More stories

  • in

    Effect of Rudbeckia laciniata invasion on soil seed banks of different types of meadow communities

    Mack, R. M. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 (2000).Article 

    Google Scholar 
    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communitiesand ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x (2012).ADS 
    Article 

    Google Scholar 
    Wittenberg, R. & Cock, M. J. W. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices (CAB International, 2001).Book 

    Google Scholar 
    DAISIE. Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=23539# (2018).Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x (2009).Article 

    Google Scholar 
    Chmura, D. et al. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland). Acta Soc. Bot. Pol. 84(1), 23–33. https://doi.org/10.5586/asbp.2015.008 (2015).Article 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Sci. Total Environ. 574, 938–946. https://doi.org/10.1016/j.scitotenv.2016.09.120 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Species-specific effects of plant invasions on activity, biomass and composition of soil microbial communities. Biol. Fertil. Soils 52, 841–852. https://doi.org/10.1007/s00374-016-1122-8 (2016).CAS 
    Article 

    Google Scholar 
    Zubek, S. et al. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol. Fertil. Soils 52, 879–893. https://doi.org/10.1007/s00374-016-1127-3 (2016).Article 

    Google Scholar 
    Krinke, L. et al. Seed bank of an invasive alien, Heracleum mantegazzianum, and its seasonal dynamics. Seed Sci. Res. 15, 239–248. https://doi.org/10.1079/SSR2005214 (2005).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683. https://doi.org/10.1007/s10530-009-9580-7 (2010).Article 

    Google Scholar 
    Kundel, D., van Kleunen, M. & Dawson, W. Invasion by Solidago species has limited impacts on soil seed bank communities. Basic Appl. Ecol. 15, 573–580. https://doi.org/10.1016/j.baae.2014.08.009 (2014).Article 

    Google Scholar 
    Dong, H., Liu, T., Liu, Z. & Song, Z. Fate of the soil seed bank of giant ragweed and its significance in preventing and controlling its invasion in grasslands. Ecol. Evol. https://doi.org/10.1002/ece3.6238 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harper, J. L. Population Biology of Plants (Academic Press, 1977).
    Google Scholar 
    Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66(1), 40–53. https://doi.org/10.1093/biosci/biv165 (2015).Article 

    Google Scholar 
    Gioria, M. & Osborne, B. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 501. https://doi.org/10.3389/fpls.2014.00501 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holmes, P. M. & Cowling, R. M. Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant Ecol. 133, 107–122. https://doi.org/10.1023/A:1009734026612 (1997).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    Tokarska-Guzik, B. et al. Rośliny Obcego Pochodzenia w Polsce ze Szczególnym Uwzględnieniem Gatunków Inwazyjnych (Generalna Dyrekcja Ochrony Środowiska, 2012).
    Google Scholar 
    Thompson, K., Bakker, J. P. & Bekker, R. M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity (Cambridge University Press, 1997).
    Google Scholar 
    Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96(3), 762–774. https://doi.org/10.1890/14-1005.1 (2015).Article 
    PubMed 

    Google Scholar 
    Hager, H. A., Rupert, R., Quinn, L. D. & Newman, J. A. Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and the soil seed bank. Biol. Invasions 17, 1833–1847. https://doi.org/10.1007/s10530-014-0839-2 (2015).Article 

    Google Scholar 
    Robertson, S. G. & Hickman, K. Aboveground plant community and seed bank composition along an invasion gradient. Plant Ecol. 213(9), 1461–1475. https://doi.org/10.1007/s11258-012-0104-7 (2012).Article 

    Google Scholar 
    Fumanal, B., Gaudot, I. & Bretagnolle, F. Seed-bank dynamics in the invasive plant, Ambrosia artemisiifolia L.. Seed Sci. Res. 18(2), 101–114 (2008).Article 

    Google Scholar 
    Funk, J. L. et al. Keys to enhancing the value of invasion ecology research for management. Biol. Invasions 22, 2431–2445. https://doi.org/10.1007/s10530-020-02267-9 (2020).Article 

    Google Scholar 
    Jalas, J. Problems concerning Rudbeckia laciniata (Asteraceae) in Europe Fragmenta Floristica et Geobotanica. Supplementum 2(1), 289–297 (1993).
    Google Scholar 
    Tokarska-Guzik, B. The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland (Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 2005).
    Google Scholar 
    EPPO. Rudbeckia laciniata (Asteraceae). EPPO Reporting Service—Invsive Plants. European and Mediterranean Plant Protection Organization. https://www.eppo.int/INVASIVE_PLANTS/ias_lists.htm (2009).Zelnik, I. The presence of invasive alien plant species in different habitats: Case study from Slovenia. Acta Biol. Sloven. 55(2), 25–38 (2012).
    Google Scholar 
    Vojniković, S. Tall cone flower (Rudbeckia laciniata L.)—new invasive species in the flora of Bosnia and Herzegovina. Herbologia 15(1), 39–47. https://doi.org/10.5644/Herb.15.1.05 (2015).Article 

    Google Scholar 
    Auld, B., Morita, H., Nishida, T., Ito, M. & Michael, P. Shared exotica: Plant invasions of Japan and south eastern Australia. Cunninghamia 8, 147–152 (2003).
    Google Scholar 
    Akasaka, M., Osawa, T. & Ikegami, M. The role of roads and urban area in occurrence of an ornamental invasive weed: A case of Rudbeckia laciniata L.. Urban Ecosyst. 18, 1021–1030 (2015).Article 

    Google Scholar 
    GBIF. Global Biodiversity Information Facility. Checklist dataset. https://www.gbif.org/species/3114229 (2021).Francírková, T. Contribution of the invasive ecology of Rudbeckia laciniata in the Czech Republic. In Plant Invasions: Species Ecology and Ecosystem Management (eds Brundu, G. et al.) 89–98 (Backhuys Publishers, 2001).
    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390. https://doi.org/10.1371/journal.pone.0123634 (2010).CAS 
    Article 

    Google Scholar 
    Kościńska-Pająk, M., Musiał, K. & Janiszewska, K. Embryological processes in ovules of Rudbeckia laciniata L. (Asteraceae) from Poland. Mod. Phytomorphol. 5, 19–23 (2014).
    Google Scholar 
    Urbatsch, L. E. & Cox, P. B. Rudbeckia laciniata in Flora of North America Editorial Committee. http://floranorthamerica.org/Rudbeckia_laciniata (2021).Jankowska-Błaszczuk, M. Zróżnicowanie banków nasion w naturalnych i antropogenicznie przekształconych zbiorowiskach leśnych. Monograph. Bot. 88, 25 (2000).
    Google Scholar 
    Osawa, T. & Akasaka, M. Management of the invasive perennial herb Rudbeckia laciniata L. (Compositae) using rhizome removal. Jpn. J. Conserv. Ecol. 14(1), 37–43. https://doi.org/10.18960/hozen.14.1_37 (2009).Article 

    Google Scholar 
    Gleason, H. A. & Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (The New York Botanical Garden, 1991).Book 

    Google Scholar 
    Gioria, M. & Osborne, B. The impact of Gunnera tinctoria (Molina) Mirbel invasions on soil seed bank communities. J. Plant Ecol. 2(3), 153–167. https://doi.org/10.1093/jpe/rtp013 (2009).Article 

    Google Scholar 
    Kleyer, et al. The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol. 96, 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).Article 

    Google Scholar 
    Ruprecht, E., Fenesi, A. & Nijs, I. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species. Biol. Invasions 16, 1359–1372. https://doi.org/10.1007/s10530-013-0574-0 (2014).Article 

    Google Scholar 
    Wróbel, M. Origin and spatial distribution of roadside vegetation within the forest and agricultural areas in Szczecin Lowland (West Poland). Pol. J. Ecol. 54(1), 137–143 (2001).
    Google Scholar 
    Dajdok, Z. & Pawlaczyk, P. Inwazyjne Gatunki Roślin Mokradłowych Polski (Wydawnictwo Klubu Przyrodnikow, 2009).
    Google Scholar 
    de Waal, L. C., Child, L. E., Wade, M. & Brock, J. H. Ecology and Management of Invasive Riverside Plants (Wiley, 1994).
    Google Scholar 
    Pyśek, P. & Prach, K. Plant invasions and the role of riparian habitats: A comparison of four species alien to central Europe. J. Biogeogr. 20, 413–420 (1993).Article 

