More stories

  • in

    Fresh-marketable tomato yields enhanced by moderate weed control and suppressed fruit dehiscence with woodchip mulching

    Zangoueinejad, R. & Alebrahim, M. T. Use of conventional and innovative organic materials as alternatives to black plastic mulch to suppress weeds in tomato production. Biol. Agric. Hortic. 37, 267–284. https://doi.org/10.1080/01448765.2021.1947377 (2021).Article 

    Google Scholar 
    Biswas, S. K., Akanda, A. R., Rahman, M. S. & Hossain, M. A. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ. 61, 97–102. https://doi.org/10.17221/804/2014-PSE (2015).Article 

    Google Scholar 
    Haapala, T., Palonen, P., Tamminen, A. & Ahokas, J. Effects of different paper mulches on soil temperature and yield of cucumber (Cucumis sativus L.) in the temperate zone. Agric. Food Sci. 24, 52–58. https://doi.org/10.23986/afsci.47220 (2015).CAS 
    Article 

    Google Scholar 
    Shiukhy, S., Raeini-Sarjaz, M. & Chalavi, V. Colored plastic mulch microclimates affect strawberry fruit yield and quality. Int. J. Biometeorol. 59, 1061–1066. https://doi.org/10.1007/s00484-014-0919-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Sideman, R. G. Performance of sweetpotato cultivars grown using biodegradable black plastic mulch in New Hampshire. HortTechnology 25, 412–416. https://doi.org/10.21273/HORTTECH.25.3.412 (2015).Article 

    Google Scholar 
    Ferdous, Z., Datta, A. & Anwar, M. Plastic mulch and indigenous microorganism effects on yield and yield components of cauliflower and tomato in inland and coastal regions of Bangladesh. J. Crop Improv. 31, 261–279. https://doi.org/10.1080/15427528.2017.1293578 (2017).Article 

    Google Scholar 
    Lament, W. J. Jr. Plastic mulches for the production of vegetable crops. HortTechnology 3, 35–39. https://doi.org/10.21273/HORTTECH.3.1.35 (1993).Article 

    Google Scholar 
    Abdul-Baki, A. A., Teasdale, J. R., Goth, R. W. & Haynes, K. G. Marketable yields of fresh-market tomatoes grown in plastic and hairy vetch mulches. HortScience 37, 878–881. https://doi.org/10.21273/HORTSCI.37.6.878 (2002).Article 

    Google Scholar 
    Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25, 239–249. https://doi.org/10.24266/0738-2898-25.4.239 (2007).Article 

    Google Scholar 
    Kasirajan, S. & Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 32, 501–529. https://doi.org/10.1007/s13593-011-0068-3 (2012).CAS 
    Article 

    Google Scholar 
    Iqbal, R. et al. Potential agricultural and environmental benefit of mulches—A review. Bull. Natl. Res. Cent. 44, 752020. https://doi.org/10.1186/s42269-020-00290-3 (2020).Article 

    Google Scholar 
    Travlos, I. et al. Efficacy of different herbicides on Echinocholoa colona (L.) Link control and the first case of its glyphosate resistance in Greece. Agronomy 10, 1056. https://doi.org/10.3390/agronomy10071056 (2000).CAS 
    Article 

    Google Scholar 
    Travlos, I. S. & Chachalis, D. Glyphsate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol. 24, 569–573. https://doi.org/10.1614/WT-D-09-00080.1 (2010).CAS 
    Article 

    Google Scholar 
    Tahmasebi, B. K. et al. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 112, 350–355. https://doi.org/10.1016/j.cropro.2018.06.021 (2018).CAS 
    Article 

    Google Scholar 
    Kanatas, P., Anthonopoulos, N., Gazoulis, I. & Travlos, I. S. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 69, 704–718. https://doi.org/10.1017/wsc.2021.55 (2021).Article 

    Google Scholar 
    Anthonopoulos, N. et al. Hot foam: Evaluation of a new, non-chemical weed control option in perennial crops. Smart Agric. Technol. 3, 1000063. https://doi.org/10.1016/j.atech.2022.100063 (2023).Article 

    Google Scholar 
    Espí, E., Salmerón, A., Fontecha, A., García, Y. & Real, A. I. Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85–102. https://doi.org/10.1177/8756087906064220 (2006).CAS 
    Article 

    Google Scholar 
    Li, C. et al. Effects of biodegradable mulch on soil quality. Appl. Soil Ecol. 79, 59–69. https://doi.org/10.1016/j.apsoil.2014.02.012 (2014).ADS 
    Article 

    Google Scholar 
    van Sebille, E. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006. https://doi.org/10.1088/1748-9326/10/12/124006 (2015).ADS 
    Article 

    Google Scholar 
    Moreno, M. M., Cirujeda, A., Aibar, J. & Moreno, C. Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.). Crop. Soil Res. 54, 207–215. https://doi.org/10.1071/SR15065 (2016).Article 

    Google Scholar 
    Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108, 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lim, X. Microplastics are everywhere—But are they harmful?. Nature 593, 22–25. https://doi.org/10.1038/d41586-021-01143-3 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cardinael, Ŕ, Cadisch, G., Gosme, M., Oelbermann, M. & van Noordwik, M. Climate change mitigation and adaptation agriculture: Why agroforestry should be part of the solution. Agric. Ecosyst. Environ. 319, 107555. https://doi.org/10.1016/j.agee.2021.107555 (2021).Article 

    Google Scholar 
    Ji, S. & Unger, P. W. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Sci. Soc. Am. J. 65, 442–448. https://doi.org/10.2136/sssaj2001.652442x (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmithals, A. & Kühn, N. To mulch or not to mulch? Effects of gravel mulch toppings on plant establishment and development in ornamental prairie plantings. PLoS ONE 12, e0171533. https://doi.org/10.1371/journal.pone.0171533 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 51, 239–248. https://doi.org/10.1023/A:1009701323580 (1998).Article 

    Google Scholar 
    Cline, G. R. & Silvernail, A. F. Residual nitrogen and kill date effects on winter cover crop growth and nitrogen content in a vegetable production system. HortTechnology 11, 219–225. https://doi.org/10.21273/HORTTECH.11.2.219 (2001).CAS 
    Article 

    Google Scholar 
    Cherr, C. M., Scholberg, J. M. S. & McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 98, 302–319. https://doi.org/10.2134/agronj2005.0035 (2006).Article 

    Google Scholar 
    Nguyen, L. T. T., Ortner, K. A., Tiemann, L. K., Renner, K. A. & Kravchenko, A. N. Soil properties after one year of interseeded cover cropping in topographically diverse agricultural landscape. Agric. Ecosyst. Environ. 326, 107803. https://doi.org/10.1016/j.agee.2021.107803 (2021).CAS 
    Article 

    Google Scholar 
    Breton, V., Crosaz, Y. & Rey, F. Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France). Solid Earth 7, 599–610. https://doi.org/10.5194/se-2016-11 (2016).ADS 
    Article 

    Google Scholar 
    Wang, L., Gruber, S. & Claupein, W. Effects of woodchip mulch and barley intercropping on weeds in lentil crops. Weed Res. 52, 161–168. https://doi.org/10.1111/j.1365-3180.2012.00905.x (2012).Article 

    Google Scholar 
    Jabran, K. Use of mulches for managing field bindweed and purple nutsedge, and weed control in spinach. Int. J. Agric. Biol. 23, 1114–1120. https://doi.org/10.17957/IJAB/15.1394 (2020).CAS 
    Article 

