More stories

  • in

    A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites

    Site selectionWe selected 104 sites covering a range of ecological, land cover, and climate conditions across North America (Table 1). These sites were selected because they are part of either the National Ecological Observatory Network (NEON) or AmeriFlux network, all have PhenoCams, and each has at least one year of available flux data between 2017 and 2021. Among the included sites, 44 are part of the NEON.Table 1 List of AmeriFlux and NEON sites included in the dataset. .Full size tablePlanetScope image database compilationThe LSP metrics included in the dataset are derived from a database of daily 3 m PlanetScope imagery. To compile this database, a Python script was created to search, request, and download imagery using Planet’s RESTful API interface (https://developers.planet.com/docs/apis/data/). For each site, the area of interest (AOI) was defined using a GeoJSON file that prescribed a 10 by 10 km box centered over the flux tower at each site. Each GeoJSON was then used to submit search requests to the API. As part of the search process, the following filters were applied to ensure that good quality images with adequate clear sky views and high-accuracy geolocation were downloaded: (1) quality category identified as ‘standard’; (2) cloud cover less than or equal to 50%; and (3) ground control is ‘true’. Filtering was performed using all available PlanetScope ‘PSScene4Band’ imagery from 2016 to 2022. Once the API completed the search, the Python script read the search results, submitted orders, and the selected imagery was downloaded from Planet’s cloud-based system to local storage. During execution of the Python script, a log file was created to keep track of successful and failed orders. If an order failed, the script was run again targeting the specific order that failed. The resulting dataset included over 1.8 million unique files with, on average, 3,885 scene images for each site (i.e., the number of images, on average, that overlap part of each 10 by 10 km site), and had a total volume of 62.2 TB.Image processingTo ensure that high-quality image time series were used to generate LSP metrics, we used PlanetScope per-pixel quality assurance information to exclude pixels that had low quality in all 4 bands (i.e., blue, green, red, and near-infrared). Specifically, we excluded pixels where the Unusable Data Mask (layer ‘umd’) was not 0 (i.e., we retained pixels that were not cloud contaminated or located in non-image areas) and pixels where the Usable Data Mask (layer ‘umd2’) is 0 (i.e., we retained pixels that were not contaminated by snow, shadow, haze, or clouds). We then cropped all the images to exclude pixels outside of the 10 by 10 km window centered over each tower. We selected this window size based on published results showing that 80% of the average monthly footprint at eddy covariance towers ranges from 103 to 107 square meters22. Note that the swath for PlanetScope imagery often did not cover entire sites and some sites (e.g., the tall tower at US-Pfa) have larger footprints than other sites. Similarly, most sites had multiple PlanetScope image acquisitions on the same day. To create image time series, we mosaiced all available imagery at each site on each date, and, under the assumption that geolocation error was non-systematic and modest, we created a single image for each date using the mean surface reflectance for pixels with multiple values on the same day. The resulting database of daily surface reflectance images were sorted in chronological order, sub-divided into 200 sub-areas at each site (i.e., 0.5 km2 each), and then stored as image stacks to facilitate parallel processing to estimate LSP metrics, where each image stack included all images from July 1, 2016 through January 31, 2022.Creation of daily EVI2 time seriesTo estimate LSP metrics we adapted the algorithm described by Bolton et al.19, which was originally implemented to estimate LSP metrics from harmonized Landsat and Sentinel-2 (HLS) imagery, for use with PlanetScope imagery. Prior to LSP estimation, daily images of the two-band Enhanced Vegetation Index30 (EVI2) data were generated from PlanetScope imagery and then interpolated to create smooth time series of daily EVI2 values at each pixel in three main steps. First, sources of variation related to clouds, atmospheric aerosols, and snow were detected and removed from the EVI2 time series at each pixel based on data masks provided with PlanetScope imagery (described above) and outlier detection criteria (i.e., de-spiking and removing negative EVI2 values). Second, we identified the ‘background’ EVI2 value (the minimum EVI2 value outside of the growing season) based on the 10th percentile of snow-free EVI2 values at each pixel. Any dates with EVI2 values below the background value were replaced with the background EVI2. Third, penalized cubic smoothing splines were used to gap-fill and smooth the data to create daily EVI2 time series across all years of available data. Complete details on these steps are given in Bolton et al.19. This approach has been tested and shown to yield PlanetScope EVI2 time series that are consistent with both EVI2 time series from HLS imagery and time series of the Green Chromatic Coordinate (GCC) from PhenoCam imagery26. We used the EVI2 instead of other vegetation indices such as the Enhanced Vegetation Index (EVI) or the Normalized Difference Vegetation Index (NDVI) because EVI2 is less sensitive to noise from atmospheric effects relative to EVI and is less prone to saturation over dense canopies and noise from variation in soil background reflectance over sparse canopies relative to the NDVI30,32. Thus, phenological metrics from EVI2 time series tend to have better agreement with PhenoCam observations than corresponding metrics from NDVI33.Identifying phenological cyclesPrior to estimating LSP metrics, we first identity unique growth cycles by searching the period before and after each local peak in the daily PlanetScope EVI2 time series. To be considered a valid growth cycle, the difference in EVI2 between the local minimum and maximum was required to be at least 0.1 and greater than 35% of the total range in EVI2 over the 24-month period centered on the target year ± 6 months. The start of each growth cycle is restricted to occur within 185 days before the peak of the cycle and at least 30 days after the previous peak. The same procedure was applied in reverse at the end of the cycle to constrain the range of end dates for each growth cycle. This procedure is applied recursively over the time series until each local peak has been assessed and all growth cycles (with associated green-up period, peak greenness, and green-down period) are identified in the time series at each pixel. As part of this process, the algorithm provides the number of growth cycles identified for each year in the time series.Retrieving LSP metricsLSP metrics are estimated for each pixel in up to two growth cycles in each year. If no growth cycles are detected, the algorithm returns fill values for all timing metrics, but does report values for the four annual metrics: EVImax, EVIamp, EVIarea, and numObs (see below). If more than two growth cycles are detected, which is rare but does occur (e.g., alfalfa, which is harvested and regrows multiple times in a year), the algorithm records 7 LSP metrics for each of the two growth cycles with the largest EVI2 amplitudes. The resulting dataset includes seven ‘timing’ metrics that identify the timing of greenup onset, mid-greenup, maturity, peak EVI2, greendown onset, mid-greendown, and dormancy. These metrics record the day of year (DOY) when the EVI2 time series exceeds 15%, 50%, and 90% of EVI2 amplitude during the greenup phase, reaches its maximum, and goes below 90%, 50%, and 15% of EVI2 amplitude during the greendown phase. In addition, the algorithm records three complementary metrics that characterize the magnitude of seasonality and total ‘greenness’ at each pixel in each growth cycle: the EVI2 amplitude, the maximum EVI2, and the growing season integral of EVI2, which is calculated as the sum of daily EVI2 values between the growth cycle start- and end-dates (i.e., from greenup onset to dormancy).Quality assurance flagsQuality Assurance (QA) values are estimated at each pixel based on the density of observations and the quality of spline fits during each phenophase of the growing season. A QA value of 1 (high quality) is assigned if the correlation between observed versus fitted daily EVI2 values is greater than 0.75 and the maximum gap during each phase is less than 30 days. A QA value of 2 (moderate quality) is assigned if the correlation coefficient is less than 0.75 or the length of the maximum gap over the segment is greater than 30 days. A QA value of 3 (low quality) is assigned if the correlation coefficient is less than 0.75 and the length of the maximum gap over the segment is greater than 30 days. A QA value of 4 is assigned if no growth cycles were detected or insufficient data were available to run the algorithm. More

  • in

    Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000)

    Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413), 464–467 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, K. L. et al. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Nat. Acad. Sci USA 106, 19211–19218 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pham, C. K. et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).ADS 
    Article 

    Google Scholar 
    Angel, M. What is the deep sea? In Deep-sea fishes (eds Randall, D. & Farrell, A.) 1–41 (Academic Publishing, 1997).
    Google Scholar 
    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).Article 

    Google Scholar 
    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306(5699), 1177–1180 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Danise, S., Twitchett, R. J., Little, C. T. & Clemence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: An example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Chang. Biol. 27, 6139–6155 (2021).Article 

    Google Scholar 
    Viehman, H. A. & Zydlewski, G. B. Fish interactions with a commercial-scale tidal energy device in the natural environment. Estuaries Coast 38(1), 241–252 (2015).Article 

    Google Scholar 
    Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, 213 (2016).Article 

