More stories

  • in

    Carbon fixation rates in groundwater similar to those in oligotrophic marine systems

    Falkowski, P. et al. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000).Article 

    Google Scholar 
    McMahon, S. & Parnell, J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87, 113–120 (2014).Article 

    Google Scholar 
    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).Article 

    Google Scholar 
    Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).Article 

    Google Scholar 
    Stevanović, Z. Karst waters in potable water supply: a global scale overview. Environ. Earth Sci. 78, 662 (2019).Article 

    Google Scholar 
    Poulson, T. L. & White, W. B. The cave environment. Science 165, 971–981 (1969).Article 

    Google Scholar 
    Rusterholtz, K. J. & Mallory, L. M. Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb. Ecol. 28, 79–99 (1994).Article 

    Google Scholar 
    Smith, H. J. et al. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol. Ecol. 94, fiy191 (2018).
    Google Scholar 
    Alexander, M. Introduction to Soil Microbiology (Wiley, 1977).Griebler, C. & Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649–677 (2009).Article 

    Google Scholar 
    Krumholz, L. R., McKinley, J. P., Ulrich, G. A. & Suflita, J. M. Confined subsurface microbial communities in Cretaceous rock. Nature 386, 64–66 (1997).Article 

    Google Scholar 
    Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).Article 

    Google Scholar 
    Magnabosco, C. et al. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J. 10, 730–741 (2016).Article 

    Google Scholar 
    Stevens, T. O. & McKinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–455 (1995).Article 

    Google Scholar 
    Tiago, I. & Veríssimo, A. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ. Microbiol. 15, 1687–1706 (2013).Article 

    Google Scholar 
    Mccollom, T. M. & Amend, J. P. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3, 135–144 (2005).Article 

    Google Scholar 
    Momper, L., Jungbluth, S. P., Lee, M. D. & Amend, J. P. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 11, 2319–2333 (2017).Article 

    Google Scholar 
    Jewell, T. N. M., Karaoz, U., Brodie, E. L., Williams, K. H. & Beller, H. R. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. ISME J. 10, 2106–2117 (2016).Article 

    Google Scholar 
    Herrmann, M., Rusznyák, A. & Akob, D. M. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl. Environ. Microbiol. 81, 2384–2394 (2015).Peterson, B. J. Aquatic primary productivity and the 14C–CO2 method: a history of the productivity problem. Annu. Rev. Ecol. Syst. 11, 359–385 (1980).Article 

    Google Scholar 
    Viviani, D. A., Karl, D. M. & Church, M. J. Variability in photosynthetic production of dissolved and particulate organic carbon in the North Pacific Subtropical Gyre. Front. Mar. Sci. 2, 73 (2015).Article 

    Google Scholar 
    Kohlhepp, B. et al. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany. Hydrol. Earth Syst. Sci. 21, 6091–6116 (2017).Article 

    Google Scholar 
    Pedersen, K. & Ekendahl, S. Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb. Ecol. 23, 1–14 (1992).Article 

    Google Scholar 
    Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Ann. Rev. Mar. Sci. 2, 305–331 (2010).Article 

    Google Scholar 
    Karl, D. M., Hebel, D. V., Björkman, K. & Letelier, R. M. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol. Oceanogr. 43, 1270–1286 (1998).Article 

    Google Scholar 
    Liang, Y. et al. Estimating primary production of picophytoplankton using the carbon-based ocean productivity model: a preliminary study. Front. Microbiol. 8, 1926 (2017).Article 

    Google Scholar 
    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. 2 48, 1405–1447 (2001).Article 

    Google Scholar 
    Gundersen, K., Orcutt, K. M., Purdie, D. A., Michaels, A. F. & Knap, A. H. Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site. Deep Sea Res. 2 48, 1697–1718 (2001).Article 

    Google Scholar 
    Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res. 2 43, 129–156 (1996).Article 

    Google Scholar 
    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 1, 140048 (2014).Article 

    Google Scholar 
    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Data from: Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Dryad https://doi.org/10.5061/dryad.d702p (2015).Schwab, V. F. et al. 14C-free carbon Is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers. Water Resour. Res. 55, 2104–2121 (2019).Article 

    Google Scholar 
    Taubert, M. et al. Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater. ISME J 16, 1153–1162 (2022).Article 

    Google Scholar 
    Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880 (2003).Article 

    Google Scholar 
    Lin, W. et al. Genomic insights into the uncultured genus “Candidatus Magnetobacterium” in the phylum Nitrospirae. ISME J. 8, 2463–2477 (2014).Article 

    Google Scholar 
    Kato, S. et al. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ. Microbiol. 20, 862–877 (2018).Article 

    Google Scholar 
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).Article 

    Google Scholar 
    Kojima, H., Watanabe, T. & Fukui, M. Sulfuricaulis limicola gen. nov., sp. nov., a sulfur oxidizer isolated from a lake. Int. J. Syst. Evol. Microbiol. 66, 266–270 (2016).Article 

    Google Scholar 
    Strous, M., Van Gerven, E., Kuenen, J. G. & Jetten, M. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl. Environ. Microbiol. 63, 2446–2448 (1997).Article 

    Google Scholar 
    Ji, X., Wu, Z., Sung, S. & Lee, P.-H. Metagenomics and metatranscriptomics analyses reveal oxygen detoxification and mixotrophic potentials of an enriched anammox culture in a continuous stirred-tank reactor. Water Res. 166, 115039 (2019).Article 

    Google Scholar 
    Dalsgaard, T. et al. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. mBio 5, e01966 (2014).Article 

    Google Scholar 
    Smith, R. L., Böhlke, J. K., Song, B. & Tobias, C. R. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer. Environ. Sci. Technol. 49, 12169–12177 (2015).Article 

    Google Scholar 
    Strous, M., Heijnen, J. J., Kuenen, J. G. & Jetten, M. S. M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 50, 589–596 (1998).Article 

    Google Scholar 
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).Article 

    Google Scholar 
    Rittmann, B. E. & McCarty, P. L. Environmental Biotechnology: Principles and Applications (McGraw-Hill Education, 2001).Zhang, Y. et al. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proc. Natl. Acad. Sci. USA 117, 4823–4830 (2020).Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).Article 

    Google Scholar 
    Lehmann, R. & Totsche, K. U. Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. J. Hydrol. 580, 124291 (2020).Article 

