More stories

  • in

    Adaptive phenotypic plasticity is under stabilizing selection in Daphnia

    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).Article 

    Google Scholar 
    Via, S. et al. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghalambor, C. K. et al. Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    King, J. G. & Hadfield, J. D. The evolution of phenotypic plasticity when environments fluctuate in time and space. Evol. Lett. 3, 15–27 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, R. A. Genetic variation for phenotypic plasticity in the larval life history of spadefoot toads (Scaphiopus couchii). Evolution 48, 1773–1785 (1994).PubMed 

    Google Scholar 
    Nussey, D. H. et al. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiner, S. Selection experiments and the study of phenotypic plasticity 1. J. Evol. Biol. 15, 889–898 (2002).Article 

    Google Scholar 
    Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reger, J. et al. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).PubMed 
    Article 

    Google Scholar 
    Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brakefield, P. M. & Reitsma, N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303 (1991).Article 

    Google Scholar 
    Rountree, D. & Nijhout, H. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). J. Insect Physiol. 41, 987–992 (1995).CAS 
    Article 

    Google Scholar 
    Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty. Ecol. Evol. 2, 751–767 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonamour, S. et al. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B 374, 20180178 (2019).Article 

    Google Scholar 
    Fox, R.J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0174 (2019).Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B 277, 503–511 (2010).PubMed 
    Article 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yampolsky, L. Y., Schaer, T. M. & Ebert, D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc. R. Soc. B 281, 20132744 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119, 214–225 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).PubMed 

    Google Scholar 
    Lynch, M. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136, 727–741 (1990).Article 

    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102, 6543–6549 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turelli, M. & Barton, N. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Noble, D. W., Radersma, R. & Uller, T. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc. Natl Acad. Sci. USA 116, 13452–13461 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66-9, 2891–2902 (2012).Article 

    Google Scholar 
    Houle, D. How should we explain variation in the genetic variance of traits? Genetica 102, 241–253 (1998).PubMed 
    Article 

    Google Scholar 
    Tollrian, R. Predator‐induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76, 1691–1705 (1995).Article 

    Google Scholar 
    Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).CAS 
    Article 

    Google Scholar 
    Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15, 1309–1318 (1993).Article 

    Google Scholar 
    Dennis, S. et al. Phenotypic convergence along a gradient of predation risk. Proc. R. Soc. B 278, 1687–1696 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammill, E. & Beckerman, A. P. Reciprocity in predator–prey interactions: exposure to defended prey and predation risk affects intermediate predator life history and morphology. Oecologia 163, 193–202 (2010).PubMed 
    Article 

    Google Scholar 
    Hammill, E., Rogers, A. & Beckerman, A. P. Costs, benefits and the evolution of inducible defences: a case study with Daphnia pulex. J. Evol. Biol. 21, 705–715 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnard-Kubow, K. et al. Polygenic variation in sexual investment across an ephemerality gradient in Daphnia pulex. Mol. Bio. Evol. 39, msac121 (2022).Article 

    Google Scholar 
    Deng, H.-W. & Lynch, M. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics 147, 147–155 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seyfert, A. L. et al. The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics 178, 2113–2121 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collyer, M. L. & Adams, D. C. Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24, 75 (2013).
    Google Scholar 
    Adams, D.C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. et al. Geomorph: software for geometric morphometric analyses (University of New England, 2016); https://hdl.handle.net/1959.11/21330Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).PubMed 
    Article 

    Google Scholar 
    Richards, C. L., Bossdorf, O. & Pigliucci, M. What role does heritable epigenetic variation play in phenotypic evolution? BioScience 60, 232–237 (2010).Article 

    Google Scholar 
    Latta, L. C. IV et al. The phenotypic effects of spontaneous mutations in different environments. Am. Nat. 185, 243–252 (2015).PubMed 
    Article 

    Google Scholar 
    Lind, M. I. et al. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B 282, 20151651 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology 85, 2302–2311 (2004).Article 

    Google Scholar 
    Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tollrian, R. & Harvell, C.D. The Ecology and Evolution of Inducible Defenses (Princeton Univ. Press, 1999).Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Via, S. & Lande, R. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522 (1985).PubMed 
    Article 

    Google Scholar 
    Kvist, J. et al. Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits. Mol. Ecol. 22, 602–619 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siepielski, A. M. et al. Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proc. R. Soc. B 278, 1572–1580 (2011).PubMed 
    Article 

    Google Scholar 
    Muschick, M. et al. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol. Biol. 11, 116 (2011).Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halligan, D. L. & Keightley, P. D. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40, 151–172 (2009).Article 

    Google Scholar 
    Houle, D., Morikawa, B. & Lynch, M. Comparing mutational variabilities. Genetics 143, 1467–1483 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eberle, S. et al. Hierarchical assessment of mutation properties in Daphnia magna. G3 Genes Genomes Genetics 8, 3481–3487 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yan, N. D. et al. Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can. J. Fish. Aquat. Sci. 65, 862–877 (2008).CAS 
    Article 

    Google Scholar 
    Reed, T. E., Schindler, D. E. & Waples, R. S. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25, 56–63 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    ASTM, Standard Guide for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians (American Society for Testing and Materials, 1988).Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, J. et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).MarkDuplicates v.2.20 (Broad Institute, 2019); http://broadinstitute.github.io/picardMcKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2018).Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).PubMed 
    Article 

    Google Scholar 
    Naraki, Y., Hiruta, C. & Tochinai, S. Identification of the precise kairomone-sensitive period and histological characterization of necktooth formation in predator-induced polyphenism in Daphnia pulex. Zool. Sci. 30, 619–625 (2013).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scrucca, L. et al. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2018).Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).Article 

    Google Scholar 
    Collyer, M. L. & Adams, D. C. RRPP: an r package for fitting linear models to high‐dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).Article 

    Google Scholar 
    Collyer, M., Adams, D. & and Collyer, M.M. RRPP: linear model evaluation with randomized residuals in a permutation procedure. R package version 1.3 https://CRAN.R-project.org/package=RRPP (2021).Smirnov, P. robcor: Robust correlations. R package version 0.1-6.1 https://CRAN.R-project.org/package=ropcor (2014).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Yang, J. et al. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).Villanueva, R., Chen, Z. & Wickham, H. ggplot2: Elegant Graphics for Data Analysis Using the Grammar of Graphics (Springer-Verlag, 2016).Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.9. 2 https://CRAN.R-project.org/package=cowplot (2020).Dowle, M. et al. data.table: Extension of ‘data.frame‘. R package version 1.14.0 https://CRAN.R-project.org/package=data.table (2021).Daniel, M. foreach: Provides foreach looping construct. R package version 1.5.1 https://CRAN.R-project.org/package=foreach (2020).Weston, S. doMC: Foreach parallel adaptor for ‘parallel’. R package version 1.3.7 https://CRAN.R-project.org/package=doMC (2020).Clarke, E. & Sherrill-Mix, S. Ggbeeswarm: Categorical scatter (violin point) plots. R package version 0.6. 0 https://CRAN.R-project.org (2017).Garnier, S. et al. viridis: Default color maps from ‘matplotlib’. R package version 0.5.1 (2018). More

  • in

    Influence of suspended inorganic particles (kaolinite) on eggs and larvae of the pelagic shrimp Lucensosergia lucens

    Uchida, H. & Baba, O. Fishery management and the pooling arrangement in the Sakura ebi fishery in Japan, 175–189. https://www.fao.org/3/a1497e/a1497e16.pdf (2008).Omori, M. The biology of a sergestid shrimp Sergestes lucens Hansen. Bull. Ocean Res. Inst. Univ. Tokyo 4, 1–83 (1969).
    Google Scholar 
    Gurney, R. & Lebour, M. V. Larvae of decapod crustacea. Part VI. The genus Sergestes. Discov. Rep. 20, 1–68 (1940).
    Google Scholar 
    Holthuis, L. B. FAO species catalogue. Vol. 1. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fish. Synop. Vol. 125, 1–271 (1980).Omori, M., Ukishima, Y. & Muranaka, F. New record of occurrence of Sergia lucens (Hansen) (Crustacea, Sergestidae) off Tung-kang, Taiwan, with special reference to phylogeny and distribution of the species. J. Oceanogr. Soc. Jpn. 44, 261–267 (1988) (in Japanese with English abstract).Article 

    Google Scholar 
    Isshiki, T. & Tajima, Y. The research of a sergestid shrimp, Sergia lucens (Hansen) in the mouth of Tokyo Bay I. The seasonal distribution of adult and the distribution of eggs. Bull. Kanagawa Pref. Fish. Exp. Stn. 13, 73–78 (1992) (in Japanese with English abstract).
    Google Scholar 
    Lee, D. A., Wu, S. H., Liao, I. C. & Yu, H. P. On three species of commercially important sergestid shrimps (Decapoda: Sergestidae) in the coastal waters of Taiwan. J. Taiwan Fish. Res. Inst. 4, 1–19 (1996) (in Chinese with English abstract).CAS 

    Google Scholar 
    Yinji, L. & Ratana, C. Governing in an uncertain time: The case of Sakura shrimp fishery, Japan. Marit. Stud. 20, 115–126 (2021).Article 

    Google Scholar 
    Isono, R. S., Kita, J. & Setoguma, T. Acute effects of kaolinite suspension on eggs and larvae of some marine teleosts. Comp. Biochem. Physiol. Part C 120, 449–455 (1998).CAS 
    Article 

    Google Scholar 
    Aoki, S. & Oinuma, K. Distribution of clay minerals in surface sediments of Suruga Bay, central Japan. J. Geol. Soc. Jpn. 87(7), 429–438 (1981) (in Japanese with English abstract).Article 

    Google Scholar 
    Nasnodkar, M. R. & Ganapati, N. N. Clay mineralogy and chemistry of mudflat core sediments from Sharavathi and Gurupur estuaries: Source and processes. Indian J. Geo-Mar. Sci. 48(3), 379–388 (2019).
    Google Scholar 
    Capper, N. The effects of suspended sediment on the aquatic organisms Daphnia magna and Pimephales promelas. All Theses. 2. https://tigerprints.clemson.edu/all_theses/2 (2006).Boyd, M. B. et al. Disposal of dredge spoil, problem identification and assessment and research program development. Technical report H-72–8, U.S. army engineer waterways experiment station, CE, Vicksburg, Miss. (1972).McFarland, V. A. & Peddicord, R. K. Lethality of a suspended clay to a diverse selection of marine and estuarine macrofauna. Arch. Environ. Contam. Toxicol. 9, 733–741 (1980).CAS 
    Article 

    Google Scholar 
    Arakawa, H. et al. The influence of suspended particles on larval development in the Manila clam Ruditapes philippinarum. Sci. Postp. 1, e00028. https://doi.org/10.14340/spp.2014.08A0002 (2014).Article 

    Google Scholar 
    Davis, H. C. Effects of turbidity-producing materials in sea water on eggs and larvae of the clam (Venus (Mercenaria) mercenaria). Biol. Bull. 118, 48–54 (1960).Article 

