Fresh-marketable tomato yields enhanced by moderate weed control and suppressed fruit dehiscence with woodchip mulching
Zangoueinejad, R. & Alebrahim, M. T. Use of conventional and innovative organic materials as alternatives to black plastic mulch to suppress weeds in tomato production. Biol. Agric. Hortic. 37, 267–284. https://doi.org/10.1080/01448765.2021.1947377 (2021).Article
Google Scholar
Biswas, S. K., Akanda, A. R., Rahman, M. S. & Hossain, M. A. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ. 61, 97–102. https://doi.org/10.17221/804/2014-PSE (2015).Article
Google Scholar
Haapala, T., Palonen, P., Tamminen, A. & Ahokas, J. Effects of different paper mulches on soil temperature and yield of cucumber (Cucumis sativus L.) in the temperate zone. Agric. Food Sci. 24, 52–58. https://doi.org/10.23986/afsci.47220 (2015).CAS
Article
Google Scholar
Shiukhy, S., Raeini-Sarjaz, M. & Chalavi, V. Colored plastic mulch microclimates affect strawberry fruit yield and quality. Int. J. Biometeorol. 59, 1061–1066. https://doi.org/10.1007/s00484-014-0919-0 (2015).ADS
Article
PubMed
Google Scholar
Sideman, R. G. Performance of sweetpotato cultivars grown using biodegradable black plastic mulch in New Hampshire. HortTechnology 25, 412–416. https://doi.org/10.21273/HORTTECH.25.3.412 (2015).Article
Google Scholar
Ferdous, Z., Datta, A. & Anwar, M. Plastic mulch and indigenous microorganism effects on yield and yield components of cauliflower and tomato in inland and coastal regions of Bangladesh. J. Crop Improv. 31, 261–279. https://doi.org/10.1080/15427528.2017.1293578 (2017).Article
Google Scholar
Lament, W. J. Jr. Plastic mulches for the production of vegetable crops. HortTechnology 3, 35–39. https://doi.org/10.21273/HORTTECH.3.1.35 (1993).Article
Google Scholar
Abdul-Baki, A. A., Teasdale, J. R., Goth, R. W. & Haynes, K. G. Marketable yields of fresh-market tomatoes grown in plastic and hairy vetch mulches. HortScience 37, 878–881. https://doi.org/10.21273/HORTSCI.37.6.878 (2002).Article
Google Scholar
Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25, 239–249. https://doi.org/10.24266/0738-2898-25.4.239 (2007).Article
Google Scholar
Kasirajan, S. & Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 32, 501–529. https://doi.org/10.1007/s13593-011-0068-3 (2012).CAS
Article
Google Scholar
Iqbal, R. et al. Potential agricultural and environmental benefit of mulches—A review. Bull. Natl. Res. Cent. 44, 752020. https://doi.org/10.1186/s42269-020-00290-3 (2020).Article
Google Scholar
Travlos, I. et al. Efficacy of different herbicides on Echinocholoa colona (L.) Link control and the first case of its glyphosate resistance in Greece. Agronomy 10, 1056. https://doi.org/10.3390/agronomy10071056 (2000).CAS
Article
Google Scholar
Travlos, I. S. & Chachalis, D. Glyphsate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol. 24, 569–573. https://doi.org/10.1614/WT-D-09-00080.1 (2010).CAS
Article
Google Scholar
Tahmasebi, B. K. et al. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 112, 350–355. https://doi.org/10.1016/j.cropro.2018.06.021 (2018).CAS
Article
Google Scholar
Kanatas, P., Anthonopoulos, N., Gazoulis, I. & Travlos, I. S. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 69, 704–718. https://doi.org/10.1017/wsc.2021.55 (2021).Article
Google Scholar
Anthonopoulos, N. et al. Hot foam: Evaluation of a new, non-chemical weed control option in perennial crops. Smart Agric. Technol. 3, 1000063. https://doi.org/10.1016/j.atech.2022.100063 (2023).Article
Google Scholar
Espí, E., Salmerón, A., Fontecha, A., García, Y. & Real, A. I. Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85–102. https://doi.org/10.1177/8756087906064220 (2006).CAS
Article
Google Scholar
Li, C. et al. Effects of biodegradable mulch on soil quality. Appl. Soil Ecol. 79, 59–69. https://doi.org/10.1016/j.apsoil.2014.02.012 (2014).ADS
Article
Google Scholar
van Sebille, E. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006. https://doi.org/10.1088/1748-9326/10/12/124006 (2015).ADS
Article
Google Scholar
Moreno, M. M., Cirujeda, A., Aibar, J. & Moreno, C. Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.). Crop. Soil Res. 54, 207–215. https://doi.org/10.1071/SR15065 (2016).Article
Google Scholar
Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 108, 131–139. https://doi.org/10.1016/j.envres.2008.07.025 (2008).CAS
Article
PubMed
Google Scholar
Lim, X. Microplastics are everywhere—But are they harmful?. Nature 593, 22–25. https://doi.org/10.1038/d41586-021-01143-3 (2021).ADS