    Google Scholar 
    Kucharczyk, M. & Krawczyk, R. Kenophytes as river corridor plants in the vistula and the san river valleys. Teka Komisji Ochrony Kształtowania Środowiska Przyrodniczego 1, 110–115 (2004).
    Google Scholar 
    Walck, J. L. et al. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15(3), 189–196. https://doi.org/10.1079/SSR2005209 (2005).ADS 
    Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080. https://doi.org/10.1007/s10530-016-1349-1 (2017).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11(1), 4–16. https://doi.org/10.1093/jpe/rtw105 (2018).Article 

    Google Scholar 
    Perglová, I. et al. Differences in germination and seedling establishment of alien and native Impatiens species. Preslia 81, 357–375 (2009).
    Google Scholar 
    Haines, D. F., Larson, D. L. & Larson, J. L. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains. Invas. Plant Sci. Manage. 6, 416–432. https://doi.org/10.1614/IPSM-D-12-00076.1 (2013).Article 

    Google Scholar 
    Gioria, M., Jarosík, V. & Pyšek, P. Impact of invasions by alien plants on soil seed bank communities: Emerging patterns. Perspect. Plant Ecol. Evol. Syst. 16, 132–142. https://doi.org/10.1016/j.ppees.2014.03.003 (2014).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Assessing the impact of plant invasions on soli seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556. https://doi.org/10.1111/j.1654-1103.2009.01054.x (2009).Article 

    Google Scholar 
    Tokarska-Guzik, B., Bzdega, K., Knapik, D. & Jenczała, G. Changes in plant species richeness in some riparian plant communities as a result of their colonisation by taxa of Reynoutria (Fallopia). Biodivers. Res. Conserv. 1–2, 122–130 (2006).
    Google Scholar 
    Dölle, M. & Wolfgang, S. The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plots. Appl. Veg. Sci. 12, 415–428 (2009).Article 

    Google Scholar 
    Thompson, K. & Grime, J. P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921. https://doi.org/10.2307/2259220 (1979).Article 

    Google Scholar 
    Czarnecka, J. Microspatial structure of the seed bank of xerothermic grassland—intracommunity differentiation. Acta Soc. Bot. Pol. 73(2), 155–164. https://doi.org/10.5586/asbp.2004.022 (2004).Article 

    Google Scholar 
    Kalamees, R., Püssa, K., Zobel, K. & Zobel, M. Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Appl. Veg. Sci. 15, 208–218 (2012).Article 

    Google Scholar 
    Skowronek, S. et al. Regeneration potential of floodplain forests under the influence of nonnative tree species: Soil seed bank analysis in Northern Italy. Restor. Ecol. 22(1), 22–30. https://doi.org/10.1111/rec.12027 (2014).Article 

    Google Scholar  More

  • in

    Long-term observation of the egg and chick size in the nests of Larus ichthyaetus in Lake Chany, Russia

    We surveyed three islands of Lake Chany: Uzkoredkii (54° 58′ 15′′ N, 77°27′04′′ E), Reden’kii (54° 56′ 05′′ N, 77° 22′ 27′′ 52 E), Korablik (54° 59′ 31′′ N, 77° 40′ 38′′ E). The studied intertidal habitats are rarely reached by humans.Gull nests were counted in colonies by regular surveys over eight years (1993, 1994, 1996–1998, 2001–2003) on the islands of Lake Chany. Colonies were visited daily or sometimes every other day. To minimize the disturbance caused by the investigation, the time spent working, within view of the gulls was restricted to a maximum of forty minutes per study plots. We noted nest content at every visit for the presence of eggs or chicks. In total, there were 1 164 nests under observation. Nests contained 1 (n = 140), 2 (n = 518), 3 (n = 504) or 4 (n = 2) eggs. Modal clutch size of the great black-headed gull is two or three eggs, varying seasonally. The length and width of the eggs were measured using Vernier calipers (division accuracy 0,1 mm) and numbered with a waterproof marker. Egg volumes were estimated using Hoyt’s equation: Volume = 0.51 * Length * Width * Width/100013. We determined the volume of 2117 great black-headed gull eggs.As the laying of eggs has already started by the first visit to the colony, the date of the beginning of egg laying was calculated by subtracting the average length of the incubation period of great black-headed gulls (27 days) from the hatching date of first chick in the nest (n = 559 nests). If the hatching date was not known, the clutch initiation date was determined by subtracting the number of days of incubation from the date that the nest was first discovered (n = 469 nests). The stage of incubation was estimated from the change in position of an incubated egg placed in water14,15. The technique’s accuracy varied throughout incubation and mean prediction error fall between 0–4 days. On average, egg flotation estimated an embryo’s developmental age to within 1.9 ± 1.6 days (mean ± 1 SD)16. Only 47 nests were found during egg laying. Great black-headed gulls usually laid eggs at intervals of two days. Incubation started as soon as the first egg was laid, so eggs hatched asynchronously, one or two days apart.Whenever possible, we determined the within-clutch laying sequence of eggs (1st, 2nd, 3rd, and 4th). A complete laying sequence was established by observation in 47 cases. In about 48% of clutches the position in laying sequence was established on the basis of the sequence of hatching. In other cases, if we could distinguish within-clutch distinct flotation levels of eggs, we numbered eggs according to the stage of incubation. Sometimes this technique for distinguishing egg laying order were used in other seabirds17,18.We recorded the pipping date (i.e. appearance of star-like bursts) and the actual hatching date of the individual eggs. Wet chicks were registered as hatchlings of that day; dry chicks were registered as 1 day old. Chicks older than two days left the nest and moved to a location nearby. Newly hatched gull chicks were captured by hand at nests, ringed, and measured. We determined wing, tarsus, and head length using a ruler with zero-stop and vernier calipers and body weight measured using Pesola spring balances for 747 chicks of great black-headed gulls, and 457 of them hatched from eggs that were measured. More

  • in

    Magnesium stable isotope composition, but not concentration, responds to obesity and early insulin-resistant conditions in minipig

    Misra, V. K. & Draper, D. E. On the role of magnesium ions in RNA stability. Biopolymers 48, 113–135 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apell, H.-J., Hitzler, T. & Schreiber, G. Modulation of the Na, K-ATPase by magnesium ions. Biochemistry 56, 1005–1016 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Iseri, L. T. & French, J. H. Magnesium: Nature’s physiologic calcium blocker. Am. Heart J. 108, 188–193 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, H. Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc. Natl. Acad. Sci. USA 72, 3551–3555 (1975).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Baaij, J. H. F., Hoenderop, J. G. J. & Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev. 95, 1–46 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Association, A. D. Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014).Article 

    Google Scholar 
    Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239–2251 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gommers, L. M. M., Hoenderop, J. G. J., Bindels, R. J. M. & de Baaij, J. H. F. Hypomagnesemia in type 2 diabetes: A vicious circle?. Diabetes 65, 3–13 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pham, P.-C.T., Pham, P.-M.T., Pham, S. V., Miller, J. M. & Pham, P.-T.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2, 366–373 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mather, H. M. et al. Hypomagnesaemia in diabetes. Clin. Chim. Acta 95, 235–242 (1979).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hubbard, S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kurstjens, S. et al. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 176, 11–19 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Viering, D. H. H. M., de Baaij, J. H. F., Walsh, S. B., Kleta, R. & Bockenhauer, D. Genetic causes of hypomagnesemia, a clinical overview. Pediatr. Nephrol. 32, 1123–1135 (2017).PubMed 
    Article 

    Google Scholar 
    Peacock, J. M. et al. Serum magnesium and risk of sudden cardiac death in the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 160, 464–470 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veronese, N. et al. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 70, 1354–1359 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodríguez-Morán, M., Simental-Mendía, L. E., Gamboa-Gómez, C. I. & Guerrero-Romero, F. Oral magnesium supplementation and metabolic syndrome: A randomized double-blind placebo-controlled clinical trial. Adv. Chronic Kidney Dis. 25, 261–266 (2018).PubMed 
    Article 

    Google Scholar 
    Grigoryan, R. et al. Multi-collector ICP-mass spectrometry reveals changes in the serum Mg isotopic composition in diabetes type I patients. J. Anal. At. Spectrom. 34, 1514–1521 (2019).CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 17, 675–678 (1949).ADS 
    CAS 
    Article 

    Google Scholar 
    McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jouzel, J. et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403–408 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Albarède, F., Télouk, P. & Balter, V. Medical applications of isotope metallomics. Rev. Mineral. Geochem. 82, 851–885 (2017).Article 
    CAS 

