More stories

  • in

    Ordering and topological defects in social wasps’ nests

    Camazine, S. et al. Self-organization in Biological Systems (Princeton University Press, Princeton, 2001).
    Google Scholar 
    Tschinkel, W. R. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4(1), 21 (2004).MathSciNet 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, C. R. et al. Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl. Acad. Sci. 112(49), 15113–15118 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grassé, P. P. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Masson, Paris, (1984).Theraulaz, G., Bonabeau, E. & Deneubourg, J. L. The mechanisms and rules of coordinated building in social insects (In Information Processing in Social Insects, Birkhäuser, Basel, 1999).Hansell, M. & Hansell, M. H. Animal Architecture (Oxford University Press, Oxford, 2005).Book 

    Google Scholar 
    Peters, J. M., Peleg, O. & Mahadevan, L. Collective ventilation in honeybee nests. J. R. Soc. Interface 16(150), 20180561 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grassé, P. P. La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6(1):41–80 (1959).Theraulaz, G. & Bonabeau, E. Coordination in Distributed Building. Science 269(5224), 686–688 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J. L. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12(5), 188–193 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khuong, A. et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc. Natl. Acad. Sci. 113(5), 1303–1308 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pénzes, Z. & Karsai, I. Round shape combs produced by Stigmergic scripts in social wasp. Proc. Eur. Conf. Artif. Life 93, 896–905 (1993).
    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the Stigmergy Approach. Artif. Life 5(2), 117–136 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perna, A. & Theraulaz, G. When social behaviour is moulded in clay: On growth and form of social insect nests. J. Exp. Biol. 220(1), 83–91 (2017).PubMed 
    Article 

    Google Scholar 
    Gallo, V. & Chittka, L. Cognitive Aspects of Comb-Building in the Honeybee?. Front. Psychol. 9, 900 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hales, T. C. The Honeycomb Conjecture. Discrete Comput. Geom. 25(1), 1–22 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Tóth, L. F. What the bees know and what they do not know. Bull. Am. Math. Soc. 70(4), 468–481 (1964).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Jeanne, R. L. The Adaptiveness of Social Wasp Nest Architecture. Q. Rev. Biol. 50(3), 267–287 (1975).Article 

    Google Scholar 
    Karsai, I. & Pénzes, Z. Optimality of cell arrangement and rules of thumb of cell initiation in Polistes dominulus: A modeling approach. Behav. Ecol. 11(4), 387–395 (1999).Article 

    Google Scholar 
    Pirk, C., Hepburn, H., Radloff, S. & Tautz, J. Honeybee combs: construction through a liquid equilibrium process? Naturwissenschaften, 91(7) (2004).Karihaloo, B. L., Zhang, K. & Wang, J. Honeybee combs: How the circular cells transform into rounded hexagons. J. R. Soc. Interface 10(86), 20130299 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bauer, D. & Bienefeld, K. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process. Naturwissenschaften 100(1), 45–49 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591–648 (1979).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Bhattacharjee, S. M. Use of Topology in physical problems. In Topology and Condensed Matter Physics (eds Bhattacharjee, S. M. et al.) 171–216 (Springer, Singapore, 2017).MATH 
    Chapter 

    Google Scholar 
    Griffin, S. M. & Spaldin, N. A. On the relationship between topological and geometric defects. J. Phys.: Condens. Matter 29(34), 343001 (2017).
    Google Scholar 
    Harris, W. F. Disclinations. Sci. Am. 237(6), 130–145 (1977).MathSciNet 
    Article 

    Google Scholar 
    de Gennes, P.-G. The Physics of liquid crystals (Clarendon Press, Oxford, 1979).
    Google Scholar 
    Iorio, A. & Sen, S. Virus Structure: From Crick and Watson to a New Conjecture. In arXiv 0707, 3690 (2007).Lee, K. C., Yu, Q. & Erb, U. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5–7 Coordination Defects. Sci. Rep. 6(1), 28342 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128(5), 501–503 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, J., Alfè, D., Michaelides, A. & Wang, E. Stone-Wales defects in graphene and other planar sp2 -bonded materials. Phys. Rev. B 80(3), 033407 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Heggie, M. I., Haffenden, G. L., Latham, C. D. & Trevethan, T. The Stone-Wales transformation: From fullerenes to graphite, from radiation damage to heat capacity. Philos.Trans. Royal Soc. A Math. Phys. Eng. Sci. 374(2076), 20150317 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    Eberhard, M. J. W. The Social Biology of Polistine Wasps. Misc. Publ. Museum Zoology Univ. Michigan 140, 110 (1969).
    Google Scholar 
    Jeanne, R. L. A latitudinal gradient in rates of ant predation. Ecology 60(6), 1211–1224 (1979).Article 

    Google Scholar 
    Seeley, T. & Heinrich, B. (1981). Regulation of temperature in the nests of social insects. John Wiley and Sons, Inc, pp. 224–234.Wenzel, J. W. Evolution of nest architecture. In The Social Biology Wasps (eds Ross, K. G. & Matthews, R. W.) 480–519 (Cornell University Press, Ithaca, New York, 1991).
    Google Scholar 
    Karsai, I. & Pénzes, Z. (1998). Nest shapes in paper wasps: Can the variability of forms be deduced from the same construction algorithm? Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1402):1261–1268.Carpenter, J. M. Phylogeny and biogeography of Polistes. In Natural History and Evolution of Paper-Wasps (eds Turillazzi, S. & Eberhard, M. J. W.) 18–57 (Oxford University Press, Oxford, Newyork, 1996).
    Google Scholar 
    Ceccolini, F. New records and distribution update of Polistes (Gyrostoma) wattii Cameron, 1900 (Hymenoptera: Vespidae: Polistinae). Caucasian Entomol. Bull. 15(2), 323–326 (2019).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, London, 2015).MATH 
    Book 

    Google Scholar 
    Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28(2), 784–805 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    Schilling, T., Pronk, S., Mulder, B. & Frenkel, D. Monte Carlo study of hard pentagons. Phys. Rev. E 71(3), 036138 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).Bishop, M. & Bruin, C. The pair correlation function: A probe of molecular order. Am. J. Phys. 52(12), 1106–1108 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Fleury, P. A. Phase Transitions, Critical Phenomena, and Instabilities. Science 211, 125–131 (1981).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Wenzel, J. W. Endogenous factors, external cues, and eccentric construction in Polistes annularis (Hymenoptera: Vespidae). J. Insect Behavior 2(5), 679–699 (1989).Article 

    Google Scholar 
    Zsoldos. Effect of topological defects on graphene geometry and stability. Nanotechnol. Sci. Appl., p. 101 (2010).Ophus, C., Shekhawat, A., Rasool, H. & Zettl, A. Large-scale experimental and theoretical study of graphene grain boundary structures. Phys. Rev. B 92(20), 205402 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Kosterlitz, J. M. (2016). Commentary on ‘Ordering, metastability and phase transitions in two-dimensional systems’ J M Kosterlitz and D J Thouless (1973 J. Phys. C: Solid State Phys. 6 1181-203)-the early basis of the successful Kosterlitz-Thouless theory. Journal of Physics: Condensed Matter28:481001.Hepburn, H. R. & Whiffler, L. A. Construction defects define pattern and method in comb building by honeybees. Apidologie 22(4), 381–388 (1991).Article 

    Google Scholar 
    Smith, M. L., Napp, N. & Petersen, K. H. Imperfect comb construction reveals the architectural abilities of honeybees. Proc. Natl. Acad. Sci. 118(31), e2103605118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nazzi, F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 6(1), 28341 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tarnai, T. Buckling patterns of shells and spherical honeycomb structures. Symmetry, pp. 639–652 (1989).Downing, H. & Jeanne, R. The regulation of complex building behaviour in the paper wasp, Polistes fuscatus (Insecta, Hymenoptera, Vespidae). Anim. Behav. 39(1), 105–124 (1990).Article 

    Google Scholar  More

  • in

    Global economic costs of herpetofauna invasions

    Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27(5), 970–982 (2021).ADS 

    Google Scholar 
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12(2), 20150623 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. 113(15), 4081–4085 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Linders, T. E. W. et al. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. 107(6), 2660–2672 (2019).
    Google Scholar 
    Diagne, C., Ballesteros-Mejia, L., Bodey, T., Cuthbert, R., Fantle-Lepczyk, J., Angulo, E., Dobigny, G., & Courchamp, F. Economic costs of invasive rodents worldwide: The tip of the iceberg (2021).Schaffner, F., Medlock, J. M. & Van Bortel, A. W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 19(8), 685–692 (2013).CAS 
    PubMed 

    Google Scholar 
    Schaffner, U. et al. Biological weed control to relieve millions from Ambrosia allergies in Europe. Nat. Commun. 11(1), 1–7 (2020).
    Google Scholar 
    Shackleton, R. T., Shackleton, C. M. & Kull, C. A. The role of invasive alien species in shaping local livelihoods and human well-being: A review. J. Environ. Manag. 229, 145–157 (2019).
    Google Scholar 
    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20(3), 110 (2005).PubMed 

