More stories

  • in

    Stylasterid corals build aragonite skeletons in undersaturated water despite low pH at the site of calcification

    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker et al.) Ch. TS, 33–115 (Cambridge University Press, 2013).Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 
    Article 

    Google Scholar 
    Albright, R. et al. Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature 555, 516–519 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chen, C.-T.A. et al. Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Chang. 7, 890–894 (2017).ADS 
    Article 

    Google Scholar 
    Guinotte, J. M. et al. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals?. Front. Ecol. Environ. 4, 141–146 (2006).Article 

    Google Scholar 
    Figuerola, B. et al. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the southern ocean. Front. Mar. Sci. 8, 584445 (2021).Article 

    Google Scholar 
    Ries, J. B. Skeletal mineralogy in a high-CO2 world. J. Exp. Mar. Biol. Ecol. 403, 54–64 (2011).Article 

    Google Scholar 
    Blackmon, P. D. & Todd, R. Mineralogy of some foraminifera as related to their classification and ecology. J. Paleontol. 33, 1–15 (1959).
    Google Scholar 
    Oliver, W. A. Jr. The relationship of the scleractinian corals to the rugose corals. Paleobiology 6, 146–160 (1980).Article 

    Google Scholar 
    Sinclair, D. J. et al. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp. Geochim. Cosmochim. Acta 75, 5101–5121 (2011).ADS 
    Article 

    Google Scholar 
    Liu, Y.-W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cornwall, C. E. et al. Understanding coralline algal responses to ocean acidification: Meta-analysis and synthesis. Glob. Change Biol. 28, 362–374 (2022).Article 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: Active internal carbon cycle. J. Exp. Mar. Biol. Ecol. 288, 1–15 (2003).Article 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).Article 

    Google Scholar 
    Le Goff, C. et al. In vivo pH measurement at the site of calcification in an octocoral. Sci. Rep. 7, 11210 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).ADS 
    Article 

    Google Scholar 
    Gilbert, P. U. P. A. et al. Biomineralization: Integrating mechanism and evolutionary history. Sci. Adv. 8, eabl9653 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E. & Foster, G. L. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochim. Cosmochim. Acta 217, 240–253 (2017).ADS 
    Article 

    Google Scholar 
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).ADS 
    Article 

    Google Scholar 
    Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685 (2004).ADS 
    Article 

    Google Scholar 
    Anagnostou, E., Williams, B., Westfield, I., Foster, G. L. & Ries, J. B. Calibration of the pH-δ11B and temperature-Mg/Li proxies in the long-lived high-latitude crustose coralline red alga Clathromorphum compactum via controlled laboratory experiments. Geochim. Cosmochim. Acta 254, 142–155 (2019).ADS 
    Article 

    Google Scholar 
    Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Glob. Change Biol. 23, 4245–4256 (2017).ADS 
    Article 

    Google Scholar 
    Rosenthal, Y., Lear, C. H., Oppo, D. W. & Linsley, B. K. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography 21, PA1007 (2006).ADS 
    Article 

    Google Scholar 
    Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4, e1606 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gagnon, A. C., Gothmann, A. M., Branson, O., Rae, J. W. B. & Stewart, J. A. Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification. Earth Planet. Sci. Lett. 554, 116662 (2021).Article 

    Google Scholar 
    Cairns, S. D. Global diversity of the Stylasteridae (Cnidaria: Hydrozoa: Athecatae). PLoS ONE 6, e21670 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cairns, S. D. Deep-water corals: An overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull. Mar. Sci. 81, 311–322 (2007).
    Google Scholar 
    Samperiz, A. et al. Stylasterid corals: A new paleotemperature archive. Earth Planet. Sci. Lett. 545, 116407 (2020).Article 

    Google Scholar 
    Cairns, S. D. & Macintyre, I. G. Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios, 96–107 (1992).Anagnostou, E., Huang, K. F., You, C. F., Sikes, E. L. & Sherrell, R. M. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment. Earth Planet. Sci. Lett. 349–350, 251–260 (2012).ADS 
    Article 

    Google Scholar 
    Rae, J. W. B. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Farmer, J. R., Hönisch, B., Robinson, L. F. & Hill, T. M. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals. Geochim. Cosmochim. Acta 155, 86–106 (2015).ADS 
    Article 

    Google Scholar 
    Sutton, J. N. et al. δ11B as monitor of calcification site pH in divergent marine calcifying organisms. Biogeosciences 15, 1447–1467 (2018).ADS 
    Article 

    Google Scholar 
    Heinemann, A. et al. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and δ11B. Geochem. Geophys. Geosyst. 13, 1–17 (2012).Article 

    Google Scholar 
    Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011).ADS 
    Article 

    Google Scholar 
    Auscavitch, S. R. et al. Distribution of deep-water scleractinian and stylasterid corals across abiotic environmental gradients on three seamounts in the Anegada Passage. PeerJ 8, e9523 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeCarlo, T. M., Holcomb, M. & McCulloch, M. T. Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences 15, 2819–2834 (2018).ADS 
    Article 

    Google Scholar 
    McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nat. Commun. 8, 15686 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364, 111–122 (2013).ADS 
    Article 

    Google Scholar 
    Rink, S., Kühl, M., Bijma, J. & Spero, H. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131, 583–595 (1998).Article 

    Google Scholar 
    Fietzke, J. & Wall, M. Distinct fine-scale variations in calcification control revealed by high-resolution 2D boron laser images in the cold-water coral Lophelia pertusa. Sci. Adv. 8, eabj4172 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Drake, J. L. et al. How corals made rocks through the ages. Glob. Change Biol. 26, 31–53 (2020).ADS 
    Article 

    Google Scholar 
    Blamart, D. et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH. Geochem. Geophys. Geosyst. 8, Q12001 (2007).ADS 
    Article 

    Google Scholar 
    Jurikova, H. et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: Zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 513, 143–152 (2019).ADS 
    Article 

    Google Scholar 
    NOAA Deep Sea Coral Research & Technology Program. NOAA National Database for Deep-Sea Corals and Sponges (version 20201021-0), https://deepseacoraldata.noaa.gov/ (2017).Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A Oceanogr. Res. Pap. 37, 755–766 (1990).ADS 
    Article 

    Google Scholar 
    Stewart, J. A., Anagnostou, E. & Foster, G. L. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem. Geol. 447, 148–160 (2016).ADS 
    Article 

    Google Scholar 
    Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J. & Schott, J. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochim. Cosmochim. Acta 150, 299–313 (2015).ADS 
    Article 

    Google Scholar 
    Holcomb, M., DeCarlo, T. M., Gaetani, G. A. & McCulloch, M. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).ADS 
    Article 

    Google Scholar 
    DeCarlo, T. M., Gaetani, G. A., Holcomb, M. & Cohen, A. L. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. Geochim. Cosmochim. Acta 162, 151–165 (2015).ADS 
    Article 

    Google Scholar 
    Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D. & Morris, D. E. Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies. Environ. Sci. Technol. 34, 638–644 (2000).ADS 
    Article 

    Google Scholar 
    Anagnostou, E. et al. Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochim. Cosmochim. Acta 75, 2529–2543 (2011).ADS 
    Article 

    Google Scholar 
    Chen, S., Littley, E. F. M., Rae, J. W. B., Charles, C. D. & Adkins, J. F. Uranium distribution and incorporation mechanism in deep-sea corals: Implications for seawater [CO32–] proxies. Front. Earth Sci. 9, 159 (2021).ADS 

    Google Scholar 
    Inoue, M., Suwa, R., Suzuki, A., Sakai, K. & Kawahata, H. Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophys. Res. Lett. 38, L12809 (2011).ADS 

    Google Scholar 
    Gothmann, A. M. & Gagnon, A. C. The primary controls on U/Ca and minor element proxies in a cold-water coral cultured under decoupled carbonate chemistry conditions. Geochim. Cosmochim. Acta 315, 38–60 (2021).ADS 
    Article 

    Google Scholar 
    Mass, T. et al. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr. Biol. 23, 1126–1131 (2013).PubMed 
    Article 

    Google Scholar 
    Rogers, A. D. Advances in Marine Biology, Vol. 79 (ed Sheppard, C.) 137–224 (Academic Press, 2018).Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Chang. 1, 308–312 (2011).ADS 
    Article 

    Google Scholar 
    Hoarau, L. et al. Unexplored refugia with high cover of scleractinian Leptoseris spp. and hydrocorals Stylaster flabelliformis at lower mesophotic depths (75–100 m) on lava flows at Reunion Island (Southwestern Indian Ocean). Diversity 13, 141 (2021).Article 

    Google Scholar 
    Lindner, A., Cairns, S. D. & Cunningham, C. W. From offshore to onshore: Multiple origins of shallow-water corals from deep-sea ancestors. PLoS ONE 3, e2429 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart, J. A. et al. Refining trace metal temperature proxies in cold-water scleractinian and stylasterid corals. Earth Planet. Sci. Lett. 545, 116412 (2020).Article 

    Google Scholar 
    Seacarb: Seawater Carbonate Chemistry. R package version 3.0.6 .http://CRAN.R-project.org/package=seacarb (2015).Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).Article 

    Google Scholar 
    Lee, K. et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811 (2010).ADS 
    Article 

    Google Scholar 
    Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2)—An internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).ADS 
    Article 

    Google Scholar 
    Hemming, N. G. & Hanson, G. N. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56, 537–543 (1992).ADS 
    Article 

    Google Scholar 
    Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, 2001).
    Google Scholar 
    Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11, Q08015 (2010).ADS 
    Article 

    Google Scholar 
    Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006).ADS 
    Article 

    Google Scholar 
    Stewart, J. A. et al. NIST RM 8301 boron isotopes in marine carbonate (simulated coral and foraminifera solutions): Inter-laboratory δ11B and trace element ratio value assignment. Geostand. Geoanal. Res. 45, 77–96 (2020).Article 

    Google Scholar 
    Foster, G. L. Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).ADS 
    Article 

    Google Scholar 
    Schlitzer, R. Ocean Data View, Version 4.6.5 http://odv.awi.de, (2021). More

  • in

    Country-level fire perimeter datasets (2001–2021)