    Google Scholar 
    Keeley, J. E., Morton, B. A., Pedrosa, A. & Trotter, P. Role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. J. Ecol. 73, 445–458. https://doi.org/10.2307/2260486 (1985).Article 

    Google Scholar 
    Schumann, A. W., Little, K. M. & Eccles, N. S. Suppression of seed germination and early seedling growth by plantation harvest residues. S. Afr. J. Plant Soil 12, 170–172. https://doi.org/10.1080/02571862.1995.10634359 (1995).Article 

    Google Scholar 
    Rathinasabapathi, B., Ferguson, J. & Gal, M. Evaluation of allelopathic potential of wood chips for weed suppression in horticultural production systems. HortScience 40, 711–713. https://doi.org/10.21273/HORTSCI.40.3.711 (2005).Article 

    Google Scholar 
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1142/q0088 (2014).Article 

    Google Scholar 
    Rahmathulla, V. K. Management of climatic factors for successful silkworm (Bombyx mori L.) crop and higher silk production: A review. Psyche J. Entomol. 2012, 121234. https://doi.org/10.1155/2012/121234 (2012).Article 

    Google Scholar 
    Guttikunda, S. K. & Kopakka, R. V. Source emissions and health impacts of urban air pollution in Hyderadad, India. Air Qual. Atmos. Health 7, 195–207. https://doi.org/10.1007/s11869-013-0221-z (2014).CAS 
    Article 

    Google Scholar 
    Dhaka, S. K. et al. PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: An interplay between the baseline pollution and meteorology. Sci. Rep. 10, 13442. https://doi.org/10.1038/s41598-020-70179-8 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ehret, D. L., Helmer, T. & Hall, J. W. Cuticle cracking in tomato fruit. J. Hortic. Sci. 68, 195–201. https://doi.org/10.1080/00221589.1993.11516343 (1993).Article 

    Google Scholar 
    Peet, M. M. & Willits, D. H. Role of excess water in tomato fruit cracking. Hortic. Sci. 30, 65–68. https://doi.org/10.21273/HORTSCI.30.1.65 (1995).Article 

    Google Scholar 
    Ikeda, T., Sakamoto, Y., Watanabe, S. & Okano, K. Water relations in fruit cracking of single-truss tomato plants. Environ. Control Biol. 37, 153–158. https://doi.org/10.2525/ecb1963.37.153 (1999).Article 

    Google Scholar 
    Uetani, M., Fujitani, S. & Kimura, M. Mitigation techniques on fruit cracking in tomato cultivation under rain shelter in summer and autumn. Bull. Oita Pref Agr. For. Fish. Res. Cent. 4, 11–25 (2014) (in Japanese with English summary).
    Google Scholar 
    Kuhns, L. J. Efficacy and phytotoxicity of three landscape herbicides with and without a light mulch. Proc. Northeast. Weed Sci. Soc. 46, 85–89 (1992).
    Google Scholar 
    Petrikovszki, R., Zalai, M., Bogdányi, F. T. & Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil weed seed bank of tomato. Plants 9, 66. https://doi.org/10.3390/plants9010066 (2020).Article 
    PubMed Central 

    Google Scholar 
    Egley, G. H. Weed seed and seedling reductions by soil solarization with transparent polyethylene sheets. Weed Sci. 31, 404–409. https://doi.org/10.1017/S0043174500069253 (1983).Article 

    Google Scholar 
    Ashworth, S. & Harrison, H. Evaluation of mulches for use in the home garden. HortScience 18, 180–182 (1983).
    Google Scholar 
    Chakrabory, R. C. & Sadhu, M. K. Effect of mulch type and colour on growth and yield of tomato (Lycopersicon esculentum). Indian J. Agric. Sci. 64, 608–612 (1994).
    Google Scholar 
    Bhella, H. S. Tomato response to trickle irrigation and black polyethylene mulch. J. Am. Soc. Hortic. Sci. 113, 543–546 (1988).
    Google Scholar 
    Garnaud, J. C. The Intensification of Horticultural Crop Production in the Mediterranean Basin by Protected Cultivation (FAO of the United Nations, 1974).
    Google Scholar 
    Ahmad, S. et al. Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. J. Anim. Plant Sci. 30, 154–162. https://doi.org/10.36899/japs.2020.1.0018 (2020).Article 

    Google Scholar 
    Ahmad, S. et al. Mulching strategies for weeds control and water conservation in cotton. ARPN J. Agric. Biol. Sci. 10, 299–306 (2015).
    Google Scholar 
    Hartwing, N. L. & Ammon, H. U. Cover crops and living mulches. Weed Sci. 50, 688–699. https://doi.org/10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2 (2002).Article 

    Google Scholar 
    Samedani, B., Ranjbar, M., Rahimian, H. & Jahansoz, M. R. Utilization of rye and hairy vetch cover crops for weed control in transplanted tomato. Pak. J. Biol. Sci. 9, 2323–2327. https://doi.org/10.3923/pjbs.2006.2323.2327 (2006).Article 

    Google Scholar 
    Pickering, J. S. & Shepherd, A. Evaluation of organic landscape mulches: composition and nutrient releases characteristics. Arboric J. 24, 175–187. https://doi.org/10.1080/03071375.2000.9747271 (2000).Article 

    Google Scholar 
    Marí, A. I., Pardo, G., Aibar, J. & Cirujeda, A. Purple nutsedge (Cyperus rotundus L.) control with biodegradable mulches and its effect on fresh pepper production. Sci. Hortic. 263, 109111. https://doi.org/10.1016/j.scienta.2019.109111 (2020).CAS 
    Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment of Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458. https://doi.org/10.1038/bmt.2012.244 (2013).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Fall and rise of the phytoplankton

    Wirtz, K., Smith, S. L., Mathis, M. & Taucher, J. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01430-5 (2022).Article 

    Google Scholar 
    Watanabe, M., Kohata, K. & Kimura, T. Limnol. Oceanogr. 36, 593–602 (1991).Article 

    Google Scholar 
    Villareal, T. A. et al. Nature 397, 423–425 (1999).CAS 
    Article 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Alldredge, A. L. & Silver, M. W. Prog. Oceanogr. 20, 41–82 (1988).Article 

    Google Scholar 
    White, A. E., Spitz, Y. H. & Letelier, R. M. Mar. Ecol. Prog. Ser. 323, 35–45 (2006).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Nat. Clim. Change 11, 973–981 (2021).Article 

    Google Scholar 
    Giorgetta, M. A. et al. J. Adv. Model. Earth Syst. 5, 572–597 (2013).Article 

    Google Scholar 
    McGillicuddy, D. J. et al. Nature 394, 263–266 (1998).CAS 
    Article 

    Google Scholar 
    Lévy, M., Franks, P. J. & Smith, K. S. Nat. Commun. 9, 4758 (2018).Article 

    Google Scholar 
    Durham, W. M. & Stocker, R. Annu. Rev. Mar. Sci. 4, 177–207 (2012).Article 

    Google Scholar 
    Cullen, J. J. Annu. Rev. Mar. Sci. 7, 207–239 (2015).Article 

    Google Scholar 
    Moeller, H. V., Laufkötter, C., Sweeney, E. M. & Johnson, M. D. Nat. Commun. 10, 1978 (2019).Article 

    Google Scholar 
    Fawcett, S. E., Johnson, K. S., Riser, S. C., Van Oostende, N. & Sigman, D. M. Mar. Chem. 207, 108–123 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Vertically migrating phytoplankton fuel high oceanic primary production

