More stories

  • in

    Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host

    Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594–1257594.PubMed 
    Article 
    CAS 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jephcott TG, Alves-de-Souza C, Gleason FH, van Ogtrop FF, Sime-Ngando T, Karpov SA, et al. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecol. 2016;19:47–58.Article 

    Google Scholar 
    Alacid E, Reñé A, Garcés E. New Insights into the Parasitoid Parvilucifera sinerae Life Cycle: The Development and Kinetics of Infection of a Bloom-forming Dinoflagellate Host. Protist. 2015;166:677–99.PubMed 
    Article 

    Google Scholar 
    Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol. 2007;9:1233–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science 2015;348:1262073.de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.PubMed 
    Article 
    CAS 

    Google Scholar 
    Siano R, Alves-De-Souza C, Foulon E, Bendif M, Simon E, Guillou NL. et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78.Article 

    Google Scholar 
    Coats DW. Parasitic life styles of marine dinoflagellates. J Eukaryot Microbiol. 1999;46:402–9.Article 

    Google Scholar 
    Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv. 2019;5:1–12.Article 
    CAS 

    Google Scholar 
    McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature. 1996;381:482.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sibbald SJ, Archibald JM. Genomic Insights into Plastid Evolution. Genome Biol Evol. 2020;12:978–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Not F, Probert I, Ribeiro CG, Crenn K, Guillou L, Jeanthon C, et al. Photosymbiosis in Marine Pelagic Environments. In: M. S. Cretoiu (ed). The Marine Microbiome. 2016. New York, NY: Springer International Publishing, pp 305–32.Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:1–11.Article 
    CAS 

    Google Scholar 
    Coats DW, Park MG. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J Phycol. 2002;38:520–8.Article 

    Google Scholar 
    Kayal E, Alves-de-Souza C, Farhat S, Velo-Suarez L, Monjol J, Szymczak J, et al. Dinoflagellate Host Chloroplasts and Mitochondria Remain Functional During Amoebophrya Infection. Front Microbiol. 2020;11:1–11.Article 

    Google Scholar 
    Miller JJ, Delwiche CF, Coats DW. Ultrastructure of Amoebophrya sp. and its Changes during the Course of Infection. Protist. 2012;163:720–45.PubMed 
    Article 

    Google Scholar 
    Decelle J, Stryhanyuk H, Gallet B, Veronesi G, Schmidt M, Balzano S, et al. Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Curr Biol. 2019;29:968–978.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Uwizeye C, Mars Brisbin M, Gallet B, Chevalier F, LeKieffre C, Schieber NL, et al. Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci USA 2021;118.Uwizeye C, Decelle J, Jouneau P, Flori S, Gallet B, Keck J, et al. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat Commun. 2021;12:1049.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vis. 2004;60:91–110.Article 

    Google Scholar 
    Hennies J, Lleti JMS, Schieber NL, Templin RM, Steyer AM, Schwab Y. AMST: alignment to median smoothed template for focused ion beam scanning electron microscopy image stacks. Sci Rep. 2020;10:1–10.Article 
    CAS 

    Google Scholar 
    Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. Intraoperative Imaging and Image-Guided Therapy. 2014. Springer New York, New York, NY, pp 277–89.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, et al. Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci. 2017;8:1–18.
    Google Scholar 
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, et al. Comparative time-scale gene expression analysis highlights the infection processes of two amoebophrya strains. Front Microbiol. 2018;9:1–19.Article 

    Google Scholar 
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.CAS 
    Article 

    Google Scholar 
    Cachon J. Contribution à l’étude des péridiniens parasites. Cytologie, cycles évolutifs Ann Sci Nat Zool. 1964;6:1–158.
    Google Scholar 
    Van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol. 2005;57:405–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tyler KM, Matthews KR, Gull K. Anisomorphic cell division by African trypanosomes. Protist. 2001;152:367–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jakob M, Hoffmann A, Amodeo S, Peitsch C, Zuber B, Ochsenreiter T. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci Rep. 2016;6:1–13.Article 
    CAS 

    Google Scholar 
    Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci. 2017;130:637–47.CAS 
    PubMed 

    Google Scholar 
    Ovciarikova J, Lemgruber L, Stilger KL, Sullivan WJ, Sheiner L. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci Rep. 2017;7:1–13.Article 
    CAS 

    Google Scholar 
    Nishi M, Hu K, Murray JM, Roos DS. Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci. 2008;121:1559–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Long M, Marie D, Szymczak J, Toullec J, Bigeard E, Sourisseau M, et al. Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales). ISME Commun. 2021;1:34.Article 

    Google Scholar 
    Harris E, Yoshida K, Cardelli J, Bush J. Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in. Dictyostelium J Cell Sci. 2001;114:3035–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: Novel structural findings and functional insights. Biochim Biophys Acta – Bioenerg. 2014;1837:857–79.CAS 
    Article 

    Google Scholar 
    Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci USA. 2000;97:680–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vines JH, King JS. The endocytic pathways of Dictyostelium discoideum. Int J Dev Biol. 2019;63:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Decelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, et al. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ Microbiol. 2021;23:6569–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sigee DC, Kearns LP. Levels of dinoflagellate chromosome-bound metals in conditions of low external ion availability: An X-ray microanalytical study. Tissue Cell. 1981;13:441–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinchuk GE, Ammons C, Culley DE, Li SMW, McLean JS, Romine MF, et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: Ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol. 2008;74:1198–208.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caffaro CE, Boothroyd JC. Evidence for Host Cells as the Major Contributor of Lipids in the Intravacuolar Network of Toxoplasma-Infected Cells. Eukaryot Cell. 2011;10:1095–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, et al. Intravacuolar membranes regulate CD8 T cell recognition of membrane-bound Toxoplasma gondii protective antigen. Cell Rep. 2015;13:2273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, et al. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J Biol Chem. 2016;291:3725–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017;13:e1006362.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. MBio. 2019; 10:e00589-19.Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell. 2017;171:148–162.e19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeeman SC, Kossmann J, Smith AM. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blume M, Rodriguez-Contreras D, Landfear S, Fleige T, Soldati-Favre D, Lucius R, et al. Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci USA. 2009;106:12998–3003.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science (80-). 2012;335:207–11.CAS 
    Article 

    Google Scholar 
    Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. Mechanism of substrate translocation in an alternating access transporter. Cell. 2017;169:96–107.e12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amiar S, Katris NJ, Berry L, Dass S, Duley S, Arnold CS, et al. Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling. Cell Rep. 2020;30:3778–3792.e9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem. 2017;292:11009–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomes AF, Magalhães KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors. 2014;7:47.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 2016;32:56–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol. 2014;30:170–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Gómez SA, Wideman JG, Roger AJ, Slamovits CH, Agashe D. The origin of mitochondrial cristae from alphaproteobacteria. Mol Biol Evol. 2017;34:943–56.PubMed 

    Google Scholar 
    Evers F, Cabrera-Orefice A, Elurbe DM, Kea-te Lindert M, Boltryk SD, Voss TS, et al. Composition and stage dynamics of mitochondrial complexes in Plasmodium falciparum. Nat Commun. 2021;12:1–17.Article 
    CAS 

    Google Scholar 
    Krungkrai J, Prapunwattana P, Krungkrai SR. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite. 2000;7:19–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Krungkrai J. The multiple roles of the mitochondrion of the malarial parasite. Parasitology 2004;129:511–524. https://doi.org/10.1017/S0031182004005888.Lee JW. Protonic capacitor: elucidating the biological significance of mitochondrial cristae formation. Sci Rep. 2020;10:1–14.Article 
    CAS 

