More stories

  • in

    Freshwater unionid mussels threatened by predation of Round Goby (Neogobius melanostomus)

    Our research involved work with animal subjects (unionid mussels and Round Goby fishes) and was conducted following relevant regulations and standard procedures. The field collections were carried out under Pennsylvania Fish and Boat Commission permits (# 2018-01-0136 and 2019-01-0026). The experimental protocols were approved by Penn State University’s Institutional Animal Care and Use Committee (IACUC# 201646941 and 201646962). All new DNA sequencing data are made publicly available in GenBank (with accession numbers provided in Table 1) and a BioProject (# PRJNA813547) of the National Center for Biotechnology Information40.Propensity of Round Goby to consume unionid mussels in a controlled lab settingStream table setupWe conducted lab experiments to observe the potential predation of juvenile freshwater mussels by the Round Goby, following standard research protocols for work with animal subjects (IACUC# 201646962, Penn State University). We constructed four artificial stream tables in an aquatic laboratory, each measuring 3 × 2 m and featuring two run and two pool sections (each 0.63 × 0.56 × 0.46 m). Water flow was produced using eight Homsay 920 GPH submersible water pumps, which pumped water from a central reservoir tub into each table at the start of each run section. The water flow direction was clockwise for stream tables 1 and 3, and counterclockwise for stream tables 2 and 4. Water pumped into the stream tables exited via two drains located medially of each run section, where it flowed back to the central reservoir tub. Each stream table was filled with a 6 mm layer of substrate consisting of a mixture of sand, gravel (4–6 mm), and crushed stone (size 2B, with an average size of ~ 19 mm). The day before each experiment, field technicians traveled to local streams and collected macroinvertebrates using one minute D-frame kick net samples for each of the four stream tables. The macroinvertebrates and associated substrate were transported back to the facility and were introduced into each stream table system.Preferential feeding experimentsBefore each experiment commenced, juvenile Plain Pocketbook mussels (Lampsillis cardium) were introduced into each stream table (with 165 mussel specimens for experiment 1 and 100 mussels for experiments 2 and 3). This  widespread and abundant species is not imperiled in Pennsylvania, and mussels were provided for this study by the White Sulphur Springs National Fish Hatchery located in southeast West Virgina. The mussels were allowed to acclimate in the stream tables for 2 h before commencing each experiment. Ten Round Gobies were introduced into each stream system (stream tables 1 and 2 for experiment 1, and all tables for experiments 2 and 3). The total length (from nose tip to caudal tip) of each fish was measured prior to introduction and after the termination of experiments 2 and 3. Experiment 1 was conducted for 3 weeks, while experiments 2 and 3 were conducted for 8 days. During these experiments, Round Gobies were allowed to exist in the systems and feed preferentially, on the mussels and macroinvertebrates, for the allotted time before each investigation concluded. We acknowledge that in these experiments, the mussel abundances are higher and macroinvertebrate densities lower and less rich than commonly occur in the natural stream environment. Further, the Round Goby fish densities used are much higher than currently in the French Creek watershed, though are comparable to what is currently seen in parts of the Great Lakes basin. Nonetheless, the experiment scenarios allowed us to observe if Round Gobies would consume the mussels when given the choice to feed on a variety of food items.Evaluation of unionids consumed by fishRound Gobies were removed from the stream tables upon completion of each experiment. They were euthanized using  > 250 mg/L buffered (pH ~ 7) tricaine-S (MS222) solution. The fish were submerged for 10 min beyond the cessation of opercular movement to ensure proper euthanasia, and tissues were collected after we confirmed complete euthanasia—compliant with AVMA guidelines and approved by the IACUC protocol. The Round Gobies were placed in a 10% solution of formalin for preservation, and after 2 weeks, they were rinsed with clean water and were placed in 70% ethanol for long-term storage. After fish were removed from the system, the water was drained, and the substrate was sifted to recover the remaining mussels. Mussels were counted, and live individuals were returned to holding tanks for use in subsequent experiments. To further assess whether Round Gobies had consumed mussels during the investigation, Round Gobies were x-rayed using a Bruker Skyscan 1176 micro-CT scanner. After that, the stomachs of each fish were excised, and the contents examined using a Leica CME dissection scope to confirm the identity of Plain Pocketbook mussels. Contents posterior to the stomach were not analyzed because they could not be reliably counted and identified.DNA metabarcoding to identify mussel species consumed by Round Goby in a stream settingFish and mussel sample acquisitionWe collected 39 Round Gobies directly from streams within the French Creek watershed—their newly invaded natural stream habitats—in June 2018. We aimed to quantify which species, if any, of unionid mussels they consumed. Fish collection locations included LeBoeuf Creek at Moore Road and 100 m below the confluence of French Creek and LeBoeuf Creek. The unionid mussel populations and the environmental field settings at these locations are detailed by Clark et al.19. A team of field technicians collected fish by kick seining (3 m × 1 m × 9.5 mm nylon mesh) while moving downstream. Seining was the sampling method of choice compared to electrofishing to avoid possible regurgitation of food items prior to excision of fishes’ stomachs. The stream reaches sampled at each location were between 100 and 200 m in length and included riffle, run, and pool habitats. In addition to fish samples, unionid mussel samples from French Creek were also collected for analysis (under Pennsylvania Fish & Boat Commission collectors permits # 2018-01-0136 and 2019-01-0026). Following standard research protocols (under IACUC# 201646941, Penn State University), the Round Gobies collected were euthanized using buffered Tricaine-S (MS222) solution; and stomachs were excised using sterilized utensils before being placed in sterilized tubes filled with 97% ethanol. After excision of stomachs, fishes were placed in a 10% formalin solution for preservation. After 2 weeks, fishes were rinsed with clean water and transferred to 70% ethanol for storage. The stomach samples were immediately placed in ethanol and on ice in the field. Samples were stored in a freezer before being shipped to the US Geological Survey’s Eastern Ecological Science Center for various molecular ecology analyses. Once the fish and mussel samples arrived at this lab, they were recorded and stored at four °C until analysis.Primer developmentSpecific primers targeting a moderately conserved region of the mitochondrial COI gene for 25 species of unionids inhabiting French Creek were designed. Previously a PCR-based amplification method utilizing restriction enzyme digests was used to identify genetic fingerprints of 25 unionid species inhabiting French Creek41. Here, we designed a new degenerate PCR primer set modified with sequencing overhangs to facilitate compatibility with a MiSeq amplicon sequencing method previously designed for 16S Amplicon sequencing. We targeted the locus of the mitochondrial COI gene of unionids known to inhabit the Atlantic Slope Drainage. Consensus sequences were derived using Multalin analysis and a tiling method to identify conserved primer binding regions flanking an ~ 300 bp region of the COI gene. This gene was targeted in part due to the availability of partial or complete sequences representing these target species in the NCBI reference database40. Cytochrome oxidase sequences were downloaded for the 25 unionid mussel species of interest. However, a COI sequence for the Rabbitsfoot (Theliderma cylindrica) mussel was absent from the NCBI database, which required us to sequence this region for an in-house reference (which is described later in the paper). We designed a degenerate primer cocktail specific to all mussel species of interest that amplified a ~ 289 bp product, with forward and reverse primers used for the amplification of unionid specific COI presented as supplemental information (see Table S-230. We evaluated the suitability of the primers using samples from field identified mussels. For primer optimization, PCR was run across a gradient of annealing temperatures to determine suitability. In addition, we used Round Goby DNA as a template to evaluate specificity. In addition to Round Goby stomach samples, mussel samples of several species collected from French Creek were included as positive controls.DNA extraction from tissue samplesFollowing the manufacturer’s protocols, tissue samples (including fish stomach and mussel tissue) were extracted with the Zymo Research ZymoBIOMICS 96 MagBead DNA Kit (San Diego, CA). Random samples of DNA extracts were analyzed on an Agilent 2100 Bioanalyzer using a high-sensitivity assay kit. Fragments in the target amplicon range were apparent (albeit not known to be of mussel origin). All samples were stored at − 20 °C until PCR was performed. DNA from both the T. cylindrica and L. complanata samples were analyzed for DNA quality.Rolling circle amplification of mitochondrial genomesTo acquire COI sequences for T. cylindrica and L. complanata, we subjected archived DNA samples to rolling circle amplification (RCA) followed by amplicon sequencing on the MiSeq. In short, 2 µl of DNA template was added to 2 µl Equiphi29 DNA polymerase reaction buffer containing 1 µl of Exonuclease-resistant random primers (ThermoFisher). Samples were denatured by heating to 95 °C for 3 min followed immediately by cooling on ice for more than 5 min. A volume of 5 µl was added to an RCA master mix containing 1.5 µl of 10 × Equiphi29 DNA polymerase reaction buffer, 0.2 µl of 100 mM dithiothreitol, 8 µl of 2.5 mM dNTPs, 1 µl of Eqiphi29 DNA polymerase (10U) and 4.3 µl of nuclease-free water. The samples were heated to 45 °C for 3 h and then 65 °C for 10 min. Samples were then placed in ice and then frozen at − 20 °C. All RCA products were normalized to 0.2 ng/µl in 10 mM Tris–HCl, pH 8.5. Normalized RCA product was utilized as a template for an Illumina Nextera XT library preparation. Sequencing libraries were prepared following the Nextera XT Library Preparation Reference Guide (CT# 15031942 v01) using the Nextera XT Library Preparation Kit (Illumina, San Diego, CA). Final libraries were analyzed for size and quality using the Agilent BioAnalyzer with the accompanying DNA 1000 Kit (Agilent, Santa Clara, CA). Libraries were quantified using the Qubit H.S. Assay Kit (Invitrogen, Carlsbad, CA) and normalized to 4 nM using 10 mM Tris, pH 8.5. Libraries were pooled and run on the Illumina MiSeq at a concentration of 10 pM with a 5% PhiX spike with run parameters of 1 × 150. Bioinformatic processing of this data is outlined below.Amplification of the cytochrome oxidase 1 geneExtracted genomic DNA was used as template for end-point PCR. Samples evaluated were from mussels and round gobies (see supporting Table S-330). The ~ 289 bp COI region was amplified with the mussel primers as follows. The amplification reaction contained 0.15 µM of each primer, 1 µL of the initial amplification product, and Promega Go Taq Green Master Mix following manufacturer recommendations for a 25 µL reaction. The thermocycler program consisted of an initial denaturing step of 95 °C for 3 min, followed by 30 cycles of 30 s at 95 °C, 30 s at 52 °C, and 1 min at 72 °C. Products were subjected to a final extension of 72 °C for 5 min then held until collection at 12 °C. An appropriately sized amplification product was confirmed for each reaction by electrophoresis of 5 µL of the reaction product through a 1.5% I.D. N.A. agarose gel (FMC Bioproducts) at 100 V for 45 min. PCR products were cleaned with the Qiagen Qiaquick PCR purification kit (Valencia, CA) and quantified using the Qubit dsDNA H.S. Assay Kit (Thermofisher Scientific, Grand Island, NY). Samples were diluted in 10 mM Tris buffer (pH 8.5) to a final concentration of 5 ng/µL.Generation of mock mussel samplesTo better understand and minimize sources of error or bias in the taxonomic assignment, we created a mock extraction by mixing sequences from known mussel taxa at defined concentrations. For each mussel, approximately 25-mg of tissue was extracted with the ZymoBIOMICS 96 MagBead DNA Kit (San Diego, CA) following the manufacturer’s protocol. The COI sequence was amplified from each species using the same primer-protocol combination described above. A total of 5 PCR products were mixed at equal concentration (mass/volume) to generate the mock sample (“Mock” hereafter). To confirm the identity of these inputs, each COI region was amplified and sequenced on the Illumina MiSeq during the same run as the Mock and samples.Sequencing library preparation and quality assessmentNext-generation sequencing was performed on the Illumina MiSeq platform to observe species-specific sequences and determine the diet of the Round Goby. Inclusion of the overhangs on the amplification primers allowed us to utilize the Illumina 16S Metagenomic Sequencing Library Preparation protocol42. Amplicon libraries were prepared following the same manufacturer’s protocol. All samples were indexed using the Illumina Nextera XT multiplex library indices. DNA read size spectra were determined with the Agilent 2100 Bioanalyzer using the Agilent DNA 1000 Kit (Santa Clara, Calif.). Libraries were quantified with the Qubit dsDNA H.S. Assay Kit (ThermoFisher Scientific, Grand Island, N.Y.) and normalized to 4 nM (nM) using 10 mM (mM) Tris (hydroxymethyl) aminomethane buffer pH 8.5. A final concentration of 10 picomolar library with a 6.5% PhiX control spike was created with the combined pool of all indexed libraries. All bioinformatic operations were completed on CLC Genomic Workbench v20 (Qiagen, Valencia, Calif.).Read filtering, trimming, and RNAseq metabarcoding assemblyFASTQ files from the sequencing runs were imported as paired-end reads into CLC Genomics Workbench v20.0.4 (Qiagen Bioinformatics, Redwood City, Calif.) for initial filtering of exogenous sequence adaptors and poor-quality base calls. The trimmed overlapping paired-end reads were mapped to the 25 target unionid sequences specific for the species of interest. Several mapping iterations were run using different levels of stringency. We utilized + 2/− 3 match-mismatch scoring and set the length fraction to 0.90. Analyses were iterated using different similarity fractions ranging from 0.90 to 0.99. Reads were annotated, and relative abundance was determined using a curated reference library (see supporting Datasets S-1 and S-230). More