    Google Scholar 
    Balter, V. et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. PNAS 112, 982–985 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Télouk, P. et al. Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7, 299–308 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lobo, L. et al. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry. Talanta 165, 92–97 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costas-Rodríguez, M. et al. Body distribution of stable copper isotopes during the progression of cholestatic liver disease induced by common bile duct ligation in mice. Metallomics 11, 1093–1103 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lamboux, A. et al. The blood copper isotopic composition is a prognostic indicator of the hepatic injury in Wilson disease. Metallomics 12, 1781–1790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moynier, F., Creech, J., Dallas, J. & Le Borgne, M. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease. Sci. Rep. 9, 11894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sauzéat, L. et al. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis. iScience 6, 264–271 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krayenbuehl, P.-A., Walczyk, T., Schoenberg, R., von Blanckenburg, F. & Schulthess, G. Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood 105, 3812–3816 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anoshkina, Y. et al. Iron isotopic composition of blood serum in anemia of chronic kidney disease. Metallomics 9, 517–524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, J. L. L. et al. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109, 9989–9994 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, A. et al. Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis. Bone Rep. 10, 100200 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Isaji, Y. et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments. ACS Earth Space Chem. 3, 1073–1079 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pokharel, R. et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants. Environ. Sci. Technol. 52, 12216–12224 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolou-Bi, E. B., Poszwa, A., Leyval, C. & Vigier, N. Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim. Cosmochim. Acta 74, 2523–2537 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, Y. et al. Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: A greenhouse study with wheat. Plant Soil 455, 93–105 (2020).CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim. Cosmochim. Acta 130, 12–20 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Magnesium stable isotope ecology using mammal tooth enamel. PNAS 112, 430–435 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol.-Endocrinol. Metab. 237, E214 (1979).CAS 
    Article 

    Google Scholar 
    Kim, J. K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. In Type 2 Diabetes: Methods and Protocols, Methods in Molecular Biology (ed. Stocker, C.) 221–238 (Humana Press, 2009).Chapter 

    Google Scholar 
    DeFronzo, R. A., Hendler, R. & Simonson, D. Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 31, 795–801 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Balter, V. et al. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470–1482 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, B., Podolskiy, D. I., Mariotti, M., Seravalli, J. & Gladyshev, V. N. Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 19, e13119 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morel, J.-D. et al. The mouse metallomic landscape of aging and metabolism. Nat. Commun. 13, 607 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoryan, R., Costas-Rodríguez, M., Vandenbroucke, R. E. & Vanhaecke, F. High-precision isotopic analysis of Mg and Ca in biological samples using multi-collector ICP-mass spectrometry after their sequential chromatographic isolation—Application to the characterization of the body distribution of Mg and Ca isotopes in mice. Anal. Chim. Acta 1130, 137–145 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goff, S. L., Albalat, E., Dosseto, A., Godin, J.-P. & Balter, V. Determination of magnesium isotopic ratios of biological reference materials via multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 35, e9074 (2021).PubMed 

    Google Scholar 
    DeRocher, K. A. et al. Chemical gradients in human enamel crystallites. Nature 583, 66–71 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johansen, T., Hansen, H. S., Richelsen, B. & Malmlöf, K. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp. Med. 51, 150–155 (2001).CAS 
    PubMed 

    Google Scholar 
    Coelho, P. G. et al. Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: A pilot study. J. Oral Maxillofac. Surg. 76, 1677–1687 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Elin, R. J. Assessment of magnesium status. Clin. Chem. 33, 1965–1970 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., van der Meulen, J., Dekker, R., Corbijn, H. & Mroz, Z. Diurnal variation in insulin-stimulated systemic glucose and amino acid utilization in pigs fed with identical meals at 12-hour intervals. Horm. Metab. Res. 38, 607–613 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., Maassen, J. A., Radder, J. K. & Frölich, M. In vivo insulin responsiveness for glucose uptake and production at eu- and hyperglycemic levels in normal and diabetic rats. Biochimica et Biophysica Acta (BBA) General Subjects 1115, 230–238 (1992).CAS 
    Article 

    Google Scholar 
    Koopmans, S. J. et al. Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: Effects of metformin at isoenergetic feeding in a type 2–like diabetic pig model. Metabolism 55, 960–971 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Understanding social–ecological systems using social media data

    Ecosystem services are the contributions of nature to human well-being — for example, the provision of raw materials, carbon sequestration and recreation. Although relatively new, the study of these essential services has developed rapidly and is now included in many global policies and assessments. However, mapping and modelling these services is restricted by the availability of data that can account for the multidimensional traits of ecosystem services and model coupled social–ecological systems. Traditional datasets, including surveys, interviews, and focus groups, are often not viable on the scale necessary for many ecosystem service assessments. More

  • in

    Cross-feeding niches among commensal leaf bacteria are shaped by the interaction of strain-level diversity and resource availability

    Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature.2020;580:653–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    PubMed 
    Article 

    Google Scholar 
    Manching HC, Carlson K, Kosowsky S, Smitherman CT, Stapleton AE. Maize phyllosphere microbial community niche development across stages of host leaf growth. F1000Research. 2017;6:1698.PubMed 
    Article 

    Google Scholar 
    Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175:973–83. e14PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.PubMed 
    Article 
    CAS 

    Google Scholar 
    Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, et al. Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe. 2018;24:168–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N. Phytol. 2016;209:798–811.CAS 
    Article 

    Google Scholar 
    Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, et al. Host selection shapes crop microbiome assembly and network complexity. N. Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol. 2014;85:473–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nobori T, Cao Y, Entila F, Dahms E, Tsuda Y, Garrido-Oter R, et al. Dissecting the co-transcriptome landscape of plants and microbiota members. bioRxiv; 2022. p. 2021.04.25.440543.Yamada K, Saijo Y, Nakagami H, Takano Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science. 2016;354:1427–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker RF, Leach KA, Braun DM. SWEET as sugar: new sucrose effluxers in plants. Mol Plant. 2012;5:766–8.PubMed 
    Article 

    Google Scholar 
    Tegeder M, Hammes UZ. The way out and in: phloem loading and unloading of amino acids. Curr Opin Plant Biol. 2018;43:16–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. Plant Cell Environ. 2016;39:2172–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant-Microbe Interact. MPMI. 2008;21:269–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, et al. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci USA. 2013;110:E425.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Winter H, Riens B, Heldt HW. Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta. 1995;108:270–5.CAS 
    Article 

    Google Scholar 
    Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468:527–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xin XF, Nomura K, Aung K, Velásquez AC, Yao J, Boutrot F, et al. Bacteria establish an aqueous living space in plants crucial for virulence. Nature. 2016;539:524–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 2005;23:873–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 

    Google Scholar 
    Hoek TA, Axelrod K, Biancalani T, Yurtsev EA, Liu J, Gore J. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLOS Biol. 2016;14:e1002540.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zimmermann J, Obeng N, Yang W, Pees B, Petersen C, Waschina S, et al. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J. 2020;14:26–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado D, Maistrenko OM, Andrejev S, Kim Y, Bork P, Patil KR, et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat Ecol Evol. 2021;5:195–203.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:1–17.Article 

    Google Scholar 
    Gerlich SC, Walker BJ, Krueger S, Kopriva S. Sulfate metabolism in C4 Flaveria species is controlled by the root and connected to serine biosynthesis. Plant Physiol. 2018;178:565–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: How many and which genes does it take to make C4? Plant Cell. 2011;23:2087–105.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKown AD, Dengler NG. Vein patterning and evolution in C4 plants. Botany. 2010;88:775–86.CAS 
    Article 

    Google Scholar 
    Gentzel I, Giese L, Zhao W, Alonso AP, Mackey D. A simple method for measuring apoplast hydration and collecting apoplast contents. Plant Physiol. 2019;179:1265–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayer T, Mari A, Almario J, Murillo-Roos M, Syed M, Abdullah H, et al. Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing. Mol Ecol Resour. 2021;21:1952–65.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/.Callahan B, McMurdie PJ, Rosen M, Han A, Johnson A, Holmes S. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:61217.Article 
    CAS 

    Google Scholar 
    Oksanen J, Blanchet GF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package [Internet]. 2020. Available from: https://CRAN.R-project.org/package=vegan.Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schlechter RO, Jun H, Bernach M, Oso S, Boyd E, Muñoz-Lintz DA, et al. Chromatic bacteria – A broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria. Front Microbiol. 2018;9:3052.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K. Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant. 2001;111:457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dal Bello M, Lee H, Goyal A, Gore J. Resource-diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat Ecol Evol. 2021;5:1424–34.PubMed 
    Article 