    Global fire activity is changing in many areas as temperatures increase and land use intensifies1,2,3,4,5. This is sparking an increase in attention given to fire activity and fire ecology. However, the availability of data for spatially delineated fire events is limited or non-existent in many countries6, with most global fire data coming from satellite-based active fire detections7,8 and gridded burned area products9,10. The lack of products containing delineated events has led to many global studies about fire ecology that are computationally-intensive, coarse-scale trend analyses1,4.A key advantage of datasets like Monitoring Trends in Burn Severity (MTBS)11 or the Fire Occurrence Dataset12 lies in their ease of use. Since its inception in 2007 MTBS has been cited 947 times in peer-reviewed studies according to a Google Scholar search at the time of this writing, despite documented limitations for scientific use of some facets of the product13. The MTBS dataset is regularly updated, easy to find on the internet, and it is free, fast and easy to download and use. Many environmental scientists and resource managers do not have the computational budget or expertise in big data or remote sensing to deal with the challenges one must overcome to process large fire datasets. This is especially true for cases when all that is needed is a shapefile of fire perimeters that can be used to map fire history. Other global fire perimeter datasets have been produced from satellite-derived burned area products14,15, but these are only available in yearly or monthly global shapefiles. Often field-based studies of fire effects require an entire time series over study areas that are only a few hundred km in diameter16 or a single ecoregion17. The end user who wants to understand the fire history for their region would have to download yearly shapefiles with a global extent, clip all of those shapefiles to their area of interest, and then combine them into one shapefile, just to get started. We suspect that the lack of accessible fire perimeter datasets that are easy to download and use contributes to a disparity in research, where fire ecology studies are conducted mostly in developed countries that have either research infrastructure capable of handling big data or longer-term government records, or temperate forested regions that have substantial tree-ring records18.There are two existing global perimeter products, the Global Fire Atlas (GFA) (Andela et al.14) and the Global Wildfire Information System (GWIS) (Artes et al.15). Both were created by applying spatiotemporal flooding algorithms to the MODIS MCD64 Burned Area Product. These algorithms assign burned pixels from the MCD64 products using a moving window whose size is defined by spatial and temporal parameters. They are created as monthly or yearly slices of the entire globe, and they can be subsetted. These products are extremely valuable for global scale studies. But when we look at how those products delineate known fire events we see a consistent problem in that they both seem to over-segment events in ways that appear unrealistic. This inconsistent event delineation is not problematic for coarse-scale or regional estimates of burned area or fire seasonality, but can lead to unrealistic estimates for number of fire events and event-level characteristics like fire size and spread rate. In Fig. 1 we illustrate this with an example of the 2013 Rim Fire in California, United States, which was unmistakably a single event that burned about 90,000 ha over the course of three months. Figure 2 illustrates how the day-to-day progression of the Rim Fire was a steady progression from a single ignition in late August. Table 1 shows how the differences in event delineation propagate to calculations of burned area and number of events. In the GFA, the Rim Fire is delineated as one large event of 804.5 km2, and 13 additional events totaling 88.7 km2. in GWIS it is delineated as one event of 878 km2 and 47 additional events totalling 20 km2. With FIRED, there is one event of 892 km2 and 2 single pixel events totalling less than one km2. One cause for potential differences is how one defines a “fire event”. Large fires often have multiple ignition sources. The Global Fire Atlas algorithm and others19, for example, search for local minima to identify various ignition locations that may begin as small patches, only to later form a large complex and in the end described with a single fire perimeter. The choice of outside sources for optimizing the spatial-temporal parameters, the method of optimization, and the intent of the final product’s meaning (defining events as single ignition patches vs contiguous burned area) all lead to different outcomes in the final events that are delineated. Another likely source of this discrepancy is that GWIS and GFA are calibrated to create a single global product. Because different geographical areas have different types of fire regimes, they have fires that grow at different rates and to different sizes, and occur in greater or fewer frequencies, and so the spatial and temporal parameters that work well for defining a fire event in one area may result in over- or under-segmentation in other areas. Here, we decided upon an approach of creating many regional products across the globe, rather than one product for everywhere on earth.Fig. 1Comparison of global fire event products performance for the 2013 Rim Fire (a). In the FIRED product (b), the Rim fire was classified as one very large event with two single pixel events. The Global Fire Atlas (GFA, c) and Global Wildfire Information System (GWIS, d) each delineated a very large event, with 13 and 47 smaller events, respectively.Full size imageFig. 2The two primary outputs FIREDpy provides are a daily- and event-level product. Panel a shows the default single event polygon. In b, each day has a separate polygon, with associated statistics generated, within each event. Panel c shows the daily perimeters derived from the airborne infrared by the incident management team for comparison.Full size imageTable 1 Rim fire comparison.Full size tableBesides the ease of access and use, the advantage of the FIRED product lies in the user’s ability to use the open-source software, FIREDpy, to tailor the spatial and temporal parameters of the moving window algorithm in order to realistically delineate events for their region of interest. In Fig. 3, we illustrate this by comparing the three products for a pair of small fires in Florida. In this case, the FIRED product that was created with a larger moving window (5 pixels and 11 days) over-aggregated the events, but it only required one line of code at command line to recreate the product with a smaller moving window (1 pixel and 5 days) to get more realistic results.Fig. 3Product comparison for two small events in Florida, the Moonshine Bay and Sour Orange fires (outlined) that both ignited in February of 2007 and were delineated by MTBS. In b the firedpy product that was optimized for the entire United States with a moving window of 5 pixels, 11 days resulted in aggregation of the two fires delineated by MTBS, but also several smaller fires nearby. In b, it was re-ran with a window of one pixel and five days, for a more realistic result. Delineations by the Global Fire Atlas (c) and the Global Wildfire Information System (d) are shown for comparison.Full size imageHere, we present a collection of regionally-tailored fire perimeter datasets for every country in the world with significant fire activity20, which we created with the open source algorithm, FIREDpy21. Each dataset is either a single country or a broader region, depending on the data volume. These datasets differ from other similar efforts14,15 in that each dataset created by FIREDpy is a single file containing a collection of polygons that is generated for the entire time series, rather than monthly or yearly aggregations with a global extent. Furthermore, we have generated the data products at a spatial extent land managers and ecologists would typically use to do regional-scale research, and we adjusted the spatial and temporal parameters for each country to yield realistic event delineations. We also made every effort to ensure that download sizes are reasonable (  More

  • in

    Spatial–temporal evolution of ESV and its response to land use change in the Yellow River Basin, China

    Analysis of changes in ecosystem services value in the YRBThe results showed that from 1990 to 2020, the total ecosystem services value in the YRB showed a dynamic trend of decrease-increase–decrease, with overall increasing trend, and a total increase of 31.85 × 1010 USD, with an average annual increase of 1.14 × 1010 USD (Table 2). This changing trend is consistent with land use cover change in the area. In 30a, YRB cultivated land decreased by 8663 km2, due to rapid urbanization. In addition, after year 2000, China began to implement the policy of returning farmland to forest and grassland on a large scale, which accelerated the reduction of cultivated land. Results again showed that the forest area increased by 30,933,093 km2, indicating that the implementation of “returning farmland to forest and grassland”policy achieved great results, thus increased the value of ecosystem services generated by forest land by 167.66 × 1010 USD. Grassland increased by 738 km2, as corresponding ESV increased by 28.73 × 1010 USD, while unused land decreased by 8131 km2, with 9.52 × 1010 USD ESV decrease. In general, the ecological protection and management measures in the YRB have achieved remarkable results, and ecosystem service values has been significantly improved due to forest and grassland increase.Table 2 The value of ecosystem services in the YRB from 1990 to 2020.Full size tableIn terms of ecosystem service structure in the YRB (Table 3), the relative proportions of various ESVs did not change significantly, resulting in relatively stable ESV structure. Soil conservation and waste disposal are the most important among them, accounting for about 37% of ESV’s total value. The YRB ecosystem, as can be seen, emphasises the importance of soil conservation and waste disposal in the basin, with Climate regulation, Biodiversity conservation, and Entertainment accounting for only 11.99 percent of the total. Various services have changed to varying degrees during the study period. Waste disposal and climate regulation, for example, have suffered losses of 22.23 × 1010 USD and 20.29 × 1010 USD, respectively.The rest of the services showed an upward trend, among which the value of the Food production service increased the most, which was 19.03 × 1010 USD, owing to the obvious increase of the forest land and grassland area in the YRB.Table 3 The value of individual ecosystem functions in the YRB from 1990 to 2020.Full size tableSpatial distribution and variation characteristics of ecosystem services in the YRBThe total ESV value of the study area and changes in the value of each service could not reflect their spatial differences. To describe the temporal and spatial distribution pattern of ESV in the study area, the natural breakpoint method was used. This method was further used to classify ESV with reference to existing studies, and divided the area into four levels: low-value, lower-value, higher-value, and high-value areas. Takin the three-level watershed of the YRB as the statistical unit for analysis, the result showed that the higher the level, the higher the ESV. As shown in Fig. 2, from 1990 to 2020, the spatial characteristics of ESV were relatively stable. The YRB’s upper reaches, from Shizuishan to the north bank of Hekou Town, the Fenhe River Basin, from Hekou Town to Longmen, and the Jinghe River Basin are all rich in high-values. The forest and grassland are relatively concentrated in the above-mentioned areas, the ESV coefficient is high, and the watershed area is large, resulting in a high total ESV. The higher value areas are mainly distributed in the areas from Longyang Gorge to Lanzhou main stream basin, the Daxia River and Tao River basin, and the Wei River basin. The area above Baoji Gorge and the inflow area fall in the transition zone between the high-value area and the lower-value area. For example, the transition area between the Loess and Qinghai-Tibet Plateaus is a higher-value area. The lower-value area mainly includes the Huangshui River Basin, the Datong River Basin, the basin below Lanzhou, and the Guanzhong Plain area. Thus, the unused land in this area is widely distributed. Due to the large area of construction land in the Guanzhong Plain, the ecosystem service value has shrunk. The low-value area is found in the YRB’s lower reaches, which contains the most extensive and large area of construction land in the basin, has a poor ecosystem service function, and is also the YRB’s most economically developed area. In terms of changes in the value of watershed ecosystem services, the number of watersheds at the ESV level did not change significantly between 1990 and 2020. The average ESV of the watershed is 40.52 × 1010 USD. There were 7 high-value, 5 higher-value, 12 lower-value, and 5 low-value watersheds respectively. Figure 2Spatial distribution of ESV changes in YRB from 1990 to 2020. (a) 1990, (b) 2000, (c) 2010, (d) 2020.Full size imageThe hotspot analysis revealed the spatial agglomeration characteristics and ESV evolution law in the YRB from 1990 to 2020 (Fig. 3). In most of the YRB, the ESV accumulation characteristics were not significant in space, and significant areas were dominated with high and low ESV accumulation. The Maqu-Longyangxia River Basin, Daxia River and Tao River Basin, the Datong River Basin, and Fen River Basin were the five core areas where ESV had the highest value. The Inner River, YRB’s northern and eastern margins, and the lower reaches are primarily low-value agglomeration areas. The high-value agglomeration area and low-value agglomeration area did not change significantly in space from 1990 to 2020, but the number of grids in each decreased from 647 to 627 and 699 to 681, respectively. In general, the YRB’s high-value agglomeration areas are strewn about, whereas the low-value agglomeration areas are scattered.Figure 3Spatial agglomeration characteristics of ESV in the YRB from 1990 to 2020. (a) 1990, (b) 2000, (c) 2010, (d) 2020.Full size imageFrom 1990 to 2020, the barycenter coordinates of the ESV in the YRB remained stable between 106.78°–106.94° E and 36.40°–36.65° N (Fig. 4). During the study period, the ESV barycenter coordinates showed a transfer trajectory of first to southwest, then to northeast, and then to southwest. From the perspective of overall transfer direction, ESV barycenter shifted from northeast of Huanxian County to southwest from 1990 to 2020. The ESV in the northeast decreased, while that in southeast increased. From 1995 to 2000 and from 2000 to 2005, the migration distance of ESV barycenter in the YRB was longer by 16.33 km and 15.75 km, respectively, while the barycenter migration distance of ESV from 2005 to 2020 was shorter.Figure 4Barycenter coordinates of ecosystem services in the YRB from 1990 to 2020.Full size imageResponse of ecosystem services to land-use changeThe area of land use type change in the YRB increased by 64,356 km2 between 1990 and 2020. Each land type’s area has changed to varying degrees. Cultivated land and construction land are the two land types that have seen the most changes. The area of cultivated land has shrunk by 8663 km2, while the area of construction land has grown by 13,109 km2. In comparison to water, forest, and grassland, unused land has undergone significant transformations. However, in comparison to 1990, it shrunk by 8131 km2 in 2020. The forest increased by 3093 km2 while grassland increased by 738 km2. Ecosystem services are significantly impacted by changes in land use types. Using the spatial analysis method, the researcher introduces a resilience index to reflect ESV’s response to land-use change in this paper. During 1990–2000 and 2000–2010, average elasticity of ESV change in the YRB relative to land use change was 0.27 and 0.44, respectively, but dropped to 0.04 during 2010–2020. This indicates that the disturbance capacity of land-use change on ecosystem services was low between 1990 and 2000, but increased between 2000 and 2010. Land-use change has had less of an impact on ecosystem services since 2010. The range of changes in land land-use types was wide during this time, but the average elasticity index was low because there were so many different types of land land-use changes, such as the conversion of forest land and cultivated land to construction land, and the conversion of forest land and water area to cultivated land. The decrease in ESV caused by the change in land use per unit area was minor. Furthermore, the forest land and grassland in the river basin have been effectively increased, as ESV has increased. Overall, the value of ecosystem services has remained relatively constant.Accurate spatial statistics on the elasticity index from 1990 to 2020 was carried out (Fig. 5). The elastic index of the upper YRB and Loess Plateau is higher, and the impact of land use change on ecosystem services is more apparent in this region, according to the findings. This is mainly due to the implementation of large-scale ecological engineering measures in response to vegetation degradation in the upper reaches of the YRB and soil erosion in the middle reaches (Loess Plateau), by the Chinese government. In addition, Lanzhou New District, Guanzhong Plain, and the lower Yellow River region also showed higher elasticity index. The above-mentioned regional development and construction, as well as human activities, have resulted in a rapid increase in construction land, resulting in a significant decline in ecosystem services and a higher resilience index as a result of rapid urbanisation.Figure 5Spatial distribution of elastic coefficients in the YRB from 1990 to 2020.Full size imageIn general, the land use types in the YRB have changed dramatically, and land type conversion is very common. The conversion of ecological land to urban construction land, as well as the conversion of unused and cultivated land to ecological land, has resulted in significant changes in ecosystem service value. This demonstrates that the basin’s ecological construction projects have yielded positive environmental results. More