  • in

    Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species

    Parker, J. & Johnston, L. A. The proximate determinants of insect size. J. Biol. 5, 15 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Honěk, A. Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 66, 483 (1993).Article 

    Google Scholar 
    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    Beukeboom, L. W. Size matters in insects—An introduction. Entomol. Exp. Appl. 166, 2–3 (2018).Article 

    Google Scholar 
    West, S. A., Flanagan, K. E. & Godfray, H. C. J. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). J. Anim. Ecol. 65, 631–639 (1996).Article 

    Google Scholar 
    Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellers, J., Alphen, J. J. M. V. & Sevenster, J. G. A field study of size–fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).Article 

    Google Scholar 
    Armbruster, P. & Hutchinson, R. A. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J. Med. Entomol. 39, 699–704 (2002).PubMed 
    Article 

    Google Scholar 
    Tantawy, A. O. & Vetukhiv, M. O. Effects of size on fecundity, longevity and viability in populations of Drosophila pseudoobscura. Am. Nat. 94, 395–403 (1960).Article 

    Google Scholar 
    Lefranc, A. & Bundgaard, J. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132, 243–247 (2004).Article 

    Google Scholar 
    Atkinson, D. Temperature and organism size: A biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    Poças, G. M., Crosbie, A. E. & Mirth, C. K. When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J. Insect Physiol. 139, 104051. https://doi.org/10.1016/j.jinsphys.2020.104051 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tammaru, T. Determination of adult size in a folivorous moth: constraints at instar level? Ecol. Entomol. 23, 80–89 (1998).Article 

    Google Scholar 
    Miller, R. S. & Thomas, J. L. The effects of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology 39, 118–125 (1958).Article 

    Google Scholar 
    Nijhout, H. F. The control of body size in insects. Dev. Biol. 261, 1–9 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shingleton, A. W., Mirth, C. K. & Bates, P. W. Developmental model of static allometry in holometabolous insects. Proc. R. Soc. B 275, 1875–1885 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koenraadt, C. J. M. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 45, 331–336 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stillwell, R. C., Dworkin, I., Shingleton, A. W. & Frankino, W. A. Experimental manipulation of body size to estimate morphological scaling relationships in Drosophila. JoVE 56, 3162. https://doi.org/10.3791/3162 (2011).Article 

    Google Scholar 
    Shin, S.-M., Akram, W. & Lee, J.-J. Effect of body size on energy reserves in Culex pipiens pallens females (Diptera: Culicidae). Entomol. Res. 42, 163–167 (2012).Article 