    Westberry, T., Behrenfeld, M., Siegel, D. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22 (2008).Richardson, K. & Bendtsen, J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar. Ecol. Prog. Ser. 620, 33–46 (2019).CAS 

    Google Scholar 
    Oschlies, A. in Ocean Modeling in an Eddying Regime (eds Hecht, M. W. & Hasumi, H.) 115–130 (AGU, 2008).Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).CAS 

    Google Scholar 
    Johnson, K. S., Riser, S. C. & Karl, D. M. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465, 1062–1065 (2010).CAS 

    Google Scholar 
    Fawcett, S. E., Lomas, M. W., Casey, J. R., Ward, B. B. & Sigman, D. M. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat. Geosci. 4, 717–722 (2011).CAS 

    Google Scholar 
    Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G. & Capone, D. G. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proc. Natl Acad. Sci. USA 113, 4398–4403 (2016).CAS 

    Google Scholar 
    Böttjer, D. et al. Temporal variability of nitrogen fixation and particulate nitrogen export at station ALOHA. Limnol. Oceanogr. 62, 200–216 (2017).
    Google Scholar 
    Gruber, N., Keeling, C. D. & Stocker, T. F. Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea. Deep Sea Res. 1 45, 673–717 (1998).CAS 

    Google Scholar 
    Doney, S. C., Glover, D. M. & Najjar, R. G. A new coupled, one-dimensional biological–physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res. 2 43, 591–624 (1996).CAS 

    Google Scholar 
    Ascani, F. et al. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep Sea Res 2 93, 119–134 (2013).CAS 

    Google Scholar 
    Gran, H. H. in Rapport Vol. 56, 1–112 (Bureau du Conseil permanent international pour l’exploration de la mer, 1929).Hasle, G. R. Phototactic vertical migration in marine dinoflagellates. Oikos 2, 162–175 (1950).
    Google Scholar 
    Villareal, T. A. et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423–425 (1999).CAS 

    Google Scholar 
    Villareal, T. & Carpenter, E. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).CAS 

    Google Scholar 
    Wirtz, K. & Smith, S. L. Vertical migration by bulk phytoplankton sustains biodiversity and nutrient input to the surface ocean. Sci. Rep. 10, 1142 (2020).CAS 

    Google Scholar 
    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).CAS 

    Google Scholar 
    Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. Nature 566, 205–211 (2019).CAS 

    Google Scholar 
    Karl, D. M., Letelier, R., Hebel, D. V., Bird, D. F. & Winn, C. D. in Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs (eds Carpenter, E. J. et al.) 219–237 (Springer, 1992).Cullen, J. J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann. Rev. Mar. Sci. 7, 207–239 (2015).
    Google Scholar 
    Masuda, Y. et al. Photoacclimation by phytoplankton determines the distribution of global subsurface chlorophyll maxima in the ocean. Commun. Earth Environ. 2, 1–8 (2021).
    Google Scholar 
    Anugerahanti, P., Kerimoglu, O. & Smith, S. L. Enhancing ocean biogeochemical models with phytoplankton variable composition. Front. Mar. Sci. 8, 675428 (2021).
    Google Scholar 
    Pérez, V., Fernández, E., Marañón, E., Morán, X. A. G. & Zubkov, M. V. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Res. 1 53, 1616–1634 (2006).
    Google Scholar 
    Cornec, M. et al. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Glob. Biogeochem. Cycles 35, e2020GB006759 (2021).CAS 

    Google Scholar 
    Li, Q. P., Wang, Y., Dong, Y. & Gan, J. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res. 120, 3913–3936 (2015).
    Google Scholar 
    Latif, S., Ayub, Z. & Siddiqui, G. Seasonal variability of phytoplankton in a coastal lagoon and adjacent open sea in Pakistan. Turk. J. Botany 37, 398–410 (2013).CAS 

    Google Scholar 
    Liang, Y. et al. Nutrient-limitation induced diatom–dinoflagellate shift of spring phytoplankton community in an offshore shellfish farming area. Mar. Pollut. Bull. 141, 1–8 (2019).CAS 

    Google Scholar 
    Rahlff, J. et al. Short-term responses to ocean acidification: effects on relative abundance of eukaryotic plankton from the tropical Timor Sea. Mar. Ecol. Prog. Ser. 658, 59–74 (2021).CAS 

    Google Scholar 
    Kahru, M., Savchuk, O. & Elmgren, R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar. Ecol. Prog. Ser. 343, 15–23 (2007).
    Google Scholar 
    Klais, R., Tamminen, T., Kremp, A., Spilling, K. & Olli, K. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6, e21567 (2011).CAS 

    Google Scholar 
    Klais, R., Norros, V., Lehtinen, S., Tamminen, T. & Olli, K. Community assembly and drivers of phytoplankton functional structure. Funct. Ecol. 31, 760–767 (2017).
    Google Scholar 
    Villareal, T. A., Pilskaln, C. H., Montoya, J. P. & Dennett, M. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. PeerJ 2, e302 (2014).
    Google Scholar 
    Mignot, A. et al. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a bio-argo float investigation. Glob. Biogeochem. Cycles 28, 856–876 (2014).CAS 

    Google Scholar 
    Chen, B., Smith, S. L. & Wirtz, K. W. Effect of phytoplankton size diversity on primary productivity in the North Pacific: trait distributions under environmental variability. Ecol. Lett. 22, 56–66 (2019).
    Google Scholar 
    Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253–1280 (2015).
    Google Scholar 
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Mod. Earth Sys. 5, 572–597 (2013).
    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).
    Google Scholar 
    Gliwicz, M. Z. Predation and the evolution of vertical migration in zooplankton. Nature 320, 746–748 (1986).
    Google Scholar 
    Huettel, M., Forster, S., Kloser, S. & Fossing, H. Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl. Environ. Microbiol. 62, 1863–1872 (1996).CAS 

    Google Scholar 
    Waterbury, J. B., Willey, J. M., Franks, D. G., Valois, F. W. & Watson, S. W. A cyanobacterium capable of swimming motility. Science 230, 74–76 (1985).CAS 

    Google Scholar 
    McCarren, J. et al. Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J. Bacteriol. 187, 224–230 (2005).CAS 

    Google Scholar 
    Eppley, R. W., Holm-Hansen, O. & Strickland, J. D. Some observations on the vertical migration of dinoflagellates. J. Phycol. 4, 333–340 (1968).CAS 

    Google Scholar 
    Sengupta, A., Carrara, F. & Stocker, R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543, 555–558 (2017).CAS 

    Google Scholar 
    Waite, A., Fisher, A., Thompson, P. & Harrison, P. Sinking rate verses cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar. Ecol. Prog. Ser. 157, 97–108 (1997).
    Google Scholar 
    Throndsen, J. Motility in some marine nanoplankton flagellates. Nor. J. Zool. 21, 193–200 (1973).
    Google Scholar 
    Gittleson, S. M., Hotchkiss, S. K. & Valencia, F. G. Locomotion in the marine dinoflagellate Amphidinium carterae (Hulburt). Trans. Am. Microsc. Soc. 93, 101–105 (1974).Barsanti, L. et al. Swimming patterns of the quadriflagellate Tetraflagellochloris mauritanica (Chlamydomonadales, Chlorophyceae). J. Phycol. 52, 209–218 (2016).
    Google Scholar 
    Schuech, R. & Menden-Deuer, S. Going ballistic in the plankton: anisotropic swimming behavior of marine protists. Limnol. Oceanogr. Fluids Environ. 4, 1–16 (2014).
    Google Scholar 
    Eppley, R. W., Holmes, R. W. & Strickland, J. D. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1, 191–208 (1967).
    Google Scholar 
    Bienfang, P. Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61, 69–77 (1980).
    Google Scholar 
    Lisicki, M., Rodrigues, M. F. V., Goldstein, R. E. & Lauga, E. Swimming eukaryotic microorganisms exhibit a universal speed distribution. Elife 8, e44907 (2019).CAS 

