More stories

  • in

    Dispersal and fire limit Arctic shrub expansion

    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 3, 673–677 (2013).ADS 
    Article 

    Google Scholar 
    Wang, J. A. et al. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Glob. Chang. Biol. 26, 807–822 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2, 453–457 (2012).ADS 
    Article 

    Google Scholar 
    Sturm, M., Racine, C. & Tape, K. Climate change. Increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol. 12, 686–702 (2006).ADS 
    Article 

    Google Scholar 
    Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Chang. Biol. 16, 1542–1554 (2010).ADS 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 10, 106–117 (2020).ADS 
    Article 

    Google Scholar 
    Chapin, F. S. 3rd et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).ADS 
    Article 

    Google Scholar 
    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).ADS 
    Article 

    Google Scholar 
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Chang. 11, 404–410 (2021).ADS 
    Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 8, 825–828 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).Article 

    Google Scholar 
    Myers-Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).Article 

    Google Scholar 
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).CAS 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).ADS 
    Article 

    Google Scholar 
    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, T. K. F., Lantz, T. C., Fraser, R. H. & Hogan, D. High Arctic vegetation change mediated by hydrological conditions. Ecosystems 24, 106–121 (2021).CAS 
    Article 

    Google Scholar 
    Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Chang. Biol. 27, 652–663 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martin, A. C., Jeffers, E. S., Petrokofsky, G., Myers-Smith, I. & Macias-Fauria, M. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ. Res. Lett. 12, 085007 (2017).ADS 
    Article 

    Google Scholar 
    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).PubMed 
    Article 

    Google Scholar 
    Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).PubMed 
    Article 

    Google Scholar 
    Klesse, S. et al. Continental-scale tree-ring-based projection of Douglas-fir growth: testing the limits of space-for-time substitution. Glob. Chang. Biol. 26, 5146–5163 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).PubMed 
    Article 

    Google Scholar 
    Rogers, H. S. et al. The total dispersal kernel: a review and future directions. AoB Plants 11, lz042 (2019).Article 

    Google Scholar 
    Bullock, J. M. et al. Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).Article 

    Google Scholar 
    Shipley, B. R. et al. megaSDM: integrating dispersal and time‐step analyses into species distribution models. Ecography 2022, e05450 (2022).Article 

    Google Scholar 
    Anadon‐Rosell, A., Talavera, M., Ninot, J. M., Carrillo, E. & Batllori, E. Seed production and dispersal limit treeline advance in the Pyrenees. J. Veg. Sci. 31, 981–994 (2020).Article 

    Google Scholar 
    Standish, R. J., Cramer, V. A., Wild, S. L. & Hobbs, R. J. Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia. J. Appl. Ecol. 44, 435–445 (2007).Article 

    Google Scholar 
    Kunstler, G. et al. Tree colonization of sub-Mediterranean grasslands: effects of dispersal limitation and shrub facilitation. Can. J. Res. 37, 103–115 (2007).Article 

    Google Scholar 
    Reid, J. L., Holl, K. D. & Zahawi, R. A. Seed dispersal limitations shift over time in tropical forest restoration. Ecol. Appl. 25, 1072–1082 (2015).PubMed 
    Article 

    Google Scholar 
    van Breugel, M. et al. Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. J. Ecol. 107, 566–581 (2019).Article 

    Google Scholar 
    Münzbergová, Z. & Herben, T. Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145, 1–8 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Alsos, I. G. et al. Frequent long-distance plant colonization in the changing Arctic. Science 316, 1606–1609 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Makoto, K. & Wilson, S. D. When and where does dispersal limitation matter in primary succession? J. Ecol. 107, 559–565 (2019).Article 

    Google Scholar 
    Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 15, 549–560 (2009).ADS 
    Article 

    Google Scholar 
    Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change. PLoS ONE 3, e0001744 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).PubMed 
    Article 

    Google Scholar 
    Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 16, 1281–1295 (2010).ADS 
    Article 

    Google Scholar 
    Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120490 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Klupar, I., Rocha, A. V. & Rastetter, E. B. Alleviation of nutrient co-limitation induces regime shifts in post-fire community composition and productivity in Arctic tundra. Glob. Chang. Biol. 27, 3324–3335 (2021).PubMed 
    Article 

    Google Scholar 
    Racine, C., Jandt, R., Meyers, C. & Dennis, J. Tundra fire and vegetation change along a hillslope on the Seward Peninsula, Alaska, USA Arct. Antarct. Alp. Res. 36, 1–10 (2004).Article 

    Google Scholar 
    Narita, K. et al. Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska. Arct. Antarct. Alp. Res. 47, 547–559 (2015).Article 

    Google Scholar 
    Iwahana, G. et al. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska. J. Geophys. Res. Earth Surf. 121, 1697–1715 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    CAVM Team. Circumpolar Arctic Vegetation (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1 (U.S. Fish and Wildlife Service, 2003).Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).ADS 
    Article 

    Google Scholar 
    Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the MacKenzie delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).Article 

    Google Scholar 
    Wilson, S. D. & Nilsson, C. Arctic alpine vegetation change over 20 years. Glob. Chang. Biol. 15, 1676–1684 (2009).ADS 
    Article 

    Google Scholar 
    Mielke, K. P. et al. Disentangling drivers of spatial autocorrelation in species distribution models. Ecography 43, 1741–1751 (2020).Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ims, R. A. & Henden, J.-A. Collapse of an arctic bird community resulting from ungulate-induced loss of erect shrubs. Biol. Conserv. 149, 2–5 (2012).Article 