    Google Scholar 
    Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: How adult size is determined in insects. BioEssays 29, 344–355 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Body size variation in insects: A macroecological perspective. Biol. Rev. 85, 139–169 (2010).PubMed 
    Article 

    Google Scholar 
    Beadle, G. W., Tatum, E. L. & Clancy, C. W. Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).Article 

    Google Scholar 
    Gayon, J. History of the concept of allometry1. Am. Zool. 40, 748–758 (2000).
    Google Scholar 
    Takken, W. et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit. Vectors 6, 345 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).Article 

    Google Scholar 
    Ellers, J. Fat and eggs: An alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 3, 227–235 (1996).
    Google Scholar 
    González-Tokman, D. et al. Energy storage, body size and immune response of herbivore beetles at two different elevations in Costa Rica. Rev. Biol. Trop. 67, 608–620 (2019).
    Google Scholar 
    Timmermann, S. E. & Briegel, H. Larval growth and biosynthesis of reserves in mosquitoes. J. Insect Physiol. 45, 461–470 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strohm, E. Factors affecting body size and fat content in a digger wasp. Oecologia 123, 184–191 (2000).PubMed 
    Article 
    ADS 

    Google Scholar 
    Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).CAS 
    Article 

    Google Scholar 
    Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kühnlein, R. P. Lipid droplet-based storage fat metabolism in Drosophila. J. Lipid Res. 53, 1430–1436 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Church, R. B. & Robertson, F. W. A biochemical study of the growth of Drosophila melanogaster. J. Exp. Zool. 162, 337–351 (1966).Article 

    Google Scholar 
    Merkey, A. B., Wong, C. K., Hoshizaki, D. K. & Gibbs, A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nestel, D., Tolmasky, D., Rabossi, A. & Quesada-Allué, L. A. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 96, 237–244 (2003).CAS 
    Article 

    Google Scholar 
    Lee, K. P. & Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 28, 1144–1155 (2014).Article 

    Google Scholar 
    Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tejeda, M. T. et al. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. J. Insect Physiol. 70, 73–80 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150–157 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gasser, M., Kaiser, M., Berrigan, D. & Stearns, S. C. Life-history correlates of evolution under high and low adult mortality. Evolution 54, 1260–1272 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chippindale, A. K., Chu, T. J. F. & Rose, M. R. Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50, 753 (1996).PubMed 
    Article 

    Google Scholar 
    Kristensen, T. N., Overgaard, J., Loeschcke, V. & Mayntz, D. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol. Lett. 7, 269–272 (2011).PubMed 
    Article 

    Google Scholar 
    Juarez-Carreño, S. et al. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep. 37, 109830 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Markow, T. A. The secret lives of Drosophila flies. Elife 4, e06793 (2015).PubMed Central 
    Article 

    Google Scholar 
    Choma, M. A., Suter, M. J., Vakoc, B. J., Bouma, B. E. & Tearney, G. J. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis. Model. Mech. 4, 411–420 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanism of Mendelian Heredity (H. Holt, 1923).
    Google Scholar 
    Dobzhansky, T. The influence of the quantity and quality of chromosomal material on the size of the cells in Drosophila melanogaster. Wilhelm Roux Arch. Entwickl Mech. Org. 115, 363–379 (1929).PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. & Kühnlein, R. P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 221, 163881 (2018).Article 

    Google Scholar 
    DiAngelo, J. R. & Birnbaum, M. J. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341–6352 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rovenko, B. M. et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 79, 42–54 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Obesity-associated cardiac dysfunction in starvation-selected Drosophila melanogaster. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 309, R658–R667 (2015).CAS 
    Article 

    Google Scholar 
    Hardy, C. M. et al. Genome-wide analysis of starvation-selected Drosophila melanogaster—A genetic model of obesity. Mol. Biol. Evol. 35, 50–65 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, 169342 (2018).Article 

    Google Scholar 
    Bulletin, E. P. P. O. Drosophila suzukii. EPPO Bull. 43, 417–424 (2013).Article 

    Google Scholar 
    Bächli, G., Vilela, C. R., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill Academic Publishers, 2004).Book 

    Google Scholar 
    Markow, T. A. & O’Grady, P. M. Drosophila: A Guide to Species Identification and Use (Elsevier, 2006).
    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8, 7355–7364 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, C. M., Thomas, R. H., MacMillan, H. A., Marshall, K. E. & Sinclair, B. J. Triacylglyceride measurement in small quantities of homogenised insect tissue: Comparisons and caveats. J. Insect Physiol. 57, 1602–1613 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn. (Sage, 2011).
    Google Scholar 
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference (ed. Burnham, K. P.) (Springer, 2002).MATH 

    Google Scholar 
    Crawley, M. J. The R Book (Wiley, 2007).MATH 
    Book 

    Google Scholar 
    Borash, D. J. & Ho, G. T. Patterns of selection: Stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. J. Insect Physiol. 47, 1349–1356 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klepsatel, P., Procházka, E. & Gáliková, M. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp. Gerontol. 110, 298–308 (2018).PubMed 
    Article 

    Google Scholar 
    Henry, Y., Overgaard, J. & Colinet, H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 241, 110626 (2020).CAS 
    Article 

    Google Scholar 
    Ireland, S. & Turner, B. The effects of larval crowding and food type on the size and development of the blowfly, Calliphora vomitoria. Forensic Sci. Int. 159, 175–181 (2006).PubMed 
    Article 

    Google Scholar 
    Saunders, D. S. & Bee, A. Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). EJE 92, 615–622 (2013).
    Google Scholar 
    Ziegler, R. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J. Comp. Physiol. B 161, 125–131 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ojeda-Avila, T., Arthur Woods, H. & Raguso, R. A. Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 49, 293–306 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borash, D. J., Gibbs, A. G., Joshi, A. & Mueller, L. D. A genetic polymorphism maintained by natural selection in a temporally varying environment. Am. Nat. 151, 148. https://doi.org/10.1086/286108 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H. & Gáliková, M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol. Biol. 20, 93 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matzkin, L. M., Johnson, S., Paight, C., Bozinovic, G. & Markow, T. A. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J. Nutr. 141, 1127–1133 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Musselman, L. P. et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 288, 8028–8042 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reeve, M. W., Fowler, K. & Partridge, L. Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J. Evol. Biol. 13, 836–844 (2000).Article 

    Google Scholar 
    Lounibos, L. P. et al. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus?. J. Vector Ecol. 27, 86–95 (2002).CAS 
    PubMed 

    Google Scholar 
    Bergland, A. O., Genissel, A., Nuzhdin, S. V. & Tatar, M. Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180, 567–582 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holm, S. et al. A comparative perspective on longevity: The effect of body size dominates over ecology in moths. J. Evol. Biol. 29, 2422–2435 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nunney, L. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off. Evolution 50, 1193–1204 (1996).PubMed 
    Article 

    Google Scholar 
    Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31, 871–877 (1983).Article 

    Google Scholar 
    Markow, T. A. & Ricker, J. P. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity 69, 122–127 (1992).PubMed 
    Article 

    Google Scholar 
    Wikelski, M. & Romero, L. M. Body size, performance and fitness in galapagos marine iguanas. Integr. Comp. Biol. 43, 376–386 (2003).PubMed 
    Article 

    Google Scholar 
    van Buskirk, J. & Crowder, L. B. Life-history variation in marine turtles. Copeia 1994, 66–81 (1994).Article 

    Google Scholar 
    Broderick, A. C., Glen, F., Godley, B. J. & Hays, G. C. Variation in reproductive output of marine turtles. J. Exp. Mar. Biol. Ecol. 288, 95–109 (2003).Article 

    Google Scholar 
    Wauters, L. A. et al. Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30, 51–65 (2007).Article 

    Google Scholar 
    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 

    Google Scholar 
    Reim, C., Teuschl, Y. & Blanckenhorn, W. U. Size-dependent effects of temperature and food stress on energy reserves and starvation resistance in yellow dung flies. Evol. Ecol. Res. 8, 1215–1234 (2006).
    Google Scholar 
    Kölliker-Ott, U. M., Blows, M. W. & Hoffmann, A. A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100, 563–573 (2003).Article 