    Google Scholar 
    Mizuno, K. et al. An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Sci. Rep. 10(1), 12416. https://doi.org/10.1038/s41598-020-69400-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eleftheriou, A., & Moore, D. C. (2013). Macrofauna techniques. Methods for the study of marine benthos, 175–251.Solan, M. et al. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).ADS 
    Article 

    Google Scholar 
    Hale, R. et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data 2(1), 1–5 (2015).Article 

    Google Scholar 
    Plets, R. M. et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 36(2), 408–418 (2009).Article 

    Google Scholar 
    Mizuno, K. et al. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Stud. Nondestruct. Test. Evaluat. 5, 1–8 (2016).CAS 
    Article 

    Google Scholar 
    Suganuma, H., Mizuno, K. & Asada, A. Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. J. Appl. Phys. 57(7S1), 07LG08 (2018).Article 

    Google Scholar 
    Dorgan, K. M. et al. Impacts of simulated infaunal activities on acoustic wave propagation in marine sediments. J. Acoust. Soc. Am. 147(2), 812–823 (2020).ADS 
    Article 

    Google Scholar 
    Mizuno, K., Cristini, P., Komatitsch, D. & Capdeville, Y. Numerical and experimental study of wave propagation in water-saturated granular media using effective method theories and a full-wave numerical simulation. IEEE J. Ocean. Eng. 45(3), 772–785 (2020).ADS 
    Article 

    Google Scholar 
    Schulze, I. et al. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11(12), 508 (2021).ADS 
    Article 

    Google Scholar 
    Hashimoto, J. et al. Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 71(12), 179–192 (1989).Article 

    Google Scholar 
    Fujikura, K., Hashimoto, J. & Okutani, T. Estimated population densities of megafauna in two chemosynthesisbased communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos. Res. 57(1), 21–30 (2002).Article 

    Google Scholar 
    Childress, J. J. & Girguis, P. R. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J. Exp. Biol. 214(2), 312–325 (2011).CAS 
    Article 

    Google Scholar 
    Okuba, K. (2021). Basic study on sonar system development for exploring infaunal bivalves. Master thesis, GSFS, The University of Tokyo (in Japanese).Stoll, R. D. & Bryan, G. M. Wave attenuation in saturated sediments. The J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970).ADS 
    Article 

    Google Scholar 
    Schwartz, L. & Plona, T. J. Ultrasonic propagation in close-packed disordered suspensions. J. Appl. Phys. 55(11), 3971–3977 (1984).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-Sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS ONE 12(8), e0182753. https://doi.org/10.1371/journal.pone.0182753 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Freshwater unionid mussels threatened by predation of Round Goby (Neogobius melanostomus)