    Google Scholar 
    Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 2020;39:1–24.Article 
    CAS 

    Google Scholar 
    Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol. 2020;30:R575–R588.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta – Mol Cell Biol Lipids. 2016. Elsevier B.V., 1861: 900-12.Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, et al. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 2021;12:120.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Flegontov P, Michálek J, Janouškovec J, Lai DH, Jirků M, Hajdušková E, et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 2015;32:1115–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446:88–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishida T, Hatama S, Ishikawa Y, Kadota K. Intranuclear coccidiosis in a calf. J Vet Med Sci. 2009;71:1109–13.PubMed 
    Article 

    Google Scholar 
    Pecka Z. Life cycle and ultrastructure of Eimeria stigmosa, the intranuclear coccidian of the goose (Anser anser domesticus). Folia Parasitol (Praha). 1992;39:105–14.CAS 

    Google Scholar 
    Voleman L, Doležal P. Mitochondrial dynamics in parasitic protists. PLoS Pathog. 2019;15:e1008008.Bílý T, Sheikh S, Mallet A, Bastin P, Pérez‐Morga D, Lukeš J, et al. Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. J Eukaryot Microbiol. 2021;68:e12846.Elliott DA, McIntosh MT, Hosgood HD, Chen S, Zhang G, Baevova P, et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2008;105:2463–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    First identification of bovine hepacivirus in wild boars

    Trinchet, J. C. et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology 62, 737–750 (2015).Article 

    Google Scholar 
    Stanaway, J. D. et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet 388, 1081–1088 (2016).Article 

    Google Scholar 
    World Health Organization (WHO). Web Annex B. WHO estimates of the prevalence and incidence of hepatitis C virus infection by WHO region, 2015. In Global Hepatitis Report 2017. https://apps.who.int/iris/bitstream/handle/10665/277005/WHO-CDS-HIV-18.46-eng.pdf?ua=1. Accessed 01 Feb 2021.Smith, D. B. et al. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J. Gen. Virol. 97(11), 2894–2907 (2016).CAS 
    Article 

    Google Scholar 
    Kapoor, A. et al. Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci USA 108, 11608–11613 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Quan, P. L. et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci USA 110, 8194–8199 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Burbelo, P. D. et al. Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 86, 6171–6178 (2012).CAS 
    Article 

    Google Scholar 
    Drexler, J. F. et al. Evidence for novel hepaciviruses in rodents. PLoS Pathog 9, e1003438 (2013).CAS 
    Article 

    Google Scholar 
    Shi, Y. New virus, new challenge. Innovation (NY) 1(1), 100005 (2020).
    Google Scholar 
    Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Identification of a novel hepacivirus in domestic cattle from Germany. J Virol 89, 7007–7015 (2015).CAS 
    Article 

    Google Scholar 
    Corman, V. M. et al. Highly divergent hepaciviruses from African cattle. J Virol. 89, 5876–5882 (2015).CAS 
    Article 

    Google Scholar 
    Simmonds, P. et al. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98, 2–3 (2017).CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Genetic heterogeneity of bovine hepacivirus in Italy. Transbound Emerg Dis. 67, 2731–2740 (2020).CAS 
    Article 

    Google Scholar 
    Li, L. L. et al. Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 164(9), 2401–2410 (2019).CAS 
    Article 

    Google Scholar 
    Zhang, X. L. et al. A highly divergent hepacivirus identified in domestic ducks further reveals the genetic diversity of hepaciviruses. Viruses 14(2), 371 (2022).Article 

    Google Scholar 
    Lu, G., Ou, J., Zhao, J. & Li, S. Presence of a novel subtype of bovine hepacivirus in China and expanded classification of bovine hepacivirus strains worldwide into 7 subtypes. Viruses 11, 843 (2019).CAS 
    Article 

    Google Scholar 
    da Silva, M. S. et al. Comprehensive evolutionary and phylogenetic analysis of Hepacivirus N (HNV). J Gen Virol. 99, 890–896 (2018).Article 

    Google Scholar 
    Shao, J. W. et al. A novel subtype of bovine hepacivirus identified in ticks reveals the genetic diversity and evolution of bovine hepacivirus. Viruses 13(11), 2206 (2021).CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound. Emerg. Dis. 66, 195–206 (2019).CAS 
    Article 

    Google Scholar 
    Varela-Castro, L., Alvarez, V., Sevilla, I. A. & Barral, M. Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area. PLoS ONE 15, e0231559 (2020).CAS 
    Article 

    Google Scholar 
    Palombieri, A. et al. Surveillance study of Hepatitis E Virus (HEV) in domestic and wild ruminants in Northwestern Italy. Animals 10(12), 2351 (2020).Article 

    Google Scholar 
    Bukh, J. Hepatitis C homolog in dogs with respiratory illness. Proc Natl Acad Sci U S A. 108, 12563–12564 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Identification and genetic characterization of equine hepaciviruses in Italy. Vet. Microbiol. 207, 239–247 (2017).CAS 
    Article 

    Google Scholar 
    Hartlage, A. S., Cullen, J. M. & Kapoor, A. The strange, expanding world of animal hepaciviruses. Annu Rev Virol. 3, 53–75 (2016).CAS 
    Article 

    Google Scholar 
    Canal, C. W. et al. A novel genetic group of bovine hepacivirus in archival serum samples from Brazilian cattle. Biomed Res Int. 2017, 4732520 (2017).Article 

    Google Scholar 
    Deng, Y., Guan, S. H., Wang, S., Hao, G. & Rasmussen, T. B. The detection and phylogenetic analysis of Bovine Hepacivirus in China. Biomed Res Int. 2018, 6216853 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yeşilbağ, K. et al. Presence of bovine hepacivirus in Turkish cattle. Vet. Microbiol. 225, 1–5 (2018).Article 

    Google Scholar 
    Anggakusuma, et al. Hepacivirus NS3/4A proteases interfere with MAVS signaling in both their cognate animal hosts and humans: Implications for zoonotic transmission. J Virol. 90(23), 10670–10681 (2016).CAS 
    Article 

    Google Scholar 
    El-Attar, L. M. R., Mitchell, J. A., BrooksBrownlie, H., Priestnall, S. L. & Brownlie, J. Detection of non-primate hepaciviruses in UK dogs. Virology 484, 93–102 (2015).CAS 
    Article 

    Google Scholar 
    Thézé, J., Lowes, S., Parker, J. & Pybus, O. G. Evolutionary and phylogenetic analysis of the Hepaciviruses and Pegiviruses. Genome Biol Evol. 7(11), 2996–3008 (2015).Article 

    Google Scholar 
    Charrel, R. N., de Chesse, R., Decaudin, A., De Micco, P. & de Lamballerie, X. Evaluation of disinfectant efficacy against hepatitis C virus using a RT-PCR-based method. J. Hosp. Infect. 49(2), 129–134 (2001).CAS 
    Article 

    Google Scholar 
    Pavio, N., Doceul, V., Bagdassarian, E. & Johne, R. Recent knowledge on hepatitis E virus in Suidae reservoirs and transmission routes to human. Vet Res. 48(1), 78 (2017).Article 

    Google Scholar 
    Scherer, C. et al. Moving infections: Individual movement decisions drive disease persistence in spatially structured landscapes. Oikos 129, 651–667 (2020).Article 

