More stories

  • in

    Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2

    Pascolini-Campbell, M., Reager, J. T., Chandanpurkar, H. A. & Rodell, M. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 593, 543–547 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. 117, 9216–9222 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 2016GL071921 (2017).
    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO 2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).PubMed 
    Article 

    Google Scholar 
    Hsu, J. S., Powell, J. & Adler, P. B. Sensitivity of mean annual primary production to precipitation. Glob. Change Biol. 18, 2246–2255 (2012).ADS 
    Article 

    Google Scholar 
    Zuidema, P. A. et al. Recent CO2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Glob. Change Biol. 26, 4028–4041 (2020).ADS 
    Article 

    Google Scholar 
    Bansal, S., James, J. J. & Sheley, R. L. The effects of precipitation and soil type on three invasive annual grasses in the western United States. J. Arid Environ. 104, 38–42 (2014).ADS 
    Article 

    Google Scholar 
    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Connor, J. C. et al. Forests buffer against variations in precipitation. Glob. Change Biol., 27, 4686–4696 (2021).Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).ADS 
    Article 

    Google Scholar 
    Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adams, M. A., Buckley, T. N., Binkley, D., Neumann, M. & Turnbull, T. L. CO2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests. Nat. Commun. 12, 5194 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2021).Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).ADS 
    Article 

    Google Scholar 
    Zhang, W., Brandt, M., Guichard, F., Tian, Q. & Fensholt, R. Using long-term daily satellite based rainfall data (1983–2015) to analyze spatio-temporal changes in the sahelian rainfall regime. J. Hydrol. 550, 427–440 (2017).ADS 
    Article 

    Google Scholar 
    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).ADS 
    Article 

    Google Scholar 
    Huntzinger, D. N. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – part 1: overview and experimental design. Geosci. Model Dev. 6, 2121–2133 (2013).ADS 
    Article 

    Google Scholar 
    Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Naturalist 164, 625–632 (2004).Article 

    Google Scholar 
    Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883 (2017).PubMed 
    Article 

    Google Scholar 
    Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO 2 reveals distinct response patterns between disturbed and undisturbed vegetation: vegetation responses to elevated CO2. J. Geophys. Res. Biogeosci. 122, 168–184 (2017).CAS 
    Article 

    Google Scholar 
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).ADS 
    Article 

    Google Scholar 
    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO 2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. 113, E7222–E7230 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    González de Andrés, E. et al. Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J. Ecol. 106, 59–75 (2018).Article 
    CAS 

    Google Scholar 
    Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).Article 

    Google Scholar 
    Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. 113, 12757–12762 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions: Photosynthesis and stomatal conductance responses to rising [CO2]. Plant, Cell Environ. 30, 258–270 (2007).CAS 
    Article 

    Google Scholar 
    Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytologist 221, 693–705 (2019).Article 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).ADS 
    Article 

    Google Scholar 
    Thompson, S. E., Harman, C. J., Heine, P. & Katul, G. G. Vegetation-infiltration relationships across climatic and soil type gradients: vegetation-infiltration relationships. J. Geophys. Res. 115, G02023 (2010).ADS 

    Google Scholar 
    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).Article 

    Google Scholar 
    Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. N. Phytologist 201, 1086–1095 (2014).CAS 
    Article 

    Google Scholar 
    Cui, J. et al. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 11, 5184 (2020).Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cui, J. et al. Vegetation response to rising CO2 amplifies contrasts in water resources between global wet and dry land Areas. Geophys. Res. Lett. 48, e2021GL094293 (2021).Yang, Y. et al. Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: Accounting for aboveground and belowground vegetation-CO2 effects. Hydrol. Earth Syst. Sci. 25, 3411–3427 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600, 253–258 (2022).ADS 
    Article 
    CAS 

    Google Scholar 
    Sang, Y. et al. Comment on “Recent global decline of CO 2 fertilization effects on vegetation photosynthesis”. Science 373, eabg4420 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).ADS 
    Article 

    Google Scholar 
    Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).ADS 
    Article 

    Google Scholar 
    Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).ADS 
    Article 

    Google Scholar 
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).ADS 
    Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl Climatol. 115, 15–40 (2014).ADS 
    Article 

    Google Scholar 
    Prado, R. & West, M. Time series: modeling, computation, and inference (CRC Press, 2010).West, M. & Harrison, J. Bayesian forecasting and dynamic models (Springer, 1997).Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Chang. 9, 880–885 (2019).ADS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).ADS 
    Article 

    Google Scholar  More

  • in

    Spatial distribution pattern of dominant tree species in different disturbance plots in the Changbai Mountain

    Wiegand, T., Gunatilleke, S. & Gunatilleke, N. Species Associations in a Heterogeneous Sri Lankan Dipterocarp Forest. Am. Nat. 170, E77–E95. https://doi.org/10.1890/06-1350.1 (2007).Article 
    PubMed 

    Google Scholar 
    Zhang, J. et al. Spatial patterns and associations of six congeneric species in an old-growth temperate forest. Acta Oecol. 11, 29–38. https://doi.org/10.1016/j.actao.2009.09.005 (2010).ADS 
    Article 

    Google Scholar 
    Pretzsch, H. et al. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 67, 712–712. https://doi.org/10.1051/forest/2010037 (2010).Article 

    Google Scholar 
    Zhu, J., Kang, H., Tan, H., Xu, M. & Wang, J. Natural regeneration characteristics ofPinus sylvestris var.mongolica forests on sandy land in Honghuaerji, China. J. For. Res. 16, 253–259. https://doi.org/10.1007/BF02858184 (2005).Felton, A., Felton, A. M., Wood, J. & Lindenmayer, D. B. Vegetation structure, phenology, and regeneration in the natural and anthropogenic tree-fall gaps of a reduced-impact logged subtropical Bolivian forest. For. Ecol. Manage. 235, 186–193. https://doi.org/10.1016/j.foreco.2006.08.011 (2006).Article 

    Google Scholar 
    Man, R., Kayahara, G. J., Rice, J. A. & MacDonald, G. B. Eleven-year responses of a boreal mixedwood stand to partial harvesting: Light, vegetation, and regeneration dynamics. For. Ecol. Manage. 255, 697–706. https://doi.org/10.1016/j.foreco.2007.09.043 (2008).Article 

    Google Scholar 
    Xiang, W., Lei, X. & Zhang, X. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. For. Ecol. Manage. 382, 100–109. https://doi.org/10.1016/j.foreco.2016.09.050 (2016).Article 

    Google Scholar 
    Zhang, M., Liu, Y., Guo, W., Kang, X. & Zhao, H. Spatial associations and species collocation of dominant tree spscies in a natural spruce-fir mixed forest of Changbai Mountains in Northeastern China. Appl. Ecol. Env. Res. 17, 6213–6225. https://doi.org/10.15666/aeer/1703_62136225 (2019).Garbarino, M., Weisberg, P. J. & Motta, R. Interacting effects of physical environment and anthropogenic disturbances on the structure of European larch (Larix decidua Mill.) forests. For. Ecol. Manag. 257, 1794–1802. https://doi.org/10.1016/j.foreco.2008.12.031 (2009).Gourlet-Fleury, S. et al. Silvicultural disturbance has little impact on tree species diversity in a Central African moist forest. For. Ecol. Manage. 304, 322–332. https://doi.org/10.1016/j.foreco.2013.05.021 (2013).Article 

    Google Scholar 
    Yu, D. & Han, S. Ecosystem service status and changes of degraded natural reserves—A study from the Changbai Mountain Natural Reserve China. Ecosyst. Serv. 20, 56–65. https://doi.org/10.1016/j.ecoser.2016.06.009 (2016).Article 

    Google Scholar 
    Moreau, G. et al. Long-term tree and stand growth dynamics after thinning of various intensities in a temperate mixed forest. For. Ecol. Manage. 473, 118311. https://doi.org/10.1016/j.foreco.2020.118311 (2020).Article 

    Google Scholar 
    Yan, Y., Zhang, C., Wang, Y., Zhao, X. & Gadow, K. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol. Evol. 5, 4287–4299. https://doi.org/10.1002/ece3.1688 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bai, F. et al. Long-term protection effects of national reserve to forest vegetation in 4 decades: Biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve China. Sci. China Ser. C 51, 948–958. https://doi.org/10.1007/s11427-008-0122-9 (2008).Article 

    Google Scholar 
    Liu, Q., Li, X., Ma, Z. & Takeuchi, N. Monitoring forest dynamics using satellite imagery—a case study in the natural reserve of Changbai Mountain in China. For. Ecol. Manage. 210, 25–37. https://doi.org/10.1016/j.foreco.2005.02.025 (2005).Article 

    Google Scholar 
    Hao, H. et al. Patches structure succession based on spatial point pattern features in semi-arid ecosystems of the water-wind erosion crisscross region. Glob. Ecol. Conserv. 12, 158–165. https://doi.org/10.1016/j.gecco.2017.11.001 (2017).Article 