    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22(4), 1513–1525 (2020).
    Google Scholar 
    Florencio, M., Lobo, J. M. & Bini, L. M. Biases in global effects of exotic species on local invertebrates: A systematic review. Biol. Invasions 21(10), 3043–3061 (2019).
    Google Scholar 
    Measey, J. et al. Why have a pet amphibian? Insights from YouTube. Front. Ecol. Evol. 7, 52 (2019).
    Google Scholar 
    Ossiboff, R. J. et al. Differentiating Batrachochytrium dendrobatidis and B. salamandrivorans in amphibian chytridiomycosis using RNAScope in situ hybridization. Front. Vet. Sci. 6, 304 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis, vol. 4. (Springer Science & Business Media, 2009).Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).
    Google Scholar 
    Ramsay, N. F., Ng, P. K. A., O’Riordan, R. M., & Chou, L. M. The red-eared slider (Trachemys scripta elegans) in Asia: A review. Biological invaders in inland waters: Profiles, distribution, and threats 161–174 (2007).Lindsay, M. K., Zhang, Y., Forstner, M. R. & Hahn, D. Effects of the freshwater turtle Trachemys scripta elegans on ecosystem functioning: An approach in experimental ponds. Amphibia-Reptilia 34(1), 75–84 (2013).
    Google Scholar 
    Phillips, B. L. & Shine, R. An invasive species induces rapid adaptive change in a native predator: Cane toads and black snakes in Australia. Proc. R. Soc. B Biol. Sci. 273(1593), 1545–1550 (2006).
    Google Scholar 
    Shanmuganathan, T. et al. Biological control of the cane toad in Australia: A review. Anim. Conserv. 13, 16–23 (2010).
    Google Scholar 
    Smart, A. S., Tingley, R. & Phillips, B. L. Estimating the benefit of quarantine: Eradicating invasive cane toads from islands. NeoBiota 60, 117 (2020).
    Google Scholar 
    Reaser, J. K. et al. Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environ. Conserv. 34, 98–111 (2007).
    Google Scholar 
    Fritts, T. H. Economic costs of electrical system instability and power outages caused by snakes on the island of Guam. Int. Biodeterior. Biodegrad. 49(2–3), 93–100 (2002).
    Google Scholar 
    Rodda, G. H., Fritts, T. H. & Chiszar, D. The disappearance of Guam’s wildlife. Bioscience 47(9), 565–574 (1997).
    Google Scholar 
    Kraus, F. Reptiles and amphibians. In Encyclopedia of Biological Invasions 590–594. (University of California Press, 2011).Kraus, F. Global trends in alien reptiles and amphibians. Aliens Invasive Species Bull. 28, 13–18 (2009).
    Google Scholar 
    Capinha, C., Marcolin, F. & Reino, L. Human-induced globalization of insular herpetofaunas. Glob. Ecol. Biogeogr. 29(8), 1328–1349 (2020).
    Google Scholar 
    Reed, R. N. & Kraus, F. Invasive reptiles and amphibians: Global perspectives and local solutions. Anim. Conserv. 13, 3–4 (2010).
    Google Scholar 
    Wasserman, R. J., Dick, J. T., Welch, R. J., Dalu, T. & Magellan, K. Site and species selection for religious release of non-native fauna. Conserv. Biol. 33(4), 969–971 (2019).PubMed 

    Google Scholar 
    Li, X., Liu, X., Kraus, F., Tingley, R. & Li, Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 14(8), 411–417 (2016).
    Google Scholar 
    Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30(1), 230–232 (2016).CAS 
    PubMed 

    Google Scholar 
    Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7(1), 1–12 (2020).
    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592(7855), 571–576 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cuthbert, R. N., Diagne, C., Haubrock, P. J., Turbelin, A. J., & Courchamp, F. Are the “100 of the world’s worst” invasive species also the costliest? Biol. Invasions 1–10 (2021).Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Haubrock, P. J. et al. Biological invasions in Singapore and Southeast Asia: Data gaps fail to mask potentially massive economic costs. NeoBiota 67, 131–152 (2021).
    Google Scholar 
    Van Wilgen, N. J., Gillespie, M. S., Richardson, D. M. & Measey, J. A taxonomically and geographically constrained information base limits non-native reptile and amphibian risk assessment: A systematic review. PeerJ 6, e5850 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cuthbert, R. et al. Economic costs of biological invasions in the United Kingdom. Neobiota 67, 299–328 (2021).
    Google Scholar 
    Heringer, G. et al. The economic costs of biological invasions in Central and South America: A first regional assessment. NeoBiota 67, 401 (2021).
    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. 113(27), 7575–7579 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capinha, C. et al. Diversity, biogeography and the global flows of alien amphibians and reptiles. Divers. Distrib. 23(11), 1313–1322 (2017).
    Google Scholar 
    Kumschick, S. et al. How repeatable is the Environmental Impact Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments of amphibians. Ecol. Evol. 7(8), 2661–2670 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Diagne, C., Catford, J. A., Essl, F., Nuñez, M. A. & Courchamp, F. What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise. NeoBiota 63, 25 (2020).
    Google Scholar 
    Diagne, C. et al. The economic costs of biological invasions in Africa: A growing but neglected threat?. NeoBiota 67, 11–51 (2021).
    Google Scholar 
    Bradshaw, C. J. et al. Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota 67, 511–550 (2021).
    Google Scholar 
    Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109(7), 2418–2422 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mazzotti, F. J. et al. Implications of the 2013 Python Challenge® for ecology and management of Python molorus bivittatus (Burmese Python) in Florida. Southeast. Nat. 15(sp8), 63–74 (2016).
    Google Scholar 
    Smith, B. J. et al. Betrayal: Radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18(11), 3239–3250 (2016).
    Google Scholar 
    Easteal, S. The history of introductions of Bufo marinus (Amphibia: Anura); A natural experiment in evolution. Biol. J. Lin. Soc. 16(2), 93–113 (1981).
    Google Scholar 
    Haubrock, P. J., Bernery, C., Cuthbert, R. N., Liu, C., Kourantidou, M., Leroy, B., Turbelin, A., Kramer, A. M., Verbrugge, L., Diagne, C., Courchamp, F., & Gozlan, R. E. What is the recorded economic cost of alien invasive fishes worldwide? (2021).Angulo, E., Hoffmann, B., Ballesteros-Mejia, L., Taheri, A., Balzani, P., Renault, D., Cordonnier, M., Bellard, C., Diagne, C., Ahmed, D. A., Watari, Y., & Courchamp, F. Economic costs of invasive alien ants worldwide. (2021).Kouba, A., Oficialdegui, F., Cuthbert, R., Kourantidou, M., Tricarico, E., Leroy, B., Gozlan, R., Courchamp, F., & Haubrock, P. Feeling the pinch: Global economic costs of crayfish invasions and comparison with other aquatic crustaceans (2021).Dufresnes, C. et al. Cryptic invasion of Italian pool frogs (Pelophylax bergeri) across Western Europe unraveled by multilocus phylogeography. Biol. Invasions 19(5), 1407–1420 (2017).
    Google Scholar 
    Kumschick, S. et al. Impact assessment with different scoring tools: How well do alien amphibian assessments match?. NeoBiota 33, 53 (2017).
    Google Scholar 
    Crystal-Ornelas, R. et al. Economic costs of biological invasions within North America. NeoBiota 67, 485 (2021).
    Google Scholar 
    Angulo, E. et al. Non-English languages enrich scientific knowledge: The example of economic costs of biological invasions. Sci. Total Environ. 775, 144441 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, R., & Edwards, G. A review of the impact and control of cane toads in Australia with recommendations for future research and management approaches. A report to the Vertebrate Pests Committee from the National Cane Toad Taskforce (2005).Burnett, K., Pongkijvorasin, S. & Roumasset, J. Species invasion as catastrophe: The case of the brown tree snake. Environ. Resour. Econ. 51(2), 241–254 (2012).
    Google Scholar 
    Haubrock, P. J., Cuthbert, R. N., Ricciardi, A., Diagne, C., & Courchamp, F. Massive economic costs of invasive bivalves in freshwater ecosystems (2021).Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52(3), 273–288 (2005).
    Google Scholar 
    Fantle-Lepczyk, J. E. et al. Economic costs of biological invasions in the United States. bioRxiv 89, 89 (2021).
    Google Scholar 
    European Environment Agency. The impacts of invasive alien species in Europe. Publications Office of the European Union (2013).Measey, J. et al. Invasive amphibians in southern Africa: A review of invasion pathways. Bothalia-Afr. Biodivers. Conserv. 47(2), 1–12 (2017).
    Google Scholar 
    Anton, A., Geraldi, N. R., Ricciardi, A. & Dick, J. T. Global determinants of prey naiveté to exotic predators. Proc. R. Soc. B 287(1928), 20192978 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Rico-Sánchez, A. E. et al. Economic costs of invasive alien species in Mexico. NeoBiota 67, 459–483 (2021).
    Google Scholar 
    McNeely, J. Invasive species: A costly catastrophe for native biodiversity. Land Use Water Resour. Res. 1(1732-2016-140260) (2001).Sax, D. F. & Gaines, S. D. Species invasions and extinction: The future of native biodiversity on islands. Proc. Natl. Acad. Sci. 105, 11490–11497 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christie, M., Fazey, I., Cooper, R., Hyde, T. & Kenter, J. O. An evaluation of monetary and non-monetary techniques for assessing the importance of biodiversity and ecosystem services to people in countries with developing economies. Ecol. Econ. 83, 67–78 (2012).
    Google Scholar 
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl. Acad. Sci. 108(1), 203–207 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8(1), 1–9 (2017).
    Google Scholar 
    Ahmed, D. A., Hudgins, E. J., Cuthbert, R. N., Kourantidou, M., Diagne, C., Haubrock, P. J., et al. Managing biological invasions: The cost of inaction. Biol. Invasions. 1–20. (2022).Leung, B. et al. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269(1508), 2407–2413 (2002).
    Google Scholar 
    Haubrock, P. J. et al. Geographic and taxonomic trends of rising biological invasion costs. Sci. Total Environ. 817, 152948 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kopecký, O., Kalous, L. & Patoka, J. Establishment risk from pet-trade freshwater turtles in the European Union. Knowl. Manag. Aquat. Ecosyst. 410, 02 (2013).
    Google Scholar 
    Mohanty, N. P. & Measey, J. The global pet trade in amphibians: Species traits, taxonomic bias, and future directions. Biodivers. Conserv. 28(14), 3915–3923 (2019).
    Google Scholar 
    Altherr, S. & Lameter, K. The rush for the rare: Reptiles and amphibians in the European pet trade. Animals 10, 2085 (2020).PubMed Central 

    Google Scholar 
    Cuthbert, R. N. et al. Biological invasion costs reveal insufficient proactive management worldwide. Sci. Total Environ. 819, 153404 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ricciardi, A. Invasive species. In Ecological Systems 161–178. (Springer, 2013).Leroy, B., Kramer, A. M., Vaissière, A. C., Courchamp, F., & Diagne, C. Analysing global economic costs of invasive alien species with the invacost R package. bioRxiv (2020). More

  • in

    Photosynthetic microorganisms effectively contribute to bryophyte CO2 fixation in boreal and tropical regions

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (80-). 2014;346:1256688.Article 
    CAS 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.Article 
    CAS 