  • in

    Managed pollination is a much better way of increasing productivity and essential oil content of dill seeds crop

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    IPBES. The assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services on pollinators, pollination and food production. in Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany (Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. eds.). 1–552. https://ipbes.net/sites/default/files/downloads/pdf/individual_chapters_pollination_20170305.pdf (2016).Ollerton, J. et al. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    Linder, H. P. Morphology and the Evolution of Wind Pollination. Reproductive Biology 123–135 (Royal Botanic Gardens, 1998).
    Google Scholar 
    Friedman, J. & Barrett, S. C. H. Wind of change: New insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. 103, 1515–1527 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gallai, N. et al. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Srinivasan, M. R. et al. Impact of Pesticides on Honey Bees and Pollinators. Pesticide Application in Agro Ecosystem-Its Dynamics and Implications 243–248 (TNAU Publications, 2015).
    Google Scholar 
    Sanchez-Bayo, F. & Goka, K. Impacts of Pesticides on Honey Bees. Beekeeping and Bee Conservation—Advances in Research. https://doi.org/10.5772/62487. (InTech, 2016).Berry, I. Dead bees don’t pollinate. Orchardist. New Zealand, 60, 287 (1987). Rev. Appl. Entomol. Ser. A 76, 1087 (1998).
    Google Scholar 
    Chandrasekaran, S. et al. Disposed paper cups and declining bees. Curr. Sci. 101(10), 1262 (2011).
    Google Scholar 
    Sandilyan, S. Decline in honey bee population in Southern India: Role of disposable paper cups. J. Zool. Biosci. Res. 1, 6–9 (2014).
    Google Scholar 
    Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).Article 

    Google Scholar 
    FAO. Declining Bee Populations Pose Threat to Global Food Security and Nutrition. UN World Bee Day, 20 May, Rome. https://www.fao.org/news/story/en/item/1194910/icode/. (2019).Najaran, Z.T. et al. Dill (Anethum graveolens L.) Essential Oils in Food Preservation, Flavor and Safety. https://doi.org/10.1016/C2012-0-06581-7 (Academic Press, 2016). Khare, C.P. Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage, Botany. 1st edn. 326–327. (Springer, 2004).Jana, S. & Shekhawat, G. S. Anethum graveolens: An indian traditional medicinal herb and spice. Pharmacogn. Rev. 4, 179–184 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biesiada, A. et al. Nutritional value of garden dill (Anethum graveolens L.), depending on genotype. Notulae Bot. Horti Agrobot. Cluj-Napoca 47, 784–791 (2019).CAS 

    Google Scholar 
    Pulliah, T. Medicinal Plants in India. Vol. 1. 55–56. (Regency Publications New Delhi, 2002).Hornok, L. Cultivation and Processing of Medicinal Plants. 338. (Academic Publications, 1992).Nair, R. & Chanda, S. Antibacterial activities of some medicinal plants of the western region of India. Turk. J. Biol. 31, 231–236 (2007).
    Google Scholar 
    DASD. State Agriculture/Horticulture Departments/DASD Kozhikode, Kerala. https://www.dasd.gov.in/index.php/content/index/statistics (2020).Nemeth, E. & Szekely, G. Floral biology of medicinal plants I. Apiaceae species. Int. J. Horticult. Sci. 6, 133–136 (2000).
    Google Scholar 
    Weiss, E. A. Spice Crops. 268–283 (CAB International, 2002).Book 

    Google Scholar 
    Peter, K.V. Dill in Handbook of Herbs and Spices (Gupta, R., Answer, M.M., Sharma, Y.K. Eds.). 275–285. (Woodhead Publishing Limited, 2012).Meena, N. K. et al. Role of insect pollinators in pollination of seed spices—A review. Int. J. Seed Spices 5, 1–17 (2015).
    Google Scholar 
    Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology 3rd edn. (Pergamon, 1980).
    Google Scholar 
    Ali, M., Saeed, S., Sajjad, A. & Whittington, A. In search of the best pollinators for canola (Brassica napus L.) production in Pakistan. Appl. Entomol. Zool. 46, 353–361 (2011).Article 

    Google Scholar 
    Singh, H., Swaminathan, R. & Hussain, T. Influence of certain plant products on the insect pollinators of coriander. J. Biopest. 3, 208–211 (2010).
    Google Scholar 
    Kant, K. et al. Relative abundance and foraging behavior of honey bee species on minor seed spice crops. Int. J. Seed Spices 3, 51–54 (2013).
    Google Scholar 
    Willmer, P. G. et al. The superiority of bumblebees to honeybees as pollinators: Insect visits to raspberry flowers. Ecol. Entomol. 19, 271–284 (1994).Article 

    Google Scholar 
    Stone, J. L. Components of pollination effectiveness in Psychotria suerrensis, a tropical distylous shrub. Oecologia 107, 504–512 (1996).ADS 
    PubMed 
    Article 

    Google Scholar 
    Olsen, K. M. Pollination effectiveness and pollinator importance in a population of Heterotheca subaxillaris (Asteraceae). Oecologia 109, 114–121 (1997).ADS 

    Google Scholar 
    Ivey, C. T. et al. Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnate (Apocynaceae). Am. J. Bot. 90, 214–225 (2003).PubMed 
    Article 

    Google Scholar 
    Korpela, S. The influence of honeybee pollination on turnip rape (Brassica campestris) yield and yield components. Ann. Agric. Fenniae 27, 295–303 (1988).
    Google Scholar 
    Sabbahi, R. et al. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Cruciferae: Brassicacae). J. Econ. Entomol. 98, 267–372 (2005).Article 

    Google Scholar 
    Warakomska, Z. et al. Biology of the bloom and pollination of the umbelliferous vegetables. Part 1: garden dill (Anethum graveolens L.). Acta Agrobot. 35, 69–78 (1982).Article 

    Google Scholar 
    Meena, N. K. et al. Pollinator’s diversity and abundance on cumin (Cuminum cyminum L.) and their impact on yield enhancement at semi-arid region. J. Entomol. Zool. Stud. 6, 1017–1021 (2018).
    Google Scholar 
    Malhotra, S.K. & Vashishtha, B.B. Package of practices for production of seed spices. in Book Published by the Director, ICAR-National Research Centre on Seed Spices, Ajmer. 71–79. (2008).Chaudhary, O. P. diversity, foraging behaviour of floral visitors and pollination ecology of fennel (Foeniculum vulgare Mill). J. Spices Aromatic Crops 15, 34–41 (2006).
    Google Scholar 
    Rianti, P. et al. Diversity and effectiveness of insect pollinators of Jatropha curcas L. (Euphorbiaceae). HAYATI J. Biosci. 17, 38–42 (2010).Article 

    Google Scholar 
    Choi, S. W. & Jung, C. Diversity of insect pollinators in different agricultural crops and wild flowering plants in korea: Literature review. J. Apicult. 30, 191–201 (2015).MathSciNet 
    Article 

    Google Scholar 
    Siregar, E. F. et al. Diversity and abundance of insect pollinators in different agricultural lands in Jambi, Sumatera. HAYATI J. Biosci. 23, 13–17 (2016).Article 

    Google Scholar 
    Devi, M. et al. Diversity of insect pollinators in reference to seed set of mustard (Brassica juncea L.). Int. J. Curr. Microbiol. Appl. Sci. 6, 2131–2144 (2017).Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour: An Introductory Guide. 2nd edn. (Cambridge University Press, 1993).Dafni, A. Pollination Ecology: A Practical Approach (Oxford University Press, 1992).
    Google Scholar 
    Chaudhary, O. P. & Singh, J. Diversity, temporal abundance, foraging behaviour of floral visitors and effect of different modes of pollination on coriander (Coriandrum sativum L.). J. Spices Aromatic Crops 16, 8–14 (2007).
    Google Scholar 
    Kulkarni, S. R., Gurve, S. S. & Chormule, A. J. Effect of different indigenous bee attractants in onion (Allium cepa L.) crop. Ann. Plant Protect. Sci. 25, 78–82 (2017).
    Google Scholar 
    Manhare, J. S. & Painkra, G. P. Impact of bee attractants on bee visitation on buckwheat (Fagopyrum esculentum L.) crop. J. Entomol. Zool. Stud. 6, 28–31 (2018).
    Google Scholar 
    Kapas, A. et al. The kinetic of essential oil separation from fennel by microwave assisted hydro-distillation (MWHD). UPB Sci. Bull. Ser. B 73, 113–120 (2011).CAS 

    Google Scholar 
    Warrier, P. K. et al. Indian Medicinal Plants. Vol. 1. 153–157. (Orient Longman Limited, 1994).Baswana, K. S. Role of insect pollination on seed production in coriander and fennel. South Indian Horticult. 32, 117–118 (1984).
    Google Scholar 
    Koul, A. K. Pollination mechanism in Coriandrum sativum L. (Apiaceae). Proc. Indian Acad. Sci. Plant Sci. 99, 509–515 (1989).Article 

    Google Scholar 
    Narayana, E. S., Sharma, P. L. & Phadke, K. G. Insect pollinators of saunf (Foenicuum vulgare) with particular reference to the honeybees at Pusa (Bihar). Indian Bee J. 22, 7–13 (1960).
    Google Scholar 
    Mukherjee, S. et al. Pollination events in Nigella sativa L. black cumin. Int. J. Res. Ayurveda Pharm. 4, 342–344 (2013).Article 