    Google Scholar 
    Küsel, K. et al. How deep can surface signals be traced in the Critical Zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Front. Earth Sci. 4, 32 (2016).Article 

    Google Scholar 
    Yan, L. et al. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. 170, 115341 (2019).Article 

    Google Scholar 
    Pack, M. A. et al. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry: methane oxidation rates by AMS. Limnol. Oceanogr. Methods 9, 245–260 (2011).Article 

    Google Scholar 
    Nielsen, E. S. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).Article 

    Google Scholar 
    Xu, X. et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl. Instrum. Methods Phys. Res. B 259, 320–329 (2007).Article 

    Google Scholar 
    Merser, S. Acetabulum online interactive statistical calculators. Accessed Feb, 2021. https://acetabulum.dk/anova.htmlBermuda Oceanographic Timeseries, accessed 21 Oct 2020, http://batsftp.bios.edu/BATS/production/bats_primary_production.txtHawaiian Oceanographic Timeseries, accessed 21 Oct 2020, ftp://ftp.soest.hawaii.edu/hot/primary_productionHawaiian Oceanographic Timeseries, accessed 21 Oct 2020, https://hahana.soest.hawaii.edu/FTP/hot/microscopy/EPIslides.txtKumar, S. et al. Nitrogen loss from pristine carbonate-rock aquifers of the Hainich Critical Zone Exploratory (Germany) is primarily driven by chemolithoautotrophic anammox processes. Front. Microbiol. 8, 1951 (2017).Article 

    Google Scholar 
    Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209 (2012).Article 

    Google Scholar 
    McIlvin, M. R. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005).Article 

    Google Scholar 
    Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).Article 

    Google Scholar 
    Thamdrup, B. et al. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr. 51, 2145–2156 (2006).Article 

    Google Scholar 
    Taubert, M. et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ. Microbiol. 20, 369–384 (2018).Article 

    Google Scholar 
    Bushnell, B. BBMap (SourceForge, 2014); http://sourceforge.net/projects/bbmapBornemann, T. L. V. et al. Geological degassing enhances microbial metabolism in the continental subsurface. Preprint at bioRxiv https://doi.org/10.1101/2020.03.07.980714 (2020).Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).Article 

    Google Scholar 
    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).Article 

    Google Scholar 
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).Article 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).Article 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).Article 

    Google Scholar 
    Murat Eren, A. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).Article 

    Google Scholar 
    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12, 1861–1866 (2018).Article 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 

    Google Scholar 
    Pelikan, C. et al. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Environ. Microbiol. 18, 2994–3009 (2016).Article 

    Google Scholar 
    Lücker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of Nitrospina gracilis Illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).Article 

    Google Scholar 
    Orellana, L. H., Rodriguez-R, L. M. & Konstantinidis, K. T. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 45, e14 (2017).
    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).
    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0501-8 (2020).Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010).Article 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 

    Google Scholar 
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).Article 

    Google Scholar 
    Emiola, A. & Oh, J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat. Commun. 9, 4956 (2018).Article 

    Google Scholar 
    Wegner, C.-E. et al. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl. Environ. Microbiol. 85, e02346-18 (2019).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Core Team, 2018).RStudio: Integrated Development Environment for R (RStudio Team, 2016).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer (2014). More

  • in

    Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy

    High diet overlap is assumed to cause competition between the three dominant pelagic planktivorous mesopredators in the Baltic Sea, sprat, herring, and stickleback11,24,25. Despite this assumption, stickleback populations have increased dramatically over the past decades, which raises the question of whether and how resources are partitioned26. While previous studies of fish diet overlap have mainly relied on microscopic identification of gut content, we implemented a DNA metabarcoding approach targeting two different gene regions, the 18S rRNA gene (18S) and the mitochondrial cytochrome c oxidase I gene (COI) to reveal the taxonomic diversity of prey, and a qPCR step to quantify rotifers that are at times abundant in the Baltic Sea. Our study highlights consistency between methods, with DNA metabarcoding resolving the plankton-fish link at the highest taxonomic resolution. Our results suggest a unique niche of stickleback that may enable high population growth in the open water, despite high competition between mesopredators, although this finding needs to be confirmed at larger scale. More than half of the DNA found in herring and sprat stomach contents was assigned to Pseudocalanus, supporting previous observations of high diet overlap between the two clupeids11,12. On the other hand, the diet of stickleback differed substantially from the two clupeids, with rotifers appearing as main prey DNA in spring. The high rotifer biomass in the environment and lack of competition from other predators indicate that this novel niche utilization may support the drastic increase of pelagic stickleback in the Baltic Sea.We find that copepods dominated the gut content of the two clupeids sprat and herring. Pseudocalanus and Temora occupied most of the sequence reads of the clupeid metabarcoding, two species that are often reported as preferred prey in previous studies11,12. Despite high contributions of these two copepods, Pseudocalanus was more than four times as abundant as Temora in clupeid gut contents. A strong preference for this copepod with marine origin can further confirm the increased competition between the clupeids, as Pseudocalanus has decreased due to decreased salinity12 and shares a similar vertical distribution as clupeid during daytime27. Our study using metabarcoding further reveals a large relative quantity (11%) of the ctenophore Mertensia in the gut samples of both clupeids. Similar, Clarke et al.28 reported an important contribution of gelatinous zooplankton to upper trophic levels in the Southern Ocean. Despite high abundances of ctenophores in the Baltic Sea and their assumed importance in marine food webs19, they are not reported as food for planktivorous fish. A possible explanation is the difficulty observing them microscopically, as their digestion rate is faster than crustaceans29, and no hard parts remain in the digestive system. Further, COI detected the presence of cladocerans, which was confirmed by the microscopic survey, but underrepresented with 18S that strongly amplify copepods20. Interestingly, more than twice annelid COI reads, including the benthic macroinvertebrates Bylgides and Marenzellaria, were associated to stickleback (15%) and herring (8%) than to sprat (4%), highlighting their ability to migrate vertically. These interactions suggest that together stickleback and herring contribute to benthic-pelagic coupling when oxygen is not restricting vertical migration in the southern Baltic Sea30.Sprat and herring share a similar feeding niche, which may explain previously observed declines in body mass and stomach fullness, and supports the theory of competition between the two species31. In contrast, stickleback revealed little diet overlap with the other mesopredators. The low relative abundances of Pseudocalanus (1–8%) in metabarcoding analyses indicates that the density-dependent competition may not limit the population growth of stickleback. The copepods that were shared in the diet of stickleback, sprat, and herring were Temora, Acartia, and Centropages have increased over the last decades, as opposed to Pseudocalanus32. Our results show that stickleback are able to feed on a broader spectrum of prey and highlight that stickleback utilizes the rotifer Synchaeta baltica as prey, which is an important component of the plankton community composition in the Baltic Sea18,20. Due to the difference of prey size, we can expect an overrepresentation of copepod to rotifer sequences compared with microscopic count data. High predation rate on S. baltica is supported by both the qPCR assay as well as microscopic counts, although only the eggshells were visible but not the soft-bodied rotifer. Despite the considerably lower carbon content per S. baltica (ca. 6 µg C ind−1) compared to copepods (ca. 20 µg C ind−1)33, the high number of rotifers likely act as a major food source for stickleback. These results propose that stickleback, due to their opportunistic feeding behaviour34 and smaller size35, have a distinct feeding niche from sprat and herring in the open water, as they feed on a smaller size class of zooplankton compared to the clupeids. Thus, we cannot assume the same process of competition between clupeids and stickleback.Rotifers can at times be very abundant in the Baltic Sea, reaching densities up to 25,000 ind m−3, but their natural predators are poorly studied. An increasing trend in biomass of the two main rotifer genera (Synchaeta and Keratella) was observed since the 1990s36. In a recent study, we showed that rotifers might occupy a unique feeding niche, as direct grazers of dinoflagellate spring bloom, as well as in the recycling of organic matter in summer20. The low level of predation on rotifers by clupeid adults ( More