    Our research involved work with animal subjects (unionid mussels and Round Goby fishes) and was conducted following relevant regulations and standard procedures. The field collections were carried out under Pennsylvania Fish and Boat Commission permits (# 2018-01-0136 and 2019-01-0026). The experimental protocols were approved by Penn State University’s Institutional Animal Care and Use Committee (IACUC# 201646941 and 201646962). All new DNA sequencing data are made publicly available in GenBank (with accession numbers provided in Table 1) and a BioProject (# PRJNA813547) of the National Center for Biotechnology Information40.Propensity of Round Goby to consume unionid mussels in a controlled lab settingStream table setupWe conducted lab experiments to observe the potential predation of juvenile freshwater mussels by the Round Goby, following standard research protocols for work with animal subjects (IACUC# 201646962, Penn State University). We constructed four artificial stream tables in an aquatic laboratory, each measuring 3 × 2 m and featuring two run and two pool sections (each 0.63 × 0.56 × 0.46 m). Water flow was produced using eight Homsay 920 GPH submersible water pumps, which pumped water from a central reservoir tub into each table at the start of each run section. The water flow direction was clockwise for stream tables 1 and 3, and counterclockwise for stream tables 2 and 4. Water pumped into the stream tables exited via two drains located medially of each run section, where it flowed back to the central reservoir tub. Each stream table was filled with a 6 mm layer of substrate consisting of a mixture of sand, gravel (4–6 mm), and crushed stone (size 2B, with an average size of ~ 19 mm). The day before each experiment, field technicians traveled to local streams and collected macroinvertebrates using one minute D-frame kick net samples for each of the four stream tables. The macroinvertebrates and associated substrate were transported back to the facility and were introduced into each stream table system.Preferential feeding experimentsBefore each experiment commenced, juvenile Plain Pocketbook mussels (Lampsillis cardium) were introduced into each stream table (with 165 mussel specimens for experiment 1 and 100 mussels for experiments 2 and 3). This  widespread and abundant species is not imperiled in Pennsylvania, and mussels were provided for this study by the White Sulphur Springs National Fish Hatchery located in southeast West Virgina. The mussels were allowed to acclimate in the stream tables for 2 h before commencing each experiment. Ten Round Gobies were introduced into each stream system (stream tables 1 and 2 for experiment 1, and all tables for experiments 2 and 3). The total length (from nose tip to caudal tip) of each fish was measured prior to introduction and after the termination of experiments 2 and 3. Experiment 1 was conducted for 3 weeks, while experiments 2 and 3 were conducted for 8 days. During these experiments, Round Gobies were allowed to exist in the systems and feed preferentially, on the mussels and macroinvertebrates, for the allotted time before each investigation concluded. We acknowledge that in these experiments, the mussel abundances are higher and macroinvertebrate densities lower and less rich than commonly occur in the natural stream environment. Further, the Round Goby fish densities used are much higher than currently in the French Creek watershed, though are comparable to what is currently seen in parts of the Great Lakes basin. Nonetheless, the experiment scenarios allowed us to observe if Round Gobies would consume the mussels when given the choice to feed on a variety of food items.Evaluation of unionids consumed by fishRound Gobies were removed from the stream tables upon completion of each experiment. They were euthanized using  > 250 mg/L buffered (pH ~ 7) tricaine-S (MS222) solution. The fish were submerged for 10 min beyond the cessation of opercular movement to ensure proper euthanasia, and tissues were collected after we confirmed complete euthanasia—compliant with AVMA guidelines and approved by the IACUC protocol. The Round Gobies were placed in a 10% solution of formalin for preservation, and after 2 weeks, they were rinsed with clean water and were placed in 70% ethanol for long-term storage. After fish were removed from the system, the water was drained, and the substrate was sifted to recover the remaining mussels. Mussels were counted, and live individuals were returned to holding tanks for use in subsequent experiments. To further assess whether Round Gobies had consumed mussels during the investigation, Round Gobies were x-rayed using a Bruker Skyscan 1176 micro-CT scanner. After that, the stomachs of each fish were excised, and the contents examined using a Leica CME dissection scope to confirm the identity of Plain Pocketbook mussels. Contents posterior to the stomach were not analyzed because they could not be reliably counted and identified.DNA metabarcoding to identify mussel species consumed by Round Goby in a stream settingFish and mussel sample acquisitionWe collected 39 Round Gobies directly from streams within the French Creek watershed—their newly invaded natural stream habitats—in June 2018. We aimed to quantify which species, if any, of unionid mussels they consumed. Fish collection locations included LeBoeuf Creek at Moore Road and 100 m below the confluence of French Creek and LeBoeuf Creek. The unionid mussel populations and the environmental field settings at these locations are detailed by Clark et al.19. A team of field technicians collected fish by kick seining (3 m × 1 m × 9.5 mm nylon mesh) while moving downstream. Seining was the sampling method of choice compared to electrofishing to avoid possible regurgitation of food items prior to excision of fishes’ stomachs. The stream reaches sampled at each location were between 100 and 200 m in length and included riffle, run, and pool habitats. In addition to fish samples, unionid mussel samples from French Creek were also collected for analysis (under Pennsylvania Fish & Boat Commission collectors permits # 2018-01-0136 and 2019-01-0026). Following standard research protocols (under IACUC# 201646941, Penn State University), the Round Gobies collected were euthanized using buffered Tricaine-S (MS222) solution; and stomachs were excised using sterilized utensils before being placed in sterilized tubes filled with 97% ethanol. After excision of stomachs, fishes were placed in a 10% formalin solution for preservation. After 2 weeks, fishes were rinsed with clean water and transferred to 70% ethanol for storage. The stomach samples were immediately placed in ethanol and on ice in the field. Samples were stored in a freezer before being shipped to the US Geological Survey’s Eastern Ecological Science Center for various molecular ecology analyses. Once the fish and mussel samples arrived at this lab, they were recorded and stored at four °C until analysis.Primer developmentSpecific primers targeting a moderately conserved region of the mitochondrial COI gene for 25 species of unionids inhabiting French Creek were designed. Previously a PCR-based amplification method utilizing restriction enzyme digests was used to identify genetic fingerprints of 25 unionid species inhabiting French Creek41. Here, we designed a new degenerate PCR primer set modified with sequencing overhangs to facilitate compatibility with a MiSeq amplicon sequencing method previously designed for 16S Amplicon sequencing. We targeted the locus of the mitochondrial COI gene of unionids known to inhabit the Atlantic Slope Drainage. Consensus sequences were derived using Multalin analysis and a tiling method to identify conserved primer binding regions flanking an ~ 300 bp region of the COI gene. This gene was targeted in part due to the availability of partial or complete sequences representing these target species in the NCBI reference database40. Cytochrome oxidase sequences were downloaded for the 25 unionid mussel species of interest. However, a COI sequence for the Rabbitsfoot (Theliderma cylindrica) mussel was absent from the NCBI database, which required us to sequence this region for an in-house reference (which is described later in the paper). We designed a degenerate primer cocktail specific to all mussel species of interest that amplified a ~ 289 bp product, with forward and reverse primers used for the amplification of unionid specific COI presented as supplemental information (see Table S-230. We evaluated the suitability of the primers using samples from field identified mussels. For primer optimization, PCR was run across a gradient of annealing temperatures to determine suitability. In addition, we used Round Goby DNA as a template to evaluate specificity. In addition to Round Goby stomach samples, mussel samples of several species collected from French Creek were included as positive controls.DNA extraction from tissue samplesFollowing the manufacturer’s protocols, tissue samples (including fish stomach and mussel tissue) were extracted with the Zymo Research ZymoBIOMICS 96 MagBead DNA Kit (San Diego, CA). Random samples of DNA extracts were analyzed on an Agilent 2100 Bioanalyzer using a high-sensitivity assay kit. Fragments in the target amplicon range were apparent (albeit not known to be of mussel origin). All samples were stored at − 20 °C until PCR was performed. DNA from both the T. cylindrica and L. complanata samples were analyzed for DNA quality.Rolling circle amplification of mitochondrial genomesTo acquire COI sequences for T. cylindrica and L. complanata, we subjected archived DNA samples to rolling circle amplification (RCA) followed by amplicon sequencing on the MiSeq. In short, 2 µl of DNA template was added to 2 µl Equiphi29 DNA polymerase reaction buffer containing 1 µl of Exonuclease-resistant random primers (ThermoFisher). Samples were denatured by heating to 95 °C for 3 min followed immediately by cooling on ice for more than 5 min. A volume of 5 µl was added to an RCA master mix containing 1.5 µl of 10 × Equiphi29 DNA polymerase reaction buffer, 0.2 µl of 100 mM dithiothreitol, 8 µl of 2.5 mM dNTPs, 1 µl of Eqiphi29 DNA polymerase (10U) and 4.3 µl of nuclease-free water. The samples were heated to 45 °C for 3 h and then 65 °C for 10 min. Samples were then placed in ice and then frozen at − 20 °C. All RCA products were normalized to 0.2 ng/µl in 10 mM Tris–HCl, pH 8.5. Normalized RCA product was utilized as a template for an Illumina Nextera XT library preparation. Sequencing libraries were prepared following the Nextera XT Library Preparation Reference Guide (CT# 15031942 v01) using the Nextera XT Library Preparation Kit (Illumina, San Diego, CA). Final libraries were analyzed for size and quality using the Agilent BioAnalyzer with the accompanying DNA 1000 Kit (Agilent, Santa Clara, CA). Libraries were quantified using the Qubit H.S. Assay Kit (Invitrogen, Carlsbad, CA) and normalized to 4 nM using 10 mM Tris, pH 8.5. Libraries were pooled and run on the Illumina MiSeq at a concentration of 10 pM with a 5% PhiX spike with run parameters of 1 × 150. Bioinformatic processing of this data is outlined below.Amplification of the cytochrome oxidase 1 geneExtracted genomic DNA was used as template for end-point PCR. Samples evaluated were from mussels and round gobies (see supporting Table S-330). The ~ 289 bp COI region was amplified with the mussel primers as follows. The amplification reaction contained 0.15 µM of each primer, 1 µL of the initial amplification product, and Promega Go Taq Green Master Mix following manufacturer recommendations for a 25 µL reaction. The thermocycler program consisted of an initial denaturing step of 95 °C for 3 min, followed by 30 cycles of 30 s at 95 °C, 30 s at 52 °C, and 1 min at 72 °C. Products were subjected to a final extension of 72 °C for 5 min then held until collection at 12 °C. An appropriately sized amplification product was confirmed for each reaction by electrophoresis of 5 µL of the reaction product through a 1.5% I.D. N.A. agarose gel (FMC Bioproducts) at 100 V for 45 min. PCR products were cleaned with the Qiagen Qiaquick PCR purification kit (Valencia, CA) and quantified using the Qubit dsDNA H.S. Assay Kit (Thermofisher Scientific, Grand Island, NY). Samples were diluted in 10 mM Tris buffer (pH 8.5) to a final concentration of 5 ng/µL.Generation of mock mussel samplesTo better understand and minimize sources of error or bias in the taxonomic assignment, we created a mock extraction by mixing sequences from known mussel taxa at defined concentrations. For each mussel, approximately 25-mg of tissue was extracted with the ZymoBIOMICS 96 MagBead DNA Kit (San Diego, CA) following the manufacturer’s protocol. The COI sequence was amplified from each species using the same primer-protocol combination described above. A total of 5 PCR products were mixed at equal concentration (mass/volume) to generate the mock sample (“Mock” hereafter). To confirm the identity of these inputs, each COI region was amplified and sequenced on the Illumina MiSeq during the same run as the Mock and samples.Sequencing library preparation and quality assessmentNext-generation sequencing was performed on the Illumina MiSeq platform to observe species-specific sequences and determine the diet of the Round Goby. Inclusion of the overhangs on the amplification primers allowed us to utilize the Illumina 16S Metagenomic Sequencing Library Preparation protocol42. Amplicon libraries were prepared following the same manufacturer’s protocol. All samples were indexed using the Illumina Nextera XT multiplex library indices. DNA read size spectra were determined with the Agilent 2100 Bioanalyzer using the Agilent DNA 1000 Kit (Santa Clara, Calif.). Libraries were quantified with the Qubit dsDNA H.S. Assay Kit (ThermoFisher Scientific, Grand Island, N.Y.) and normalized to 4 nM (nM) using 10 mM (mM) Tris (hydroxymethyl) aminomethane buffer pH 8.5. A final concentration of 10 picomolar library with a 6.5% PhiX control spike was created with the combined pool of all indexed libraries. All bioinformatic operations were completed on CLC Genomic Workbench v20 (Qiagen, Valencia, Calif.).Read filtering, trimming, and RNAseq metabarcoding assemblyFASTQ files from the sequencing runs were imported as paired-end reads into CLC Genomics Workbench v20.0.4 (Qiagen Bioinformatics, Redwood City, Calif.) for initial filtering of exogenous sequence adaptors and poor-quality base calls. The trimmed overlapping paired-end reads were mapped to the 25 target unionid sequences specific for the species of interest. Several mapping iterations were run using different levels of stringency. We utilized + 2/− 3 match-mismatch scoring and set the length fraction to 0.90. Analyses were iterated using different similarity fractions ranging from 0.90 to 0.99. Reads were annotated, and relative abundance was determined using a curated reference library (see supporting Datasets S-1 and S-230). More

  • in

    Nepotistic colony fission in dense colony aggregations of an Australian paper wasp

    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ross, K. G. & Matthews, R. W. The Social Biology of Wasps (Cornell University Press, 1991).Book 

    Google Scholar 
    Itô, Y. & Higashi, S. Spring behaviour of Ropalidia plebeiana (Hymenoptera: Vespidae) within a huge aggregation of nests. Appl. Entomol. Zool. 22, 519–527 (1987).Article 

    Google Scholar 
    Saito, F. & Kojima, J.-I. Colony cycle in the south-eastern coastal populations of Ropalidia plebeiana, the only Ropalidia wasp occurring in temperate Australia. Entomol. Sci. 8, 263–275 (2005).Article 

    Google Scholar 
    Richards, O. W. The Australian social wasps (Hymenoptera: Vespidae). Aust. J. Zool. Suppl. Ser. 26, 1–132 (1978).Article 