    Google Scholar 
    Abrar, M. et al. Insect pollinators and their relative abundance on black cumin Nigella sativa L. at Dera Ismail Khan. J. Entomol. Zool. Stud. 5, 1252–1258 (2017).
    Google Scholar 
    Ollerton, J. & Louise, C. Latitudinal trends in plant-pollinator interactions: Are tropical plants more specialized?. Oikos 98, 340–350 (2002).Article 

    Google Scholar 
    Meena, N. K. et al. Diversity of floral visitors and foraging behavior and abundance of major pollinators on fennel under semi-arid conditions of Rajasthan. Int. J. Trop. Agric. 34, 1891–1897 (2016).
    Google Scholar 
    Sikdar, S. et al. Diurnal foraging activity of flower visiting insects on some seed spices under terai agro-climatic zone of West Bengal. J. Entomol. Zool. Stud. 7, 299–303 (2019).
    Google Scholar 
    Kapil, R. P. et al. Integration of bee behaviour with aphid control for seed production of Brassica campestris var. toria. Indian J. Entomol. 33, 221–223 (1971).
    Google Scholar 
    Bhalla, O. P. et al. Insect visitors of mustard bloom Brassica campestris var sarson, their number and foraging behavior under mid-hill conditions. J. Entomol. Res. 1, 15–17 (1983).
    Google Scholar 
    Rao, G. M. & Suryanarayana, M. C. Studies on the foraging behaviour of honeybees and its effect in seed yield of niger. Indian Bee J. 52, 31–33 (1990).
    Google Scholar 
    Abrol, D. P. Foraging behavior of Apis mellifera L. and A. cerana F. as determined by the energetics of nectar production in different cultivars of Brassica campestris var toria. J. Apicult. Sci. 51, 19–24 (2007).
    Google Scholar 
    Inouye, D. W. The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumble bees. Oecologia 45, 197–201 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    Vicens, N. & Bosch, J. Pollination efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ. Entomol. 29, 235–240 (2000).Article 

    Google Scholar 
    Singh, J. et al. Foraging rates of different Apis species visiting parental lines of Brassica napus L. Zoos’ Print J. 21, 2226–2227 (2006).Article 

    Google Scholar 
    Engel, E. C. & Irwin, R. E. Linking pollinator visitation and rate of pollen receipt. Am. J. Bot. 90, 1612–1618 (2003).Article 

    Google Scholar 
    Sihag, R. C. Insect pollination increase seed production in cruciferous and umbelliferous crops. J. Apic. Res. 25, 121–126 (1986).Article 

    Google Scholar 
    Verma, S. & Dwivedi, S. N. Floral biology of Trachyspermum ammi (Linn.) Spr. Inventi rapid. Planta Activa 2, 1–6 (2018).
    Google Scholar 
    Singh, B. Effectiveness of different pollinators on yield and quality of greenhouse grown tomatoes and melons: A review. Haryana J. Horticult. Sci. 31, 245–250 (2002).ADS 

    Google Scholar 
    Biswanath, B. et al. Role of insect pollinators in seed yield of coriander (Coriandrum sativum L.) and their electroantennogram response to crop volatiles. Agric. Res. J. 54, 227–235 (2017).Article 

    Google Scholar 
    Giannini, T. C. et al. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108, 849–857 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Risk assessment for the native anurans from an alien invasive species, American bullfrogs (Lithobates catesbeianus), in South Korea

    Pimentel, D. Economic and environmental impacts of invasive species and their management. Pesticides 21, 10–11 (2001).
    Google Scholar 
    Beck, K. G. et al. Invasive species defined in a policy context: Recommendations from the Federal Invasive Species Advisory Committee. Invasive. Plant. Sci. Manag. 1, 414–421. https://doi.org/10.1614/IPSM-08-089.1 (2008).Article 

    Google Scholar 
    Arya, A. K., Joshi, K. K., Bachheti, A. & Rawat, R. Status and impact of invasive and alien species on environment, and human welfare: an overview. Uttar Pradesh J. Zool. 42, 49–58 (2021).
    Google Scholar 
    Boone, M. D., Little, E. E. & Semlitsch, R. D. Overwintered bullfrog tadpoles negatively affect salamanders and anurans in native amphibian communities. Copeia 2004, 683–690. https://doi.org/10.1643/CE-03-229R1 (2004).Article 

    Google Scholar 
    Borzée, A., Kosch, T. A., Kim, M. & Jang, Y. Introduced bullfrogs are associated with increased Batrachochytrium dendrobatidis prevalence and reduced occurrence of Korean treefrogs. PLoS ONE 12, e0177860. https://doi.org/10.1371/journal.pone.0177860 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yap, T. A., Koo, M. S., Ambrose, R. F. & Vredenburg, V. T. Introduced bullfrog facilitates pathogen invasion in the western United States. PLoS ONE 13, e0188384. https://doi.org/10.1371/journal.pone.0188384 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gobel, N., Laufer, G. & Cortizas, S. Changes in aquatic communities recently invaded by a top predator: Evidence of American bullfrogs in Aceguá, Uruguay. Aquat. Sci. 81, 1–11. https://doi.org/10.1007/s00027-018-0604-1 (2019).Article 

    Google Scholar 
    Li, Y., Ke, Z., Wang, Y. & Blackburn, T. M. Frog community responses to recent American bullfrog invasions. Curr. Zool. 57, 83–92. https://doi.org/10.1093/czoolo/57.1.83 (2011).Article 

    Google Scholar 
    Vitousek, P. M., D’antonio, C. M., Loope, L. L., Rejmanek, M. & Westbrooks, R. Introduced species: a significant component of human-caused global change. N. Z. J. Ecol. 21, 1–16 (1997).
    Google Scholar 
    Ficetola, G. F. et al. Pattern of distribution of the American bullfrog Rana catesbeiana in Europe. Biol. Invasions. 9, 767–772. https://doi.org/10.1007/s10530-006-9080-y (2007).Article 

    Google Scholar 
    Lorvelec, O., & Détaint, M. Lithobates catesbeianus (Shaw), American bullfrog (Ranidae, Amphibia). Handbook of alien species in Europe. DAISIE (ed.). (Springer, 2009).Koo, K. S., Park, H. R., Choi, J. H. & Sung, H. C. Present status of non-native amphibians and reptiles traded in Korean online pet shops. J. Ecol. Environ. 3, 106–114. https://doi.org/10.13047/KJEE.2020.34.2.106 (2020).Article 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. 100 of the world’s worst invasive alien species: A selection from the global invasive species database (Vol. 12) (Auckland: Invasive Species Specialist Group, 2000).Ficetola, G. F., Thuiller, W. & Miaud, C. Prediction and validation of the potential global distribution of a problematic alien invasive species—The American bullfrog. Divers. Distrib. 13, 476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x (2007).Article 

    Google Scholar 
    Orchard, S. A. Removal of the American bullfrog, Rana (Lithobates) catesbeiana, from a pond and a lake on Vancouver Island, British Columbia, Canada Island invasives: Eradication and management. IUCN (Gland, Switzerland). 2011, 1–542 (2011).
    Google Scholar 
    Oh, H. S. & Hong, C. E. Current conditions of habitat for Rana catesbeiana and Trachemys scripta elegans imported to Jeju-do, including proposed management plans. J. Ecol. Environ. 21, 311–317 (2007).
    Google Scholar 
    Park, D. et al. Conservation of amphibians in South Korea. Das, M. Wilkinson, and H. Heatwole (eds.). (2014).Groffen, J., Kong, S., Jang, Y. & Borzee, A. The invasive American bullfrog (Lithobates catesbeianus) in the Republic of Korea: history and recommendations for population control. Manag. Biol. Invasions. 10, 517. https://doi.org/10.3391/mbi.2019.10.3.08 (2019).Article 

    Google Scholar 
    Jang, H. J. & Suh, J. H. Distribution of amphibian species in South Korea. Korean J. Herpetol. 2, 45–51 (2010).
    Google Scholar 
    Kim, J. B. Taxonomic list and distribution of Korean amphibians. Korean J. Herpetol. 1, 1–13. https://doi.org/10.5145/KJCM.2010.13.3.144 (2010).CAS 
    Article 

    Google Scholar 
    Liu, X., McGarrity, M. E. & Li, Y. The influence of traditional Buddhist wildlife release on biological invasions. Conserv. Lett. 5, 107–114. https://doi.org/10.1111/j.1755-263X.2011.00215.x (2012).Article 

    Google Scholar 
    Snow, N. P. & Witmer, G. American bullfrogs as invasive species: a review of the introduction, subsequent problems, management options, and future directions. Proc. Vertebrate Pest Conf. 24, 86–89. https://doi.org/10.5070/V424110490 (2010).Article 

    Google Scholar 
    Lee, J. H., & Park, D. The encyclopedia of Korean amphibians. (Nature and Ecology, 2016).Park, C. D., Lee, C. W., Lim, J. C., Yang, B. G. & Lee, J. H. A study on the diet items of American Bullfrog (Lithobates catesbeianus) in Ga-hang Wetland Korea. J. Ecol. Environ. 32, 55–65. https://doi.org/10.13047/KJEE.2018.32.1.55 (2018).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals 11, 2185. https://doi.org/10.3390/ani11082185 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adhikari, P., Kim, B. J., Hong, S. H. & Lee, D. H. Climate change induced habitat expansion of nutria (Myocastor coypus) in South Korea. Sci. Rep. 12, 1–12. https://doi.org/10.1038/s41598-022-07347-5 (2022).CAS 
    Article 

    Google Scholar 
    Shim, J. H. et al. A study to determine factors affecting bullfrog decline in Korea. Gwacheon, Republic of Korea. 38. (2005).Ra, N. Y. et al. Habitat requirements of the Gold-spotted pond frog (Rana chosenica): Implications for conservation and management plans. In 63th Annual Meeting of the Korean Association of Biological Sciences. (2008).Ministry of Environment. Act on the conservation and use of biological diversity. (2020).Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B: Biol. Sci. 283, 20152454. https://doi.org/10.1098/rspb.2015.2454 (2016).Article 

    Google Scholar 
    Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207. https://doi.org/10.1002/fee.2020 (2019).Article 

    Google Scholar 
    Marino, C., Leclerc, C. & Bellard, C. Profiling insular vertebrates prone to biological invasions: What makes them vulnerable?. Glob. Change Biol. 28, 1077–1090. https://doi.org/10.1111/gcb.15941 (2022).CAS 
    Article 

    Google Scholar 
    Pearl, C. A., Adams, M. J., Bury, R. B. & McCreary, B. Asymmetrical effects of introduced bullfrogs (Rana catesbeiana) on native ranid frogs in Oregon. Copeia 2004, 11–20. https://doi.org/10.1643/CE-03-010R2 (2004).Article 

    Google Scholar 
    Wu, Z., Li, Y., Wang, Y. & Adams, M. J. Diet of introduced Bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island, China. J. Herpetol. 39, 668–674. https://doi.org/10.1670/78-05N.1 (2005).Article 

    Google Scholar 
    Liu, X. et al. Diet and prey selection of the Invasive American bullfrog (Lithobates catesbeianus) in southwestern China. Asian Herpetol. Res. 6, 34–44. https://doi.org/10.16373/j.cnki.ahr.140044 (2015).Article 