    Google Scholar 
    Delgado Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2012;7:652–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438.PubMed 
    Article 

    Google Scholar 
    Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186-7:99–118.Article 
    CAS 

    Google Scholar 
    Hamard S, Céréghino R, Barret M, Sytiuk A, Lara E, Dorrepaal E, et al. Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient. J Ecol. 2021;109:3424–41.CAS 
    Article 

    Google Scholar 
    Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri LL, Mitchell EAD, et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem. 2017;112:68–76.CAS 
    Article 

    Google Scholar 
    Schmidt O, Dyckmans J, Schrader S. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett. 2016;12:20150646.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Halvorson HM, Barry JR, Lodato MB, Findlay RH, Francoeur SN, Kuehn KA. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol. 2019;33:188–201.PubMed 
    Article 

    Google Scholar 
    Wyatt KH, Turetsky MR. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. J Ecol. 2015;103:1165–71.CAS 
    Article 

    Google Scholar 
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci. 2012;5:459–62.CAS 
    Article 

    Google Scholar 
    Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234:64–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol. 2016;7:2026.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 2018;12:1032–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Büdel B. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol. 1999;34:361–70.Article 

    Google Scholar 
    Hamard S, Küttim M, Céréghino R, Jassey VEJ. Peatland microhabitat heterogeneity drives phototrophic microbes distribution and photosynthetic activity. Environ Microbiol. 2021;23:6811–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cano-Díaz C, Maestre FT, Eldridge DJ, Singh BK, Bardgett RD, Fierer N, et al. Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe. Glob Ecol Biogeogr. 2020;29:2025–38.Article 

    Google Scholar 
    Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pöschl U, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat Geosci. 2018;11:185–9.CAS 
    Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Küttim L, Küttim M, Puusepp L, Sugita S. The effects of ecotope, microtopography and environmental variables on diatom assemblages in hemiboreal bogs in Northern Europe. Hydrobiologia. 2017;792:137–49.Article 
    CAS 

    Google Scholar 
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:91.PubMed 
    Article 

    Google Scholar 
    Lindo Z, Gonzalez A. The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems. 2010;13:612–27.Article 

    Google Scholar 
    Sporn SG, Bos MM, Kessler M, Gradstein SR. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv. 2010;19:745–60.Article 

    Google Scholar 
    Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot. 2007;99:987–1001.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Breemen N. How Sphagnum bogs down other plants. Trends Ecol Evol. 1995;10:270–5.PubMed 
    Article 

    Google Scholar 
    Jonsson M, Kardol P, Gundale MJ, Bansal S, Nilsson M-C, Metcalfe DB, et al. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems. 2014;18:1–16.
    Google Scholar 
    Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci. 2010;3:617–21.CAS 
    Article 

    Google Scholar 
    Lindo Z, Nilsson M-C, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Shimano S, Dupuy C, Toussaint M-L, Gilbert D. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow ‘fen-bog’ gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist. 2012;163:451–64.PubMed 
    Article 

    Google Scholar 
    Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, et al. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Biochim Biophys Acta – Bioenerg. 2016;1857:715–22.CAS 
    Article 

    Google Scholar 
    Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, et al. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci USA. 2018;115:10702–7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Küttim M, Küttim L, Ilomets M, Laine AM. Controls of Sphagnum growth and the role of winter. Ecol Res. 2020;35:219–34.Article 
    CAS 

    Google Scholar 
    Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint M-L, Gilbert D. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Microb Ecol. 2011;61:374–85.PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2012;16:225–33.PubMed 
    Article 

    Google Scholar 
    Jassey VEJ, Signarbieux C. Effects of climate warming on Sphagnumphotosynthesis in peatlands depend on peat moisture and species‐specific anatomical traits. Glob Chang Biol. 2019;182:12–65.
    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610–8. 2012 63PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem. 2015;407:1841–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamard S, Robroek BJM, Allard P-M, Signarbieux C, Zhou S, Saesong T, et al. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol. 2019;10:3317.Article 

    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, et al. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. Microb Ecol. 2019;78:714–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, et al. The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome. 2021;9:1–14.Article 
    CAS 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;2019:e6609.Article 

    Google Scholar 
    Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol. 2006;72:2110–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. Oikos. 2021;303:605–15.
    Google Scholar 
    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, Mcdaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Guittet A, Barel JM, et al. Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites. J Ecol. 2021;1365-2745:13728.
    Google Scholar 
    Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry. 1985;24:745–9.CAS 
    Article 

    Google Scholar 
    Chiapusio G, Jassey VEJ, Bellvert F, Comte G, Weston LA, Delarue F, et al. Sphagnum species modulate their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J Chem Ecol. 2018;27:1–12.
    Google Scholar 
    Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in sphagnum. Phytochemistry. 1995;38:35–39.CAS 
    Article 

    Google Scholar 
    Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022;00:00.Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.Article 
    CAS 

    Google Scholar 
    Bengtsson F, Rydin Hå, Hájek T. Biochemical determinants of litter quality in 15 species of Sphagnum. Plant Soil. 2018;425:161–76.CAS 
    Article 

    Google Scholar 
    Fudyma JD, Lyon J, AminiTabrizi R, Gieschen H, Chu RK, Hoyt DW, et al. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct. 2019;3:e00179–17.Article 

    Google Scholar 
    He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, Song C, et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol Biochem. 2020;151:108024.CAS 
    Article 

    Google Scholar 
    Hanson CA. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. Hydrological feedbacks in northern peatlands. Ecohydrology. 2015;8:113–27.Article 

    Google Scholar 
    Reczuga MK, Lamentowicz M, Mulot M, Mitchell EAD, Buttler A, Chojnicki B, et al. Predator–prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands. Ecol Evol. 2018;8:5752–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012;1:134–42.Article 

    Google Scholar 
    Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012;46:1394–407.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gorbunov MY, Falkowski PG. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol Ocean. 2020;66:1–13.Article 
    CAS 

    Google Scholar 
    MacIntyre HL, Kana TM, Anning T, Geider RJ. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol. 2002;38:17–38.Article 

    Google Scholar 
    Grote EE, Belnap J, Housman DC, Sparks JP. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol. 2010;16:2763–74.Article 

    Google Scholar 
    Robarts RD, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research. 1987;21:391–9.CAS 
    Article 

    Google Scholar 
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, et al. Global Carbon Budget 2017. Earth Syst Sci Data. 2018;10:405–48.Article 

    Google Scholar  More

  • in

    Mapping hydrologic alteration and ecological consequences in stream reaches of the conterminous United States

    Overview of hydrologic and ecological mapping protocolMapping hydrologic and ecological alteration at the stream reach level followed a 7-step process that builds upon several previously published methods (Fig. 1). The steps include: (1) compiling a nationwide dataset of streamflow gauges from the US Geological Survey (USGS) and distinguishing reference and non-reference gages and associated records21,22,23, (2) assembling stream flow records and calculating hydrologic indices23, (3) quantifying hydrologic alteration for stream gages22, (4) developing models to predict hydrologic alteration from human disturbance variables24, (5) using models to extrapolate hydrologic alteration to ungauged stream reaches24, (6) developing empirical models of fish species richness responses to hydrologic alteration17, and (7) mapping fish richness responses to ungauged stream reaches based on modeled estimates of hydrologic alteration. Methodological details are provided in each of the publications cited above; however, an overview of the steps is provided here. We elaborate more fully on the detailed methodology starting at step 3, as this reflects more of the focus of the technical validation of the dataset (Fig. 1).Fig. 1Overview of the 7-step approach used to map hydrologic alteration and ecological consequences in stream reaches of the conterminous US.Full size imageStep 1 – Compiling a nationwide streamflow datasetWe assembled streamflow information for 7,088 USGS stream gages with at least 15 years of daily discharge data as of 2010. We only included gages with at least 15 years of complete annual records (i.e., those with More

