More stories

  • in

    Mangrove forests are facing challenges from global seawater density changes

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Van der Stocken, T. et al. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01391-9 (2022). More

  • in

    Lichen speciation is sparked by a substrate requirement shift and reproduction mode differentiation

    Printzen, C. & Lumbsch, H. T. Molecular evidence for the diversification of extant lichens in the late cretaceous and tertiary. Mol. Phylogenet. Evol. 17, 379–387 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraichak, E. et al. A Tale of two Hyper-diversities: Diversification dynamics of the two largest families of lichenized fungi. Sci. Rep. https://doi.org/10.1038/srep100288 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & Clair, L. L. S. Pleistocene speciation in North American lichenized fungi and the the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8, e85240 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gaya, E. et al. The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and bark-to-rock substrate shift. PNAS 112, 11600–11605 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: Lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Widhelm, T. J. et al. Oligocene origin and drivers for diversification in the genus Sticta (Lobariaceae, Ascomycota). Mol. Phylogenetic Evol. 126, 58–73 (2018).Article 

    Google Scholar 
    Vamosi, J. C. & Vamosi, S. M. Factors influencing diversification in angiosperms: At the crossroads of intrinsic and extrinsic traits. Am. J. Bot. 98, 460–471 (2011).PubMed 
    Article 

    Google Scholar 
    Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Karunarathne, P. et al. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann. Bot. 121, 1183–1196 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakov, T., Beaulieu, J. & Alverson, A. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytol. 219, 462–473 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tripp, E. A. Is asexual reproduction an evolutionary dead end in lichens?. Lichenologist 48, 559–580 (2016).Article 

    Google Scholar 
    Tripp, E. A. & Lendemer, J. C. Twenty-seven modes of reproduction in the obligate lichen symbiosis. Brittonia 70, 1–14 (2018).Article 

    Google Scholar 
    Bowler, P. A. & Rundell, P. W. Reproductive strategies in lichens. Bot. J. Linn. Soc. 70, 325–340 (1975).Article 

    Google Scholar 
    Honegger, R. Developmental biology of lichens. New Phytol. 125, 659–677 (1993).PubMed 
    Article 

    Google Scholar 
    Buschbom, J. & Mueller, G. M. Testing “Species Pair” hypotheses: Evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol. Biol. Evol. 23, 574–586. https://doi.org/10.1093/molbev/msj063 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, Thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).PubMed 
    Article 

    Google Scholar 
    Poelt, J. Flechtenflora und eiszeit in Europa. Phyton (Horn) 10, 206–214 (1963).
    Google Scholar 
    Stofer, S. et al. Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38, 331–353 (2006).Article 

    Google Scholar 
    Ludwig, L. R., Summerfield, T. C., Lord, J. M. & Singh, G. Characterization of the mating-type locus (MAT) reveals a heterothallic mating system in Knightiella splachnirima. Lichenologist 49, 373–385 (2017).Article 

    Google Scholar 
    Czarnota, P. The lichen genus Micarea (Lecanorales, Ascomycota) in Poland. Pol. Bot. Stud. 23, 1–190 (2007).
    Google Scholar 
    Czarnota, P. & Guzow-Krzemińska, B. A phylogenetic study of the Micarea prasina group shows that Micarea micrococca includes three distinct lineages. Lichenologist 42, 7–21 (2010).Article 

    Google Scholar 
    Sérusiaux, E., Brand, A. M., Motiejūnaitè, J., Orange, A. & Coppins, B. J. Lecidea doliiformis belongs to Micarea, Catillaria alba to Biatora and Biatora lignimollis occurs in Western Europe. Bryologist 113, 333–344 (2010).Article 

    Google Scholar 
    van den Boom, P., Brand, A., Coppins, B. & Sérusiaux, E. Two new species in the Micarea prasina group from Western Europe. Lichenologist 49, 13–25 (2017).Article 

    Google Scholar 
    Guzow-Krzemińska, B., Czarnota, P., Łubek, A. & Kukwa, M. Micarea soralifera sp. nov., a new sorediate species in the M. prasina group. Lichenologist 48, 161–169 (2016).Article 

    Google Scholar 
    Guzow-Krzemińska, B. et al. Understanding the evolution of phenotypical characters in the Micarea prasina group (Pilocarpaceae) and descriptions of six new species within the group. MycoKeys 57, 1–30 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kantvilas, G. & Coppins, B. J. Studies on Micarea in Australasia II. A synopsis of the genus in Tasmania, with the description of ten new species. Lichenologist 51, 431–481 (2019).Article 

    Google Scholar 
    Launis, A. & Myllys, L. Micarea fennica, a new lignicolous lichen species from Finland. Phytotaxa 409, 179–188 (2019).Article 

    Google Scholar 
    Launis, A., Pykälä, J., van den Boom, P., Sérusiaux, E. & Myllys, L. Four new epiphytic species in the Micarea prasina group from Europe. Lichenologist 51, 7–25 (2019).Article 

    Google Scholar 
    Launis, A. et al. Sharpening species boundaries in the Micarea prasina group, with a new circumscription of the type species M. prasina. Mycologia 111, 574–592 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    van den Boom, P., Guzow-Krzemińska, B. & Kukwa, M. Two new Micarea species (Pilocarpaceae) from Western Europe. Plant Fungal Syst. 65, 189–199. https://doi.org/10.35535/pfsyst-2020-0014 (2020).Article 

    Google Scholar 
    Kantelinen, A., Hyvärinen, M., Kirika, P. & Myllys, L. Four new Micarea species from the montane cloud forests of Taita Hills, Kenya. Lichenologist 53, 81–94. https://doi.org/10.1017/S0024282920000511 (2021).Article 

    Google Scholar 
    Coppins, B. J. A taxonomic study of the lichen genus Micarea in Europe. Bull. Br. Mus. (Nat. Hist.) Bot. 11, 17–214 (1983).
    Google Scholar 
    Launis, A. & Myllys, L. Micarea byssacea new to North America and Micarea hedlundii new to Maine, Michigan and Quebec. Opusc. Philolichenum 13, 84–90 (2014).
    Google Scholar 
    Myllys, L. & Launis, A. Additions to the diversity of lichens and lichenicolous fungi living on decaying wood in Finland. Graphis Scr. 30, 78–87 (2018).
    Google Scholar 
    Yahr, R., Florence, A., Škaloud, P. & Voytsekhovich, A. Molecular and morphological diversity in photobionts associated with Micarea s. str. (Lecanorales, Ascomycota). Lichenologist 47, 403–414 (2015).Article 

    Google Scholar 
    Spribille, T., Thor, G., Bunnell, F. L., Goward, T. & Björk, C. R. Lichens on dead wood: Species-substrate relationships in the epiphytic lichen floras of the Pacific Northwest and Fennoscandia. Ecography 31, 741–750 (2008).Article 