    Google Scholar 
    Das Gupta, S. & Pinno, B. D. Spatial patterns and competition in trees in early successional reclaimed and natural boreal forests. Acta Oecol. 92, 138–147. https://doi.org/10.1016/j.actao.2018.05.003 (2018).Hao, Z., Zhang, J., Song, B., Ye, J. & Li, B. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. For. Ecol. Manage. 252, 1–11. https://doi.org/10.1016/j.foreco.2007.06.026 (2007).Article 

    Google Scholar 
    Zhao, H., Kang, X., Guo, Z., Yang, H. & Xu, M. Species interactions in spruce-fir mixed stands and implications for enrichment planting in the Changbai Mountains China. Mount. Res. Dev. 32, 187–196. https://doi.org/10.1659/MRD-JOURNAL-D-11-00125.1 (2012).Article 

    Google Scholar 
    Li, Y., Hui, G., Wang, H., Zhang, G. & Ye, S. Selection priority for harvested trees according to stand structural indices. iForest 10, 561–566, DOI: https://doi.org/10.3832/ifor2115-010 (2017).Zhang, Y., Drobyshev, I., Gao, L., Zhao, X. & Bergeron, Y. Disturbance and regeneration dynamics of a mixed Korean pine dominated forest on Changbai Mountain North-Eastern China. Dendrochronologia 32, 21–31. https://doi.org/10.1016/j.dendro.2013.06.003 (2014).Article 

    Google Scholar 
    Zhang, M. et al. Community stability for spruce-fir forest at different succession stages in Changbai Mountains, Northeast China. Chin. J. Appl. Ecol. 26, 1609–1616. https://doi.org/10.13287/j.1001-9332.20150331.024 (2015).Gong, Z., Kang, X. & Gu, L. Quantitative division of succession and spatial patterns among different stand developmental stages in Changbai Mountains. J. Mt. Sci. 16, 2063–2078. https://doi.org/10.1007/s11629-018-5142-8 (2019).Article 

    Google Scholar 
    Hu, Y., Min, Z., Gao, Y. & Feng, Q. Effects of selective cutting on stand growth and structure for natural mixed spruce (Picea koraiensis )-Fir (Abies nephrolepis) forests. Scientia Silvae Sinicae 47, 15–24. https://doi.org/10.11707/j.1001-7488.20110203 (2011).Article 

    Google Scholar 
    Hubbell, S. P. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557. https://doi.org/10.1126/science.283.5401.554 (1999).Seidler, T. G. & Plotkin, J. B. Seed dispersal and spatial pattern in tropical trees. PLoS Biol. 4, e344. https://doi.org/10.1371/journal.pbio.0040344 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V. K. & Larsen, J. B. Spatial patterns of tree species in Suserup Skov—a semi-natural forest in Denmark. For. Ecol. Manage. 406, 391–401. https://doi.org/10.1016/j.foreco.2017.10.020 (2017).Article 

    Google Scholar 
    Harms, K. E., Wright, S. J., Calderón, O., Hernández, A. & Herre, E. A. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404, 493–495. https://doi.org/10.1038/35006630 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wiegand, T., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N. & Huth, A. How individual species structure diversity in tropical forests. Proc. Natl. Acad. Sci. 104, 19029–19033. https://doi.org/10.1073/pnas.0705621104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, T., Yan, Q., Wang, J. & Zhu, J. Restoring temperate secondary forests by promoting sprout regeneration: Effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance. For. Ecol. Manage. 429, 267–277. https://doi.org/10.1016/j.foreco.2018.07.025 (2018).Article 

    Google Scholar 
    Zhang, M., Kang, X., Meng, J. & Zhang, L. Distribution patterns and associations of dominant tree species in a mixed coniferous-broadleaf forest in the Changbai Mountains. J. Mt. Sci. 12, 659–670. https://doi.org/10.1007/s11629-013-2795-1 (2015).Article 

    Google Scholar 
    Navarro-Cerrillo, R. M. et al. Structure and spatio-temporal dynamics of cedar forests along a management gradient in the Middle Atlas Morocco. For. Ecol. Manag. 289, 341–353. https://doi.org/10.1016/j.foreco.2012.10.011 (2013).Article 

    Google Scholar 
    Condit, R. Spatial patterns in the distribution of tropical tree species. Science 288, 1414–1418. https://doi.org/10.1126/science.288.5470.1414 (2000).del Río, M. et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. Eur. J. For. Res. 135, 23–49. https://doi.org/10.1007/s10342-015-0927-6 (2016).Article 

    Google Scholar 
    Wiegand, K., Jeltsch, F. & Ward, D. Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana ?. J. Veg. Sci. 11, 473–484. https://doi.org/10.2307/3246577 (2000).Article 

    Google Scholar 
    Hui, G. & Pommerening, A. Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. For. Ecol. Manage. 316, 125–138. https://doi.org/10.1016/j.foreco.2013.07.029 (2014).Article 

    Google Scholar 
    Graz, F. P. The behaviour of the species mingling index M sp in relation to species dominance and dispersion. Eur. J. For. Res. 123, 87–92. https://doi.org/10.1007/s10342-004-0016-8 (2004).Article 

    Google Scholar 
    Zhang, M. Spatial association and optimum adjacent distribution of trees in a mixed coniferous-broadleaf forest in northeastern China. Appl. Ecol. Environ. Res. 15, 1551–1564. https://doi.org/10.15666/aeer/1503_15511564 (2017).Hou, J. H., Mi, X. C., Liu, C. R. & Ma, K. P. Spatial patterns and associations in a Quercus-Betula forest in northern China. J. Veg. Sci. 15, 407–414. https://doi.org/10.1111/j.1654-1103.2004.tb02278.x (2004).Article 

    Google Scholar 
    Boyden, S., Binkley, D. & Shepperd, W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. For. Ecol. Manage. 219, 43–55. https://doi.org/10.1016/j.foreco.2005.08.041 (2005).Article 

    Google Scholar 
    Li, J., Niu, S. & Liu, Y. Forest Ecology. Higher Education Press, (2010).Hui, G. et al. Theory and practice of structure-based forest management. Science Press, (2020).Gong, Z. et al. Interspecific association among arbor species in two succession stages of spruce-fir conifer and broadleaved mixed forest in Changbai Mountains, northeastern China. J. Beijing For. Univ. 33, 28–33 (2011).
    Google Scholar 
    Suzuki, S. N., Kachi, N. & Suzuki, J.-I. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies Forest: Analyses using spatial autocorrelation and the mark correlation function. Ann. Bot. 102, 435–441. https://doi.org/10.1093/aob/mcn113 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shao, G. et al. Integrating stand and landscape decisions for multi-purposes of forest harvesting. For. Ecol. Manage. 207, 233–243. https://doi.org/10.1016/j.foreco.2004.10.029 (2005).Article 

    Google Scholar 
    Dai, L. et al. Changes in forest structure and composition on Changbai Mountain in Northeast China. Ann. For. Sci. 68, 889–897. https://doi.org/10.1007/s13595-011-0095-x (2011).Article 

    Google Scholar 
    Liu, Y. et al. Determining suitable selection cutting intensities based on long-term observations on aboveground forest carbon, growth, and stand structure in Changbai Mountain, Northeast China. Scand. J. For. Res. 29, 436–454. https://doi.org/10.1080/02827581.2014.919352 (2014).CAS 
    Article 

    Google Scholar 
    K. von Gadow and & Hui, G. Y. Characterizing Forest spatial structure and diversity. Proc. of an international workshop organized at the University of Lund, Sweden, 20–30 (2001).Baddeley, A. & Turner, R. spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 12, 1–42. https://doi.org/10.18637/jss.v012.i06 (2005).Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns: Illian/Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470725160 (2007).Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology. Chapman and Hall/CRC. https://doi.org/10.1201/b16195 (2013).Martínez, I., Wiegand, T., González-Taboada, F. & Obeso, J. R. Spatial associations among tree species in a temperate forest community in North-western Spain. For. Ecol. Manage. 260, 456–465. https://doi.org/10.1016/j.foreco.2010.04.039 (2010).Article 

    Google Scholar 
    Wang, X. et al. Species associations in an old-growth temperate forest in north-eastern China. J. Ecol. 98, 674–686. https://doi.org/10.1111/j.1365-2745.2010.01644.x (2010).Article 

    Google Scholar 
    Getzin, S., Wiegand, T. & Hubbell, S. P. Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proc. R. Soc. B. 281, 20140922. https://doi.org/10.1098/rspb.2014.0922 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakashizuka, T. Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol. 16, 205–210 (2001).CAS 
    Article 

    Google Scholar 
    Mugglestone, M. & Renshaw, E. Spectral tests of randomness for spatial point patterns. Environ. Ecol. Stat. 237–251. https://doi.org/10.1023/A:1011339607376 (2001).Stoyan, D. & Stoyan, H. Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley, (1994).Liu, P. et al. Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China. For. Ecol. Manage. 467, 118167. https://doi.org/10.1016/j.foreco.2020.118167 (2020).Article 