CAS
Article
PubMed
Google Scholar
Cardinael, Ŕ, Cadisch, G., Gosme, M., Oelbermann, M. & van Noordwik, M. Climate change mitigation and adaptation agriculture: Why agroforestry should be part of the solution. Agric. Ecosyst. Environ. 319, 107555. https://doi.org/10.1016/j.agee.2021.107555 (2021).Article
Google Scholar
Ji, S. & Unger, P. W. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Sci. Soc. Am. J. 65, 442–448. https://doi.org/10.2136/sssaj2001.652442x (2001).ADS
CAS
Article
Google Scholar
Schmithals, A. & Kühn, N. To mulch or not to mulch? Effects of gravel mulch toppings on plant establishment and development in ornamental prairie plantings. PLoS ONE 12, e0171533. https://doi.org/10.1371/journal.pone.0171533 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 51, 239–248. https://doi.org/10.1023/A:1009701323580 (1998).Article
Google Scholar
Cline, G. R. & Silvernail, A. F. Residual nitrogen and kill date effects on winter cover crop growth and nitrogen content in a vegetable production system. HortTechnology 11, 219–225. https://doi.org/10.21273/HORTTECH.11.2.219 (2001).CAS
Article
Google Scholar
Cherr, C. M., Scholberg, J. M. S. & McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 98, 302–319. https://doi.org/10.2134/agronj2005.0035 (2006).Article
Google Scholar
Nguyen, L. T. T., Ortner, K. A., Tiemann, L. K., Renner, K. A. & Kravchenko, A. N. Soil properties after one year of interseeded cover cropping in topographically diverse agricultural landscape. Agric. Ecosyst. Environ. 326, 107803. https://doi.org/10.1016/j.agee.2021.107803 (2021).CAS
Article
Google Scholar
Breton, V., Crosaz, Y. & Rey, F. Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France). Solid Earth 7, 599–610. https://doi.org/10.5194/se-2016-11 (2016).ADS
Article
Google Scholar
Wang, L., Gruber, S. & Claupein, W. Effects of woodchip mulch and barley intercropping on weeds in lentil crops. Weed Res. 52, 161–168. https://doi.org/10.1111/j.1365-3180.2012.00905.x (2012).Article
Google Scholar
Jabran, K. Use of mulches for managing field bindweed and purple nutsedge, and weed control in spinach. Int. J. Agric. Biol. 23, 1114–1120. https://doi.org/10.17957/IJAB/15.1394 (2020).CAS
Article
Google Scholar
Keeley, J. E., Morton, B. A., Pedrosa, A. & Trotter, P. Role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. J. Ecol. 73, 445–458. https://doi.org/10.2307/2260486 (1985).Article
Google Scholar
Schumann, A. W., Little, K. M. & Eccles, N. S. Suppression of seed germination and early seedling growth by plantation harvest residues. S. Afr. J. Plant Soil 12, 170–172. https://doi.org/10.1080/02571862.1995.10634359 (1995).Article
Google Scholar
Rathinasabapathi, B., Ferguson, J. & Gal, M. Evaluation of allelopathic potential of wood chips for weed suppression in horticultural production systems. HortScience 40, 711–713. https://doi.org/10.21273/HORTSCI.40.3.711 (2005).Article
Google Scholar
Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1142/q0088 (2014).Article
Google Scholar
Rahmathulla, V. K. Management of climatic factors for successful silkworm (Bombyx mori L.) crop and higher silk production: A review. Psyche J. Entomol. 2012, 121234. https://doi.org/10.1155/2012/121234 (2012).Article
Google Scholar
Guttikunda, S. K. & Kopakka, R. V. Source emissions and health impacts of urban air pollution in Hyderadad, India. Air Qual. Atmos. Health 7, 195–207. https://doi.org/10.1007/s11869-013-0221-z (2014).CAS
Article
Google Scholar
Dhaka, S. K. et al. PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: An interplay between the baseline pollution and meteorology. Sci. Rep. 10, 13442. https://doi.org/10.1038/s41598-020-70179-8 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Ehret, D. L., Helmer, T. & Hall, J. W. Cuticle cracking in tomato fruit. J. Hortic. Sci. 68, 195–201. https://doi.org/10.1080/00221589.1993.11516343 (1993).Article
Google Scholar
Peet, M. M. & Willits, D. H. Role of excess water in tomato fruit cracking. Hortic. Sci. 30, 65–68. https://doi.org/10.21273/HORTSCI.30.1.65 (1995).Article
Google Scholar
Ikeda, T., Sakamoto, Y., Watanabe, S. & Okano, K. Water relations in fruit cracking of single-truss tomato plants. Environ. Control Biol. 37, 153–158. https://doi.org/10.2525/ecb1963.37.153 (1999).Article
Google Scholar
Uetani, M., Fujitani, S. & Kimura, M. Mitigation techniques on fruit cracking in tomato cultivation under rain shelter in summer and autumn. Bull. Oita Pref Agr. For. Fish. Res. Cent. 4, 11–25 (2014) (in Japanese with English summary).
