Coronamoeba villafranca gen. nov. sp. nov. (Amoebozoa, Dermamoebida) challenges the correlation of morphology and phylogeny in Amoebozoa
Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119. https://doi.org/10.1111/jeu.12691 (2019).Article
PubMed
PubMed Central
Google Scholar
Smirnov, A. Amoebas, Lobose. In Encyclopedia of Microbiology (ed. Schaechter, M.) 191–212 (Elsevier, 2012).
Google Scholar
Schaeffer, A. A. Taxonomy of the Amoebas: With Descriptions of Thirty-Nine New Marine and Freshwater Species (Carnegie Inst, 1926).
Google Scholar
Page, F. C. The classification of “naked” amoebae (Phylum Rhizopoda). Arch. Protistenkd. 133, 199–217. https://doi.org/10.1016/S0003-9365(87)80053-2 (1987).Article
Google Scholar
Page, F. C. A New Key to Freshwater and Soil Gymnamoebae (Freshwater Biological Association, 1988).
Google Scholar
Smirnov, A. V. & Goodkov, A. V. An illustrated list of basic morphotypes of Gymnamoebia (Rhizopoda, Lobosea). Protistology 1, 20–29 (1999).
Google Scholar
Smirnov, A. V. & Brown, S. Guide to the methods of study and identification of soil gymnamoebae. Protistology 3, 148–190 (2004).
Google Scholar
Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy of Sarcodina. II. The organization of subclasses and orders in relationship to the classes Autotractea and Hydraulea. Am. Midland Nat. 73, 293–298. https://doi.org/10.2307/2423456 (1965).Article
Google Scholar
Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy or sarcodina. III. Orders, suborders, families, and subfamilies in the superorder Lobida. Syst. Zool. 15, 229–240. https://doi.org/10.2307/sysbio/15.3.229 (1966).CAS
Article
PubMed
Google Scholar
Bovee, E.C. & Sawyer, T.K. Marine Flora and Fauna of the Northeastern United States. Protozoa: Sarcodina: Amoebae. (NOAA Technical Report, 1979). https://doi.org/10.5962/bhl.title.63225.Jahn, T. L. & Bovee, E. C. Mechanisms of movement in taxonomy of Sarcodina. I. As a basis for a new major dichotomy into two classes, Autotractea and Hydraulea. Am. Midl. Nat. 73, 30–40. https://doi.org/10.2307/2423319 (1965).Article
Google Scholar
Jahn, T. L., Bovee, E. C. & Griffith, D. L. Taxonomy and evolution of the Sarcodina: A reclassification. Taxon 23, 483–496. https://doi.org/10.2307/1218771 (1974).Article
Google Scholar
Cavalier-Smith, T., Chao, E.E.-Y. & Oates, B. Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur. J. Protistol. 40, 21–48. https://doi.org/10.1016/j.ejop.2003.10.001 (2004).Article
Google Scholar
Smirnov, A. et al. Molecular phylogeny and classification of the lobose amoebae. Protist 156, 129–142. https://doi.org/10.1016/j.protis.2005.06.002 (2005).CAS
Article
PubMed
Google Scholar
Amaral Zettler, L. A. et al. A molecular reassessment of the leptomyxid amoebae. Protist 151, 275–282. https://doi.org/10.1078/1434-4610-00025 (2000).CAS
Article
PubMed
Google Scholar
Bolivar, I., Fahrni, J. F., Smirnov, A. & Pawlowski, J. SSU rRNA-based phylogenetic position of the genera Amoeba and Chaos (Lobosea, Gymnamoebia): The origin of gymnamoebae revisited. Mol. Biol. Evol. 18, 2306–2314. https://doi.org/10.1093/oxfordjournals.molbev.a003777 (2001).CAS
Article
PubMed
Google Scholar
Fahrni, J. F. et al. Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes. Mol. Biol. Evol. 20, 1881–1886. https://doi.org/10.1093/molbev/msg201 (2003).CAS
Article
PubMed
Google Scholar
Cavalier-Smith, T. et al. Multigene phylogeny resolves deep branching of Amoebozoa. Mol. Phylogenet. Evol. 83, 293–304. https://doi.org/10.1016/j.ympev.2014.08.011 (2015).Article