    Google Scholar 
    Makino, S., Yamane, S., Itô, Y. & Spradbery, J. P. Process of comb division of reused nests in the Australian paper wasp Ropalidia plebeinana (Hymenoptera, Vespidae). Ins. Soc. 41, 411–422 (1994).Article 

    Google Scholar 
    Goodnight, K. F. & Queller, D. C. Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol. Ecol. 8, 1231–1234 (1999).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crochet, P.-A. Genetic structure of avian populations—Allozymes revisited. Mol. Ecol. 9, 1463–1469 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Res. 11, 5–18 (2011).Article 

    Google Scholar 
    Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Itô, Y., Yamane, S. & Spradbery, J. P. Population consequences of huge nesting aggregations of Ropalidia plebeiana (Hymenoptera: Vespidae). Res. Popul. Ecol. 30, 279–295 (1988).Article 

    Google Scholar 
    Boomsma, J. J. & d’Ettorre, P. Nice to kin and nasty to non-kin: revisiting Hamilton’s early insights on eusociality. Biol. Lett. 9, 20130444 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Parsons, P. J., Grinsted, L. & Field, J. Partner choice correlates with fine scale kin structuring in the paper wasp Polistes dominula. PLoS ONE 14, e0221701 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strassmann, J. E., Queller, D. C., Solis, C. R. & Hughes, C. R. Relatedness and queen number in the Neotropical wasp, Parachartergus colobopterus. Anim. Behav. 42, 461–470 (1991).Article 

    Google Scholar 
    Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. S. & Field, J. Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science 333, 874–876 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Field, J. & Leadbeater, E. Cooperation between non-relatives in a primitively eusocial paper wasp, Polistes dominula. Philos. Trans. R. Soc. B 371, 20150093 (2016).Article 

    Google Scholar 
    Bhadra, A. & Gadagkar, R. We know that the wasps “know”: cryptic successors to the queen in Ropalidia marginata. Biol. Lett. 4, 634–637 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bang, A. & Gadagkar, R. Reproductive queue without overt conflict in the primitively eusocial wasp Ropalidia marginata. Proc. Nat. Acad. Sci. USA 109, 14494–14499 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frank, S. A. Hierarchical selection theory and sex ratios. II. On applying the theory, and a test with fig wasps. Evolution 39, 949–964 (1985).PubMed 
    Article 

    Google Scholar 
    Silk, J. B. & Brown, G. R. Local resource competition and local resource enhancement shape primate birth sex ratios. Proc. R. Soc. Lond. B. 275, 1761–1765 (2008).
    Google Scholar 
    Schwarz, M. P. Local resource enhancement and sex ratios in a primitively social bee. Nature 331, 346–348 (1988).ADS 
    Article 

    Google Scholar 
    Cronin, A. L. & Schwarz, M. P. Sex ratios, local fitness enhancement and eusociality in the allodapine bee Exoneura richardsoni. Evol. Ecol. 11, 567–577 (1997).Article 

    Google Scholar 
    Schwarz, M. P., Bull, N. J. & Hogendoorn, K. Evolution of sociality in the allodapine bees: A review of sex allocation, ecology and evolution. Ins. Soc. 45, 349–368 (1998).Article 

    Google Scholar 
    Gamboa, G. J., Wacker, T. L., Duffy, K. G., Dobson, S. W. & Fishwild, T. G. Defence against intraspecific usurpation by paper wasp cofoundresses (Polistes fuscatus, Hymenoptera: Vespidae). Can J. Zool. 70, 2369–2372 (1992).Article 

    Google Scholar 
    Katada, S. & Iwahashi, O. Characteristics of usurped colonies in the subtropical paper wasp, Ropalidia fasciata (Hymenoptera: Vespidae). Ins. Soc. 43, 247–253 (1996).Article 

    Google Scholar 
    Yamane, S. Ecological factors influencing the colony cycle of Polistes wasps. in Natural History and Evolution of Paper-Wasps (Turillazzi, S. & West-Eberhard, M. J. eds.). 75–97. (Oxford University Press, 1996).Clouse, R. Some effects of group size on the output of beginning nests of Mischocyttarus mexicanus (Hymenoptera: Vespidae). Flor. Entomol. 84, 418–425 (2001).Article 

    Google Scholar 
    Strassmann, J. E. Female-biased sex ratios in social insects lacking morphological castes. Evolution 38, 256–266 (1984).PubMed 

    Google Scholar 
    Suzuki, T. Production schedule of males and reproductive females, investment sex ratios, and worker-queen conflict in paper wasps. Am. Nat. 128, 366–378 (1986).Article 

    Google Scholar 
    Tsuchida, K. & Suzuki, T. Conflict over sex ratio and male production in paper wasps. Ann. Zool. Fenn. 43, 468–480 (2006).
    Google Scholar 
    Ohtsuki, H. & Tsuji, K. Adaptive reproduction schedule as a cause of worker policing in social Hymenoptera: A dynamic game analysis. Am. Nat. 173, 747–758 (2009).PubMed 
    Article 

    Google Scholar 
    Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).CAS 
    PubMed 

    Google Scholar 
    Bassam, B. J., Caetano-Anolles, G. & Gresshoff, P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECHER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6, 288–295 (2006).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    Meirmans, P. G. GenoDive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Res. 20, 1126–1131 (2020).CAS 
    Article 

    Google Scholar 
    Michalakis, Y. & Excoffier, L. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142, 1061–1064 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. & vonHoldt, B. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191 (2015).CAS 
    Article 

    Google Scholar 
    Goodnight, K. F. Relatedness 4.2c Release (Rice University, 1996).
    Google Scholar 
    Queller, D. C. A method for detecting kin discrimination within natural colonies of social insects. Anim. Behav. 47, 569–576 (1994).Article 

    Google Scholar  More

  • in

    Limited acclimation of early life stages of the coral Seriatopora hystrix from mesophotic depth to shallow reefs

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).Article 

    Google Scholar 
    Hinderstein, L. M. et al. Theme section on ‘Mesophotic Coral Ecosystems: Characterization, Ecology, and Management’. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Global Change Biol. 22, 2756–2765 (2016).ADS 
    Article 

    Google Scholar 
    Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 3447 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS ONE 12, e0177034 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).PubMed 
    Article 

    Google Scholar 
    Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Bio. Ecol. 408, 42–57 (2011).Article 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Bongaerts, P., Underwood, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: An assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).PubMed 
    Article 

    Google Scholar 
    Cohen, I. & Dubinsky, Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: Photosynthesis and calcification. Front. Mar. Sci. 2, 45 (2015).Article 

    Google Scholar 
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).ADS 
    Article 

    Google Scholar 
    Ben-Zvi, O. et al. Photophysiology of a mesophotic coral 3 years after transplantation to a shallow environment. Coral Reefs 39, 903–913 (2020).Article 

    Google Scholar 
    Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S. I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta Bioenerget. 1767, 414–421 (2007).CAS 
    Article 

    Google Scholar 
    Takahashi, S. & Murata, N. How do environmental stresses accelerate photoinhibition?. Trends Plant Sci. 13, 178–182 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: Flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).ADS 
    Article 

    Google Scholar 
    Little, A. F., Van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinniger, F., Morita, R. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).ADS 
    Article 

    Google Scholar 
    Sinniger, F. et al. Overview of the mesophotic coral ecosystems around Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 69–76 (2022).Article 

    Google Scholar 
    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    Sinniger, F., Prasetia, R., Yorifuji, M., Bongaerts, P. & Harii, S. Seriatopora diversity preserved in upper mesophotic coral ecosystems in Southern Japan. Front. Mar. Sci. 4, 155 (2017).Article 

    Google Scholar 
    Atoda, K. The larva and postlarval development of some reef-building corals. V. Seriatopora hystrix. Sci. Rep. Tohoku Univ. 19, 33–39 (1951).
    Google Scholar 
    Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harii, S. & Kayanne, H. Larval dispersal, recruitment, and adult distribution of the brooding stony octocoral Heliopora coerulea on Ishigaki Island, southwest Japan. Coral Reefs 22, 188–196 (2003).Article 

    Google Scholar 
    Mulla, A. J., Lin, C. H., Takahashi, S. & Nozawa, Y. Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs 40, 1297–1306 (2021).Article 

    Google Scholar 
    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Chang. 4, 498–502 (2014).ADS 
    Article 

    Google Scholar 
    Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).ADS 
    Article 

    Google Scholar 
    Singh, T. et al. Long-term trends and seasonal variations in environmental conditions in Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 121–133 (2022).Article 