    Google Scholar 
    Wiegand, T., Moloney, A. & Rings, K. circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x (2004).Article 

    Google Scholar  More

  • in

    Effects of vegetation spatial pattern on erosion and sediment particle sorting in the loess convex hillslope

    Zhao, B. H. et al. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau China. Geoderma 296, 10–17 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Shi, P. et al. Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau China. Sci. Total Environ. 707, 135507 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma 351, 188–196 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chang, E. H. et al. Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau China. CATENA 181, 104095 (2019).Article 

    Google Scholar 
    Chang, E. H. et al. The impact of vegetation successional status on slope runoff erosion in the Loess Plateau of China. Water 11, 2614 (2019).CAS 
    Article 

    Google Scholar 
    Sun, L. Y., Zhou, J. L., Cai, Q. G., Liu, S. X. & Xiao, J. G. Comparing surface erosion processes in four soils from the Loess Plateau under extreme rainfall events. Int. Soil Water Conse. 9, 520–531 (2021).Article 

    Google Scholar 
    Wang, R. et al. Effects of gully head height and soil texture on gully headcut erosion in the Loess Plateau of China. CATENA 207, 105674 (2021).Article 

    Google Scholar 
    Wei, H., Zhao, W. W. & Wang, H. Effects of vegetation restoration on soil erosion on the Loess Plateau: A case study in the Ansai watershed. Int. J. Environ. Res. Pub He. 18, 6266 (2021).Article 

    Google Scholar 
    Zhang, X., Li, P., Li, Z. B., Yu, G. Q. & Li, C. Effects of precipitation and different distributions of grass strips on runoff and sediment in the loess convex hillslope. CATENA 162, 130–140 (2018).Article 

    Google Scholar 
    Foster, G. R., Huggins, L. F. & Meyer, L. D. A laboratory study of rill hydraulics: II Shear Stress Relationships. T Asabe. 27, 797–804 (1984).Article 

    Google Scholar 
    Zhu, B. B., Zhou, Z. C. & Li, Z. B. Soil erosion and controls in the slope-gully system of the Loess Plateau of China: A review. Front. Environ. Sci. 9, 657030 (2021).Article 

    Google Scholar 
    Wang, H., Wang, J. & Zhang, G. H. Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China. CATENA 201, 105235 (2021).Article 

    Google Scholar 
    Chang, X. G. et al. Determining the contributions of vegetation and climate change to ecosystem WUE variation over the last two decades on the Loess Plateau China. Forests 12, 1442 (2021).Article 

    Google Scholar 
    Li, B. B. et al. Deep soil moisture limits the sustainable vegetation restoration in arid and semi-arid Loess Plateau. Geoderma 399, 115122 (2021).ADS 
    Article 

    Google Scholar 
    Dong, L. B. et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau. J. Environ. Manage. 302, 113985 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi, P. et al. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau China. Agric. Water Manage. 259, 107231 (2022).Article 

    Google Scholar 
    Xia, L. et al. Soil moisture response to land use and topography across a semi-arid watershed: Implications for vegetation restoration on the Chinese Loess Plateau. J. Mt Sci. 19, 103–120 (2022).Article 

    Google Scholar 
    Chen, Y. X. et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau China. Appl. Soil Ecol. 170, 104292 (2022).Article 

    Google Scholar 
    Qiu, L. J. et al. Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China. J. Hydrol. 600, 126580 (2021).Article 

    Google Scholar 
    Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).Article 

    Google Scholar 
    Hu, C. J., Fu, B. J., Liu, G. H., Jin, T. T. & Guo, L. Vegetation patterns influence on soil microbial biomass and functional diversity in a hilly area of the Loess Plateau China. J. Soil Sedim. 10, 1082–1091 (2010).CAS 
    Article 

    Google Scholar 
    Sun, C. L., Chai, Z. Z., Liu, G. B. & Xue, S. Changes in species diversity patterns and spatial heterogeneity during the secondary succession of grassland vegetation on the Loess Plateau China. Front. Plant Sci. 8, 1465 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, J. X. Threholds in vegetation-precipitation relationship and the implications in restoration of vegetation on the Loesee Plateau China. Acta Ecol. Sin. 25, 1233–1239 (2005).
    Google Scholar 
    Yang, X., Shao, M. A., Li, T. C. G, M. & Chen, M. Y. Community characteristics and distribution patterns of soil fauna after vegetation restoration in the northern Loess Plateau. Ecol. Indic. 122, 107236 (2021).Bullock, M. S., Nelson, S. D. & Kemper, W. D. Soil cohesion as affected by freezing, water content, time and tillage. Soil Sci. Soc. Am. J. 52, 70–776 (1988).Article 

    Google Scholar 
    Wang, T. et al. Effects of freeze-thaw on soil erosion processes and sediment selectivity under simulated rainfall. J. Arid Land. 9, 34–243 (2017).
    Google Scholar 
    Su, Y. Y., Li, P., Ren, Z. P., Xiao, L. & Zhang, H. Freeze–thaw effects on erosion process in loess slope under simulated rainfall. J. Arid Land. 12, 937–949 (2020).Article 

    Google Scholar 
    Slattery, M. C. & Burt, T, P. Particle size characteristics of suspended sediment in hillslope runoff and stream flow. Earth Surf. Proc. Land. 22, 705–719 (1997).Wu, F. Z., Shi, Z. H., Yue, B. J. & Wang, L. Particle characteristics of sediment in erosion on hillslope. Acta Pedol. Sin. 49, 1235–1240 (2012).
    Google Scholar 
    Issa, O. M., Bissonnais, Y. L. & Planchon, O. Soil detachment and transport on field-and laboratory-scale interrill areas: Erosion processes and the size-selectivity of eroded sediment. Earth Surf. Proc. Land. 31, 929–939 (2006).ADS 
    Article 

    Google Scholar 
    Shi, Z. H. et al. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J. Hydrol. 454–455, 123–130 (2012).Article 

    Google Scholar 
    Koiter, A. J., Owens, P. N. & Petticrew, E. L. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth Sci. Rev. 125, 24–42 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Pan, C. Z. & Shang, G. Z. P. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. J. Hydrol. 331, 178–185 (2006).ADS 
    Article 

    Google Scholar 
    Pan, C. Z. & Shang, G. Z. P. The effects of ryegrass roots and shoots on loess erosion under simulated rainfall. CATENA 2007(70), 350–355 (2007).
    Google Scholar 
    Zheng, M. G., Cai, Q. G., Wang, C. F. & Liu, J. G. Effect of vegetation and other measures for soil and water conservation on runoff-sediment relationship in watershed scale. J. Hydraul. Eng. 38, 47–53 (2007).
    Google Scholar 
    Wei, X. et al. Flow characteristics of convex composite slopes of loess under vegetation cover. Trans. Chin. Soc. Agric. Eng. 30, 147–154 (2014).CAS 

    Google Scholar 
    Wang, L. et al. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: A case study of clay loam soil from the Loess Plateau China. J. Hydrol. 512, 168–176 (2014).ADS 
    Article 

    Google Scholar 
    Li, M., Yao, W. Y., Ding, W. F., Yang, J. F. & Chen, J. N. Effect of grass coverage on sediment yield in the hillslope-gully side erosion system. J. Geogr. Sci. 19, 321–330 (2009).Article 

    Google Scholar 
    Benito, E., Santiago, J. L., Blas, E. D. & Varela, M. E. Deforestation of water-repellent soils in Galicia (NW Spain): Effects on surface runoff and erosion under simulated rainfall. Earth Surf. Proc. Land. 28, 145–155 (2003).ADS 
    Article 

    Google Scholar 
    Han, P. & Li, X. X. Study on soil erosion and vegetation effect on soil conservation in the Yellow River Basin. J. Basic Sci. Eng. 16, 181–190 (2008).
    Google Scholar 
    Bissonnais, Y. L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47, 425–437 (1996).Zhang, X., Yu, G. Q., Li, Z. B. & Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. Manag. 28, 2415–2433 (2014).Article 

    Google Scholar 
    Xu, G. C. et al. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau China. CATENA 158, 20–29 (2017).Article 

    Google Scholar 
    Yu, Y. et al. Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. J. Soil Sedim. 17, 144–156 (2017).CAS 
    Article 

    Google Scholar 
    Dou, Y. X., Yang, Y., An, S. S. & Zhu, Z. L. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau China. CATENA 185, 104294 (2020).CAS 
    Article 

    Google Scholar 
    He, J., Shi, X. Y. & Fu, Y. J. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manage. 289, 112562 (2021).PubMed 
    Article 