    Google Scholar 
    Resl, P., Fernańdez-Mendoza, F., Mayrhofer, H. & Spribille, T. The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc. R. Soc. B 285, 20180640. https://doi.org/10.1098/rspb.2018.0640 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood 412 (Cambridge University Press, Cambridge, 2012).Book 

    Google Scholar 
    Russell, M. B., Woodall, C. W., Fraver, S. & D’Amato, A. W. Estimates of downed woody debris decay class transitions for forests across the eastern United States. Ecol. Model. 251, 22–31 (2013).Article 

    Google Scholar 
    Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US Forests. Ecosystems 17, 765–777 (2014).CAS 
    Article 

    Google Scholar 
    Zoller, S., Lutzoni, F. & Scheidegger, C. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol. Ecol. 8, 2049–2059 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Honegger, R., Zippler, U., Gansner, H. & Scherrer, S. Mating systems in the genus Xanthoria (lichen forming Ascomycetes). Mycol. Res. 108, 480–488 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Honegger, R. & Zippler, U. Mating systems in representatives of the Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycol. Res. 11, 424–432 (2007).Article 
    CAS 

    Google Scholar 
    Ament-Velásquez, S. L. et al. The plot thickens: Haploid and triploid-like thalli, hybridization, and biased mating Type Ratios in Letharia. Front. Fungal Biol. 2, 656386. https://doi.org/10.3389/ffunb.2021.656386 (2021).Article 

    Google Scholar 
    van den Boom, P. & Coppins, B. J. Micarea viridileprosa sp. nov., an overlooked lichen species from Western Europe. Lichenologist 33, 87–91 (2001).Article 

    Google Scholar 
    Simon, J.-C., Rispe, C. & Sunnucks, P. Ecology and evolution of sex in aphids. Trends Ecol. Evol. 17, 34–39 (2002).Article 

    Google Scholar 
    Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169, 157–168 (2008).Article 

    Google Scholar 
    Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700. https://doi.org/10.1111/J.1558-5646.2012.01715.X (2012).Article 
    PubMed 

    Google Scholar 
    Dańko, A., Schaible, R. & Dańko, M. J. Salinity effects on survival and reproduction of hydrozoan Eleutheria dichotoma. Estuaries Coasts 43, 360–374. https://doi.org/10.1007/s12237-019-00675-2 (2020).CAS 
    Article 

    Google Scholar 
    Coppins, B. J. & Tønsberg, T. A new xanthone-containing Micarea from Northwest Europe and the Pacific Northwest of North America. Lichenologist 33, 93–96 (2001).Article 

    Google Scholar 
    Konoreva, L., Chesnokov, S., Kuznetsova, E. & Stepanchikova, I. Remarkable records of Micarea from the Russian Far East and significant extension of Micarea laeta and M. microareolata range. Botanica 25, 186–201 (2019).Article 

    Google Scholar 
    Weber, L., Printzen, C., Bässler, C. & Kantelinen, A. Seven Micarea (Pilocarpaceae) species new to Germany and notes on deficiently known species in the Bavarian forest. Herzogia 34, 5–17 (2021).Article 

    Google Scholar 
    van den Boom, P. Some interesting records of lichens and lichenicolous fungi from The Netherlands VI. Osten. Z. Pilzk. 12 (2003).Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens 101 (British Lichen Society, London, 2010).
    Google Scholar 
    Meyer, B. & Printzen, C. Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32, 571–583 (2000).Article 

    Google Scholar 
    Culberson, C. F. & Kristinsson, H. D. A standardized method for the identification of lichen products. J. Chromatocraphy A 46, 85–93 (1970).CAS 
    Article 

    Google Scholar 
    Myllys, L. et al. Phylogeny of the genus Bryoria. Lichenologist 43, 617–638 (2011).Article 

    Google Scholar 
    Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. Sequence insertion and ITS data provide congruent information in Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Mol. Phylogenetics Evol. 12, 295–309 (1999).CAS 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to the Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
    Google Scholar 
    Zoller, S., Scheidegger, C. & Sperisen, C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511–516 (1999).Article 

    Google Scholar 
    Leavitt, S. D., Johnson, L. A., Goward, T. & Clair, L. L. S. Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol. Phylogenetics Evol. 60(3), 317–332 (2011).Article 

    Google Scholar 
    Schmitt, I. et al. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23, 35–40 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kauff, F. & Lutzoni, F. Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): Among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol. Phylogenet. Evol. 25, 138–156 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump markov chain monte carlo. Mol. Biol. Evol. 21, 1123–1133. https://doi.org/10.1093/molbev/msh123 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior Summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maddison, D. R. & Maddison, W. P. Mesquite: a modular system for evolutionary analysis. Version 3.40 http://mesquiteproject.org (2018).Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. B. 255, 37–45 (1994).ADS 
    Article 

    Google Scholar  More

  • in

    Carbon fixation rates in groundwater similar to those in oligotrophic marine systems

    Falkowski, P. et al. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000).Article 

    Google Scholar 
    McMahon, S. & Parnell, J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87, 113–120 (2014).Article 

    Google Scholar 
    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).Article 

    Google Scholar 
    Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).Article 

    Google Scholar 
    Stevanović, Z. Karst waters in potable water supply: a global scale overview. Environ. Earth Sci. 78, 662 (2019).Article 

    Google Scholar 
    Poulson, T. L. & White, W. B. The cave environment. Science 165, 971–981 (1969).Article 

    Google Scholar 
    Rusterholtz, K. J. & Mallory, L. M. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb. Ecol. 28, 79–99 (1994).Article 

    Google Scholar 
    Smith, H. J. et al. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol. Ecol. 94, fiy191 (2018).
    Google Scholar 
    Alexander, M. Introduction to Soil Microbiology (Wiley, 1977).Griebler, C. & Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649–677 (2009).Article 

    Google Scholar 
    Krumholz, L. R., McKinley, J. P., Ulrich, G. A. & Suflita, J. M. Confined subsurface microbial communities in Cretaceous rock. Nature 386, 64–66 (1997).Article 

    Google Scholar 
    Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).Article 

    Google Scholar 
    Magnabosco, C. et al. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J. 10, 730–741 (2016).Article 

    Google Scholar 
    Stevens, T. O. & McKinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–455 (1995).Article 

    Google Scholar 
    Tiago, I. & Veríssimo, A. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ. Microbiol. 15, 1687–1706 (2013).Article 

    Google Scholar 
    Mccollom, T. M. & Amend, J. P. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3, 135–144 (2005).Article 

    Google Scholar 
    Momper, L., Jungbluth, S. P., Lee, M. D. & Amend, J. P. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 11, 2319–2333 (2017).Article 

    Google Scholar 
    Jewell, T. N. M., Karaoz, U., Brodie, E. L., Williams, K. H. & Beller, H. R. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. ISME J. 10, 2106–2117 (2016).Article 