    Google Scholar 
    Tabata, A., Morinaga, T. & Arakawa, H. Influences of concentration, particle-size and kind of inorganic suspended matter on feed caught by Manila clam, Ruditapes philippinarum. La Mer 37, 163–171 (2000).CAS 

    Google Scholar 
    Annisa, Dwiatmoko, M. U., Saismana, U. & Maulanai, R. Characteristics of kaolin clay on Alluvial formation subdistrict mataraman based on physical properties and chemical properties. In MATEC Web of Conferences Vol. 280, 03009. https://doi.org/10.1051/matecconf/201928003009 (2019).Murray, H. H. Structure and composition of clay minerals and their physical and chemical properties. Dev. Clay Sci. 2, 7–31. https://doi.org/10.1016/S1572-4352(06)02002-2 (2006).Article 

    Google Scholar 
    Kumari, N. & Mohan, C. Basics of clay minerals and their characteristic properties. Clay Clay Miner. 1–29 (2021).Lively, J. S., Kaufman, Z. & Carpenter, E. J. Phytoplankton ecology of a barrier island estuary: Great South Bay, New York. Estuar. Coast. Shelf Sci. 16(1), 51–68 (1983).ADS 
    Article 

    Google Scholar 
    Lloyd, D. S. Turbidity as a water quality standard for salmonid habitats in Alaska. N. Am. J. Fish. Manag. 7, 34–45 (1987).Article 

    Google Scholar 
    Kirk, K. L. Effects of suspended clay on Daphnia body growth and fitness. Freshw. Biol. 28, 103–109 (1992).Article 

    Google Scholar 
    McCabe, G. D. & O’Brien, W. J. The effects of suspended silt on feeding and reproduction of Daphnia pulex. Am. Midl. Nat. 110, 324–337 (1983).Article 

    Google Scholar 
    Kirk, K. L. & Gilbert, J. J. Suspended clay and the population dynamics of planktonic Rotifers and Cladocerans. Ecology 71, 1741–1755 (1990).Article 

    Google Scholar 
    Loosanoff, V. L. Effects of turbidity on some larval and adult bivalves. Proc. Gulf. Carib. Fish. Inst. 14, 80–95 (1961).
    Google Scholar 
    Arruda, J. A., Marzolf, G. R. & Faulk, R. T. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64, 1225–1235 (1983).Article 

    Google Scholar 
    Kathyayani, S. A., Muralidhar, M., Kumar, T. S. & Alavandi, S. V. Stress quantification in Penaeus vannamei exposed to varying levels of turbidity. J. Coast. Res. 86, 177–183 (2019).CAS 
    Article 

    Google Scholar 
    Wilber, D. H. & Clarke, D. G. Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. N. Am. J. Fish. Manag. 21, 855–875 (2001).Article 

    Google Scholar 
    Lin, H., Charmantier, G., Thuet, P. & Trilles, J. Effects of turbidity on survival, osmoregulation, and gill Na+-K+ ATPase in juvenile shrimp Penaeus japonicus. Mar. Ecol. Prog. Ser. 90, 31–37 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Davis, H. C. & Hidu, H. Effects of turbidity-producing substances in sea water on eggs and larvae of three genera of bivalve mollusks. Veliger 11, 316–323 (1969).
    Google Scholar 
    Nimmo, D. R., Hamaker, T. L., Matthews, E. & Young, W. T. The long-term effects of suspended particulates on survival and reproduction of the mysid shrimp, Mysidopsis bahia, in the laboratory. In Proceedings of a Symposium on the Ecological Effects of Environmental Stress, New York, 413–422 (1979).Peddicord, R. & McFarland, V. Effects of suspended dredged material on the commercial crab, Cancer magister. In Proceedings of the Specialty Conference on Dredging and Its Environmental Effects, Mobile, Alabama, 633–644 (1976).Peddicord, R. K. Direct Effects of Suspended Sediments on Aquatic Organisms. Contaminants and Sediments. Volume 1. Fate and Transport, Case Studies, Modeling, Toxicity 501–536 (Ann Arbor Science Publishers, 1980).
    Google Scholar 
    Wakeman, T., Peddicord, R. & Sustar, J. Effects of suspended solids associated with dredging operations on estuarine organisms. In Ocean 75 conference, 431–436 (1975).Gebauer, P., Walter, I. & Anger, K. Effects of substratum and conspecific adults on the metamorphosis of Chasmagnathus granulata (Dana) (Decapoda: Grapsidae) megalopae. J. Exp. Mar. Biol. Ecol. 223, 185–198 (1998).Article 

    Google Scholar 
    Carvalho, L. & Calado, R. Trade-offs between timing of metamorphosis and grow out performance of a marine caridean shrimp juveniles and its relevance for aquaculture. Aquaculture 492, 97–102 (2018).Article 

    Google Scholar 
    Calado, R. et al. The physiological consequences of delaying metamorphosis in the marine ornamental shrimp Lysmata seticaudata and its implications for aquaculture. Aquaculture 546, 737391. https://doi.org/10.1016/j.aquaculture.2021.737391 (2022).Article 

    Google Scholar 
    Murphy, R. C. Factors affecting the distribution of the introduced bivalve, Mercenaria mercenaria, in a California lagoon—The importance of bioturbation. J. Mar. Res. 43, 673–692 (1985).Article 

    Google Scholar 
    Bricelj, V. M. & Malouf, R. E. Influence of algal and suspended sediment concentration on the feeding physiology of the hard clam Mercenaria mercenaria. Mar. Biol. 84, 155–165 (1984).Article 

    Google Scholar 
    Wenger, A. S., Jacob, J. L. & Jones, G. P. Increasing suspended sediment reduces foraging, growth, and condition of a planktivorous damselfish. J. Exp. Mar. Biol. Ecol. 428, 43–48 (2012).Article 

    Google Scholar 
    Robinson, W. E., Wehling, W. E. & Morse, M. P. The effect of suspended clay on feeding and digestive efficiency of the surf clam Spisula solidissima (Dillwyn). J. Exp. Mar. Biol. Ecol. 74, 1–12 (1984).CAS 
    Article 

    Google Scholar 
    Turner, E. J. & Miller, D. C. Behavior and growth of Mercenaria mercenaria during simulated storm events. Mar. Biol. 111, 55–64 (1991).Article 

    Google Scholar 
    Grant, J. & Thorpe, B. Effects of suspended sediment on growth, respiration, and excretion of the soft-shelled clam (Mya arenaria). Can. J. Fish. Aquat. Sci. 48, 1285–1292 (1991).Article 

    Google Scholar 
    Gleason, R. A., Euliss, N. H., Hubbard, D. E. & Duffy, W. G. Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23, 26–34 (2003).Article 

    Google Scholar 
    Jacek, R., Anna, S. & Miroslaw, S. The effect of lake sediment on the hatching success of Daphnia ephippial eggs. J. Limnol. 75, 597–605 (2016).
    Google Scholar 
    Newcombe, C. P. & McDonald, D. D. Effects of suspended sediment on aquatic ecosystems. N. Am. J. Fish. Manag. 11, 77–82 (1991).Article 

    Google Scholar 
    Chutter, F. M. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia 34, 57–76 (1968).Article 

    Google Scholar 
    Hellawell, J. M. Biological indicators of freshwater pollution and environmental management. In Pollution Monitoring Series (ed. Melanby, K.) https://doi.org/10.1007/978-94-009-4315-5 (1986).Makita, M. & Kondo, M. Rearing of the larvae of Seigia Lucens (Hansen). Bull. Shizuoka Pref. Fish. Exp. Stn. 16, 97–105 (1982) (in Japanese).
    Google Scholar  More

  • in

    Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests

    Bastin, J. F. et al. The global tree restoration potential. Science 364, 76–79 (2019).Article 
    CAS 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).Article 

    Google Scholar 
    Camenzind, T., Httenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).Article 

    Google Scholar 
    Hou, E., Luo, Y., Kuang, Y., Chen, C. & Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).Article 

    Google Scholar 
    Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).CAS 
    Article 

    Google Scholar 
    Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biol. 24, 4816–4826 (2018).Article 

    Google Scholar 
    Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113 (2014).CAS 
    Article 

    Google Scholar 
    Mori, T., Lu, X., Aoyagi, R. & Mo, J. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct. Ecol. 32, 1145–1154 (2018).Article 

    Google Scholar 
    Gallardo, A. & Schlesinger, W. H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 26, 1409–1415 (1994).Article 

    Google Scholar 
    Feng, J. et al. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: Evidence from ecoenzymatic stoichiometry. Global Biogeochem. Cycles. 33, 559–569 (2019).CAS 

    Google Scholar 
    Cui, Y. et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 658, 1440–1451 (2019).CAS 
    Article 

    Google Scholar 
    Jing, X. et al. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol. Biochem. 141, 107657 (2020).CAS 
    Article 

    Google Scholar 
    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 34, 1461–1471 (2020).Article 

    Google Scholar 
    Fang, J., Chen, A., Peng, C., Zhao, S. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).CAS 
    Article 

    Google Scholar 
    Zhu, J. et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 8, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 115, 4015–4020 (2018).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).CAS 
    Article 

    Google Scholar 
    Moorhead, D. L., Sinsabaugh, R. L., Hill, B. H. & Weintraub, M. N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 93, 1–7 (2016).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecol. Biogeogr. 30, 2297–2311 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).Article 

    Google Scholar 
    Schulte-Uebbing, L. & Vries, W. D. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biol. 24, 416–431 (2017).Article 

    Google Scholar 
    Richardson, S. J., Peltzer, D. A., Allen, R. B. & Parfitt, M. G. L. Rapid development of phosphorus limitation in temperate rainforest along the Franz josef soil chronosequence. Oecologia 139, 267–276 (2004).Article 

    Google Scholar 
    Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biol. 23, 3808–3824 (2017).Article 

    Google Scholar 
    Yao, Q. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).Article 

    Google Scholar 
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).CAS 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Xu, X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198, 656–669 (2013).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol. Biochem. 116, 11–21 (2018).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 147, 107814 (2020).CAS 
    Article 

    Google Scholar 
    Johnson, J. et al. The response of soil solution chemistry in european forests to decreasing acid deposition. Global Change Biol. 24, 3603–3619 (2018).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).CAS 
    Article 

    Google Scholar 
    Penuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 1–10 (2013).
    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in china over the past decade. Nat. Geosci. 12, 424–429 (2019).CAS 
    Article 

    Google Scholar 
    Cui, Y. et al. Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma 419, 115868 (2022).CAS 
    Article 

    Google Scholar 
    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).CAS 
    Article 

    Google Scholar 
    Craig, M. E., Mayes, M. A., Sulman, B. N. & Walker, A. P. Biological mechanisms may contribute to soil carbon saturation patterns. Global Change Biol. 27, 2633–2644 (2021).CAS 
    Article 