    Google Scholar 
    Wang, Y., Wang, Y., Lu, P., Zhang, F. & Li, Y. Diet composition of post-metamorphic bullfrogs (Rana catesbeiana) in the Zhoushan archipelago, Zhejiang Province, China. Front. Biol. China. 3, 219–226. https://doi.org/10.1007/s11515-008-0036-8 (2008).CAS 
    Article 

    Google Scholar 
    Da Silva, E. T., Dos Reis, E. P., Feio, R. N. & Ribeiro Filho, O. P. Diet of the invasive frog Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae) in Viçosa, Minas Gerais State, Brazil. S. Am. J. Herpetol. 4, 286–294. https://doi.org/10.2994/057.004.031 (2009).Article 

    Google Scholar 
    Ortíz-Serrato, L., Ruiz-Campos, G. & Valdez-Villavicencio, J. H. Diet of the exotic American bullfrog, Lithobates catesbeianus, in a stream of northwestern Baja California, Mexico. West. N. Am. Nat. 74, 116–122. https://doi.org/10.3398/064.074.0112 (2014).Article 

    Google Scholar 
    Ryan, M. J. The reproductive behavior of the bullfrog (Rana catesbeiana). Copeia 1, 108–114 (1980).Article 

    Google Scholar 
    Gahl, M. K., Calhoun, A. J. & Graves, R. Facultative use of seasonal pools by American bullfrogs (Rana catesbeiana). Wetlands 29, 697–703. https://doi.org/10.1672/08-56.1 (2009).Article 

    Google Scholar 
    Louette, G., Devisscher, S. & Adriaens, T. Control of invasive American bullfrog Lithobates catesbeianus in small shallow water bodies. Eur. J. Wildl. Res. 59, 105–114 (2013).Article 

    Google Scholar 
    Descamps, S. & De Vocht, A. Movements and habitat use of the invasive species Lithobates catesbeianus in the valley of the Grote Nete (Belgium). Belg. J. Zool. 146, 90–100. https://doi.org/10.26496/bjz.2016.44 (2016).Article 

    Google Scholar 
    Willis, Y. L., Moyle, D. L. & Baskett, T. S. Emergence, breeding, hibernation, movements and transformation of the bullfrog, Rana catesbeiana in Missouri. Copeia 1956, 30–41 (1956).Article 

    Google Scholar 
    Cooper, M. C. Movement, Habitat, and Home Range of Introduced Bullfrogs (Lithobates Catesbeianus) on Mad River Gravel Ponds (Humboldt Co., CA, USA), With Implications for Hydro-Modification as a Method of Management. Dissertation, Humboldt State University. https://digitalcommons.humboldt.edu/etd/40 (2017).Updated guidelines for reporting animal research. Percie du Sert, N. et al. The ARRIVE guidelines 2.0. J. Cereb. Blood Flow Metab. 40, 1769–1777. https://doi.org/10.1177/0271678X20943823 (2020).Article 

    Google Scholar 
    Stebbins, R. C. A Field Guide to Western Reptiles and Amphibians (Houghton Mifflin, 2003).
    Google Scholar 
    Howard, R. D. Alternative mating behaviors of young male bullfrogs. Am. Zool. 24, 397–406. https://doi.org/10.1093/icb/24.2.397 (1984).Article 

    Google Scholar 
    Lee, J. H., Jang, H. J., & Suh, J. H. Ecological Guide Book of Herpetofauna in Korea. 56–142 (National Institute of Environmental Research, 2011).Schmidt, K. & Schwarzkopf, L. Visible implant elastomer tagging and toe-clipping: Effects of marking on locomotor performance of frogs and skinks. Herpetol. J. 20, 99–105 (2010).
    Google Scholar 
    Heyer, R., Donnelly, M. A., Foster, M., & Mcdiarmid, R. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. (Smithsonian Institution, 2014).Muths, E. A radio transmitter belt for small ranid frogs. Herpetol. Rev. 34, 345–347 (2003).
    Google Scholar 
    McGarrity, M. E. & Johnson, S. A. A radio telemetry study of invasive Cuban treefrogs. Florida Sci. 73, 225–235 (2010).
    Google Scholar 
    Stinner, J., Zarlinga, N. & Orcutt, S. Overwintering behavior of adult bullfrogs, Rana catesbeiana, in northeastern Ohio. Ohio. J. Sci. 94, 8–13 (1994).
    Google Scholar 
    Wassens, S., Watts, R. J., Jansen, A. & Roshier, D. Movement patterns of southern bell frogs (Litoria raniformis) in response to flooding. Wildl. Res. 35, 50–58. https://doi.org/10.1071/WR07095 (2008).Article 

    Google Scholar 
    Bury, R. B., & Whelan, J. A. Ecology and management of the bullfrog (Vol. 155) (US Department of the Interior, Fish and Wildlife Service, 1985).Sepulveda, A. J. & Layhee, M. Description of fall and winter movements of the introduced American Bullfrog (Lithobates catesbeianus) in a Montana, USA, pond. Herpetol. Conserv. Biol. 10, 978–984 (2015).
    Google Scholar 
    Ingram, W. M. & Raney, E. C. Additional studies on the movement of tagged bullfrogs, Rana catesbeiana Shaw. Am. Midl. Nat. 29, 239–241 (1943).Article 

    Google Scholar 
    Wang, Y. & Li, Y. Habitat selection by the introduced American bullfrog (Lithobates catesbeianus) on Daishan Island, China. J. Herpetol. 43, 205–211. https://doi.org/10.1670/0022-1511-43.2.205 (2009).Article 

    Google Scholar 
    Werner, E. E., Wellborn, G. A. & McPeek, M. A. Diet composition in postmetamorphic bullfrogs and green frogs: implications for interspecific predation and competition. J. Herpetol. 29, 600–607 (1995).Article 

    Google Scholar 
    Yoo, M. S., Ra, C. H., Kwon, H. B., Kim, J. Y. & Kang, S. G. Reproductive cycle and maturation induction of oocytes in Rana rugosa. Korean J. Zool. 38, 96–105 (1995).
    Google Scholar 
    Chung, H. H. A Study on the Ecological Characteristics, Capture and Use of Bullfrog. Dissertation, Chosun University. (2002).Hirai, T. Diet composition of introduced bullfrog, Rana catesbeiana, in the Mizorogaike Pond of Kyoto, Japan. Ecol. Res. 19, 375–380. https://doi.org/10.1111/j.1440-1703.2004.00647.x (2004).Article 

    Google Scholar 
    Quagliata, S., Delfino, G., Giachi, F. & Malentacchi, C. Chemical skin defence in the Eastern fire-bellied toad Bombina orientalis: an ultrastructural approach to the mechanism of poison gland rehabilitation after discharge. Acta. Herpetol. https://doi.org/10.1400/181560 (2008).Article 

    Google Scholar 
    Lee, J. H. & Park, D. Effects of body size, operational sex ratio, and age on pairing by the Asian toad, Bufo stejnegeri. Zool. Stud. 48, 334–332 (2009).
    Google Scholar 
    Kim, I. H., Ham, C. H., Jang, S. W., Kim, E. Y. & Kim, J. B. Determination of breeding season, and daily pattern of calling behavior of the endangered Suweon-tree frog (Hyla suweonensis). Korean J. Herpetol. 4, 23–29 (2012).
    Google Scholar 
    Jancowski, K. & Orchard, S. Stomach contents from invasive American bullfrogs Rana catesbeiana (= Lithobates catesbeianus) on southern Vancouver Island, British Columbia, Canada. NeoBiota. 16, 17–37. https://doi.org/10.3897/neobiota.16.3806 (2013).Article 

    Google Scholar 
    An, D. & Waldman, B. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus. Biol. Lett. 12, 20160018. https://doi.org/10.1098/rsbl.2016.0018 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borzée, A. et al. Temporal and spatial differentiation in microhabitat use: Implications for reproductive isolation and ecological niche specification. Integr. Zool. 11, 375–387. https://doi.org/10.1111/1749-4877.12200 (2016).Article 
    PubMed 

    Google Scholar 
    Borzee, A. et al. Yellow sea mediated segregation between North East Asian Dryophytes species. PLoS ONE 15, e0234299. https://doi.org/10.1371/journal.pone.0234299 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, J. K., Kim, J. B. & Do, Y. Examination of physiological and morphological differences between farm-bred and wild black-spotted pond frogs (Pelophylax nigromaculatus). Life. 11, 1089. https://doi.org/10.3390/life11101089 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, A. C., Richgels, K. L., Johnson, P. T. & McKenzie, V. J. Investigating the dispersal routes used by an invasive amphibian, Lithobates catesbeianus, in human-dominated landscapes. Biol. Invasions. 15, 2179–2191. https://doi.org/10.1007/s10530-013-0442-y (2013).Article 

    Google Scholar 
    Austin, J. D., Dávila, J. A., Lougheed, S. C. & Boag, P. T. Genetic evidence for female-biased dispersal in the bullfrog, Rana catesbeiana (Ranidae). Mol. Ecol. 12, 3165–3172. https://doi.org/10.1046/j.1365-294X.2003.01948.x (2003).Article 
    PubMed 

    Google Scholar 
    Doubledee, R. A., Muller, E. B. & Nisbet, R. M. Bullfrogs, disturbance regimes, and the persistence of California red-legged frogs. J. Wildl. Manage. 67, 424–438 (2003).Article 

    Google Scholar 
    Hanselmann, R. et al. Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biol. Conserv. 120, 115–119. https://doi.org/10.1016/j.biocon.2004.02.013 (2004).Article 

    Google Scholar 
    Adams, M. J., & Pearl, C. A. Problems and opportunities managing invasive bullfrogs: is there any hope? In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats. 679–693 (Springer, 2007).Fisher, M. C. & Garner, T. W. The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal. Biol. Rev. 21, 2–9. https://doi.org/10.1016/j.fbr.2007.02.002 (2007).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021–3. https://www.iucnredlist.org. Accessed on [10.02.2022].Ministry of Environment. Enforcement decree of the wildlife protection and management act. (2018). More

  • in

    Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf

    Lombard, F. et al. Consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196. https://doi.org/10.3389/fmars.2019.00196 (2019).Article 

    Google Scholar 
    Sieracki, M. E., et al. Optical plankton imaging and analysis systems for ocean observation. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, 878–885 (2010). https://doi.org/10.5270/OceanObs09.cwp.81.Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L. & Stemmann, L. Machine learning for the study of plankton and marine snow from images. Ann. Rev. Mar. Sci. 14(1), 277. https://doi.org/10.1146/annurev-marine-041921-013023 (2022).Article 
    PubMed 

    Google Scholar 
    Mars Brisbin, M., Brunner, O. D., Grossmann, M. M. & Mitarai, S. Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution. Limnol. Oceanogr. 65(12), 2953–2965. https://doi.org/10.1002/lno.11567 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Benfield, M. et al. RAPID: Research on automated plankton identification. Oceanography 20(2), 172–187. https://doi.org/10.5670/oceanog.2007.63 (2007).Article 

    Google Scholar 
    Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, e26066. https://doi.org/10.7554/eLife.26066 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, M. K. Principles and techniques of digital holographic microscopy. J. Photonics Energy. 1, 018005. https://doi.org/10.1117/6.0000006 (2010).Article 