    Google Scholar 
    Herrmann, M., Rusznyák, A. & Akob, D. M. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl. Environ. Microbiol. 81, 2384–2394 (2015).Peterson, B. J. Aquatic primary productivity and the 14C–CO2 method: a history of the productivity problem. Annu. Rev. Ecol. Syst. 11, 359–385 (1980).Article 

    Google Scholar 
    Viviani, D. A., Karl, D. M. & Church, M. J. Variability in photosynthetic production of dissolved and particulate organic carbon in the North Pacific Subtropical Gyre. Front. Mar. Sci. 2, 73 (2015).Article 

    Google Scholar 
    Kohlhepp, B. et al. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany. Hydrol. Earth Syst. Sci. 21, 6091–6116 (2017).Article 

    Google Scholar 
    Pedersen, K. & Ekendahl, S. Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb. Ecol. 23, 1–14 (1992).Article 

    Google Scholar 
    Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Ann. Rev. Mar. Sci. 2, 305–331 (2010).Article 

    Google Scholar 
    Karl, D. M., Hebel, D. V., Björkman, K. & Letelier, R. M. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol. Oceanogr. 43, 1270–1286 (1998).Article 

    Google Scholar 
    Liang, Y. et al. Estimating primary production of picophytoplankton using the carbon-based ocean productivity model: a preliminary study. Front. Microbiol. 8, 1926 (2017).Article 

    Google Scholar 
    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. 2 48, 1405–1447 (2001).Article 

    Google Scholar 
    Gundersen, K., Orcutt, K. M., Purdie, D. A., Michaels, A. F. & Knap, A. H. Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res. 2 48, 1697–1718 (2001).Article 

    Google Scholar 
    Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res. 2 43, 129–156 (1996).Article 

    Google Scholar 
    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 1, 140048 (2014).Article 

    Google Scholar 
    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Data from: Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Dryad https://doi.org/10.5061/dryad.d702p (2015).Schwab, V. F. et al. 14C-free carbon Is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers. Water Resour. Res. 55, 2104–2121 (2019).Article 

    Google Scholar 
    Taubert, M. et al. Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater. ISME J 16, 1153–1162 (2022).Article 

    Google Scholar 
    Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880 (2003).Article 

    Google Scholar 
    Lin, W. et al. Genomic insights into the uncultured genus “Candidatus Magnetobacterium” in the phylum Nitrospirae. ISME J. 8, 2463–2477 (2014).Article 

    Google Scholar 
    Kato, S. et al. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ. Microbiol. 20, 862–877 (2018).Article 

    Google Scholar 
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).Article 

    Google Scholar 
    Kojima, H., Watanabe, T. & Fukui, M. Sulfuricaulis limicola gen. nov., sp. nov., a sulfur oxidizer isolated from a lake. Int. J. Syst. Evol. Microbiol. 66, 266–270 (2016).Article 

    Google Scholar 
    Strous, M., Van Gerven, E., Kuenen, J. G. & Jetten, M. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl. Environ. Microbiol. 63, 2446–2448 (1997).Article 

    Google Scholar 
    Ji, X., Wu, Z., Sung, S. & Lee, P.-H. Metagenomics and metatranscriptomics analyses reveal oxygen detoxification and mixotrophic potentials of an enriched anammox culture in a continuous stirred-tank reactor. Water Res. 166, 115039 (2019).Article 

    Google Scholar 
    Dalsgaard, T. et al. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. mBio 5, e01966 (2014).Article 

    Google Scholar 
    Smith, R. L., Böhlke, J. K., Song, B. & Tobias, C. R. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. Environ. Sci. Technol. 49, 12169–12177 (2015).Article 

    Google Scholar 
    Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998).Article 

    Google Scholar 
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).Article 

    Google Scholar 
    Rittmann, B. E. & McCarty, P. L. Environmental Biotechnology: Principles and Applications (McGraw-Hill Education, 2001).Zhang, Y. et al. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proc. Natl. Acad. Sci. USA 117, 4823–4830 (2020).Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).Article 

    Google Scholar 
    Lehmann, R. & Totsche, K. U. Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. J. Hydrol. 580, 124291 (2020).Article 

    Google Scholar 
    Küsel, K. et al. How deep can surface signals be traced in the Critical Zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Front. Earth Sci. 4, 32 (2016).Article 

    Google Scholar 
    Yan, L. et al. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. 170, 115341 (2019).Article 

    Google Scholar 
    Pack, M. A. et al. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry: methane oxidation rates by AMS. Limnol. Oceanogr. Methods 9, 245–260 (2011).Article 

    Google Scholar 
    Nielsen, E. S. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).Article 

    Google Scholar 
    Xu, X. et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl. Instrum. Methods Phys. Res. B 259, 320–329 (2007).Article 

    Google Scholar 
    Merser, S. Acetabulum online interactive statistical calculators. Accessed Feb, 2021. https://acetabulum.dk/anova.htmlBermuda Oceanographic Timeseries, accessed 21 Oct 2020, http://batsftp.bios.edu/BATS/production/bats_primary_production.txtHawaiian Oceanographic Timeseries, accessed 21 Oct 2020, ftp://ftp.soest.hawaii.edu/hot/primary_productionHawaiian Oceanographic Timeseries, accessed 21 Oct 2020, https://hahana.soest.hawaii.edu/FTP/hot/microscopy/EPIslides.txtKumar, S. et al. Nitrogen loss from pristine carbonate-rock aquifers of the Hainich Critical Zone Exploratory (Germany) is primarily driven by chemolithoautotrophic anammox processes. Front. Microbiol. 8, 1951 (2017).Article 

    Google Scholar 
    Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209 (2012).Article 

    Google Scholar 
    McIlvin, M. R. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005).Article 

    Google Scholar 
    Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).Article 

    Google Scholar 
    Thamdrup, B. et al. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr. 51, 2145–2156 (2006).Article 

    Google Scholar 
    Taubert, M. et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ. Microbiol. 20, 369–384 (2018).Article 

    Google Scholar 
    Bushnell, B. BBMap (SourceForge, 2014); http://sourceforge.net/projects/bbmapBornemann, T. L. V. et al. Geological degassing enhances microbial metabolism in the continental subsurface. Preprint at bioRxiv https://doi.org/10.1101/2020.03.07.980714 (2020).Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).Article 

    Google Scholar 
    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).Article 

    Google Scholar 
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).Article 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).Article 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).Article 

    Google Scholar 
    Murat Eren, A. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).Article 

    Google Scholar 
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).Article 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 

    Google Scholar 
    Pelikan, C. et al. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Environ. Microbiol. 18, 2994–3009 (2016).Article 

    Google Scholar 
    Lücker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of Nitrospina gracilis Illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).Article 

    Google Scholar 
    Orellana, L. H., Rodriguez-R, L. M. & Konstantinidis, K. T. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 45, e14 (2017).
    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).
    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0501-8 (2020).Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010).Article 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 