    Google Scholar 
    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitution in the control region of mitochondrial DNA in human and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Counteracting forces of introgressive hybridization and interspecific competition shape the morphological traits of cryptic Iberian Eptesicus bats

    Ottenburghs, J. et al. A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evol. Biol. 17, 14 (2017).Article 

    Google Scholar 
    Baiz, M. D., Tucker, P. K. & Cortés-Ortiz, L. Multiple forms of selection shape reproductive isolation in a primate hybrid zone. Mol. Ecol. 28, 1056–1069 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Slager, D. L. et al. Cryptic and extensive hybridization between ancient lineages of American crows. Mol. Ecol. 29, 956–969 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Introgressive hybridization and natural selection in Darwin’s finches. Biol. J. Linnean Soc. 117, 812–822 (2016).Article 

    Google Scholar 
    Pauquet, G., Salzburger, W. & Egger, B. The puzzling phylogeography of the haplochromine cichlid fish Astatotilapia burtoni. Ecol. Evol. 8, 5637–5648 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article 

    Google Scholar 
    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, R. P., Peterson, A. T. & Gómez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16 (2002).Article 

    Google Scholar 
    Gramlich, S., Wagner, N. D. & Horandl, E. RAD-seq reveals genetic structure of the F-2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biol. 18, 12 (2018).Article 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou, L. et al. Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS ONE 3, e2172 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Enciso-Romero, J. et al. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol. Ecol. 26, 5160–5172 (2017).PubMed 
    Article 

    Google Scholar 
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Latch, E. K., Harveson, L. A., King, J. S., Hobson, M. D. & Rhodes, J. R. Assessing hybridization in wildlife populations using molecular markers: a case study in wild turkeys. J. Wildl. Manag. 70, 485–492 (2006).Article 

    Google Scholar 
    Oliveira, R., Godinho, R., Randi, E. & Alves, P. C. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula?. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 363, 2953–2961 (2008).Article 

    Google Scholar 
    Nichols, P. et al. Secondary contact seeds phenotypic novelty in cichlid fishes. Proc. R. Soc. B Biol. Sci. 282, 8 (2015).
    Google Scholar 
    Yang, W. Z. et al. Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol. Ecol. 27, 4213–4224 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boratyński, Z. et al. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?. BMC Evol. Biol. 11, 355 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mondal, M. et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat. Genet. 48, 1066–1070 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mims, M. C., Hulsey, C. D., Fitzpatrick, B. M. & Streelman, J. T. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol. Ecol. 19, 940–951 (2010).PubMed 
    Article 

    Google Scholar 
    Salazar, C. et al. Genetic evidence for hybrid trait speciation in heliconius butterflies. PLoS Genet. 6, e1000930 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Naisbit, R. E., Jiggins, C. D. & Mallet, J. Mimicry: developmental genes that contribute to speciation. Evol. Dev. 5, 269–280 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W., Dasmahapatra, K. K., Mallet, J., Moreira, G. R. P. & Kronforst, M. R. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 15 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, W., Kunte, K. & Kronforst, M. R. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using De Novo transcriptome assemblies. Genome Biol. Evol. 5, 1233–1245 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science (New York, NY). 360, 1355–1358 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melville, J. Competition and character displacement in two species of scincid lizards. Ecol. Lett. 5, 386–393 (2002).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Character displacement and the origins of diversity. Am. Nat. 176, S26–S44 (2010).PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evol. Int. J. Org. Evol. 71, 1205–1221 (2017).CAS 
    Article 

    Google Scholar 
    Adams, D. C. & Rohlf, F. J. Ecological character displacement in Plethodon: Biomechanical differences found from a geometric morphometric study. Proc. Natl. Acad. Sci. 97, 4106–4111 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science (New York, NY) 313, 224–226 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. Character displacement in polyphenic tadpoles. Evol. Int. J. Org. Evol. 54, 1738–1749 (2000).CAS 
    Article 

    Google Scholar 
    Jones, G. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv. Study Behav. 26, 317–354 (1997).Article 

    Google Scholar 
    Marsteller, S., Adams, D. C., Collyer, M. L. & Condon, M. Six cryptic species on a single species of host plant: morphometric evidence for possible reproductive character displacement. Ecol. Entomol. 34, 66–73 (2009).Article 

    Google Scholar 
    Tene Fossog, B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol. Appl. 8, 326–345 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibáñez, C., García-Mudarra, J. L., Ruedi, M., Stadelmann, B. & Juste, J. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8, 277–297 (2006).Article 

    Google Scholar 
    Juste, J. et al. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol. Phylogenet. Evol. 31, 1114–1126 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreber J. Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen. Erlangen – Expedition des Schreber’schen säugthier- und des Esper’schen Schmetterlingswerkes. Ernst Mayr Library of the MCZ, 1774–1855 (Harvard, 1774).Temminck, C. J. Monographies de Mammologie, ou description de quelques genres de Mammifères, dont les espèces ont été observes dans les différens Musées de l’Europe, Vol. 2, No. 302, 26–70 (G. Dufour et Ed. D’Ocagne, 1840).Centeno-Cuadros, A. et al. Comparative phylogeography and asymmetric hybridization between cryptic bat species. J. Zool. Syst. Evol. Res. 57, 1004–1018 (2019).Article 

    Google Scholar 
    Santos, H. et al. Shaping of bat cryptic distribution in Iberia. Biol. J. Linnean Soc. 112, 150–162 (2014).Article 

    Google Scholar 
    Novella-Fernandez, R. et al. Broad-scale patterns of geographic avoidance between species emerge in the absence of fine-scale mechanisms of coexistence. Divers. Distrib. 27, 1606–1618 (2021).Article 

    Google Scholar 
    Neubaum, M. A., Douglas, M. R., Douglas, M. E. & O’Shea, T. J. Molecular ecology of the big brown bat (Eptesicus fuscus): genetic and natural history variation in a hybrid zone. J. Mammal. 88, 1230–1238 (2007).Article 

    Google Scholar 
    Worthington-Wilmer, J. & Barratt, E. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res. News 37(1), 1–4 (1996).
    Google Scholar 
    Illumination, I.C.o. A colour appearance model for colour management systems: CIECAM02. Technical Report No CIE 159, 2004 (2004).Maroco, J. Análise estatística com utilização do SPSS. 3ª edição. Edições Silabo (2010).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. Kernlab: an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004).Article 

    Google Scholar 
    Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://cran.r-project.org/web/packages/e1071/index.html (2012).Redgwell, R. D., Szewczak, J. M., Jones, G. & Parsons, S. Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms 2, 907–924 (2009).Article 

    Google Scholar 
    Ochoa-López, S. et al. Ontogenetic changes in the targets of natural selection in three plant defenses. New Phytol. 226, 1480–1491 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Phenotypic and genetics effects of hybridization in Darwin’s finches. Evol. Int. J. Org. Evol. 48, 297–316 (1994).Article 

    Google Scholar 
    Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and morphological variation of beaks in Darwin’s finches. Science (New York, NY). 305, 1462–1465 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    von Holdt, B. M., Kays, R., Pollinger, J. P. & Wayne, R. K. Admixture mapping identifies introgressed genomic regions in North American canids. Mol. Ecol. 25, 2443–2453 (2016).Article 

    Google Scholar 
    Santana, S. E., Strait, S. & Dumont, E. R. The better to eat you with: functional correlates of tooth structure in bats. Funct. Ecol. 25, 839–847 (2011).Article 