  • in

    The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands

    Data management and workflowsWe adopt best-practice approaches for open and reproducible research planning, execution, reporting, and management throughout the project (see e.g.29,30,31,32). Specifically, we use community-approved standards for experimental design and data collection29, and clean and manage the data using a fully scripted and reproducible data workflow, with data and code deposited at open repositories (Fig. 2).Fig. 2The data collection and management workflow of the FunCaB project. Reproducibility throughout the research process is assured as follows: Experimental design and data collection was based on best-practice community methods and protocols, adapted for the projects’ needs. Measurements were digitalized and the raw data stored in the project Open Science Foundation (OSF) repository before the raw data were cleaned and managed through code-based data curation, with version control secured via GitHub. The clean data are stored at the OSF repository, and a time-stamped version of the code to retrieve and clean data is provided through Zenodo. This data paper describes and documents the data collection and workflow, and describes how to access and use clean data, raw data, and code.Full size imageResearch site selection and basic information, and general study setupSite selectionOur study is conducted across the twelve calcareous grassland experimental sites in the Vestland Climate Grid (VCG), in south-western Norway (Fig. 1a). The VCG sites were chosen to fit within a climate grid reflecting a fully factorial design encompassing the major bioclimatic variation in Norway. Potential sites were identified using a combination of topographic maps, geological maps (NGU) and interpolated maps of summer temperature and annual precipitation using the 1960–1990 climate normal (100 m resolution gridded data, met.no; see33 and references therein). The three temperature levels (alpine, sub-alpine, boreal) and four levels of precipitation in the climate grid (Fig. 1b) were selected to reflect a difference in mean growing season temperature of ca. 2 °C between three temperature levels (alpine = 6.5 °C, sub-alpine = 8.5 °C, boreal = 10.5 °C mean temperature of the four warmest months of the year) and a difference in mean annual precipitation of 700 mm between four precipitation levels (precipitation levels 1 – 4 representing 700 mm, 1400 mm, 2100 mm, and 2800 mm, respectively). Climate data for the site selection was based on 100-m resolution downscaled data using the 1960–1990 climate normal from met.no. The final sites were selected from approximately 200 potential sites visited and surveyed in the summer of 2008, with selection criteria set to ensure that other factors such as grazing regime and history, bedrock, vegetation type and structure, slope and exposure were kept as constant as possible among the selected sites34. Geographical distance between sites is on average 15 km and ranges from 175 km to 650 m.Study system and experimental area selection within sitesAt each site, we selected an experimental area of ca. 75 –200 m2, targeting a homogeneous and representative part of the target grassland vegetation at large at that site. The experimental areas were placed on southerly-facing slopes, avoiding depressions and concave areas in the landscape and other features such as big rocks or formations that may affect light conditions, hydrology and/or snowdrift. The target vegetation type was forb-rich semi-natural upland grassland vegetation34,35, within the plant sociological association Potentillo-Festucetum ovinae tending towards Potentillo-Poligonium vivipara in the alpine sites and Nardo-Agrostion tenuis in some lowland sites36. The most common vascular plants across sites, based on sum of covers, are the graminoids Agrostis capillaris, Festuca rubra, Avenella flexuosa, Anthoxanthum odoratum, and Nardus stricta and the forbs Leucantemum vulgare, Hypericum maculatum, Silene acaulis, Alchemilla alpina, and Lotus corniculatus. Common bryophytes are Pleurotium schreberi, Hylocomium splendens, Polythricum spp, Racomitrium lanuginosum, R. fasciculare, and Dicranum spp. All sites were moderately grazed prior to the study by sheep, cattle, goats, reindeer, deer, moose, and/or horses; and the experimental areas were fenced for the duration of the study to prevent animal and human disturbance of the experimental infrastructure. The fenced area was lightly mowed at the end of each growing season to mimic past grazing pressure and minimize fence effects. For further description of the sites, see34 and for access to and further description of site-level data, see35.Block and experimental plot setupWithin these study areas we established four blocks, with a distance between the blocks ranging from one up to (in rare cases) 50 meters. Blocks were selectively placed in homogenous grassland vegetation, avoiding rocks, depressions, and other features as described above. Each block accommodates eight 25 × 25 cm plots, with at least 25 cm between adjacent plots. If a plot contained more than 10% bare rock, shrubs, or other non-grassland features, they were rejected or moved slightly to avoid these features. The plots were permanently marked with four aluminium 10-cm long pipes in the soil in the outer corners of all the 25 × 25 cm treatment plots, ensuring the pipes to fit the corners of a standardized vegetation analysis frame (aluminium frame demarking a 25 × 25 cm inner area, with poles fixed in the corners that fit into the aluminium tubes used for plot demarcation in the field). The upslope left corner tube was marked with a colour-coded waterproof tape. Note that in 31 out of 48 cases (12 sites × 4 blocks), the blocks were located within larger experimental blocks in the VCG sites, and control plots and various block-level data are then shared with other experiments in these larger blocks. Linking keys are described in the FunCaB data dictionaries below (see Fig. 3 and data records iii-vii below). For some datasets, additional plots within blocks were needed. These are described as needed below.Fig. 3Data structure for the FunCaB functional group removal experiment and associated Vestland Climate Grid (VCG) and FUNDER project data. Within each of the three projects, boxes represent data tables. The FunCaB project data tables include biomass of functional groups removed and forb species-level biomass (datasets i, ii), soil temperature and moisture (datasets iii, iv) plant community composition and the associated taxon table (dataset v), seedling recruitment (dataset vi), ecosystem carbon fluxes (dataset vii) and reflectance (dataset viii). Names of individual data tables are given in the coloured title area, and a selection of the main variables available within tables in the internal lists. For full sets of variables for each FunCaB dataset, see Tables 3–9. The lines linking three of the boxes exemplify links using species as keys across tables, note that all bold variables are shared between several tables and can be used as keys to join them. Keys can also be used to link to/from data from other projects in the VCG (for general VCG project keys, see top right hatched outline box, for keys between the FunCaB and FUNDER projects see the bottom right hatched outline box (both including an example value for each variable on the right). The (other) datasets* boxes refer to extensive datasets on plant community composition, cover, biomass, fitness, and reproduction available from previous projects in the VCG27 and upcoming datasets in the FUNDER project.Full size imageBackground abiotic and biotic data from the Vestland Climate GridThe Vestland Climate Grid field sites were established in 2008, and from a series of research projects within the grid over the years we have collected a broad range of datasets on the climate and environment, soils, land-use and environment, vegetation, and ecosystems, along with basic descriptive data of the 12 sites, as described in34. All these datasets are available from the previous projects through the VCG OSF (Open Science Framework) repository35, and the results are presented in associated papers, see for example34,37,38,39,40,41,42,43,44,45. The overall data structure, and the most relevant datasets from the VCG for the FunCaB project is laid out in Fig. 3, and briefly described below. Code to download and link these data to the FunCaB experimental data and sites are provided in the FunCaB github repository28 (see R/download_VCG_data).A new research project, ‘FUNDER – Direct and indirect climate impacts on the biodiversity and FUNctioning of the UNDERground ecosystem’ funded by the Norwegian Research Council KLIMAFORSK programme (project number 315249, 2021 – 2025) will augment the FunCaB experiment with data on the belowground components of the plant-soil ecosystem, including roots, mesofauna, fungi and microbes. These upcoming data will all link with the FunCaB and VCG project based on the given experimental, site and organismal keys, as indicated in Fig. 3.VCG Basic site-level attributesBasic descriptive data on the 12 sites include latitude, longitude, elevation, geology, land-use, soils, and their position within the climate grid (precipitation and temperature levels). These data are described in34,40, provided in35, and can be downloaded using28 (see R/download_VCG_data). For convenience, the climate grid information is also provided in the biomass dataset (see below).VCG Site-level climate dataTemperature was measured continuously at each of the 12 VCG sites at four heights (2 m and 30 cm above ground, at ground level, and 5 cm below ground), soil moisture was measured continuously with two replicate loggers ca. 5 cm below ground, and precipitation was measured at each site during the snow-free season. For these measurements, we used Delta T GP1 loggers (Delta T devices, Cambridge, UK) equipped with two temperature probes, two SM200 moisture sensors which were later replaced as necessary with SM300 and SM150T loggers, and an ARG 100 tipping bucket (EML LTD, North Shields, UK) from 2009 onwards. UTL-3 version 3.0 temperature loggers (GEOTEST AG, Zollikofen, Switzerland) were used for measuring the 2 m and 30 cm temperatures. Soil moisture was measured as the mean of four measurements taken along each side of the turf, several times during the growing season using a Delta T HH2 version 2.3 Moisture Meter with the same probes as for the GP1 logger (SM200, SM150T). These data are described in34,40, provided in35, and can be downloaded using28 (see folder R/download_VCG_data).VCG Soil chemical and structural dataOver the years, various soil chemical variables have been measured at the block level within each of the 12 VCG sites, including soil pH (2009) and % Loss-On-Ignition (2009, 2013), and available N, as sum of N available as NH4-N and NO3-N (available N per deployment period, 2010 & 2012). Soil pH was measured after adding 50 ml distilled water to 25 g soil and mixing for two hours. Loss-on-ignition (LOI), was measured by weighing dry soil (105 °C for 24, one hour in a desiccator), and burnt soil (six hours at 550 °C, one hour in the desiccator) and calculating LOI as the (burnt soil mass/dry soil mass) × 100. NH4-N and NO3-N were measured using in-situ ion exchange resin bags (IERBs) were used to measure the amount of plant-available nutrients in the soil. These data are partially described in34,40, and the full data are provided in35.VCG Litter decomposition dataDecomposition has been assessed at each of the 12 VCG sites using local plant litter and the Tea Bag Index method (Keuskamp et al., 2013). Local litter (dead leaves detached from live plants) was collected at each site in 2013 or 2014, with the specific timing of the collections at each site tuned to ensure that litter was present, not covered by snow, and not decomposed. In practice, this necessitated litter collection after snowmelt in spring in many sites. The litter was washed, dried, and stored in dark, dry, cool conditions. In 2016, five replicate litter bags containing 1 g of graminoid litter were buried at each site, and collected at four points in time after burial (1, 2, 3 and 12 months). Harvested litter bags were cleaned (soil and roots removed), dried for 48 h at 60 °C and weighed. The Tea Bag Index method46 was used in 2014, 2015 and 2016 to measure decomposition at all sites of the climate grid. At each site, 10 replicates of each tea type were buried pair-wise, 8 cm below ground and with at least 10 cm between the tea bags. For a couple of sites, the number of replicate tea bag pairs was higher in 2015 (12 replicates at the site Gudmedalen and 16 replicates at Låvisdalen). After collection, adhering soil particles and roots were removed and the tea bags were dried (48 h at 60 °C) and weighed. These data are partially described in47, and the full data are provided in35 and can be downloaded using28 (see folder R/download_VCG_data).VCG Species-level cover, biomass, and performance dataA variety of plant species and community composition, cover, biomass, fitness, and reproductive data exists for the sites and blocks in the VCG from 2008 to 2021. These data are described in e.g34,37,38,41,43,44,45,48,49,50, and provided in35.VCG Site-level plant functional traitsIn 2016 and 2017, we measured 11 leaf functional traits that are related to potential physiological growth rates and environmental tolerance of plants, following the standardized protocols in Pérez-Harguindeguy et al.51: leaf area (LA, cm2), leaf thickness (LT, mm), leaf dry matter content (LDMC, g/g), specific leaf area (SLA, cm2/g), carbon (C, %), nitrogen (N, %), phosphorus (P, %), carbon nitrogen ratio (C:N), nitrogen phosphorus ratio (N:P), carbon13 isotope ratio (δ13C, ‰), and nitrogen15 isotope ratio (δ15N, ‰). Trait data are available at the site level for species making up at least 80% of the vegetation cover in the control plots at each of the 12 VCG sites. The plants were collected outside of the experimental plots and within a 50 m perimeter from the blocks, and we aimed to collect up to five individuals from each species in each site. To avoid repeated sampling from a single clone, we selected individuals that were visibly separated from other ramets of that species. The sampled plant individuals were labelled, put in plastic bags with moist paper towels, and stored in darkness at 4 °C until processing, which was done as soon as possible and always within 4 days. These data are described in52, provided in35, and can be downloaded using28 (see folder