    Google Scholar 
    Knapp, M. Relative importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e0151459 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lue, C.-H. et al. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Visser, B. et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc. Natl. Acad. Sci. 107, 8677–8682 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Visser B et al. Why do
    many parasitoids lack adult triglyceride accumulation, despite functioning fatty acid biosynthesis machinery? EcoEvoRxiv:
    https://doi.org/10.32942/osf.io/zpf4jArakawa, R., Miura, M. & Fujita, M. Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs. Appl. Entomol. Zool. 39, 177–181 (2004).Article 

    Google Scholar 
    Visser, B., Alborn, H.T., Rondeaux, S. et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic
    wasps. Sci Rep 11, 7751 (2021). https://doi.org/10.1038/s41598-021-86736-8.Krüger, A. P. et al. Effects of irradiation dose on sterility induction and quality parameters of Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 111, 741–746 (2018).PubMed 
    Article 

    Google Scholar 
    Nikolouli, K. et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J. Pest Sci. 91, 1–15 (2017).
    Google Scholar 
    Nikolouli, K., Sassù, F., Mouton, L., Stauffer, C. & Bourtzis, K. Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J. Pest Sci. 93, 647–661 (2020).CAS 
    Article 

    Google Scholar 
    Calkins, C. O. & Parker, A. G. Sterile insect quality. In Sterile Insect Technique (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).Chapter 

    Google Scholar  More

  • in

    Limited acclimation of early life stages of the coral Seriatopora hystrix from mesophotic depth to shallow reefs

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).Article 

    Google Scholar 
    Hinderstein, L. M. et al. Theme section on ‘Mesophotic Coral Ecosystems: Characterization, Ecology, and Management’. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Global Change Biol. 22, 2756–2765 (2016).ADS 
    Article 

    Google Scholar 
    Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 3447 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS ONE 12, e0177034 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).PubMed 
    Article 

    Google Scholar 
    Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Bio. Ecol. 408, 42–57 (2011).Article 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Bongaerts, P., Underwood, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: An assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).PubMed 
    Article 

    Google Scholar 
    Cohen, I. & Dubinsky, Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: Photosynthesis and calcification. Front. Mar. Sci. 2, 45 (2015).Article 

    Google Scholar 
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).ADS 
    Article 

    Google Scholar 
    Ben-Zvi, O. et al. Photophysiology of a mesophotic coral 3 years after transplantation to a shallow environment. Coral Reefs 39, 903–913 (2020).Article 

    Google Scholar 
    Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S. I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta Bioenerget. 1767, 414–421 (2007).CAS 
    Article 

    Google Scholar 
    Takahashi, S. & Murata, N. How do environmental stresses accelerate photoinhibition?. Trends Plant Sci. 13, 178–182 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: Flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).ADS 
    Article 

    Google Scholar 
    Little, A. F., Van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinniger, F., Morita, R. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).ADS 
    Article 

    Google Scholar 
    Sinniger, F. et al. Overview of the mesophotic coral ecosystems around Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 69–76 (2022).Article 

    Google Scholar 
    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    Sinniger, F., Prasetia, R., Yorifuji, M., Bongaerts, P. & Harii, S. Seriatopora diversity preserved in upper mesophotic coral ecosystems in Southern Japan. Front. Mar. Sci. 4, 155 (2017).Article 

    Google Scholar 
    Atoda, K. The larva and postlarval development of some reef-building corals. V. Seriatopora hystrix. Sci. Rep. Tohoku Univ. 19, 33–39 (1951).
    Google Scholar 
    Hata, T. et al. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci. Rep. 7, 2249 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harii, S. & Kayanne, H. Larval dispersal, recruitment, and adult distribution of the brooding stony octocoral Heliopora coerulea on Ishigaki Island, southwest Japan. Coral Reefs 22, 188–196 (2003).Article 

    Google Scholar 
    Mulla, A. J., Lin, C. H., Takahashi, S. & Nozawa, Y. Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs 40, 1297–1306 (2021).Article 

    Google Scholar 
    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Chang. 4, 498–502 (2014).ADS 
    Article 

    Google Scholar 
    Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).ADS 
    Article 

    Google Scholar 
    Singh, T. et al. Long-term trends and seasonal variations in environmental conditions in Sesoko Island, Okinawa, Japan. Galaxea J. Coral Reef Stud. 24, 121–133 (2022).Article 

    Google Scholar 
    Roth, M. S., Fan, T.-Y. & Deheyn, D. D. Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS ONE 8, e59476 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?. J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).Article 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).ADS 
    Article 

    Google Scholar 
    Nakamura, T. Mass coral bleaching event in Sekisei lagoon observed in the summer of 2016. J. Jpn. Coral Reef Soc. 19, 29–40 (2017).Article 

    Google Scholar 
    Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 7, e8138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edmunds, P. J., Gates, R. D. & Gleason, D. F. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).Article 

    Google Scholar 
    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Adaptive divergence in a scleractinian coral: Physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol. Biol. 11, 303 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Einbinder, S. et al. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front. Mar. Sci. 3, 195 (2016).Article 

    Google Scholar 
    Rogers, C. S., Fitz, H. C., Gilnack, M., Beets, J. & Hardin, J. Scleractinian coral recruitment patterns at Salt River submarine canyon, St. Croix, U.S. Virgin Islands. Coral Reefs 3, 69–76 (1984).ADS 
    Article 

    Google Scholar 
    Maida, M., Collb, J. C. & Sammarco, P. W. Shedding new light on scleractinian coral recruitment. J. Exp. Mar. Biol. Ecol. 180, 189–202 (1994).Article 

    Google Scholar 
    Sato, M. Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus). Coral Reefs 4, 27–33 (1985).ADS 
    Article 

    Google Scholar 
    Nozawa, Y. Micro-crevice structure enhances coral spat survivorship. J. Exp. Mar. Biol. Ecol. 367, 127–130 (2008).Article 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).ADS 
    Article 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Depth-dependent parental effects create invisible barriers to coral dispersal. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Groves, S. H. et al. Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37, 345–354 (2018).ADS 
    Article 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & De Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).CAS 
    Article 

    Google Scholar 
    Jiang, L. et al. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost. Coral Reefs 37, 71–79 (2018).ADS 
    Article 

    Google Scholar 
    Jurriaans, S. & Hoogenboom, M. O. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180546 (2019).CAS 
    Article 

    Google Scholar 
    Brown, B. E. et al. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18, 99–105 (1999).Article 

    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful?. Photochem. Photobiol. 82, 345–350 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: Experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2015).Article 

    Google Scholar 
    Roth, M. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nakamura, T., van Woesik, R. & Yamasaki, H. Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar. Ecol. Prog. Ser. 301, 109–118 (2005).ADS 
    Article 

    Google Scholar  More

  • in

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    IPCC. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, et al. Editors. Cambridge, UK and New York, NY, USA: Cambridge University Press. 2021. https://doi.org/10.1017/9781009157896.Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health. 2018;15:839.Article 

    Google Scholar 
    FAO. Global agriculture towards 2050, high-level expert forum, how to feed the world 2050. Rome: Food and Agriculture Organization of United Nations FAO. 2009.Agoussar A, Yergeau E. Engineering the plant microbiota in the context of the theory of ecological communities. Curr Opin Biotechnol. 2021;70:220–5.CAS 
    Article 

    Google Scholar 
    Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci. 2015;6:507.Article 

    Google Scholar 
    Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00011.Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 2019;13:738–51.CAS 
    Article 

    Google Scholar 
    Nelson EB, Simoneau P, Barret M, Mitter B, Compant S. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Tremblay J, Yergeau E. Soybean microbiome recovery after disruption is modulated by the seed and not the soil microbiome. Phytobiomes J. 2021;5:418–31.Article 

    Google Scholar 
    Xiong C, Zhu Y-G, Wang J-T, Singh B, Han L-L, Shen J-P, et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–94.Article 