    Google Scholar 
    Sattelmacher B. The apoplast and its significance for plant mineral nutrition. N. Phytol. 2001;149:167–92.CAS 
    Article 

    Google Scholar 
    Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, et al. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME J. 2020;14:2116–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Weng FCH, Joubert PM, Metcalf CJE, Lindow S, Koskella B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA. 2020;117:1148–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Herren CM. Disruption of cross-feeding interactions by invading taxa can cause invasional meltdown in microbial communities. Proc R Soc B Biol Sci. 2020;287:20192945.Article 

    Google Scholar 
    Rahme LG, Mindrinos MN, Panopoulos NJ. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol. 1992;174:3499–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Zhang X, Koskella B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 2019;3:177–90.Article 

    Google Scholar 
    Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lundberg DS, Jové R de P, Ayutthaya PPN, Karasov TL, Shalev O, Poersch K, et al. Contrasting patterns of microbial dominance in the Arabidopsis thaliana phyllosphere. bioRxiv. 2021;2021.04.06.438366.Ikawa Y, Tsuge S. The quantitative regulation of the hrp regulator HrpX is involved in sugar-source-dependent hrp gene expression in Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett. 2016;363:fnw071.Wei ZM, Sneath BJ, Beer SV. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol. 1992;174:1875–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA. 2002;99:3695–700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett. 2022;25:1410–20.Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, et al. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome. 2021;9:103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci USA. 2019;116:12558–65.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 2001;3:139–48.CAS 
    Article 

    Google Scholar 
    Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D. Root exudate composition of grass and forb species in natural grasslands. Sci Rep. 2020;10:10691.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Grey wolf genomic history reveals a dual ancestry of dogs