    Google Scholar 
    Tahara, T., Quan, X., Otani, R., Takaki, Y. & Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 67(2), 55–67. https://doi.org/10.1093/jmicro/dfy007 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jericho, S. K., Garcia-Sucerquia, J. F. W., Jericho, M. H. & Kreuzer, H. J. Submersible digital in-line holographic microscope. Rev. Sci. Instrum. 77(4), 043706. https://doi.org/10.1063/1.2193827 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Bochdansky, A. B., Jericho, M. H. & Herndl, G. J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particlesto a depth of 6000 m. Limnol. Oceanogr: Methods 11, 28–40 (2013).Article 

    Google Scholar 
    Yourassowsky, C. & Dubois, F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range. Opt. Express 22(6), 6661. https://doi.org/10.1364/OE.22.006661 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H. & Kreuzer, H. J. Point source digital in-line holographic microscopy. In Coherent Light Microscopy (eds Ferraro, P. et al.) 3–30 (Springer, 2011).Chapter 

    Google Scholar 
    Kanka, M., Riesenberg, R. & Kreuzer, H. J. Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34(8), 1162. https://doi.org/10.1364/OL.34.001162 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H., Kreuzer, H. J., Kanka, M. & Riesenberg, R. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl. Opt. 51(10), 1503. https://doi.org/10.1364/AO.51.001503 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4–16 (2018).CAS 
    Article 

    Google Scholar 
    Sun, H. et al. digital holography for studies of marine plankton. Philos. Trans. R. Soc. A. 366, 1789–1806 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Bianco, V. et al. microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2(2), 1900153. https://doi.org/10.1002/aisy.201900153 (2020).Article 

    Google Scholar 
    Guo, B. et al. Automated plankton classification from holographic imagery with deep convolutional neural networks. Limnol. Oceanogr. 19(1), 21–36. https://doi.org/10.1002/lom3.10402 (2021).Article 

    Google Scholar 
    Nayak, A. R., Malkiel, E., McFarland, M. N., Twardowski, M. S. & Sullivan, J. M. A Review of holography in the aquatic sciences: In situ characterization of particles, plankton, and small scale biophysical interactions. Front. Mar. Sci. 7, 572147. https://doi.org/10.3389/fmars.2020.572147 (2021).Article 

    Google Scholar 
    Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P. & Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 95(3), 401–414. https://doi.org/10.1016/j.mimet.2013.08.011 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237), 1261605–1261605. https://doi.org/10.1126/science.1261605 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348(6237), 1262073–1262073. https://doi.org/10.1126/science.1262073 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Santoferrara, L. et al. Perspectives from ten years of protist studies by high-throughput metabarcoding. J. Eukaryot. Microbiol. 67(5), 612–622. https://doi.org/10.1111/jeu.12813 (2020).Article 
    PubMed 

    Google Scholar 
    Eickbush, T. H. & Eickbush, D. G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2), 477–485. https://doi.org/10.1534/genetics.107.071399 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirkham, A. R. et al. Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect: Marine photosynthetic picoeukaryote community structure. Environ. Microbiol. 13(4), 975–990. https://doi.org/10.1111/j.1462-2920.2010.02403.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15(6), 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Phil. Trans. R. Soc. B. 371(1702), 20150331. https://doi.org/10.1098/rstb.2015.0331 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowart, D. A. et al. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. PLoS ONE 10(2), e0117562. https://doi.org/10.1371/journal.pone.0117562 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefanni, S. et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci. Rep. 8(1), 12085. https://doi.org/10.1038/s41598-018-30157-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pappalardo, P. et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab082 (2021).Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52(1), 79–92. https://doi.org/10.1016/j.femsec.2004.10.006 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sargent, E. C. et al. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol. Lett. 363(21), 244. https://doi.org/10.1093/femsle/fnw244 (2016).CAS 
    Article 

    Google Scholar 
    Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219. https://doi.org/10.3389/fmars.2019.00219 (2019).Article 

    Google Scholar 
    Biard, T. et al. Biogeography and diversity of collodaria (radiolaria) in the global ocean. ISME J. 11, 1331–1344 (2017).Article 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrenfeld, M. J. et al. The North Atlantic aerosol and marine ecosystem study (NAAMES): Science motive and mission overview. Front. Mar. Sci. 6, 122. https://doi.org/10.3389/fmars.2019.00122 (2019).Article 

    Google Scholar 
    Bolaños, L. M. et al. Seasonality of the microbial community composition in the North Atlantic. Front. Mar. Sci. 8, 624164. https://doi.org/10.3389/fmars.2021.624164 (2021).Article 

    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44(2), 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x (1982).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Decelle, J. & Not, F. Acantharia. ELS, 1–10 (2015). https://doi.org/10.1002/9780470015902.a0002102.pub2.Yu, L., An, Y. & Cai, L. Numerical reconstruction of digital holograms with variable viewing angles. Opt. Express 10(22), 1250. https://doi.org/10.1364/OE.10.001250 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Della Penna, A. & Gaube, P. Overview of (sub)mesoscale Ocean dynamics for the NAAMES field program. Front. Mar. Sci. 6, 384. https://doi.org/10.3389/fmars.2019.00384 (2019).Article 

    Google Scholar 
    Sverdrup, H. U. Oceanography for Meteorologists (Prentice Hall, 1942).Book 

    Google Scholar 
    Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8(1), 161–184. https://doi.org/10.1146/annurev-marine-010814-015912 (2016).ADS 
    Article 

    Google Scholar 
    Fratantoni, P. S. & Pickart, R. S. The Western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37(10), 2509–2533. https://doi.org/10.1175/JPO3123.1 (2007).ADS 
    Article 

    Google Scholar 
    Bolaños, L. M. et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 14(7), 1663–1674. https://doi.org/10.1038/s41396-020-0636-0 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, S. J., Siegel, D. A. & Graff, J. R. Phytoplankton community composition determined from co-variability among phytoplankton pigments from the NAAMES field campaign. Front. Mar. Sci. 7, 215. https://doi.org/10.3389/fmars.2020.00215 (2020).Article 

    Google Scholar 
    Faure, E. et al. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J. 13(4), 1072–1083. https://doi.org/10.1038/s41396-018-0340-5 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fratantoni, P. S. & McCartney, M. S. Freshwater export from the labrador current to the North Atlantic Current at the tail of the grand banks of Newfoundland. Deep Sea Res. I. 57(2), 258–283. https://doi.org/10.1016/j.dsr.2009.11.006 (2010).Article 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24, 185–196. https://doi.org/10.1016/j.margen.2015.08.007 (2015).Article 

    Google Scholar 
    Jian, C., Salonen, A. & Korpela, K. Commentary: How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 11, 627910. https://doi.org/10.3389/fcimb.2021.627910 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding: Metabarcoding zooplankton from eDNA. Limnol. Oceanogr. Methods 16(4), 209–221. https://doi.org/10.1002/lom3.10237 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo, J. et al. The others: Our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29(5), 252–259. https://doi.org/10.1016/j.tree.2014.03.006 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat. Biotech. 36(2), 190–195. https://doi.org/10.1038/nbt.4045 (2018).CAS 
    Article 

    Google Scholar 
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029. https://doi.org/10.1038/s41467-019-13036-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 47(18), e103–e103. https://doi.org/10.1093/nar/gkz569 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Appl. Environ. Microbiol. 85(5), 18. https://doi.org/10.1128/AEM.02634-18 (2019).Article 

    Google Scholar 
    Vogt, M. et al. Global marine plankton functional type biomass distributions: Phaeocystis spp. Earth Syst. Sci. Data 5, 405–443. https://doi.org/10.5194/essdd-5-405-2012 (2012).ADS 
    Article 

    Google Scholar 
    MacNeil, L., Missan, S., Luo, J., Trappenberg, T. & LaRoche, J. Plankton classification with high-throughput submersible holographic microscopy and transfer learning. BMC Ecol. Evol. 21(1), 123. https://doi.org/10.1186/s12862-021-01839-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pan, J., del Campo, J. & Keeling, P. J. Reference tree and environmental sequence diversity of labyrinthulomycetes. J. Eukary. Microbiol. 64(1), 88–96. https://doi.org/10.1111/jeu.12342 (2017).Article 

    Google Scholar 
    Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11(2), 362–373. https://doi.org/10.1038/ismej.2016.113 (2017).Article 
    PubMed 

    Google Scholar 
    Xie, N., Hunt, D. E., Johnson, Z. I., He, Y. & Wang, G. Annual partitioning patterns of Labyrinthulomycetes protists reveal their multifaceted role in marine microbial food webs. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01652-20 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walcutt, N. L. et al. Assessment of holographic microscopy for quantifying marine particle size and concentration. Limnol. Oceanogr. Methods 3, 10379. https://doi.org/10.1002/lom3.10379 (2020).Article 

    Google Scholar 
    Axler, K. et al. Fine-scale larval fish distributions and predator-prey dynamics in a coastal river-dominated ecosystem. Mar. Ecol. Prog. Ser. 650, 37–61. https://doi.org/10.3354/meps13397 (2020).ADS 
    Article 

    Google Scholar 
    Trudnowska, E. et al. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12(1), 2816. https://doi.org/10.1038/s41467-021-22994-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González, P. et al. Automatic plankton quantification using deep features. J. Plankton Res. 41(4), 449–463. https://doi.org/10.1093/plankt/fbz023 (2019).Article 

    Google Scholar 
    Briseño-Avena, C. et al. Three-dimensional cross-shelf zooplankton distributions off the Central Oregon Coast during anomalous oceanographic conditions. Prog. Oceanogr. 188, 102436. https://doi.org/10.1016/j.pocean.2020.102436 (2020).Article 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Orenstein, E. C. et al. The scripps plankton camera system: A framework and platform for in situ microscopy. Limnol. Oceanogr. Methods 18(11), 681–695. https://doi.org/10.1002/lom3.10394 (2020).Article 

    Google Scholar 
    Fowler, B. L. et al. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. PNAS 117(22), 12215–12221. https://doi.org/10.1073/pnas.1918439117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11(1), 27–37. https://doi.org/10.1038/s41561-017-0028-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ryabov, A. et al. Shape matters: The relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 24(4), 847–861. https://doi.org/10.1111/ele.13680 (2021).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Keeling, P. J. & del Campo, J. marine protists are not just big bacteria. Curr. Biol. 27(11), R541–R549. https://doi.org/10.1016/j.cub.2017.03.075 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y. & Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8(1), 14375. https://doi.org/10.1038/ncomms14375 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Desbruyères, D., Chafik, L. & Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016. Commun. Earth Environ. 2(1), 48. https://doi.org/10.1038/s43247-021-00120-y (2021).ADS 
    Article 

    Google Scholar 
    Mitchell, M. R. et al. Atlantic zone monitoring program protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223, 1–23 (2002).
    Google Scholar 
    Li, W. K. W., Glen Harrison, W. & Head, E. J. H. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc. R. Soc. B. 273(1596), 1953–1960. https://doi.org/10.1098/rspb.2006.3529 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, P. L. Florida current, gulf stream, and labrador current. In Encyclopedia of Ocean Sciences (ed. Steele, J. H.) 1054–1064 (Academic Press, 2001). https://doi.org/10.1006/rwos.2001.0357.Chapter 