    Google Scholar 
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).Article 

    Google Scholar 
    Emiola, A. & Oh, J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat. Commun. 9, 4956 (2018).Article 

    Google Scholar 
    Wegner, C.-E. et al. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl. Environ. Microbiol. 85, e02346-18 (2019).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Core Team, 2018).RStudio: Integrated Development Environment for R (RStudio Team, 2016).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer (2014). More

  • in

    A sandponics comparative study investigating different sand media based integrated aqua vegeculture systems using desalinated water

    Study siteThe study was conducted at the Center for Applied Research on the Environment and Sustainability (CARES) at The American University in Cairo, New Cairo, Egypt (30°01′11.7″N 31°29′59.8″E) from 12/Nov/2019 until 31st/March/2020. The experiment was carried out in a greenhouse-controlled environment with temperatures ranging from 18 to 23 °C and relative humidity between 60 and 70% during the growing period.Experimental designThe proposed design starts by treating brackish water using RO membrane separation technology, powered by an on-grid 10 kW photovoltaic solar panel as shown in Fig. 1. The permeate (freshwater) from the RO facility is directed to the aquaculture units of capacity of 1 m3, where the fish effluents are used as irrigation water and as the sole source of fertilizers for the crops.Figure 1Schematic Integrated model design. T1 Deep water culture system without sand, T2 Sandponics system with sand from October, T3 Sandponics system with sand from Beni suef, T4 Sandponics system with sand from Fayoum.Full size imageThe study followed a completely randomized design with four variants, i.e., an aquaponic deep-water culture system (T1) and three sandponics systems (T2–T4). The three sandponics systems were established with different sand collected from different sand locations in Egypt during the period between September and October 2019.Initially, an exploratory field trip was set to six different locations in Egypt to collect sand samples for lab analysis aimed at sourcing the most suitable sand for the system under study with regards to both the physical and chemical parameters. These areas include Ismailia Governorate; 30°34′55.2″N 31°50′08.1″E, 6th October governorate; 29°54′49.8″N 31°05′51.5″E, Benu Suef governorate; 28°53′18.4″N 30°45′12.9″E, Al-Minya governorate; 28.725799, 30.630305, and two sites from Fayoum governorate; 29°05′07.4″N 30°49′39.9″E.From the six locations in Egypt, preliminary sand analysis was carried out, and sand samples were also collected for both physical and chemical lab analysis at the Soil and Water Lab at the Agricultural Research Center in Dokki, Egypt. Following a thorough technical, field, mechanical, and lab chemical evaluation of the six sand samples from six locations, three sand locations/types were selected for experimentation that seemed fit and suitable for the current study. The criteria parameters for the shortlisting of sand included water retention potential of the sand by the percolation process, testing the carbonates level in the soil, the turbidity of the sand, porosity percentage and drainage potential of the sand. The three locations included 6th October (T2), Benu Suef (T3), and Fayoum site 2 (T4). In the second week of November 2019, ten cubic meter tracks of sand from the three above locations were set to collect sand from these areas to the research facility at CARES where the experiment was carried out.The study was carried out with two systems/setups, i.e., an aquaponic Deep Water Culture (DWC) and SP systems. The DWC model comprises a 1 m3 fish tank, a settlement tank, a mechanical filter, a biological filter, three grow beds, and a drainage tank. This system being the most practiced aquaponics technique was considered as the control. Fish effluent water flowed from the fish tank to the settlement tank to filter big solid wastes through the mechanical filter to remove the smaller solid wastes and the biological filter for the nitrification process. Then filtered water continues to the grow beds, where overflow drains into the drainage tank and back to the fish tank in a closed system.On the other hand, the variable in the three IAVS systems is the sand source. This system comprises three independent set-ups: a 1 m3 fish tank, three grow beds, and a drainage tank. Fish effluents flowed from the fish tank directly to the sand grow beds where water was supplied through irrigation drip lines using diaghram emitters connected with valves to ensure uniformity of water application to each grow bed.All the fish tanks were installed with the same fish stock size of 30 Nile tilapia (Oreochromis niloticus) from an existing fish stock at the research center with an average initial weight of 244 g and the same amount of water, initially 850L per tank. The fish was sourced from an already existing aquaponics system at the research center to avoid any transportation stress effects and related shocks on the small fish, leading to a lot of mortality cases. The fish were fed 3–4 times daily with commercial pellets containing 30% proteins, 5% crude lipid, 6% crude fiber, 13% Ash, and 9% moisture content supplied by Skretting Egypt. The feeding pattern and frequency were according to the fish body biomass percentage of 2–3% depending on the growth stage and upon reaching satiation.DesalinationThe experiment was entirely run with desalinated water produced from a desalination facility at the center. The desalination technology used was Reverse Osmosis (RO); in batch mode; using a Sea Water Pump with Energy Recovery Unit (model Danfoss-APP1.0/APM1.2). The RO membrane used is Hydraunatic SWC5-4040, from Lenntech company with an average salt rejection of 99.7%. Three modules were connected in a series arrangement (3 Pressure Vessels each equipped with a single module). Synthesized brackish water was prepared by dissolving industrial grade sodium chloride (sea salt) from El-Arish Governorate, Egypt. The salt chemical properties are presented in Table 1. Feedwater salinity was 10 mg/L, with an equivalent osmotic pressure equal to 8.61 bars. The osmotic pressure was calculated using Van’t Hoff relation. Permeate Total Dissolved Solids (TDS) was 192 mg/L, and brine TDS was 13.1 g/L as shown in Table 2.Table 1 Chemical properties of the used salt.Full size tableTable 2 Chemical properties of water samples used.Full size tableThe average pure water flux is 9.5 LMH and was calculated by dividing the permeate volume by the product of membrane surface area and time. Each batch run produced around 4 m3 of permeate, which was enough to irrigate the designated plant beds. The estimated average permeate recovery for the RO process is 22% and salt rejection exceeded 98.7%. The differential pressure between membrane inlet and outlet was equal to 1 bar, where membrane inlet pressure was 16 bars, and the outlet was 15 bars. The RO process operated at an average transmembrane pressure equal to 16 bars and an average permeate and brine flow rates equivalent to 3.49 and 12.41 Lpm, respectively. All experiment runs were performed at 25 °C.Plant materials and cultivation practiceSwiss chard bright lights (Beta vulgaris subsp. cicia) seeds were imported from Seed kingdom seed company in the USA. Seeds were sown in ¼ inch holes in a seed starting mix containing perlite and vermiculite and irrigated with a hand mist sprayer daily to keep the growing media always moist. Sowing was done on the 12th of November 2019, and seedlings were transplanted when they were 40 days old. Seedlings were transplanted into raised grow beds made of fiberglass material measuring 1.8 × 1.2 × 0.6 m for each of the four systems. The beds were raised off the ground by 0.5 m to allow drainage water from the bed to be collected and circulated back to the fish tank. Each bed was constructed with a drainage pipe at the bottom covered with a mesh net to prevent water blockage by the sand. Also, a 5 cm layer of small gravel was uniformly laid at the bottom of the beds to facilitate drainage, followed by sand with a height of 50 cm.In the IAVS systems, plants were irrigated using manually punched diaphragm emitters, and the irrigation flow rate was controlled using small plastic valves at the start of every irrigation tube. Emitters