendrometer bands. PLoS ONE 11, e0169020 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. LAADS DAAC https://doi.org/10.5067/MODIS/MCD12Q2.006 (2019).Anderson-Teixeira, K. et al. Forestgeo/Climate: initial release. Zenodo https://doi.org/10.5281/ZENODO.4041609 (2020).Benestad, R. E., Hanssen-Bauer, I. & Chen, D. Empirical-Statistical Downscaling (World Scientific, 2008).Boose, E. & Gould, E. Shaler Meteorological Station at Harvard Forest 1964–2002. Environmental Data Initiative https://doi.org/10.6073/PASTA/213335F5DAA17222A738C105B9FA60C4 (2021).Boose, E. Fisher Meteorological Station at Harvard Forest since 2001. Environmental Data Initiative https://doi.org/10.6073/PASTA/69E92642B512897032446CFE795CFFB8 (2021).Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).Article 

    Google Scholar 
    Gabry, J. et al. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).Stan Development Team. Stan modeling language users guide and reference manual, 2.28. https://mc-stan.org/users/documentation/ (2019).Stokes, M. A. & Smiley, T. L. An Introduction to Tree-ring Dating (Univ. Arizona Press, 1968).Speer, J. H. Fundamentals of Tree-ring Research (Univ. Arizona Press, 2010).Alexander, M. R. et al. The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quat. Res. 92, 583–597 (2019).Article 

    Google Scholar 
    Dye, A. et al. Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 7, e01454 (2016).Article 

    Google Scholar 
    Pederson, N. Climatic Sensitivity and Growth of Southern Temperate Trees in the Eastern United States: Implications for the Carbon Cycle—ProQuest (Columbia Univ., 2005).Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Clim. Past 16, 1901–1916 (2020).Article 

    Google Scholar 
    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Netherlands, 1990).Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (Univ. Arizona, 1985).Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).Article 
    ADS 

    Google Scholar 
    Jones, P. D., Osborn, T. J. & Briffa, K. R. Estimating sampling errors in large-scale temperature averages. J. Clim. 10, 2548–2568 (1997).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Zang, C. & Biondi, F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31, 68–74 (2013).Article 

    Google Scholar  More

  • in

    Potential of microbiome-based solutions for agrifood systems

    German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, François Buscot, Antonis Chatzinotas, Narendrakumar M. Chaudhari, Anna Heintz-Buschart, Kirsten Küsel & Rine C. ReubenInstitute of Biology, Leipzig University, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, Antonis Chatzinotas & Rine C. ReubenDepartment of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, GermanyStephanie D. Jurburg, Antonis Chatzinotas, Rene Kallies, Susann Müller & Ulisses Nunes da RochaDepartment of Soil Ecology, Helmholtz Centre for Environmental Research–UFZ, Halle, GermanyFrançois Buscot & Anna Heintz-BuschartAquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, GermanyNarendrakumar M. Chaudhari & Kirsten KüselSwammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the NetherlandsAnna Heintz-BuschartKellogg Biological Station, Michigan State University, Hickory Corners, MI, USAElena LitchmanEcology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USAElena LitchmanDepartment of Global Ecology, Carnegie Institution for Science, Stanford, CA, USAElena LitchmanHawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, AustraliaCatriona A. Macdonald & Brajesh K. SinghLeibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, GermanyGianni PanagiotouThe State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouDepartment of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouInstitut für Biologie, Freie Universität Berlin, Berlin, GermanyMatthias C. RilligBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyMatthias C. RilligGlobal Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, AustraliaBrajesh K. SinghB.K.S. conceived the idea in consultation with N.E. and S.J., and led the discussion which was attended by all authors. S.J. and B.K.S. wrote the manuscript and all contributed to refine it. More

  • in

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Short-term experimentsPotential toxic and cryoprotection effects of different CPA combinationsFocusing on toxicity bioassays (Figs. 1A, 2A), although there were certain CPA combinations that yielded significant abnormality percentages compared to controls, in general the CPA combinations did not yield any significant toxic effect. The use of Milli-Q Water instead of FSW did not enhance normal larval development after CPA exposure, neither did the addition of PVP at the concentrations tested, even in combination with trehalose (TRE) (p  > 0.05). In fact, the highest concentrations of PVP used in this experiment (9 and 12%) yielded significant abnormal development on exposed trochophores (Fig. 1A) (p  More

  • in

    Boreal forest on the move

    Settele, J. et al. in Climate Change 2014 Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).
    Google Scholar 
    Rees, W. G. et al. Glob. Change Biol. 26, 3965–3977 (2020).Article 

    Google Scholar 
    Anderson, L. L., Hu, F. S., Nelson, D. S., Petit, R. J. & Paige, K. N. Proc. Natl Acad. Sci. USA 103, 12447–12450 (2006).PubMed 
    Article 

    Google Scholar 
    Clark, J. S., Lewis, M. & Horvath, L. Am. Nat. 157, 537–554 (2001).PubMed 
    Article 

    Google Scholar 
    Edwards, M., Hamilton, T. D., Elias, S. A., Bigelow, N. H. & Krumhardt, A. P. Arct. Antarct. Alp. Res. 35, 460–468 (2003).Article 

    Google Scholar  More