R/download_VCG_data).Experimental designThe functional group removal experiment was designed to examine the impact of aboveground interactions among the major plant functional groups – graminoids, forbs and bryophytes – on the performance and functioning of other components of the vegetation and ecosystem. The experiment consists of eight 25 × 25 cm plots per site and block, with a fully factorial combination of removals of three plant functional groups, with treatments randomized within each block. The general experimental design, with the different removal treatments detailed, are provided as an insert to the timeline in Fig. 1c. The functional groups are delineated and abbreviated in the various datasets as follows: G = graminoids (including grasses, sedges and rushes), F = forbs (including herbaceous forbs, pteridophytes, dwarf-shrubs, and small individuals of trees and shrubs), B = Bryophytes (including mosses, liverworts, and hornworts). Note that all species are also coded by their respective functional group into which they were classified in the FunCaB taxon table. The experimental treatments are coded by functional group removed so that FGB = bare-ground gaps with all plants removed, FB = only graminoids remaining, GB = only forbs remaining, GF = only bryophytes remaining, B = graminoids and forbs remaining, F = bryophytes and graminoids remaining, G = bryophytes and forbs remaining, and C = intact vegetation controls with no vegetation removed. In 2016, four extra control (XC) plots were marked per site for aboveground biomass harvest and ecosystem carbon flux measurements. This sampling regime gave a total of 384 plots in the core FunCaB experiment, plus the additional 48 controls in 2016.Functional group removals were done once in 2015 (at peak growing season due to late snowmelt), twice per year in 2016 and 2017 (after the spring growth and at peak growing season) and annually from 2018 to 2021 (at peak growing season) as regrowth had declined (see below) and biannual removals were no longer necessary. At each sampling, all above-ground biomass of the relevant plant functional group was removed from each plot as follows: for each plot, all the above-ground parts of the relevant functional group(s) were removed using scissors and tweezers to cut the plants at the ground layer (i.e., the soil-vegetation interface). Roots and other below-ground parts were not removed, and non-target plant functional groups and litter were left intact.Species identification, taxonomy, and floraAll vascular plant species were identified to the species level in the field, with nomenclature following Lid and Lid53. Exceptions are sterile specimens of species that are not possible to identify without reproductive parts, and where flowers are either too rare or individuals too short-lived for comparisons of the position of individuals within the plots over years to be used to ascertain identifications (For example, Alchemilla spp. excluding A. alpina, and the annual Euphrasia spp.). Species identifications were confirmed by comparing records over time as described below. All unidentified specimens are included and flagged in the dataset, as described in Data Records below. The full taxon names are provided in the taxon table on OSF (Fig. 3).Dataset collection methodsDatasets (i–ii): Biomass and functional group removalAs described above, functional group removals were done once in 2015 at peak growing season, and twice per year in 2016 and 2017 (after the spring growth; at peak growing season) and annually at peak growing season from 2018 to 2021. For each removal plot and occasion, a picture was taken of the plot pre-removal, the biomass to be removed was collected in separate pre-marked paper bags for each functional group (graminoids, forbs and bryophytes), and a picture was taken post-removal. The collected biomass was then dried at 60 °C for 48 hours and weighed to the nearest 0.01 g (Model LPG-1002, VWR). From the four extra control (XC) plots in 2016, total above-ground biomass as well as litter (defined as dead biomass detached from live plants, see28) was collected at peak growing season. From these plots, biomass was sorted into functional groups as described above, except the forb functional group, which was sorted into species. The graminoid and bryophyte functional groups, each forb species, and litter were individually dried and weighed as described above. The data is available as (i) a biomass dataset, consisting of the removed biomass per plot, date, removal treatment, and functional group for all treatment plots, and the total biomass per functional group plus litter for the extra control plots in 2016, and (ii) a species-level forb biomass dataset from the extra control plots in 2016 (Fig. 3, Table 1).Datasets (iii-iv) – Soil microclimateWe measured soil temperature 3–5 cm below the soil surface for each plot using iButton temperature sensors (DS1922L, Manufacturer reports temperature accuracy of ±0.5 °C, Maxim Integrated INC., San Jose, CA, USA). The data are reported with a resolution of 0.0625 at 140 min intervals from June 2015 to July 2016. We measured soil moisture as volumetric soil moisture; expressed as % water volume per soil volume ((m3 water /m3 soil) × 100). These measurements were done c. 3–5 times during the growing seasons from 2015–2019, usually in connection with the flux and vegetation measurements, by taking the average of four measurements, one at each side of each plot (SM300, Manufacturer reports accuracy ±2.5% vol over 0 to 50% vol and 0–60 °C, Delta-T Devices, Cambridge, UK). The data is available as (iii) temperature and (iv) volumetric soil moisture % per plot and time point (temperature) or date (moisture) (Fig. 3, Table 1).Dataset (v): Vascular plant community composition and vegetation structureWe recorded the full vascular plant species composition of all experimental plots in 2015 (pre treatment), and the control plots plus the extra control plots in 2016. In 2017, 2018, and 2019, we recorded the community composition in controls and in the functional groups that remained in the experimental plots according to the plot’s treatment. At each analysis, each plot was sub-divided into 25 5 × 5 cm subplots, using a subplot overlay. We first recorded all species of vascular plants in the central five subplots, (i.e., the central + shaped area of each plot, Fig. 1c) noting the subplot cover of each species present in each of the five subplots (1 – 25% = 1, 26 – 50% = 2, 51 – 75% = 3, >76% = 4). Additionally, we noted if the individual was fertile (records circled if buds, flowers, or fruits were present). The five subplots were recorded and numbered (1-5) by row, and from left to right, starting from the top up-slope subplot. For the entire 25 × 25 cm plot, any additional species not present in one of the central subplots were recorded and their fertility noted. We then visually estimated the percentage cover of each vascular plant species in the whole plot to the nearest 1% and measured vegetation height in mm at four points within the plot. Note that the total coverage in each plot can exceed 100% due to layering of the vegetation. The vascular plant vegetation data is available as percentage cover and fertility status (sterile or fertile) per species per subplot and plot per sampling date, and vegetation height in mm per plot per sampling date (Fig. 3, Table 1).Other variables that were measured were percentage cover of bryophytes, litter, bare ground, and rock (measured per plot and per subplot) and moss layer depth in mm (mean of 4 measurements/plot), date of analysis, recorder/scribe (if any), and free-text comments. These data are available as % cover, depth in mm, date (year.month.day) and text strings per subplot and /or plot per sampling date (Fig. 3, Table 1).Dataset (vi): Seedling recruitmentThe total number of forb seedlings that emerged in the plots was recorded in 2018 and 2019. At peak growing season in 2018 (round 1, July-August, depending on site), all dicotyledonous seedlings were marked with wooden toothpicks and their x and y coordinates in the plot (mm, recorded from the bottom left hand-corner of the plot, Fig. 1c) and tentative species identity noted. Toward the end of the growing season (round 2, August-September, depending on site), each plot was revisited, seedling survival established, and any further seedlings marked. Survival (recorded when a seedling was present in subsequent surveys; recorded as mortality if absent) and new seedling emergence were followed up in the same manner in 2019 (rounds 3 and 4, respectively). Species identification was (re)assessed at all censuses and corrected if needed as the seedlings grew and identification uncertainty decreased. New seedlings were differentiated from emergent clonal ramets by looking for cotyledons or signs of above- or below-ground ramet connections. These data are available as talleys of seedlings, each with a status (dead or alive) and species identity (or NA when not identifiable), per subplot and /or plot per sampling round (Fig. 3, Table 1).Dataset (vii): Ecosystem carbon flux data and flux calculationsCarbon flux measurementsEcosystem CO2 fluxes were measured to estimate net ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP). The dataset covers the years 2015, 2016 and 2017, and individual plots have multiple measurements for ecosystem carbon flux per year as detailed below. At peak growing season in 2015, a median of 2 sets of paired carbon flux measurements were measured pre-removal for all plots, where a paired set consist of a light and a dark flux measurement of an individual plot. In 2016, a median of 8 sets of paired measurements were made for all control plots, and a median of 7 for the 4 extra controls (see experimental design above). In the data files, some additional measurements exist for other experiments in the VCG sites (a median of 7 paired sets of measurements for controls (TTC) and graminoid removal plots (RTC), see42 for a presentation of this experiment and35 for technical details). In 2017, a median of 5 paired sets of measurements were made for all treated plots in nine of the sites, excluding the second wettest precipitation level (sites Gudmedalen, Rambera, and Arhelleren). These measurements were made ca. 1 week after the first round of plant functional group removals in that season.At each sampling occasion, a clear chamber (25 × 25 × 40 cm) equipped with two fans for air circulation and connected to an infrared gas analyzer (Li-840; Manufacturer reports accuracy within 1.5% of the reading value; LI-COR Biosciences, Lincoln, NE, USA) was used to measure CO2 fluxes at all plots. To prevent cutting of roots and disruption of water flow in the plots by installing collars, we instead attached a windshield to the bottom of the chamber and weighed it down on the ground by a heavy chain to prevent wind-air mixing. At each sampling occasion we made paired measurements of fluxes under light and dark conditions, covering the chamber with a fitted light-excluding cover for the dark measurements.NEE was estimated from measurements of CO2 flux under ambient light and dark conditions: NEElight = GPP – Reco, NEEdark = (-) Reco. We define NEE such that negative values reflect CO2 uptake in the ecosystem, and positive values reflect CO2 release from the ecosystem to the atmosphere. For each measurement, CO2 concentration was recorded at 5 s intervals over a period of 90–120 s. NEE was calculated from the temporal change of CO2 concentration within the closed chamber according to the following formula:$$NEE=frac{delta C{O}_{2}}{delta t}times frac{PV}{Rtimes Atimes (T+273.15)}$$where (delta frac{C{O}_{2}}{delta t}) is the slope of the CO2 concentration against time (µmol mol−1 s−1), P is the atmospheric pressure (kPa), R is the gasconstante (8.314 kPa m3 K−1 mol−1), T is the air temperature inside the chamber (°C), V is the chamber volume (m3) and A is the surface area (m2).Light intensity was measured as photosynthetically active radiation (PAR, µmol m−2 s−1) using a quantum sensor (Li-190; Manufacturer reports absolute calibration accuracy of ±5%; LI-COR Biosciences, Lincoln, NE, USA) placed inside the chamber. Temperature inside the chamber was measured using an iButton temperature logger (DS1922L, Manufacturer reports temperature accuracy of ±0.5 °C, Maxim Integrated, San Jose, CA, USA). Volumetric soil moisture content (m3 water/m3 soil) × 100 was measured by calculating the average of four measurements with a soil moisture sensor (SM300, Manufacturer reports moisture accuracy of ±2.5%, Delta-T Devices, Cambridge, UK), taken at each side of a plot.Data management and calculationsData from the LiCOR data logger and iButton was downloaded in the field and stored. The information from the field data sheets (metadata of CO2 measurements and plot soil moisture) was manually entered into digital worksheets, manually proof-read and stored. Data from the data logger (PAR and CO2) and the iButton temperature logger were linked based on information from the field data sheets. All measurements were first visually evaluated for quality and only measurements that showed a consistent linear relationship between CO2 over a time for a period of at least 60 s were used for NEE calculations. A second inclusion criterion was that this relationship had R2 ≤ 0.2 or R2 ≥ 0.8 for NEE measurement in light conditions and R2 ≥ 0.8 for NEE dark measurements (Reco). Measurements of NEE in light conditions with R2 ≤ 0.2 ensures representation of measurements with equal rates for Reco and GPP. Third, paired measurements that were more than 2 h apart were excluded. These data are available as raw fluxes and as GPP and Reco per plot per measurement (Fig. 3, Table 1).Dataset (vi): ReflectanceReflectance measures of Normalized Difference Vegetation Index (NDVI) were taken for each plot during the 2019 (post functional group removal) and 2021 (pre and post removal) field seasons (July-August), using a Trimble Greenseeker Handheld Crop Sensor (Trimble Inc., Sunnydale, CA, USA). As the sensor measures an elliptical plane, two measures perpendicular to each other were taken for each subplot (25 × 25 cm plot), with the centre of each ellipse being the centre of the subplot. Care was taken to ensure that sampling quadrat frames were not within the sensor range when conducting measurements (see methods Dataset ii). Measures of NDVI were taken at 60 cm above the surface where possible. Height was measured perpendicular to the sampled ground surface. These data are available as reflectance per plot per sampling date (Fig. 3, Table 1). More