Google Scholar
Kuhns, L. J. Efficacy and phytotoxicity of three landscape herbicides with and without a light mulch. Proc. Northeast. Weed Sci. Soc. 46, 85–89 (1992).
Google Scholar
Petrikovszki, R., Zalai, M., Bogdányi, F. T. & Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil weed seed bank of tomato. Plants 9, 66. https://doi.org/10.3390/plants9010066 (2020).Article
PubMed Central
Google Scholar
Egley, G. H. Weed seed and seedling reductions by soil solarization with transparent polyethylene sheets. Weed Sci. 31, 404–409. https://doi.org/10.1017/S0043174500069253 (1983).Article
Google Scholar
Ashworth, S. & Harrison, H. Evaluation of mulches for use in the home garden. HortScience 18, 180–182 (1983).
Google Scholar
Chakrabory, R. C. & Sadhu, M. K. Effect of mulch type and colour on growth and yield of tomato (Lycopersicon esculentum). Indian J. Agric. Sci. 64, 608–612 (1994).
Google Scholar
Bhella, H. S. Tomato response to trickle irrigation and black polyethylene mulch. J. Am. Soc. Hortic. Sci. 113, 543–546 (1988).
Google Scholar
Garnaud, J. C. The Intensification of Horticultural Crop Production in the Mediterranean Basin by Protected Cultivation (FAO of the United Nations, 1974).
Google Scholar
Ahmad, S. et al. Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. J. Anim. Plant Sci. 30, 154–162. https://doi.org/10.36899/japs.2020.1.0018 (2020).Article
Google Scholar
Ahmad, S. et al. Mulching strategies for weeds control and water conservation in cotton. ARPN J. Agric. Biol. Sci. 10, 299–306 (2015).
Google Scholar
Hartwing, N. L. & Ammon, H. U. Cover crops and living mulches. Weed Sci. 50, 688–699. https://doi.org/10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2 (2002).Article
Google Scholar
Samedani, B., Ranjbar, M., Rahimian, H. & Jahansoz, M. R. Utilization of rye and hairy vetch cover crops for weed control in transplanted tomato. Pak. J. Biol. Sci. 9, 2323–2327. https://doi.org/10.3923/pjbs.2006.2323.2327 (2006).Article
Google Scholar
Pickering, J. S. & Shepherd, A. Evaluation of organic landscape mulches: composition and nutrient releases characteristics. Arboric J. 24, 175–187. https://doi.org/10.1080/03071375.2000.9747271 (2000).Article
Google Scholar
Marí, A. I., Pardo, G., Aibar, J. & Cirujeda, A. Purple nutsedge (Cyperus rotundus L.) control with biodegradable mulches and its effect on fresh pepper production. Sci. Hortic. 263, 109111. https://doi.org/10.1016/j.scienta.2019.109111 (2020).CAS
Article
Google Scholar
R Development Core Team. R: A Language and Environment of Statistical Computing (R Foundation for Statistical Computing, 2019).
Google Scholar
Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458. https://doi.org/10.1038/bmt.2012.244 (2013).CAS
Article
PubMed
Google Scholar More