    Google Scholar 
    Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C. & Wookey, P. A. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biol. 26, 5178–5188 (2020).Article 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    Article 

    Google Scholar 
    Rosinger, C., Rousk, J. & Sandén, H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils. Soil Biol. Biochem. 128, 115–126 (2019).CAS 
    Article 

    Google Scholar 
    Mori, T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biol. Biochem. 146, 107816 (2020).CAS 
    Article 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS 
    Article 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum, forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).CAS 
    Article 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).CAS 
    Article 

    Google Scholar 
    Lindstrom, M. J. & Bates, D. M. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. J. Am. Stat. Assoc. 83, 1014–1022 (1988).
    Google Scholar 
    Legendre, P. & Legendre, L. Numerical ecology, 2nd English edition. Elsevier Science BV, Amsterdam (1998).Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8/1, 20–25 (2008).
    Google Scholar 
    Toms, J. D. & Lesperance, M. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).Article 

    Google Scholar 
    Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.7 edn (2016).Development Core Team R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). More

  • in

    Biophysical and economic constraints on China’s natural climate solutions

    This study presents a comprehensive quantification of carbon sequestration as well as CO2/CH4/N2O emissions reductions from terrestrial ecosystems based on multiple sources of data from literature, inventories, public databases and documents. The pathways considered ecosystem restoration and protection from being converted into cropland or built-up areas, reforestation, management with improved nitrogen use in cropland, restricted deforestation, grassland recovery, reducing risk from forest wildfire and others. Here we describe the cross-cutting methods that apply across all 16 NCS pathways. The definitions, detailed methods and data sources for evaluating individual pathways can be found in the Supplementary Information.Cross-cutting methodsBaseline settingWe set 2000 as the base year because the large-scale national ecological projects, such as the Grain for Green Project, were started since then. We first evaluate the historical mitigation capacity during 2000–2020, which is the first 20 years of implementing the projects. From this procedure we can determine how much mitigation capacity has been realized through the previous projects in the past two decades and to what extent additional actions can be made after 2020. Relative to the baseline 2000–2020, we then evaluate the maximum potentials of the NCS mitigation in the future 10 (2020–2030) and 40 (2020–2060) years, corresponding to the timetable of China’s NDCs: carbon peak before 2030 and carbon neutrality by 2060.The settings of baseline in this study are different from the existing assessments (2000s–2010s as a baseline and 2010–2025/2030/2050 as scenarios)1,22,23,27,28. Baseline sets the temporal and spatial reference for NCS pathway scenarios, which may have a great impact on the NCS estimates. Notably, NCS actions during 2000–2020 will have a great impact in the future periods, which we refer to as the ‘legacy effect’. The legacy effect itself, mainly reforestation, is independent of being assessed, but it is conceptually attributed to natural flux and excluded from future NCS potential estimates.Maximum potentialThe MAMP refers to the additional CO2 sequestration or avoided GHG emissions measured in CO2 equivalents (CO2e) at given flux rates in a period on the maximum extent to which the stewardship options are applied (numbers are expressed as TgCO2e yr−1 for individual pathways and PgCO2e yr−1 for national total) (Extended Data Fig. 1 and Supplementary Table 2). ‘Additional’ means mitigation outcomes due to human actions taken beyond business-as-usual land-use activities (since 2020) and excluding existing land fluxes not attributed to direct human activities1. The MAMP of CH4 and N2O are accounted by three cropland and wetland pathways (cropland nutrient management, improved rice cultivation and peatland restoration). We adopt 100 yr global warming potential to calculate the warming equivalent for CH4 (25) and N2O (298), respectively38,39 because these values are used in national GHG inventories, although some researchers have argued that using the fixed 100 yr global warming potential to calculate the warming equivalents may be problematic because they cannot differentiate the contrasting impacts of the long- and short-lived climate pollutants39. Because the flux rate of the GHG by ecosystems may vary with the time of recovery or growth, the MAMP may also change for different periods even given the same extent.The ‘maximum’ is constrained by varied factors across the NCS pathways. We constrain forest and grassland restoration by the rate of implementation, farmland red line and tree surviving rate (Extended Data Fig. 2). Surviving rate here is the ratio of the area with increased vegetation cover due to reforestation to the total reforestation area. The farmland red line refers to ‘the minimum area of cultivated land’ given by the Ministry of Land and Resources of China. It defines the lowest limit, and the current red line is ~120 Mha. It is a rigid constraint below which the total amount of cultivated land cannot be reduced. From this total amount, there is provincial farmland red line. This red line sets a constraint on the implementation of the NCS pathways associated with land-use change. We set the future scenario of farmland area that can be used for grassland or forest restoration on the basis of the provincial farmland red line. Basic farmland is closely related to national food security. By 2050, China’s population is predicted to decrease slightly, but with economic development, the per capita demand for food may increase40. We assume that the food production in the future can meet the food demand via increasing agricultural investment and technological advancement. The N fertilizer reduction scenario is set to be below the level 60%, under which crop yield is not significantly affected19, because N fertilizer is surplus in many Chinese croplands. For timber production, we assume that the demand for timber can be met if the production level is maintained at the level of 2010–2020 (83.31 million m3 yr−1). As deforestation of natural forests is 100% forbidden since 2020, the future timber will come mainly from tree plantations. For grazing optimization, we assume that livestock production is not affected by grassland fencing due to refined livestock management such as improving feed nutrient and fine-seed breeding41.The areas of historical NCS implementation during 2000–2020 were estimated using statistical data, published literature and public documents, with a supplement from remote-sensing data. The flux rates were obtained either by directly using the values from multiple literature sources or from estimates using the empirical formulae. For the estimates of future NCS potential, the flux rate and extent of the pathway were determined on the basis of the baseline (2000–2020). The extent is assumed to be achieved by using the same rate but limited by the multiple constraints stated in the preceding unless the implementation scopes have been reported in national planning documents. We estimate the legacy effect by multiplying the implementation area in the past by the flux rates in the future two periods.SaturationThe future mitigation potential that we estimate for 2030 and 2060 will not persist indefinitely because the finite potential for natural ecosystems to store additional carbon will saturate. For each NCS pathway, we estimate the expected duration of the potential for sequestration at the maximum rate (Supplementary Table 3). Forests can continue to sequester carbon for 70–100 years or more. Restored grasslands and fenced grasslands can continue to sequester carbon for >50 years. Forest-fire management and cover crops can continue to sequester carbon for 40–50 years or more. Sea grasses and peatlands can continue to sequester carbon for millennia. Avoided pathways do not saturate as long as the business-as-usual cases indicate that there are potential areas for avoided losses of ecosystems. In this case, sea grass and salt marsh would disappear entirely after 64 years, but it would be 100–300 years or more for forest, grassland and peatland.Estimation of uncertaintiesThe extent (area or biomass amount) and flux (sequestration or reduced emission per area or biomass amount in unit time) are considered to estimate uncertainty of the historical mitigation capacity or future potential for each NCS pathway. We use the IPCC approaches to combine uncertainty42. Where mean and standard deviation can be estimated from collected literature, 95% CIs are presented on the basis of multiple published estimates. Where a sample of estimates is not available but only a range of a factor, we report uncertainty as a range and use Monte Carlo simulations (with normal distribution and 100,000 iterations) to combine the uncertainties of extent and flux (IPCC Approach 2). The overall uncertainties of the 16 NCS pathways were combined using IPCC Approach 142. If the extent estimate is based on a policy determination, rather than an empirical estimate of biophysical potential, we do not consider it a source of uncertainty.MACsThe economic/cost constraints refer to the amount of NCS that can be achieved at a given social cost. The MAC curve is fitted according to the total publicly funded investment and total mitigation capacity or potential during a period. The MAC curves are drawn to estimate the historical mitigation or MAMP at the cost thresholds of US$10, US$50 and US$100 (MgCO2e)−1, respectively. The trading price in China’s current carbon market is ~US$10 USD (as the minimum cost43), and the cost-effective price point44,45 to achieve the Paris Agreement goal of limiting global warming to below 2 °C above pre-industrial levels is US$100 (as the maximum cost). A carbon price of US$50 is regarded as a medium value1,46. For the pathways of reforestation, avoided grassland conversion, grazing optimization and grassland restoration, we collected the statistical data of investments in China from 2000 to 2020 and estimated the affordable MAMP below the three mitigation costs. Due to data limitations, the points used for fitting the MAC curve are values for cost (invested funds) and benefit (mitigation capacity) in each of the provinces. We rank the ratio of benefit to cost in a descending order to obtain the maximum marginal benefit for MAC by assuming that NCS measures are first implemented in the region with the highest cost/benefit rate. We refer to the investment standard before 2020 as the benchmark and estimate the cost of each pathway for the future periods with discount rates of 3% and 5%, respectively. The social discount rate 4–6% is usually used as a benchmark discount value in carbon price studies in China compared with lower scenarios (for example, 3.6%)46,47. In a global study for estimating country-level social cost of carbon, 3% and 5% are used for scenario analysis48. Note that the mean value from the two discount rates was used in presenting the results. For the other pathways where investment data cannot be obtained, we refer to relevant references to estimate MAC. All the cost estimates are expressed in 2015 dollars, transformed on the basis of the Renminbi and US dollar exchange rate of the same year. The year 2015 represents a relatively stable condition of economic increase over the past decade (2011–2020) in China (the increase rate of gross domestic product (GDP) in 2015 is similar to the 10 yr mean). In the cases when the MAC curves exceed the estimated maximum potentials in the period, we identify the historical capacity or the MAMP as limited by the biophysical estimates.Additional mitigation required to meet Paris Agreement NDCsOn 28 October 2021, China officially submitted ‘China’s Achievements, New Goals and New Measures for Nationally Determined Contributions’ (‘New Measures 2021’ hereafter) and ‘China’s Mid-Century Long-Term Low Greenhouse Gas Emission Development Strategy’ to the Secretariat of the United Nations Framework Convention on Climate Change as an enhanced strategy to China’s updated NDCs (first submission in 2015). The goal of China’s updated NDCs is to strive to peak CO2 emissions before 2030 and achieve carbon neutralization by 2060. It specified the goals to include the following: before 2030, China’s carbon dioxide emissions per unit of GDP are expected be more than 65% lower than that in 2005, and the forest stock volume is expected to be increased by around 6.0 (previously 4.5) billion m3 over the 2005 level. In the ‘New Measures 2021’9 and ‘Master Plan of Major Projects of National Important Ecosystem Protection and Restoration (2021–2035)’5, many NCS-related opportunities are proposed to consolidate the carbon sequestration of ecosystems and increase the future NCS potential, including protecting the existing ecosystems, implementing engineering to precisely improve forest quality, continuously increasing forest area and stock volume, strengthening grassland protection and recovery and wetland protection and improving the quality of cultivated land and the agricultural carbon sinks.Industrial CO2 emissionsThe historical CO2 emissions data from 2000 to 201749,50 are used as the benchmark of industrial CO2 emissions during 2000–2020. For future projections, we use the peak value of the A1B2C2 scenario (in the range of 10,000 to 12,000 Mt) in 2030 from ref. 11. We assume that CO2 emission increases linearly from 2017 to 2030.Characterizing co-benefitsNCS activities proposed in the future measures or plans may enhance co-benefits. Four generalized types of ecosystem services are identified: improving biodiversity, water-related, soil-related and air-related ecosystem services (Fig. 1). Biodiversity benefits refer to the increase in different levels of diversity (alpha, beta and/or gamma diversity)51. Water, soil and air benefits refer to flood regulation and water purification, improved fertility and erosion prevention, and improvements in air quality, respectively, as defined in the Millennium Ecosystem Assessment52. The evidence that each pathway produces co-benefits from one or more peer-reviewed publications was collected through reviewing the literature (see the details for co-benefits of each pathway in Supplementary Information).Mapping province-level mitigationThe data for extent of implementing forest pathways are obtained from the statistical yearbook and reported at the province level. To be consistent with the forest pathways, the other pathways were also aggregated to the provincial-level estimate from the spatial data. If the flux data were available in different climate regions, the provinces are first assigned to climate regions. When a province spans multiple climate zones, the weight value is set according to the proportion of area, and finally an estimated value of rate was calculated (for fire management, some grassland and wetland pathways). For the forest pathways, we first collected the flux-rate data from reviewing literature and then averaged these flux rates to region/province. The flux rates for reforestation and natural forest management were calculated separately by province and age group. Similarly, specified flux rates are applied for different times after ecosystem restoration or conversion for other pathways.Classification of NCS typesThree types of NCS pathways were classified: protection (of intact natural ecosystems), improved management (on managed lands) and restoration (of native cover)35. In our study, four (AVFC, AVGC, AVCI, AVPI), eight (IMP, NFM, FM, BIOC, CVCR, CRNM, IMRC, GROP) and four (RF, GRR, CWR, PTR) NCS pathways were identified as protection, management and restoration types, respectively (Supplementary Table 1). These pathways can be further divided into groups of ‘single’ type or ‘mixed’ type according to their contribution to individual pathways. Specifically, in a certain area, when the mitigation capacity of a certain pathway accounts for more than 50% of the total, it is regarded as a single or dominant NCS type; if no single pathway accounts for more than 50%, it is a mixed type, named by the top pathways whose NCS sum exceeds 50% of the total mitigation capacity. More