    Sampling, DNA preparation and sequencingStockholmSamples LOW002, LOW003, LOW006, LOW007, LOW008 and PON012 were processed at the Archaeological Research Laboratory at Stockholm University, Sweden, following methods previously described8. In brief, this involved extracting DNA by incubating the bone powder for 24 h at 37 °C in 1.5 ml of digestion buffer (0.45 M EDTA (pH 8.0) and 0.25 mg ml–1 proteinase K), concentrating supernatant on Amicon Ultra-4 (30-kDa molecular weight cut-off (MWCO)) filter columns (MerckMillipore) and purifying on Qiagen MinElute columns. Double-stranded Illumina libraries were prepared using the protocol outlined in ref. 48, with the inclusion of USER enzyme and the modifications described in ref. 49.Samples 367, PDM100, Taimyr-1 and Yana-1 were processed at the Swedish Museum of Natural History in Stockholm, Sweden, following previously described methods8. In brief, this involved extracting DNA using a silica-based method with concentration on Vivaspin filters (Sartorius), according to a protocol optimized for recovery of ancient DNA50. Double-stranded Illumina libraries were prepared using the protocol outlined in ref. 48, with the inclusion of USER enzyme.Samples ALAS_024, VAL_033, ALAS_016, VAL_008, HMNH_007, HMNH_011, VAL_050, VAL_005, DS04, VAL_037, VAL_012, VAL_011, VAL_18A, IN18_016 and IN18_005 were processed at the Swedish Museum of Natural History in Stockholm, Sweden, following previously described methods for permafrost bone and tooth samples51. In brief, this involved DNA extraction using the methodology of ref. 52 and double-stranded Illumina library preparation as described in ref. 48, with dual unique indexes and the inclusion of USER enzyme. Between eight and ten separate PCR reactions with unique indexes were carried out for each sample to maximize library complexity. The libraries were sequenced alongside samples HOV4, AL2242, AL2370, AL2893, AL3272 and AL3284 across three Illumina NovaSeq 6000 lanes with an S4 100-bp paired-end set-up at SciLifeLab in Stockholm.PotsdamSamples JAL48, JAL65, JAL69, JAL358, AH574, AH575 and AH577 were processed at the University of Potsdam. Pre-amplification steps (DNA extraction and library preparation) were conducted in separated laboratory rooms specially equipped for the processing of ancient DNA. Amplification and post-amplification steps were performed in different laboratory rooms. DNA was extracted from bone powder (29–54 mg) following a protocol specially adapted to recover short DNA fragments52. Single-stranded double-indexed libraries were built from 20 µl of DNA extract according to the protocol in ref. 53. The libraries were sequenced on an HiSeq X platform at SciLifeLab in Stockholm.Tübingen/JenaSamples JK2174, JK2175, JK2179, JK2181, JK2183, TU144, TU148, TU839 and TU840 were processed at the University of Tübingen, with DNA extraction and pre-amplification steps undertaken in clean room facilities and post-amplification steps performed in a separate DNA laboratory. Both laboratories fulfil standards for work with ancient DNA54,55. All surfaces of tooth and bone samples were initially UV irradiated for 30 min, to minimize the potential risk of modern DNA contamination. Subsequently, DNA was extracted by applying a well-established guanidine silica-based protocol for ancient samples52. Illumina sequencing libraries were prepared by using 20 µl of DNA extract per library48; afterwards, dual barcodes (indexes) were chemically added to the prime ends of the libraries56. For the samples from Auneau (TU839 and TU840), five sequencing libraries each were prepared; for all other samples processed in Tübingen, three sequencing libraries each were prepared. To detect potential contamination of the chemicals, negative controls were conducted for extraction and library preparation. After preparation of the sequencing libraries, DNA concentration was measured with qPCR (Roche LightCycler) using corresponding primers48. The DNA concentration was given by the copy number of the DNA fragments in 1 µl of the sample.Amplification of the indexed sequencing libraries was performed using Herculase II Fusion under the following conditions: 1× Herculase II buffer, 0.4 µM IS5 primer and 0.4 µM IS6 primer48, Herculase II Fusion DNA polymerase (Agilent Technologies), 0.25 mM dNTPs (100 mM; 25 mM each dNTP) and 0.5–4 µl barcoded library as template in a total reaction volume of 100 µl. The applied amplification thermal profile was processed as follows: initial denaturation for 2 min at 95 °C; denaturation for 30 s at 95 °C, annealing for 30 s at 60 °C and elongation for 30 s at 72 °C for 3 to 20 cycles; and a final elongation step for 5 min at 72 °C. Thereafter, the amplified DNA was purified using a MinElute purification step and DNA was eluted in 20 µl TET. The concentration of the amplified DNA sequencing libraries was measured using a Bioanalyzer (Agilent Technologies) and a DNA1000 lab chip from Agilent Technologies.The sequencing libraries were sequenced on an Illumina HiSeq 4000 platform at the Max Planck Institute for Science of Human History in Jena. The samples from Auneau (TU839 and TU840) were paired-end sequenced applying 2 × 50 + 8 + 8 cycles. All other libraries prepared in Tübingen were single-end sequenced using 75 + 8 + 8 cycles.OxfordSamples AL2657, AL2541, AL2741, AL2744, AL3185, AL2350, CH1109, AL2370, AL3272 and AL3284 were processed at the dedicated ancient DNA facility at the PalaeoBARN laboratory at the University of Oxford, following methods described previously8. In brief, double-stranded libraries were constructed following the protocol in ref. 48. These libraries were sequenced on a HiSeq 2500 (AL2657, AL2541, AL2741, AL2744) or a HiSeq 4000 (AL3185, AL2350, CH1109) instrument at the Danish National Sequencing Center or on a NextSeq 550 instrument (AL2741) at the Natural History Museum of London. For samples AL2370, AL3272 and AL3284, between six and eight separate PCR reactions with unique indexes were carried out on their libraries and they were sequenced alongside samples HOV4, VAL_18A and IN18_016 on an Illumina NovaSeq 6000 lane with an S4 100-bp paired-end set-up at SciLifeLab in Stockholm.CopenhagenSamples CGG13, CGG17, CGG19, CGG20, CGG21, CGG25, CGG26, CGG27, CGG28, CGG34, Tumat1 and IRK were processed at the GLOBE Institute, University of Copenhagen. All pre-PCR work was performed in ancient DNA facilities following ancient DNA guidelines57. The details of extraction, library construction and sequencing for the samples with CGG codes are described in ref. 21, in relation to the publication of mitochondrial data from these specimens. The Tumat1 sample was processed following the exact same protocol. In brief, DNA extraction was performed using a buffer containing urea, EDTA and proteinase K50, double-stranded libraries were prepared with NEBNext DNA Sample Prep Master MixSet 2 (E6070S, New England Biolabs) and Illumina-specific adaptors48, and sequencing was performed on an Illumina HiSeq 2500 platform using 100-bp single-read chemistry. For the IRK sample, DNA was extracted from three subsamples and purified as described in ref. 21. The three DNA extracts and the purified pre-digest of one subsample were incorporated into double-stranded libraries following the BEST protocol58, with the modifications described in ref. 59, and sequenced on a BGISEQ-500 platform using 100-bp single-read chemistry.Santa CruzSamples SC19.MCJ017, SC19.MCJ015, SC19.MCJ010 and SC19.MCJ014 were processed at the UCSC Paleogenomics Lab and were provided by the Yukon Government Paleontology program. All pre-PCR work was performed in a dedicated ancient DNA facility at the University of California, Santa Cruz, following standard ancient DNA methods60. Subsamples (250–350 mg) were sent to the UCI KECK AMS facility for radiocarbon dating, and the remaining amounts were powdered in a Retsch MM400 for extraction. For each sample, ~100 mg of powder was treated with a 0.5% sodium hypochlorite solution before extraction to remove surface contaminants61 and then combined with 1 ml lysis buffer for extraction, following the protocol in ref. 52. Samples were processed in parallel with a negative control. We quantified the extracts using a Qubit 1× dsDNA HS Assay kit (Q33231) before preparing libraries. We prepared single-stranded libraries following the protocol in ref. 62 and amplified the libraries for 9–16 cycles as informed by qPCR. After amplification, we cleaned the libraries using a 1.2× SPRI bead solution and pooled them to an equimolar ratio for in-house shallow quality-control sequencing on a NextSeq 550 paired-end 75-bp run. We then sent the libraries to Fulgent Genetics for deeper sequencing on two paired-end 150-bp lanes on a HiSeq X instrument.ViennaSample HOV4 was processed at the Department of Anthropology, University of Vienna. The sample is a canine tooth, which after sequencing was determined to derive from a dhole (Cuon alpinus). DNA was extracted from its cementum using the methods described in ref. 63 with a modified incubation time of ~18 h. The library was prepared according to the protocol in ref. 48 with the modifications from ref. 64. Five separate PCR reactions with unique indexes were carried out on the library and were sequenced alongside samples VAL_18A, IN18_016, AL2242, AL2370, AL2893, AL3272 and AL3284 on an Illumina NovaSeq 6000 lane with an S4 100-bp paired-end set-up at SciLifeLab in Stockholm.An overview of all samples and their associated metadata is available in Supplementary Data 1.Genome sequence data processingFor paired-end data, read pairs were merged and adaptors were trimmed using SeqPrep (https://github.com/jstjohn/SeqPrep), discarding reads that could not be successfully merged. Reads were mapped to the dog reference genome canFam3.1 using BWA aln (v.0.7.17)65 with permissive parameters, including a disabled seed (-l 16500 -n 0.01 -o 2). Duplicates were removed by keeping only one read from any set of reads that had the same orientation, length and start and end coordinates. For sample Taimyr-1, previously published data13 were merged with newly generated data. Data from samples processed in Copenhagen were processed as described previously66 except that they were also mapped to canFam3.1. Post-mortem damage was quantified using PMDtools (v0.60)67 with the ‘–first’ and ‘–CpG’ arguments.Genotyping and integration with previously published genomesTo construct a comparative dataset for population genetic analyses, we started from a published variant call set compiling 722 modern dog, wolf and other canid genomes from multiple previous studies (NCBI BioProject accession PRJNA448733)40. To this, we added additional modern whole genomes from other studies: 4 African golden wolves and 15 Nigerian village dogs (Genome Sequence Archive (http://gsa.big.ac.cn/), accession PRJCA000335)68, 12 Scandinavian wolves (European Nucleotide Archive accession PRJEB20635)69, 9 North American wolves and coyotes (European Nucleotide Archive accession PRJNA496590)25 and 8 other canids (African hunting dog, dhole, Ethiopian wolf, golden jackal, Middle Eastern grey wolves) (European Nucleotide Archive accession PRJNA494815)22. Reads from these genomes were mapped to the dog reference genome using bwa mem (version 0.7.15)70, marked for duplicates using Picard Tools (v2.21.4) (http://broadinstitute.github.io/picard), genotyped at the sites present in the above dataset using GATK HaplotypeCaller (v3.6)71 with the ‘-gt_mode GENOTYPE_GIVEN_ALLELES’ argument and then merged into the dataset using bcftools merge (http://www.htslib.org/). The following filters were then applied to sites and genotypes across the full dataset: sites with excess heterozygosity (bcftools fill-tags ‘ExcHet’ P value 5.8×. For divergence time analyses, haploid X chromosomes from two different male genomes were combined and the point at which the inferred effective population size for this ‘pseudodiploid’ chromosome increased sharply upwards was taken to correspond to a population divergence. Results were scaled using a mutation rate of 0.4 × 10−8 mutations per site per generation13,87 (with a 25% lower rate for X-chromosome analyses) and a mean generational interval of 3 years13. For effective population size inferences, transition variants were ignored and results were scaled using a transversions-only mutation rate inferred from results on modern genomes. For more details on the MSMC2 analyses, see Supplementary Information section 3.Selection analysesSelection analysis was performed using PLINK (v1.90b5.2)88. This analysis used the 72 ancient wolf genomes and 68 modern wolf genomes (with the latter including a historical Japanese wolf genome73 treated as ancient for analysis purposes, with its age set to 200 bp). A list of the genomes used for this analysis is available in Supplementary Data 2 (“Used for selection scan” column). All SNPs, not only transversions, were used for this analysis. The age of each wolf was set as the phenotype, with values of 0 for modern wolves, and the ‘–linear’ argument was used to test for an association between SNP genotypes and age, also applying the ‘–adjust’ argument to correct P values using genomic control. The application of genomic control34 here aimed to use the magnitude of temporal allele frequency variance observed across the genome to account for what was observed from genetic drift alone given wolf demographic history. Only results for the following sets of sites were retained and included in the Manhattan plot: sites where at least 40 ancient genomes had a genotype call, sites with a minor allele frequency among the ancient wolves of ≥5% and sites that had at least 7 neighbouring sites within a 50-kb window with a P value that was at least 90% as large (on a log10 scale) as the P value of the site itself. The last ‘neighbourhood filter’ aimed to reduce false positives by requiring similar evidence across multiple nearby sites. As a P-value significance cut-off to correct for the genome-wide testing, we used 5 × 10−8, which is commonly used in genome-wide association studies in humans and also in dogs89. We excluded 15 regions where only a single variant reached significance. A detailed table with the 24 detected regions is available in Supplementary Data 3. To test the robustness of this analysis to false positives arising from genetic drift alone, we applied the same analysis to data from neutral coalescent simulations generated using ms90 and found no false positives. For more details, see Supplementary Information section 4.Ancestry modelling with qpAdm and qpWaveWe used the qpAdm and qpWave methods43 from ADMIXTOOLS (v5.0)84 to test ancestry models for wolf and dog targets postdating 23 ka. For the primary analyses, we used the following set of candidate source populations (age estimate in brackets, years bp): Armenia_Hovk1.HOV4 (ancient dhole), Siberia_UlakhanSular.LOW008 (70,772), Germany_Aufhausener.AH575 (57,233), Siberia_BungeToll.CGG29 (48,210), Germany_HohleFels.JK2183 (32,366), Siberia_BelayaGora.IN18_016 (32,020), Yukon_QuartzCreek.SC19.MCJ010 (29,943), Altai_Razboinichya.AL2744 (28,345), Siberia_BelayaGora.IN18_005 (18,148) and Germany_HohleFels.JK2179 (13,229). We used a rotating approach in which, for each target, we tested all possible one-, two- and three-source models that could be enumerated from the above set. Individuals from the set that were not used as a source in a given model served as thereference set (or the ‘right’ population in the qpAdm framework). This means that, in every model, each of the above individuals was always either in the source list or in the reference list. We ranked models on the basis of their P values, but prioritized models with fewer sources using a P-value threshold of 0.01: if a simpler model (meaning a model with fewer sources) had a P value above this threshold, it ranked above a more complex model (meaning a model with more sources) regardless of the P value of the latter. We also failed models with inferred ancestry proportions larger than 1.1 or smaller than −0.1. For single-source models, qpWave was run instead of qpAdm. Both programs were run with the ‘allsnps: YES’ option (without this option, there was very little power to reject models). We describe ancestry assigned to the ancient dhole source (Armenia_Hovk1.HOV4) as ‘unsampled’ ancestry; note that this does not imply that such ancestry is of non-wolf origin, only that it is not represented by (that is, diverged early from and lacks shared genetic drift with) the ancient wolf genomes in the reference set.To test whether any post-23 ka or modern wolf genome available might be a good proxy for the western Eurasian wolf-related ancestry identified in Near Eastern and African dogs, we added the 9,500-year-old Zhokhov dog17 to the rotating set of candidate source populations. Chosen for its high coverage, early date and easterly location, this makes the assumption that the Zhokhov dog is a good representative for the eastern dog ancestry component. Using the African Basenji dog as a target, models involving the Zhokhov dog plus another given wolf thus allowed us to test whether that wolf was a good match for the additional component of ancestry. For more details on the qpAdm and qpWave analyses, see Supplementary Information sections 2 (wolf targets) and  5 (dog targets).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More

