Ordering and topological defects in social wasps’ nests
Camazine, S. et al. Self-organization in Biological Systems (Princeton University Press, Princeton, 2001).
Google Scholar
Tschinkel, W. R. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4(1), 21 (2004).MathSciNet
PubMed
PubMed Central
Article
Google Scholar
Reid, C. R. et al. Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl. Acad. Sci. 112(49), 15113–15118 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Grassé, P. P. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Masson, Paris, (1984).Theraulaz, G., Bonabeau, E. & Deneubourg, J. L. The mechanisms and rules of coordinated building in social insects (In Information Processing in Social Insects, Birkhäuser, Basel, 1999).Hansell, M. & Hansell, M. H. Animal Architecture (Oxford University Press, Oxford, 2005).Book
Google Scholar
Peters, J. M., Peleg, O. & Mahadevan, L. Collective ventilation in honeybee nests. J. R. Soc. Interface 16(150), 20180561 (2019).PubMed
PubMed Central
Article
Google Scholar
Grassé, P. P. La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6(1):41–80 (1959).Theraulaz, G. & Bonabeau, E. Coordination in Distributed Building. Science 269(5224), 686–688 (1995).ADS
CAS
PubMed
Article
Google Scholar
Bonabeau, E., Theraulaz, G., Deneubourg, J. L. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12(5), 188–193 (1997).CAS
PubMed
Article
Google Scholar
Khuong, A. et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc. Natl. Acad. Sci. 113(5), 1303–1308 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Pénzes, Z. & Karsai, I. Round shape combs produced by Stigmergic scripts in social wasp. Proc. Eur. Conf. Artif. Life 93, 896–905 (1993).
Google Scholar
Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the Stigmergy Approach. Artif. Life 5(2), 117–136 (1999).CAS
PubMed
Article
Google Scholar
Perna, A. & Theraulaz, G. When social behaviour is moulded in clay: On growth and form of social insect nests. J. Exp. Biol. 220(1), 83–91 (2017).PubMed
Article
Google Scholar
Gallo, V. & Chittka, L. Cognitive Aspects of Comb-Building in the Honeybee?. Front. Psychol. 9, 900 (2018).PubMed
PubMed Central
Article
Google Scholar
Hales, T. C. The Honeycomb Conjecture. Discrete Comput. Geom. 25(1), 1–22 (2001).MathSciNet
MATH
Article
Google Scholar
Tóth, L. F. What the bees know and what they do not know. Bull. Am. Math. Soc. 70(4), 468–481 (1964).MathSciNet
MATH
Article
Google Scholar
Jeanne, R. L. The Adaptiveness of Social Wasp Nest Architecture. Q. Rev. Biol. 50(3), 267–287 (1975).Article
Google Scholar
Karsai, I. & Pénzes, Z. Optimality of cell arrangement and rules of thumb of cell initiation in Polistes dominulus: A modeling approach. Behav. Ecol. 11(4), 387–395 (1999).Article
Google Scholar
Pirk, C., Hepburn, H., Radloff, S. & Tautz, J. Honeybee combs: construction through a liquid equilibrium process? Naturwissenschaften, 91(7) (2004).Karihaloo, B. L., Zhang, K. & Wang, J. Honeybee combs: How the circular cells transform into rounded hexagons. J. R. Soc. Interface 10(86), 20130299 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
Bauer, D. & Bienefeld, K. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process. Naturwissenschaften 100(1), 45–49 (2013).ADS
CAS
PubMed
Article
Google Scholar
Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591–648 (1979).ADS
MathSciNet
CAS
Article
Google Scholar
Bhattacharjee, S. M. Use of Topology in physical problems. In Topology and Condensed Matter Physics (eds Bhattacharjee, S. M. et al.) 171–216 (Springer, Singapore, 2017).MATH
Chapter
Google Scholar
Griffin, S. M. & Spaldin, N. A. On the relationship between topological and geometric defects. J. Phys.: Condens. Matter 29(34), 343001 (2017).
Google Scholar
Harris, W. F. Disclinations. Sci. Am. 237(6), 130–145 (1977).MathSciNet
Article
Google Scholar
de Gennes, P.-G. The Physics of liquid crystals (Clarendon Press, Oxford, 1979).