    Google Scholar 
    Moore, J. & Villareal, T. Buoyancy and growth characteristics of three positively buoyant marine diatoms. Mar. Ecol. Prog. Ser. 132 (1996).Hawaii Ocean Time-series (HOT) (School of Ocean and Earth Science and Technology at the University of Hawai’i, 2020); http://hahana.soest.hawaii.edu/hot/hot-dogsBermuda Atlantic Time-Series (BATS) (Bermuda Institure of Ocean Sciences, 2020); http://bats.bios.eduThe Japanese 55-Year Reanalysis (JRA-55) (Japan Meteorological Agency, 2020); http://jra.kishou.go.jp/JRA-55Ridgway, K., Dunn, J. & Wilkin, J. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Google Scholar 
    CSIRO Atlas of Regional Seas (CARS) (CSIRO, 2009); http://www.marine.csiro.au/~dunn/cars2009Ocean Colour (ESA-CCI, 2020); http://www.esa-oceancolour-cci.orgCloud (ESA-CCI, 2020); http://www.esa-cloud-cci.orgSea Surface Temperature (ESA-CCI, 2020); http://www.esa-sst-cci.orgRosati, A. & Miyakoda, K. A general circulation model for upper ocean simulation. J. Phys. Oceanogr. 18, 1601–1626 (1988).
    Google Scholar 
    Ralston, D. K., McGillicuddy, D. J. & Townsend, D. W. Asynchronous vertical migration and bimodal distribution of motile phytoplankton. J. Plankton Res. 29, 803–821 (2007).
    Google Scholar 
    Kamykowski, D. & Yamazaki, H. A study of metabolism-influenced orientation in the diel vertical migration of marine dinoflagellates. Limnol. Oceanogr. 42, 1189–1202 (1997).
    Google Scholar 
    Richardson, T. L., Cullen, J. J., Kelley, D. E. & Lewis, M. R. Potential contributions of vertically migrating Rhizosolenia to nutrient cycling and new production in the open ocean. J. Plankton Res. 20, 219–241 (1998).
    Google Scholar 
    Ross, O. N. & Sharples, J. Phytoplankton motility and the competition for nutrients in the thermocline. Mar. Ecol. Prog. Ser. 347, 21–38 (2007).CAS 

    Google Scholar 
    Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Saba, V. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).CAS 

    Google Scholar 
    Bhattathiri, P., Devassy, V. & Radhakrishna, K. Primary production in the Bay of Bengal during southwest monsoon of 1978. Mahasagar Bull. Natl Inst. Oceanogr. 13, 315–323 (1980).
    Google Scholar 
    Sarupria, J. & Bhargava, R. Seasonal primary production in different sectors of the EEZ of India. Mahasagar Bull. Natl Inst. Oceanogr. 26, 139–147 (1993).
    Google Scholar 
    Jyothibabu, R. et al. Differential response of winter cooling on biological production in the northeastern Arabian Sea and northwestern Bay of Bengal. Curr. Sci. 87, 783–791 (2004).
    Google Scholar 
    Kumar, S. P. et al. Is the biological productivity in the Bay of Bengal light limited? Curr. Sci. 98, 1331–1339 (2010).CAS 

    Google Scholar 
    Kumar, S. P. et al. Seasonal cycle of physical forcing and biological response in the Bay of Bengal. Ind. J. Mar. Sci. 39, 388–405 (2010).CAS 

    Google Scholar 
    Buitenhuis, E. T., Hashioka, T. & Quéré, C. L. Combined constraints on global ocean primary production using observations and models. Glob. Biogeochem. Cycles 27, 847–858 (2013).CAS 

    Google Scholar  More

  • in

    Selection on offspring size and contemporary evolution under ocean acidification

    Sunday, J. M., Crim, R. N., Harley, C. D. G. & Hart, M. W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6, e22881 (2011).CAS 
    Article 

    Google Scholar 
    Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article 

    Google Scholar 
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).Article 

    Google Scholar 
    Reusch, T. B. H. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).Article 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).Article 

    Google Scholar 
    Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88, 320–335 (2018).Article 

    Google Scholar 
    Lohbeck, K., Riebesell, U. & Reusch, T. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).CAS 
    Article 

    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).Article 

    Google Scholar 
    Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).Article 

    Google Scholar 
    Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).CAS 
    Article 

    Google Scholar 
    Foo, S. A., Dworjanyn, S. A., Poore, A. G. B., Harianto, J. & Byrne, M. Adaptive capacity of the sea urchin Heliocidaris erythrogramma to ocean change stressors: responses from gamete performance to the juvenile. Mar. Ecol. Prog. Ser. 556, 161–172 (2016).CAS 
    Article 

    Google Scholar 
    Malvezzi, A. J. et al. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evol. Appl. 8, 352–362 (2015).CAS 
    Article 

    Google Scholar 
    Bitter, M. C., Kapsenberg, L., Gattuso, J.-P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).CAS 
    Article 

    Google Scholar 
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Pearson Prentice Hall, 1996).Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).CAS 
    Article 

    Google Scholar 
    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).CAS 
    Article 

    Google Scholar 
    Timothy A. Mousseau and Charles W. Fox. Maternal Effects as Adaptations 178–201 (Oxford Univ. Press, 1998).Marshall, D., Allen, R. & Crean, A. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
    Google Scholar 
    Tasoff, A. J. & Johnson, D. W. Can larvae of a marine fish adapt to ocean acidification? Evaluating the evolutionary potential of California grunion (Leuresthes tenuis). Evol. Appl. 12, 560–571 (2019).CAS 
    Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article 

    Google Scholar 
    Shimada, Y., Shikano, T., Murakami, N., Tsuzaki, T. & Seikai, T. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus. Fish. Sci. 73, 244–249 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R. & Moye, J. Quantifying evolutionary potential of marine fish larvae: heritability, selection, and evolutionary constraints. Evolution 64, 2614–2628 (2010).Article 

    Google Scholar 
    Miles, C. M., Hadfield, M. G. & Wayne, M. L. Heritability for egg size in the serpulid polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 340, 155–162 (2007).Article 

    Google Scholar 
    Iguchi, K. & Yamaguchi, M. Adaptive significance of inter- and intrapopulational egg size variation in ayu Plecoglossus altivelis (osmeridae). Copeia 1994, 184–190 (1994).Article 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. Mar. Ecol. Prog. Ser. 259, 139–144 (2003).Article 

    Google Scholar 
    González-Ortegón, E. & Giménez, L. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Mar. Ecol. Prog. Ser. 502, 185–195 (2014).Article 

    Google Scholar 
    Pan, T.-C. F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl Acad. Sci. USA 112, 4696–4701 (2015).CAS 
    Article 

    Google Scholar 
    Rollinson, N. & Hutchings, J. A. Environmental quality predicts optimal egg size in the wild. Am. Nat. 181, 76–90 (2013).Article 

    Google Scholar 
    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99 (2014).Article 

    Google Scholar 
    Murray, C. S., Malvezzi, A., Gobler, C. J. & Baumann, H. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser. 504, 1–11 (2014).Article 

    Google Scholar 
    Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).Article 

    Google Scholar 
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 
    CAS 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368, p20120080 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 