  • in

    Drone-based investigation of natural restoration of vegetation in the water level fluctuation zone of cascade reservoirs in Jinsha River

    Species composition of vegetation in the WLFZIn this survey, a total of 44 species in 43 genera of 21 families of vascular plants were found and confirmed in the reservoir WLFZ of the Jinsha River basin, among which, 13 genera and 13 species of Compositae, 4 genera and 4 species of Gramineae, 3 genera and 3 species of Amaranthaceae, 2 genera and 2 species of Verbenaceae, Labiatae, Umbelliferae, Cruciferae and Convolvulaceae, 1 genus and 2 species of Polygonaceae, and the remaining 12 families were all single genera. Compositae had the highest number of species, followed by Gramineae and Amaranthaceae, accounting for 29.55%, 9.09% and 6.82% of the total number of species in this survey, respectively, which are the main dominant families in the region.According to the life type classification system of the Flora of China, the plants in the WLFZ of this survey can be classified into five life types: annual herbs, perennial herbs, annual or biennial herbs, annual or perennial herbs, and biennial herbs. The community is overwhelmingly dominated by annuals with a high proportion of 54.55%, followed by perennials with 34.09% and the rest of all life types with a total of 11.36%.The higher number of annual plants indicates that the environmental conditions in the WLFZ are harsher after inundation by water storage, and plants that can complete their entire life cycle in a short period of time after receding water are more likely to survive compared to plants that take a long time to complete their entire life cycle.The vegetation types in each study area of the WLFZ are shown in Table 3, among which 17 species, including S. subulatum, E. humifusa, C. bonariensis, V. officinalis, O. biennis, S. plebeia, U. fissa, B. juncea, S. orientalis, D. repens, A. lividus, T. mongolicum, G. parviflora, P. praeruptorum, P. hys-terophorus, D. stramonium and Ph. Nil, are newly discovered species in the reservoir WLFZ, which are rarely reported in other reservoir WLFZ studies so far. Among the study areas, the Longkou study area was the richest in vegetation types, with the most families, species and life types among all study areas, and the number of perennial herb species was comparable to that of annual herb species, while all other study areas were mainly dominated by annual herbs. The vegetation composition of the remaining study areas averaged 6–8 families and 11–12 species, except for the Ludila study area with no plants growing and the Liyuan study area with only 5 families and 5 species. In general, each study area was dominated by Compositae and Gramineae.Table 3 Vegetation composition in each study area.Full size tableVegetation area, coverage, and percentage of the WLFZAccording to the vegetation classification in the WLFZ of each study area (Fig. 5 and Table 4), the vegetation coverage of the study areas of the Liyuan, Ahai, Ludila and Guanyinyan reservoir WLFZ were all less than 5%. The study area of Ludila was completey devoid of vegetation in the WLFZ. The coverage in Liyuan was only 0.02%, with mostly individual herbaceous plants sporadically distributed on the upper boundary of the WLFZ. In Ahai, C. dactylon grow concentratly in patches at the top of the WLFZ together with some other sparsely growing vegetation, with a coverage of 1.47%. The vegetation coverage of Guanyinyan was 3.21%, mainly distributed in the upper part of the WLFZ and expanding towards the middle. In this area, 30.39% of the vegetation was X. sibiricum, growing in large tracts as low seedlings; 21.03% was A. sessilis growing in patches, 10.87% was C. dactylon growing mainly on the upper boundary of the WLFZ, and 37.71% was a mixture of plants growing in clusters with only a few of each.Figure 5The results of vegetation classification in the WLFZ of each study area. (a) Liyuan, (b) Ahai (c) Longkaikou, (d) Ludila, (e) Guanyinyan, (f) Xiluodu. Note: Non-Veg (Non-vegetation), Other-Veg (Other vegetation), C. Dac (Cynodon dactylon), A. Ses (Alternanthera sessilis), C. Bon (Conyza bonariensis), Ch. Amb (Chenopodium ambrosioides), C. Can (Conyza canadensis), D. Rep (Dichondra repens), H. Sib (Hydrocotyle sibthorpioides), V. Off (Verbena officinalis), X. Sib (Xanthium sibiricum). (Generated with eCognition Developer, and the URL is https://www.ecognition.com).Full size imageTable 4 Vegetation area, vegetation coverage and vegetation classification accuracy of WLFZ in each study area.Full size tableThe vegetation coverage of Longkaikou and Xiluodu WLFZ was more abundant, 46.47% and 55.81% respectively. In Longkaikou, vegetation mainly covered the middle and upper parts of the WLFZ. Of the vegetation, 66.38% was C. dactylon, 26.50% was A. sessilis, 2.35% was H. sibthorpioides, 1.68% was Ch. ambrosioides, and 3.09% was a variety of vegetation species, only a few of each, divided into Other-Veg class.Due to weather and equipment constraints, we were unable to photograph the upper and lower boundaries of the WLFZ in Xiluodu study area, but we still obtained the images of the main part of the WLFZ, which consisted mainly of 58.4% X. sibiricum, 28.04% C. dactylon, 10.59% S. viridis, and 2.97% other vegetation.The vegetation coverage in the WLFZ of different reservoirs of the Jinsha River basin varied significantly, but in terms of quantity, most of them were absolutely dominated by 1–4 species, which were distributed in patches and strips, and covered an area and proportion far more than the rest of the vegetation, while the rest of the vegetation was sparse in quantity each and was sporadically distributed. C. dactylon, A. sessilis, X. sibiricum, S. viridis, H. sibthorpioides, Ch. Ambrosioides were the main dominant and pioneer species for vegetation restoration in the reservoir WLFZ of the Jinsha River basin.Spatial distribution pattern of vegetation in fluctuating zoneSince no vegetation survived in the Ludila study area, and the vegetation in the Liyuan, Ahai and Guanyinyan study areas was sparse, with less than 5% coverage, and all of them were concentrated in the upper part of the WLFZs (Fig. 5), this paper mainly analyzed the spatial distribution pattern of vegetation in the Longkou and Xiluodu study areas, which had better vegetation coverage.Landscape patternCA is a basic index for landscape pattern study, and LPI reflects the proportion of the largest patch in the landscape type to the total landscape area, which is an expression of patch dominance. The SHAPE and PAFRAC describe the complexity of patch shape, the larger the SHAPE value indicates the more complex patch shape; the closer the PAFRAC value to 1 indicates the more regular patch shape. PROX reflects the degree of proximity of each landscape type, the larger its value indicates the higher degree of patch aggregation and the lower degree of fragmentation; ENN describes the degree of physical connection of the landscape types, the larger its value indicates the greater distance between patches and the greater degree of fragmentation.From the overall landscape level (Fig. 6), in the Longkaikou study area, CA and LPI showed that the areas of vegetation patches were large, less spatially fluctuating and uniform distribution, with obvious patch dominance, reflecting characteristics of patchy distribution; PROX and ENN showed that the vegetation patches were clustered and the landscape was well connected; SHAPE and PAFRAC showed that there was little variation in the shape complexity of vegetation patches in most areas of the WLFZ.Figure 6Spatial characteristics of vegetation landscape pattern index in the Longkaikou study area (Generated with ArcGIS 10.5 software, and the URL is: https://www.esri.com/en-us/home).Full size imageAt the level of landscape types (Table 5), the vegetation landscape types in the Longkou study area included C. dactylon, A. sessilis, H. sibthorpioides and other vegetation, among which, C. dactylon showed significant advantages in patch area, patch dominance, patch aggregation and connectivity; followed by A. sessilis and H. sibthorpioides, A. sessilis was significantly better than H. sibthorpioides in patch area, but in patch shape, H. sibthorpioides was more aggregated than A. sessilis and had better patch connectivity; Other-Veg showed significant weaknesses in patch area and aggregation; there were no significant differences among the landscape types in patch shape.Table 5 Landscape index of patch types in the Longkaikou study area.Full size tableThe spatial characteristics of the vegetation landscape pattern index in the Xiluodu study area were shown in Fig. 7. From the overall level of the landscape, the area of vegetation patches and the dominance of patches were spatially variable, the vegetation was well connected, with obvious characteristics of patchy distribution, and the shape of vegetation patches did not show obvious spatial characteristics.Figure 7Spatial characteristics of vegetation landscape pattern index in the Xiluodu study area (Generated with ArcGIS 10.5 software, and the URL is:https://www.esri.com/en-us/home).Full size imageFrom the level of landscape types (Table 6), the vegetation landscape types in Xiluodu study area included four categories: X. sibiricum, C. dactylon, S. viridis and Other-Veg type. Among them, X. sibiricum showed obvious advantages in patch area, patch dominance, patch aggregation and connectivity, followed by C. dactylon, both of which were significantly better than S. viridis and Other-Veg, and the differences in patch shape complexity among landscape types were small.Table 6 Landscape index of patch types in the Xiluodu study area.Full size tableDistribution characteristics along terrainAccording to the statistics (Fig. 8), the vegetation area share of Longkaikou study area in the upper, middle and lower elevation gradients of the WLFZ was 54.61%, 26.62% and 18.77%, respectively, indicating that the vegetation was mostly in the upper part of the WLFZ, with a coverage of 83.80%, while the vegetation in the lower part was the least, with a coverage of less than 1%. From the viewpoint of each vegetation species, in the upper part of the WLFZ, C. dactylon had the largest area, accounting for 66.9% of the total vegetation area, followed by A. sessilis, accounting for 25.9%, while H. sibthorpioides and Other-Veg only survived in the upper part, accounting for 2.3% and 4.9% each. From the distribution of each slope class, the vegetation of the WLFZ gradually decreased with the increase of slope, and the vegetation was mainly concentrated in the range of slope 35°, and the coverage of each vegetation decreased significantly when the slope exceeded 35°. In the aspect, the distribution of vegetation in the WLFZ did not show any obvious preference. The surface relief in the study area of Longkou was generally low, and C. dactylon was mainly distributed in the range of surface relief less than 0.84 m. When the surface relief is greater than 2.52 m, the vegetation coverage tends to be close to 0. The vegetation showed no obvious distribution preference in terms of surface roughness and topographic wetness index.Figure 8Changes in vegetation coverage with topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageThe spatial distribution of vegetation in the study area of Xiluodu was shown in Fig. 9. The maximum drop in water level at Xiluodu study area can reach 60 m, but only the half of the upper part of the subsidence zone with a drop of about 30 m was photographed. The coverage rate of C. dactylon was the largest in this elevation gradient, S. viridis was mainly distributed in the uppermost part of the zone, while X. strumarium was well covered in all elevation gradients. From the distribution of surface relief, the overall vegetation coverage decreases with the increase of surface relief, with X. strumarium and S. viridis mainly distributed in the area of 0–3.45 m, while both the coverage of C. dactylon and Other-Veg were not much different across the surface relief . The distribution of vegetation showed no obvious preference in terms of slope, aspect, surface roughness and topographic wetness index.Figure 9Changes in vegetation coverage with topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageInfluence of topographic factors on the spatial distribution pattern of vegetation in the WLFZAccording to the results of species distribution modeling, the number of samples in the study area of Longkaikou was 39,321, and the overall accuracy of the model was 88.2%. The terrain factors, in descending order of importance, were elevation  > slope  > surface relief  > surface roughness  > aspect  > topographic wetness index, with values of 0.681, 0.146, 0.091, 0.042, 0.033 and 0.007, respectively (Fig. 10). It can be seen that the vegetation distribution in the WLFZ was mainly influenced by elevation, followed by slope and surface relief, and is less influenced by surface roughness, aspect and topographic wetness index. This was consistent with the results of typical correlation analysis.Figure 10Ranking of important values of topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageA total of six pairs of typical variables were calculated in the Longkou study area, and standardized typical coefficients were used due to the inconsistency of each landscape pattern index as well as topographic factor units. According to the results of significance test (Table 7), the first four pairs of typical p-values were less than 0.05, indicating that the correlations reached a significant level, and their correlation coefficients were 0.565, 0.262, 0.142, and 0.034, among which the correlation coefficient of the first pair was the largest, so the first pair was selected for analysis. The topographic factors and landscape indices highly correlated with the first pair of typical variables were elevation, surface relief and CA and SHAPE, respectively. According to Tables 8 and 9, their mechanism of action was that the greater the elevation, the smaller the surface relief, resulting in a larger patch size and more complex shape of the vegetation, and therefore a more frequent exchange of energy with the outside world and a greater ability to survive.Table 7 Significance test of typical correlation coefficient in the Longkaikou study area.Full size tableTable 8 Standardized canonical correlation coefficients of terrain factors in the Longkaikou study area.Full size tableTable 9 Standardized typical correlation coefficients of landscape pattern in the Longkaikou study area.Full size tableThe number of samples in the study area of Xiluodu was 41,010, and the overall accuracy of the model was 61.4%. The terrain factors, in descending order of importance, were elevation  > surface relief  > ground roughness  > aspect  > slope  > terrain moisture index, with values of 0.395, 0.209, 0.157, 0.123, 0.073, and 0.043, respectively (Fig. 11). It can be seen that the vegetation distribution in the WLFZ was most influenced by the elevation, followed by the surface relief.According to the typical correlation analysis, six pairs of typical variables were calculated for the Xiluodu study area, of which the first four pairs had typical P values less than 0.05 (Table 10), indicating that the correlation reached a significant level, and their correlation coefficients were 0.299, 0.208, 0.102, and 0.033, and the first pair was the largest, so the first pair was selected for analysis.The topographic factors and landscape indices with high correlation with the first pair of typical variables were elevation,surface relief and CA, PAFRAC, respectively, and according to Tables 11 and 12, their mechanism of action was that the greater the elevation, the greater the surface relief, leading to a smaller patch area and simpler shape of the vegetation.Figure 11Ranking of important values of topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageTable 10 Significance test of typical correlation coefficient in the Xiluodu study area.Full size tableTable 11 Standardized canonical correlation coefficients of terrain factors in the Xiluodu study area.Full size tableTable 12 Standardized typical correlation coefficients of landscape pattern in the Xiluodu study area.Full size tableLimiting factors of vegetation restoration in WLFZPreliminary studies showed that after long-term water level fluctuations in the cascade reservoirs, most of the vegetation in the WLFZs of the cascade reservoirs in the Jinsha River basin could be restored to different degrees, however, the restored species types were relatively simple, all of them were herbaceous plants, and mainly annual herbaceous plants. The restoration of the WLFZs of different reservoirs varied significantly, with vegetation coverage of more than 46% and 27 species types in the better restored areas, such as the Longkou study area, while the vegetation coverage of the less restored areas was usually less than 5% and 5–12 species types, and some areas even had no grass, such as the Ludila study area. According to the statistics (Fig. 12), the habitats in the study area of different reservoirs in the Jinsha River basin were significantly heterogeneous, with significant differences in climate, soil conditions, topography, and water level drop, etc. Because of the inconsistent range of values and units of different environmental factors, comparative analysis was performed by normalization, as shown in Fig. 12, vegetation cover was significantly correlated with the average soil Ph and the average thickness of the subsurface 30 cm soil layer, and the two study areas with average soil Ph greater than 8, Pear Garden and Rudyra, were almost completely bare. These two study areas were almost dominated by sand and gravel, with thin soils averaging  8 and soil thickness  More