PubMed
Google Scholar
Cavalier-Smith, T., Chao, E. E. & Lewis, R. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol. Phylogenet. Evol. 99, 275–296. https://doi.org/10.1016/j.ympev.2016.03.023 (2016).Article
PubMed
Google Scholar
Kang, S. et al. Between a pod and a hard test: The deep evolution of amoebae. Mol. Biol. Evol. 34, 2258–2270. https://doi.org/10.1093/molbev/msx162 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
Tekle, Y. I. & Wood, F. C. Longamoebia is not monophyletic: Phylogenomic and cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades. Mol. Phylogenet. Evol. 114, 249–260. https://doi.org/10.1016/j.ympev.2017.06.019 (2017).Article
PubMed
Google Scholar
Tekle, Y. I., Wang, F., Wood, F. C., Anderson, O. R. & Smirnov, A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. bioRxiv https://doi.org/10.1101/2022.02.28.482369 (2022).Article
Google Scholar
Van Wichelen, J. et al. A hotspot of amoebae diversity: 8 new naked amoebae associated with the planktonic bloom-forming cyanobacterium microcystis. Acta Protozool. 55, 61–87. https://doi.org/10.4467/16890027AP.16.007.4942 (2016).Article
Google Scholar
Janicki, C. Paramoebenstudien (P. pigmentifera Grassi und P. chaetognathi Grassi). Z. Wiss. Zool. 103, 449–518 (1912).
Google Scholar
Volkova, E. & Kudryavtsev, A. A morphological and molecular reinvestigation of Janickina pigmentifera (Grassi, 1881) Chatton 1953—an amoebozoan parasite of arrow-worms (Chaetognatha). Int. J. Syst. Evol. Microbiol. 71, 005094. https://doi.org/10.1099/ijsem.0.005094 (2021).CAS
Article
Google Scholar
Page, F. C. Taxonomic criteria for limax amoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. J. Protozool. 14, 499–521 (1967).CAS
Article
Google Scholar
Page, F. C. & Blanton, R. L. The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21, 121–132 (1985).
Google Scholar
Laurin, V., Labbé, N., Parent, S., Juteau, P. & Villemur, R. Microeukaryote diversity in a marine methanol-fed fluidized denitrification system. Microb. Ecol. 56, 637–648. https://doi.org/10.1007/s00248-008-9383-x (2008).CAS
Article
PubMed
Google Scholar
Page, F. C. A further study of taxonomic criteria for limax amoebae, with descriptions of new species and a key to genera. Arch. Protistenkd. 116, 149–184 (1974).
Google Scholar
Page, F. C. Marine Gymnamoebae (Institute of Terrestrial Ecology, 1983).
Google Scholar
Page, F. C. A light- and electron-microscopical comparison of limax and flabellate marine amoebae belonging to four genera. Protistologica 16, 57–78 (1980).
Google Scholar
Kuiper, M. W. et al. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl. Environ. Microbiol. 72, 5750–5756. https://doi.org/10.1128/AEM.00085-06 (2006).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Smirnov, A., Chao, E., Nassonova, E. & Cavalier-Smith, T. A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162, 545–570. https://doi.org/10.1016/j.protis.2011.04.004 (2011).Article
PubMed
Google Scholar
Page, F. C. & Blakey, S. M. Cell surface structure as a taxonomic character in the Thecamoebidae (Protozoa: Gymnamoebia). Zool. J. Linn. Soc. 66, 113–135. https://doi.org/10.1111/j.1096-3642.1979.tb01905.x (1979).Article
Google Scholar
Smirnov, A. V. & Goodkov, A. V. Paradermamoeba valamo gen. n., sp. n. (Gymnamoebia, Thecamoebidae)—a freshwater amoeba from bottom sediments. Zool. Zhurn. 72, 5–11 (1993) (In Russian with English summary).