  • in

    Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension

    Siderius, C., Biemans, H., Kashaigili, J. & Conway, D. Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin. Agric. Water Manag. 266, 107548 (2022).
    Google Scholar 
    Zhao, G., Liang, R., Li, K., Wang, Y. & Pu, X. Study on the coupling model of urbanization and water environment with basin as a unit: A study on the Hanjiang Basin in China. Ecol. Ind. 131, 108130 (2021).
    Google Scholar 
    Zhu, Q. et al. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Ind. 121, 107119 (2021).
    Google Scholar 
    Fu, A. et al. The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China. Sci. Rep. 11, 18485 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, D. et al. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China. J. Clean. Prod. 344, 131137 (2022).
    Google Scholar 
    Basu, H., Dandele, P. S. & Srivastava, S. K. Sedimentary facies of the Mesoproterozoic Srisailam Formation, Cuddapah basin, India: Implications for depositional environment and basin evolution. Mar. Pet. Geol. 133, 105242 (2021).
    Google Scholar 
    Capella, W. et al. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway. Sed. Geol. 355, 31–57 (2017).
    Google Scholar 
    Ilevbare, M. & Omodolor, H. E. Ancient deposition environment, mechanism of deposition and textural attributes of Ajali Formation, western flank of the Anambra Basin, Nigeria. Case Stud. Chem. Environ. Eng. 2, 100022 (2020).
    Google Scholar 
    Qiao, J. B., Zhu, Y. J., Jia, X. X. & Shao, M. A. Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China. Soil Tillage Res. 205, 104786 (2021).
    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).CAS 

    Google Scholar 
    Rodríguez-Lado, L. & Lado, M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). Geoderma 287, 147–156 (2017).ADS 

    Google Scholar 
    Mozaffari, H., Moosavi, A. A. & Dematte, J. A. M. Estimating particle-size distribution from limited soil texture data: Introducing two new methods. Biosys. Eng. 216, 198–217 (2022).
    Google Scholar 
    Sudarsan, B., Ji, W., Adamchuk, V. & Biswas, A. Characterizing soil particle sizes using wavelet analysis of microscope images. Comput. Electron. Agric. 148, 217–225 (2018).
    Google Scholar 
    Pollacco, J. A. P., Fernández-Gálvez, J. & Carrick, S. Improved prediction of water retention curves for fine texture soils using an intergranular mixing particle size distribution model. J. Hydrol. 584, 124597 (2020).
    Google Scholar 
    Richer-de-Forges, A. C. et al. Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. CATENA 213, 106155 (2022).CAS 

    Google Scholar 
    Du, W. et al. Insights into vertical differences of particle number size distributions in winter in Beijing, China. Sci. Total Environ. 802, 149695 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Darder, M. L., Paz-González, A., García-Tomillo, A., Lado, M. & Wilson, M. G. Comparing multifractal characteristics of soil particle size distributions calculated by Mie and Fraunhofer models from laser diffraction measurements. Appl. Math. Model. 94, 36–48 (2021).
    Google Scholar 
    Ke, Z. M. et al. Multifractal parameters of soil particle size as key indicators of the soil moisture distribution. J. Hydrol. 595, 125988 (2021).
    Google Scholar 
    Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Tillage Res. 184, 45–51 (2018).
    Google Scholar 
    Tyler, S. W. & Wheatcraft, S. W. Fractal scaling of soil particle-size distribution: Analysis and imitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992).ADS 

    Google Scholar 
    Zhang, Y. et al. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China. Geomorphology 351, 106956 (2020).
    Google Scholar 
    Ahmadi, A., Neyshabouri, M.-R., Rouhipour, H. & Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 400, 305–311 (2011).ADS 

    Google Scholar 
    Gao, Z., Niu, F., Lin, Z. & Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. CATENA 203, 105373 (2021).
    Google Scholar 
    Xu, G. et al. New method for the reconstruction of sedimentary systems including lithofacies, environments, and flow paths: A case study of the Xisha Trough Basin, South China Sea. Mar. Pet. Geol. 133, 105268 (2021).
    Google Scholar 
    Li, Z., Yu, X., Dong, S., Chen, Q. & Zhang, C. Microtextural features on quartz grains from eolian sands in a subaqueous sedimentary environment: A case study in the hinterland of the Badain Jaran Desert, Northwest China. Aeolian Res. 43, 100573 (2020).
    Google Scholar 
    Chen, T. et al. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. CATENA 212, 106060 (2022).
    Google Scholar 
    George, C. F., Macdonald, D. I. M. & Spagnolo, M. Deltaic sedimentary environments in the Niger Delta, Nigeria. J. Afr. Earth Sci. 160, 103592 (2019).
    Google Scholar 
    Tian, Y. et al. Petrology, lithofacies, and sedimentary environment of Upper Cretaceous Abu Roash “G” in the AESW Block, Abu Gharadig Basin, Western Desert, Egypt. J. Afr. Earth Sci. 145, 178–189 (2018).ADS 