    Google Scholar 
    Qiu, D. X., Gao, P., Mu, X. M. & Zhao, B. L. Vertical variations and transport mechanism of soil moisture in response to vegetation restoration on the Loess Plateau of China. Hydrol. Process. 35, e14397 (2021).
    Google Scholar 
    Zhang, G. H., Liu, G. B., Wang, G. L. & Wang, Y. X. Effects of Vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles. Pedosphere 21, 676–684 (2011).CAS 
    Article 

    Google Scholar 
    Gu, Z. J. et al. Estimating the effect of Pinus massoniana Lamb plots on soil and water conservation during rainfall events using vegetation fractional coverage. CATENA 109, 225–233 (2013).Article 

    Google Scholar 
    Comprehensive analysis of relationship between vegetation attributes and soil erosion on hillslopes in the Loess Plateau of China. Environ Earth Sci. 72, 1721–1731 (2014).Zhao, G. J., Mu, X. M., Wen, Z. M., Wang, F. & Gao, P. Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad. Dev. 24, 499–510 (2013).Article 

    Google Scholar 
    Zhang, L., Wang, J. M., Bai, Z. K. & Lv, C. J. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. CATENA 128, 44–53 (2015).Article 

    Google Scholar 
    Wei, W., Pan, D. L. & Feng, J. Tradeoffs between soil conservation and soil-water retention: The role of vegetation pattern and density. Land Degrad. Dev. 33, 18–27 (2021).Article 

    Google Scholar 
    Asadi, H., Ghadiri, H., Rose, C. W., Yu, B. & Hussein, J. An investigation of flow-driven soil erosion processes at low streampowers. J. Hydrol. 342, 134–142 (2007).ADS 
    Article 

    Google Scholar 
    Shi, Z. H., Yan, F. L., Li, L., Li, Z. X. & Cai, C. F. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. CATENA 81, 240–248 (2010).Article 

    Google Scholar 
    Zhou, J. et al. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau China. CATENA 137, 1–11 (2016).Article 

    Google Scholar 
    Han, Z. M. et al. Effects of vegetation restoration on groundwater drought in the Loess Plateau China. J. Hydrol. 591, 125566 (2020).Article 

    Google Scholar 
    Liang, Y., Jiao, J. Y., Tang, B. Z., Cao, B. T. & Li, H. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region China. J. Hydrol. 584, 124694 (2020).Article 

    Google Scholar  More

  • in

    Predicting the potential for zoonotic transmission and host associations for novel viruses

    Data collectionVirus-host data was collated from various sources. Major sources for the association databases included data shared by Olival et al4., Pandit et al.3, and Johnson et al.13. In data provided by Olival et al (assessed September 2019), host-virus associations have been assigned a score, based on detection methods and tests that are specific and more reliable. We used associations that have been identified as the most reliable (stringent data) from Olival et al4. In addition, a query in GenBank was run to parse out hosts reported for each GenBank submission for viruses presented in each of these three databases. Initially, for each virus name, taxonomic ID was identified using entrez.esearch function in biopython package. The taxonomic ID helped linked to the GenBank databases, identify the ICTV lineage and associated data in PubMed20,21. NCBI TaxID closely follows the ICTV database, but some recent changes in ICTV might not always be reflected in NCBI, so we manually checked names to ensure matching. This included virus genus and family information along with a standard virus name. Host data were aggregated based on the taxonomic ID and associated standard name. Finally, for each virus, a search was completed in PubMed to compile the number of hits related to the virus and their vertebrate hosts using the search terms below. The number of PubMed hits (PMH1) were used as a proxy for sampling bias3,13. The virus-host association data source is presented in supplementary code and data files (https://zenodo.org/record/5899054).$$ searchterm= (+virus_name+,[Title/Abstract])\ ANDleft(host,OR,hosts,OR,reservoir,OR,reservoirs,OR right.\ wild,OR,wildlife,OR,domestic,OR,animal,OR,animals,OR\ mammal,OR,bird,OR,birds,OR,aves,OR,avian,OR,avians\ left. OR,vertebrate,OR,vertebrates,OR,surveillance,OR,sylvaticright)$$Along with the PubMed terms we also queried the nucleotide database on PubMed using the taxonomic ID to find the number of GenBank entries for these viruses (PMH2). A correlation analysis between the PMH1 and PMH2 of well-recognized known viruses showed a high correlation with each other for us to safely use GenBank hits for novel viruses during the prediction stage of the model (Fig. S32).Development of ({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}})
    a. Centrality measures of observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}}))To test if centrality measures (degree centrality, betweenness centrality, eigenvector centrality, clustering coefficient) for viral nodes in the observed network (({G}_{c})) vary significantly between viral families, we firstly used the Kolmogorov-Smirnov (KS) test. KS test is routinely used to identify distances between cumulative distribution functions of two probability distributions and is largely used to compare degree distributions of networks22,23. For each viral family, distributions of centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) and clustering coefficient within the observed network (({G}_{c})) were compared with the distribution of all nodes in the network using the two-tailed KS test. Secondly, a linear regression model with virus family as a categorical variable and the number of PubMed hits as a covariate to adjust for sampling bias were fitted to understand associations of viral families with centrality measures.$${centrality},{measure}={beta }_{0}{intercept}+{{beta }_{1}{Viral}{family}}_{{categorical}}+{beta }_{2}{PubMed},{hits}$$After fitting the model, node-level permutations were implemented. For each random permutation, the output variable was randomly assigned to covariate values and the model was re-fitted. Finally, a p-value was calculated by comparing the distribution of coefficients from permutations with the original model coefficient.Network topology feature selectionUsing the observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}})), multiple network topological features for all node (virus) pairs were calculated. The following are topological network features calculated. Features data type, definition and methods to calculate these features are presented in Table S3.1. The Jaccard coefficient: a commonly used similarity metric between nodes in information retrieval, is also called an intersection of over the union for two nodes in the network. In the unipartite network generated here, it represents the proportion of common neighbor viruses from the union of neighbor viruses for two nodes. Neighbor viruses are defined as viruses with which the virus shares at least a single host.2. Adamic/Adar (Frequency-Weighted Common Neighbors): Is the sum of inverse logarithmic degree centrality of the neighbors shared by two nodes in the network24. The concept of Adamic Adar index is a weighted common neighbors for viruses in the network. Within network prediction, the index assumes that viruses with large neighborhoods have a less significant impact while predicting a connection between two viruses compared with smaller neighborhoods.Both Jaccard and Adamic Adar coefficients have been routinely used for generalized network prediction and have shown high accuracy in predicting missing links in networks, specifically bipartite networks25, the information flowing through neighborhoods formed by two nodes might not always be enough to have similar predictive power in an unipartite network. This warrants use of other topology features along with neighborhood-based features.3. Resource allocation: Similarity score of two nodes defined by the weights of common neighbors of two nodes. Resource allocation is another measure to quantify the closeness of two nodes in the network and hence to understand the similarity of hosts they infect.4. Preferential attachment coefficients: The mechanism of preferential attachment can be used to generate evolving scale-free networks, where the probability that a new link is connected to node x is proportional to k26.5. Betweenness centrality: For a node in the network betweenness centrality is the sum of the fraction of all-pairs shortest paths that pass through it. The feature that we used for training the supervised learning model was the absolute difference between of betweenness centralities of two nodes. The difference between the betweenness centrality represents the difference in the sharing observed by two viruses in the pair.6. Degree centrality: The degree centrality for a node v is the fraction of nodes it is connected to. The feature that we used for training the supervised learning model was the absolute difference between degree centralities of two nodes. Unlike the difference in the betweenness centrality, the difference in degree centrality only looks at the difference in the number of observed host sharing.7. Network