  • in

    An integrated assessment of land use impact, riparian vegetation and lithologic variation on streambank stability in a peri-urban watershed (Nigeria)

    Korup, O. Landslides in the Fluvial System. Treatise on Geomorphology Vol. 9 (Elsevier Ltd., 2013).
    Google Scholar 
    Kuo, C. W. & Brierley, G. The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin, Taiwan. Earth Surf. Process. Landf. 39, 2038–2055 (2014).ADS 
    Article 

    Google Scholar 
    Tunnicliffe, J. F., Leenman, A. & Reeve, M. The influence of large, chronic landslides on the fluvial system AGU Fall Meeting Abstracts, EP33A-3620 (2014).
    Fox, G. A., Purvis, R. A. & Penn, C. J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 181, 602–614 (2016).CAS 
    Article 

    Google Scholar 
    Biswas, S. P. Restoration of riverine health. Handb. Ecol. Ecosyst. Eng. https://doi.org/10.1002/9781119678595.ch14 (2021).Article 

    Google Scholar 
    Lutgen, A. et al. Nutrients and heavy metals in legacy sediments: Concentrations, comparisons with upland soils, and implications for water quality. J. Am. Water Resour. Assoc. 56, 669–691 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Emenike, P. C. et al. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environ. Pollut. 265, 114795 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox, G. A. & Wilson, G. V. The role of subsurface flow in hillslope and stream bank erosion: A review. Soil Sci. Soc. Am. J. 74, 717–733 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Duró, G., Crosato, A., Kleinhans, M. G., Roelvink, D. & Uijttewaal, W. S. J. Bank erosion processes in regulated navigable rivers. J. Geophys. Res. Earth Surf. 125, 1–26 (2020).Article 

    Google Scholar 
    Keesstra, S. D. et al. Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 69, 191–207 (2005).ADS 
    Article 

    Google Scholar 
    Pizzuto, J. & O’Neal, M. Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia. Geology 37, 19–22 (2009).ADS 
    Article 

    Google Scholar 
    Abam, T. K. S. Factors affecting distribution of instability of river banks in the Niger delta. Eng. Geol. 35, 123–133 (1993).Article 

    Google Scholar 
    Jordan, C. et al. Sand mining in the Mekong Delta revisited—current scales of local sediment deficits. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Hackney, C. R. et al. River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3, 217–225 (2020).Article 

    Google Scholar 
    Yang, S. L., Milliman, J. D., Li, P. & Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Change 75, 14–20 (2011).ADS 
    Article 

    Google Scholar 
    Royall, D. Land-use impacts on the hydrogeomorphology of small watersheds. Ref. Modul. Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-818234-5.00010-9 (2021).Article 

    Google Scholar 
    Johnson, P. & Royall, D. Evaluating the effects of urbanization age on the morphology of low-order urban streams in the U.S. southern Piedmont. Phys. Geogr. 40, 1–27 (2019).Article 

    Google Scholar 
    Zaimes, G., Tamparopoulos, A. E., Tufekcioglu, M. & Schultz, R. C. Understanding stream bank erosion and deposition in Iowa, USA: A seven year study along streams in different regions with different riparian land-uses. J. Environ. Manag. 287, 112352 (2021).Article 

    Google Scholar 
    Zaimes, G. N. & Schultz, R. C. Riparian land-use impacts on bank erosion and deposition of an incised stream in north-central Iowa, USA. CATENA 125, 61–73 (2015).Article 

    Google Scholar 
    Simon, A., Curini, A., Darby, S. E. & Langendoen, E. J. Bank and near-bank processes in an incised channel. Geomorphology 35, 193–217 (2000).ADS 
    Article 

    Google Scholar 
    Rinaldi, M. & Casagli, N. Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: The Sieve River (Italy). Geomorphology 26, 253–277 (1999).ADS 
    Article 

    Google Scholar 
    Wynn, T. & Mostaghimi, S. The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, USA. J. Am. Water Resour. Assoc. 42, 69–82 (2006).ADS 
    Article 

    Google Scholar 
    Hecker, G. A., Meehan, M. A. & Norland, J. E. Plant community influences on intermittent stream stability in the great plains. Rangel. Ecol. Manag. 72, 112–119 (2019).Article 

    Google Scholar 
    Konsoer, K. M. et al. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 252, 80–97 (2016).ADS 
    Article 

    Google Scholar 
    Abernethy, B. & Rutherfurd, I. D. Does the weight of riparian trees destabilize riverbanks?. River Res. Appl. 16, 565–576 (2000).
    Google Scholar 
    Collison, A. J. C. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol. Process. 15, 63–79 (2001).Article 

    Google Scholar 
    Simon, A. & Collison, A. J. C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landf. 27, 527–546 (2002).ADS 
    Article 

    Google Scholar 
    Krzeminska, D., Kerkhof, T., Skaalsveen, K. & Stolte, J. Effect of riparian vegetation on stream bank stability in small agricultural catchments. CATENA 172, 87–96 (2019).Article 

    Google Scholar 
    Yu, G. A. et al. Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China. Geomorphology 351, 106958 (2020).Article 

    Google Scholar 
    Halder, A. & Mowla Chowdhury, R. Evaluation of the river Padma morphological transition in the central Bangladesh using GIS and remote sensing techniques. Int. J. River Basin Manag. 1–15 (2021).
    Bernier, J. F., Chassiot, L. & Lajeunesse, P. Assessing bank erosion hazards along large rivers in the Anthropocene: A geospatial framework from the St. Lawrence fluvial system. Geomat. Nat. Hazards Risk 12, 1584–1615 (2021).Article 

    Google Scholar 
    Lawler, D. M., Grove, J. R., Couperthwaite, J. S. & Leeks, G. J. L. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrol. Process. 13, 977–992 (1999).ADS 
    Article 

    Google Scholar 
    Gholami, V., Sahour, H. & Hadian Amri, M. A. Soil erosion modeling using erosion pins and artificial neural networks. CATENA 196, 104902 (2021).Article 

    Google Scholar 
    Simon, A., Pollen-Bankhead, N. & Thomas, R. E. Development and application of a deterministic bank stability and toe erosion model for stream restoration. Geophys. Monogr. Ser. 194, 453–474 (2011).ADS 

    Google Scholar 
    Klavon, K. et al. Evaluating a process-based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surf. Process. Landf. 42, 191–213 (2017).ADS 
    Article 

    Google Scholar 
    Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 91, 105–139 (1965).Article 

    Google Scholar 
    Fredlund, D. G., Morgenstern, N. R. & Widger, R. A. Shear strength of unsaturated soils. Can. Geotech. J. 15, 313–321 (1978).Article 

    Google Scholar 
    Myers, D. T., Rediske, R. R. & McNair, J. N. Measuring streambank erosion: A comparison of erosion pins, total station, and terrestrial laser scanner. Water (Switzerland) 11, 1846 (2019).
    Google Scholar 
    Casagli, N., Rinaldi, M., Gargini, A. & Curini, A. Pore water pressure and streambank stability: Results from a monitoring site on the Sieve River, Italy. Earth Surf. Process. Landf. 24, 1095–1114 (1999).ADS 
    Article 

    Google Scholar 
    Tufekcioglu, M. et al. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in southern Iowa, United States. J. Soil Water Conserv. 67, 545–555 (2012).Article 

    Google Scholar 
    Palmer, J. A., Schilling, K. E., Isenhart, T. M., Schultz, R. C. & Tomer, M. D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 209, 66–78 (2014).ADS 
    Article 

    Google Scholar 
    Pollen, N. & Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 41, 1–11 (2005).Article 