    Google Scholar 
    Cheng, Z., Jalon-Rójas, I., Wang, X. H. & Liu, Y. Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary. Estuar. Coast. Shelf Sci. 242, 106861 (2020).
    Google Scholar 
    Wei, X., Li, X. G. & Wei, N. Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China. Geomorphology 266, 133–145 (2016).ADS 

    Google Scholar 
    Wang, S. et al. Grain size characteristics of surface sediment and its response to the dynamic sedimentary environment in Qiantang Estuary, China. Int. J. Sediment Res. 37, 457–467 (2022).
    Google Scholar 
    Wided, S., Jalila, S. & Kamel, R. Grain size analysis and characterization of sedimentary environment along the Bizerte Coast, N-E of Tunisia. J. Afr. Earth Sc. 184, 104353 (2021).
    Google Scholar 
    Cai, X., Yang, Y. E., Ringler, C., Zhao, J. & You, L. Agricultural water productivity assessment for the Yellow River Basin. Agric. Water Manag. 98, 1297 (2011).
    Google Scholar 
    Fu, J., Zang, C. & Zhang, J. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe river basin in China. J. Clean. Prod. 270, 122271 (2020).
    Google Scholar 
    Zhang, K. et al. Confronting challenges of managing degraded lake ecosystems in the anthropocene, exemplified from the Yangtze River Basin in China. Anthropocene 24, 30–39 (2018).
    Google Scholar 
    Huybrechts, N., Zhang, Y. F. & Verbanck, M. A. A new closure methodology for 1D fully coupled models of mobile-bed alluvial hydraulics: Application to silt transport in the Lower Yellow River. Int. J. Sedim. Res. 26(1), 36–49 (2011).
    Google Scholar 
    Cheng, D. Z. Strengthen the financial foundation of ecological protection and development of the Yellow River Basin. People Tribune 27, 76–78 (2021).
    Google Scholar 
    Yang, W. N., Zhou, L. & Sun, D. Q. Ecological vulnerability assessment of the Yellow River basin based on partition: Integration concept. Remote Sens. Nat. Resourc. 33(03), 211–218 (2021).
    Google Scholar 
    Sun, H. et al. Exposure of population to droughts in the Haihe river basin under global warming of 1.5 and 2.0 °C Scenarios. Q. Int. 453, 74–84 (2017).ADS 

    Google Scholar 
    Mandelbrott, B. B. The Fractal Geometry of Nature (W.H. Freeman and Company, 1983).
    Google Scholar 
    Samiei-Fard, R., Heidari, A., Konyushkova, M. & Mahmoodi, S. Application of particle size distribution throughout the soil profile as a criterion for recognition of newly developed geoforms in the Southeastern Caspian coast. CATANA 203, 105362 (2021).CAS 

    Google Scholar 
    Guo, J. Y. et al. Grain size characteristics and source analysis of aeolian sediment feed into river in Ulanbuh Desert along bank of Yellow River. J. China Inst. Water Resour. Hydropower Res. 19(01), 15–24 (2021).
    Google Scholar 
    Ge, T. T., Xue, Y. J., Jiang, X. Y., Zou, L. & Wang, X. C. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments. Chem. Geol. 534, 119452 (2020).ADS 

    Google Scholar 
    Hou, C. Y., Yi, Y. J., Song, J. & Zhou, Y. Effect of water-sediment regulation operation on sediment grain size and nutrient content in the lower Yellow River. J. Clean. Prod. 279, 123533 (2021).CAS 

    Google Scholar 
    Ni, S. M., Feng, S. Y., Zhang, D. Q., Wang, J. G. & Cai, C. F. Sediment transport capacity in erodible beds with reconstituted soils of different textures. CATANA 183, 104197 (2019).
    Google Scholar 
    Li, J. L. et al. Multifractal features of the particle-size distribution of suspended sediment in the Three Gorges Reservoir, China. Int. J. Sedim. Res. 36(4), 489–500 (2021).
    Google Scholar 
    Wang, W. F., Liu, R. T., Guo, Z. X., Feng, Y. H. & Jiang, J. Y. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Desert. J. Desert Res. 41(01), 209–218 (2021).
    Google Scholar 
    Wang, K., Pei, Z. Y., Wang, W. M., Hao, S. R. & Pang, G. H. Influence of the flat cycle on the fractal characteristics of soil pore structure in Salix psammophila. Sci. Technol. Eng. 21(07), 2647–2654 (2021).
    Google Scholar 
    Gao, G. L. et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia, NW China. Ecol. Indic. 43, 236–243 (2014).CAS 

    Google Scholar 
    Liu, X., Zhang, G. C., Heathman, G. C., Wang, Y. Q. & Huang, C. H. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 154(1), 123–130 (2009).ADS 

    Google Scholar 
    Xu, G. C., Li, Z. B. & Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. CATENA 101, 17–23 (2013).CAS 

    Google Scholar 
    Zhao, S. Q., Chi, D. Q., Jia, F. C., Deng, Y. P. & Sun, C. T. Fractal characteristics of saline soil particles in different regions. Jiangsu Agric. Sci. 49(06), 203–207 (2021).
    Google Scholar  More

  • in

    Long-term observation of the egg and chick size in the nests of Larus ichthyaetus in Lake Chany, Russia