    Google Scholar 
    Kalcounis, M. C. & Brigham, R. M. Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Can. J. Zool. 73, 89–95 (1995).Article 

    Google Scholar 
    Muijres, F. T., Johansson, L. C., Winter, Y. & Anders, H. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. J. R. Soc. Interface 8, 1418–1428 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley, B. J. & Mundy, N. I. The primate palette: the evolution of primate coloration. Evol. Anthropolo. Issues News Rev. 17, 97–111 (2008).Article 

    Google Scholar 
    Müller, B. & Peichl, L. Retinal cone photoreceptors in microchiropteran bats. Investig. Ophthalmol. Vis. Sci. 46, 2259–2259 (2005).
    Google Scholar 
    Winter, Y., López, J. & von Helversen, O. Ultraviolet vision in a bat. Nature 425, 612–614 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125–136 (2005).Article 

    Google Scholar 
    Chaverri, G., Ancillotto, L. & Russo, D. Social communication in bats. Biol. Rev. 93, 1938–1954 (2018).PubMed 
    Article 

    Google Scholar 
    Dietz, C., Von Helversen, O. & Nill, D. Bats of Britain, Europe and Northwest Africa 320–333 (A&C Black Publishers Ltd, 2009).
    Google Scholar 
    Martinoli, A., Mazzamuto, M.V. & Spada, M. Serotine Eptesicus serotinus (Schreber, 1774). In Handbook of the Mammals of Europe, 1–17 (2020).Dinger, G. Winternachweise von Breitflügelfledermaus (Eptesicus serotinus) in Kirchen. Nyctalus (N.F.) 7, 614–616 (1991).
    Google Scholar 
    Kowalski, K. & Rzebik-Kowalska, B. Mammals of algeria (1991).Novella-Fernandez, R. et al. Trophic resource partitioning drives fine-scale coexistence in cryptic bat species. Ecol. Evol. 10(24), 14122–14136 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galván, I., Vargas-Mena, J. C. & Rodríguez-Herrera, B. Tent-roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. J. Zool. Syst. Evol. Res. 58, 519–527 (2020).Article 

    Google Scholar 
    Wang, Z. L., Zhang, D. Y. & Wang, G. Does spatial structure facilitate coexistence of identical competitors. Ecol. Model. 181, 17–23 (2005).Article 

    Google Scholar 
    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science (New York, NY). 323, 1339–1343 (2009).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mingo-Casas, P. et al. First cases of European bat lyssavirus type 1 in Iberian serotine bats: implications for the molecular epidemiology of bat rabies in Europe. PLoS Negl. Trop. Dis. 12(4), e0006290 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vázquez-Moron, S., Juste, J., Ibáñez, C., Berciano, J. M. & Echevarria, J. E. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain. Emerg. Infect. Dis. 17, 520–523 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burgarella, C. et al. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102, 442–452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abrams, P. A. Character displacement and niche shift analyzed using consumer-resource models of competition. Theor. Popul. Biol. 29, 107–160 (1986).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar  More

  • in

    Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system

    Gattuso JP, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst. 1998;29:405–34.Article 

    Google Scholar 
    Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81–108.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science.1998;280:694–96.CAS 
    Article 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bunse C, Bertos-Fortis M, Sassenhagen I, Sildever S, Sjoqvist C, Godhe A, et al. Spatio-temporal interdependence of bacteria and phytoplankton during a baltic sea spring bloom. Front Microbiol. 2016;7:517.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cram JA, Chow CE, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor JD, Cottingham SD, Billinge J, Cunliffe M. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J. 2014;8:245–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science.2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off galicia (NW Spain). Microb Ecol. 2018;76:866–84.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A, et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol. 2011;77:4055–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA. 2013;110:E488–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R 3rd, Schuster SC, et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. 2014;345:207–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier S, Rivers AR, Moran MA, Obernosterer I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ Microbiol. 2015;17:3466–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarmento H, Gasol JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol. 2012;14:2348–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi Y, McCarren J, DeLong EF. Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol. 2012;14:191–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vorobev A, Sharma S, Yu M, Lee J, Washington BJ, Whitman WB, et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ Microbiol. 2018;20:3012–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, et al. Ecological genomics of marine Roseobacters. Appl Environ Microbiol. 2007;73:4559–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol. 2012;14:228–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, et al. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ Microbiol. 2013;16:2815–30.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci USA. 2021;118:e2101178118.McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sosa OA, Gifford SM, Repeta DJ, DeLong EF. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures. ISME J. 2015;9:2725–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pontiller B, Martínez-García S, Lundin D, Pinhassi J. Labile dissolved organic matter compound characteristics select for divergence in marine bacterial activity and transcription. Front Microbiol. 2020;11:588778.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J, Hettich RL, et al. Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J. 2017;11:2781–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joglar V, Prieto A, Barber-Lluch E, Hernández-Ruiz M, Fernández E, Teira E. Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system. Biogeosciences.2020;17:2807–23.Article 

    Google Scholar 
    Martínez-García S, Fernández E, Álvarez-Salgado XA, González J, Lønborg C, Marañón E, et al. Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar Ecol Prog Ser. 2010;416:17–33.Article 
    CAS 

    Google Scholar 
    Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr. 1994;39:1985–92.CAS 
    Article 

    Google Scholar 
    Parsons TR, Maita Y, Lalli CM. Fluorometric determination of chlorophylls. A manual of chemical & biological methods for seawater analysis: Oxford, UK: Pergamon Press; 1984. p. 107–09.Hansen H, Grasshoff K. Automated chemical analysis. Methods of seawater analysis. 2nd ed: Verlag Chemie, Weinheim; 1983. p. 347–95.Álvarez-Salgado XA, Miller AEJ. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar Chem. 1998;62:325–33.Article 

    Google Scholar 
    Calvo-Díaz A, Morán XAG. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat Micro Ecol. 2006;42:159–74.Article 

    Google Scholar 
    Smith DC, Farooq A. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Micro Food Webs. 1992;6:107–14.
    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (Gene) amplicon sequencing pipeline. Front Microbiol. 2020;11:1–18.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Poretsky RS, Gifford S, Rinta-Kanto J, Vila-Costa M, Moran MA. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J Vis Exp. 2009;24:1–6.
    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. 2011. https://github.com/najoshi/sickle.Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One. 2013;8:1–13.
    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ.2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:1–12.Article 
    CAS 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol. 2016;26:322–9.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 4.1.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2021.Cottrell MT, Kirchman DL. Transcriptional control in marine copiotrophic and oligotrophic bacteria with streamlined genomes. Appl Environ Microbiol. 2016;82:6010–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: The most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9:231–55.PubMed 
    Article 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Allers E, Gomez-Consarnau L, Pinhassi J, Gasol JM, Simek K, Pernthaler J. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol. 2007;9:2417–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Pernthaler J. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol. 2006;8:2022–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noell SE, Giovannoni SJ. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ Microbiol. 2019;21:2559–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009;3:93–105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chenard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al. Temporal and spatial dynamics of bacteria, archaea and protists in equatorial coastal waters. Sci Rep. 2019;9:16390.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pajares S, Varona-Cordero F, Hernández-Becerril DU. Spatial distribution patterns of bacterioplankton in the oxygen minimum zone of the tropical mexican pacific. Micro Ecol. 2020;80:519–36.CAS 
    Article 

    Google Scholar 
    Signori CN, Pellizari VH, Enrich-Prast A, Sievert SM. Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula. Deep-Sea Res Pt Ii. 2018;149:150–60.Article 