    Google Scholar 
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.CAS 
    Article 

    Google Scholar 
    Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry. 2012;109:101–16.Article 

    Google Scholar 
    Meisner A, Snoek BL, Nesme J, Dent E, Jacquiod S, Classen AT, et al. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. ISME J. 2021;15:1207–21.CAS 
    Article 

    Google Scholar 
    Azarbad H, Constant P, Giard-Laliberté C, Bainard LD, Yergeau E. Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Soil Biol Biochem. 2018;126:228–36.CAS 
    Article 

    Google Scholar 
    Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33.CAS 
    Article 

    Google Scholar 
    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.CAS 
    Article 

    Google Scholar 
    Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A. Root hairs increase rhizosphere extension and carbon input to soil. Ann Bot. 2018;121:61–9.CAS 
    Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    Article 

    Google Scholar 
    Moroenyane I, Mendes L, Tremblay J, Tripathi B, Yergeau É. Plant compartments and developmental stages modulate the balance between niche-based and neutral processes in soybean Microbiome. Microb Ecol. 2021;82:416–28. https://doi.org/10.1007/s00248-021-01688-w.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    Article 

    Google Scholar 
    Azarbad H, Tremblay J, Giard-Laliberté C, Bainard LD, Yergeau E. Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture. FEMS Microbiol Ecol. 2020;96. https://doi.org/10.1093/femsec/fiaa098.Chen S, Cade-Menun BJ, Bainard LD, St. Luce M, Hu Y, Chen Q. The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. Geoderma. 2021;404:115274.CAS 
    Article 

    Google Scholar 
    Smith EG, Zentner RP, Campbell CA, Lemke R, Brandt K. Long-term crop rotation effects on production, grain quality, profitability, and risk in the northern great plains. Agron J. 2017;109:957–67.Article 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 

    Google Scholar 
    Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26.Article 

    Google Scholar 
    Yang S. otuSummary: summarizing OTU table regarding the composition, abundance and beta diversity of abundant and rare biospheres. 2018.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5-6. 2019. Available online at: https://CRAN.R-project.org/package=vegan.Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    Article 

    Google Scholar 
    Hardoim PR, Hardoim CCP, Overbeek LS, van, Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE. 2012;7:e30438.CAS 
    Article 

    Google Scholar 
    Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.Article 

    Google Scholar 
    Walsh CM, Becker-Uncapher I, Carlson M, Fierer N. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME J. 2021;15:2748–62.Morales Moreira ZP, Helgason BL, Germida JJ Environment has a Stronger Effect than Host Plant Genotype in Shaping Spring Brassica napus Seed Microbiomes. Phytobiomes J. 2021:PBIOMES-08-20-0059-R.Abdullaeva Y, Ambika Manirajan B, Honermeier B, Schnell S, Cardinale M. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J Adv Res. 2021;31:75–86.CAS 
    Article 

    Google Scholar 
    Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00457.Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.01068.Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41.CAS 
    Article 

    Google Scholar 
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci USA. 2015;112:7033–8.CAS 
    Article 

    Google Scholar 
    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.Article 

    Google Scholar 
    Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio. 2017;8:e00764–17.Article 

    Google Scholar 
    Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Front Plant Sci. 2018;8:2223.Article 

    Google Scholar 
    Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, et al. Rhizobacterial Strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci. 2016;17:E976.Article 

    Google Scholar 
    Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep. 2019;9:18154.CAS 
    Article 

    Google Scholar 
    Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci USA. 2018;115:E4284–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Na X, Cao X, Ma C, Ma S, Xu P, Liu S, et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00828. More

  • in

    Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000)

    Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413), 464–467 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, K. L. et al. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Nat. Acad. Sci USA 106, 19211–19218 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pham, C. K. et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).ADS 
    Article 

    Google Scholar 
    Angel, M. What is the deep sea? In Deep-sea fishes (eds Randall, D. & Farrell, A.) 1–41 (Academic Publishing, 1997).
    Google Scholar 
    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).Article 

    Google Scholar 
    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306(5699), 1177–1180 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Danise, S., Twitchett, R. J., Little, C. T. & Clemence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: An example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Chang. Biol. 27, 6139–6155 (2021).Article 

    Google Scholar 
    Viehman, H. A. & Zydlewski, G. B. Fish interactions with a commercial-scale tidal energy device in the natural environment. Estuaries Coast 38(1), 241–252 (2015).Article 

    Google Scholar 
    Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, 213 (2016).Article 

    Google Scholar 
    Mizuno, K. et al. An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Sci. Rep. 10(1), 12416. https://doi.org/10.1038/s41598-020-69400-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eleftheriou, A., & Moore, D. C. (2013). Macrofauna techniques. Methods for the study of marine benthos, 175–251.Solan, M. et al. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).ADS 
    Article 

    Google Scholar 
    Hale, R. et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data 2(1), 1–5 (2015).Article 

    Google Scholar 
    Plets, R. M. et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 36(2), 408–418 (2009).Article 

    Google Scholar 
    Mizuno, K. et al. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Stud. Nondestruct. Test. Evaluat. 5, 1–8 (2016).CAS 
    Article 

    Google Scholar 
    Suganuma, H., Mizuno, K. & Asada, A. Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. J. Appl. Phys. 57(7S1), 07LG08 (2018).Article 

    Google Scholar 
    Dorgan, K. M. et al. Impacts of simulated infaunal activities on acoustic wave propagation in marine sediments. J. Acoust. Soc. Am. 147(2), 812–823 (2020).ADS 
    Article 

    Google Scholar 
    Mizuno, K., Cristini, P., Komatitsch, D. & Capdeville, Y. Numerical and experimental study of wave propagation in water-saturated granular media using effective method theories and a full-wave numerical simulation. IEEE J. Ocean. Eng. 45(3), 772–785 (2020).ADS 
    Article 

    Google Scholar 
    Schulze, I. et al. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11(12), 508 (2021).ADS 
    Article 

    Google Scholar 
    Hashimoto, J. et al. Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 71(12), 179–192 (1989).Article 

    Google Scholar 
    Fujikura, K., Hashimoto, J. & Okutani, T. Estimated population densities of megafauna in two chemosynthesisbased communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos. Res. 57(1), 21–30 (2002).Article 

    Google Scholar 
    Childress, J. J. & Girguis, P. R. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J. Exp. Biol. 214(2), 312–325 (2011).CAS 
    Article 

    Google Scholar 
    Okuba, K. (2021). Basic study on sonar system development for exploring infaunal bivalves. Master thesis, GSFS, The University of Tokyo (in Japanese).Stoll, R. D. & Bryan, G. M. Wave attenuation in saturated sediments. The J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970).ADS 
    Article 

    Google Scholar 
    Schwartz, L. & Plona, T. J. Ultrasonic propagation in close-packed disordered suspensions. J. Appl. Phys. 55(11), 3971–3977 (1984).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-Sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS ONE 12(8), e0182753. https://doi.org/10.1371/journal.pone.0182753 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis

    Dauvin, J. C. et al. The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures. Environ. Pollut. 224, 336–351 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Obolewski, K. & Glińska-Lewczuk, K. Connectivity and complexity of coastal lakes as determinants for their restoration-A case study of the southern Baltic Sea. Ecol. Eng. 155, 1700 (2020).Article 

    Google Scholar 
    Dobrowolski, Z. Occurrence of macrobenthos in different littoral habitats of the polymictic Lebsko lake. Ekologia Polska 42, 19–40 (1994).
    Google Scholar 
    Paturej, E., Gutkowska, A. & Durczak, K. Biodiversity and indicative role of zooplankton in the shallow macrophyte-dominated lake Łuknajno. Pol. J. Nat. Sci. 27, 53–66 (2012).
    Google Scholar 
    Obolewski, K. et al. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13, 150 (2018).Article 
    CAS 

    Google Scholar 
    Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, 179 (2019).
    Google Scholar 
    Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366, 37–47 (2008).Article 