  • in

    Weak effects on growth and cannibalism under fluctuating temperatures in damselfly larvae

    Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42. https://doi.org/10.1111/brv.12216 (2017).Article 
    PubMed 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. The impacts of repeated cold exposure on insects. J. Exp. Biol. 215, 1607–1613. https://doi.org/10.1242/jeb.059956 (2012).Article 
    PubMed 

    Google Scholar 
    Bale, J. & Hayward, S. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingsolver, J. G. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L. Physiol. Biochem. Zool. 73, 621–628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stange, E. E. & Ayres, M. P. Climate change impacts: Insects (JohnWiley & Sons, 2010).
    Google Scholar 
    Chapman, A. D. Numbers of Living Species in Australia and the World: Report for the Department of the Environment and Heritage Canberra, Australia (Department of the Environment and Heritage, 2006).
    Google Scholar 
    Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140. https://doi.org/10.1146/annurev-ento-010814-021017 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506. https://doi.org/10.1111/j.1365-2486.2005.00904.x (2005).ADS 
    Article 

    Google Scholar 
    Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543. https://doi.org/10.1111/geb.12865 (2019).Article 

    Google Scholar 
    Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117. https://doi.org/10.1073/pnas.2002543117 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118. https://doi.org/10.1016/j.cois.2021.06.003 (2021).Article 
    PubMed 

    Google Scholar 
    Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).Book 

    Google Scholar 
    Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342. https://doi.org/10.1086/377187 (2003).Article 
    PubMed 

    Google Scholar 
    Jensen, J. L. W. V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta Caterpillars. Physiol. Zool. 70, 631–638. https://doi.org/10.1086/515872 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 
    Article 

    Google Scholar 
    Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).PubMed 
    Article 

    Google Scholar 
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612 (2014).Article 

    Google Scholar 
    Sandehson, D. E. The relation of temperature to the growth of insects. J. Econ. Entomol. 3, 113–140 (1910).Article 

    Google Scholar 
    Cook, W. C. Some Effects of Alternating Temperatures on the Growth and Metabolism of Cutworm Larvae (Oxford University Press, 1927).
    Google Scholar 
    Kingsolver, J. G., Ragland, G. J. & Diamond, S. E. Evolution in a constant environment: Thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution 63, 537–541. https://doi.org/10.1111/j.1558-5646.2008.00568.x (2009).Article 
    PubMed 

    Google Scholar 
    Eldridge, W. H., Sweeney, B. W. & Law, J. M. Fish growth, physiological stress, and tissue condition in response to rate of temperature change during cool or warm diel thermal cycles. Can. J. Fish. Aquat. Sci. 72, 1527–1537 (2015).CAS 
    Article 

    Google Scholar 
    Bernhardt, J. R., Sunday, J. M., Thompson, P. L. & O’Connor, M. I. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc. R. Soc. B Biol. Sci. 285, 20181076. https://doi.org/10.1098/rspb.2018.1076 (2018).Article 