were installed in drip tubing at a 30 cm distance as well the tubing lines were also placed 30 cm between each other. Seedlings were transplanted 5 cm away from the emitters at 30 cm between rows and 30 cm within the row. Since the water was pumped with submersible pumps to the grow beds, regulatory pressure valves were installed in between the pump and the main irrigation line, and then water flows through the emitters into the row furrows. Water would then saturate in the sand and eventually drain at the bottom into drainage tanks and pumped back to the fish tanks.To maintain the water quality, two full cycles of water recirculation were run every day. Every irrigation cycle recirculated 25% of the fish tank, and complete drainage was allowed for a maximum of two hours. Plants were harvested upon reaching maturity for three cuts, except with the T1, which could not grow back after the second cut. Plants took 52 days from transplanting to reach the first cut, 20 days from cut 1 to cut 2, and as well 23 days from cut 2 to reach cut 3. Measurable crop parameters included plant height at harvesting/cutting, leaf area, number of leaves per plant, chlorophyll content, fresh weight per plant, and nutrient composition. Since the focus of SP is on the crops, fish were only measured to monitor their relative growth in terms of weight gained at harvesting/cutting time.Measurement of crop parametersPlants were cut 5 cm above the soil surface, and agronomical trait measurements from a representative sample of 12 plants per replicate were taken as follows.Plant heights were taken using a foot ruler and averages determined. Leaf number was obtained as the number of leaves counted per plant and averages determined. Leaf area was calculated according to the equation reported by Yeshitila and Taye16.$${text{Leaf}} , {text{ Area }}left( {{text{cm}}^{{2}} } right) = , – {422}.{973} + { 22}.{752}0{text{L }}left( {{text{cm}}} right) , + { 8}.{text{31W }}left( {{text{cm}}} right)$$where L and W represent the leaf length and Leaf width respectively, − 422.973 is a constant relating to the shape of the leaf of Swiss chard developed by the author under citation.Chlorophyll content was measured using MC-100 chlorophyll meter from Apogee Instruments, Inc, and data was expressed as SPAD averages. Fresh weight was measured using a digital weighing balance and data expressed as g/plant.Sand testSand samples were obtained and sent for analysis at the Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt. The Electrical conductivity (EC) values were measured from the sand paste extract; pH values were taken from sand suspensions at ratio of 1:2.5 as described by Estefan17. The available nitrogen in the sand sample was extracted using potassium chloride (KCl) as an extractable solution with the ratio of (5gm sand to 50 ml KCl) and determined using the micro- kjeldahl method. Available potassium was determined using a flame photometer, and the other elements in the sand sample were determined by using inductively coupled plasma (ICP) Spectrometry (model Ultima 2 JY Plasma)18,19. The physical and chemical characteristics of the used sand are presented in Table 3.Table 3 (a): Chemical analysis of field sand samples, (b): Available macro, micronutrients, and heavy metals content of the sand samples.Full size tableWater analysisEvery 15 days, a measured amount of desalinated water was added to a standard mark of 850L in the fish tanks to compensate for the consumed amount of water in the system. Fish water quality parameters such as water temperature, pH, and dissolved oxygen (DO) was closely monitored using automated digital Nilebot technologies by Conative labs to fit the ideal required levels as reported by Somerville et al.20. In contrast, ammonia, nitrite, and nitrate were adjusted using an API test kit every week. These parameters’ recorded values were as follows: water temperature ranged between 25 and 28 °C, DO range between 6–7 mg/L, and pH between 6.5 and 7.0. Ammonia levels were kept below 1 mg/L. Elements in water samples were determined according to EPA methods18 using inductively coupled plasma (ICP) Spectrometry (model Ultima 2 JY Plasma) as presented in Table 4.Table 4 Water sample analysis for the different systems’ fish tanks and sump tanks.Full size tableNutritive composition analysisAccording to Official methods of analysis from the association of official analytical chemists (A.O.A.C) (1990), moisture content and Vitamin C were determined. Vitamin A was determined according to the procedures described by Aremu and Nweze21. Briefly, 100 g of the sample were homogenized, from which 1 g was obtained and soaked in 5 mL methanol for two hours at room temperature in the dark for complete extraction of a pro-vitamin A carotenoid, β-carotene. Separation of the β-carotene layer was achieved through the addition of hexane to the sample, and moisture was removed using sodium sulphonate. The absorbance of the layer was measured at 436 nm using hexane as a blank. β-carotene was calculated using the formula:$$beta {text{-carotene }}left( {{mu g}/{1}00{text{ g}}} right) , = {text{ Absorbance }}left( {text{436 nm}} right) , times {text{ V }} times {text{ D }} times { 1}00 , times { 1}00/{text{W }} times {text{ Y}}$$where: V = total volume of the extract; D = Dilution factor; W = Sample weight; Y = Percentage dry matter content of the sample.Vitamin A was then determined according to the concept of Retinol Equivalent (RE) of the β-carotene content of the vegetables using the standard conversion formula. Total hydrolyzable carbohydrates were determined as glucose using phenol–sulfuric acid reagent as described by Michel22.Vitamin C content was determined using dichlorophenol indophenol reagent. As such, 10 g of fresh leaf tissues, were crushed using a motor and pestle in the presence of 10 ml metaphosphoric acid 6% (Merck). This was followed by centrifugation at 4000×g for 5 min at 4 °C. Five mL of the supernatant were transferred into an Erlenmeyer flask, and 20 mL of 3% metaphosphoric acid were added. The extract was titrated by dichlorophenol indophenol (Sigma-Aldrich) until a rose color was observed. Vitamin C (mg/100 g FW) was then calculated and based on the standard curve of l-Ascorbic acid (Merck) concentrations.For the determination of protein and mineral content, 0.5 g of dried samples were digested using sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) as described by Cottenie23. From the extracted sample, the following minerals were determined:Nitrogen was determined according to the procedures described by Plummer24. Briefly, 5 mL of the digestive solution was distilled with 10 mL of sodium hydroxide (NaOH) for 10 min to obtain ammonia. Back titration was then used to determine the amount of nitrogen present in ammonia. Protein content was calculated by multiplying total nitrogen by 6.25 according to methods of AOAC25.Phosphorus content was determined calorimetrically (660 nm) according to the procedures described by Jackson26. Potassium, Calcium, and Sodium were determined against a standard using a flame-photometer (JEN way flame photometer) as described by Piper27. Magnesium (Mg), Copper (Cu), Manganese (Mn), Zinc (Zn), and Iron (Fe) content were determined using Atomic Absorption Spectrophotometer, Pyeunican SP1900, according to methods described by Liu28.The moisture percentage of leaf samples was determined by weighing the fresh weight for each sample (Fw), then dried for 72 h at 80 °C. The dry matter weight was record as Dw. The leaf water content was then calculated as the following:$${text{Moisture}};{text{ content }}left( % right) , = , left( {{text{Fw}} – {text{Dw}}} right) , /{text{ Fw}} * {1}00$$Statistical analysisStatistical comparisons among means of more than two groups were performed with analysis of variance (ANOVA) using SPSS V22, and the difference in means was analyzed by Tukey’s test at α = 0.05. Statistical differences were considered significant at P ≤ 0.05 in triplicates and data expressed as mean ± S.D.Plant materialAll plant materials and related procedures in this study were done in accordance with the guidelines of the Institutional Review Board of the American University in Cairo and the Ministry of Agriculture and Land Reclamation in Egypt.Ethics approvalThis study followed the guidelines and approval of Committee of Animal Welfare and Research Ethics, Faculty of Agriculture, Kafrelsheikh University, Egypt. More