    Google Scholar 
    Roth, M. S., Fan, T.-Y. & Deheyn, D. D. Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS ONE 8, e59476 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?. J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).Article 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).ADS 
    Article 

    Google Scholar 
    Nakamura, T. Mass coral bleaching event in Sekisei lagoon observed in the summer of 2016. J. Jpn. Coral Reef Soc. 19, 29–40 (2017).Article 

    Google Scholar 
    Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 7, e8138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edmunds, P. J., Gates, R. D. & Gleason, D. F. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).Article 

    Google Scholar 
    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Adaptive divergence in a scleractinian coral: Physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol. Biol. 11, 303 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Einbinder, S. et al. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3, 195 (2016).Article 

    Google Scholar 
    Rogers, C. S., Fitz, H. C., Gilnack, M., Beets, J. & Hardin, J. Scleractinian coral recruitment patterns at Salt River submarine canyon, St. Croix, U.S. Virgin Islands. Coral Reefs 3, 69–76 (1984).ADS 
    Article 

    Google Scholar 
    Maida, M., Collb, J. C. & Sammarco, P. W. Shedding new light on scleractinian coral recruitment. J. Exp. Mar. Biol. Ecol. 180, 189–202 (1994).Article 

    Google Scholar 
    Sato, M. Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus). Coral Reefs 4, 27–33 (1985).ADS 
    Article 

    Google Scholar 
    Nozawa, Y. Micro-crevice structure enhances coral spat survivorship. J. Exp. Mar. Biol. Ecol. 367, 127–130 (2008).Article 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).ADS 
    Article 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Depth-dependent parental effects create invisible barriers to coral dispersal. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Groves, S. H. et al. Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37, 345–354 (2018).ADS 
    Article 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & De Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).CAS 
    Article 

    Google Scholar 
    Jiang, L. et al. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost. Coral Reefs 37, 71–79 (2018).ADS 
    Article 

    Google Scholar 
    Jurriaans, S. & Hoogenboom, M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180546 (2019).CAS 
    Article 

    Google Scholar 
    Brown, B. E. et al. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18, 99–105 (1999).Article 

    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful?. Photochem. Photobiol. 82, 345–350 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: Experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2015).Article 

    Google Scholar 
    Roth, M. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nakamura, T., van Woesik, R. & Yamasaki, H. Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar. Ecol. Prog. Ser. 301, 109–118 (2005).ADS 
    Article 

    Google Scholar  More

  • in

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    IPCC. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, et al. Editors. Cambridge, UK and New York, NY, USA: Cambridge University Press. 2021. https://doi.org/10.1017/9781009157896.Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health. 2018;15:839.Article 

    Google Scholar 
    FAO. Global agriculture towards 2050, high-level expert forum, how to feed the world 2050. Rome: Food and Agriculture Organization of United Nations FAO. 2009.Agoussar A, Yergeau E. Engineering the plant microbiota in the context of the theory of ecological communities. Curr Opin Biotechnol. 2021;70:220–5.CAS 
    Article 

    Google Scholar 
    Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci. 2015;6:507.Article 

    Google Scholar 
    Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00011.Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 2019;13:738–51.CAS 
    Article 

    Google Scholar 
    Nelson EB, Simoneau P, Barret M, Mitter B, Compant S. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Tremblay J, Yergeau E. Soybean microbiome recovery after disruption is modulated by the seed and not the soil microbiome. Phytobiomes J. 2021;5:418–31.Article 

    Google Scholar 
    Xiong C, Zhu Y-G, Wang J-T, Singh B, Han L-L, Shen J-P, et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–94.Article 

    Google Scholar 
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.CAS 
    Article 

    Google Scholar 
    Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry. 2012;109:101–16.Article 

    Google Scholar 
    Meisner A, Snoek BL, Nesme J, Dent E, Jacquiod S, Classen AT, et al. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. ISME J. 2021;15:1207–21.CAS 
    Article 

    Google Scholar 
    Azarbad H, Constant P, Giard-Laliberté C, Bainard LD, Yergeau E. Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Soil Biol Biochem. 2018;126:228–36.CAS 
    Article 

    Google Scholar 
    Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33.CAS 
    Article 

    Google Scholar 
    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.CAS 
    Article 

    Google Scholar 
    Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A. Root hairs increase rhizosphere extension and carbon input to soil. Ann Bot. 2018;121:61–9.CAS 
    Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Mendes L, Tremblay J, Tripathi B, Yergeau É. Plant compartments and developmental stages modulate the balance between niche-based and neutral processes in soybean Microbiome. Microb Ecol. 2021;82:416–28. https://doi.org/10.1007/s00248-021-01688-w.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    Article 

    Google Scholar 
    Azarbad H, Tremblay J, Giard-Laliberté C, Bainard LD, Yergeau E. Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture. FEMS Microbiol Ecol. 2020;96. https://doi.org/10.1093/femsec/fiaa098.Chen S, Cade-Menun BJ, Bainard LD, St. Luce M, Hu Y, Chen Q. The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. Geoderma. 2021;404:115274.CAS 
    Article 

    Google Scholar 
    Smith EG, Zentner RP, Campbell CA, Lemke R, Brandt K. Long-term crop rotation effects on production, grain quality, profitability, and risk in the northern great plains. Agron J. 2017;109:957–67.Article 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 

    Google Scholar 
    Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26.Article 

    Google Scholar 
    Yang S. otuSummary: summarizing OTU table regarding the composition, abundance and beta diversity of abundant and rare biospheres. 2018.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5-6. 2019. Available online at: https://CRAN.R-project.org/package=vegan.Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    Article 

    Google Scholar 
    Hardoim PR, Hardoim CCP, Overbeek LS, van, Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE. 2012;7:e30438.CAS 
    Article 

    Google Scholar 
    Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.Article 

    Google Scholar 
    Walsh CM, Becker-Uncapher I, Carlson M, Fierer N. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME J. 2021;15:2748–62.Morales Moreira ZP, Helgason BL, Germida JJ Environment has a Stronger Effect than Host Plant Genotype in Shaping Spring Brassica napus Seed Microbiomes. Phytobiomes J. 2021:PBIOMES-08-20-0059-R.Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J Adv Res. 2021;31:75–86.CAS 
    Article 

    Google Scholar 
    Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00457.Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.01068.Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41.CAS 
    Article 

    Google Scholar 
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci USA. 2015;112:7033–8.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.Article 

    Google Scholar 
    Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio. 2017;8:e00764–17.Article 

    Google Scholar 
    Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Front Plant Sci. 2018;8:2223.Article 

    Google Scholar 
    Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, et al. Rhizobacterial Strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci. 2016;17:E976.Article 

    Google Scholar 
    Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep. 2019;9:18154.CAS 
    Article 

    Google Scholar 
    Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci USA. 2018;115:E4284–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Na X, Cao X, Ma C, Ma S, Xu P, Liu S, et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00828. More

  • in

    Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species

    Parker, J. & Johnston, L. A. The proximate determinants of insect size. J. Biol. 5, 15 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honěk, A. Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 66, 483 (1993).Article 

    Google Scholar 
    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    Beukeboom, L. W. Size matters in insects—An introduction. Entomol. Exp. Appl. 166, 2–3 (2018).Article 

    Google Scholar 
    West, S. A., Flanagan, K. E. & Godfray, H. C. J. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). J. Anim. Ecol. 65, 631–639 (1996).Article 

    Google Scholar 
    Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellers, J., Alphen, J. J. M. V. & Sevenster, J. G. A field study of size–fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).Article 

    Google Scholar 
    Armbruster, P. & Hutchinson, R. A. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J. Med. Entomol. 39, 699–704 (2002).PubMed 
    Article 

    Google Scholar 
    Tantawy, A. O. & Vetukhiv, M. O. Effects of size on fecundity, longevity and viability in populations of Drosophila pseudoobscura. Am. Nat. 94, 395–403 (1960).Article 

    Google Scholar 
    Lefranc, A. & Bundgaard, J. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132, 243–247 (2004).Article 

    Google Scholar 
    Atkinson, D. Temperature and organism size: A biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    Poças, G. M., Crosbie, A. E. & Mirth, C. K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 139, 104051. https://doi.org/10.1016/j.jinsphys.2020.104051 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tammaru, T. Determination of adult size in a folivorous moth: constraints at instar level? Ecol. Entomol. 23, 80–89 (1998).Article 

    Google Scholar 
    Miller, R. S. & Thomas, J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology 39, 118–125 (1958).Article 