    Google Scholar 
    Smyder, E. A., Martin, K. L. M. & Gatten, R. E. Jr Temperature effects on egg survival and hatching during the extended incubation period of California grunion, Leuresthes tenuis. Copeia 2002, 313–320 (2002).Article 

    Google Scholar 
    Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).CAS 
    Article 

    Google Scholar 
    Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).Article 

    Google Scholar 
    Davidson, C. Spatial and Temporal Variability of Coastal Carbonate Chemistry in the Southern California Region. MSc thesis, Univ. California, San Diego (2015).Jones, J. M., Sweet, J., Brzezinski, M. A., McNair, H. M. & Passow, U. Evaluating carbonate system algorithms in a nearshore system: does total alkalinity matter? PLoS ONE 11, e0165191 (2016).Article 
    CAS 

    Google Scholar 
    Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).CAS 
    Article 

    Google Scholar 
    Turi, G., Lachkar, Z., Gruber, N. & Münnich, M. Climatic modulation of recent trends in ocean acidification in the California current system. Environ. Res. Lett. 11, 014007 (2016).Article 

    Google Scholar 
    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).CAS 
    Article 

    Google Scholar 
    Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kruuk, L. E. B. Estimating genetic parameters in natural populations using the animal model. Phil. Trans. R. Soc. B 359, 873–890 (2004).Article 

    Google Scholar 
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, (2010).Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983).Article 

    Google Scholar 
    Clark, F. N. The Life History of Leuresthes Tenuis, an Atherine Fish with Tide Controlled Spawning Habits Fish Bulletin No. 10 (California Department of Fish and Game, 1925).Johnson, D.W. Data from: Selection on offspring size and contemporary evolution under ocean acidification. Dryad https://doi.org/10.5061/dryad.0gb5mkm3w (2022) More

  • in

    Chemotaxis may assist marine heterotrophic bacterial diazotrophs to find microzones suitable for N2 fixation in the pelagic ocean

    Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, et al. Dinitrogen fixation in the world’s oceans. In: Boyer EW, Howarth RW, editors. The nitrogen cycle at regional to global scales. Dordrecht: Springer; 2002. p. 47–98.Berthelot H, Benavides M, Moisander PH, Grosso O, Bonnet S. High-nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas): N2 fixation in the Western Pacific. Geophys Res Lett. 2017;44:8414–23.CAS 
    Article 

    Google Scholar 
    Rahav E, Bar-Zeev E, Ohayion S, Elifantz H, Belkin N, Herut B, et al. Dinitrogen fixation in aphotic oxygenated marine environments. Front Microbiol. 2013;4:227.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JL, Markager S, et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J. 2015;9:273–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Messer LF, Doubell M, Jeffries TC, Brown MV, Seymour JR. Prokaryotic and diazotrophic population dynamics within a large oligotrophic inverse estuary. Aquat Micro Ecol. 2015;74:1–15.Article 

    Google Scholar 
    Sipler RE, Gong D, Baer SE, Sanderson MP, Roberts QN, Mulholland MR, et al. Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget. Limnol Oceanogr Lett. 2017;2:159–66.Article 

    Google Scholar 
    Benavides M, Bonnet S, Berman-Frank I, Riemann L. Deep into oceanic N2 fixation. Front Mar Sci. 2018;5:1–4.Article 

    Google Scholar 
    Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, Western North Atlantic coastal waters expand the realm of marine diazotrophy. Glob Biogeochem Cycles. 2019;33:826–40.CAS 
    Article 

    Google Scholar 
    Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19:162–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Riemann L, Farnelid H, Steward G. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Micro Ecol. 2010;61:235–47.Article 

    Google Scholar 
    Farnelid H, Andersson AF, Bertilsson S, Al-Soud WA, Hansen LH, Sørensen S, et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE. 2011;6:e19223.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–1083.e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bombar D, Paerl RW, Riemann L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 2016;24:916–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moisander PH, Benavides M, Bonnet S, Berman-Frank I, White AE, Riemann L. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front Microbiol. 2017;8:1736.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eady RR, Postgate JR. Nitrogenase. Nature. 1974;249:805–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wong PP, Burris RH. Nature of oxygen inhibition of nitrogenase from azotobacter vinelandii. Proc Natl Acad Sci USA 1972;69:672–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L. Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr. 2007;52:2260–9.Article 

    Google Scholar 
    Inomura K, Bragg J, Follows MJ. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 2017;11:166–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl HW. Microzone formation: its role in the enhancement of aquatic N2 fixation. Limnol Oceanogr. 1985;30:1246–52.CAS 
    Article 

    Google Scholar 
    Paerl HW, Prufert LE. Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl Env Microbiol. 1987;53:1078–87.CAS 
    Article 

    Google Scholar 
    Riemann L, Rahav E, Passow U, Grossart H-P, de Beer D, Klawonn I, et al. Planktonic aggregates as hotspots for heterotrophic diazotrophy: the plot thickens. Front Microbiol. 2022;13:1092.Article 

    Google Scholar 
    Braun ST, Proctor LM, Zani S, Mellon MT, Zehr JP. Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene. FEMS Microbiol Ecol. 1999;28:273–9.CAS 
    Article 

    Google Scholar 
    Farnelid H, Tarangkoon W, Hansen G, Hansen PJ, Riemann L. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate–Cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat Micro Ecol. 2010;61:105–17.Article 

    Google Scholar 
    Scavotto RE, Dziallas C, Bentzon-Tilia M, Riemann L, Moisander PH. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean: diazotroph community in association with copepods. Environ Microbiol. 2015;17:3754–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farnelid H, Turk-Kubo K, Ploug H, Ossolinski JE, Collins JR, Van Mooy BAS, et al. Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME J. 2019;13:170–82.PubMed 
    Article 

    Google Scholar 
    Geisler E, Bogler A, Rahav E, Bar-Zeev E. Direct detection of heterotrophic diazotrophs associated with planktonic aggregates. Sci Rep. 2019;9:1–9.CAS 
    Article 

    Google Scholar 
    Pedersen JN, Bombar D, Paerl RW, Riemann L. Diazotrophs and N2-fixation associated with particles in coastal estuarine waters. Front Microbiol. 2018;9:2759.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paerl RW, Hansen TNG, Henriksen NNSE, Olesen AK, Riemann L. N2-fixation and related O2 constraints on model marine diazotroph Pseudomonas stutzeri BAL361. Aquat Micro Ecol. 2018;81:125–36.Article 

    Google Scholar 
    Rahav E, Giannetto MJ, Bar-Zeev E. Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline. Sci Rep. 2016;6:27858.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chakraborty S, Andersen KH, Visser AW, Inomura K, Follows MJ, Riemann L. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat Commun. 2021;12:4085.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci USA 2008;105:4209–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stocker R, Seymour JR. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev. 2012;76:792–812.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014;8:999–1007.CAS 
    PubMed 
    Article 

    Google Scholar 
    Son K, Menolascina F, Stocker R. Speed-dependent chemotactic precision in marine bacteria. Proc Natl Acad Sci USA 2016;113:8624–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brumley DR, Carrara F, Hein AM, Yawata Y, Levin SA, Stocker R. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc Natl Acad Sci USA 2019;116:10792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Müller‐Niklas G, Stefan S, Kaltenböok E, Herndl GJ. Organic content and bacterial metabolism in amorphous aggregations of the northern Adriatic Sea. Limnol Oceanogr. 1994;39:58–68.Article 

    Google Scholar 
    Grossart H-P, Czub G, Simon M. Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol. 2006;8:1074–84.PubMed 
    Article 