    We surveyed three islands of Lake Chany: Uzkoredkii (54° 58′ 15′′ N, 77°27′04′′ E), Reden’kii (54° 56′ 05′′ N, 77° 22′ 27′′ 52 E), Korablik (54° 59′ 31′′ N, 77° 40′ 38′′ E). The studied intertidal habitats are rarely reached by humans.Gull nests were counted in colonies by regular surveys over eight years (1993, 1994, 1996–1998, 2001–2003) on the islands of Lake Chany. Colonies were visited daily or sometimes every other day. To minimize the disturbance caused by the investigation, the time spent working, within view of the gulls was restricted to a maximum of forty minutes per study plots. We noted nest content at every visit for the presence of eggs or chicks. In total, there were 1 164 nests under observation. Nests contained 1 (n = 140), 2 (n = 518), 3 (n = 504) or 4 (n = 2) eggs. Modal clutch size of the great black-headed gull is two or three eggs, varying seasonally. The length and width of the eggs were measured using Vernier calipers (division accuracy 0,1 mm) and numbered with a waterproof marker. Egg volumes were estimated using Hoyt’s equation: Volume = 0.51 * Length * Width * Width/100013. We determined the volume of 2117 great black-headed gull eggs.As the laying of eggs has already started by the first visit to the colony, the date of the beginning of egg laying was calculated by subtracting the average length of the incubation period of great black-headed gulls (27 days) from the hatching date of first chick in the nest (n = 559 nests). If the hatching date was not known, the clutch initiation date was determined by subtracting the number of days of incubation from the date that the nest was first discovered (n = 469 nests). The stage of incubation was estimated from the change in position of an incubated egg placed in water14,15. The technique’s accuracy varied throughout incubation and mean prediction error fall between 0–4 days. On average, egg flotation estimated an embryo’s developmental age to within 1.9 ± 1.6 days (mean ± 1 SD)16. Only 47 nests were found during egg laying. Great black-headed gulls usually laid eggs at intervals of two days. Incubation started as soon as the first egg was laid, so eggs hatched asynchronously, one or two days apart.Whenever possible, we determined the within-clutch laying sequence of eggs (1st, 2nd, 3rd, and 4th). A complete laying sequence was established by observation in 47 cases. In about 48% of clutches the position in laying sequence was established on the basis of the sequence of hatching. In other cases, if we could distinguish within-clutch distinct flotation levels of eggs, we numbered eggs according to the stage of incubation. Sometimes this technique for distinguishing egg laying order were used in other seabirds17,18.We recorded the pipping date (i.e. appearance of star-like bursts) and the actual hatching date of the individual eggs. Wet chicks were registered as hatchlings of that day; dry chicks were registered as 1 day old. Chicks older than two days left the nest and moved to a location nearby. Newly hatched gull chicks were captured by hand at nests, ringed, and measured. We determined wing, tarsus, and head length using a ruler with zero-stop and vernier calipers and body weight measured using Pesola spring balances for 747 chicks of great black-headed gulls, and 457 of them hatched from eggs that were measured. More

  • in

    Epidemiologically-based strategies for the detection of emerging plant pathogens

    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).PubMed 

    Google Scholar 
    Brasier, C. M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57, 792–808 (2008).
    Google Scholar 
    Waage, J. K. & Mumford, J. D. Agricultural biosecurity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 863–876 (2008).CAS 
    PubMed 

    Google Scholar 
    IPPC. Surveillance guide—A guide to understand the principal requirements of surveillance programmes for national plant protection organizations. Second edition. http://www.fao.org/documents/card/en/c/cb7139en (2021) https://doi.org/10.4060/cb7139en.Parnell, S., van den Bosch, F., Gottwald, T. & Gilligan, C. A. Surveillance to inform control of emerging plant diseases: An epidemiological perspective. Annu. Rev. Phytopathol. 55, 591–610 (2017).CAS 
    PubMed 

    Google Scholar 
    Cunniffe, N. J., Cobb, R. C., Meentemeyer, R. K., Rizzo, D. M. & Gilligan, C. A. Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California. Proc. Natl. Acad. Sci. 113, 5640–5645 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gottwald, T. R., Dixon, W., Parnell, S. & Riley, T. Huanglongbing: The dragon arrives in the USA. In Huanglongbing-Greening International Workshop, July 14–21 13–14 (2006).Herms, D. A., Stone, A. K. & Chatfield, J. A. Emerald ash borer: The beginning of the end of ash in North America?. Ornam. Plants Annu. Rep. Res. Rev. 2003, 62–71 (2004).
    Google Scholar 
    Sansford, C. E. Pest Risk Analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea) for the UK and the Republic of Ireland. https://webarchive.nationalarchives.gov.uk/ukgwa/20140904094312mp_/http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/documents/hymenoscyphusPseudoalbidusPRA.pdf (2013).Alonso Chavez, V., Parnell, S. & van den Bosch, F. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape. J. Theor. Biol. 407, 290–302 (2016).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Bourhis, Y., Gottwald, T. R., Lopez-Ruiz, F. J., Patarapuwadol, S. & van den Bosch, F. Sampling for disease absence-deriving informed monitoring from epidemic traits. J. Theor. Biol. 461, 8–16 (2019).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Mastin, A. J., van den Bosch, F., van den Berg, F. & Parnell, S. Quantifying the hidden costs of imperfect detection for early detection surveillance. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180261 (2019).
    Google Scholar 
    Mastin, A. J., van den Bosch, F., Gottwald, T. R., Alonso Chavez, V. & Parnell, S. R. A method of determining where to target surveillance efforts in heterogeneous epidemiological systems. PLoS Comput. Biol. 13, e1005712 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Parnell, S., Gottwald, T. R., Gilks, W. R. & van den Bosch, F. Estimating the incidence of an epidemic when it is first discovered and the design of early detection monitoring. J. Theor. Biol. 305, 30–36 (2012).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Parnell, S., Gottwald, T. R., Cunniffe, N. J., Alonso Chavez, V. & van den Bosch, F. Early detection surveillance for an emerging plant pathogen: A rule of thumb to predict prevalence at first discovery. Proc. R. Soc. B Biol. Sci. 282, 20151478 (2015).
    Google Scholar 
    Silva, G. et al. Plant pest surveillance: From satellites to molecules. Emerg. Top. Life Sci. 5, 275–287 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mastin, A. J., Gottwald, T. R., van den Bosch, F., Cunniffe, N. J. & Parnell, S. Optimising risk-based surveillance for early detection of invasive plant pathogens. PLoS Biol. 18, e3000863 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martelli, G. P., Boscia, D., Porcelli, F. & Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 144, 235–243 (2015).
    Google Scholar 
    Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95, 668 (2013).
    Google Scholar 
    Ben Moussa, I. E. et al. Seasonal fluctuations of sap-feeding insect species infected by Xylella fastidiosa in Apulian olive groves of southern Italy. J. Econ. Entomol. 109, 1512–1518 (2016).PubMed 