    Google Scholar 
    Törnroos, A. & Bonsdorff, E. Developing the multitrait concept for functional diversity: Lessons from a system rich in functions but poor in species. Ecol. Appl. 22, 2221–2236 (2012).PubMed 
    Article 

    Google Scholar 
    Baldrighi, E. & Manini, E. Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related?. Mar. Biodivers. 45, 469–488 (2015).Article 

    Google Scholar 
    Belley, R. & Snelgrove, P. V. R. Relative contributions of biodiversity and environment to benthic ecosystem functioning. Front. Mar. Sci. 3, 7598 (2016).Article 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 689 (2015).
    Google Scholar 
    Ding, N. et al. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Sci. Total Environ. 574, 288–299 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).Article 

    Google Scholar 
    Llanos, E. N., Saracho Bottero, M. A., Jaubet, M. L., Elías, R. & Garaffo, G. V. Functional diversity in the intertidal macrobenthic community at sewage-affected shores from Southwestern Atlantic. Mar. Pollut. Bull. 157, 7448 (2020).Article 
    CAS 

    Google Scholar 
    Paganelli, D., Marchini, A. & Occhipinti-Ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).ADS 
    Article 

    Google Scholar 
    Nasi, F. et al. Functional biodiversity of marine soft-sediment polychaetes from two Mediterranean coastal areas in relation to environmental stress. Mar. Environ. Res. 137, 121–132 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harwell, M. A. et al. Conceptual framework for assessing ecosystem health. Integr. Environ. Assess. Manag. 15, 544–564 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, C. et al. Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon. Environ. Pollut. 253, 1107–1116 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramsay, K., Kaiser, M. J. & Hughes, R. N. Responses of benthic scavengers to fishing disturbance by towed gears in different habitats. J. Exp. Mar. Biol. Ecol. 224, 4458 (1998).Article 

    Google Scholar 
    Sigala, K., Reizopoulou, S., Basset, A. & Nicolaidou, A. Functional diversity in three Mediterranean transitional water ecosystems. Estuar. Coast. Shelf Sci. 110, 202–209 (2012).ADS 
    Article 

    Google Scholar 
    de Loiola, P. P., Cianciaruso, M. V., Silva, I. A. & Batalha, M. A. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora Morphol. Distrib. Funct. Ecol. Plants 205, 674–681 (2010).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecological Monographs vol. 80 http://www.scopus.com/scopus/search/form.urli (2010).Wan, H. W. M. R., Cooper, K. M., Froján, C. R. S. B., Defew, E. C. & Paterson, D. M. Impacts of physical disturbance on the recovery of a macrofaunal community: A comparative analysis using traditional and novel approaches. Ecol. Indicators 12, 37–45 (2012).Article 

    Google Scholar 
    Millet, B. & Guelorget, O. Spatial and seasonal variability in the relationships between benthic communities and physical environment in a lagoon ecosystem. Mar. Ecol. Prog. Ser. 108, 161–174 (1994).ADS 
    Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem (Oxford University Press, 2004). https://doi.org/10.1093/acprof:oso/9780198525080.001.0001.Book 

    Google Scholar 
    Mrozińska, N. & Bąkowska, M. Effects of heavy metals in lake water and sediments on bottom invertebrates inhabiting the brackish coastal lake Łebsko on the southern baltic coast. Int. J. Environ. Res. Public Health 17, 1–19 (2020).Article 
    CAS 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 
    Article 

    Google Scholar 
    Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 20, 1512–1522 (2010).PubMed 
    Article 

    Google Scholar 
    Dolédec, S. & Statzner, B. Theoretical habitat templets, species traits, and species richness: 548 plant and animal species in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 523–538 (1994).Article 

    Google Scholar 
    Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases?. Hydrobiologia 422, 153–162 (2000).Article 

    Google Scholar 
    Charvet, S., Statzner, B., Usseglio-Polatera, P. & Dumont, B. Traits of benthic macroinvertebrates in semi-natural French streams: An initial application to biomonitoring in Europe. Freshw. Biol. 43, 277–296 (2000).Article 

    Google Scholar 
    Statzner, B., Dolédec, S. & Hugueny, B. Biological trait composition of European stream invertebrate communities: Assessing the effects of various trait filter types. Ecography 27, 470–488 (2004).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: A comparison of approaches. Mar Ecol Prog Ser 254, 5589 (2003).Article 

    Google Scholar 
    Tillin, H., Hiddink, J., Jennings, S. & Kaiser, M. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar. Ecol. Prog. Ser. 318, 31–45 (2006).ADS 
    Article 

    Google Scholar 
    Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boikova, E., Botva, U. & Līcīte, V. Implementation of trophic status index in brackish water quality assessment of baltic coastal waters. Proc. Latv. Acad. Sci. Sect. B 62, 115–119 (2008).CAS 

    Google Scholar 
    Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. Nutrient fluxes and their impact on the phytoplankton in a Shallow Coastal Lake. Polish J. Environ. Stud. 24, 7780 (2015).Article 
    CAS 

    Google Scholar 
    Kruk, C., Devercelli, M. & Huszar, V. L. Reynolds Functional Groups: A trait-based pathway from patterns to predictions. Hydrobiologia 848, 113–129 (2021).Article 

    Google Scholar 
    Trojanowski, J., Trojanowska, C. & Korzeniewski, K. Trophic state of coastal lakes. Polish Arch. Hydrobiol. 38, 23–34 (1975).
    Google Scholar 
    Astel, A. M., Bigus, K., Obolewski, K. & Glińska-Lewczuk, K. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic. Estuar. Coast. Shelf Sci. 182, 47–59 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Choiński, A. Changes in morphometrics of the coastal lakes. in Hydroecological Determinants of Functioning of Southern Baltic Coastal Lakes (eds. Obolewski, K., Astel, A. & Kujawa, R.) 26–37 (PWN, 2017).Obolewski, K., Glińska-Lewczuk, K., Bąkowska, M., Szymańska, M. & Mrozińska, N. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Sci. Total Environ. 631–632, 951–961 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Szymańska-Walkiewicz, M., Glińska-Lewczuk, K., Burandt, P. & Obolewski, K. Phytoplankton sensitivity to heavy metals in Baltic Coastal Lakes. Int. J. Environ. Res. Public Health 19, 4131 (2022).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mrozińska, N., Glińska-Lewczuk, K. & Obolewski, K. Salinity as a key factor on the benthic fauna diversity in the coastal lakes. Animals 11, 7440 (2021).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Ind. 6, 609–622 (2006).Article 

    Google Scholar 
    Papageorgiou, N., Sigala, K. & Karakassis, I. Changes of macrofaunal functional composition at sedimentary habitats in the vicinity of fish farms. Estuar. Coast. Shelf Sci. 83, 561–568 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Lam-Gordillo, O., Baring, R. & Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol Indic 115, 5589 (2020).Article 

    Google Scholar 
    Kołodziejczyk, A. & Koperski, P. Bezkręgowce słodkowodne Polski: klucz do oznaczania oraz podstawy biologii i ekologii makrofauny. (Wydawnictwa Uniwersytetu Warszawskiego, 2000).Wiederholm, Torgny. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1: larvae. (1983).Antsulevich, A. et al. Helcom, 2012. Development of a set of core indicators: Interim report of the HELCOM CORESET project. PART A. Description of the selection process. (2012).Piechocki, A. & Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland. (2016).Zettler, M. L. et al. Biodiversity gradient in the Baltic Sea: A comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 68, 49–57 (2014).ADS 
    Article 

    Google Scholar 
    Palomares, M. L. D. & Pauly, D. SeaLifeBase. https://www.sealifebase.ca/ (2021).MarLIN. BIOTIC-biological traits information catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the UK. http://www.marlin.ac.uk/biotic/ (2006).Horton, T. et al. World Register of Marine Species (WoRMS). https://www.marinespecies.org (2021).Chevene, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).Article 

    Google Scholar 
    Oug, E., Fleddum, A., Rygg, B. & Olsgard, F. Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a fjord ecosystem. J. Exp. Mar. Biol. Ecol. 432–433, 94–105 (2012).Article 