  • in

    eDNA metabarcoding as a promising conservation tool to monitor fish diversity in Beijing water systems compared with ground cages

    Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Almond, R., Grooten, M. & Peterson, T. Living Planet Report 2020-Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).
    Google Scholar 
    Beverton, R. Fish resources; threats and protection. Neth. J. Zool. 42, 139–175 (1991).Article 

    Google Scholar 
    Jackson, S. & Head, L. Australia’s mass fish kills as a crisis of modern water: Understanding hydrosocial change in the Murray-Darling Basin. Geoforum 109, 44–56 (2020).Article 

    Google Scholar 
    Rees, H. C. et al. REVIEW: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).CAS 
    Article 

    Google Scholar 
    Rees, H. C. et al. The application of eDNA for monitoring of the Great Crested Newt in the UK. Ecol. Evol. 4, 4023–4032 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, C. et al. Research on the biodiversity of Qinhuai River based on environmental DNA metabacroding. Acta Ecol. Sin. 42, 611–624 (2022).Article 

    Google Scholar 
    Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Cons. 183, 53–63 (2015).Article 

    Google Scholar 
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miralles, L., Parrondo, M., Hernandez de Rojas, A., Garcia-Vazquez, E. & Borrell, Y. J. Development and validation of eDNA markers for the detection of Crepidula fornicata in environmental samples. Mar. Pollut. Bull. 146, 827–830 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS ONE 7, e35868 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aglieri, G. et al. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol. 30, 3127–3139 (2020).PubMed 
    Article 

    Google Scholar 
    Yang, H. et al. Effectiveness assessment of using riverine water eDNA to simultaneously monitor the riverine and riparian biodiversity information. Sci. Rep. 11, 24241 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607–618 (2020).Article 

    Google Scholar 
    Stat, M. et al. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33, 196–205 (2019).PubMed 
    Article 

    Google Scholar 
    Hallam, J., Clare, E. L., Jones, J. I. & Day, J. J. Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environ. DNA 3, 1247–1266 (2021).Article 

    Google Scholar 
    Gao, W. Beijing Vertebrate Key (Beijing Publishing House, 1994).
    Google Scholar 
    Wang, H. Beijing Fish and Amphibians and Reptiles (Beijing Publishing House, 1994).
    Google Scholar 
    Chen, W., Hu, D. & Fu, B. Research on Biodiversity of Beijing Wetland (Science Press, 2007).
    Google Scholar 
    Zhang, C. et al. Fish species diversity and conservation in Beijing and adjacent areas. Biodivers. Sci. 19, 597–604 (2011).Article 

    Google Scholar 
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 40368 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Cons. 197, 131–138 (2016).Article 

    Google Scholar 
    Fu, M., Xiao, N., Zhao, Z., Gao, X. & Li, J. Effects of Urbanization on Ecosystem Services in Beijing. Res. Soil Water Conserv. 23, 235–239 (2016).
    Google Scholar 
    Hao, L. & Sun, G. Impacts of urbanization on watershed ecohydrological processes: progresses and perspectives. Acta Ecol. Sin. 41, 13–26 (2021).
    Google Scholar 
    Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yan, B. et al. Effects of urban development on soil microbial functional diversity in Beijing. Res. Environ. Sci. 29, 1325–1335 (2016).CAS 

    Google Scholar 
    Xiao, N., Gao, X., Li, J. & Bai, J. Evaluation and Conservation Measures of Beijing Biodiversity (China Forestry Publishing House, 2018).
    Google Scholar 
    Xu, S., Wang, Z., Liang, J. & Zhang, S. Use of different sampling tools for comparison of fish-aggregating effects along horizontal transect at two artificial reef sites in Shengsi. J. Fish. China 40, 820–831 (2016).
    Google Scholar 
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics (Oxford, England) 30, 614–620 (2014).CAS 
    Article 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, 884–890 (2018).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iwasaki, W. et al. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol. 30, 2531–2540 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, H. Beijing Fish Records (Beijing Publishing House, 1984).
    Google Scholar 
    Du, L. et al. Fish community characteristics and spatial pattern in major rivers of Beijing City. Res. Environ. Sci. 32, 447–457 (2019).
    Google Scholar 
    Shen, W. & Ren, H. TaxonKit: A practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics 48, 844–850 (2021).PubMed 
    Article 

    Google Scholar 
    Karr, J. R. Assessment of biotic integrity using fish communities. Fisheries 6, 21–27 (1981).Article 

    Google Scholar 
    Zhang, C. & Zhao, Y. Fishes in Beijing and Adjacent Areas (China. Science Press, 2013).
    Google Scholar 
    Wu, H. & Zhong, J. Fauna Sinica, Osteichthyes, Perciformess(Five),Gobioidei (Science Press, 2008).
    Google Scholar 
    Di, Y. et al. Distribution of fish communities and its influencing factors in the Nansha and Beijing sub-center reaches of the Beiyun River. Acta Sci. Circumst. 41, 156–163 (2020).
    Google Scholar 
    Walters, D. M., Freeman, M. C., Leigh, D. S., Freeman, B. J. & Pringle, C. M. in Effects of Urbanization on Stream Ecosystems Vol. 47 American Fisheries Society Symposium 69–85 (2005).Hu, X., Zuo, D., Liu, B., Huang, Z. & Xu, Z. Quantitative analysis of the correlation between macrobenthos community and water environmental factors and aquatic ecosystem health assessment in the North Canal River Basin of Beijing. Environ. Sci. 43, 247–255 (2022).
    Google Scholar 
    Kadye, W. T., Magadza, C. H. D., Moyo, N. A. G. & Kativu, S. Stream fish assemblages in relation to environmental factors on a montane plateau (Nyika Plateau, Malawi). Environ. Biol. Fishes 83, 417–428 (2008).Article 