    Google Scholar 
    Cornara, D. et al. Transmission of Xylella fastidiosa to grapevine by the meadow spittlebug. Phytopathology 106, 1285–1290 (2016).CAS 
    PubMed 

    Google Scholar 
    Cornara, D. et al. Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141, 80–87 (2017).
    Google Scholar 
    Saponari, M. et al. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 107, 1316–1319 (2014).PubMed 

    Google Scholar 
    European Commission. Commission Implementing Regulation (EU) 2020/1201 of 14 August 2020 as regards measures to prevent the introduction into and the spread within the Union of Xylella fastidiosa (Wells et al.). (2021).EFSA et al. Guidelines for statistically sound and risk-based surveys of Xylella fastidiosa. EFSA. Support. Publ. 17, 1873 (2020).EFSA et al. General guidelines for statistically sound and risk-based surveys of plant pests. EFSA Support. Publ. 17, 1919E (2020).Bourhis, Y., Gottwald, T. & van den Bosch, F. Translating surveillance data into incidence estimates. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180262 (2019).CAS 

    Google Scholar 
    Cornara, D. et al. Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J. Pest Sci. 90, 521–530 (2017).
    Google Scholar 
    Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: when an old acquaintance becomes a new threat to European agriculture. J. Pest Sci. 91, 957–972 (2018).
    Google Scholar 
    Almeida, R. P. P., Blua, M. J., Lopes, J. R. S. & Purcell, A. H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 98, 775–786 (2005).
    Google Scholar 
    Purcell, A. H. & Finlay, A. H. Evidence for noncirculative transmission of Pierce’s disease bacterium by sharpshooter leafhoppers. Phytopathology 69, 393–395 (1979).
    Google Scholar 
    Hill, B. & Purcell, A. H. Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 85, 209 (1995).
    Google Scholar 
    Hill, B. L. & Purcell, A. H. Multiplication and movement of Xylella fastidiosa within grapevine and four other plants. Phytopathology 85, 1368 (1995).
    Google Scholar 
    Huang, Q., Bentz, J. & Sherald, J. L. Fast, easy and efficient DNA extraction and one-step polymerase chain reaction for the detection of Xylella fastidiosa in potential insect vectors. J. Plant Pathol. 88, 77–81 (2006).CAS 

    Google Scholar 
    Harper, S. J., Ward, L. I. & Clover, G. R. G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100, 1282–1288 (2010).CAS 
    PubMed 

    Google Scholar 
    EFSA et al. Pest survey card on Xylella fastidiosa. EFSA Support. Publ. 16, (2019).Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 8723 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    EPPO. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 49, 175–227 (2019).Landa, B. B. et al. Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Appl. Environ. Microbiol. 86, 1–15 (2019).
    Google Scholar 
    Castro, C., DiSalvo, B. & Roper, M. C. Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLoS Pathog. 17, e1009813 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 109, 175–186 (2019).CAS 
    PubMed 

    Google Scholar 
    Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).CAS 
    PubMed 

    Google Scholar 
    Gottwald, T. et al. Canine olfactory detection of a vectored phytobacterial pathogen, Liberibacter asiaticus, and integration with disease control. Proc. Natl. Acad. Sci. 117, 3492–3501 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mendel, J., Furton, K. G. & Mills, D. An Evaluation of scent-discriminating canines for rapid response to agricultural diseases. HortTechnology 28, 102–108 (2018).
    Google Scholar 
    ECDC. Guidelines for the Surveillance of Invasive Mosquitoes in Europe. (2012).Kading, R. C., Golnar, A. J., Hamer, S. A. & Hamer, G. L. Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases. PLoS Negl. Trop. Dis. 12, e0006761 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kumagai, L. B. et al. First report of Candidatus Liberibacter asiaticus associated with citrus huanglongbing in California. Plant Dis. 97, 283 (2013).CAS 
    PubMed 

    Google Scholar 
    Ben Moussa, I. E. et al. Evaluation of “Spy Insect” approach for monitoring Xylella fastidiosa in symptomless olive orchards in the Salento peninsula (Southern Italy). IOBC WPRS Bull. 121, 77–84 (2017).
    Google Scholar 
    Cruaud, A. et al. Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: A case study in Corsica. Sci. Rep. 8, 15628 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yaseen, T. et al. On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method. Phytopathol. Mediterr. https://doi.org/10.14601/Phytopathol_Mediterr-15250 (2015).Article 

    Google Scholar 
    López-Mercadal, J. et al. Collection of data and information in Balearic Islands on biology of vectors and potential vectors of Xylella fastidiosa (GP/EFSA/ALPHA/017/01). EFSA Support. Publ. 18, 6925E (2021).
    Google Scholar 
    Cunty, A. Detection, identification and surveillance of Xylella fastidiosa on vectors in France https://zenodo.org/record/3551122#.XjGqBs77SUl. (2019) https://doi.org/10.5281/zenodo.3551122.Kottelenberg, D., Hemerik, L., Saponari, M. & van der Werf, W. Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia. Sci. Rep. 11, 1061 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Cross-feeding niches among commensal leaf bacteria are shaped by the interaction of strain-level diversity and resource availability

    Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature.2020;580:653–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    PubMed 
    Article 

    Google Scholar 
    Manching HC, Carlson K, Kosowsky S, Smitherman CT, Stapleton AE. Maize phyllosphere microbial community niche development across stages of host leaf growth. F1000Research. 2017;6:1698.PubMed 
    Article 

    Google Scholar 
    Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:12151.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175:973–83. e14PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.PubMed 
    Article 
    CAS 

    Google Scholar 
    Karasov TL, Almario J, Friedemann C, Ding W, Giolai M, Heavens D, et al. Arabidopsis thaliana and Pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microbe. 2018;24:168–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N. Phytol. 2016;209:798–811.CAS 
    Article 

    Google Scholar 
    Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, et al. Host selection shapes crop microbiome assembly and network complexity. N. Phytol. 2021;229:1091–104.CAS 
    Article 

    Google Scholar 
    Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol. 2014;85:473–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nobori T, Cao Y, Entila F, Dahms E, Tsuda Y, Garrido-Oter R, et al. Dissecting the co-transcriptome landscape of plants and microbiota members. bioRxiv; 2022. p. 2021.04.25.440543.Yamada K, Saijo Y, Nakagami H, Takano Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science. 2016;354:1427–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker RF, Leach KA, Braun DM. SWEET as sugar: new sucrose effluxers in plants. Mol Plant. 2012;5:766–8.PubMed 
    Article 