    Google Scholar 
    Ling SK, Xia J, Liu Y, Chen GJ, Du ZJ. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol. 2017;67:3778–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ, Pan J, et al. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus. Int J Syst Evol Microbiol. 2015;65:562–69.CAS 
    PubMed 
    Article 

    Google Scholar 
    Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol. 2004;70:4129–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Ann Rev Mar Sci. 2016;8:285–309.PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 
    CAS 

    Google Scholar 
    Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci USA. 2014;111:7202–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.CAS 
    PubMed 
    Article 

    Google Scholar 
    López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep. 2012;2:696.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME J. 2018;12:981–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol. 2004;70:6753–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol. 2000;66:578–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Glavina Del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk HP, Fardeau ML, et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol. 2017;19:1134–48.PubMed 
    Article 
    CAS 

    Google Scholar 
    Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative genomics of four Isosphaeraceae Planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4(T), Isosphaera pallida IS1B(T), Singulisphaera acidiphila DSM 18658(T), and Strain SH-PL62. Front Microbiol. 2017;8:412.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann JH, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.Bode A, Estévez MG, Varela M, Vilar JA. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar Environ Res. 2015;110:81–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cermeño P, Marañón E, Pérez V, Serret P, Fernández E, Castro CG. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NW-Spain): Seasonal and short-time scale variability. Estuar Coast Shelf Sci. 2006;67:251–66.Article 

    Google Scholar 
    Nogueira E, Pérez FF, Rı́os AF. Modelling thermohaline properties in an estuarine upwelling ecosystem (Rı́a de Vigo: NW Spain) using box-jenkins transfer function models. Estuar Coast Shelf Sci. 1997;44:685–702.Article 

    Google Scholar 
    Broullón E, López-Mozos M, Reguera B, Chouciño P, Doval MD, Fernández-Castro B, et al. Thin layers of phytoplankton and harmful algae events in a coastal upwelling system. Prog Oceanogr. 2020;189:102449.Fraga F. Upwelling off the Galician Coast, Northwest Spain. In: Richards FA, editor. Coastal Upwelling. Washington: American Geophysical Union; 1981. p. 176–82.Nogueira E, Figueiras FG. The microplankton succession in the Ría de Vigo revisited: species assemblages and the role of weather-induced, hydrodynamic variability. J Mar Syst. 2005;54:139–55.Article 

    Google Scholar 
    Pitcher GC, Walker DR, Mitchellinnes BA, Moloney CL. Short-term variability during an anchor station study in the southern Benguela Upwelling System – phytoplankton dynamics. Prog Oceanogr. 1991;28:39–64.Article 

    Google Scholar 
    Smayda TJ, Trainer VL. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr. 2010;85:92–107.Article 

    Google Scholar 
    Wilkerson FP, Lassiter AM, Dugdale RC, Marchi A, Hogue VE. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep-Sea Res Pt Ii. 2006;53:3023–48.Article 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Late quaternary biotic homogenization of North American mammalian faunas

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).ADS 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 52, 52–58 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Petrozzi, F. et al. Surveys of mammal communities in a system of five forest reserves suggest an ongoing biotic homogenization process for the Niger Delta (Nigeria). Trop. Zool. 28, 95–113 (2015).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).Article 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 
    PubMed 

    Google Scholar 
    Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B: Biol. Sci. 279, 4772–4777 (2012).
    Google Scholar 
    Longman, E. K., Rosenblad, K. & Sax, D. F. Extreme homogenization: the past, present and future of mammal assemblages on islands. Glob. Ecol. Biogeogr. 27, 77–95 (2018).Article 

    Google Scholar 
    Spear, D. & Chown, S. L. Taxonomic homogenization in ungulates: patterns and mechanisms at local and global scales. J. Biogeogr. 35, 1962–1975 (2008).Article 

    Google Scholar 
    Tóth, A. B., Lyons, S. K. & Behrensmeyer, A. K. A century of change in Kenya’s mammal communities: increased richness and decreased uniqueness in six protected areas. PLoS ONE 9, e93092 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Qian, H. & Ricklefs, R. E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 9, 1293–1298 (2006).Article 
    PubMed 

    Google Scholar 
    Muthukrishnan, R. & Larkin, D. J. Invasive species and biotic homogenization in temperate aquatic plant communities. Glob. Ecol. Biogeogr. 29, 656–667 (2020).Article 

    Google Scholar 
    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7 1–9 (2016).Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Naturalist 162, 442–460 (2003).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95, 565–573 (2007).Article 

    Google Scholar 
    Byers, J. E., Wright, J. T. & Gribben, P. E. Variable direct and indirect effects of a habitat‐modifying invasive species on mortality of native fauna. Ecology 91, 1787–1798 (2010).Article 
    PubMed 

    Google Scholar 
    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).Article 
    PubMed 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    Lavery, T. H., Posala, C. K., Tasker, E. M. & Fisher, D. O. Ecological generalism and resilience of tropical island mammals to logging: a 23 year test. Glob. Change Biol. 26, 3285–3293 (2020).ADS 
    Article 

    Google Scholar 
    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinclair, A. Mammal population regulation, keystone processes and ecosystem dynamics. Philos. Trans. R. Soc. B: Biol. Sci. 358, 1729–1740 (2003).CAS 
    Article 

    Google Scholar 
    Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).Article 

    Google Scholar 
    O’Connor, N. E. & Crowe, T. P. Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86, 1783–1796 (2005).Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mihoub, J.-B. et al. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 7, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    Beller, E. et al. Toward principles of historical ecology. Am. J. Bot. 104, 645–648 (2017).Article 
    PubMed 

    Google Scholar 
    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118 e2023483118 (2021).Waters, M. R. Late Pleistocene exploration and settlement of the Americas by modern humans. Science 365 https://doi.org/10.1126/science.aat5447 (2019).Bennett, M. R. et al. Evidence of humans in North America during the last glacial maximum. Science 373, 1528–1531 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007).ADS 
    Article 

    Google Scholar 
    Lyons, S. K., Smith, F. A. & Brown, J. H. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6, 339–358 (2004).
    Google Scholar 
    Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37 215–250 (2006).Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tóth, A. B. & McGuire, J. L. Mammal species occupy different climates following the expansion of human impacts. Proc. Natl Acad. Sci. USA 118, e1922859118 (2021).Graham, R. W. et al. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–775 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B: Biol. Sci. 277, 661 (2010).Article 

    Google Scholar 
    Lyons, S. K., Wagner, P. J. & Dzikiewicz, K. Ecological correlates of range shifts of Late Pleistocene mammals. Philos. Trans. R. Soc. B: Biol. Sci. 365, 3681–3693 (2010).Article 

    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, https://doi.org/10.1098/rsbl.2016.0342 (2016).Pineda‐Munoz, S. et al. Body mass‐related changes in mammal community assembly patterns during the late Quaternary of North America. Ecography 44, 56–66 (2021).Article 

    Google Scholar 
    Lyons, S. K. A quantitative model for assessing community dynamics of Pleistocene mammals. Am. Naturalist 165, E168–E185 (2005).Article 

    Google Scholar 
    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. B: Biol. Sci. 282, 20151367 (2015).Article 

    Google Scholar 
    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).Article 
    PubMed 

    Google Scholar 
    Olden, J. D., Lockwood, J. L. & Parr, C. L. In Conservation biogeography (eds. Ladle, R. & Whittaker, R. J.) Ch. 9, 224–243 (John Wiley & Songs, 2011).Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    Alroy, J. A new twist on a very old binary similarity coefficient. Ecology 96, 575–586 (2015).Article 
    PubMed 