    Google Scholar 
    Egres, A. G., Hatje, V., Miranda, D. A., Gallucci, F. & Barros, F. Functional response of tropical estuarine benthic assemblages to perturbation by Polycyclic Aromatic Hydrocarbons. Ecol. Ind. 96, 229–240 (2019).CAS 
    Article 

    Google Scholar 
    Charvet, S., Kosmala, A. & Statzner, B. Biomonitoring through biological traits of benthic macroinvertebrates: Perspectives for a general tool in stream management. Fundam. Appl. Limnol. 142, 415–432 (1998).Article 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (2006).Dobrowolski, Z. Density, biomass, and distribution of benthic invertebrates in the mid-lake zone of the coastal Lake Gardno. Oceanol. Stud. 30, 39–58 (2001).
    Google Scholar 
    Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B. & Stora, G. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J. Exp. Mar. Biol. Ecol. 337, 178–189 (2006).CAS 
    Article 

    Google Scholar 
    Taurusman, A. A. Community structure of macrozoobenthic feeding guilds in responses to eutrophication in Jakarta Bay. Biodivers. J. Biol. Divers. 11, 998 (2010).Article 

    Google Scholar 
    Uwadiae, R. E. Macroinvertebrates functional feeding groups as indices of biological assessment in a tropical aquatic ecosystem: implications for ecosystem functions. New York Sci. J. 3, 778 (2010).
    Google Scholar 
    Obolewski, K., Glińska-Lewczuk, K., Sidoruk, M. & Szymańska, M. M. Response of benthic fauna to habitat heterogeneity in a shallow temperate lake. Animals 11, 558 (2021).Article 

    Google Scholar 
    Rhoads, D. C. Organism-sediment relations on the muddy sea floor. in Oceanography and Marine Biology: An Annual Review. vol. 12 263–300 (Aberdeen University Press/Allen & Unwin, 1974).Thrush, S. F., Hewitt, J. E., Gibbs, M., Lundquist, C. & Norkko, A. Functional role of large organisms in intertidal communities: Community effects and ecosystem function. Ecosystems 9, 1029–1040 (2006).Article 

    Google Scholar 
    Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. in ICES Journal of Marine Science vol. 57 1303–1309 (Academic Press, 2000).Bradshaw, C., Veale, L. O. & Brand, A. R. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: A re-analysis of an historical dataset. J. Sea Res. 47, 161–184 (2002).ADS 
    Article 

    Google Scholar 
    Cañedo-Argüelles, M. et al. Can salinity trigger cascade effects on streams? A mesocosm approach. Sci. Total Environ. 540, 3–10 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Herbst, D. B. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk. Wetlands 26, 475–485 (2006).Article 

    Google Scholar 
    Merritt, R. W. et al. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Am. Benthol. Soc. 21, 550 (2002).Article 

    Google Scholar 
    de Roos, A. M., Persson, L. & McCauley, E. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6, 473–487 (2003).Article 

    Google Scholar 
    Reizopoulou, S. & Nicolaidou, A. Index of size distribution (ISD): A method of quality assessment for coastal lagoons. Hydrobiologia 577, 141–149 (2007).Article 

    Google Scholar 
    Basset, A., Pinna, M., Sabetta, L., Barbone, E. & Galuppo, N. Hierarchical scaling of biodiversity in lagoon ecosystems. Trans. Waters Bull. 2, 75–86 (2008).
    Google Scholar 
    Basset, A. et al. A benthic macroinvertebrate size spectra index for implementing the Water Framework Directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol. Ind. 12, 72–83 (2012).Article 

    Google Scholar 
    Robson, B. J., Barmuta, L. A. & Fairweather, P. G. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar. Freshw. Res. 56, 1–11 (2005).Article 

    Google Scholar 
    Parry, D. M., Kendall, M. A., Rowden, A. A. & Widdicombe, S. Species body size distribution patterns of marine benthic macrofauna assemblages from contrasting sediment types. J. Mar. Biol. Assoc. U.K. 79, 793–801 (1999).Article 

    Google Scholar 
    Netto, S. A., Domingos, A. M. & Kurtz, M. N. Effects of artificial breaching of a temporarily open/closed estuary on benthic macroinvertebrates (Camacho Lagoon, Southern Brazil). Estuaries Coasts 35, 1069–1081 (2012).CAS 
    Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Montefalcone, M., Parravicini, V. & Bianchi, C. N. Quantification of Coastal Ecosystem Resilience. in Treatise on Estuarine and Coastal Science 49–70 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-374711-2.01003-2.Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).Article 

    Google Scholar 
    Smee, D. L., Reustle, J. W., Belgrad, B. A. & Pettis, E. L. Storms promote ecosystem resilience by alleviating fishing. Curr. Biol. 30, R869–R870 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilby, B. L. et al. Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation. Estuar. Coast. Shelf Sci. 199, 132–140 (2017).ADS 
    Article 

    Google Scholar 
    Henderson, C. J. et al. Landscape transformation alters functional diversity in coastal seascapes. Ecography 43, 138–148 (2020).Article 

    Google Scholar 
    Yeager, L. A., Geyer, J. K. & Fodrie, F. J. Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure. J. Anim. Ecol. 88, 1743–1754 (2019).PubMed 
    Article 

    Google Scholar 
    Darr, A., Gogina, M. & Zettler, M. L. Functional changes in benthic communities along a salinity gradient- a western Baltic case study. J. Sea Res. 85, 315–324 (2014).ADS 
    Article 

    Google Scholar 
    Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).Article 

    Google Scholar  More

  • in

    Author Correction: A new wave of marine fish invasions through the Panama and Suez canals

    Authors and AffiliationsSmithsonian Tropical Research Institute – STRI, Balboa, Republic of PanamaGustavo A. Castellanos-Galindo, D. Ross Robertson, Diana M. T. Sharpe & Mark E. TorchinLeibniz Centre for Tropical Marine Research (ZMT), Bremen, GermanyGustavo A. Castellanos-GalindoAuthorsGustavo A. Castellanos-GalindoD. Ross RobertsonDiana M. T. SharpeMark E. TorchinCorresponding authorCorrespondence to
    Gustavo A. Castellanos-Galindo. More

  • in

    Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root

    Ramoliya, P. & Pandey, A. Effect of salinization of soil on emergence, growth and survival of seedlings of Cordia rothii. For. Ecol. Manage. 176, 185–194 (2003).Article 

    Google Scholar 
    Müller, H. M. et al. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. New Phytol. 216, 150–162 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hazzouri, K. M. et al. Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era. Front. Plant Sci. 11, 293 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abdelfattah, M. A. Integrated suitability assessment: A way forward for land use planning and sustainable development in Abu Dhabi, United Arab Emirates. Arid Land Res. Manage. 27, 41–64 (2013).Article 

    Google Scholar 
    Al-Muaini, A. et al. Water requirements for irrigation with saline groundwater of three date-palm cultivars with different salt-tolerances in the hyper-arid United Arab Emirates. Agric. Water Manage. 222, 213–220 (2019).Article 

    Google Scholar 
    Guo, H., Shi, X., Ma, L., Yang, T. & Min, W. Long-term irrigation with saline water decreases soil nutrients, diversity of bacterial communities, and cotton yields in a gray desert soil in China. Pol. J. Environ. Stud. 29, 4077–4088 (2020).CAS 
    Article 

    Google Scholar 
    Blaskó, L. Salinity, physical effects on soils. In Encyclopedia of Agrophysics (eds Gliński, J. et al.) 723–725 (Springer, 2011).Chapter 

    Google Scholar 
    Rengasamy, P. Irrigation water quality and soil structural stability: A perspective with some new insights. Agronomy 8, 72 (2018).Article 
    CAS 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Masmoudi, K. et al. Metagenomics of beneficial microbes in abiotic stress tolerance of date palm. In The Date Palm Genome, Vol. 2: Omics and Molecular Breeding (eds Al-Khayri, J. M. et al.) 203–214 (Springer, 2021).Chapter 