Google Scholar
Smirnov, A. & Goodkov, A. Ultrastructure and geographic distribution of the genus Paradermamoeba (Gymnamoebia, Thecamoebidae). Eur. J. Protistol. 40, 113–118. https://doi.org/10.1016/j.ejop.2003.12.001 (2004).Article
Google Scholar
Smirnov, A. V., Bedjagina, O. M. & Goodkov, A. V. Dermamoeba algensis n sp (Amoebozoa, Dermamoebidae)—an algivorous lobose amoeba with complex cell coat and unusual feeding mode. Eur. J. Protistol. 47, 67–78. https://doi.org/10.1016/j.ejop.2010.12.002 (2011).Article
PubMed
Google Scholar
Bailey, G. B., Day, D. B. & McCoomer, N. E. Entamoeba motility: Dynamics of cytoplasmic streaming, locomotion and translocation of surface-bound particles, and organization of the actin cytoskeleton in Entamoeba invadens. J. Protozool. 39, 267–272. https://doi.org/10.1111/j.1550-7408.1992.tb01313.x (1992).CAS
Article
PubMed
Google Scholar
Shiratori, T. & Ishida, K. I. Entamoeba marina n. sp.; a new species of Entamoeba isolated from tidal flat sediment of Iriomote Island, Okinawa, Japan. J. Eukaryot. Microbiol. 63, 280–286. https://doi.org/10.1111/jeu.12276 (2016).Article
PubMed
Google Scholar
Lahr, D. J., Laughinghouse, H. D. IV., Oliverio, A. M., Gao, F. & Katz, L. A. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. BioEssays 36, 950–959. https://doi.org/10.1002/bies.201400056 (2014).Article
PubMed
PubMed Central
Google Scholar
Pomorski, P. et al. Actin dynamics in Amoeba proteus motility. Protoplasma 231, 31–41. https://doi.org/10.1007/s00709-007-0243-1 (2007).CAS
Article
PubMed
Google Scholar
Rogerson, A., Anderson, O. R. & Vogel, C. Are planktonic naked amoebae predominately floc associated or free in the water column?. J. Plankton Res. 25, 1359–1365. https://doi.org/10.1093/plankt/fbg102 (2003).Article
Google Scholar
Kudryavtsev, A. Paravannella minima n. g. n. sp. (Discosea, Vannellidae) and distinction of the genera in the vannellid amoebae. Eur. J. Protistol. 50, 258–269. https://doi.org/10.1016/j.ejop.2013.12.004 (2014).Article
PubMed
Google Scholar
Kudryavtsev, A., Völcker, E., Clauß, S. & Pawlowski, J. Ovalopodium rosalinum sp. nov., Planopodium haveli gen. nov, sp. nov., Planopodium desertum comb. nov. and new insights into phylogeny of the deeply branching members of the order Himatismenida (Amoebozoa). Int. J. Sys. Evol. Microbiol. 71, 004737. https://doi.org/10.1099/ijsem.0.004737 (2021).CAS
Article
Google Scholar
Blandenier, Q. et al. Mycamoeba gemmipara nov. gen., nov. sp., the first cultured member of the environmental Dermamoebidae clade LKM74 and its unusual life cycle. J. Eukaryot. Microbiol. 64, 257–265. https://doi.org/10.1111/jeu.12357 (2017).CAS
Article
PubMed
Google Scholar
Kudryavtsev, A. & Volkova, E. Cunea russae n. sp. (Amoebozoa, Dactylopodida), another cryptic species of Cunea Kudryavtsev and Pawlowski, 2015, inhabits a continental brackish-water biotope. Eur. J. Protistol. 73, 125685. https://doi.org/10.1016/j.ejop.2020.125685 (2020).Article
PubMed
Google Scholar
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS
Article
PubMed
Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory, 1982).
Google Scholar
Kudryavtsev, A. & Pawlowski, J. Cunea n. g. (Amoebozoa, Dactylopodida) with two cryptic species isolated from different areas of the ocean. Eur. J. Protistol. 51, 197–209. https://doi.org/10.1016/j.ejop.2015.04.002 (2015).Article
PubMed
Google Scholar
Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71, 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).CAS
Article
PubMed
Google Scholar
Yoon, H. S. et al. Broadly sampled multigene trees of eukaryotes. BMC Evol. Biol. 8, 14. https://doi.org/10.1186/1471-2148-8-14 (2008).CAS
Article
PubMed
PubMed Central
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).CAS
Article
PubMed
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. In Multiple Sequence Alignment. Methods in Molecular Biology (ed. Katoh, K.) 241–260 (Humana, 2021). https://doi.org/10.1007/978-1-0716-1036-7_15.Chapter
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
Ronquist, F. et al. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article
PubMed
PubMed Central
Google Scholar
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320. https://doi.org/10.1093/molbev/msn067 (2008).CAS
Article
PubMed
Google Scholar More