  • in

    Genetic structure and trait variation within a maple hybrid zone underscore North China as an overlooked diversity hotspot

    Genetic structure of the parental populationBased on the lnPD and ΔK values obtained using STRUCTURE, we identified two genetic groups within the DHS Acer population (Supplementary Fig. S1). The q value from STRUCTURE analysis represents the proportion of ancestral origin28 (Fig. 2a). Among the 70 individual trees, 72.9% were assigned a q value smaller than 0.1 or larger than 0.9, thereby signifying a typical bimodal distribution (Fig. 2b). Individuals with q value greater than 0.9 and consistent genetic origin from the NEA region were defined as the NEA lineage (hereafter “NEA-DHS”), whereas those with values less than 0.1 and with consistent genetic origin from the SEA region were defined as the SEA lineage (hereafter “SEA-DHS”). Individuals with intermediate q value between 0.1 and 0.9 were defined as hybrid genetic types (hereafter “Hybrid-DHS”). Accordingly, we identified 27 SEA-DHS (38.6%), 24 NEA-DHS (34.3%), and 19 Hybrid-DHS (27.1%) (Fig. 2b).Figure 2Genetic structure of the parental and offspring population. (a) Bar plots illustrating the genetic composition of the adult (leaf) and offspring (fruit) populations in the Daheishan National Nature Reserve (DHS). Each individual is represented by a line partitioned into color segments corresponding to its ancestral proportion. Red color represents the ancestral proportion of Southern East Asia lineage. Green color represents the ancestral proportion of Northern East Asia lineage. Black lines in bar plots of leaf population separate individuals with ancestral proportion (q value) bigger than 0.9 or smaller than 0.1 from hybrids (0.1  0.5) produced by the SEA-DHS were obtained from a single tree, which was identified as SEA-DHS based on the DHS-only dataset, although it was indicated to be Hybrid-DHS based on the whole-range dataset. The Hybrid-DHS maternal trees produced 17.6% pure SEA-DHS seeds, 57.6% pure NEA-DHS seeds, and 24.7% hybrid seeds.Flowering phenologyThe sexual system of Acer has four phenotypes: duodichogamous, protogynous, protandrous, and male31. Hence, there are three functional sex types: (1) “Male I” flowers open earlier than “Female” flowers, with mature stamens, no style, and ovary; (2) “Female” flowers have mature pistils, short filaments, and indehiscence anthers; (3) “Male II” flowers open later than “Female” flowers, with mature stamens, ovaries, and separated stigmas. Duodichogamy is characterized by “Male I,” “Female,” and “Male II” types; protandry by “Male I” and “Female” types; and protogyny by “Female” and “Male II” types31.During the flowering season, we monitored a total of 10,074 flowers produced by 29 trees (Fig. 2d), among which one tree (SEA-DHS) was protandrous, four trees (three Hybrid-DHS and one NEA-DHS) were protogynous, and the remaining 24 trees were duodichogamous. We observed that the blooming phenology of SEA-DHS and NEA-DHS differed significantly to most assessed phenological indices, with a single exception being a marginally significant difference in the peak blooming time of Male I (Table 1). Compared with NEA-DHS, SEA-DHS were characterized by significantly later flowering phenology, with Male I commencement and cessation of blooming being on average two and three days later, respectively. Similarly, the commencement, peak, and cessation of Female occurred later by averages of 4, 4, and 5 days, respectively, whereas those of Male II occurred later by 5, 4, and 5 days, respectively. Furthermore, the duration of blooming was significantly longer in the SEA-DHS group than in the NEA-DHS group by three days. In the case of Hybrid-DHS, the values obtained for all assessed phenological indices were intermediate between those of the two parental types. Among these, the values of the six indices differed significantly from one or the other parental types, with the majority (5/6) differing from those of the SEA-DHS. Thus, phenologically, Hybrid-DHS appeared to be closer to NEA-DHS.Table 1 Flowering phenology of SEA-DHS, Hybrid-DHS, and NEA-DHS.Full size tableHowever, despite the differing phenology of the SEA-DHS and NEA-DHS, we observed instances of overlap in the blooming periods of male or female flowers in one genetic type with those of flowers of the opposite sex in another genetic type. For example, the peak of Female among NEA-DHS (11.67 ± 0.67) was found to coincide with the peak of Male I (11.44 ± 1.06; p = 0.879) in SEA-DHS. Similarly, Female blooming in the SEA-DHS peaked (16.11 ± 1.09) just 1 d after the peak of Male II (15.50 ± 0.43) in the NEA-DHS (p = 0.667), which at this time still retained an abundance of male flowers in bloom. In contrast, we detected no overlapping phenology with respect to the blooming of Male I of NEA-DHS or Male II of SEA-DHS with the Female in another genetic type.Morphological variation of leaves and fruitLeaves Among the eight leaf indices, all except InfectionRatio were significantly different between lineages. Generally, the leaves of NEA-DHS were found to have seven lobes, whereas those of SEA-DHS were typically five lobed (Lobes#), thereby contributing to significantly larger leaves in NEA-DHS than in SEA-DHS (TotalArea). Furthermore, NEA-DHS leaves had shorter and wider central lobes (CentralLength and CentralWidth), as well as an earlier and narrower inflection of the central lobes (InflectionLength and InflectionWidth), compared with those of SEA-DHS (Table 2). Six indices had correlation coefficients of less than 0.7, which were used for principal component analysis (PCA) analysis (Supplementary Table S2). The first two axes of the PCA were found to explain 63.7% of the variation in leaf morphology (Fig. 3a), with InflectionLength, CentralLength, and CentralRatio contributing the most to the first axis (38.2%), whereas TotalArea contributed the most to the second axis (25.5%) (Supplementary Table S3). The leaves of SEA-DHS and NEA-DHS plants were largely clustered in separate groups (Fig. 3a). However, all indices were continuous variables with large overlaps between the lineages (Table 2). For example, NEA-DHS had a significantly larger leaf area (21.06–88.70 cm2) than SEA-DHS (11.34–70.09 cm2). The shape of the central lobe is another major leaf trait that distinguishes between the two species. NEA-DHS had a shorter and wider central lobe (CentralRatio:0.67–2.49), while SEA-DHS had a longer and narrower central lobe (CentralRatio:0.9–3.46).Table 2 Morphological variation in the leaves and fruits of Acer trees in the Daheishan National Nature Reserve.Full size tableFigure 3Morphological variation in the leaves (a) and fruits (b) of southern and northern East Asia lineages of the Acer species complex in the Daheishan National Nature Reserve based on principal component analysis. SEA-DHS: Southern East Asia lineage of the Acer species complex in the DHS; NEA-DHS: Northern East Asia lineage of the Acer species complex in the DHS; Hybrid-DHS: hybrids between SEA-DHS and NEA-DHS lineages.Full size imageWith regard to Hybrid-DHS, the leaves were morphologically intermediate between those of the two parental types (Fig. 3a), as were the values of the assessed morphological trait indices (Table 2).Fruits 11 indices of fruits were significantly different between lineages. NEA-DHS tend to be characterized by smaller fruits (FruitLength and FruitWidth), seeds (SeedLength, SeedWidth and JunctionWidth), and fruit wings (WingLength and WingWidth). Moreover, the seed wings of NEA-DHS fruits are typically oriented at an obtuse angle, whereas those of SEA-DHS fruits tend to be aligned at a right angle (FruitAngle). The length ratio of the wing and seed (Wing:Seed) was larger in NEA-DHS than in SEA-DHS (1.24 vs 1.06, respectively, Table 2). Eight indices had correlation coefficients of less than 0.7, which were retained for PCA analysis (Supplementary Table S4). The first two axes of the PCA explained 58.4% of the variation in fruit morphology (Fig. 3b), with JunctionWidth and SeedLength contributing the most to the first axis (35.1%), whereas SeedRatio and WingRatio contributed the most to the second axis (23.3%) (Supplementary Table S3). The fruits of SEA-DHS and NEA-DHS plants were largely clustered in separate groups, with most fruits of SEA-DHS having negative values in Axis 1, while most fruits of NEA-DHS having positive values (Fig. 3b). Both JunctionWidth and SeedLength in Axis 1 reflect the size of the seed. NEA-DHS had smaller seed (SeedLength: 0.63–1.21 cm, SeedWidth:0.43–0.75 cm), while larger seed in SEA-DHS (SeedLength:0.79–1.49 cm, SeedWidth:0.49–0.93 cm). All indices were continuous variables with large overlaps between the lineages (Table 2).The morphology of Hybrid-DHS fruits was generally intermediate between that of the two parental types (Fig. 3b), as reflected in the values of the different morphological traits. The exceptions in this regard were FruitLength, WingLength, as well as two ratio indices (SeedRatio and WingRatio), with hybrid trees typically producing longer fruit with longer fruit wings (Table 2).Ecological niche divergence between NEA and SEAWe found a positive correlation between q value from Structure analysis and altitude (Pearson’s r = 0.83, p  670 m), whereas SEA-DHS was clustered at the foothill ( More