    Google Scholar 
    Pollen-Bankhead, N. & Simon, A. Sensitivity of post-hurricane beach. Earth Surf. Process. Landf. 34, 471–480 (2009).ADS 
    Article 

    Google Scholar 
    Wasige, J. E. et al. A land use and land cover classification system for use with remote sensor data. Prof. Pap. 100, 753–764 (1976).
    Google Scholar 
    Al-Doski, J., Mansor, S. B., Ng, H., San, P. & Khuzaimah, Z. Land cover mapping using remote sensing data. Am. J. Geogr. Inf. Syst. 2020, 33–45 (2020).
    Google Scholar 
    Okeke, C. A. U., Ede, A. N. & Kogure, T. Monitoring of riverbank stability and seepage undercutting mechanisms on the Iju (Atuwara) River, Southwest Nigeria. IOP Conf. Ser. Mater. Sci. Eng. 640, 012105 (2019).Article 

    Google Scholar 
    Abam, T. K. S. Aspects of alluvial river bank recession: Some examples from the Niger delta. Environ. Geol. 31, 211–220 (1997).Article 

    Google Scholar 
    Okeke, C. A. U., Azuh, D., Ogbuagu, F. U. & Kogure, T. Assessment of land use impact and seepage erosion contributions to seasonal variations in riverbank stability: The Iju River, SW Nigeria. Groundw. Sustain. Dev. 11, 100448 (2020).Article 

    Google Scholar 
    Voltz, T. et al. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys. J. Geophys. Res. Earth Surf. 118, 953–969 (2013).ADS 
    Article 

    Google Scholar 
    Thomas, J., Kumar, S. & Sudheer, K. P. Channel stability assessment in the lower reaches of the Krishna River (India) using multi-temporal satellite data during 1973–2015. Remote Sens. Appl. Soc. Environ. 17, 100274 (2020).
    Google Scholar 
    Ran, Y. et al. A higher river sinuosity increased riparian soil structural stability on the downstream of a dammed river. Sci. Total Environ. 802, 149886 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Midgley, T. L., Fox, G. A. & Heeren, D. M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 145–146, 107–114 (2012).ADS 
    Article 

    Google Scholar 
    Daly, E. R., Miller, R. B. & Fox, G. A. Modeling streambank erosion and failure along protected and unprotected composite streambanks. Adv. Water Resour. 81, 114–127 (2015).ADS 
    Article 

    Google Scholar 
    Saleem, A. et al. Spatial and temporal variations of erosion and accretion: A case of a large tropical river. Earth Syst. Environ. 4, 167–181 (2020).ADS 
    Article 

    Google Scholar 
    Biswas, R. N., Islam, M. N., Islam, M. N. & Shawon, S. S. Modeling on approximation of fluvial landform change impact on morphodynamics at Madhumati River Basin in Bangladesh. Model. Earth Syst. Environ. 7, 71–93 (2021).Article 

    Google Scholar 
    Li, J., Tooth, S., Zhang, K. & Zhao, Y. Visualisation of flooding along an unvegetated, ephemeral river using Google Earth Engine: Implications for assessment of channel-floodplain dynamics in a time of rapid environmental change. J. Environ. Manag. 278, 111559 (2021).Article 

    Google Scholar 
    Graziano, M. P., Deguire, A. K. & Surasinghe, T. D. Riparian buffers as a critical landscape feature : Insights for riverscape conservation and policy renovations. Diversity 14, 172 (2022).Article 

    Google Scholar 
    Rauch, H. P., von der Thannen, M., Raymond, P., Mira, E. & Evette, A. Ecological challenges* for the use of soil and water bioengineering techniques in river and coastal engineering projects. Ecol. Eng. 176, 106539 (2022).Article 

    Google Scholar 
    East, A. E. et al. Channel-planform evolution in four rivers of Olympic National Park, Washington, USA: The roles of physical drivers and trophic cascades. Earth Surf. Process. Landf. 42, 1011–1032 (2017).ADS 
    Article 

    Google Scholar 
    Kumar, P. et al. Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci. Total Environ. 784, 147058 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laubel, A., Kronvang, B., Hald, A. B. & Jensen, C. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Process. 17, 3443–3463 (2003).ADS 
    Article 

    Google Scholar 
    Veihe, A., Jensen, N. H., Schiøtz, I. G. & Nielsen, S. L. Magnitude and processes of bank erosion at a small stream in Denmark. Hydrol. Process. 25, 1597–1613 (2011).ADS 
    Article 

    Google Scholar 
    Kronvang, B., Andersen, H. E., Larsen, S. E. & Audet, J. Importance of bank erosion for sediment input, storage and export at the catchment scale. J. Soils Sediments 13, 230–241 (2013).Article 

    Google Scholar 
    Rajakumari, S., Meenambikai, M., Divya, V., Sarunjith, K. J. & Ramesh, R. Morphological changes in alluvial and coastal plains of Kandaleru river, Andhra Pradesh using RS and GIS, Egypt. J. Remote Sens. Space Sci. 24, 1071–1081 (2021).
    Google Scholar 
    Zegeye, A. D., Langendoen, E. J., Steenhuis, T. S., Mekuria, W. & Tilahun, S. A. Bank stability and toe erosion model as a decision tool for gully bank stabilization in sub humid Ethiopian highlands. Ecohydrol. Hydrobiol. 20, 301–311 (2020).Article 

    Google Scholar 
    Shields, F. D. J., Morin, N. & Cooper, C. M. Design of large woody debris structures for channel rehabilitation. In Seventh Federal Interagency Sedimentation Conference, Vol. 8 (2001).C A U, Okeke A N, Ede (2019) Mechanisms of riverbank failure and channel instability on the Nkisi River Southeast Nigeria. IOP Conference Series: Materials Science and Engineering 640(1), 012104. https://doi.org/10.1088/1757-899X/640/1/012104Article 

    Google Scholar  More

  • in

    Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes

    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seymour JR, Amin SA, Raina J-B, Stocker R Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:17065.Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332:1097–1100.CAS 
    PubMed 

    Google Scholar 
    Cirri E, Pohnert G. Algae-bacteria interactions that balance the planktonic microbiome. N. Phytol. 2019;223:100–6.
    Google Scholar 
    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    Grant MAA, Kazamia E, Cicuta P, Smith AG. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J. 2014;8:1418–27.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci USA 2015;112:9938–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci USA 2015;112:453–7.CAS 
    PubMed 

    Google Scholar 
    Suleiman M, Zecher K, Yücel O, Jagmann N, Philipp B. Interkingdom cross-feeding of ammonium from marine methylamine-degrading bacteria to the diatom Phaeodactylum tricornutum. Appl Environ Microbiol. 2016;82:7113–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ratnarajah L, Blain S, Boyd PW, Fourquez M, Obernosterer I, Tagliabue A. Resource colimitation drives competition between phytoplankton and bacteria in the Southern Ocean. Geophys Res Lett. 2021;48:e2020GL088369.PubMed 
    PubMed Central 

    Google Scholar 
    Løvdal T, Eichner C, Grossart H-P, Carbonnel V, Chou L, Martin-Jézéquel V, et al. Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloom. Biogeosciences. 2008;5:371–83.
    Google Scholar 
    Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science. 1999;283:365–7.CAS 
    PubMed 

    Google Scholar 
    Geider R, La Roche J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol. 2002;37:1–17.
    Google Scholar 
    Smayda TJ. Normal and accelerated sinking of phytoplankton in the sea. Mar Geol. 1971;11:105–22.
    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, et al. Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci. 2018;11:27–37.
    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 

    Google Scholar 
    Mönnich J, Tebben J, Bergemann J, Case R, Wohlrab S, Harder T. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. ISME J. 2020;14:1614–25.PubMed 
    PubMed Central 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci USA 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res. 2005;53:43–66.CAS 

    Google Scholar 
    Peperzak L, Colijn F, Gieskes WWC, Peeters JCH. Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis. J Plankton Res. 1998;20:517–37.
    Google Scholar 
    Hai D-N, Lam N-N, Dippner JW. Development of Phaeocystis globosa blooms in the upwelling waters of the south central coast of Viet Nam. J Mar Syst. 2010;83:253–61.
    Google Scholar 
    Wang X, Song H, Wang Y, Chen N. Research on the biology and ecology of the harmful algal bloom species Phaeocystis globosa in China: Progresses in the last 20 years. Harmful Algae. 2021;107:102057.PubMed 