    Google Scholar 
    Ulrich, W. & Gotelli, N. J. Null model analysis of species nestedness patterns. Ecology 88, 1824–1831 (2007).Article 
    PubMed 

    Google Scholar 
    Behrensmeyer, A. K., Western, D. & Boaz, D. E. D. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology 5, 12–21 (1979).Article 

    Google Scholar 
    Behrensmeyer, A. K. & Dechant Boaz, D. E. In Fossils in the Making (ed. Behrensmeyer, A.K.) 72–92 (University of Chicago Press, 1980).Andrews, P. Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK (University of Chicago Press, 1990).Badgley, C. Tectonics, topography, and mammalian diversity. Ecography 33, 220–231 (2010).
    Google Scholar 
    Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. USA 105, 17836–17841 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H., Badgley, C. & Fox, D. L. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Glob. Ecol. Biogeogr. 18, 111–122 (2009).Article 

    Google Scholar 
    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. J. S. d. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. 3, 160048 (2016).Rosenblad, K. C. & Sax, D. F. A new framework for investigating biotic homogenization and exploring future trajectories: Oceanic island plant and bird assemblages as a case study. Ecography 40, 1040–1049 (2017).Article 

    Google Scholar 
    Kortz, A. R. & Magurran, A. E. Increases in local richness (α-diversity) following invasion are offset by biotic homogenization in a biodiversity hotspot. Biol. Lett. 15, 20190133 (2019).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Castro, S. A. et al. Partitioning β-diversity reveals that invasions and extinctions promote the biotic homogenization of Chilean freshwater fish fauna. PLoS ONE 15, e0238767 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Peoples, B. K., Davis, A. J., Midway, S. R., Olden, J. D. & Stoczynski, L. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia 847, 3727–3741 (2020).Article 

    Google Scholar 
    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H. & Xiao, M. Global patterns of the beta diversity energy relationship in terrestrial vertebrates. Acta Oecol 39, 67–71 (2012).ADS 
    Article 

    Google Scholar 
    Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl Acad. Sci. USA 113, 10908–10913 (2016).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Figueirido, B., Janis, C. M., Pérez-Claros, J. A., Renzi, M. D. & Palmqvist, P. Cenozoic climate change influences mammalian evolutionary dynamics. Proc. Natl Acad. Sci. USA 109, 722–727 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).Article 

    Google Scholar 
    Fraser, D., Hassall, C., Gorelick, R. & Rybczynski, N. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PloS ONE 9, e106499 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Darroch, S. A. F., Webb, A. E., Longrich, N. & Belmaker, J. Palaeocene–Eocene evolution of beta diversity among ungulate mammals in North America. Glob. Ecol. Biogeogr. 23, 757–768 (2014).Article 

    Google Scholar 
    Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl Acad. Sci. USA 109, E1134–E1142 (2012).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).ADS 
    Article 

    Google Scholar 
    McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M. & Adkins, J. F. Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature 511, 75–78 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev. 19, 213–226 (2000).ADS 
    Article 

    Google Scholar 
    Lyons, S. K. A quantitative assessment of the range shifts of Pleistocene mammals. J. Mammal. 84, 385–402 (2003).Article 

    Google Scholar 
    Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. Proc. R. Soc. B. 284, 20162116 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Owen-Smith, R. N. Megaherbivores: the influence of very large body size on ecology (Cambridge university press, 1992).Doughty, C. E. et al. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences USA (2015).Araujo, B. B., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quat. Int. 431, 216–222 (2017).Article 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. Lond. B: Biol. Sci., rspb 2008, 1921 (2009).
    Google Scholar 
    Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl Acad. Sci. USA 113, 856–861 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kelt, D. A. & Van Vuren, D. Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80, 337–340 (1999).Article 

    Google Scholar 
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Rodrigo, A. Do Forest Fires Make Biotic Communities Homogeneous or Heterogeneous? Patterns of taxonomic, functional, and phylogenetic ant beta diversity at local and regional landscape scales. Front. Forests Glob. Change 3, https://doi.org/10.3389/ffgc.2020.00067 (2020).Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article 

    Google Scholar 
    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non‐random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. science 292, 281–284 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Price, T. D. Ancient farming in eastern North America. Proc. Natl Acad. Sci. USA 106, 6427–6428 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Smith, B. D. The origins of agriculture in the Americas. Evolut. Anthropol.: Issues, N., Rev. 3, 174–184 (1994).Article 

    Google Scholar 
    Olden, J. D., Poff, N. L. & McKinney, M. L. Forecasting faunal and floral homogenization associated with human population geography in North America. Biol. Conserv. 127, 261–271 (2006).Article 

    Google Scholar 
    Olden, J. D., LeRoy Poff, N., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).Article 
    PubMed 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article 

    Google Scholar 
    Toivanen, T. et al. The many Anthropocenes: a transdisciplinary challenge for the Anthropocene research. Anthropocene Rev. 4, 183–198 (2017).Article 

    Google Scholar 
    Biotic homogenization (Github, 2022).Brown, J. H. & Nicoletto, P. F. Spatial scaling of species composition: body masses of North American Land Mammals. Am. Naturalist 138, 1478–1512 (1991).Article 

    Google Scholar 
    Lyons, S. K. & Smith, F. A. In Animal body size: linking pattern and process across space, time, and taxonomic group (eds. Smith & S. Kathleen Lyons) (University of Chicago Press, 2013).Graham, R. W. & E. L. Lundelius, J. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0., 2010).Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. Roy. Stat. Soc. Ser. C. (Appl. Stat.) 57, 399–418 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2005).raster: Geographic data analysis and modeling version 3.4-10 (2021).mapdata: Extra Map Database. R package version 2.3.0. (2018).maps: Draw Geographical Maps version 3.4.0 (2021).Wickham, H. ggplot2: elegant graphics for data analysis (Springer-Verlag, 2016).Grimm, E. C., Maher, L. J. Jr & Nelson, D. M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quatern. Res 72, 301–308 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Baselga, A. & Orme, D. Package ‘betapart’. (2012).Package vegan version 2.5-7 (2012).Vavrek, M. J. fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electron. 14, 1T (2011).
    Google Scholar 
    Marschner, I. C. glm2: Fitting generalized linear models with convergence problems. R. J. 3, 12–15 (2011).Article 

    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).Article 
    PubMed 

    Google Scholar 
    Nekola, J. C. & McGill, B. J. Scale dependency in the functional form of the distance decay relationship. Ecography 37, 309–320 (2014).Article 

    Google Scholar 
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).Article 
    PubMed 

    Google Scholar 
    Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).Article 
    PubMed 

    Google Scholar 
    Calenge, C. A collection of tools for the estimation of animals home range. (2017).Ulrich, W. et al. Species richness correlates of raw and standardized co‐occurrence metrics. Glob. Ecol. Biogeogr. 27, 395–399 (2018).Article 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Newell, N. D. Adequacy of the fossil record. J. Paleontol. 33, 488–499 (1959).
    Google Scholar 
    Raup, D. M. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13, 85–91 (1979).
    Google Scholar 
    Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).Article 