    Google Scholar 
    Nijhout, H. F. The control of body size in insects. Dev. Biol. 261, 1–9 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shingleton, A. W., Mirth, C. K. & Bates, P. W. Developmental model of static allometry in holometabolous insects. Proc. R. Soc. B 275, 1875–1885 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koenraadt, C. J. M. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 45, 331–336 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stillwell, R. C., Dworkin, I., Shingleton, A. W. & Frankino, W. A. Experimental manipulation of body size to estimate morphological scaling relationships in Drosophila. JoVE 56, 3162. https://doi.org/10.3791/3162 (2011).Article 

    Google Scholar 
    Shin, S.-M., Akram, W. & Lee, J.-J. Effect of body size on energy reserves in Culex pipiens pallens females (Diptera: Culicidae). Entomol. Res. 42, 163–167 (2012).Article 

    Google Scholar 
    Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: How adult size is determined in insects. BioEssays 29, 344–355 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Body size variation in insects: A macroecological perspective. Biol. Rev. 85, 139–169 (2010).PubMed 
    Article 

    Google Scholar 
    Beadle, G. W., Tatum, E. L. & Clancy, C. W. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).Article 

    Google Scholar 
    Gayon, J. History of the concept of allometry1. Am. Zool. 40, 748–758 (2000).
    Google Scholar 
    Takken, W. et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit. Vectors 6, 345 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).Article 

    Google Scholar 
    Ellers, J. Fat and eggs: An alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 3, 227–235 (1996).
    Google Scholar 
    González-Tokman, D. et al. Energy storage, body size and immune response of herbivore beetles at two different elevations in Costa Rica. Rev. Biol. Trop. 67, 608–620 (2019).
    Google Scholar 
    Timmermann, S. E. & Briegel, H. Larval growth and biosynthesis of reserves in mosquitoes. J. Insect Physiol. 45, 461–470 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strohm, E. Factors affecting body size and fat content in a digger wasp. Oecologia 123, 184–191 (2000).PubMed 
    Article 
    ADS 

    Google Scholar 
    Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).CAS 
    Article 

    Google Scholar 
    Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kühnlein, R. P. Lipid droplet-based storage fat metabolism in Drosophila. J. Lipid Res. 53, 1430–1436 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Church, R. B. & Robertson, F. W. A biochemical study of the growth of Drosophila melanogaster. J. Exp. Zool. 162, 337–351 (1966).Article 

    Google Scholar 
    Merkey, A. B., Wong, C. K., Hoshizaki, D. K. & Gibbs, A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nestel, D., Tolmasky, D., Rabossi, A. & Quesada-Allué, L. A. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 96, 237–244 (2003).CAS 
    Article 

    Google Scholar 
    Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).Article 

    Google Scholar 
    Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tejeda, M. T. et al. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70, 73–80 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150–157 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gasser, M., Kaiser, M., Berrigan, D. & Stearns, S. C. Life-history correlates of evolution under high and low adult mortality. Evolution 54, 1260–1272 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chippindale, A. K., Chu, T. J. F. & Rose, M. R. Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50, 753 (1996).PubMed 
    Article 

    Google Scholar 
    Kristensen, T. N., Overgaard, J., Loeschcke, V. & Mayntz, D. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol. Lett. 7, 269–272 (2011).PubMed 
    Article 

    Google Scholar 
    Juarez-Carreño, S. et al. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep. 37, 109830 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Markow, T. A. The secret lives of Drosophila flies. Elife 4, e06793 (2015).PubMed Central 
    Article 

    Google Scholar 
    Choma, M. A., Suter, M. J., Vakoc, B. J., Bouma, B. E. & Tearney, G. J. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis. Model. Mech. 4, 411–420 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanism of Mendelian Heredity (H. Holt, 1923).
    Google Scholar 
    Dobzhansky, T. The influence of the quantity and quality of chromosomal material on the size of the cells in Drosophila melanogaster. Wilhelm Roux Arch. Entwickl Mech. Org. 115, 363–379 (1929).PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. & Kühnlein, R. P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 221, 163881 (2018).Article 

    Google Scholar 
    DiAngelo, J. R. & Birnbaum, M. J. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341–6352 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rovenko, B. M. et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 79, 42–54 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 309, R658–R667 (2015).CAS 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Genome-wide analysis of starvation-selected Drosophila melanogaster—A genetic model of obesity. Mol. Biol. Evol. 35, 50–65 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, 169342 (2018).Article 

    Google Scholar 
    Bulletin, E. P. P. O. Drosophila suzukii. EPPO Bull. 43, 417–424 (2013).Article 

    Google Scholar 
    Bächli, G., Vilela, C. R., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill Academic Publishers, 2004).Book 

    Google Scholar 
    Markow, T. A. & O’Grady, P. M. Drosophila: A Guide to Species Identification and Use (Elsevier, 2006).
    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8, 7355–7364 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, C. M., Thomas, R. H., MacMillan, H. A., Marshall, K. E. & Sinclair, B. J. Triacylglyceride measurement in small quantities of homogenised insect tissue: Comparisons and caveats. J. Insect Physiol. 57, 1602–1613 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn. (Sage, 2011).
    Google Scholar 
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference (ed. Burnham, K. P.) (Springer, 2002).MATH 

    Google Scholar 
    Crawley, M. J. The R Book (Wiley, 2007).MATH 
    Book 

    Google Scholar 
    Borash, D. J. & Ho, G. T. Patterns of selection: Stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. J. Insect Physiol. 47, 1349–1356 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klepsatel, P., Procházka, E. & Gáliková, M. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp. Gerontol. 110, 298–308 (2018).PubMed 
    Article 

    Google Scholar 
    Henry, Y., Overgaard, J. & Colinet, H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 241, 110626 (2020).CAS 
    Article 

    Google Scholar 
    Ireland, S. & Turner, B. The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. Forensic Sci. Int. 159, 175–181 (2006).PubMed 
    Article 

    Google Scholar 
    Saunders, D. S. & Bee, A. Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). EJE 92, 615–622 (2013).
    Google Scholar 
    Ziegler, R. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J. Comp. Physiol. B 161, 125–131 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ojeda-Avila, T., Arthur Woods, H. & Raguso, R. A. Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 49, 293–306 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borash, D. J., Gibbs, A. G., Joshi, A. & Mueller, L. D. A genetic polymorphism maintained by natural selection in a temporally varying environment. Am. Nat. 151, 148. https://doi.org/10.1086/286108 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H. & Gáliková, M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol. Biol. 20, 93 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G. & Markow, T. A. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J. Nutr. 141, 1127–1133 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 288, 8028–8042 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reeve, M. W., Fowler, K. & Partridge, L. Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J. Evol. Biol. 13, 836–844 (2000).Article 

    Google Scholar 
    Lounibos, L. P. et al. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus?. J. Vector Ecol. 27, 86–95 (2002).CAS 
    PubMed 

    Google Scholar 
    Bergland, A. O., Genissel, A., Nuzhdin, S. V. & Tatar, M. Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180, 567–582 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holm, S. et al. A comparative perspective on longevity: The effect of body size dominates over ecology in moths. J. Evol. Biol. 29, 2422–2435 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nunney, L. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off. Evolution 50, 1193–1204 (1996).PubMed 
    Article 

    Google Scholar 
    Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31, 871–877 (1983).Article 

    Google Scholar 
    Markow, T. A. & Ricker, J. P. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity 69, 122–127 (1992).PubMed 
    Article 

    Google Scholar 
    Wikelski, M. & Romero, L. M. Body size, performance and fitness in galapagos marine iguanas. Integr. Comp. Biol. 43, 376–386 (2003).PubMed 
    Article 

    Google Scholar 
    van Buskirk, J. & Crowder, L. B. Life-history variation in marine turtles. Copeia 1994, 66–81 (1994).Article 

    Google Scholar 
    Broderick, A. C., Glen, F., Godley, B. J. & Hays, G. C. Variation in reproductive output of marine turtles. J. Exp. Mar. Biol. Ecol. 288, 95–109 (2003).Article 

    Google Scholar 
    Wauters, L. A. et al. Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30, 51–65 (2007).Article 

    Google Scholar 
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 

    Google Scholar 
    Reim, C., Teuschl, Y. & Blanckenhorn, W. U. Size-dependent effects of temperature and food stress on energy reserves and starvation resistance in yellow dung flies. Evol. Ecol. Res. 8, 1215–1234 (2006).
    Google Scholar 
    Kölliker-Ott, U. M., Blows, M. W. & Hoffmann, A. A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100, 563–573 (2003).Article 