    Google Scholar 
    Jiang M, Borkman DG, Scott Libby P, Townsend DW, Zhou M. Nutrient input and the competition between Phaeocystis pouchetii and diatoms in Massachusetts Bay spring bloom. J Mar Syst. 2014;134:29–44.
    Google Scholar 
    Nissen C, Vogt M. Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes. Biogeosciences. 2021;18:251–83.CAS 

    Google Scholar 
    Mars Brisbin M, Mitarai S. Differential gene expression supports a resource-intensive, defensive role for colony production in the bloom-forming haptophyte, Phaeocystis globosa. J Eukaryot Microbiol. 2019;66:788–801.PubMed 
    PubMed Central 

    Google Scholar 
    Zhu Z, Meng R, Smith WO Jr, Doan-Nhu H, Nguyen-Ngoc L, Jiang X. Bacterial composition associated with giant colonies of the harmful algal species Phaeocystis globosa. Front Microbiol. 2021;12:737484.PubMed 
    PubMed Central 

    Google Scholar 
    Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:646.PubMed 
    PubMed Central 

    Google Scholar 
    Verity PG, Whipple SJ, Nejstgaard JC, Alderkamp A-C. Colony size, cell number, carbon and nitrogen contents of Phaeocystis pouchetii from western Norway. J Plankton Res. 2007;29:359–67.
    Google Scholar 
    Alderkamp A-C, Buma AGJ, van Rijssel M. The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry. 2007;83:99–118.CAS 

    Google Scholar 
    Smriga S, Fernandez VI, Mitchell JG, Stocker R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc Natl Acad Sci USA 2016;113:1576–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mühlenbruch M, Grossart H-P, Eigemann F, Voss M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.PubMed 

    Google Scholar 
    Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.CAS 
    PubMed 

    Google Scholar 
    Solomon CM, Lessard EJ, Keil RG, Foy MS. Characterization of extracellular polymers of Phaeocystis globosa and P. antarctica. Mar Ecol Prog Ser. 2003;250:81–89.CAS 

    Google Scholar 
    Shen P, Qi Y, Wang Y, Huang L. Phaeocystis globosa Scherffel, a harmful microalga, and its production of dimethylsulfoniopropionate. Chin J Oceano Limnol. 2011;29:869–73.CAS 

    Google Scholar 
    Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 

    Google Scholar 
    Wang J, Bouwman AF, Liu X, Beusen AHW, Van Dingenen R, Dentener F, et al. Harmful algal blooms in chinese coastal waters will persist due to perturbed nutrient ratios. Environ Sci Technol Lett. 2021;8:276–84.CAS 

    Google Scholar 
    Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J. 2011;5:1484–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helliwell KE. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. N. Phytol. 2017;216:62–68.CAS 

    Google Scholar 
    Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr. 2007;52:1079–93.CAS 

    Google Scholar 
    Tang YZ, Koch F, Gobler CJ. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc Natl Acad Sci USA 2010;107:20756–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93.CAS 
    PubMed 

    Google Scholar 
    Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993;32:234–6.
    Google Scholar 
    Hamilton PB, Lefebvre KE, Bull RD. Single cell PCR amplification of diatoms using fresh and preserved samples. Front Microbiol. 2015;6:1084.PubMed 
    PubMed Central 

    Google Scholar 
    dos Reis MC, Romac S, Le Gall F, Marie D, Frada MJ, Koplovitz G, et al. Exploring the phycosphere of Emiliania huxleyi: from bloom dynamics to microbiome assembly experiments. bioRxiv 2022;02;21:481256.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Glo FO, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 2018. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Mcmurdie PJ, Holmes S phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013;8:e61217.Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2:5–4.
    Google Scholar 
    Ares Á, Brisbin MM, Sato KN, Martín JP, Iinuma Y, Mitarai S. Extreme storms cause rapid but short-lived shifts in nearshore subtropical bacterial communities. Environ Microbiol. 2020;22:4571–88.CAS 
    PubMed 

    Google Scholar 
    Radwan SSA, Al-Mailem DM, Kansour MK. Gelatinizing oil in water and its removal via bacteria inhabiting the gels. Sci Rep. 2017;7:13975.PubMed 
    PubMed Central 

    Google Scholar 
    Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:659.PubMed 
    PubMed Central 

    Google Scholar 
    Glaeser SP, Imani J, Alabid I, Guo H, Kumar N, Kämpfer P, et al. Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica. ISME J. 2016;10:871–84.PubMed 

    Google Scholar 
    Chakraborty U, Chakraborty BN, Dey PL, Chakraborty AP, Sarkar J. Biochemical responses of wheat plants primed with Ochrobactrum pseudogrignonense and subjected to salinity stress. Agric Res. 2019;8:427–40.CAS 

    Google Scholar 
    Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, et al. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecol. 2020;96;11:fiaa115.Ajani PA, Kahlke T, Siboni N, Carney R, Murray SA, Seymour JR. The Microbiome of the cosmopolitan diatom Leptocylindrus reveals significant spatial and temporal variability. Front Microbiol. 2018;9:2758.PubMed 
    PubMed Central 

    Google Scholar 
    Connor EF, McCoy ED. The statistics and biology of the species-area relationship. Am Nat. 1979;113:791–833.
    Google Scholar 
    Hamm CE, Simson DA, Merkel R, Smetacek V. Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Prog Ser. 1999;187:101–11.
    Google Scholar 
    Geddes BA, Paramasivan P, Joffrin A, Thompson AL, Christensen K, Jorrin B, et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat Commun. 2019;10:3430.PubMed 
    PubMed Central 

    Google Scholar 
    Sieburth JM. Acrylic acid, an‘ antibiotic’ principle in Phaeocystis blooms in Antarctic waters. Science. 1960;132:676–7.CAS 
    PubMed 

    Google Scholar 
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.
    Google Scholar 
    Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2016;44:D67–72.CAS 
    PubMed 

    Google Scholar 
    López-Pérez M, Gonzaga A, Martin-Cuadrado A-B, Onyshchenko O, Ghavidel A, Ghai R, et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep. 2012;2:696.PubMed 
    PubMed Central 

    Google Scholar 
    Diner RE, Schwenck SM, McCrow JP, Zheng H, Allen AE. Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms. Front Microbiol. 2016;7:880.PubMed 
    PubMed Central 

    Google Scholar 
    Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, et al. Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil. 2012;356:175–96.CAS 

    Google Scholar 
    Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 1998;24:7–11.
    Google Scholar 
    Gyaneshwar P, James EK, Reddy PM. Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium‐tolerant rice varieties. N. Phytol. 2002;154:131–45.CAS 

    Google Scholar 
    Guo H, Yang Y, Liu K, Xu W, Gao J, Duan H, et al. Comparative genomic analysis of Delftia tsuruhatensis MTQ3 and the identification of functional NRPS genes for siderophore production. Biomed Res Int. 2016;2016:3687619.PubMed 
    PubMed Central 

    Google Scholar 
    Vásquez-Piñeros MA, Martínez-Lavanchy PM, Jehmlich N, Pieper DH, Rincón CA, Harms H, et al. Delftia sp. LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation. BMC Microbiol. 2018;18:108.PubMed 
    PubMed Central 

    Google Scholar 
    Riegman R, Noordeloos AAM, Cadée GC. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar Biol. 1992;112:479–84.
    Google Scholar 
    Sañudo-Wilhelmy SA, Cutter LS, Durazo R, Smail EA, Gómez-Consarnau L, Webb EA, et al. Multiple B-vitamin depletion in large areas of the coastal ocean. Proc Natl Acad Sci USA 2012;109:14041–5.PubMed 
    PubMed Central 

    Google Scholar 
    Gobler CJ, Norman C, Panzeca C, Taylor GT, Sañudo-Wilhelmy SA. Effect of B-vitamins (B1, B12) and inorganic nutrients on algal bloom dynamics in a coastal ecosystem. Aquat Micro Ecol. 2007;49:181–94.
    Google Scholar 
    Gómez-Consarnau L, Sachdeva R, Gifford SM, Cutter LS, Fuhrman JA, Sañudo-Wilhelmy SA, et al. Mosaic patterns of B-vitamin synthesis and utilization in a natural marine microbial community. Environ Microbiol. 2018;20:2809–23.PubMed 

    Google Scholar 
    Bertrand EM, Saito MA, Jeon YJ, Neilan BA. Vitamin B12 biosynthesis gene diversity in the Ross Sea: the identification of a new group of putative polar B12 biosynthesizers. Environ Microbiol. 2011;13:1285–98.CAS 
    PubMed 

    Google Scholar  More