clustering: All nodes were classified into community clusters using Louvain methods27. A binary feature variable was generated to describe if both the nodes in the pair were part of the same cluster or not. If both viruses are from the same cluster, it represents a similar host predilection than when both viruses are not from the same cluster hence accounting for the evolutionary predilection of viruses (or virus families) to infect a certain type of host.These topological network characteristics come with certain limitations when it comes to the unipartite network of viruses with links formed due to shared hosts and might not truly represent the flow of information between nodes as compared to a bipartite network. Therefore, to account for these limitations, we use multiple network features as weak learners in our model building characteristics summarizing the network through the use of several quantitative metrics. In addition to this, we estimated the feature importance of these metrics in predicting missing links between viruses to quantify the information pasting through these links.Pearson’s correlation coefficients were calculated to identify highly correlated features and for choosing features for model training (Fig. S33). Virological features included in model training were categorical variables describing the virus family of both the nodes in the pair, followed by a binary variable if both the viruses belong to the same virus family. During the model development, PubMed hits generated three predictive features for each pair of viruses on which model training and predictions were conducted. These included two features representing PubMed hits for the two viruses in the pair (PubMedV1, PubMedV2) and the absolute difference between PubMedV1 and PubMedV2 to account for differences in sampling bias between the two viruses.Cross-validation and fitting generalized boosting machine (GBMs) modelsA nested-cross-validation was implemented for the binary model while simple cross-validation was implemented for the multiclass model (multiple output categories). The parameters of the binary model were first hyper-tuned using a cross-validated grid-search method. Values were tested using a grid search to find the best-performing model parameters that showed the highest sensitivity (recall). The parameters tested for hypertuning and their performance are provided in the supplementary material (supplementary results and Table S5). For further cross-validation of the overall binary model, all the viruses were randomly assigned to five groups. For each fold, the viruses assigned to a group were dropped from the data, and a temporary training network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{t}}}}}}}{{{{{boldsymbol{)}}}}}}) was constructed, assuming that this represented the current observed status of the virus-host community. For all possible pairs in ({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{t}}}}}}}) (both that sharing and not sharing any hosts) ten topological and viral characteristics were calculated as training features (Table S4). Categorical features were one-hot-encoded and numeric features were scaled. An XGBClassifier model with binary: logistic family was trained using the feature dataset to predict if virus pairs share hosts (1,0 encoded output). The cross-validation was also used to determine the optimum decision threshold for determining binary classification (Fig. S6) and a precision-recall curve was used to identify positive predictive value and sensitivity at the optimum threshold (Fig. S8).The multiclass model was implemented in the same way, creating an observed network (({G}_{c})) based on species-level sharing of hosts and randomly dropping viruses to generate a training network (({G}_{t})) to train the XGboost model. The output variables were generated based on the taxonomical orders of shared hosts. A pair of viruses can share multiple hosts, hence we trained a multioutput-multiclass model. Humans were considered an independent category of taxonomical order (label) and were given a separate label from primates. For fine-tuning the multiclass model, we started with the best performing parameters of the binary model and manually tested 5 combinations of model parameters by adjusting values of the learning rate, number of estimators, maximum depth, and minimum child weight (Supplementary code and results).We used three methods to estimate the importance of features for our binary model. Specifically, improvement in accuracy brought by branching based on the feature (gain), the percentage of times the feature appears in the XGboost tree model (weight), and the relative number of observations related to the specific feature (cover). Results for feature importance are shown in supplementary results (Fig. S10).Missing links for novel viruses, binary and multiclass predictionThe wildlife surveillance data represented a sampling of 99,379 animals (94,723 wildlife, 4656 domesticated animals) conducted in 34 countries around the world between 2009–2019 (Table S6)1. Specimens were tested using conventional Rt-PCR, Quantitative PCR, Sanger sequencing, and Next Generation Sequencing protocols to detect viruses from 28 virus families or taxonomic groups (Table S7). Testing resulted in 951 novel monophyletic clusters of virus sequences (referred to as novel viruses henceforth). Within 951 novel viruses, 944 novel viruses had vertebrate hosts that were identified with certainty based on barcoding methods and field identification. Host species identification was confirmed by cytochrome b (cytb) DNA barcoding using DNA extracted from the samples28. We predicted the shared host links between novel viruses and known viruses using binary and multiclass models in the following steps. Out of 944 novel viruses discovered in the last ten years, we were able to generate predictions for 531 novel viruses that were detected in species already classified as hosts within the network. The remaining 413 viruses were the first detection of any virus in that species and thus host associations could not be informed by the observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{C}}}}}}})) data.1. A new node representing the novel virus was inserted in the observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}})). Using the list of species in which the novel virus was detected, new edges were created with known viruses that are also known to be found in those hosts. This generated a temporary network for the novel virus (({{{{{{boldsymbol{G}}}}}}}_{{temp}})). If the novel virus was not able to generate any edges with known viruses, meaning the host in which they have been found was never found positive for any known virus, predictions were not performed.2. Using ({{{{{{boldsymbol{G}}}}}}}_{{temp}}) feature values were calculated for the novel virus (betweenness centrality, clustering, and degree). For all possible pairs of the novel virus with known viruses that are not yet connected with each other through an edge in ({{{{{{boldsymbol{G}}}}}}}_{{temp}}) a feature dataset was generated (Jaccard coefficient(novel virus, known virus), the difference in betweenness centrality of the novel virus and known virus, if the novel virus and known virus were in the same cluster, the difference in degree centrality(novel virus, known virus), if the novel virus and known virus were from same virus family, the difference in PubMed hits(novel virus, known virus), PubMed hits for the novel virus, PubMed hits for the known virus). Studies and nucleotide sequences for novel viruses are expected to be published and shared on PubMed’s Nucleotide database and in various peer-reviewed publications. Data associated with GenBank accession numbers and nucleotide sequences for novel viruses are presented in Supplementary Data 3 and Supplementary Data 4 respectively. At the time of development of the model, data for all viruses was not shared in a format that would reflect on PubMed’s database, we decided to use the number of unique species the virus was detected in the last ten years of wildlife surveillance conducted by the USAID PREDICT project. These detections will be reflected in PubMed’s Nucleotide database and search term eventually, hence we considered them as a proxy for search terms conducted for known viruses. Currently, evaluation of the effects of this substitution of PubMed hits with the number of detections for novel viruses is not possible with limited data on novel viruses but needs to be reevaluated as more studies are published on these novel viruses. To further evaluate the association between PubMed hits through search term and Genbank hits, we ran a generalized linear regression model with PubMed hits as dependent variable and Genbank hits as intendent variable, accounting for virus families.$${{PubMed}}_{{Search}}left({log }right)={beta }_{0}{intercept}+{{beta }_{1}{Virus}{family}}_{{categorical}}+{beta }_{2}{Genbank},{hits},({log })$$The results indicated that Genbank hits had statistically significant predictive value in predicting PubMed hits (β = 0.72, p  More