    Google Scholar 
    Morissette, J., Swart, S., Maccormack, T. J., Currie, S. & Morash, A. J. Thermal variation near the thermal optimum does not affect the growth, metabolism or swimming performance in wild Atlantic salmon Salmo salar. J. Fish Biol. 98, 1585–1589. https://doi.org/10.1111/jfb.14348 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bozinovic, F. et al. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84, 543–552 (2011).PubMed 
    Article 

    Google Scholar 
    Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17, 69–73. https://doi.org/10.1016/j.cois.2016.07.004 (2016).Article 
    PubMed 

    Google Scholar 
    Lemoine, N. P., Drews, W. A., Burkepile, D. E. & Parker, J. D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122, 1669–1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x (2013).Article 

    Google Scholar 
    Vangansbeke, D. et al. Prey consumption by phytoseiid spider mite predators as affected by diurnal temperature variations. Biocontrol 60, 595–603 (2015).Article 

    Google Scholar 
    Davies, C., Coetzee, M. & Lyons, C. L. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter-and intra-specific competition. Parasit. Vectors 9, 1–9 (2016).Article 

    Google Scholar 
    Delava, E., Fleury, F. & Gibert, P. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association. J. Therm. Biol. 60, 95–102 (2016).PubMed 
    Article 

    Google Scholar 
    Amarasekare, P. & Coutinho, R. M. Effects of temperature on intraspecific competition in ectotherms. Am. Nat. 184, E50–E65. https://doi.org/10.1086/677386 (2014).Article 
    PubMed 

    Google Scholar 
    Jiang, L. & Morin, P. J. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. J. Anim. Ecol. 73, 569–576 (2004).Article 

    Google Scholar 
    Novich, R. A., Erickson, E. K., Kalinoski, R. M. & DeLong, J. P. The temperature independence of interaction strength in a sit-and-wait predator. Ecosphere 5, 1–9 (2014).Article 

    Google Scholar 
    Fox, L. R. Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975).Article 

    Google Scholar 
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).Article 

    Google Scholar 
    Nishimura, K. & Isoda, Y. Evolution of cannibalism: Referring to costs of cannibalism. J. Theor. Biol. 226, 293–302. https://doi.org/10.1016/j.jtbi.2003.09.007 (2004).ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).Article 

    Google Scholar 
    Reglero, P., Urtizberea, A., Torres, A. P., Alemany, F. & Fiksen, Ø. Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar. Ecol. Prog. Ser. 433, 205–219 (2011).ADS 
    Article 

    Google Scholar 
    Nilsson-Örtman, V., Stoks, R. & Johansson, F. Competitive interactions modify the temperature dependence of damselfly growth rates. Ecology 95, 1394–1406. https://doi.org/10.1890/13-0875.1 (2014).Article 
    PubMed 

    Google Scholar 
    Pritchard, G. & Leggott, M. Temperature, incubation rates and the origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: A review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. In Aquatic Insects: Challenges to Populations 36–54 (CABI, 2008).Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).PubMed 
    Article 

    Google Scholar 
    Hyeun-Ji, L. & Johansson, F. Compensating for a bad start: Compensatory growth across life stages in an organism with a complex life cycle. Can. J. Zool. 94, 41–47 (2016).Article 

    Google Scholar 
    Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248. https://doi.org/10.1046/j.1365-2311.2000.00251.x (2000).Article 

    Google Scholar 
    Karl, T. R. Modern global climate change. Science 302, 1719–1723. https://doi.org/10.1126/science.1090228 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meehl, G. A. et al. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
    Google Scholar 
    Meehl, G. A. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Khelifa, R. Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects, in Chapter 1 (Geographic Gradients in Climate Change Response Explained by Non-linear Thermal-Performance Curves) (University of Zurich, 2017).
    Google Scholar 
    Boudot, J. P. & Kalkman, V. Atlas of the European Dragonflies and Damselflies (KNNV Publishing, 2015).
    Google Scholar 
    Norling, U. Growth, winter preparations and timing of emergence in temperate zone Odonata: Control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).Article 

    Google Scholar 
    Sniegula, S. & Johansson, F. Photoperiod affects compensating developmental rate across latitudes in the damselfly Lestes sponsa. Ecol. Entomol. 35, 149–157. https://doi.org/10.1111/j.1365-2311.2009.01164.x (2010).Article 

    Google Scholar 
    Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648. https://doi.org/10.1111/1365-2656.12947 (2019).Article 
    PubMed 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benke, A. C. A method for comparing individual growth rates of aquatic insects with special reference to the Odonata. Ecology 51, 328–331 (1970).Article 

    Google Scholar 
    Nilsson-Örtman, V., Stoks, R., De Block, M. & Johansson, F. Generalists and specialists along a latitudinal transect: Patterns of thermal adaptation in six species of damselflies. Ecology 93, 1340–1352. https://doi.org/10.1890/11-1910.1 (2012).Article 
    PubMed 

    Google Scholar 
    Eklund, A. et al. Sveriges Framtida Klimat: Underlag Till Dricksvattenutredningen (SMHI, 2015).
    Google Scholar 
    McPeek, M. A. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology 71, 83–98. https://doi.org/10.2307/1940249 (1990).Article 

    Google Scholar 
    Kirillin, G. et al. FLake-global: Online lake model with worldwide coverage. Environ. Model. Softw. 26, 683–684. https://doi.org/10.1016/j.envsoft.2010.12.004 (2011).Article 

    Google Scholar 
    SMHI. Advanced Climate Change Scenario Service. https://www.smhi.se.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Suhling, F., Suhling, I. & Richter, O. Temperature response of growth of larval dragonflies–An overview. Int. J. Odonatol. 18, 15–30 (2015).Article 

    Google Scholar 
    Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: A new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 1, 1. https://doi.org/10.1111/2041-210X.13585 (2021).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).CAS 
    Article 

    Google Scholar 
    Hemmingsen, A. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium. Energy Metab. Relat. Body Size Respir. Surf. Evol. 9, 6–110 (1960).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Logan, J. D., Wolesensky, W. & Joern, A. Temperature-dependent phenology and predation in arthropod systems. Ecol. Model. 196, 471–482. https://doi.org/10.1016/j.ecolmodel.2006.02.034 (2006).Article 

    Google Scholar 
    Pink, M. & Abrahams, M. V. Temperature and its impact on predation risk within aquatic ecosystems. Can. J. Fish. Aquat. Sci. 73, 869–876. https://doi.org/10.1139/cjfas-2015-0302 (2016).Article 

    Google Scholar 
    DeAngelis, D., Cox, D. & Coutant, C. Cannibalism and size dispersal in young-of-the-year largemouth bass: Experiment and model. Ecol. Model. 8, 133–148 (1980).Article 

    Google Scholar 
    Fagan, W. F. & Odell, G. M. Size-dependent cannibalism in praying mantids: Using biomass flux to model size-structured populations. Am. Nat. 147, 230–268 (1996).Article 

    Google Scholar 
    Dong, Q. & Deangelis, D. L. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study. Trans. Am. Fish. Soc. 127, 174–191 (1998).Article 

    Google Scholar 
    Verheyen, J. & Stoks, R. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. J. Anim. Ecol. 88, 624–636. https://doi.org/10.1111/1365-2656.12946 (2019).Article 
    PubMed 

    Google Scholar 
    Starr, S. M. & McIntyre, N. E. Effects of water temperature under projected climate change on the development and survival of Enallagma civile (Odonata: Coenagrionidae). Environ. Entomol. 49, 230–237. https://doi.org/10.1093/ee/nvz138 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Culler, L. E., McPeek, M. A. & Ayres, M. P. Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia 176, 653–660. https://doi.org/10.1007/s00442-014-3058-8 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change https://doi.org/10.1007/s10584-021-03085-1 (2021).Article 

    Google Scholar 
    Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 2nd edn. (Kendall/Hunt Publishing Company, 1984).
    Google Scholar 
    Verdonschot, R. & Peeters, E. T. Preference of larvae of Enallagma cyathigerum (Odonata: Coenagrionidae) for habitats of varying structural complexity. Eur. J. Entomol. 109, 229–234 (2012).Article 

    Google Scholar 
    McCarty, J. P., Wolfenbarger, L. L. & Wilson, J. A. eLS 1–13 (Wiley, 2017).Book 

    Google Scholar 
    Holzmann, K. L. Challenges in a Changing Climate: The Effect of Temperature Variation on Growth and Competition in Damselflies Independent thesis Advanced level (degree of Master (Two Years) thesis, Uppsala University. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-467582 (2022). More

  • in

    Fire activity as measured by burned area reveals weak effects of ENSO in China

    Mixing fire occurrence with wildfire activity is problematic also when trying to draw policy conclusions. Fang et al.1 examined the temporal pattern of fire numbers between 2005-18 and concluded that the application of a fire suppression policy after 1987 has contributed to decreases in fire occurrences after 2007. However, fire suppression is an effort to mitigate the results of a fire once it has started10. Consequently, fire suppression strictly affects the burned area, and not fire occurrence. Other aspects associated with fire planning, like awareness campaigns or fire bans, may act on fire occurrence. However, any relationship between fire occurrence and fire suppression will necessarily be artefactual because the latter does not affect the former.We acknowledge that part of the discrepancy with Fang et al.1 may lie in the different scales used in these analyses. However, fire activity is a term that currently lacks a rigorous definition and should be used with caution. Fire occurrence depends primarily on the number of ignitions (along with other factors affecting fire detection such as climate, topography or vegetation), which, in turn, results from human activity1 and, in some areas, lightning11. Using fire occurrence as an indicator for fire activity is particularly problematic when comparing multiple biomes that show marked differences in fire regime, as we demonstrate here. Additionally, ENSO and fire suppression may both affect burned area, but there is currently no mechanism that can explain a mechanistic link between either of these processes and the number of fire events. Consequently, fire occurrence should not be used as a sole metric of fire activity.We additionally note that burned area is not necessarily a reliable metric of fire impacts on ecosystems and society. Significant variation in severity and intensity may occur within a fire perimeter12. Additionally, damage to people and property are not captured by this metric13. While we caution against the use of a single metric to evaluate fire activity, we hope to have demonstrated that using fire occurrence alone is particularly problematic, and that the picture it paints is rather unrealistic. More