  • in

    A dataset of road-killed vertebrates collected via citizen science from 2014–2020

    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo https://doi.org/10.5281/zenodo.5657041 (2019).Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Forman, R. T. T., Sperling, D. & Bissonette, J. A. Road Ecology: Science and Solutions. (Island Pr, 2003).van der Ree, R., Smith, D. J. & Grilo, C. Handbook of Road Ecology. (John Wiley & Sons, 2015).Laender. Hunting Statistics. Game casualties 2017/2018: furred game (red deer, roe deer, chamois, moufflon) https://www.statistik.at/web_en/statistics/Economy/agriculture_and_forestry/livestock_animal_production/hunting/index.html (2018).Steiner, W., Leisch, F. & Hacklander, K. A review on the temporal pattern of deer-vehicle accidents: Impact of seasonal, diurnal and lunar effects in cervids. Accident; analysis and prevention 66, (2014).Kioko, J. et al. Driver knowledge and attitudes on animal vehicle collisions in Northern Tanzania. TROPICAL CONSERVATION SCIENCE 8, 352–366 (2015).Article 

    Google Scholar 
    Bíl, M., Andrášik, R. & Janoška, Z. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation. Accident Analysis & Prevention 55, 265–273 (2013).Article 

    Google Scholar 
    Page, Y. A statistical model to compare road mortality in OECD countries. Accident Analysis and Prevention 33, 371–385 (2001).CAS 
    Article 

    Google Scholar 
    Teixeira, F. Z. et al. Are Road-kill Hotspots Coincident among Different Vertebrate Groups? Oecologia Australis 17, 36–47 (2017).Article 

    Google Scholar 
    Canova, L. & Balestrieri, A. Long-term monitoring by roadkill counts of mammal populations living in intensively cultivated landscapes. Biodivers Conserv https://doi.org/10.1007/s10531-018-1638-3 (2018).Brehme, C. S., Hathaway, S. A. & Fisher, R. N. An objective road risk assessment method for multiple species: ranking 166 reptiles and amphibians in California. Landscape Ecol 33, 911–935 (2018).Article 

    Google Scholar 
    Heigl, F. et al. Comparing Road-Kill Datasets from Hunters and Citizen Scientists in a Landscape Context. Remote Sensing 8, (2016).Heigl, F., Horvath, K., Laaha, G. & Zaller, J. G. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: using a citizen science approach with open-access land cover data. BMC Ecol 17, 24 (2017).Article 

    Google Scholar 
    Dörler, D. & Heigl, F. A decrease in reports on road-killed animals based on citizen science during COVID-19 lockdown. PeerJ 9, e12464 (2021).Article 

    Google Scholar 
    Peer, M. et al. Predicting spring migration of two European amphibian species with plant phenology using citizen science data. Sci Rep 11, 21611 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Schwartz, A. L. W. UK Roadkill Records. The Global Biodiversity Information Facility https://doi.org/10.15468/r3xakd (2018).Lin, T. The Taiwan Roadkill Observation Network Data Set. Version 1.3. The Global Biodiversity Information Facility https://doi.org/10.15468/cidkqi (2018).Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biological Conservation 213, 280–294 (2017).Article 

    Google Scholar 
    Périquet, S., Roxburgh, L., le Roux, A. & Collinson, W. J. Testing the Value of Citizen Science for Roadkill Studies: A Case Study from South Africa. Front. Ecol. Evol. 6, (2018).Abra, F. D., Huijser, M. P., Pereira, C. S. & Ferraz, K. M. P. M. B. How reliable are your data? Verifying species identification of road-killed mammals recorded by road maintenance personnel in São Paulo State, Brazil. Biological Conservation 225, 42–52 (2018).Article 

    Google Scholar 
    Bíl, M., Kubeček, J., Sedoník, J. & Andrášik, R. Srazenazver.cz: A system for evidence of animal-vehicle collisions along transportation networks. Biological Conservation 213, 167–174 (2017). Part A.Article 

    Google Scholar 
    Vercayie, D. & Herremans, M. Citizen science and smartphones take roadkill monitoring to the next level. Nature Conservation 11, 29–40 (2015).Article 

    Google Scholar 
    Waetjen, D. P. & Shilling, F. M. Large Extent Volunteer Roadkill and Wildlife Observation Systems as Sources of Reliable Data. Front. Ecol. Evol. 5, (2017).Shilling, F. M., Perkins, S. E. & Collinson, W. Wildlife/Roadkill Observation and Reporting Systems. in Handbook of Road Ecology 492–501 (John Wiley & Sons, 2015).Eitzel, M. V. et al. Citizen Science Terminology Matters: Exploring Key Terms. Citizen Science: Theory and Practice 2, 1–20 (2017).
    Google Scholar 
    Haklay, M. et al. Contours of citizen science: a vignette study. Royal Society Open Science 8, 202108 (2021).ADS 
    Article 

    Google Scholar 
    Heigl, F., Kieslinger, B., Paul, K. T., Uhlik, J. & Dörler, D. Opinion: Toward an international definition of citizen science. PNAS 116, 8089–8092 (2019).CAS 
    Article 

    Google Scholar 
    Heigl, F. et al. Quality Criteria for Citizen Science Projects on Österreich forscht | Version 1.1. Open Science Framework https://doi.org/10.17605/OSF.IO/48J27 (2018).Heigl, F. et al. Co-Creating and Implementing Quality Criteria for Citizen Science. Citizen Science: Theory and Practice 5, 23 (2020).
    Google Scholar 
    Heigl, F. & Zaller, J. G. Using a Citizen Science Approach in Higher Education: a Case Study reporting Roadkills in Austria. Human Computation 1, (2014).University of Natural Resources and Life Sciences, Vienna. Roadkill, The Global Biodiversity Information Facility, https://doi.org/10.15468/ejb47y (2021).Heigl, F. & Roadkill Community. Roadkill Dataset 2014-2020 Quality level 2, Zenodo, https://doi.org/10.5281/zenodo.5878813 (2022).August, T. A. et al. Citizen meets social science: predicting volunteer involvement in a global freshwater monitoring experiment. Freshwater Science 38, 321–331 (2019).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2021). More

  • in

    A network simplification approach to ease topological studies about the food-web architecture

    Ecological networks: Linking structure to dynamics in food webs. (Oxford University Press, 2006).Adaptive food webs: Stability and transitions of real and model ecosystems. (Cambridge University Press, 2018).Pimm, S. L. Food Webs (Springer, 1982).Book 

    Google Scholar 
    Adaptive Food Webs: Stability and Transitions of Real and Model Ecosystems. (Cambridge University Press, 2017). doi:https://doi.org/10.1017/9781316871867.da Mata, A. S. Complex Networks: A Mini-review. Braz. J. Phys. 50, 658–672 (2020).ADS 
    Article 

    Google Scholar 
    Zhang, W. Fundamentals of Network Biology. (World Scientific (Europe), 2018). https://doi.org/10.1142/q0149.Reichman, O. J., Jones, M. B. & Schildhauer, M. P. Challenges and opportunities of open data in ecology. Science 331, 703–705 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. situating ecology as a big-data science: Current advances, challenges, and solutions. Bioscience 68, 563–576 (2018).Article 

    Google Scholar 
    Osawa, T. Perspectives on biodiversity informatics for ecology. Ecol. Res. 34, 446–456 (2019).Article 

    Google Scholar 
    Shin, N. et al. Toward more data publication of long-term ecological observations. Ecol. Res. 35, 700–707 (2020).Article 

    Google Scholar 
    Pringle, R. M. & Hutchinson, M. C. Resolving food-web structure. Annu. Rev. Ecol. Evol. Syst. 51, 55–80 (2020).Article 

    Google Scholar 
    Derocles, S. A. P. et al. Biomonitoring for the 21st Century: Integrating Next-Generation Sequencing Into Ecological Network Analysis. in Advances in Ecological Research vol. 58 1–62 (Elsevier, 2018).Vacher, C. et al. Learning ecological networks from next-generation sequencing data. in Advances in Ecological Research vol. 54, 1–39 (Elsevier, 2016).Evans, D. M., Kitson, J. J. N., Lunt, D. H., Straw, N. A. & Pocock, M. J. O. Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct. Ecol. 30, 1904–1916 (2016).Article 

    Google Scholar 
    Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. in Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).Sultana, M. & Storch, I. Suitability of open digital species records for assessing biodiversity patterns in cities: A case study using avian records. J. Urban Ecol. 7, juab014 (2021).Article 

    Google Scholar 
    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in global biodiversity information and the role of citizen science. Bioscience 66, 393–400 (2016).Article 

    Google Scholar 
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).Article 

    Google Scholar 
    Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks: Merging networks with different interaction types. Ecol. Lett. 14, 1170–1181 (2011).PubMed 
    Article 

    Google Scholar 
    Martinson, H. M. & Fagan, W. F. Trophic disruption: A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecol. Lett. 17, 1178–1189 (2014).PubMed 
    Article 

    Google Scholar 
    Marczak, L. B., Thompson, R. M. & Richardson, J. S. Meta-analysis: Trophic level, Habitat, and productivity shape the food web effects of resource subsidies. Ecology 88, 140–148 (2007).PubMed 
    Article 

    Google Scholar 
    McCary, M. A., Mores, R., Farfan, M. A. & Wise, D. H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: A meta-analysis. Ecol. Lett. 19, 328–335 (2016).PubMed 
    Article 

    Google Scholar 
    Cirtwill, A. R., Stouffer, D. B. & Romanuk, T. N. Latitudinal gradients in biotic niche breadth vary across ecosystem types. Proc. R. Soc. B Biol. Sci. 282, 20151589 (2015).Article 
    CAS 

    Google Scholar 
    Fortuna, M. A., Ortega, R. & Bascompte, J. The Web of Life. ArXiv14032575 Q-Bio (2014).Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).PubMed 
    Article 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, J. et al. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 644, 781–790 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Su, Y. et al. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 19, 35–46 (2016).Article 

    Google Scholar 
    Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Marco, M., Watson, J. E. M., Venter, O. & Possingham, H. P. Global biodiversity targets require both sufficiency and efficiency. Conserv. Lett. 9, 395–397 (2016).Article 

    Google Scholar 
    Kim, K.-H. & Pauleit, S. Landscape character, biodiversity and land use planning: The case of Kwangju City Region, South Korea. Land Use Policy 24, 264–274 (2007).Article 

    Google Scholar 
    Young, J. et al. Towards sustainable land use: Identifying and managing the conflicts between human activities and biodiversity conservation in Europe. Biodivers. Conserv. 14, 1641–1661 (2005).Article 