    Google Scholar 
    Tegeder M, Hammes UZ. The way out and in: phloem loading and unloading of amino acids. Curr Opin Plant Biol. 2018;43:16–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. Plant Cell Environ. 2016;39:2172–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant-Microbe Interact. MPMI. 2008;21:269–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, et al. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci USA. 2013;110:E425.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Winter H, Riens B, Heldt HW. Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta. 1995;108:270–5.CAS 
    Article 

    Google Scholar 
    Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468:527–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xin XF, Nomura K, Aung K, Velásquez AC, Yao J, Boutrot F, et al. Bacteria establish an aqueous living space in plants crucial for virulence. Nature. 2016;539:524–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 2005;23:873–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 

    Google Scholar 
    Hoek TA, Axelrod K, Biancalani T, Yurtsev EA, Liu J, Gore J. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLOS Biol. 2016;14:e1002540.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zimmermann J, Obeng N, Yang W, Pees B, Petersen C, Waschina S, et al. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J. 2020;14:26–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado D, Maistrenko OM, Andrejev S, Kim Y, Bork P, Patil KR, et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat Ecol Evol. 2021;5:195–203.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:1–17.Article 

    Google Scholar 
    Gerlich SC, Walker BJ, Krueger S, Kopriva S. Sulfate metabolism in C4 Flaveria species is controlled by the root and connected to serine biosynthesis. Plant Physiol. 2018;178:565–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: How many and which genes does it take to make C4? Plant Cell. 2011;23:2087–105.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKown AD, Dengler NG. Vein patterning and evolution in C4 plants. Botany. 2010;88:775–86.CAS 
    Article 

    Google Scholar 
    Gentzel I, Giese L, Zhao W, Alonso AP, Mackey D. A simple method for measuring apoplast hydration and collecting apoplast contents. Plant Physiol. 2019;179:1265–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayer T, Mari A, Almario J, Murillo-Roos M, Syed M, Abdullah H, et al. Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing. Mol Ecol Resour. 2021;21:1952–65.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/.Callahan B, McMurdie PJ, Rosen M, Han A, Johnson A, Holmes S. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:61217.Article 
    CAS 

    Google Scholar 
    Oksanen J, Blanchet GF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package [Internet]. 2020. Available from: https://CRAN.R-project.org/package=vegan.Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schlechter RO, Jun H, Bernach M, Oso S, Boyd E, Muñoz-Lintz DA, et al. Chromatic bacteria – A broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria. Front Microbiol. 2018;9:3052.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K. Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant. 2001;111:457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dal Bello M, Lee H, Goyal A, Gore J. Resource-diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat Ecol Evol. 2021;5:1424–34.PubMed 
    Article 

    Google Scholar 
    Sattelmacher B. The apoplast and its significance for plant mineral nutrition. N. Phytol. 2001;149:167–92.CAS 
    Article 

    Google Scholar 
    Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, et al. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. ISME J. 2020;14:2116–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Weng FCH, Joubert PM, Metcalf CJE, Lindow S, Koskella B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA. 2020;117:1148–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350:663–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Herren CM. Disruption of cross-feeding interactions by invading taxa can cause invasional meltdown in microbial communities. Proc R Soc B Biol Sci. 2020;287:20192945.Article 

    Google Scholar 
    Rahme LG, Mindrinos MN, Panopoulos NJ. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol. 1992;174:3499–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morella NM, Zhang X, Koskella B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 2019;3:177–90.Article 

    Google Scholar 
    Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10:119–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lundberg DS, Jové R de P, Ayutthaya PPN, Karasov TL, Shalev O, Poersch K, et al. Contrasting patterns of microbial dominance in the Arabidopsis thaliana phyllosphere. bioRxiv. 2021;2021.04.06.438366.Ikawa Y, Tsuge S. The quantitative regulation of the hrp regulator HrpX is involved in sugar-source-dependent hrp gene expression in Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett. 2016;363:fnw071.Wei ZM, Sneath BJ, Beer SV. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol. 1992;174:1875–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA. 2002;99:3695–700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett. 2022;25:1410–20.Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, et al. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome. 2021;9:103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci USA. 2019;116:12558–65.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 2001;3:139–48.CAS 
    Article 

    Google Scholar 
    Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D. Root exudate composition of grass and forb species in natural grasslands. Sci Rep. 2020;10:10691.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides

    Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020;46:1–13.Article 

    Google Scholar 
    Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82–343ra82.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akagawa S, Tsuji S, Onuma C, Akagawa Y, Yamaguchi T, Yamagishi M, et al. Effect of delivery mode and nutrition on gut microbiota in neonates. Ann Nutr Metab. 2019;74:132–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018;555:210–5.Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos. 2014;123:1420–30.Article 

    Google Scholar 
    Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.Article 

    Google Scholar 
    Fukami T, Nakajima M. Community assembly: Alternative stable states or alternative transient states? Ecol Lett. 2011;14:973–84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2018;15:197–205.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tannock GW, Lawley B, Munro K, Pathmanathan SG, Zhou SJ, Makrides M, et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol. 2013;79:3040–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv. 2019;5:eaaw7696.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71:1589–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Macrobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;18:12–15.Article 

    Google Scholar 
    Macrobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58:5334–40.Article 
    CAS 

    Google Scholar 
    Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao JZ, et al. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients. 2020;12:71.CAS 
    Article 

    Google Scholar 
    Katayama T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria. Biosci Biotechnol Biochem. 2016;80:621–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol. 2009;75:1534–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gore C, Munro K, Lay C, Bibiloni R, Morris J, Woodcock A, et al. Bifidobacterium pseudocatenulatum is associated with atopic eczema: A nested case-control study investigating the fecal microbiota of infants. J Allergy Clin Immunol. 2008;121:135–40.PubMed 
    Article 

    Google Scholar 
    Lewis ZT, Mills DA. Differential establishment of bifidobacteria in the breastfed infant gut. Nestle Nutr Inst Work Ser. 2017;88:149–59.Article 

    Google Scholar 
    Tannock GW, Lee PS, Wong KH, Lawley B. Why don’t all infants have bifidobacteria in their stool? Front Microbiol. 2016;7:6–10.Article 