    Google Scholar 
    Smith DC, Simon M, Alldredge AL, Azam F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature. 1992;359:139–42.CAS 
    Article 

    Google Scholar 
    Kiørboe T, Ploug H, Thygesen UH. Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar Ecol Prog Ser. 2001;211:1–13.Article 

    Google Scholar 
    Kiørboe T, Jackson GA. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol Oceanogr. 2001;46:1309–18.Article 

    Google Scholar 
    Raina J-B, Lambert BS, Parks DH, Rinke C, Siboni N, Bramucci A, et al. Chemotaxis shapes the microscale organisation of the ocean’s microbiome. Nature. 2022;605:132–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambert BS, Raina J-B, Fernandez VI, Rinke C, Siboni N, Rubino F, et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat Microbiol. 2017;2:1344–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clerc EE, Raina J-B, Lambert BS, Seymour J, Stocker R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. J Vis Exp. 2020;159:e61062.
    Google Scholar 
    Boström KH, Riemann L, Kühl M, Hagström Å. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol. 2007;9:152–64.PubMed 
    Article 
    CAS 

    Google Scholar 
    Farnelid H, Harder J, Bentzon-Tilia M, Riemann L. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters: heterotrophic diazotrophs in the Baltic Sea. Environ Microbiol. 2014;16:3072–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    ZoBell CE. Studies on Marine Bacteria I. The cultural requirements of heterotrophic aerobes. J Mar Res. 1941;4:41–75.Alldredge AL, Gotschalk C, Passow U, Riebesell U. Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res Part II Top Stud Oceanogr. 1995;42:9–27.CAS 
    Article 

    Google Scholar 
    Thornton DCO. Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol. 2002;37:149–61.Article 

    Google Scholar 
    Turner J. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Micro Ecol. 2002;27:57–102.Article 

    Google Scholar 
    Schnetzer A, Lampe RH, Benitez-Nelson CR, Marchetti A, Osburn CL, Tatters AO. Marine snow formation by the toxin-producing diatom, Pseudo-nitzschia australis. Harmful Algae. 2017;61:23–30.CAS 
    Article 

    Google Scholar 
    Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods. 2008;6:230–5.CAS 
    Article 

    Google Scholar 
    Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green. Appl Environ Microbiol. 1997;63:186–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bramucci AR, Focardi A, Rinke C, Hugenholtz P, Tyson GW, Seymour JR, et al. Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Commun. 2021;1:1–5.Article 

    Google Scholar 
    Rinke C, Low S, Woodcroft BJ, Raina J-B, Skarshewski A, Le XH, et al. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ. 2016;4:e2486.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio. 2013.Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23:1282–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarke KR, Gorley RN, Somerfield PJ, Warwick RM. Change in marine communities: an approach to statistical analysis and interpretation. 3rd ed. Plymouth: Primer-E Ltd; 2014.Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edler D, Klein J, Antonelli A, Silvestro D. raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv. 2019. https://doi.org/10.1101/800912.Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68:365–9.PubMed 
    Article 

    Google Scholar 
    Czech L, Barbera P, Stamatakis A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics. 2020;36:3263–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    Bentzon-Tilia M, Severin I, Hansen LH, Riemann L. Genomics and ecophysiology of heterotrophic nitrogen-fixing bacteria isolated from estuarine surface water. mBio. 2015;6:e00929–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martínez-Pérez C, Mohr W, Schwedt A, Dürschlag J, Callbeck CM, Schunck H, et al. Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone: novel N2-fixer from oxygen minimum zone off Peru. Environ Microbiol. 2018;20:755–68.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Eschemann A, Kühl M, Cypionka H. Aerotaxis in Desulfovibrio. Environ Microbiol. 1999;1:489–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhu S, Kojima S, Homma M. Structure, gene regulation and environmental response of flagella in Vibrio. Front Microbiol. 2013;4:410.Silva MA, Salgueiro CA. Multistep signaling in nature: a close-up of Geobacter chemotaxis sensing. Int J Mol Sci. 2021;22:9034.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taylor BL, Zhulin IB, Johnson MS. Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol. 1999;53:103–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    Colin R, Sourjik V. Emergent properties of bacterial chemotaxis pathway. Curr Opin Microbiol. 2017;39:24–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stocker R. Marine microbes see a sea of gradients. Science. 2012;338:628–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Turk‐Kubo KA, Karamchandani M, Capone DG, Zehr JP. The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environ Microbiol. 2014;16:3095–114.PubMed 
    Article 
    CAS 

    Google Scholar 
    Bentzon-Tilia M, Farnelid H, Jürgens K, Riemann L. Cultivation and isolation of N2-fixing bacteria from suboxic waters in the Baltic Sea. FEMS Microbiol Ecol. 2014;88:358–71.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Grizzly man

    In this picture, I’m face to face with an anaesthetized 250-kilogram male grizzly bear (Ursus arctos horribilis), which was caught near Sparwood and Elkford in Canada. With help from conservation inspector Joe Caravetta, who is sitting next to me, and my field technician Laura Smit, I’m putting a GPS-enabled collar on the bear so that we can track his movements.The first time I worked with a bear this size, it was absolutely exhilarating, a real adrenaline rush. I thought, “My whole head could fit inside this animal’s jaws.” Over time, it has become fairly routine. I learnt to trust the anaesthetic — a mix of drugs given using an air-powered dart gun — and we constantly monitor the bears’ vital signs.While I’m attaching the collar, Laura collects hair samples for genetic studies. We measure the bear’s temperature and oxygen levels, and take hair samples to get an idea of his diet. We weigh him, which is quite a challenge: we use a custom-made tarpaulin with handles to wrap him up like a bear taco. We attach the handles to a hanging scale and, with a rope over a tree branch, winch him up. This particular bear is eight years old and has 29% body fat, which is very healthy for spring.Ultimately, the collars will help us to reduce conflict between bears and the people who live in the area — I’ve seen bears rip shed doors off to get to livestock, and peel open an outdoor freezer like a can of sardines.At times, it’s chaos for both humans and bears, and people react by shooting the bear — the most common cause of death for younger ones. Tracking bears with collars will help us to find solutions.From tracking the bears, we’ve learnt that they are adapting their habits to avoid people, and they become more nocturnal as they get older. We’ve helped local communities to adapt, too: we’ve launched cost-share initiatives for electrical fencing, which is a really effective bear deterrent. More

  • in

    Development of microsatellites markers for the deep coral Madracis myriaster (Pocilloporidae: Anthozoa)

    Brooke, S. & Young, C. M. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153–161 (2009).ADS 

    Google Scholar 
    Reyes, J., Santodomingo, N. & Florez, P. Corales Escleractinios de Colombia. (Invemar Serie de Publicaciones Especiales, 2010).Alonso, D. et al. Behind the scenes for the designation of the Corales de Profundidad national natural park of Colombia. Front. Mar. Sci. 8, 1147 (2021).
    Google Scholar 
    Hughes, J. A., Menot, L. & Levin, L. Habitat classification and mapping on deep continental margins. Research and Consultancy Report, No 54. COMARGE Workshop (2008).Rogers, A. The biology, ecology and vulnerability of deep-water coral reefs. International Union for Conservation of Nature and Natural Resources (2004).Maier, C., Hegeman, J., Weinbauer, M. G. & Burg, D. Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 1, 1671–1680 (2009).ADS 