    Google Scholar 
    Dardonville, M., Urruty, N., Bockstaller, C. & Therond, O. Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems. Agric. Syst. 184, 102913 (2020).Article 

    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 
    Article 

    Google Scholar 
    Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J. & Ellison, A. M. Ecological network metrics: Opportunities for synthesis. Ecosphere 8, e01900 (2017).Article 

    Google Scholar 
    Newman, M. E. J. Networks. (Oxford University Press, 2018).Levine, S. Several measures of trophic structure applicable to complex food webs. J. Theor. Biol. 83, 195–207 (1980).ADS 
    Article 

    Google Scholar 
    Guimarães, P. R. The structure of ecological networks across levels of organization. Annu. Rev. Ecol. Evol. Syst. 51, 433–460 (2020).Article 

    Google Scholar 
    Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    Jordán, F., Benedek, Z. & Podani, J. Quantifying positional importance in food webs: A comparison of centrality indices. Ecol. Model. 205, 270–275 (2007).Article 

    Google Scholar 
    Jordán, F., Liu, W. & Davis, A. J. Topological keystone species: Measures of positional importance in food webs. Oikos 112, 535–546 (2006).Article 

    Google Scholar 
    Jordán, F., Okey, T. A., Bauer, B. & Libralato, S. Identifying important species: Linking structure and function in ecological networks. Ecol. Model. 216, 75–80 (2008).Article 

    Google Scholar 
    Jiang, L. Determination of keystone species in CSM food web: A topological analysis of network structure. Netw. Biol. 5, 13 (2015).
    Google Scholar 
    Abarca-Arenas, L. G., Franco-Lopez, J., Peterson, M. S., Brown-Peterson, N. J. & Valero-Pacheco, E. Sociometric analysis of the role of penaeids in the continental shelf food web off Veracruz. Mexico Based By-catch Fish. Res. 87, 46–57 (2007).
    Google Scholar 
    Abascal-Monroy, I. M. et al. Functional and structural food web comparison of Terminos Lagoon, Mexico in Three Periods (1980, 1998, and 2011). Estuaries Coasts 39, 1282–1293 (2016).Article 

    Google Scholar 
    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Windsor, F. M. et al. Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks. J. Appl. Ecol. 58, 2770–2782 (2021).Article 

    Google Scholar 
    Klaise, J. & Johnson, S. The origin of motif families in food webs. Sci. Rep. 7, 16197 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Estrada, E. Characterization of topological keystone species. Ecol. Complex. 4, 48–57 (2007).Article 

    Google Scholar 
    Thompson, R. M. & Townsend, C. R. Impacts on stream food webs of native and exotic forest: An intercontinental comparison. Ecology 84, 145–161 (2003).Article 

    Google Scholar 
    Bascompte, J., Melian, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. 102, 5443–5447 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 21179 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Food-web aggregation, methodological and functional issues. Oikos 122, 1606–1615 (2013).Article 

    Google Scholar 
    Patonai, K. & Jordán, F. Aggregation of incomplete food web data may help to suggest sampling strategies. Ecol. Model. 352, 77–89 (2017).Article 

    Google Scholar 
    Thompson, R. M. & Townsend, C. R. Is resolution the solution?: The effect of taxonomic resolution on the calculated properties of three stream food webs. Freshw. Biol. 44, 413–422 (2000).Article 

    Google Scholar 
    Abarca-Arenas, L. G. & Ulanowicz, R. E. The effects of taxonomic aggregation on network analysis. Ecol. Model. 149, 285–296 (2002).Article 

    Google Scholar 
    Jordán, F. & Osváth, G. The sensitivity of food web topology to temporal data aggregation. Ecol. Model. 220, 3141–3146 (2009).Article 

    Google Scholar 
    European Commission. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions: EU Biodiversity Strategy for 2030 Bringing nature back into our lives. Preprint at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (2020).European Parliament. European Parliament resolution of 9 June 2021 on the EU Biodiversity Strategy for 2030: Bringing nature back into our lives (P9_TA(2021)0277). Preprint at https://www.europarl.europa.eu/doceo/document/TA-9-2021-0277_EN.html (2021).Felson, A. J. & Ellison, A. M. Designing (for) Urban Food Webs. Front. Ecol. Evol. 9, 582041 (2021).Article 

    Google Scholar 
    Warren, P. et al. Urban food webs: Predators, prey, and the people who feed them. Bull. Ecol. Soc. Am. 87, 387–393 (2006).Article 

    Google Scholar 
    De Montis, A., Ganciu, A., Cabras, M., Bardi, A. & Mulas, M. Comparative ecological network analysis: An application to Italy. Land Use Policy 81, 714–724 (2019).Article 

    Google Scholar 
    Poisot, T. et al. Mangal—making ecological network analysis simple. Ecography 39, 384–390 (2016).Article 

    Google Scholar 
    Morris, Z. B., Weissburg, M. & Bras, B. Ecological network analysis of urban–industrial ecosystems. J. Ind. Ecol. 25, 193–204 (2021).Article 

    Google Scholar 
    Chamberlain, S. A. & Szöcs, E. taxize: Taxonomic search and retrieval in R. F1000 Research 2, 191 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkX. in Proceedings of the 7th Python in Science Conference (eds. Varoquaux, G., Vaught, T. & Millman, J.) 11–15 (2008).Scotti, M. & Jordán, F. Relationships between centrality indices and trophic levels in food webs. Community Ecol. 11, 59–67 (2010).Article 

    Google Scholar 
    Gouveia, C., Móréh, Á. & Jordán, F. Combining centrality indices: Maximizing the predictability of keystone species in food webs. Ecol. Indic. 126, 107617 (2021).Article 

    Google Scholar 
    Allesina, S. & Pascual, M. Googling Food Webs: Can an Eigenvector Measure Species’ Importance for Coextinctions?. PLoS Comput. Biol. 5, e1000494 (2009).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Patro, S. G. K. & Sahu, K. K. Normalization: A preprocessing stage. https://doi.org/10.48550/ARXIV.1503.06462(2015).Reback, J. et al. pandas-dev/pandas: Pandas 1.2.3. (Zenodo, 2021). 10.5281/ZENODO.4572994.Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

    Google Scholar 
    Waskom, M. et al. mwaskom/seaborn: v0.11.1 (December 2020). (Zenodo, 2020). 10.5281/ZENODO.4379347.Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2009).Article 

    Google Scholar 
    Gao, P. & Kupfer, J. A. Uncovering food web structure using a novel trophic similarity measure. Ecol. Inform. 30, 110–118 (2015).Article 

    Google Scholar 
    Gauzens, B., Thébault, E., Lacroix, G. & Legendre, S. Trophic groups and modules: Two levels of group detection in food webs. J. R. Soc. Interface 12, 20141176 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rudiger, P. et al. holoviz/holoviews: Version 1.14.2. (Zenodo, 2021). 10.5281/ZENODO.4581995.Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    China economy-wide material flow account database from 1990 to 2020

    China economy-wide material flow identification: system boundary, processes, and materialsThe first step is to define an economy, i.e., the economic (rather than geographical) territory of a country in which the activities and transactions of producer and consumer units are resident. Additionally, the period is a total of thirty-one years, from 1990 to 2020, for the following reasons: (1) statistics before 1990 are of poor quality and are insufficient to allow us to conduct analyses; and (2) so far, statistics have just recently been updated to cover the year of 2020. Furthermore, the analytical framework (hereinafter referred to as China EW-MFA) is developed to explore material utilisation and its environmental consequences within China’s economy.The general structure of China EW-MFA is depicted in Fig. 1, which comprises seven processes. (1) Input of extracted resources: domestic natural resources are extracted from the environment to the economy through human-controlled means. (2) Output of domestic processed materials: after being processed by manufacturers, materials are released from the economy into the environment in the form of by-products and residues, which can be classified by their destinations (i.e., air, land, and water) and pathways (dissipative use and losses). (3) Input and (4) output by cross-border trade: by imports and exports, materials are transported between China’s economy and the economies of the rest of the world. (5) Input and (6) output of balancing items (BI): sometimes, materials identified in the output processes are not considered by inputs, which needs to be balanced. For example, the utilisation of fossil energy materials by combustion causes the emission of carbon dioxide (CO2) into the air, which is identified as system output, but requirements of oxygen (O2) as system input are not counted. (7) Additions to the system: within the economy, materials would have been added to the economy in the form of buildings, infrastructures, durable goods, and household appliances, which are referred to as the net additions to stock (NAS).Fig. 1The general structure of China EW-MFA. To note, white data cells can be obtained directly from official statistics, whereas grey cells are estimated.Full size imageThe last step is to specify the materials concerned in each process. Four types (in blue boxes in Fig. 1) of natural materials are extracted and input into the economy in China, i.e., harvested biomass (33 items), mined metal ores (28 items), quarried non-metallic minerals (155 items), and mined fossil energy materials (6 items in 3 classes). Materials (green boxes) released into the air are greenhouse gases (e.g., CO2, methane (CH4), dinitrogen oxide (N2O)), air pollutants (e.g., particulate matter 10 (PM10), black carbon (BC)), and toxic contaminants of mercury (Hg) in divalent, gaseous elemental, and particulate forms. Those released into the water are inorganic matters (of nitrogen (N), phosphorus (P), Arsenic (As), and four heavy metals of lead (Pb), mercury (Hg), cadmium (Cd), and chromium (Cr)) and organic matters of cyanide, petroleum, and volatile phenol. Materials released into the land are waste disposal in uncontrolled landfills, which are illegal in China. Some materials are dissipated by application, for example, fertilisers, compost, sewage sludge being applied to agricultural land, and pesticides being used to cultivate crops. Some would be unintentionally dissipated from abrasion, corrosion, erosion, and leakages. Materials (in red boxes) are BI, which includes the input of O2 and output of water vapour in the fossil energy material combustion process, the input of O2 and output of water vapour and CO2 in the respiration process of human and cultivated livestock, input and output of water in imported and exported beverages, and the output of water from domestically extracting crops.There are some messages needed to be mentioned: (1) Material of water is not included since its flow volume is more substantial than others, which needs to be independently analysed; (2) Activities of foreign tourists, cross-border transfer of emissions through natural media, etc. are excluded. (3) To be clear, we refer to a data cell as a specific flow process of a specific substance in a specific year, e.g., the number of cereals domestically extracted in 2020.Data acquisition: sources and collectionBased on our China EW-MFA, we first analyse accessibility, reliability, completeness, rules of redistribution, etc., for each data source (yellow boxes in Fig. 1), including China national database, China rural statistical yearbooks, USGS mineral yearbooks, etc. The complete list of data sources and descriptions are presented in Table 1. Then, we store the originally retrieved data source files in a semi- or unstructured format (e.g., CSV, PDF). Next, we manually collect these statistics and reorganise them according to China EW-MFA material types and processes. However, only a tiny part of retrieved statistics can be applied directly, as specified in black colour in Fig. 1.Table 1 Data sources and descriptions.Full size tableData compilation: parameter localisation and data estimationA few inconsistencies in statistics were noticed, which would result in data incompleteness. For example, the domestic extraction of vegetables has been accounted for and published since 1995, before which statistics are unavailable. The domestically harvested timber has been measured in the volume unit of cubic metres, which needs to be converted into the mass unit via density conversion factor. Therefore, acquired statistics have to be estimated, which are specified in grey colour in Fig. 1. The following section elaborates on each data cell’s estimation methods, localised parameters, references, etc. In our uploaded data files, the original statistics, data sources, and compilation methods (using formulas) are all implemented, as explained in the Data Records Section.