    Google Scholar 
    Boncompagni, E., Østerås, M., Poggi, M.-C. & Le Rudulier, D. Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection. Appl. Environ. Microbiol. 65, 2072–2077 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. & Beattie, G. A. Characterization of the osmoprotectant transporter opuc from Pseudomonas syringae and demonstration that cystathionine-β-synthase domains are required for its osmoregulatory function. J. Bacteriol. 189, 6901–6912 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rath, H. et al. Management of osmoprotectant uptake hierarchy in Bacillus subtilis via a SigB-dependent antisense RNA. Front. Microbiol. 11, 622 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Singh, R. P. & Jha, P. N. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front. Microbiol. 8, 1945 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferjani, R. et al. The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. Biomed Res. Int. 2015, 1–10 (2015).Article 

    Google Scholar 
    Sanka Loganathachetti, D., Alhashmi, F., Chandran, S. & Mundra, S. Irrigation water salinity structures the bacterial communities of date palm (Phoenix dactylifera)-associated bulk soil. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.944637 (2022).Article 

    Google Scholar 
    Chen, L. J. et al. An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities. J. Agric. Sci. 157, 693–700 (2019).CAS 
    Article 

    Google Scholar 
    Li, Y. Q. et al. Bacterial community in saline farmland soil on the Tibetan plateau: Responding to salinization while resisting extreme environments. BMC Microbiol. 21, 119 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mosqueira, M. J. et al. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci. Rep. 9, 4033 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cherif, H. et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ. Microbiol. Rep. 7, 668–678 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    FAO. Standard Operating Procedure for Soil Electrical Conductivity, Soil/Water, 1:5. (2021).Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Chemical Methods-SSSA Book Series No. 5 (eds Bigham, J. M. et al.) (Soil Science Society of America and American Society of Agronomy, 1996).
    Google Scholar 
    Mizrahi-Man, O., Davenport, E. R. & Gilad, Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS ONE 8, e53608 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin-Sanchez, P. M. et al. Analysing indoor mycobiomes through a large-scale citizen science study in Norway. Mol. Ecol. 30, 2689–2705 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dai, T. et al. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: A case study of microbial communities in the sediments of Hangzhou Bay. FEMS Microbiol. Ecol. 92, 150 (2016).Article 
    CAS 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2020).Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar 
    Emirates Soil Museum. Emirates Soil Museum. https://www.emiratessoilmuseum.org/index.php/ (Accessed 08 July 2022).Jackson, O., Quilliam, R. S., Stott, A., Grant, H. & Subke, J.-A. Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates. Plant Soil 440, 473–490 (2019).CAS 
    Article 

    Google Scholar 
    Xie, E. et al. Short-term effects of salt stress on the amino acids of Phragmites australis root exudates in constructed wetlands. Water 12, 569 (2020).CAS 
    Article 

    Google Scholar 
    Korber, D. R., Choi, A., Wolfaardt, G. M. & Caldwell, D. E. Bacterial plasmolysis as a physical indicator of viability. Appl. Environ. Microbiol. 62, 3939–3947 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, K. et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4, e00225 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hessini, K. et al. Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiol. Biochem. 139, 171–178 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lammel, D. R. et al. Direct and indirect effects of a pH gradient bring insights into the mechanisms driving prokaryotic community structures. Microbiome 6, 106 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopes, L. D., Hao, J. & Schachtman, D. P. Alkaline soil pH affects bulk soil, rhizosphere and root endosphere microbiomes of plants growing in a Sandhills ecosystem. FEMS Microbiol. Ecol. 97, 028 (2021).Article 
    CAS 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 
    Article 

    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, A., Mann, A., Kumar, A., Kumar, N. & Meena, B. L. Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. Int. J. Phytoremediat. 23, 1041–1051 (2021).CAS 
    Article 

    Google Scholar 
    Kalam, S. et al. Recent understanding of soil acidobacteria and their ecological significance: A critical review. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.580024 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boukhatem, Z. F., Merabet, C. & Tsaki, H. Plant growth promoting actinobacteria, the most promising candidates as bioinoculants? Front. Agron. https://doi.org/10.3389/fagro.2022.849911 (2022).Article 

    Google Scholar 
    Köberl, M. et al. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiol. Ecol. 92, 166 (2016).Article 
    CAS 

    Google Scholar 
    Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Front. Microbiol. 10, 2015 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hou, Y. et al. Responses of the soil microbial community to salinity stress in maize fields. Biology (Basel) 10, 1114 (2021).CAS 

    Google Scholar 
    Patil, A., Kale, A., Ajane, G., Sheikh, R. & Patil, S. Plant growth-promoting rhizobium: Mechanisms and biotechnological prospective. Rhizobium Biol. Biotechnol. https://doi.org/10.1007/978-3-319-64982-5_7 (2017).Article 

    Google Scholar 
    Lima Guimarães, S. et al. Effects of inoculation of Rhizobium on nodulation and nitrogen accumulation in cowpea subjected to water availabilities. Am. J. Plant Sci. 06, 1378–1384 (2015).Article 

    Google Scholar 
    Ghadbane, M., Medjekal, S., Benderradji, L., Belhadj, H. & Daoud, H. Assessment of arbuscular mycorrhizal fungi status and Rhizobium on date palm (Phoenix dactylifera L.) cultivated in a Pb contaminated soil. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions 2nd edn (eds Ksibi, M. et al.) 703–707 (Springer, 2021).
    Google Scholar 
    Saeed, E. E. et al. Streptomyces globosus UAE1, a potential effective biocontrol agent for black scorch disease in date palm plantations. Front. Microbiol. 8, 1455 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Falagán, C. & Johnson, D. B. Acidibacter ferrireducens gen. nov., sp. nov.: An acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18, 1067–1073 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Schulze-Makuch, D. et al. Transitory microbial habitat in the hyperarid Atacama desert. Proc. Natl. Acad. Sci. 115, 2670–2675 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, K. et al. Actinobacteria associated with Glycyrrhiza inflata Bat. are diverse and have plant growth promoting and antimicrobial activity. Sci. Rep. 8, 13661 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    An, S.-U. et al. Invasive Spartina anglica greatly alters the rates and pathways of organic carbon oxidation and associated microbial communities in an intertidal wetland of the Han river estuary, Yellow Sea. Front. Mar. Sci. 7, 59 (2020).ADS 
    Article 

    Google Scholar 
    Khan, M. A. et al. Rhizospheric Bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L.. Front. Plant Sci. 12, 1145 (2021).
    Google Scholar 
    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 
    Article 

    Google Scholar 
    Mukhtar, S., Mehnaz, S., Mirza, M. S., Mirza, B. S. & Malik, K. A. Diversity of bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Can. J. Microbiol. 64, 567–579 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yeager, C. M. et al. Polysaccharide degradation capability of actinomycetales soil isolates from a semiarid grassland of the colorado plateau. Appl. Environ. Microbiol. 83, e03020-e3116 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ortúzar, M., Trujillo, M. E., Román-Ponce, B. & Carro, L. Micromonospora metallophores: A plant growth promotion trait useful for bacterial-assisted phytoremediation? Sci. Total Environ. 739, 139850 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    El-Tarabily, K. A. et al. Growth promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an endophytic 1-aminocyclopropane-1-carboxylic acid deaminase-producing actinobacterial isolate. Front. Microbiol. 10, 1694 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carro, L. et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci. Rep. 8, 525 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, M. et al. Composition and function of rhizosphere microbiome of Panax notoginseng with discrepant yields. Chin. Med. 15, 85 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rufián, J. S., Rueda-Blanco, J., Beuzón, C. R. & Ruiz-Albert, J. Protocol: An improved method to quantify activation of systemic acquired resistance (SAR). Plant Methods 15, 16 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bhise, K. K., Bhagwat, P. K. & Dandge, P. B. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L.. 3 Biotech 7, 105 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cao, C., Tao, S., Cui, Z. & Zhang, Y. Response of soil properties and microbial communities to increasing salinization in the meadow grassland of Northeast China. Microb. Ecol. 82, 722–735 (2021).CAS 
    PubMed 
    Article 

    Google Scholar  More