    Google Scholar 
    DeLeo, D. M., Glazier, A., Herrera, S., Barkman, A. & Cordes, E. E. Transcriptomic responses of deep-sea corals experimentally exposed to crude oil and dispersant. Front. Mar. Sci. 8, 1–17 (2021).
    Google Scholar 
    Buddemeier, R., Kleypas, J. A. & Aronson, R. B. Potential contributions of climate change to stresses on coral reef ecosystems. Coral Reefs Global Clim. Change 15, 17789 (2004).
    Google Scholar 
    Schmidt, C. A. et al. Faster crystallization during coral skeleton formation correlates with resilience to ocean acidification. J. Am. Chem. Soc. 144, 1332–1341 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bors, E. K. et al. Patterns of deep-sea genetic connectivity in the New Zealand Region: Implications for management of benthic ecosystems. PLoS One 7, 11047 (2012).
    Google Scholar 
    Hernández-Ávila, I. Patterns of deep-water coral diversity in the Caribbean basin and adjacent southern waters: An approach based on records from the R/V Pillsbury Expeditions. PLoS ONE 9, 11 (2014).
    Google Scholar 
    Alonso, D. et al. Corales de Profundidad: descripción de comunidades coralinas y fauna asociada. (Serie de Publicaciones Generales del Invemar, 2015).Frade, P. R. et al. Semi-permeable species boundaries in the coral genus Madracis: the role of introgression in a brooding coral system. Mol. Phylogenet. Evol. 57, 1072–1090 (2010).CAS 
    PubMed 

    Google Scholar 
    Locke, J. M. & Coates, K. A. What are the costs of bad taxonomic practices: and what is Madracis mirabilis? Proc. 11th Int. Coral Reef Symp. 7, 1348–1351 (2008).
    Google Scholar 
    Palumbi, S. R. The Ecology of Marine Protected Areas. in Marine Community Ecology (eds. Bertness, M., Gaines, S. & Hay, M.) 509–530 (Sinauer Press, Inc, 2001).Jones, G. P., Srinivasan, M. & Almany, G. R. Population connecivity and conservation of marine biodiversity. Oceanography 20, 100 (2007).
    Google Scholar 
    Fogarty, M. J. & Botsford, L. W. Population connectivity and spatial management of marine fisheries. Oceanography 20, 112–123 (2007).
    Google Scholar 
    Gillis, L. G. et al. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 503, 289–303 (2014).ADS 

    Google Scholar 
    Griffiths, S. M. et al. A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data. Conserv. Genet. Resour. 8, 481–486 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Botsford, L. W. et al. Connectivity and resilience of coral reef metapopulations in marine protected areas: Matching empirical efforts to predictive needs. Coral Reefs 28, 327–337 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palumbi, S. R. Population genetics, demographic connectivity, and the desing of marine reserves. Ecol. Appl. 13, 146–158 (2003).
    Google Scholar 
    Ridgway, T., Riginos, C., Davis, J. & Hoegh-Guldberg, O. Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mar. Ecol. Prog. Ser. 354, 161–168 (2008).ADS 

    Google Scholar 
    Hemond, E. M. & Vollmer, S. V. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis) in Florida. PLoS One 5, 1140 (2010).
    Google Scholar 
    Goodbody-Gringley, G., Woollacott, R. M. & Giribet, G. Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar. Ecol. 33, 32–48 (2012).ADS 
    CAS 

    Google Scholar 
    Montoya-Maya, P. H., Macdonald, A. H. H. & Schleyer, M. H. Cross-amplification and characterization of microsatellite loci in Acropora austera from the south-western Indian Ocean. Genet. Mol. Res. 13, 1244–1250 (2014).CAS 
    PubMed 

    Google Scholar 
    Le Goff-Vitry, M., Pybus, O. G. & Roger, N. Genetic structure of the deep-sea coral. Mol. Ecol. 13, 537–549 (2004).CAS 
    PubMed 

    Google Scholar 
    Zeng, C., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Population genetic structure and connectivity of deep-sea stony corals (Order Scleractinia) in the New Zealand region: Implications for the conservation and management of vulnerable marine ecosystems. Evol. Appl. 10, 1040–1054 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Addamo, A. M., García-Jiménez, R., Taviani, M. & Machordom, A. Development of microsatellite markers in the deep-sea cup coral desmophyllum dianthus by 454 sequencing and cross-species amplifications in scleractinia order. J. Hered. 106, 322–330 (2015).CAS 
    PubMed 

    Google Scholar 
    Morrison, C. L., Springmann, M. J., Shroades, K. M. & Stone, R. P. Development of twelve microsatellite loci in the red tree corals Primnoa resedaeformis and Primnoa pacifica. Conserv. Genet. Resour. 7, 763–765 (2015).
    Google Scholar 
    Baranets, V., Forsman, Z. H. & Karl, S. A. Microsatellite loci for the plate-and-pillar coral, Porities rus. Conserv. Genet. Resour. 3, 519–521 (2011).
    Google Scholar 
    Gang, H. et al. Evaluating the reliability of microsatellite genotyping from low-quality DNA templates with a polynomial distribution model. Chin. Sci. Bull. 56, 2523–2530 (2011).
    Google Scholar 
    Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Casado-Amezúa, P. et al. Development of microsatellite markers as a molecular tool for conservation studies of the Mediterranean reef builder coral cladocora caespitosa (Anthozoa, Scleractinia). J. Hered. 102, 622–626 (2011).PubMed 

    Google Scholar 
    Nakajima, Y. et al. Microsatellite markers for multiple Pocillopora genetic lineages offer new insights about coral populations. Sci. Rep. 7, 1–8 (2017).ADS 

    Google Scholar 
    Jenkins, T. L. & Stevens, J. R. Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy. Mar. Policy 94, 165–173 (2018).
    Google Scholar 
    Flot, J. F., Magalon, H., Cruaud, C., Couloux, A. & Tillier, S. Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. Comptes Rendus Biol. 331, 239–247 (2008).
    Google Scholar 
    Benzoni, F. et al. Morphological and genetic divergence between Mediterranean and Caribbean populations of Madracis pharensis (Heller 1868) (Scleractinia, Pocilloporidae): Too much for one species? Zootaxa 4471, 473–492 (2018).PubMed 

    Google Scholar 
    Filatov, M. V., Frade, P. R., Bak, R. P. M., Vermeij, M. J. A. & Kaandorp, J. A. Comparison between colony morphology and molecular phylogeny in the Caribbean Scleractinian Coral Genus Madracis. PLoS One 8, 1104 (2013).
    Google Scholar 
    Althaus, F. et al. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar. Ecol. Prog. Ser. 397, 279–294 (2009).ADS 

    Google Scholar 
    Alonso, D. et al. Caracterización de las comunidades coralinas del Parque Nacional Natural Corales de Profundidad en el Caribe colombiano: una aproximación a la conservación de su biodiversidad. (2014).Cairns, S. D., Jaap, W. C. & Lang, J. Scleractinia (Cnidaria) of the Gulf of Mexico. (2009).Werding, B. & Erhardt, H. Un encuentro de Madracis Myriaster (Milne-Edwards & Haime) (Scleractinia) en la Bahia de Santa Marta. Colombia. Bull. Mar. Coast. Res. 9, 415 (1977).
    Google Scholar 
    Blacket, M. J., Robin, C., Good, R. T., Lee, S. F. & Miller, A. D. Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12, 456–463 (2012).CAS 
    PubMed 

    Google Scholar 
    Culley, T. M. et al. An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl. Plant Sci. 1, 1300027 (2013).
    Google Scholar 
    Holleley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).CAS 
    PubMed 