    Google Scholar 
    Henson, S. A., Dunne, J. P. & Sarmiento, J. L. Decadal variability in North Atlantic phytoplankton blooms. J. Geophys. Res. 114(C4), C04013. https://doi.org/10.1029/2008JC005139 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Han, G., Lu, Z., Wang, Z., Helbig, J. & Chen, N. Seasonal variability of the labrador current and shelf circulation off Newfoundland. J. Geophys. Res. 113, 10. https://doi.org/10.1029/2007JC004376 (2008).Article 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelley, D. “The Oce Package” In Oceanographic Analysis with R 91–101 (Springer, 2018).Book 

    Google Scholar 
    Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=vegan.Tomas, C. R. Identifying Marine Phytoplankton (Academic Press Inc, 1997).
    Google Scholar 
    Comeau, A. M., Li, W. K. W., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6(11), e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems https://doi.org/10.1128/mSystems.00009-15 (2016).Article 
    PubMed 

    Google Scholar 
    Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2(1), e00127-e216. https://doi.org/10.1128/mSystems.00127-16 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotech. 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS 
    Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2(2), e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41(D1), D597–D604. https://doi.org/10.1093/nar/gks1160 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohsen, A., Park, J., Chen, Y.-A., Kawashima, H. & Mizuguchi, K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinform. 20(1), 581. https://doi.org/10.1186/s12859-019-3187-5 (2019).Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z (2018).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willis, A. & Bunge, J. Estimating diversity via frequency ratios: estimating diversity via ratios. Biometrics 71(4), 1042–1049. https://doi.org/10.1111/biom.12332 (2015).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407. https://doi.org/10.3389/fmicb.2019.02407 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8(9), 107. https://doi.org/10.1093/gigascience/giz107 (2019).CAS 
    Article 

    Google Scholar 
    Silverman, J. D., Roche, K., Mukherjee, S. & David, L. A. Naught all zeros in sequence count data are the same. Comput. Struct. Biotech. J. 18, 2789–2798. https://doi.org/10.1016/j.csbj.2020.09.014 (2020).CAS 
    Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar  More

  • in

    Microbiota succession throughout life from the cradle to the grave

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ward, T. L. et al. Development of the human mycobiome over the first month of life and across body sites. mSystems 3, e00140–17 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abeles, S. R. et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8, 1753–1767 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms – how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasko, D. A. Changes in microbiome during and after travellers’ diarrhea: what we know and what we do not. J. Travel. Med. 24, S52–S56 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. mBio 6, e01693–15 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).PubMed 
    Article 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C. & Gasbarrini, A. Proteobacteria: a common factor in human diseases. Biomed. Res. Int. 2017, 9351507 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lynn, M. A. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe 23, 653–660.e5 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Macpherson, A. J., de Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakajima, A. et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 199, 3516–3524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jamalkandi, S. A. et al. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases, asthma and chronic obstructive pulmonary disease. Nutr. Res. Rev. 34, 1–16 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Örtqvist, A. K., Lundholm, C., Halfvarson, J., Ludvigsson, J. F. & Almqvist, C. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut 68, 218–225 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Munyaka, P. M., Eissa, N., Bernstein, C. N., Khafipour, E. & Ghia, J.-E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS ONE 10, e0142536 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 69, 42–51 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Milliken, S., Allen, R. M. & Lamont, R. F. The role of antimicrobial treatment during pregnancy on the neonatal gut microbiome and the development of atopy, asthma, allergy and obesity in childhood. Expert. Opin. Drug. Saf. 18, 173–185 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santacruz, A. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trevisanuto, D. et al. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: a case-control study. J. Matern. Fetal Neonatal Med. 26, 1484–1490 (2013).PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding. Med 2, 951–964.e5 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abu-Raya, B., Michalski, C., Sadarangani, M. & Lavoie, P. M. Maternal immunological adaptation during normal pregnancy. Front. Immunol. 11, 575197 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, L. A. et al. The transfer of immunity from mother to child. Ann. NY. Acad. Sci. 987, 199–206 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016). This study demonstrates that ‘seeding’ infants born by caesarean delivery with the vaginal microbiota of the mother at birth partially naturalizes development of the microbial community.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helve, O. et al. 2843. Maternal fecal transplantation to infants born by cesarean section: safety and feasibility. Open. Forum Infect. Dis. 6, S68 (2019).PubMed Central 
    Article 

    Google Scholar 
    Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). This study shows that severe acute malnutrition leads to immature microbial development and introduces a metric for the measure of microbiota maturity.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Groer, M. W. et al. Development of the preterm infant gut microbiome: a research priority. Microbiome 2, 38 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021). This report describes the immune development driven by microbial interactions and the negative impact of lack of HMO-utilizing microorganisms on the immune system.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sela, D. A. & Mills, D. A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298–307 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seppo, A. E. et al. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle. Allergy 76, 3489–3503 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantis, V., Bode, L. & van Neerven, R. J. J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 6, 190 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Z.-T., Chen, C. & Newburg, D. S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23, 1281–1292 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    CAS 

    Google Scholar 
    McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schei, K. et al. Early gut mycobiota and mother-offspring transfer. Microbiome 5, 107 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10, 159 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagpal, R. et al. Gut mycobiome and its interaction with diet, gut bacteria and Alzheimer’s disease markers in subjects with mild cognitive impairment: a pilot study. EBioMedicine 59, 102950 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad, H. F. et al. Gut mycobiome dysbiosis is linked to hypertriglyceridemia among home dwelling elderly Danes. Preprint at bioRxiv https://doi.org/10.1101/2020.04.16.044693 (2020).Article 

    Google Scholar 
    Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020). This study describes the assembly of the human virome during development.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J. Crohns. Colitis 14, 1600–1610 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koren, O. & Rautava, S. The Human Microbiome in Early Life: Implications to Health and Disease (Academic, 2020).Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA 112, 11941–11946 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. & van der Hoek, L. Viruses causing gastroenteritis: the known, the new and those beyond. Viruses 8, 42 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. B 367, 2864–2871 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mason, M. R., Chambers, S., Dabdoub, S. M., Thikkurissy, S. & Kumar, P. S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6, 67 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Merglova, V. & Polenik, P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol. 61, 423–429 (2016).CAS 
    Article 

    Google Scholar 
    Gomez, A. & Nelson, K. E. The oral microbiome of children: development, disease, and implications beyond oral health. Microb. Ecol. 73, 492–503 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cephas, K. D. et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE 6, e23503 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darwazeh, A. M. & al-Bashir, A. Oral candidal flora in healthy infants. J. Oral. Pathol. Med. 24, 361–364 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stecksén-Blicks, C., Granström, E., Silfverdal, S. A. & West, C. E. Prevalence of oral Candida in the first year of life. Mycoses 58, 550–556 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brusa, T., Conca, R., Ferrara, A., Ferrari, A. & Pecchioni, A. The presence of methanobacteria in human subgingival plaque. J. Clin. Periodontol. 14, 470–471 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrari, A., Brusa, T., Rutili, A., Canzi, E. & Biavati, B. Isolation and characterization ofMethanobrevibacter oralis sp. nov. Curr. Microbiol. 29, 7–12 (1994).CAS 
    Article 

    Google Scholar 
    Nguyen-Hieu, T., Khelaifia, S., Aboudharam, G. & Drancourt, M. Methanogenic archaea in subgingival sites: a review. APMIS 121, 467–477 (2013).PubMed 
    Article 

    Google Scholar 
    Abeles, S. R., Ly, M., Santiago-Rodriguez, T. M. & Pride, D. T. Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE 10, e0134941 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pérez-Brocal, V. & Moya, A. The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS ONE 13, e0191867 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dye, B. A., Li, X. & Thornton-Evans, G. Oral health disparities as determined by selected healthy people 2020 oral health objectives for the United States, 2009–2010. NCHS Data Brief. 104, 1–8 (2012).
    Google Scholar 
    Baker, J. L., Bor, B., Agnello, M., Shi, W. & He, X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 25, 362–374 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gaitanis, G. et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr. Dermatol. 36, 460–465 (2019).PubMed 

    Google Scholar 
    Lee, Y. W., Yim, S. M., Lim, S. H., Choe, Y. B. & Ahn, K. J. Quantitative investigation on the distribution of Malassezia species on healthy human skin in Korea. Mycoses 49, 405–410 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sugita, T. et al. Quantitative analysis of the cutaneous Malassezia microbiota in 770 healthy Japanese by age and gender using a real-time PCR assay. Med. Mycol. 48, 229–233 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hulcr, J. et al. A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS ONE 7, e47712 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya, A. & Brocal, V. P. The Human Virome: Methods and Protocols (Springer, 2018).Foulongne, V. et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7, e38499 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl Acad. Sci. USA 107, 7503–7508 (2010). This study shows that cohabitating identical twins result in different microbial communities, highlighting the many unknown processes that lead to the unique human microbiota.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainonen, S. et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr. Res. 91, 154–162 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X., Lu, Y., Chen, T. & Li, R. The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 11, 631972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wells, J. S., Chandler, R., Dunn, A. & Brewster, G. The vaginal microbiome in U.S. black women: a systematic review. J. Womens Health 29, 362–375 (2020).Article 

    Google Scholar 
    Martino, C. et al. Context-aware dimensionality reduction deconvolutes gut microbial community dynamics. Nat. Biotechnol. 39, 165–168 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henderickx, J. G. E., Zwittink, R. D., van Lingen, R. A., Knol, J. & Belzer, C. The preterm gut microbiota: an inconspicuous challenge in nutritional neonatal care. Front. Cell. Infect. Microbiol. 9, 85 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malamitsi-Puchner, A. et al. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 81, 387–392 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Andersen, V., Möller, S., Jensen, P. B., Møller, F. T. & Green, A. Caesarean delivery and risk of chronic inflammatory diseases (inflammatory bowel disease, rheumatoid arthritis, coeliac disease, and diabetes mellitus): a population based registry study of 2,699,479 births in Denmark during 1973–2016. Clin. Epidemiol. 12, 287–293 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blustein, J. et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 37, 900–906 (2013).CAS 
    Article 

    Google Scholar 
    Ardic, C., Usta, O., Omar, E., Yıldız, C. & Memis, E. Caesarean delivery increases the risk of overweight or obesity in 2-year-old children. J. Obstet. Gynaecol. 41, 374–379 (2021).PubMed 
    Article 

    Google Scholar 
    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martinez, K. A. 2nd et al. Increased weight gain by C-section: functional significance of the primordial microbiome. Sci. Adv. 3, eaao1874 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Livanos, A. E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya-Pérez, A. et al. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis. Nutr. Rev. 75, 225–240 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forbes, J. D. et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 172, e181161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shenhav, L. & Azad, M. B. Using community ecology theory and computational microbiome methods to study human milk as a biological system. mSystems 7, e01132–21 (2022).PubMed Central 
    Article 