    Google Scholar 
    Knapp, M. Relative importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e0151459 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lue, C.-H. et al. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. 107, 8677–8682 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Visser B et al. Why do
    many parasitoids lack adult triglyceride accumulation, despite functioning fatty acid biosynthesis machinery? EcoEvoRxiv:
    https://doi.org/10.32942/osf.io/zpf4jArakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).Article 

    Google Scholar 
    Visser, B., Alborn, H.T., Rondeaux, S. et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic
    wasps. Sci Rep 11, 7751 (2021). https://doi.org/10.1038/s41598-021-86736-8.Krüger, A. P. et al. Effects of irradiation dose on sterility induction and quality parameters of Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 111, 741–746 (2018).PubMed 
    Article 

    Google Scholar 
    Nikolouli, K. et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J. Pest Sci. 91, 1–15 (2017).
    Google Scholar 
    Nikolouli, K., Sassù, F., Mouton, L., Stauffer, C. & Bourtzis, K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J. Pest Sci. 93, 647–661 (2020).CAS 
    Article 

    Google Scholar 
    Calkins, C. O. & Parker, A. G. Sterile insect quality. In Sterile Insect Technique (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).Chapter 

    Google Scholar  More

  • in

    Stable isotopes unveil one millennium of domestic cat paleoecology in Europe

    Turner, D. & Bateson, P. (eds) The Domestic Cat: The Biology of Its Behaviour (Cambridge Univ. Press, 2000).
    Google Scholar 
    Bradshaw, J. W. S., Goodwin, D., Legrand-Defrétin, V. & Nott, H. M. R. Food selection by the domestic cat, an obligate carnivore. Comp. Biochem. Physiol. A Physiol. 114, 205–209 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: A blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).Article 

    Google Scholar 
    Crowley, S. L., Cecchetti, M. & McDonald, R. A. Our wild companions: Domestic cats in the anthropocene. Trends Ecol. Evol. 35, 477–483 (2020).PubMed 
    Article 

    Google Scholar 
    Driscoll, C. A. et al. The Near Eastern origin of cat domestication. Science 317, 519–523 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Neer, W., Linseele, V., Friedman, R. & De Cupere, B. More evidence for cat taming at the Predynastic elite cemetery of Hierakonpolis (Upper Egypt). J. Archaeol. Sci. 45, 103–111 (2014).Article 

    Google Scholar 
    Ottoni, C. et al. The palaeogenetics of cat dispersal in the ancient world. Nat. Ecol. Evol. 1, 0139 (2017).Article 

    Google Scholar 
    Baca, M. et al. Human-mediated dispersal of cats in the Neolithic Central Europe. Heredity 121, 557–563 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vigne, J. The beginning of cat domestication in East and West Asia. Doc. Archaeobiol. 15, 343–354 (2019).
    Google Scholar 
    Krajcarz, M. et al. Ancestors of domestic cats in Neolithic Central Europe: Isotopic evidence of a synanthropic diet. Proc. Natl. Acad. Sci. USA 117, 17710–17719 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piontek, A. M. et al. Analysis of cat diet across an urbanisation gradient. Urban Ecosyst. 24, 59–69 (2021).Article 

    Google Scholar 
    Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 17, 3503–3510 (2011).ADS 
    Article 

    Google Scholar 
    Moseby, K. E., Peacock, D. E. & Read, J. L. Catastrophic cat predation: A call for predator profiling in wildlife protection programs. Biol. Conserv. 191, 331–340 (2015).Article 

    Google Scholar 
    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Beaumont, M. et al. Genetic diversity and introgression in the Scottish wildcat. Mol. Ecol. 10, 319–336 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beugin, M. P. et al. Hybridization between Felis silvestris silvestris and Felis silvestris catus in two contrasted environments in France. Ecol. Evol. 10, 263–276 (2020).PubMed 
    Article 

    Google Scholar 
    Biró, Z., Lanszki, J., Szemethy, L., Heltai, M. & Randi, E. Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: Trophic niche overlap among cat groups in Hungary. J. Zool. 266, 187–196 (2005).Article 

    Google Scholar 
    Széles, G. L., Purger, J. J., Molnár, T. & Lanszki, J. Comparative analysis of the diet of feral and house cats and wildcat in Europe. Mammal. Res. 63, 43–53 (2018).Article 

    Google Scholar 
    Ottoni, C. & Van Neer, W. The dispersal of the domestic cat paleogenetic and zooarcheological evidence. Near East. Archaeol. 83, 38–45 (2020).Article 

    Google Scholar 
    Bitz-Thorsen, J. & Gotfredsen, A. B. Domestic cats (Felis catus) in Denmark have increased significantly in size since the Viking Age. Danish J. Archaeol. 7, 241–254 (2018).Article 

    Google Scholar 
    Faure, E. & Kitchener, A. C. An archaeological and historical review of the relationships between felids and people. Anthrozoos 22, 221–238 (2009).Article 

    Google Scholar 
    von den Driesch, A. Kulturgeschichte der Hauskatze. In Krankheiten der Katze, Bd. 1 (eds Schmidt, V. & Horzinek, M. C.) 17–40 (Fischer, 1992).
    Google Scholar 
    Głażewska, I. & Kijewski, T. A new view on the European feline population from mtDNA analysis in Polish domestic cats. Forensic Sci. Int. Genet. 27, 116–122 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cucchi, T. et al. Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci. Rep. 10, 8276 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Klinken, G. J., Richards, M. P. & Hedges, B. E. M. An overview of causes for stable isotopic variations in past European human populations: environmental, ecophysiological, and cultural effects. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. & Katzenberg, M.) 39–63 (Kluwer Academic Publishers, 2002). https://doi.org/10.1007/0-306-47194-9_3.Chapter 

    Google Scholar 
    Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 69–82 (2008).Article 

    Google Scholar 
    Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 99–154 (Blackwell Publishing Ltd, 2007). https://doi.org/10.1002/9780470691854.ch5.Chapter 

    Google Scholar 
    Hofman-Kamińska, E. et al. Foraging habitats and niche partitioning of European large herbivores during the holocene—Insights from 3D dental microwear texture analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 183–195 (2018).Article 

    Google Scholar 
    Bocherens, H., Hofman-Kamińska, E., Drucker, D. G., Schmölcke, U. & Kowalczyk, R. European bison as a refugee species? Evidence from isotopic data on Early Holocene bison and other large herbivores in northern Europe. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Hu, Y. et al. Earliest evidence for commensal processes of cat domestication. Proc. Natl. Acad. Sci. USA. 111, 116–120 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haruda, A. F. et al. The earliest domestic cat on the Silk Road. Sci. Rep. 10, 11241 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meckstroth, A. M., Miles, A. K. & Chandra, S. Diets of introduced predators using stable isotopes and stomach contents. J. Wildl. Manag. 71, 2387–2392 (2007).Article 

    Google Scholar 
    McDonald, B. W. et al. High variability within pet foods prevents the identification of native species in pet cats’ diets using isotopic evaluation. PeerJ 8, e8337 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart, G. R., Aidar, M. P. M., Joly, C. A. & Schmidt, S. Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131, 468–472 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Graven, H., Keeling, R. F. & Rogelj, J. Changes to carbon isotopes in atmospheric CO2 over the industrial era and into the future. Glob. Biogeochem. Cycles 34, 1–21 (2020).Article 
    CAS 

    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Linderholm, A. & Kjellström, A. Stable isotope analysis of a medieval skeletal sample indicative of systemic disease from Sigtuna Sweden. J. Archaeol. Sci. 38, 925–933 (2011).Article 

    Google Scholar 
    Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18 (2018).Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 133, 682–697 (2007).PubMed 
    Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Fast or feast: Reconstructing diet in later medieval England by stable isotope analysis. J. Archaeol. Sci. 32, 39–48 (2005).Article 

    Google Scholar 
    van der Sluis, L. G., Hollund, H. I., Kars, H., Sandvik, P. U. & Denham, S. D. A palaeodietary investigation of a multi-period churchyard in Stavanger, Norway, using stable isotope analysis (C, N, H, S) on bone collagen. J. Archaeol. Sci. Rep. 9, 120–133 (2016).
    Google Scholar 
    Polet, C. & Katzenberg, M. A. Reconstruction of the diet in a mediaeval monastic community from the coast of Belgium. J. Archaeol. Sci. 30, 525–533 (2003).Article 

    Google Scholar 
    Kosiba, S. B., Tykot, R. H. & Carlsson, D. Stable isotopes as indicators of change in the food procurement and food preference of Viking Age and Early Christian populations on Gotland (Sweden). J. Anthropol. Archaeol. 26, 394–411 (2007).Article 