  • in

    Mount Everest’s harsh heights shelter a rich array of life

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Biophysical and economic constraints on China’s natural climate solutions

    This study presents a comprehensive quantification of carbon sequestration as well as CO2/CH4/N2O emissions reductions from terrestrial ecosystems based on multiple sources of data from literature, inventories, public databases and documents. The pathways considered ecosystem restoration and protection from being converted into cropland or built-up areas, reforestation, management with improved nitrogen use in cropland, restricted deforestation, grassland recovery, reducing risk from forest wildfire and others. Here we describe the cross-cutting methods that apply across all 16 NCS pathways. The definitions, detailed methods and data sources for evaluating individual pathways can be found in the Supplementary Information.Cross-cutting methodsBaseline settingWe set 2000 as the base year because the large-scale national ecological projects, such as the Grain for Green Project, were started since then. We first evaluate the historical mitigation capacity during 2000–2020, which is the first 20 years of implementing the projects. From this procedure we can determine how much mitigation capacity has been realized through the previous projects in the past two decades and to what extent additional actions can be made after 2020. Relative to the baseline 2000–2020, we then evaluate the maximum potentials of the NCS mitigation in the future 10 (2020–2030) and 40 (2020–2060) years, corresponding to the timetable of China’s NDCs: carbon peak before 2030 and carbon neutrality by 2060.The settings of baseline in this study are different from the existing assessments (2000s–2010s as a baseline and 2010–2025/2030/2050 as scenarios)1,22,23,27,28. Baseline sets the temporal and spatial reference for NCS pathway scenarios, which may have a great impact on the NCS estimates. Notably, NCS actions during 2000–2020 will have a great impact in the future periods, which we refer to as the ‘legacy effect’. The legacy effect itself, mainly reforestation, is independent of being assessed, but it is conceptually attributed to natural flux and excluded from future NCS potential estimates.Maximum potentialThe MAMP refers to the additional CO2 sequestration or avoided GHG emissions measured in CO2 equivalents (CO2e) at given flux rates in a period on the maximum extent to which the stewardship options are applied (numbers are expressed as TgCO2e yr−1 for individual pathways and PgCO2e yr−1 for national total) (Extended Data Fig. 1 and Supplementary Table 2). ‘Additional’ means mitigation outcomes due to human actions taken beyond business-as-usual land-use activities (since 2020) and excluding existing land fluxes not attributed to direct human activities1. The MAMP of CH4 and N2O are accounted by three cropland and wetland pathways (cropland nutrient management, improved rice cultivation and peatland restoration). We adopt 100 yr global warming potential to calculate the warming equivalent for CH4 (25) and N2O (298), respectively38,39 because these values are used in national GHG inventories, although some researchers have argued that using the fixed 100 yr global warming potential to calculate the warming equivalents may be problematic because they cannot differentiate the contrasting impacts of the long- and short-lived climate pollutants39. Because the flux rate of the GHG by ecosystems may vary with the time of recovery or growth, the MAMP may also change for different periods even given the same extent.The ‘maximum’ is constrained by varied factors across the NCS pathways. We constrain forest and grassland restoration by the rate of implementation, farmland red line and tree surviving rate (Extended Data Fig. 2). Surviving rate here is the ratio of the area with increased vegetation cover due to reforestation to the total reforestation area. The farmland red line refers to ‘the minimum area of cultivated land’ given by the Ministry of Land and Resources of China. It defines the lowest limit, and the current red line is ~120 Mha. It is a rigid constraint below which the total amount of cultivated land cannot be reduced. From this total amount, there is provincial farmland red line. This red line sets a constraint on the implementation of the NCS pathways associated with land-use change. We set the future scenario of farmland area that can be used for grassland or forest restoration on the basis of the provincial farmland red line. Basic farmland is closely related to national food security. By 2050, China’s population is predicted to decrease slightly, but with economic development, the per capita demand for food may increase40. We assume that the food production in the future can meet the food demand via increasing agricultural investment and technological advancement. The N fertilizer reduction scenario is set to be below the level 60%, under which crop yield is not significantly affected19, because N fertilizer is surplus in many Chinese croplands. For timber production, we assume that the demand for timber can be met if the production level is maintained at the level of 2010–2020 (83.31 million m3 yr−1). As deforestation of natural forests is 100% forbidden since 2020, the future timber will come mainly from tree plantations. For grazing optimization, we assume that livestock production is not affected by grassland fencing due to refined livestock management such as improving feed nutrient and fine-seed breeding41.The areas of historical NCS implementation during 2000–2020 were estimated using statistical data, published literature and public documents, with a supplement from remote-sensing data. The flux rates were obtained either by directly using the values from multiple literature sources or from estimates using the empirical formulae. For the estimates of future NCS potential, the flux rate and extent of the pathway were determined on the basis of the baseline (2000–2020). The extent is assumed to be achieved by using the same rate but limited by the multiple constraints stated in the preceding unless the implementation scopes have been reported in national planning documents. We estimate the legacy effect by multiplying the implementation area in the past by the flux rates in the future two periods.SaturationThe future mitigation potential that we estimate for 2030 and 2060 will not persist indefinitely because the finite potential for natural ecosystems to store additional carbon will saturate. For each NCS pathway, we estimate the expected duration of the potential for sequestration at the maximum rate (Supplementary Table 3). Forests can continue to sequester carbon for 70–100 years or more. Restored grasslands and fenced grasslands can continue to sequester carbon for >50 years. Forest-fire management and cover crops can continue to sequester carbon for 40–50 years or more. Sea grasses and peatlands can continue to sequester carbon for millennia. Avoided pathways do not saturate as long as the business-as-usual cases indicate that there are potential areas for avoided losses of ecosystems. In this case, sea grass and salt marsh would disappear entirely after 64 years, but it would be 100–300 years or more for forest, grassland and peatland.Estimation of uncertaintiesThe extent (area or biomass amount) and flux (sequestration or reduced emission per area or biomass amount in unit time) are considered to estimate uncertainty of the historical mitigation capacity or future potential for each NCS pathway. We use the IPCC approaches to combine uncertainty42. Where mean and standard deviation can be estimated from collected literature, 95% CIs are presented on the basis of multiple published estimates. Where a sample of estimates is not available but only a range of a factor, we report uncertainty as a range and use Monte Carlo simulations (with normal distribution and 100,000 iterations) to combine the uncertainties of extent and flux (IPCC Approach 2). The overall uncertainties of the 16 NCS pathways were combined using IPCC Approach 142. If the extent estimate is based on a policy determination, rather than an empirical estimate of biophysical potential, we do not consider it a source of uncertainty.MACsThe economic/cost constraints refer to the amount of NCS that can be achieved at a given social cost. The MAC curve is fitted according to the total publicly funded investment and total mitigation capacity or potential during a period. The MAC curves are drawn to estimate the historical mitigation or MAMP at the cost thresholds of US$10, US$50 and US$100 (MgCO2e)−1, respectively. The trading price in China’s current carbon market is ~US$10 USD (as the minimum cost43), and the cost-effective price point44,45 to achieve the Paris Agreement goal of limiting global warming to below 2 °C above pre-industrial levels is US$100 (as the maximum cost). A carbon price of US$50 is regarded as a medium value1,46. For the pathways of reforestation, avoided grassland conversion, grazing optimization and grassland restoration, we collected the statistical data of investments in China from 2000 to 2020 and estimated the affordable MAMP below the three mitigation costs. Due to data limitations, the points used for fitting the MAC curve are values for cost (invested funds) and benefit (mitigation capacity) in each of the provinces. We rank the ratio of benefit to cost in a descending order to obtain the maximum marginal benefit for MAC by assuming that NCS measures are first implemented in the region with the highest cost/benefit rate. We refer to the investment standard before 2020 as the benchmark and estimate the cost of each pathway for the future periods with discount rates of 3% and 5%, respectively. The social discount rate 4–6% is usually used as a benchmark discount value in carbon price studies in China compared with lower scenarios (for example, 3.6%)46,47. In a global study for estimating country-level social cost of carbon, 3% and 5% are used for scenario analysis48. Note that the mean value from the two discount rates was used in presenting the results. For the other pathways where investment data cannot be obtained, we refer to relevant references to estimate MAC. All the cost estimates are expressed in 2015 dollars, transformed on the basis of the Renminbi and US dollar exchange rate of the same year. The year 2015 represents a relatively stable condition of economic increase over the past decade (2011–2020) in China (the increase rate of gross domestic product (GDP) in 2015 is similar to the 10 yr mean). In the cases when the MAC curves exceed the estimated maximum potentials in the period, we identify the historical capacity or the MAMP as limited by the biophysical estimates.Additional mitigation required to meet Paris Agreement NDCsOn 28 October 2021, China officially submitted ‘China’s Achievements, New Goals and New Measures for Nationally Determined Contributions’ (‘New Measures 2021’ hereafter) and ‘China’s Mid-Century Long-Term Low Greenhouse Gas Emission Development Strategy’ to the Secretariat of the United Nations Framework Convention on Climate Change as an enhanced strategy to China’s updated NDCs (first submission in 2015). The goal of China’s updated NDCs is to strive to peak CO2 emissions before 2030 and achieve carbon neutralization by 2060. It specified the goals to include the following: before 2030, China’s carbon dioxide emissions per unit of GDP are expected be more than 65% lower than that in 2005, and the forest stock volume is expected to be increased by around 6.0 (previously 4.5) billion m3 over the 2005 level. In the ‘New Measures 2021’9 and ‘Master Plan of Major Projects of National Important Ecosystem Protection and Restoration (2021–2035)’5, many NCS-related opportunities are proposed to consolidate the carbon sequestration of ecosystems and increase the future NCS potential, including protecting the existing ecosystems, implementing engineering to precisely improve forest quality, continuously increasing forest area and stock volume, strengthening grassland protection and recovery and wetland protection and improving the quality of cultivated land and the agricultural carbon sinks.Industrial CO2 emissionsThe historical CO2 emissions data from 2000 to 201749,50 are used as the benchmark of industrial CO2 emissions during 2000–2020. For future projections, we use the peak value of the A1B2C2 scenario (in the range of 10,000 to 12,000 Mt) in 2030 from ref. 11. We assume that CO2 emission increases linearly from 2017 to 2030.Characterizing co-benefitsNCS activities proposed in the future measures or plans may enhance co-benefits. Four generalized types of ecosystem services are identified: improving biodiversity, water-related, soil-related and air-related ecosystem services (Fig. 1). Biodiversity benefits refer to the increase in different levels of diversity (alpha, beta and/or gamma diversity)51. Water, soil and air benefits refer to flood regulation and water purification, improved fertility and erosion prevention, and improvements in air quality, respectively, as defined in the Millennium Ecosystem Assessment52. The evidence that each pathway produces co-benefits from one or more peer-reviewed publications was collected through reviewing the literature (see the details for co-benefits of each pathway in Supplementary Information).Mapping province-level mitigationThe data for extent of implementing forest pathways are obtained from the statistical yearbook and reported at the province level. To be consistent with the forest pathways, the other pathways were also aggregated to the provincial-level estimate from the spatial data. If the flux data were available in different climate regions, the provinces are first assigned to climate regions. When a province spans multiple climate zones, the weight value is set according to the proportion of area, and finally an estimated value of rate was calculated (for fire management, some grassland and wetland pathways). For the forest pathways, we first collected the flux-rate data from reviewing literature and then averaged these flux rates to region/province. The flux rates for reforestation and natural forest management were calculated separately by province and age group. Similarly, specified flux rates are applied for different times after ecosystem restoration or conversion for other pathways.Classification of NCS typesThree types of NCS pathways were classified: protection (of intact natural ecosystems), improved management (on managed lands) and restoration (of native cover)35. In our study, four (AVFC, AVGC, AVCI, AVPI), eight (IMP, NFM, FM, BIOC, CVCR, CRNM, IMRC, GROP) and four (RF, GRR, CWR, PTR) NCS pathways were identified as protection, management and restoration types, respectively (Supplementary Table 1). These pathways can be further divided into groups of ‘single’ type or ‘mixed’ type according to their contribution to individual pathways. Specifically, in a certain area, when the mitigation capacity of a certain pathway accounts for more than 50% of the total, it is regarded as a single or dominant NCS type; if no single pathway accounts for more than 50%, it is a mixed type, named by the top pathways whose NCS sum exceeds 50% of the total mitigation capacity. More