    Google Scholar 
    Smith, T. A. & Kraft, C. E. Stream fish assemblages in relation to landscape position and local habitat variables. Trans. Am. Fish. Soc. 134, 430–440 (2005).Article 

    Google Scholar 
    Blabolil, P. et al. Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats. Ecol. Ind. 126, 107698 (2021).CAS 
    Article 

    Google Scholar 
    Xie, R. et al. eDNA metabarcoding revealed differential structures of aquatic communities in a dynamic freshwater ecosystem shaped by habitat heterogeneity. Environ. Res. 201, 111602 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qu, C. et al. Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding. Sci. Rep. 10, 16715 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Doble, C. J. et al. Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: A case study from Lake Tanganyika. Environ. DNA 2, 24–41 (2020).Article 

    Google Scholar 
    Xu, N. et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA. Sci. Nat. 105, 62 (2018).Article 
    CAS 

    Google Scholar 
    Laramie, M. B., Pilliod, D. S. & Goldberg, C. S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Cons. 183, 29–37 (2015).Article 

    Google Scholar 
    Harper, L. R. et al. Development and application of environmental DNA surveillance for the threatened crucian carp (Carassius carassius). Freshw. Biol. 64, 93–107 (2019).CAS 
    Article 

    Google Scholar 
    Ushio, M. et al. Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding Metagenomics 2, e2329 (2018).
    Google Scholar 
    Evans, N. T. et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16, 29–41 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. Biol. Sci. 286, 20191409 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelly, R. P., Shelton, A. O. & Gallego, R. Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Sci. Rep. 9, 12133 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Civade, R. et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11, e0157366 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shogren, A. J. et al. Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environ. Sci. Technol. 52, 8530–8537 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao, B., van Bodegom, P. M. & Trimbos, K. The particle size distribution of environmental DNA varies with species and degradation. Sci. Total Environ. 797, 149175 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Genetic diversity of Prosopis juliflora in the state of Qatar and its valuable use against postharvest pathogen of mango fruits

    Prosopis juliflora leaves collection and processing for RibotypingProsopis juliflora species of the genus Prosopis, family of Fabaceae had its genetic variation in Doha evaluated. Seven samples of P. juliflora leaves were collected from six different locations in Doha, Qatar, during five field trips. Plant leaves were collected after proper permissions and all methods were carried out in accordance with relevant guidelines and regulations. Trees in all locations were naturally growing around urbanization areas in their normal arid habitat without artificial irrigation, samples were collected from fully mature trees. Table 1 shows the samples details. Figure 1 shows the location sites of where the samples were collected on the map of Qatar, Doha. Leaf samples were kept in sterile labeled bags until having reached the laboratory where few leaflets were washed with sterile distilled water and sterilized using 70% ethanol to be used for DNA extraction.Table 1 Location details of the collection sites of P. juliflora leaves.Full size tableFigure 1Location map of collection sites of P. juliflora leaf samples (ArcGIS software).Full size imageRibotyping analysisThe leaflets of each sample were transferred into a sterile mortar previously cooled at -20 ˚C and used for DNA extraction following the kit manufacturer instructions (DNeasy Plant Mini Kit-QIAGEN-USA).Extracted DNA of each sample were subject to PCR using ITS1 and ITS4 primers. PCR products obtained were purified using the Invitrogen Quick PCR Purification Kit (QIAGEN, Germany) as indicated by the manufacturer and sequenced using Sanger sequencer (3130/3130xl DNA Analyzers, Thermofisher Scientific, USA) as previously described22.Sanger sequencer raw data was read using BioEdit software. Basic Local Alignment Search Tool (BLAST) network services of the National Centre for Biotechnology Information (NCBI) database were used to compare the obtained sequences to the existing sequences. Sequences were submitted to NCBI for accession numbers. The various P. juliflora ribosomal sequences obtained were also uploaded on MEGA-X software and the phylogeny tree was generated using the neighbor-joining algorithm26.Minimum inhibitory concentrations of PJ-WS-LE extracts prepared using leaf samples collected from various locations against A. alternata and C. gloeosporioides
    Preparation of PJ-WS-LE extractFresh, young full leaves of P. juliflora were collected from various locations as indicated in Fig. 1. Samples were washed, dried and ground into powder to be used in the preparation of PJ-WS-LE extract as previously described22. Briefly, every 20 g of the leaf powder were incubated in 200 mL of 70% ethanol for 48 h. The supernatant has its solvent evaporated, the extract was then re-dissolved in sterile distilled water. Only water-soluble phytochemicals were tested by centrifuging the final preparation tubes and excluding the pellet. Stock solution of 100 g L−1 was stored at 4 °C to be used for later experiments. PJ-WS-LE extract concentration used in treatments was 8 g L−1 which is double the highest minimum inhibitory concentration of the extract against spoiling microorganisms as previously determined22.Determination of minimum inhibitory concentrationThe MIC test was conducted in a sterile 96-well plate, with each well containing 100 μl of potato dextrose broth (PDB) (HIMEDIA-India). Every four wells made one replication, nine different concentrations of the crude extracts were tested (1:1 dilutions) ranging from 42 to 0.16 g L−1. Wells were then inoculated with one of the two tested microorganisms’ spore suspensions (A. alternata and C. gloeosporioides). The last three rows are control rows: no spores and no extract control wells, negative control with spores but no extract wells, and positive control with spores and 10 µl of the fungicidal Clatrimazole (1%) wells.Fungal spore suspensions were adjusted to the range of 104 spores L−1 using a 10 day old fungal plate and sterile distilled water, the spore concentration was calculated using a heamatocytometer.Fungal growth in each well was monitored using Resazurin (HIMEDIA-India) dye. Upon cells division, Resazurin changes its color from blue to pink and fluorescent27. Results were taken within 48 h of incubation at 25 °C. MIC was recorded as the last extract concentration that shows no change in the color of Resazurin within the incubation period.Curative and preventive effects of PJ-WS-LE extract against A. alternata and C. gloeosporioides induced infection in mangoesPathogensThe two fungal strains used C. gloeosporioides and A. alternata were obtained from our laboratory collection, Department of Biological and Environmental Sciences, Qatar University, Qatar. Both fungal isolates were previously isolated from locally collected fruit samples. Isolates were molecularly identified by sequencing the Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) that was amplified by PCR. Identified fungal isolates were given the strains code of AaltQU17 for A. alternata and CgloQU17 for C. gloeosporioides22. Preserved cultures were sub-cultured on potato dextrose agar (PDA) plates and incubated at 25 °C for 10 days. Plates were then flooded with 10 mL of sterile distilled water each, to prepare the needed spores suspension solutions. The concentrations of spores suspensions were adjusted to 106 spores L−1 using a heamatocytometer18.FruitThe mango (Mangifera indica) type known as Neelam imported from India was used in the experiments. Fruit were bought from the whole sale market upon their arrival to the country. Only undamaged mature fruit were used in the experiment. Fruits chosen were ripen but not yet soft with firmness average of 20 ± 5.1 N, weight average of 177.61 ± 0.2 g and TSS average of 70 ± 5.3%. Fruit were first washed with sink water and sterilized twice with 70% ethanol to be then washed with sterile distilled water and left to air dry.Preventive and curative effects of PJ-WS-LE extractWounded mango fruit were used during the experiment, the wounds were made through three needle pricks (2 mm deep) in three different places for each plant using a sterile syringe. A completely randomized design was used and each treatment was made of a triplicate of 10 fruit each. The experiment was repeated twice.PJ-WS-LE extract of leaves collected from Qatar university field was first tested for its efficacy in preventing fungal contamination in wounded mango fruit (preventive effect). Therefore, the wounded zone of each fruit was sprayed with 8 g L−1 PJ-WS-LE extract and then left to air-dry. Once dry the fruit were sprayed again with the extract at the same concentration and left to dry. Control fruit were only treated with sterile distilled water without the plants extract. After two hours all wounds were inoculated with 20 μL of conidia aqueous solution (106 spores mL−1) of one of the tested fungi. The extract was then tested for its ability to cure fungal contamination in wounded fruit. Therefore, wounds were inoculated first with 20 μL of conidia aqueous solution (106 spores mL−1) and left to dry. Wounds were then sprayed twice with 8 g L−1 PJ-WS-LE extract.All mangoes were stored in sterilized plastic trays inside an incubator at 25 °C and 75% humidity. Fruit were observed every 24 h for 5 days for C. gloeosporioides inoculated fruit and for 10 days for A. alternata inoculated fruit. Three parameters were recorded at the end of the experiment: disease incidence (DI), disease severity (DS), and percent plant extract efficacy (%EE). To calculate disease severity, the diameter of the infected area of each fruit was measured in two perpendicular directions and mean diameter mycelial growth was calculated28,29.$$mathrm{DI}=frac{(mathrm{Number, of, rotten, fruit})times 100}{mathrm{Total, number, of, fruit}}$$$$mathrm{DS }=frac{(mathrm{Average, lesion, diameter, of, treated, plants})times 100}{mathrm{Average, Lesion, diameter, of, control, plants})}$$$$mathrm{%EE}=frac{(mathrm{Disease, incidence, in, Control, batch}-mathrm{Disease, incidence, in, treated, batch})times 100}{mathrm{Disease, incidence, in, Control, batch}}$$End of the trial samples firmnessAt the end of the trial, remaining mango fruit were tested for their flesh quality using a penetrometer (Agriculture Solutions, USA) to test the flesh firmness. Fruit were peeled, then the stainless steel probe of the instrument was inserted in three different points towards the equator of the fruit. Firmness in Newton was recorded and compared with standard fruit firmness to judge fruit quality18.Effectiveness of PJ-WS-LE extract as long-term coating material and the preservative value of its chitosan-embedded formCoating solutions preparationChitosan solution of 1% concentration was prepared by stirring chitosan powder (CAS 9012-76-4, Himedia, India) in 1% glacial acetic acid (IsoLab, Germany) overnight. The final chitosan solution pH was adjusted to 5.6 using 0.1 M NAOH (Sigma-Aldrich, Germany). To prepare PJ-WS-LE extract chitosan-embedded coating material, filter-sterilized PJ-WS-LE extract stock solution was added to 1% chitosan to achieve a final concentration of 8 g L−130.Samples preparationEighty-four mango samples chosen as described above, were divided into four groups of 18 samples each. Samples were divided into four treatment batches and treated as following:

    Batch A: non-treated fruit.

    Batch B: PJ-WS-LE extract at 8 g L–1 was used to spray the fruit.

    Batch C: 1% chitosan was used to spray the fruit.

    Batch D: 8 g L−1 PJ-WS-LE extract embedded in 1% chitosan was used to spray the fruit.

    Every experimental replicate was made up of three mango samples that were stored together in one sterile bag at 4 °C. The number of replications per treatment was six. The experiment was repeated twice31.Evaluation of sensory qualityA five-points scale was used for the evaluation of the sensory quality of the samples for overall quality, smell, and color change. The attributes were evaluated weekly using the fruit of one experimental replicate. Scores were given using the following scale: 5 points indicate “extremely liked”, 4 points indicate “liked”, 3 points indicate “acceptable” 2 points indicate “disliked” and 1 point indicates “extremely disliked”. The weekly average score per batch was also calculated32.Estimation of weight lossUpon treatment at day zero, all mango samples were weighed and their weights were recorded as initial weights. Weights of all remaining samples were measured at the end of every week. The variation between the start weight and weekly weights is calculated as weekly weight loss. The average percent of weekly weight loss of each batch was calculated32.Determination of samples firmnessThe samples of each experimental replicate evaluated on a weekly basis had their firmness measured as previously described. The weekly average samples firmness (N) of every treatment batch was also calculated33.pH measurementMango fruit of each experimental replicate were blended weekly into juice, after filtration, a digital pH meter (Jenway, UK) was used to measure pH. The weekly average fruit pH of every treatment batch was also calculated. The pH meter was calibrated using a buffer solution of pH 734.Total soluble solids (TSS) measurementTotal soluble solids of the prepared mango juice samples were measured in percent brix using a refractometer (ANTAHI, New Zealand). The weekly average fruit TSS (%) for each treatment batch was also calculated. The refractometers was calibrated using distilled water35.DPPH radical scavenging assayA 1/10 mango juice dilution was prepared using sterile distilled water. 100 μL of each dilution was mixed with 1 mL of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (100 mg L−1) to be incubated in the dark at 37 °C for 45 min. After incubation, samples were centrifuged and the pellet was discarded. The intensity of the change in color of the supernatant was measured by spectrophotometry at 517 nm using methanol as a blank. 100 μL of methanol in 1 mL DPPH was used as the control for the experiment. Percent radical scavenging activity was calculated as per the below formula:$$ % {text{ radical scavenging activity}}, = ,left( {{text{absorbance of the control solution}} – {text{ absorbance of the juice sample}}} right)*{1}00/{text{absorbance of the control solution}}. $$The weekly average % radical scavenging activity for each treatment batch was finally calculated31.Statistical analysisThe experimental design used was Completely Randomized Design (CRD). One-way ANOVA followed by Tukey Post-Hoc test was used to evaluate the significance of the weekly percent change in weight among treatment batches at P ≤ 0.05. The significances of pH and TSS variation within different treatment batches were evaluated using One-way ANOVA test at P ≤ 0.05. Data was presented as average ± standard error of the Means (SEM). SPSS (Ver. 27, SPSS Inc. Chicago, USA) was used to perform the statistical analysis tests. More