    Google Scholar 
    Benton, M. J., Dunhill, A. M., Lolyd, G. T. & Marx, F. G. In Comparing the geological and fossil records: implications for biodiversity studies Vol. 358 (eds. McGowan, A. J. & A. B. Smith, A. B.) 63–94 (Geological Society of London, 2011).Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 1265–1277 (2008).Patterson, B. D. et al. Digital Distribution Maps of the Mammals of the Western Hemisphere, version 3.0. NatureServe, (Arlington, Virginia, USA, 2007).Wilson, D. E. & Reeder, D. M. Mammal species of the world:ataxonomic and geographic reference. 3rd edition. (Johns Hopkins University Press,Baltimore, Maryland, 2,142 pp 2005).Fraser, D. & Lyons, S. K. Biotic interchange has structured Western Hemisphere mammal communities. Glob. Ecol. Biogeogr. 26, 1408–1422 (2017).Article 

    Google Scholar 
    Bivand, R. & Lewin-Koh, N. J. Maptools: Tools for Reading and Handling Spatial Objects R package (2021).Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied spatial data analysis with R. (Springer, 2008).Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).Article 

    Google Scholar  More

  • in

    Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpecker

    Biere, J. M. & Uetz, G. W. Web orientation in the spider Micrathena gracilis (Araneae: Araneidae). Ecology 62(2), 336–344 (1981).Article 

    Google Scholar 
    Korb, J. & Linsenmair, K. E. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 10(3), 312–316 (1999).Article 

    Google Scholar 
    Hansell, M. H. Bird nests and construction behaviour (Cambridge University Press, 2000).Book 

    Google Scholar 
    Kawase, H., Okata, Y. & Ito, K. Role of huge geometric circular structures in the reproduction of a Marine Pufferfish. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Dawkins, R. The extended phenotype 295 (Oxford University Press, 1982).
    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. Am. Nat. 147(4), 641–648 (1996).Article 

    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the Neglected process in evolution (Princeton University Press, 2003).
    Google Scholar 
    Short, L. L. Burdens of the picid hole-excavating habit. Wilson Bull. 91(1), 16–28 (1979).
    Google Scholar 
    Wiebe, K. L., Koenig, W. D. & Martin, K. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. Ann. Zool. Fenn. 44(3), 209–217 (2007).
    Google Scholar 
    Landler, L. et al. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithol. 49(2), 257–266 (2014).Article 

    Google Scholar 
    Ojeda, V. et al. Latitude does not influence cavity entrance orientation of South American avian excavators. Auk 138(1), ukaa064 (2021).Article 

    Google Scholar 
    Wiebe, K. L. Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? Auk 118(2), 412–421 (2001).Article 

    Google Scholar 
    Schaaf, A. A. Effects of sun exposure and vegetation cover on Woodpecker nest orientation in subtropical forests of South America. J. Ethol. 38, 117–120 (2019).Article 

    Google Scholar 
    Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the acorn woodpecker. Auk 116(1), 45–54 (1999).Article 

    Google Scholar 
    Schaaf, A. A. & de la Pena, M. R. Bird nest orientation and local temperature: an analysis over three decades. Ecology 20, e03042 (2020).
    Google Scholar 
    Charter, M. et al. Does nest box location and orientation affect occupation rate and breeding success of barn owls Tyto alba in a semi-arid environment? Acta Ornithol. 45(1), 115–119 (2010).Article 

    Google Scholar 
    Butler, M. W., Whitman, B. A. & Dufty, A. M. Nest box temperature and hatching success of American kestrels varies with nest box orientation. Wilson J. Ornithol. 121(4), 778–782 (2009).Article 

    Google Scholar 
    Goodenough, A. E. et al. Nestbox orientation: a species-specific influence on occupation and breeding success in woodland passerines. Bird Study 55(2), 222–232 (2008).Article 

    Google Scholar 
    Viñuela, J. & Sunyer, C. Nest orientation and hatching success of black kites milvus migrans in Spain. Ibis 134(4), 340–345 (1992).Article 

    Google Scholar 
    Larson, E. R. et al. How does nest box temperature affect nestling growth rate and breeding success in a parrot?. Emu 115(3), 247–255 (2015).Article 

    Google Scholar 
    Austin, G. T. Nesting success of the cactus wren in relation to nest orientation. Condor 76(2), 216–217 (1974).Article 

    Google Scholar 
    Verbeek, N. A. Nesting success and orientation of water pipit Anthus spinoletta nests. Ornis Scand. 25, 37–39 (1981).Article 

    Google Scholar 
    Conner, R. N. & Rudolph, D. C. Excavation dynamics and use patterns of red-cockaded woodpecker cavities: relationships with cooperative breeding. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX, 1995: 343–352.Harding, S. R. & Walters, J. R. Dynamics of cavity excavation by red-cockaded woodpeckers. In Red-Cockaded Woodpecker: Road to Recovery (eds Costa, R. & Daniels, S.) 412–422 (Hancock House, 2004).
    Google Scholar 
    Harding, S. R. & Walters, J. R. Processes regulating the population dynamics of red-cockaded woodpecker cavities. J. Wildl. Manage. 66(4), 1083–1095 (2002).Article 

    Google Scholar 
    Dennis, J. V. The yellow-shafted flicker (Colaptes Auratus) on Nantucket Island, Massachusetts. Bird Banding 40(4), 290–308 (1969).Article 

    Google Scholar 
    Baker, W. W. Progress report on life history studies of the red-cockaded woodpecker at Tall Timbers Research Station. Ecology and Management of the Redcockaded Woodpecker 44–59 (US Bureau of Sport Fisheries and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Dennis, J. V. Species using red-cockaded woodpecker holes in Northeastern South Carolina. Bird-Banding 42(2), 79–87 (1971).Article 

    Google Scholar 
    Conner, R. N. et al. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production. Auk 115(2), 447–454 (1998).Article 

    Google Scholar 
    Conner, R. N. Orientation of entrances to woodpecker nest cavities. Auk 92(2), 371–374 (1975).Article 

    Google Scholar 
    Copeyon, C. K., Walters, J. R. & Carter, J. III. Induction of red-cockaded woodpecker group formation by artificial cavity construction. J. Wildl. Manage. 55(4), 549–556 (1991).Article 

    Google Scholar 
    Locke, B. A. & Conner, R. N. A statistical analysis of the orientation of entrances to redcockaded woodpecker cavities. In Red-Cockaded Woodpecker Symposium II (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Lay, D. W., Red-cockaded woodpecker study. Texas Parks and Wildlife Department. Project W-80-R-16. 1973. p. 33.Jones, H. K. & Ott, F. T. Some characteristics of red-cockaded woodpecker cavity trees in Georgia. Oriole 38, 33–39 (1973).
    Google Scholar 
    Hopkins, M. L. & Lynn, T. E. Jr. Some characteristics of red-cockaded woodpecker cavity trees and management implications in South Carolina. Ecology and Management of The Red-Cockaded Woodpecker 140–169 (US Bureau of Sport Fishing and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Wood, D. A. Foraging and colony habitat characteristics of the red-cockaded woodpecker in Oklahoma. In Red-Cockaded Woodpecker Symposium II 51–58 (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Kalisz, P. J. & Boettcher, S. E. Active and abandoned red-cockaded woodpecker habitat in Kentucky. J. Wildl. Manage. 25, 146–154 (1991).Article 

    Google Scholar 
    Walters, J. R., Doerr, P. D. & J. H. Carter, III. The cooperative breeding system of the red cockaded woodpecker. Ethology 78, 275–305 (1988).Article 

    Google Scholar 
    Batschelet, E. Circular statistics in biology (Academic Press, 1981).MATH 