    Google Scholar 
    Olsen, K. C. et al. Isotopic anthropology of rural German medieval diet: Intra- and inter-population variability. Archaeol. Anthropol. Sci. 10, 1053–1065 (2018).Article 

    Google Scholar 
    Benevolo, L. The European City (Blackwell Publishers, 1993).
    Google Scholar 
    Barrett, J. et al. Detecting the medieval cod trade: A new method and first results. J. Archaeol. Sci. 35, 850–861 (2008).Article 

    Google Scholar 
    Barrett, J. H. et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524 (2011).Article 

    Google Scholar 
    Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).Article 

    Google Scholar 
    Heaton, T. H. E. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).Article 

    Google Scholar 
    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA. 110, 12589–12594 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Styring, A. K. et al. Refining human palaeodietary reconstruction using amino acid δ15N values of plants, animals and humans. J. Archaeol. Sci. 53, 504–515 (2015).CAS 
    Article 

    Google Scholar 
    Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Front. Ecol. Evol. 7, 313 (2019).Article 

    Google Scholar 
    Fuller, B. T., Müldner, G., Van Neer, W., Ervynck, A. & Richards, M. P. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). J. Anal. At. Spectrom. 27, 807–820 (2012).CAS 
    Article 

    Google Scholar 
    Robson, H. K. et al. Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. Environ. Archaeol. 21, 105–118 (2016).Article 

    Google Scholar 
    Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. J. Anim. Ecol. 63, 786–798 (1994).Article 

    Google Scholar 
    Guiry, E. & Buckley, M. Urban rats have less variable, higher protein diets. Proc. R. Soc. B Biol. Sci. 285, 20181441 (2018).Article 
    CAS 

    Google Scholar 
    Bicknell, A. W. J. et al. Stable isotopes reveal the importance of seabirds and marine foods in the diet of St Kilda field mice. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Hoffmann, R. C. Medieval fishing. In Working with Water in Medieval Europe. Technology and Resource-Use (ed. Squatriti, P.) 331–393 (Brill, 2000).
    Google Scholar 
    Gillies, C. & Clout, M. The prey of domestic cats (Felis catus) in two suburbs of Auckland City, New Zealand. J. Zool. 259, 309–315 (2003).Article 

    Google Scholar 
    Brickner-Braun, I., Geffen, E. & Yom-Tov, Y. The domestic cat as a predator of Israeli wildlife. Isr. J. Ecol. Evol. 53, 129–142 (2007).Article 

    Google Scholar 
    Flockhart, D. T. T., Norris, D. R. & Coe, J. B. Predicting free-roaming cat population densities in urban areas. Anim. Conserv. 19, 472–483 (2016).Article 

    Google Scholar 
    Castañeda, I., Zarzoso-Lacoste, D. & Bonnaud, E. Feeding behaviour of red fox and domestic cat populations in suburban areas in the south of Paris. Urban Ecosyst. 23, 731–743 (2020).Article 

    Google Scholar 
    Zhu, Y., Siegwolf, R. T. W., Durka, W. & Körner, C. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162, 853–863 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Männel, T. T., Auerswald, K. & Schnyder, H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob. Ecol. Biogeogr. 16, 583–592 (2007).Article 

    Google Scholar 
    Pińska, K. & Badura, M. Warunki przyrodnicze i dieta roślinna mieszkańców Pucka w późnym średniowieczu. In Puck – kultura materialna małego miasta w późnym średniowieczu (ed. Starski, M.) 517 (Uniwersytet Warszawski, 2017).
    Google Scholar 
    Lefebvre, A. et al. Morphology of estuarine bedforms, Weser Estuary, Germany. Earth Surf. Process. Landforms 47, 242–256 (2022).ADS 
    Article 

    Google Scholar 
    Bischop, D. & Von der Küchelmann, H. C. Küche in den Graben – Bremens Stadtgraben und die Essgewohnheiten seiner Anwohner an der Wende zur Frühen Neuzeit. In Lebensmittel im Mittelalter und in der frühen Neuzeit. Erzeugung, Verarbeitung, Versorgung. Beiträge des 16. Kolloquiums des Arbeitskreises zur archäologischen Erforschung des mittelalterlichen Handwerks, Soester Beiträge zur Archäologie 15 (ed. Melzer, W.) 137–151 (Mocker und Jahn, 2018).
    Google Scholar 
    Elmshäuser, K. & Pordzik, V. V. Lachsgarnen, Tomen und Kumpanen – Die älteste Bremer Fischeramtsrolle. Bremisches Jahrb. 98, 13–72 (2019).
    Google Scholar 
    Küchelmann, H. C. Viel Butter bei wenig Fisch. Zwei Fischknochenkomplexe des 12.–13. Jahrhunderts aus der Bremer Altstadt. In Grenzen überwinden. Archäologie zwischen Disziplin und Disziplinen. Festschrift für Uta Halle zum 65. Geburtstag, Internationale Archäologie Studia Honoraria 40 (eds Kahlow, S. et al.) 413–426 (Verlag Marie Leidorf GmbH, 2021).
    Google Scholar 
    Schwarcz, H. P. & Schoeninger, M. J. Stable isotope analyses in human nutritional ecology. Am. J. Phys. Anthropol. 34, 283–321 (1991).Article 

    Google Scholar 
    Wallace, M. et al. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol. 45, 388–409 (2013).Article 

    Google Scholar 
    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    Ervynck, A. Orant, pugnant, laborant. The diet of the three orders in the feudal society of medieval north-western Europe. In Behaviour Behind Bones. The Zooarchaeology of Ritual, Religion, Status and Identity (eds O’Day, S. J. et al.) 215–223 (Oxbow Books, 2004).
    Google Scholar 
    von den Driesch, A. A guide to the measurement of animal bones from archaeological sites. Peabody Museum Bull. 1, 1–137 (1976).
    Google Scholar 
    O’Connor, T. P. Wild or domestic? Biometric variation in the cat Felis silvestris Schreber. Int. J. Osteoarchaeol. 17, 581–595 (2007).Article 

    Google Scholar 
    Kratochvíl, Z. Schadelkriterien der Wild- und Hauskatze (Felis silvestris silvestris Schreber 1777 und Felis s. f. catus L. 1758). Acta Sci. Nat. Brno 7, 1–50 (1973).
    Google Scholar 
    Kratochvíl, Z. Das Postkranialskelett der Wild- und Hauskatze (Felis silvestris und F. lybica f. catus). Acta Sci. Nat. Brno 10, 1–43 (1976).
    Google Scholar 
    Dyce, K. M., Sack, W. O. & Wensing, C. J. G. Textbook of Veterinary Anatomy (Saunders/Elsevier, 2010).
    Google Scholar 
    Krajcarz, M. et al. On the trail of the oldest domestic cat in Poland. An insight from morphometry, ancient DNA and radiocarbon dating. Int. J. Osteoarchaeol. 26, 912–919 (2016).Article 

    Google Scholar 
    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).CAS 
    Article 

    Google Scholar 
    Bronk Ramsey, C., Dee, M., Lee, S., Nakagawa, T. & Staff, R. Developments in the calibration and modeling of radiocarbon dates. Radiocarbon 52, 953–961 (2010).Article 

    Google Scholar 
    Ferreira, J. P., Leitão, I., Santos-Reis, M. & Revilla, E. Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6, e25970 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pirie, T. J., Thomas, R. L. & Fellowes, M. D. E. Pet cats (Felis catus) from urban boundaries use different habitats, have larger home ranges and kill more prey than cats from the suburbs. Landsc. Urban Plan. 220, 104338 (2022).Article 

    Google Scholar 
    Bocherens, H. et al. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium). Quat. Res. 48, 370–380 (1997).Article 

    Google Scholar 
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudin, M., Boeckx, P., Vandenabeele, P. & Van Strydonck, M. Improved radiocarbon dating of contaminated protein-containing archaeological samples via cross-flow nanofiltrated amino acids. Rapid Commun. Mass Spectrom. 27, 2039–2050 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wojcieszak, M., Van Den Brande, T., Ligovich, G. & Boudin, M. Pretreatment protocols performed at the Royal Institute for Cultural Heritage (RICH) prior to AMS 14C measurements. Radiocarbon 62, e14–e24 (2020).Article 

    Google Scholar 
    Hammer, Ø. PAST. PAleontological Statistics. Version 4.05 Reference manual (Natural History Museum University of Oslo, 2021).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More