  • in

    Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests

    Bastin, J. F. et al. The global tree restoration potential. Science 364, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).Article 

    Google Scholar 
    Camenzind, T., Httenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Hou, E., Luo, Y., Kuang, Y., Chen, C. & Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).Article 

    Google Scholar 
    Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).CAS 
    Article 

    Google Scholar 
    Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biol. 24, 4816–4826 (2018).Article 

    Google Scholar 
    Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113 (2014).CAS 
    Article 

    Google Scholar 
    Mori, T., Lu, X., Aoyagi, R. & Mo, J. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct. Ecol. 32, 1145–1154 (2018).Article 

    Google Scholar 
    Gallardo, A. & Schlesinger, W. H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 26, 1409–1415 (1994).Article 

    Google Scholar 
    Feng, J. et al. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: Evidence from ecoenzymatic stoichiometry. Global Biogeochem. Cycles. 33, 559–569 (2019).CAS 

    Google Scholar 
    Cui, Y. et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 658, 1440–1451 (2019).CAS 
    Article 

    Google Scholar 
    Jing, X. et al. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol. Biochem. 141, 107657 (2020).CAS 
    Article 

    Google Scholar 
    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 34, 1461–1471 (2020).Article 

    Google Scholar 
    Fang, J., Chen, A., Peng, C., Zhao, S. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).CAS 
    Article 

    Google Scholar 
    Zhu, J. et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 8, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 115, 4015–4020 (2018).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).CAS 
    Article 

    Google Scholar 
    Moorhead, D. L., Sinsabaugh, R. L., Hill, B. H. & Weintraub, M. N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 93, 1–7 (2016).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecol. Biogeogr. 30, 2297–2311 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).Article 

    Google Scholar 
    Schulte-Uebbing, L. & Vries, W. D. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biol. 24, 416–431 (2017).Article 

    Google Scholar 
    Richardson, S. J., Peltzer, D. A., Allen, R. B. & Parfitt, M. G. L. Rapid development of phosphorus limitation in temperate rainforest along the Franz josef soil chronosequence. Oecologia 139, 267–276 (2004).Article 

    Google Scholar 
    Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biol. 23, 3808–3824 (2017).Article 

    Google Scholar 
    Yao, Q. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).Article 

    Google Scholar 
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).CAS 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Xu, X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198, 656–669 (2013).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol. Biochem. 116, 11–21 (2018).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 147, 107814 (2020).CAS 
    Article 

    Google Scholar 
    Johnson, J. et al. The response of soil solution chemistry in european forests to decreasing acid deposition. Global Change Biol. 24, 3603–3619 (2018).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).CAS 
    Article 

    Google Scholar 
    Penuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 1–10 (2013).
    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in china over the past decade. Nat. Geosci. 12, 424–429 (2019).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma 419, 115868 (2022).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).CAS 
    Article 

    Google Scholar 
    Craig, M. E., Mayes, M. A., Sulman, B. N. & Walker, A. P. Biological mechanisms may contribute to soil carbon saturation patterns. Global Change Biol. 27, 2633–2644 (2021).CAS 
    Article 

    Google Scholar 
    Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C. & Wookey, P. A. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biol. 26, 5178–5188 (2020).Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    Article 

    Google Scholar 
    Rosinger, C., Rousk, J. & Sandén, H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils. Soil Biol. Biochem. 128, 115–126 (2019).CAS 
    Article 

    Google Scholar 
    Mori, T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biol. Biochem. 146, 107816 (2020).CAS 
    Article 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS 
    Article 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum, forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).CAS 
    Article 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).CAS 
    Article 

    Google Scholar 
    Lindstrom, M. J. & Bates, D. M. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. J. Am. Stat. Assoc. 83, 1014–1022 (1988).
    Google Scholar 
    Legendre, P. & Legendre, L. Numerical ecology, 2nd English edition. Elsevier Science BV, Amsterdam (1998).Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8/1, 20–25 (2008).
    Google Scholar 
    Toms, J. D. & Lesperance, M. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).Article 

    Google Scholar 
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.7 edn (2016).Development Core Team R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). More

  • in

    Feeding ecology of the endangered Asiatic wild dogs (Cuon alpinus) across tropical forests of the Central Indian Landscape

    Floyd, T. J., Mech, L. D. & Jordan, P. A. Relating wolf scat content to prey consumed. J. Wildl. Manag. 42, 528 (1978).Article 

    Google Scholar 
    Ackerman, B. B., Lindzey, F. G. & Hemker, T. P. Cougar food habits in Southern Utah. J. Wildl. Manag. 48, 147 (1984).Article 

    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Klare, U., Kamler, J. F. & Macdonald, D. W. A comparison and critique of different scat-analysis methods for determining carnivore diet: Comparison of scat-analysis methods. Mammal Rev. 41, 294–312 (2011).Article 

    Google Scholar 
    Hatton, I. A. et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Monterroso, P. et al. Feeding ecological knowledge: The underutilised power of faecal DNA approaches for carnivore diet analysis. Mammal Rev. 49, 97–112 (2019).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J., Hofmeyr, M. & Kerley, G. I. H. Prey preferences of the African wild dog Lycaon Pictus (Canidae: Carnivora): Ecological requirements for conservation. J. Mammal. 87, 1122–1131 (2006).Article 

    Google Scholar 
    Crawford, K., Mcdonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal Rev. 38, 87–107 (2008).Article 

    Google Scholar 
    Crossey, B., Chimimba, C., du Plessis, C., Ganswindt, A. & Hall, G. African wild dogs ( Lycaon pictus ) show differences in diet composition across landscape types in Kruger National Park, South Africa. J. Mammal. 102, 1211–1221 (2021).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18 (2003).Article 

    Google Scholar 
    Kamler, J. F. et al. Cuon alpinus. IUCN Red List Threat. Spec. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).Article 

    Google Scholar 
    Johnsingh, A. J. T. Distribution and status of dhole Cuon alpinus Pallas, 1811 in South Asia. Mammalia 49, (1985).Acharya, B. B. Dissertation submitted to Saurashtra University, Rajkot, Gujarat, for the award of the Degree of Doctor of Philosophy in Wildlife Science. 133.Sillero-Zubiri, E. C., Hoffmann, M. & Macdonald, D. W. Canids: Foxes, Wolves, Jackals and Dogs. 443.Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karanth, K. K., Nichols, J. D., Karanth, K. U., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).Article 

    Google Scholar 
    Srivathsa, A., Karanth, K. K., Jathanna, D., Kumar, N. S. & Karanth, K. U. On a dhole trail: Examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western Ghats of India. PLoS ONE 9, e98803 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).PubMed 
    Article 

    Google Scholar 
    Fleming, P. J. S. et al. Roles for the Canidae in food webs reviewed: Where do they fit?. Food Webs 12, 14–34 (2017).Article 

    Google Scholar 
    Van Valkenburgh, B. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): Evolutionary interactions among sympatric predators. Paleobiology 17, 340–362 (1991).Article 

    Google Scholar 
    Clements, H. S., Tambling, C. J., Hayward, M. W. & Kerley, G. I. H. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large african carnivores. PLoS ONE 9, e101054 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hayward, M. W., Lyngdoh, S. & Habib, B. Diet and prey preferences of dholes ( C uon alpinus ): Dietary competition within A sia’s apex predator guild. J. Zool. 294, 255–266 (2014).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S. & Oli, M. K. Every dog has its prey: Range-wide assessment of links between diet patterns, livestock depredation and human interactions for an endangered carnivore. Sci. Total Environ. 714, 136798 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, J. A. Cuon alpinus. Mamm. Spec. https://doi.org/10.2307/3503800 (1978).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal Rev. 50, 399–412 (2020).Article 

    Google Scholar 
    Ghaskadbi, P., Nigam, P. & Habib, B. Stranger Danger: Differential response to strangers and neighbors by a social carnivore, the Asiatic wild dog (Cuon alpinus). Behav. Ecol. Sociobiol. 76, 86. https://doi.org/10.1007/s00265-022-03188-4 (2022). Article 

    Google Scholar 
    Ghaskadbi, P., Das, J., Mahadev, V. & Habib, B. First record of mixed species association between dholes and a wolf from Satpura Tiger Reserve, India. Canid Biol. Conserv. 23(4): 15–17. http://www.canids.org/CBC/23/Dhole_wolf_association.pdf (2021).Wachter, B. et al. An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS ONE 7, e38066 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgaonkar, A. Satpura National Park, India. 135.Borah, J., Deka, K., Dookia, S. & Gupta, R. P. Food habits of dholes (Cuon alpinus) in Satpura Tiger Reserve. Madhya Pradesh, India. 73, 85–88 (2009).
    Google Scholar 
    Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger ( Panthera tigris ), leopard ( Panthera pardus ) and dhole ( Cuon alpinus ) in Nagarahole, India. J. Zool. 250, 255–265 (2000).Article 