    The input of natural resources by domestic extraction

    Vegetables in crops: Statistics of vegetable production (WVegetables)16 during 1990–1994 are unavailable, which is estimated based on the relationship between the production yield (PYield) and areas (AVegetables), as shown in Eq. 1. Here, PYield is assumed to remain constant at 27.04 thousand tonnes per thousand hectares from 1990 to 1995, derived by dividing vegetable production (257,267 thousand tonnes) by areas (9,515 thousand hectares) in 1995.$${W}_{Vegetables}={P}_{Yield}times {A}_{Vegetables}$$
    (1)

    Nuts in crops: One of them is chestnuts. The chestnut production in 2020 is unavailable, which is assumed to be the same as in 2019.

    Crop residues in biomass residues: They are referred to as that harvested production of crops that do not reach the market to be sold but are instead employed as raw materials for commercial purposes such as energy generation and livestock husbandry. This number (Wcrop residues) can be calculated by first determining the number of crop residues available from primary crop production (Wcrop) and the harvest factor (Pharvest factor), and then using the recovery rate (Precovery rate) to determine the number of crop residues used by the economy, as shown in Eq. 2. These parameters have been localized by previous studies17,18, which are adopted in this study, i.e., wheat (1.1 for Pharvest factor and 0.463 for Precovery rate), maize (1.2, 0.463), rice (0.9, 0.463), sugar cane (0.5, 0.9), beetroots (0.7, 0.9), tuber (0.5, 0.463), pulse (1.2, 0.7), cotton (3.4, 0.463), fibre crops (1.8, 0.463), silkworm cocoons (1.8, 0.463), and oil-bearing crops (1.8, 0.463).$${W}_{cropresidues}={W}_{crop}times {P}_{harvestfactor}times {P}_{recoveryrate}$$
    (2)

    Roughage of grazed biomass and fodder crops in biomass residues: In China, the grazed biomass for roughage includes annual forage and perennial forage, whereas fodder crops comprise straw feed, processed straw feed, and all other fodder crops. However, information19 on grazed biomass production is only accessible from 2006 to 2018, whereas fodder crop statistics are only available from 2015 to 2017. Equation 3 and Eq. 4 can be used to estimate unavailable statistics. To note, we assume that China’s domestic roughage supply structure has remained unaltered, which has two meanings. The proportion of total domestic roughage production (WDomestic production) in requirement (WRoughage requirement) has remained constant, while the proportion (PSupply fraction) of grazed biomass and fodder crop in domestic roughage production has been unchanged. The requirement (WRoughage requirement) is determined by the quantity of livestock (QLivestock) and their annual feeding amount (PAnnual intake). PAnnual intake (in tonnes per head per year) has been localised for each type of livestock4, with 4.5 for live cattle and buffaloes, 0.5 for sheep and goats, 3.7 for horses, and 2.2 for mules and asses.$${W}_{Roughagerequirement}={Q}_{Livestock}times {P}_{Annualintake}$$
    (3)
    $${W}_{Domesticproduction}={W}_{Roughagerequirement}times {P}_{Supplyfraction}$$
    (4)

    Timber in wood: As illustrated in Eq. 5, wood production16 is reported in volume units of cubic metres (VTimber), which need to be converted into mass units (WTimber) via density (PDensity). The parameter PDensity is assumed to be 0.58 tonnes per cubic metre, calculated by averaging 0.52 for coniferous types and 0.64 for non-coniferous ones4.$${W}_{Timber}={V}_{Timber}times {P}_{Density}$$
    (5)

    Non-ferrous metals in metal ores: Non-ferrous metal statistics are derived from two sources. China statistics20 are measured in gross ore (WMetal ores in gross ore) but are only available from 1999 to 2017, whereas the USGS statistics21 cover the period of 1990 to 2020 but they are measured in metal or concentrate content (WMetal ores in other units). Therefore, USGS statistics need to be converted with an empirical unit conversion factor (PUnit conversion factor) before being applied to estimate unavailable statistics reported by China, as shown in Eq. 6. Conversion factors are localised for each non-ferrous metal in each year from 2000 to 2017 by using USGS statistics divided by China statistics and then averaged after removing the highest value and the lowest value (i.e., trimmed mean). This factor could capture the general relationship between statistics from two separate sources, which can be used in other long time-series studies on resource management on a particular element in China.$${W}_{Metaloresingrossore}={W}_{Metaloresinotherunits}/{P}_{Unitconversionfactor}$$
    (6)

    Non-metallic minerals: The official China-specific information on non-metallic mineral domestic production is available between 1999 and 201720, the rest of which could be estimated from USGS statistics (1990–2020)21. Also, two differences in reporting standards are observed resulting from the material coverages and reporting units. China statistics contain eighty-eight materials in mineral ores, whereas the USGS only includes twenty in the concentrate unit. Therefore, a conversion factor is developed in this estimation, as shown in Eq. 7. This conversion factor is applied to the total amount of non-metallic mineral production, which is assumed to have been constant from 1990 to 1999 at 11.38% (1999) and 12.56% (2017) from 2017 to 2020.$${W}_{Mineralsingrossore}={W}_{Mineralsinotherunits}/{P}_{Conversionfactor}$$
    (7)

    Coal in fossil energy materials: Coal, mined in China, includes raw coal, peat, stone coal, and oil shale. Except for raw coal, statistics for the rest are only available from 1999 to 201720. The unavailable data (WOther coals) is estimated using Eq. 8 under the assumption that the structure of the coal supply in China barely changes. That is, the proportion (PSupply fraction) of peat, stone coal, and oil shale in raw coal production (WRaw coal) remains constant, so the 1999 proportion is applied to all years before that (earlier years of 1990–1998), while the 2017 proportion is used to the recent years between 2018 and 2020. For example, PSupply fraction for oil shale production was assumed to be 0.014% during 1990–1999, calculated by dividing raw coal production (1,250,000) by oil shale production (179) in 1999. PSupply fraction in the earlier and the recent years are 0.007% and 0.001% for peat, 0.203% and 0.031% for stone coal, and 0.014% and 0.067% for oil shale.

    $${W}_{Othercoals}={W}_{Rawcoal}/{P}_{Supplyfraction}$$
    (8)

    The output of processed materials by release

    Materials released into the air: In China, thirteen materials are released into the air, as shown in Fig. 1. The emission of sulphur dioxide (SO2) is reported in China environmental statistical yearbooks22,23, while the rest is specified in the EDGAR24. However, in EDGAR, statistics for recent years have not yet been updated, which are estimated with the value in the most recent year in our database. For example, nitrous oxide (NOx) records are only available for the years prior to 2016, with 26,365 thousand tonnes in 2015 and 26,837 in 2014. As a result of the observed decreasing trend in NOx emissions, NOx emission data for 2016–2020 is estimated to be 26,000 thousand tonnes. This estimate may be subjective due to constraints, but it would be aligned with European statistics, allowing for international comparisons. Data can be updated after the EDGAR statistics have been updated.

    Materials released into the water: Ten principal materials have been found in China wastewater (both industrial and municipal) that are nitrogen (N), phosphorus (P), organic pollutants of petroleum, volatile phenol and cyanide, heavy metals of mercury (Hg), lead (Pb), cadmium (C·d), and the hexavalent chromium (Cr6+), and arsenic (As). Many statistics22,23 have been of poor quality (e.g., inconsistent material coverages between years). Given that the statistics of pollutants in industrial wastewater cover more periods and contain fewer abnormal observations, the total material emissions can be approximated from those of industrial wastewater. Equations 9 and 10 show the estimation processes. The materials in industrial wastewater (WIndustrial materials) are first identified using material mass concentration (PConcentration) and the weight of industrial wastewater (WIndustrial wastewater), and then the materials in total wastewater (WTotal materials) are identified using the proportion (PContribution) of materials in industrial wastewaters (WIndustrial materials) to the total. The assumption is that PConcentration and PContribution change gradually between years, which enables to use linear interpolation method to estimate unavailable parameters. Consider cyanide: its PConcentration was 23.61 (1‰ ppm) in 2005 and 37.31 in 2002, which was assumed to be 28.18 in 2004 and 32.74 in 2003. PConcentration was assumed to be 100% throughout the years for cyanide because all cyanide emissions in China are driven by industrial wastewater discharges. Later, the total material emissions can be derived by dividing the industrial wastewater mass by PConcentration.$${W}_{Industrialmaterials}={W}_{Industrialwastewater}times {P}_{Concentration}$$
    (9)
    $${W}_{Totalmaterials}={W}_{Industrialmaterials},/,{P}_{Contribution}$$
    (10)

    Materials released to the land: This is zero because uncontrolled landfills are illegal in China.

    Materials dissipated by organic fertiliser use: In China, manure is the primary organic fertiliser, which is excreted by pigs, dairy cows, calves, sheep, horses, asses, mules, camels, chickens, and other animals. As shown in Eq. 11, the manure production (WManure) is estimated through the amounts of raised livestock (QLivestock, heads), the weight of daily manure production (PManure production, kilograms per head per day), the number of days they are raised (PFeeding period, in days per year), and the moisture content of their manure (PDry matter, %) for each type of animal. These parameters are region-specific, which have been localised by Chinese scholars25,26,27 and listed in Table 2.$${W}_{Manure}={Q}_{Livestock}times {P}_{Manureproduction}times {P}_{Feedingperiod}times {P}_{Drymatter}$$
    (11)
    Table 2 Localised parameters for animal manure production.Full size table

    Materials dissipated by mineral fertiliser use: The mineral fertilisers used in China are four types, i.e., nitrogen (N), phosphorus (P), potash (K), and compound. Their usage (WFertiliser usage) is measured in nutrient mass (WNutrient materials), which needs to be converted into the gross mass by dividing their nutrient content (PNutrient content). Equation 12 shows the estimation. This parameter of PNutrient content is localised by the Ministry of Agriculture and Rural Affairs of China28 as 29%, 22%, 35%, and 44% for N- bearing, P- bearing, K-bearing, and compound fertilisers, respectively.$${W}_{Fertiliserusage}={W}_{Nutrientmaterials}/{P}_{Nutrientcontent}$$
    (12)