    Google Scholar 
    Covarrubias-pazaran, A. G., Diaz-Garcia, L., Schlautman, B., Salazar, W. & Zalapa, J. Fragman: An R package for fragment analysis. BMC Genet. 17, 1–8 (2016).
    Google Scholar 
    Alberto, F. MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2013).
    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 1–14 (2014).
    Google Scholar  More

  • in

    Clay and climatic variability explain the global potential distribution of Juniperus phoenicea toward restoration planning

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science (80-) https://doi.org/10.1126/science.aai9214 (2017).Article 

    Google Scholar 
    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zimmermann, N. E., Edwards, T. C. Jr., Graham, C. H., Pearman, P. B. & Svenning, J. New trends in species distribution modelling. Ecography (Cop.) 33, 985–989 (2010).Article 

    Google Scholar 
    Norberg, A. et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89, e01370 (2019).Article 

    Google Scholar 
    Smeraldo, S. et al. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. 51, 571–584 (2021).Article 

    Google Scholar 
    Sohlström, E. H. et al. Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830 (2022).Article 
    CAS 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    Stohlgren, T. J. et al. Ensemble habitat mapping of invasive plant species. Risk Anal. Int. J. 30, 224–235 (2010).Article 

    Google Scholar 
    Meller, L. et al. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers. Distrib. 20, 309–321 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubuis, A. et al. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J. Veg. Sci. 24, 593–606 (2013).Article 

    Google Scholar 
    Walthert, L. & Meier, E. S. Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol. Evol. 7, 9473–9484 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Figueiredo, F. O. G. et al. Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45, 190–200 (2018).Article 

    Google Scholar 
    Arar, A., Nouidjem, Y., Bounar, R., Tabet, S. & Kouba, Y. Potential future changes of the geographic range size of Juniperus phoenicea in Algeria based on present and future climate change projections. Contemp. Probl. Ecol. 13, 429–441 (2020).Article 

    Google Scholar 
    Coudun, C., Gégout, J., Piedallu, C. & Rameau, J. Soil nutritional factors improve models of plant species distribution: An illustration with Acer campestre (L.) in France. J. Biogeogr. 33, 1750–1763 (2006).Article 

    Google Scholar 
    Buri, A. et al. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. J. Biogeogr. 47, 1143–1153 (2020).Article 

    Google Scholar 
    Buri, A. et al. Soil factors improve predictions of plant species distribution in a mountain environment. Prog. Phys. Geogr. 41, 703–722 (2017).Article 

    Google Scholar 
    Mod, H. K., Scherrer, D., Luoto, M. & Guisan, A. What we use is not what we know: environmental predictors in plant distribution models. J. Veg. Sci. 27, 1308–1322 (2016).Article 

    Google Scholar 
    Scherrer, D. & Guisan, A. Ecological indicator values reveal missing predictors of species distributions. Sci. Rep. 9, 1–8 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Boulos, L. Flora of Egypt, Vol. 1. vol. 1 (Al Hadara Publishing, 1999).Farjon, A. & Filer, D. An atlas of the world’s conifers: An analysis of their distribution, biogeography, diversity and conservation status. (Brill, 2013).Allen, DJ. Juniperus phoenicea. The IUCN red list of threatened species 2017: e.T16348983A99965052. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS. T16348983A99965052.en. Downloaded on 19 May 2020El-Bana, M., Shaltout, K., Khalafallah, A. & Mosallam, H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai Egypt. Flora-Morphol. Distrib. Funct. Ecol. Plants 205, 171–178 (2010).Article 

    Google Scholar 
    Moustafa, A. et al. Ecological Prominence of Juniperus phoenicea L. Growing in Gebel Halal, North Sinai Egypt. Catrina Int. J. Environ. Sci. 15, 11–23 (2016).
    Google Scholar 
    Farahat, E. A. Age structure and static life tables of the endangered Juniperus phoenicea L. in North Sinai Mountains, Egypt. J. Mt. Sci. 17, 2170–2178 (2020).Article 

    Google Scholar 
    El-Wahab, A. Condition assessment of plant diversity of Gebel Maghara, North Sinai, Egypt. Catrina Int. J. Environ. Sci. 3, 21–40 (2008).
    Google Scholar 
    Youssef, A. M., Morsy, A. A., Mosallam, H. A. & Hashim, A. M. Vegetation and soil relationships in some wadis from the North-Central part of Sinai Peninsula Egypt. Minia Sci. Bull. 25, 1–28 (2014).
    Google Scholar 
    Fisher, M. Decline in the juniper woodlands of Raydah Reserve in southwestern Saudi Arabia: A response to climate changes?. Glob. Ecol. Biogeogr. Lett. 6, 379–386 (1997).Article 

    Google Scholar 
    Salvà-Catarineu, M. et al. Past, present, and future geographic range of the relict Mediterranean and Macaronesian Juniperus phoenicea complex. Ecol. Evol. 11, 5075–5095 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quevedo, L., Rodrigo, A. & Espelta, J. M. Post-fire resprouting ability of 15 non-dominant shrub and tree species in Mediterranean areas of NE Spain. Ann. For. Sci. 64(8), 883–890 (2007).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consort. Spat. Inf. 89, 1–2 (2009).
    Google Scholar 
    Hengl, T. et al. SoilGrids1km—Global soil information based on automated mapping. PLoS One 9, e105992 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Documentation for the global human modification of terrestrial systems (2020).Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography (Cop.) 39, 368–375 (2016).Article 

    Google Scholar 
    Naimi, B. usdm: Uncertainty analysis for species distribution models. R Packag. Version 1, 1–12 (2015).
    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. In Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).Dakhil, M. A. et al. Global invasion risk assessment of Prosopis juliflora at biome level : Does soil matter?. Biology 10, 203 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iturbide, M., Bedia, J. & Gutiérrez, J. M. Background sampling and transferability of species distribution model ensembles under climate change. Glob. Planet. Change 166, 19–29 (2018).ADS 
    Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Zhang, Z., Mammola, S., Xian, W. & Zhang, H. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Divers. Distrib. 26, 126–137 (2020).Article 

    Google Scholar 
    Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).Article 

    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).PubMed 
    Article 

    Google Scholar 
    Haider, S. M., Benscoter, A. M., Pearlstine, L., D’Acunto, L. E. & Romañach, S. S. Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach. Ecol. Modell. 461, 109774 (2021).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).Book 

    Google Scholar 
    Kabiel, H. F., Hegazy, A. K., Lovett-Doust, L., Al-Rowaily, S. L. & Al Borki, A. E. N. S. Ecological assessment of populations of Juniperus phoenicea L. in the Al-Akhdar mountainous landscape of Libya. Arid L. Res. Manag. 30, 269–289 (2016).Article 

    Google Scholar 
    Camarero, J. J. et al. Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agric. For. Meteorol. 291, 108078 (2020).ADS 
    Article 

    Google Scholar 
    Sánchez-Salguero, R. & Camarero, J. J. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Sci. Total Environ. 721, 137599 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).ADS 
    Article 

    Google Scholar 
    Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).ADS 
    Article 

    Google Scholar 
    González-Hidalgo, J. C. et al. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 66, 381–392 (2018).ADS 
    Article 

    Google Scholar 
    Stockhecke, M. et al. Millennial to orbital-scale variations of drought intensity in the Eastern Mediterranean. Quat. Sci. Rev. 133, 77–95 (2016).ADS 
    Article 

    Google Scholar 
    Navarro Cerrillo, R. M. et al. Can habitat prediction models contribute to the restoration and conservation of the threatened tree Abies pinsapo Boiss. in Southern Spain?. New For. 52, 89–112 (2021).Article 

    Google Scholar  More