    Google Scholar 
    Krishna, Y. C., Clyne, P. J., Krishnaswamy, J. & Kumar, N. S. Distributional and ecological review of the four horned antelope. Tetracerus quadricornis. 73, 1–6 (2009).
    Google Scholar 
    Sharma, K., Chundawat, R. S., Van Gruisen, J. & Rahmani, A. R. Understanding the patchy distribution of four-horned antelope Tetracerus quadricornis in a tropical dry deciduous forest in Central India. J. Trop. Ecol. 30, 45–54 (2014).Article 

    Google Scholar 
    Rahman, D. A., Syamsudin, M., Firdaus, A. Y. & Afriandi, H. T. Photographic record of Dholes predating on a young Banteng in southwestern Java, Indonesia. J. Threat. Taxa 13, 20278–20283 (2021).Article 

    Google Scholar 
    Durbin, L. S., Venkataraman, A., Hedges, S. & Dukworth, W. South Asia—south of th e Himalaya (oriental). In Canids: Foxes, Wolves, Jackals and Dogs . Status Survey and Conserva- tion Action Plan. (IUCN Canid Specialist Group, 2004).Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the Endangered dhole Cuon alpinus in the high elevation Eastern Himalayan habitats of Khangchendzonga Biosphere Reserve, Sikkim, India. Oryx 48, 125–132 (2014).Article 

    Google Scholar 
    Yoshimura, H., Hirata, S. & Kinoshita, K. Plant-eating carnivores: Multispecies analysis on factors influencing the frequency of plant occurrence in obligate carnivores. Ecol. Evol. 11, 10968–10983 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Snake-in-the-diet-of-Cuon-alpinus-Pallas-1811-in-Kalakad-Mundanthurai-Tiger-Reserve-Tamil-Nadu.pdf.Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR)— Phase IV Monitoring Report and Report on Collaring of Leopards. (2014). 26 (2015).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2015). 62 (2016).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2016). 27 (2017).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2017). 44 (2018).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2018). 41 (2019).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2019). 47 https://ntca.gov.in/assets/uploads/Reports/WII/TATR%20Phase%20IV%202019.pdf (2020).Jhala, Y. V., Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018. 656 https://ntca.gov.in/assets/uploads/Reports/AITM/Tiger_Status_Report_2018.pdf (2019).Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India. J. Zool. 260, 285–290 (2003).Article 

    Google Scholar 
    Woodroffe, R., Lindsey, P. A., Romañach, S. S. & Ranah, S. M. K. African Wild Dogs ( Lycaon pictus ) Can Subsist on Small Prey: Implications for Conservation. J. Mammal. 88, 181–193 (2007).Article 

    Google Scholar 
    Merrill, E. et al. Building a mechanistic understanding of predation with GPS-based movement data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2279–2288 (2010).Article 

    Google Scholar 
    Pitman, R. T., Mulvaney, J., Ramsay, P. M., Jooste, E. & Swanepoel, L. H. Global Positioning System-located kills and faecal samples: A comparison of leopard dietary estimates. J. Zool. 292, 18–24 (2014).Article 

    Google Scholar 
    Jansen, C., Leslie, A. J., Cristescu, B., Teichman, K. J. & Martins, Q. Determining the diet of an African mesocarnivore, the caracal: Scat or GPS cluster analysis?. Wildl. Biol. 2019, wlb.00579 (2019).Article 

    Google Scholar 
    Leighton, G. R. M. et al. An integrated dietary assessment increases feeding event detection in an urban carnivore. Urban Ecosyst. 23, 569–583 (2020).Article 

    Google Scholar 
    Studd, E. K. et al. The Purr-fect Catch: Using accelerometers and audio recorders to document kill rates and hunting behaviour of a small prey specialist. Methods Ecol. Evol. 12, 1277–1287 (2021).Article 

    Google Scholar 
    Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing the effect of Prey availability and Apex predator. Ecol. Evol. 11, 4774–4785 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 11033 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, D. M., Vyver, D. B. & Bissett, C. The influence of an apex predator introduction on an already established subordinate predator. J. Zool. 313, 224–235 (2021).Article 

    Google Scholar 
    Johnsingh, A. J. T. Prey selection in three large sympatric carnivores in Bandipur. Mammalia 56, (1992).Marucco, F., Pletscher, D. H. & Boitani, L. Accuracy of scat sampling for carnivore diet analysis: Wolves in the Alps as a case study. J. Mammal. 89, 665–673 (2008).Article 

    Google Scholar 
    Martins, Q., Horsnell, W. G. C., Titus, W., Rautenbach, T. & Harris, S. Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J. Zool. 283, 81–87 (2011).Article 

    Google Scholar 
    Champion, S. H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    Thinley, P. et al. Seasonal diet of dholes (Cuon alpinus) in northwestern Bhutan. Mamm. Biol. 76, 518–520 (2011).Article 

    Google Scholar 
    Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Modi, S., Mondol, S., Nigam, P. & Habib, B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci. Rep. 11, 16371 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Putman, R. J. Facts from faeces. Mammal Rev. 14, 79–97 (1984).Article 

    Google Scholar 
    Kohn, M. H. & Wayne, R. K. Facts from feces revisited. Trends Ecol. Evol. 12, 223–227 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukherjee, S., Goyal, S. P. & Chellam, R. Standardisation of scat analysis techniques for leopard (Panthera pardus) in Gir National Park, Western India. Mammalia 58, (1994).Bahuguna, A., Sahajpal, V., Goyal, S. P., Mukherjee, S. & Thakur, V. Species Identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India (Wildlife Institute of India, 2010).
    Google Scholar 
    Leopold, B. D. & Krausman, P. R. Diets of 3 Predators in Big Bend National Park, Texas. J. Wildl. Manag. 50, 290 (1986).Article 

    Google Scholar 
    Van Ballenberghe, V., Erickson, A. W. & Byman, D. Ecology of the Timber Wolf in Northeastern Minnesota. Wildl. Monogr. 3–43 (1975).Ciucci, P., Boitani, L., Pelliccioni, E. R., Rocco, M. & Guy, I. A comparison of scat-analysis methods to assess the diet of the wolf Canis lupus. Wildl. Biol. 2, 37–48 (1996).Article 

    Google Scholar 
    Weaver, J. L. Refining the equation for interpreting prey occurrence in Gray wolf scats. J. Wildl. Manag. 57, 534–538 (1993).Article 

    Google Scholar 
    Chakrabarti, S. et al. Adding constraints to predation through allometric relation of scats to consumption. J. Anim. Ecol. 85, 660–670 (2016).PubMed 
    Article 

    Google Scholar 
    Lumetsberger, T. et al. Re-evaluating models for estimating prey consumption by leopards. J. Zool. 302, 201–210 (2017).Article 

    Google Scholar 
    Jacobs, J. Quantitative measurement of food selection: A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417 (1974).ADS 
    PubMed 
    Article 

    Google Scholar 
    Karanth, K. U. & Nichols, J. D. Distribution and Dynamics of Tiger and Prey Populations in Maharashtra, India Final Technical Report (October 2001 to August 2005). (2005).19 LIVESTOCK CENSUS-2012 ALL INDIA REPORT. https://d1wqtxts1xzle7.cloudfront.net/56129012/6ESSJan-6098P-with-cover-page-v2.pdf?Expires=1644491741&Signature=Apc1rT2raxYnUyrRJ64NqOd6oUEpnF2AiRQVPB-9gS2W2TIrOcInF3KnBJVA2dPxzfbIz8ap9IPe-l24mpYs9i8xEZAvsxRVnDhSHT8H9C9fd0voDxyUwl3gUyJgDDzLO-204J95UuopJQw5Df6xTNmTOs5Oiadk0Fkf9Fk-QRVajisuRjzyX2eLmrBH4LyTJFu5irffnKwnluqHl53KoMAQ6nTKi7dlqI4pdFIVCtisXpkSsI44xV1mYX6KC67zmKCZlvjpTxTuHCFV4nmfpgZpPXh4sIOE-0utbwcf5g~UdmRtVVhaXfjZ2iw0gOm7-bIuQILDldPr3OnNUqXbSw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (2012).The Measurement of Niche Overlap and Some Relatives – Hurlbert – 1978 – Ecology – Wiley Online Library. https://esajournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.2307/1936632.Habib, B., Ghaskadbi, P., Khan, S., Hussain, Z. & Nigam, P. Not a cakewalk: Insights into movement of large carnivores in human-dominated landscapes in India. Ecol. Evol. 11, 1653–1666 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manag. 38, 541–545 (1974).Article 

    Google Scholar  More