    Google Scholar 
    Reyman M, van Houten MA, van Baarle D, Bosch AATM, Man WH, Chu MLJN, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10:1–12.CAS 
    Article 

    Google Scholar 
    Underwood MA, Kalanetra KM, Bokulich NA, Lewis ZT, Mirmiran M, Tancredi DJ, et al. A comparison of two probiotic strains of bifidobacteria in preterm infants. J Pediatr. 2013;163:1585–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Plummer EL, Bulach DM, Murray GL, Jacobs SE, Tabrizi SN, Garland SM. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol. 2018;18:1–8.Article 
    CAS 

    Google Scholar 
    Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M. Early administration of Bifidobacterium breve to preterm infants: Randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 1997;76:101–7.Article 

    Google Scholar 
    Ojima MN, Yoshida K, Sakanaka M, Jiang L, Odamaki T, Katayama T. Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Curr Opin Biotechnol. 2022;73:108–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25:716–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR. Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet. 2016;387:649–60.PubMed 
    Article 

    Google Scholar 
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh T, Ojima MN, Sakanaka M, Ashida H, Gotoh A, Katayama T. Enzymatic adaptation of Bifidobacterium bifidum to host glycans, viewed from glycoside hydrolyases and carbohydrate-binding modules. Microorganisms. 2020;8:481.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L, Ventura M, et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 2014;14:1–14.Article 
    CAS 

    Google Scholar 
    Higgins MA, Ryan KS. Generating a fucose permease deletion mutant in Bifidobacterium longum subspecies infantis ATCC 15697. Anaerobe. 2021;68:102320.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Micro Biotechnol. 2013;6:67–79.Article 
    CAS 

    Google Scholar 
    Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, et al. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology. 2012;22:361–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vannette RL, Fukami T. Historical contingency in species interactions: Towards niche-based predictions. Ecol Lett. 2014;17:115–24.PubMed 
    Article 

    Google Scholar 
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.PubMed 
    Article 
    CAS 

    Google Scholar 
    Pu Z, Jiang L. Dispersal among local communities does not reduce historical contingencies during metacommunity assembly. Oikos. 2015;124:1327–36.Article 

    Google Scholar 
    Chase JM. Community assembly: when should history matter? Oecologia. 2003;136:489–98.PubMed 
    Article 

    Google Scholar 
    Schröder A, Persson L, De Roos AM. Direct experimental evidence for alternative stable states: A review. Oikos. 2005;110:3–19.Article 

    Google Scholar 
    Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem. 2011;286:34583–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gotoh A, Katoh T, Sakanaka M, Ling Y, Yamada C, Asakuma S, et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci Rep. 2018;8:13958.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, et al. Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 2009;19:1010–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology. 2010;156:3329–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Avershina E, Storrø O, Øien T, Johnsen R, Wilson R, Egeland T, et al. Bifidobacterial succession and correlation networks in a large unselected cohort of mothers and their children. Appl Environ Microbiol. 2013;79:497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012;7:20–4.Article 
    CAS 

    Google Scholar 
    James K, Bottacini F, Contreras JIS, Vigoureux M, Egan M, Motherway MO, et al. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep. 2019;9:1–20.Article 
    CAS 

    Google Scholar 
    Dedon LR, Özcan E, Rani A, Sela DA. Bifidobacterium infantis metabolizes 2′fucosyllactose-derived and free fucose through a common catabolic pathway resulting in 1,2-propanediol secretion. Front Nutr. 2020;7:1–16.Article 
    CAS 

    Google Scholar 
    Sprockett D, Martin M, Costello E, Burns A, Holmes S, Gurven M, et al. Microbiota assembly, structure, and dynamics among tsimane horticulturalists of the Bolivian Amazon. Nat Commun. 2019;11:1–14.Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D, Moll JM, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol. 2021;6:1367–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meng D, Sommella E, Salviati E, Campiglia P, Ganguli K, Djebali K, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res. 2020;88:209–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bunesova V, Lacroix C, Schwab C. Fucosyllactose and l-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol. 2016;16:248.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruiz-Moyano S, Totten SM, Garrido D, Smilowitz JT, Bruce German J, Lebrilla CB, et al. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol. 2013;79:6040–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerenwinkel N, Lacroix C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during l-fucose and fucosyllactose degradation. Front Microbiol. 2017;8:1–14.Article 

    Google Scholar 
    Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10:507–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Kostic AD, D’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165:842–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe. 2019;25:324–335.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8.PubMed 
    Article 

    Google Scholar 
    Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75:965–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y. Effects of Bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int. 2004;46:509–15.PubMed 
    Article 

    Google Scholar 
    Nishimoto M, Kitaoka M. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem. 2007;71:2101–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52:2141–6.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y. Arita M. DFAST and DAGA: Web-based integrated genome annotation tools and resources. Biosci Microbiota, Food Heal. 2016;35:173–84.CAS 
    Article 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:206–14.Article 
    CAS 

    Google Scholar 
    Price MN, Arkin AP. PaperBLAST: Text-mining papers for information about homologs. bioRxiv. 2017;2:1–10.
    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.Article 
    CAS 

    Google Scholar 
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016;44:D372–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol. 2009;75:4175–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 2006;350:1–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohenford MA, Abraham A, Abraham J, Dain JA. Colorimetric assay for free and bound l-fucose. Anal Biochem. 1989;177:172–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-related changes in the composition of gut Bifidobacterium species. Curr Microbiol. 2017;74:987–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:1–13.Article 
    CAS 

    Google Scholar 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;2017:1–17.CAS 

    Google Scholar 
    Milani C, Lugli GA, Fontana F, Mancabelli L, Alessandri G, Longhi G, et al. METAnnotatorX2: A comprehensive tool for deep and shallow metagenomic data set analyses. mSystems. 2021;6:1–15.Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019. More

  • in

    Understanding social–ecological systems using social media data

    Ecosystem services are the contributions of nature to human well-being — for example, the provision of raw materials, carbon sequestration and recreation. Although relatively new, the study of these essential services has developed rapidly and is now included in many global policies and assessments. However, mapping and modelling these services is restricted by the availability of data that can account for the multidimensional traits of ecosystem services and model coupled social–ecological systems. Traditional datasets, including surveys, interviews, and focus groups, are often not viable on the scale necessary for many ecosystem service assessments. More