    Google Scholar 
    Agostinelli, C. & U. Lund, R package “circular”: circular statistics. R package version 0.4-7. https://r-forge.r-project.org/projects/circular (2013).Hijmans, R. J. & Etten, J. V. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12 (2012).R Development Core Team R. A language and environment for statistical computing (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19 (2007).Article 

    Google Scholar 
    Cox, N. J. Speaking Stata: In praise of trigonometric predictors. Stand. Genomic Sci. 6(4), 561–579 (2006).
    Google Scholar 
    Smith, J. A. et al. How effective is the Safe Harbor program for the conservation of Red-cockaded Woodpeckers? Condor Ornithol. Appl. 120(1), 223–233 (2018).
    Google Scholar 
    Zuur, A. et al. Mixed effects models and extensions in ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Bates, D., et al., lme4: Linear mixed-effects models using Eigen and S4. 2014: http://CRAN.R-project.org/package=lme4.Conner, R. N., Rudolph, D. C. & Walters, J. R. The red-cockaded woodpecker: surviving in a fire-maintained ecosystem (University of Texas Press, 2001).Book 

    Google Scholar 
    Rudolph, D. C., Kyle, H. & Conner, R. N. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. Wilson Bull. 102(1), 14–22 (1990).
    Google Scholar 
    Conner, R. N. The effect of tree hardness on woodpecker nest entrance orientation. Auk 94(2), 369–370 (1977).Article 

    Google Scholar 
    Jackson, J. A. & Jackson, B. J. Ecological relationships between fungi and woodpecker cavity sites. Condor 106(1), 37–49 (2004).Article 

    Google Scholar 
    Jusino, M. A. et al. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc. R. Soc. B Biol. Sci. 2016(283), 20160106 (1827).
    Google Scholar 
    Losin, N. et al. Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. Condor 108(3), 706–710 (2006).Article 

    Google Scholar 
    Williamson, L., Garcia, V. & Walters, J. R. Life history trait differences in isolated populations of the endangered Red-cockaded Woodpecker. Ornis Hungar. 24(1), 55–68 (2016).Article 

    Google Scholar 
    DeMay, S. M. & Walters, J. R. Variable effects of a changing climate on lay dates and productivity across the range of the Red-cockaded Woodpecker. Condor 20, 20 (2019).
    Google Scholar 
    Garcia, V. Lifetime fitness and changing life history traits in red-cockaded woodpeckers (Virginia Tech, 2014).
    Google Scholar 
    Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17(10), 1211–1218 (2014).PubMed 
    Article 

    Google Scholar 
    Helbig, A. J. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE-and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1), 9–12 (1991).Article 

    Google Scholar  More

  • in

    Phycosphere pH of unicellular nano- and micro- phytoplankton cells and consequences for iron speciation

    Phycosphere pH of single phytoplankton cellsThe pH in the phycosphere of a single cell Chlamydomonas concordia (~5 µm diameter) exposed to 140 μmol photons m−2 s−1 was 8.27 ± 0.01 (179 measurements), while the pH of bulk seawater was 8.01 ± 0.01 (160 measurements) (Fig. 1c). The observed pH variation near the cell surface was 150 µmol m−2 s−1 [33]. At light intensities More

  • in

    Biophysical impacts of northern vegetation changes on seasonal warming patterns

    Coupled model experiments for detecting vegetation-climate feedbackWe quantified changes of near-surface (2-m) air temperature (Ta) in response to the observed NH greening for all active growing seasons during 1982–2014 using IPSL-CM. We defined the three growing seasons (spring, summer, and autumn) across the entire NH domain as periods of March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. For each season, a pair of transient numerical experiments was performed by modifying LAI: a dynamic vegetation experiment (SCE) forced by annually and seasonally varying LAI from satellite observations36, and three seasonal control experiments (({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{MAM}}}}}}}), ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{JJA}}}}}}}), and ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{SON}}}}}}}) for MAM, JJA, and SON, respectively) forced by annually varying LAI for all seasons, except in the season of interest when the LAI was fixed to the climatological conditions observed during 1982–2014 (Fig. S1). For all experiments, other boundary conditions, including sea surface temperature (SST), sea ice fraction (SIC), and atmospheric CO2 concentrations, were kept consistent (Methods). Therefore, differences between SCE and the control experiments characterized the effects of the observed LAI changes on Ta (hereafter denoted as ΔTa), both intra- and inter-seasonally. Multimember paired ensembles were generated for each coupled model experiment by performing 30 repeated runs but with different initial conditions (see Methods).The capacity of the IPSL-CM GCM for simulating the seasonal variations and spatial patterns of Ta was assessed by comparing the SCE simulation results with the observation-based Ta data (Methods). Throughout most of the growing season (May to October), the SCE simulation well reproduced the increasing trend and interannual variability of the NH land mean Ta observed during 1982–2014 (Fig. S2). Observational data showed that the strongest NH warming occurred in early spring (March and April) and late autumn (November). However, the SCE simulation failed to capture the exceptionally strong warming during the transitional seasons, leading to the underestimation of the annual mean warming trend (SCE: 0.237 ± 0.024 °C decade−1; observed: 0.362 ± 0.048 °C decade−1). This underestimation stemmed from a negative bias in the increase of downwelling shortwave radiation, possibly due to an absence of short-lived forcing and bias in the cloud systems37. Overall, the SCE reproduced the geographical patterns of seasonal warming reasonably well (Fig. S3), which strengthened our confidence in the model projections. Notably, it successfully captured the observed amplified warming over pan-arctic and semi-arid regions, as well as the few cases of regional cooling, such as that over northwestern North America during MAM (Fig. S3).Intra-seasonal temperature responses to NH LAI changesFor the period from 1982 to 2014, satellite-retrieved LAI showed statistically significant increasing trends (p  0.1), strong and significant JJA cooling (−0.044 ± 0.008 °C decade−1, p  0.1) (intra-seasonal feedbacks shown in Fig. 1b). The LAI-induced JJA Ta trend was equivalent to cooling of −0.15 ± 0.03 °C in JJA over the study period, offsetting the overall SCE-simulated near-surface air warming over this period by ~12.5%. This strong JJA cooling was further supported by a significant negative correlation (r = −0.64, p  0.1) or SON (r = 0.07, p  > 0.1) (Fig. S4a, c), during which the LAI-induced changes accounted for only 1.3% (MAM) and −3.2% (SON) of the concurrent greenhouse warming. We also verified the robustness of our results by performing equilibrium experiments with an independent model, the NCAR Community Atmosphere Model coupled with Community Land Model (CAM-CLM, Methods). Indeed, this model generated a similarly strong LAI-induced cooling in JJA (−0.18 °C, p  0.1) and SON (−0.05 °C, p  > 0.1) (Fig. S5).Fig. 1: Intra- and inter-seasonal temperature responses to leaf area index (LAI) changes.a Monthly trends (shadings) of Northern Hemisphere (NH) mean LAI during 1982–2014 used as input to the seasonal simulations. The dashed curve and transparent bars indicate trends of monthly LAI and seasonally aggregated LAI values, respectively. b Linear trends of Ta driven by LAI changes within the same season (intra-seasonal) and other growing seasons (inter-seasonal). Error bars in a, b indicate uncertainty ranges [1 – standard deviation (SD)]. c Monthly trends of LAI-induced air temperature changes (ΔTa), with red and blue shadings representing positive and negative trends, respectively. The bottom panel shows the overall ΔTa trends induced by LAI changes in all growing seasons, calculated as the sum of ΔTa trends from the three seasonal runs shown separately in the above panels. ***p  More