    Materials dissipated by sewage sludge: Sewage sludge is the residue generated by municipal wastewater treatment. As demonstrated in Eq. 13, its dissipative use (Wss, dissipation) is the untreated amount of production (Wss, production), represented by the parameter of Pss, dissipation rate. Sewage sludge production (Wss, production) statistics are only available for the years 2006–202029, and data for the remaining years can be estimated using Eq. 14 and Eq. 15. In Eq. 14, Pss, production rate represents the relationship between sewage sludge production (Wss, production, 2006–2020) and wastewater treatment (Www, treatment, 2002–2020), and in Eq. 15, Pww, treatment efficiency represents the relationship between the quantity of treated wastewater (Www, treatment, 2002–2020) and the treatment capacity (Www, treatment capacity, 1990–2020). In this estimation, three assumptions are made. The first is to estimate Www, treatment, Pww, treatment efficiency is assumed to be unchanged at 63% during 1990–2001, given it has been increasing from 63% in 2002 to ~80% in recent years. The second is that, in order to estimate Wss, production, Pss, production rate is assumed to be unchanged at 3.5 between 1990 and 2005, suggesting 3.5 tonnes of sewage sludge are generated by processing 10,000 cubic metres of wastewater. This assumption is determined by that Pss, production rate is approximately 3.5 during 2006–2010 while declines sharply and stabilises at around two during 2011–2020. The last is, to estimate the Wss,dissipation, Pss,dissipation rate is assumed to be 5% between 1990 and 2005, given it has been around 5% during 2006–2020.$${W}_{ss,dissipation}={W}_{ss,production}times {P}_{ss,dissipationrate}$$
    (13)
    $${W}_{ss,production}={W}_{ww,treatment}times {P}_{ss,productionrate}$$
    (14)
    $${W}_{ww,treatment}={W}_{ww,treatmentcapacity}times {P}_{ww,treatmentefficiency}$$
    (15)

    Materials dissipated by composting: Composting is a natural process that uses microbes to turn organic materials into other products, which are then used for fertilising and entering the environment. In China, composting has been used to treat two materials: feces and municipal waste, whose quantities (WComposting) were only available from 2003 to 201029. The unavailable data can be estimated using Eq. 16. The dry weight of materials treated by composting (WComposting) is proportionally related to the fresh weight of all treated materials (WTotal), the proportion treated by composting (PComposting rate), and the dry content (PDry matter). Considering that China’s composting capacity has been declining since 2001 due to the implementation of waste incineration power generation technologies30, Pcomposting rate is assumed to be the same as it was in 2003 (9.5%) between 1990 and 2002, and 1.5% in 2010 between 2011 and 2020. The parameter of PDry matter is 50%4.$${W}_{Composting}={W}_{Total}times {P}_{Compostingrate}times {P}_{Drymatter}$$
    (16)

    The input and output by cross-border trade. Statistics of imports and exports have been gathered since 1962 and stored in the UN Comtrade database31. However, the data quality issue of outliers, and missing values, especially in weight, is reportedly identified. In our previous work, we addressed these issues, and an improved database32 is provided. Details about our estimation methods can be found in publications33,34,35. As UN Comtrade lists 5,039 different commodity types (in 6-digit HS0 commodity code), yet only 18 material types are specified in the China EW-MFA, UN Comtrade statistics need to be aligned to the China EW-MFA framework. Therefore, we compared each commodity and each material type between them and established a correspondence table to map UN Comtrade commodity types onto our EW-MFA material types. For example, non-ferrous metal materials of China EW-MFA include commodities, such as copper ores and concentrates (260300 HS0 code), silver powder (710610), manganese, articles thereof, and waste or scrap (811100), etc., whereas biomass residues include cereal straw and husks (121300), lucerne meal and pellets (121410), and other fodder and forage products (121410). This correspondence table between HS0 and EW-MFA classification for imports and exports is provided in Supplementary File 1.

    The input of balancing items

    O2 required for combustion: In BI, requirements for materials can be abstracted as equalling exogenous demands minus intrinsic supplies (Eq. 17). Three parts (two demands and one supply) are considered for O2 requirements by the combustion process: (1) demanding exogenous oxygen to oxidise elements (e.g., carbon, sulphur, nitrogen, etc., except for hydrogen) released into the air, (2) demanding exogenous oxygen to oxidise the hydrogen embedded in fossil energy materials, and (3) providing intrinsic oxygen embedded in fossil energy materials. The first part can be estimated via Eq. 18 by multiplying air emissions (WEmissions) of CO2, N2O, NOx, CO, and SO2 by their oxygen content (POxygen content). For the second (Eq. 19), the oxygen demand is estimated based on the principle of mass balance by converting the hydrogen amount of domestically utilised fossil energy materials (WFossil fuel materials × PHydrogen content) via molar mass conversion factor (PMass conversion factor). PMass conversion factor equals 7.92, derived by the molar mass of one oxygen (16 g/mol) divided by that of two hydrogen atoms (2 × 1.01 g/mol). The last is the intrinsic supplies from fossil fuel materials, which is identified via Eq. 20 by multiplying the domestically utilised amount of fossil fuel materials (WFossil fuel materials) by their oxygen content (POxygen content). The parameters in this estimation are presented in Table 3. As a footnote here, the domestically utilised amount is referred to as the domestic material consumption (DMC), which equals domestic extraction (DE) plus imports (IM) and minus exports (EX).$${W}_{Requirements}={W}_{Demands}-{W}_{Supplies}$$
    (17)
    $${W}_{Demands}={W}_{Emissions}times {P}_{Oxygencontent}$$
    (18)
    $${W}_{Demands}={W}_{Fossilfuelmaterials}times {P}_{Hydrogencontent}times {P}_{Massconversionfactor}$$
    (19)
    $${W}_{Supplies}={W}_{Fossilfuelmaterials}times {P}_{Oxygencontent}$$
    (20)
    Table 3 Parameters related to combustion processes4.Full size table

    O2 required for respiration: O2 is required by the metabolic activities of living organisms, the majority of which are humans and livestock. Bacteria are another sort of organism, which are not included in this estimation because their O2 requirements are too small to be quantified. The respiration-required O2 is related to the total quantity (QOrganisms) and their respiration activity by organism types, as shown in Eq. 21. The respiration activity is represented by the respiration requirement coefficient (PRespiration requirement coefficient), which is the average quantity of O2 that each organism utilises to maintain the metabolic activity, as listed in Table 4.$${W}_{Demands}={Q}_{Organisms}times {P}_{Respirationrequirementcoefficient}$$
    (21)
    Table 4 Parameters related to respiration processes4.Full size table

    Water required for the domestic production of exported beverages: The exported beverages are produced domestically using domestically extracted materials, especially a large amount of water. The weight of water is considered in the output by cross-border trade but is not included in the domestic extraction input. The resulted imbalance can be identified by specifying the water weight in beverages, i.e., multiplying the traded beverage weight (WMaterials) by a parameter of the water content (PWater content), as given in Eq. 22. Fruit and vegetable juices (2009 in HS0 code) and beverages (code 22) are covered in the improved UN Comtrade database32, with PWater content of 85% for the first and 90% for the latter4.

    $${W}_{Water}={W}_{Materials}times {P}_{Watercontent}$$
    (22)

    The output of balancing items.

    Water vapour from combustion: Water vapour emissions by domestically combusting fossil fuel materials are contributed by two paths. The direct evaporation of embedded water is the first path (Eq. 23), which can be derived by multiplying the DMC of fossil fuel materials by their moisture content (PMoisture content). The PMoisture content for each type of fossil fuel material is listed in Table 3. The other is the generation of water vapour during hydrogen oxidation, which can be calculated by converting the oxidised weight of hydrogen to the water weight using the molar mass conversion factor (PMass conversion factor), as given in Eq. 24. PMass conversion factor equals 8.92 by dividing the molar mass of water (18.02 g/mol) by that of two hydrogen atoms (2 × 1.01 g/mol).$${W}_{Water}={W}_{Fossilfuelmaterials}times {P}_{Moisturecontent}$$
    (23)
    $${W}_{Water}={W}_{Fossilfuelmaterials}times {P}_{Hydrogencontent}times {P}_{Massconversionfactor}$$
    (24)

    Water vapour and CO2 from respiration: Respiration activities of organisms will produce water vapour and CO2, whose estimation is similar to that of O2 requirements. As shown in Eq. 25, the respiration-caused gas emissions are related to the number of organisms (QOrganisms) and the respiration activity by organism types. The latter is represented by the parameter of respiration emission coefficient (PRespiration emission coefficient), which is specified in Table 4 for water vapour and CO2 for each type of organism.$${W}_{Emissions}={Q}_{Organisms}times {P}_{Respirationemissioncoefficient}$$
    (25)

    Water from imported beverages: The estimation approach is the same as water by the domestic production of exported beverages, as described in Eq. 16.

    Water in biomass products: Usually, the input of biomass products by domestic extraction16 has been measured in fresh weight, but their corresponding output29 by sewage sludge, composting, etc., are in dry weight, leading to an imbalance in water weight. The water weight in biomass products is calculated by multiplying their domestic extraction amount in fresh weight (WBiomass) by a parameter of moisture content at harvest (PMoisture content), as shown in Eq. 26. The values of PMoisture content by biomass products are presented in Table 5.Table 5 The moisture content at harvest for each biomass product4.Full size table

    $${W}_{Water}={W}_{Biomass}times {P}_{Moisturecontent}$$
    (26)
    Material flow quantificationThe above attempts have quantified material inputs and outputs by flows and presented a detailed profile of material utilisation for each material in China’s economy. In order to depict the economy in a more general way, EW-MFA indicators are assessed by aggregating flows by materials or periods as below.

    Domestic extraction (DE): is referred to as natural materials that are extracted from the domestic environment and are used in the domestic economy, i.e., the total input of natural materials by extraction.

    Domestic processed output (DPO): is referred to as materials that are released to the domestic environment after being processed in the domestic economy, i.e., the total output of processed materials by release.

    Import (IM): is referred to as all goods (in the form of raw materials, semi-finished materials, and final products) that originated from other economies and are further used in the domestic economy. It is calculated as the sum of all imported goods.

    Export (EX): is referred to as all goods that originated from the domestic economy and are transported to other economies to be used. It is calculated as the sum of all exported goods.

    Domestic material input (DMI): is referred to as materials that originated from the domestic environment by extraction and other economies and are available (to be used or to be stored) for the domestic economy. It is calculated as the sum of DE plus IM, as shown in Eq. 27.$$DMI=DE+IM$$
    (27)

    Domestic material consumption (DMC): is referred to as materials that are directly used in the domestic economy after parts of them are exported to other economies. It is calculated as the difference between DMI and EX.

    Physical trade balance (PTB): is referred to as a surplus or deficit of materials for the domestic economy. It is calculated as the difference between IM and EX.

    Net additions to stock (NAS): is referred to as materials that remain in the domestic economy. It is calculated by taking BI items into account, as shown in Eq. 28.

    $$NAS=DMC+B{I}_{in}-DPO-B{I}_{out}$$
    (28) More