    Google Scholar 
    Kaetzel, C. S. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol. Lett. 162, 10–21 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munblit, D., Verhasselt, V. & Warner, J. O. Human Milk Composition and Health Outcomes in Children (Frontiers Media, 2019).Mastromarino, P. et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals 27, 1077–1086 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coats, S. R., Pham, T.-T. T., Bainbridge, B. W., Reife, R. A. & Darveau, R. P. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J. Immunol. 175, 4490–4498 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Denou, E. et al. Defective NOD 2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao, J., Fiscella, K. A. & Gill, S. R. Oral microbiome: possible harbinger for children’s health. Int. J. Oral. Sci. 12, 12 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allaband, C. et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome. mSystems 6, e00116–e00121 (2021).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Marotz, C. et al. Quantifying live microbial load in human saliva samples over time reveals stable composition and dynamic load. mSystems 6, e01182–20 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouslimani, A. et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 17, 47 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). This study demonstrates the important variability between body habitats and between individuals across the same body habitat.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaramela, L. S. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 4, 2082–2089 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, j1957 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol. 1, 16106 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138, 1137–1145 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299, 1–8 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santus, W., Devlin, J. R. & Behnsen, J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infect. Immun. 89, e00648–20 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018). This study shows that autologous faecal microbiota transplantation helps to restore the microbiota of patients who underwent antibiotic treatment.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Nood, E., Dijkgraaf, M. G. W. & Keller, J. J. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 2145 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tariq, R., Pardi, D. S., Bartlett, M. G. & Khanna, S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 68, 1351–1358 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Panigrahi, P. et al. Corrigendum: a randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 553, 238 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halkjær, S. I. et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67, 2107–2115 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954–17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mu, A. et al. Effects on the microbiome during treatment of a staphylococcal device infection. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-969336/v1 (2021).Article 

    Google Scholar 
    Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012). This study reports microbial community alterations between older individuals (aged 65 years and older) dependent on whether they live in the company of others or alone, the latter of which was correlated to worse outcomes (that is, frailty and co-morbidity).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems 4, e00325–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4586–4591 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Shibagaki, N. et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 7, 10567 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu, S., Wang, Y., Zhao, L., Sun, X. & Feng, Q. Microbiome succession with increasing age in three oral sites. Aging 12, 7874–7907 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwartz, J. L. et al. Old age and other factors associated with salivary microbiome variation. BMC Oral. Health 21, 490 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strati, F. et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front. Microbiol. 7, 01227 (2016).Article 

    Google Scholar 
    Wu, L. et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. mSphere 5, e00558–19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging 4, 267–285 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021). This study finds that centenarians often had high abundances of microorganisms that produced unique secondary bile acids, namely various isoforms of lithocholic acid.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: the Postmortem Fate of Human Remains 93–108 (CRC, 1997).Janaway, R. C., Percival, S. L. & Wilson, A. S. in Microbiology and Aging (ed. Percival, S. L) 313–334 (Humana, 2009).Forbes, S. L., Perrault, K. A. & Comstock, J. L. in Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment (eds Schotsmans, E. M. J., Márquez-Grant, N. & Forbes, S. L.) 26–38 (Wiley, 2017).Heimesaat, M. M. et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS ONE 7, e40758 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkinson, R. A. et al. in Criminal and Environmental Soil Forensics (eds Ritz, K., Dawson, L. & Miller, D.) 379–394 (Springer, 2009).Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016). This study finds that the time since death was predictable through the microbial community composition independent of the soil type and season.CAS 
    PubMed 
    Article 

    Google Scholar 
    DeBruyn, J. M. & Hauther, K. A. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5, e3437 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal, J. L., Schmidt, C. J., Jordan, H. R. & Benbow, M. E. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci. Rep. 8, 5724 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kodama, W. A. et al. Trace evidence potential in postmortem skin microbiomes: from death scene to morgue. J. Forensic Sci. 64, 791–798 (2019).PubMed 
    Article 

    Google Scholar 
    Hauther, K. A., Cobaugh, K. L., Jantz, L. M., Sparer, T. E. & DeBruyn, J. M. Estimating time since death from postmortem human gut microbial communities. J. Forensic Sci. 60, 1234–1240 (2015).PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Sci. Int. 264, 63–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front. Microbiol. 10, 745 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balzan, S., de Almeida Quadros, C., de Cleva, R., Zilberstein, B. & Cecconello, I. Bacterial translocation: overview of mechanisms and clinical impact. J. Gastroenterol. Hepatol. 22, 464–471 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2, e01104 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M. & Bucheli, S. R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 129, 661–671 (2015).Article 

    Google Scholar 
    Javan, G. T., Finley, S. J., Smith, T., Miller, J. & Wilkinson, J. E. Cadaver thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front. Microbiol. 8, 2096 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, H. R. et al. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE 11, e0167370 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Belk, A. et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes 9, 104 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Metcalf, J. L. Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Sci. Int. Genet. 38, 211–218 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deel, H. et al. A pilot study of microbial succession in human rib skeletal remains during terrestrial decomposition. mSphere 6, e0045521 (2021).PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. Microbiome tools for forensic science. Trends Biotechnol. 35, 814–823 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, T. T., Hathaway, H., Kosciolek, T., Knight, R. & Jeste, D. V. Gut microbiome in serious mental illnesses: a systematic review and critical evaluation. Schizophr. Res. 234, 24–40 (2021).PubMed 
    Article 

    Google Scholar 
    Jeste, D. V., Koh, S. & Pender, V. B. Perspective: social determinants of mental health for the new decade of healthy aging. Am. J. Geriatr. Psychiatry 30, 733–736 (2022).PubMed 
    Article 

    Google Scholar 
    Matijašić, M. et al. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int. J. Mol. Sci. 21, 2668 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vázquez-Baeza, Y. et al. Guiding longitudinal sampling in IBD cohorts. Gut 67, 1743–1745 (2018).PubMed 
    Article 

    Google Scholar 
    Kane, P. B., Bittlinger, M. & Kimmelman, J. Individualized therapy trials: navigating patient care, research goals and ethics. Nat. Med. 27, 1679–1686 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Nat. Acad. Sci. USA 112, E2930–E2938 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vangay, P. et al. Microbiome metadata standards: report of the national microbiome data collaborative’s workshop and follow-on activities. mSystems 6, e01194–20 (2021).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Biogeographic implication of temperature-induced plant cell wall lignification

    Körner, C. The cold range limit of trees. Trends Ecol. Evo. 36, 979–989 (2021).Article 

    Google Scholar 
    Körner, C. Alpine Treelines (Springer, 2012).Miehe, G., Miehe, S., Vogel, J., Co, S. & Duo, L. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).Article 

    Google Scholar 
    Hoch, G. & Körner, C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct. Ecol. 19, 941–951 (2005).Article 

    Google Scholar 
    von Humboldt, A. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Tübingen, Bey F.G. Cotta (1807).Körner, C. Climatic treelines: conventions, global patterns, causes. Erdkunde 61, 315–324 (2007).Article 

    Google Scholar 
    Piermattei, A., Crivellaro, A., Carrer, M. & Urbinati, C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees Struct. Funct. 29, 613–620 (2015).CAS 
    Article 

    Google Scholar 
    Körner, C. et al. Life at 0 °C: the biology of the alpine snowbed plant Soldanella pulsatilla. Alp. Bot. 129, 63–80 (2019).Article 

    Google Scholar 
    Crivellaro, A. & Büntgen, U. New evidence of thermally-constraint plant cell wall lignification. Trends Plant Sci. 24, 322–324 (2020).Article 
    CAS 

    Google Scholar 
    Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).Article 

    Google Scholar 
    Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Biosci 47, 235–242 (1997).Article 

    Google Scholar 
    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428, 851–854 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2003).Scherrer, D. & Körner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602–2613 (2010).
    Google Scholar 
    Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Planta 147, 46–54 (2013).CAS 
    Article 

    Google Scholar 
    Plomion, C., Leprovost, G. & Stokes, A. Wood formation in trees. Plant Physiol. 127, 1513–1523 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 
    Article 

    Google Scholar 
    Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weng, J. K. & Chapple, C. The origin and evolution of lignin biosynthesis. N. Phytol. 187, 273–285 (2010).CAS 
    Article 

    Google Scholar 
    Niklas, K. J., Cobb, E. D. & Matas, A. J. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. 68, 5261–5269 (2017).CAS 

    Google Scholar 
    Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piquemal, J. et al. Down regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13, 71–83 (1998).CAS 
    Article 

    Google Scholar 
    Renault, H., Werck-Reichhart, D. & Weng, J.-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 56, 105–111 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schenk, H. J., Espino, S., Rich-Cavazos, S. M. & Jansen, S. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105, 172–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polo, C. C. et al. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci. Rep. 10, 6023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meents, M. J., Watanabe, Y. & Samuels, A. L. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 121, 1107–1125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, M. M. & Sederoff, R. R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 110, 3–13 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweingruber, F. H. & Büntgen, U. What is ‘wood’ – An anatomical re-definition. Dendrochronologia 31, 187–191 (2013).Article 

    Google Scholar 
    Ellenberg, H. & Mueller-Dombois, D. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. Inst. ETH Z.ürich. 37, 56–73 (1967).
    Google Scholar 
    Kim, W. J., Campbell, A. G. & Koch, P. Chemical variation in Lodgepole pine with latitude, elevation, and diameter class. Prod. J. 39, 7–12 (1989).CAS 

    Google Scholar 
    Gindl, W., Grabner, M. & Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, Struct. Funct. 14, 409–414 (2000).Article 

    Google Scholar 
    Schenker, G., Lens, A., Körner, C. & Hoch, G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 34, 302–313 (2014).PubMed 
    Article 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ji, H. et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Gen. 11, e1005471 (2015).Article 
    CAS 

    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).Article 

    Google Scholar 
    Piermattei, A. et al. A millennium-long ‘Blue-Ring’ chronology from the Spanish Pyrenees reveals sever ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 15, 124016 (2020).Article 

    Google Scholar 
    Montwé, D., Isaac-Rentin, M., Hamman, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Comm. 9, 1574 (2018).Article 
    CAS 

    Google Scholar 
    Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, Z. & Mohnen, D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Cri. Rev. Biochem. Mol. Biol. 49, 212–241 (2014).CAS 
    Article 

    Google Scholar 
    Liu, Q., Luo, L. & Zheng, L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kumar, M., Campbell, L. & Turner, S. Secondary cell walls: biosynthesis and manipulation. J. Exp. Bot. 67, 515–531 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mellerowicz, E. J., Baucher, M., Sundberg, B. & Boerjan, W. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47, 239–274 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petit, G., Anfodillo, T., Carraro, V., Grani, F. & Carrer, M. Hydraulic constraints limit height growth in trees at high altitude. N. Phytol. 189, 241–252 (2010).Article 

    Google Scholar 
    Li, L. et al. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA 100, 4939–4944 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baldacci-Cresp, F. et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 102, 1074–1089 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).PubMed 
    Article 

    Google Scholar 
    Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 25, 967–977 (2014).Article 

    Google Scholar 
    Körner, C. Coldest places on earth with angiosperm plant life. Alp. Bot. 121, 11–22 (2011).Article 

    Google Scholar 
    GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.ms4hjt (2018).Chamberlain, S., Ram, K. & Hart, T. Spocc: Interface to Specie Occurrence Data Sources, R package v.0.9.0. http://CRAN.R-project.org/package=spocc (2018).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modelling, R package v.2.2-12. http://CRAN.R-project.org/package=raster (2014).Gärtner, H. et al. A technical perspective in modern tree-ring research – How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 97, e52337 (2015).
    Google Scholar 
    Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Techniques for Plant Stem Analysis (Verlag Kessel, 2013).Ghislan, B., Engel, J. & Clair, B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA J. 40, 1–20 (2019).Article 

    Google Scholar 
    Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 1 (Springer, 2011).Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 2 (Springer, 2013).Dolezal, J., Dvorsky, M., Börner, A., Wild, J. & Schweingruber, F. H. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, the Western Himalaya (Springer International Publishing, 2018).Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software 559 for Ordination, Version 5.0 (Cambridge Univ. Press, 2012).Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 (Cambridge Univ. Press, 2014). More