Google Scholar
Iorio, A. & Sen, S. Virus Structure: From Crick and Watson to a New Conjecture. In arXiv 0707, 3690 (2007).Lee, K. C., Yu, Q. & Erb, U. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5–7 Coordination Defects. Sci. Rep. 6(1), 28342 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128(5), 501–503 (1986).ADS
CAS
Article
Google Scholar
Ma, J., Alfè, D., Michaelides, A. & Wang, E. Stone-Wales defects in graphene and other planar sp2 -bonded materials. Phys. Rev. B 80(3), 033407 (2009).ADS
Article
CAS
Google Scholar
Heggie, M. I., Haffenden, G. L., Latham, C. D. & Trevethan, T. The Stone-Wales transformation: From fullerenes to graphite, from radiation damage to heat capacity. Philos.Trans. Royal Soc. A Math. Phys. Eng. Sci. 374(2076), 20150317 (2016).ADS
Article
CAS
Google Scholar
Eberhard, M. J. W. The Social Biology of Polistine Wasps. Misc. Publ. Museum Zoology Univ. Michigan 140, 110 (1969).
Google Scholar
Jeanne, R. L. A latitudinal gradient in rates of ant predation. Ecology 60(6), 1211–1224 (1979).Article
Google Scholar
Seeley, T. & Heinrich, B. (1981). Regulation of temperature in the nests of social insects. John Wiley and Sons, Inc, pp. 224–234.Wenzel, J. W. Evolution of nest architecture. In The Social Biology Wasps (eds Ross, K. G. & Matthews, R. W.) 480–519 (Cornell University Press, Ithaca, New York, 1991).
Google Scholar
Karsai, I. & Pénzes, Z. (1998). Nest shapes in paper wasps: Can the variability of forms be deduced from the same construction algorithm? Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1402):1261–1268.Carpenter, J. M. Phylogeny and biogeography of Polistes. In Natural History and Evolution of Paper-Wasps (eds Turillazzi, S. & Eberhard, M. J. W.) 18–57 (Oxford University Press, Oxford, Newyork, 1996).
Google Scholar
Ceccolini, F. New records and distribution update of Polistes (Gyrostoma) wattii Cameron, 1900 (Hymenoptera: Vespidae: Polistinae). Caucasian Entomol. Bull. 15(2), 323–326 (2019).Article
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, London, 2015).MATH
Book
Google Scholar
Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28(2), 784–805 (1983).ADS
CAS
Article
Google Scholar
Schilling, T., Pronk, S., Mulder, B. & Frenkel, D. Monte Carlo study of hard pentagons. Phys. Rev. E 71(3), 036138 (2005).ADS
Article
CAS
Google Scholar
R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).Bishop, M. & Bruin, C. The pair correlation function: A probe of molecular order. Am. J. Phys. 52(12), 1106–1108 (1984).ADS
CAS
Article
Google Scholar
Fleury, P. A. Phase Transitions, Critical Phenomena, and Instabilities. Science 211, 125–131 (1981).ADS
MathSciNet
CAS
PubMed
MATH
Article
Google Scholar
Wenzel, J. W. Endogenous factors, external cues, and eccentric construction in Polistes annularis (Hymenoptera: Vespidae). J. Insect Behavior 2(5), 679–699 (1989).Article
Google Scholar
Zsoldos. Effect of topological defects on graphene geometry and stability. Nanotechnol. Sci. Appl., p. 101 (2010).Ophus, C., Shekhawat, A., Rasool, H. & Zettl, A. Large-scale experimental and theoretical study of graphene grain boundary structures. Phys. Rev. B 92(20), 205402 (2015).ADS
Article
CAS
Google Scholar
Kosterlitz, J. M. (2016). Commentary on ‘Ordering, metastability and phase transitions in two-dimensional systems’ J M Kosterlitz and D J Thouless (1973 J. Phys. C: Solid State Phys. 6 1181-203)-the early basis of the successful Kosterlitz-Thouless theory. Journal of Physics: Condensed Matter28:481001.Hepburn, H. R. & Whiffler, L. A. Construction defects define pattern and method in comb building by honeybees. Apidologie 22(4), 381–388 (1991).Article
Google Scholar
Smith, M. L., Napp, N. & Petersen, K. H. Imperfect comb construction reveals the architectural abilities of honeybees. Proc. Natl. Acad. Sci. 118(31), e2103605118 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
Nazzi, F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 6(1), 28341 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Tarnai, T. Buckling patterns of shells and spherical honeycomb structures. Symmetry, pp. 639–652 (1989).Downing, H. & Jeanne, R. The regulation of complex building behaviour in the paper wasp, Polistes fuscatus (Insecta, Hymenoptera, Vespidae). Anim. Behav. 39(1), 105–124 (1990).Article
Google Scholar More