    Google Scholar 
    IPCC. Global warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. (Intergovernmental Panel on Climate Change, 2018).Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32, 34–45 (2009).Article 

    Google Scholar 
    Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Graae, B. J. et al. Strong microsite control of seedling recruitment in tundra. Oecologia 166, 565–576 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frei, E. R. et al. Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Sci. Rep. 8, 10894 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hargreaves, A. L. et al. Seed predation increases from the Arctic to the Equator and from high to low elevations. Sci. Adv. 5, eaau4403 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rupp, T. S., Starfield, A. M. & Chapin, F. S. A frame-based spatially explicit model of subarctic vegetation response to climatic change: comparison with a point model. Landsc. Ecol. 15, 383–400 (2000).Article 

    Google Scholar 
    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 7, 529–534 (2017).ADS 
    Article 

    Google Scholar 
    Camac, J. S., Williams, R. J., Wahren, C.-H., Hoffmann, A. A. & Vesk, P. A. Climatic warming strengthens a positive feedback between alpine shrubs and fire. Glob. Chang. Biol. 23, 3249–3258 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Angers-Blondin, S., Myers-Smith, I. H. & Boudreau, S. Plant–plant interactions could limit recruitment and range expansion of tall shrubs into alpine and Arctic tundra. Polar Biol. 41, 2211–2219 (2018).Article 

    Google Scholar 
    Mekonnen, Z. A., Riley, W. J. & Grant, R. F. Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic Tundra. J. Geophys. Res. Biogeosci. 123, 1683–1701 (2018).CAS 
    Article 

    Google Scholar 
    Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T. & Lischke, H. Competition and demography rather than dispersal limitation slow down upward shifts of trees’ upper elevation limits in the Alps. J. Ecol. 108, 2416–2430 (2020).Article 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. N. Phytol. 221, 1742–1748 (2019).Article 

    Google Scholar 
    Wang, J. A. et al. ABoVE: landsat-derived annual dominant land cover across ABoVE core domain, 1984–2014. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1691 (2019).Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. (2019).Barnes, R. RichDEM: Terrain Analysis Software. (2016).Loboda, T. V., Chen, D., Hall, J. V. & He, J. ABoVE: Landsat-derived Burn Scar dNBR across Alaska and Canada, 1985–2015. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1564 (2018).James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer, 2013).Thuiller, W., Georges, D., Gueguen, M., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. https://CRAN.R-project.org/package=biomod2 (2013).R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (2013).Bullock, J. M. et al. A synthesis of empirical plant dispersal kernels. J. Ecol. 105, 6–19 (2017).Article 

    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finley, A. O., Banerjee, S. & Gelfand, A. E. spBayes for Large univariate and multivariate point-referenced spatio-temporal data models. J. Stat. Softw. 63, 1–28 (2015).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ (2021).Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data. (Chapman and Hall/CRC, 2003).Liu, Y. et al. Dataset: dispersal and fire limit Arctic shrub expansion. Figshare https://doi.org/10.6084/m9.figshare.20097104.v1 (2022).Article 

    Google Scholar 
    Liu, Y. et al. Code: dispersal and fire limit Arctic shrub expansion. Zenodo https://doi.org/10.5281/zenodo.6672698 (2022).Article 

    Google Scholar  More

  • in

    Beyond nitrogen and phosphorus

    An experiment in secondary forests in the Democratic Republic of the Congo finds that calcium, an overlooked soil nutrient, is scarcer than phosphorus, and represents a potentially greater limitation on tropical forest growth.Ecology can reveal distributional patterns and dynamics in nature. One approach used is studying the elemental composition of plants, which has been linked to ecological processes such as growth, diversity or water use efficiency. More recently, elemental composition has been detected as a cofactor in governing the carbon sink capacity of plants, and therefore climate change mitigation1,2,3. This discovery has added an extra layer of urgency to the field, which now aims to better understand and predict global change. The study of nitrogen and/or phosphorus has until now received most of the attention of plant ecologists: nitrogen is the most abundant element in dry leaves after hydrogen and carbon, forms the main structure of proteins and is strongly linked to photosynthesis4. Phosphorus represents around one-tenth of nitrogen abundance in leaves and is key in energy storage and nucleic acids. However, although these represent only two of the many chemical elements that are in flux throughout ecosystems, whether others may have a dominant role in ecosystem dynamics is an open question. Writing in Nature Ecology & Evolution, Bauters et al.5 share some evidence to motivate broadening out from the dominant focus on nitrogen and phosphorus in terrestrial ecology, by revealing a crucial limiting role of calcium in the dynamics of tropical forest succession. More

  • in

    An 8-year record of phytoplankton productivity and nutrient distributions from surface waters of Saanich Inlet

    Sample collection and hydrographySampling was conducted aboard the University of Victoria’s MSV John Strickland either weekly, biweekly or monthly between 11 March 2010 and 15 November 2017 in Saanich Inlet at 48.59°N, 123.50°W (Fig. 1). To standardize measurements and due to biological significance, seawater was collected from the euphotic zone. Sampling depths corresponded to approximately 100, 50, 15, and 1% of the photosynthetically active radiation (PAR) at the surface (Io). These “light” depths were either determined using a CTD-mounted PAR sensor or a Secchi disk. CTD profiles were performed prior to each seawater cast to measure depth, temperature and conductivity of the water column, and PAR, fluorescence, and dissolved oxygen (when available).Seawater from each light depth was collected using Niskin or GO-FLO bottles on either a rosette sampler or an oceanographic wire. When possible, individual samples were collected directly from the Niskin or GO-FLO bottles. When time was not sufficient to allow direct sampling, bulk samples of seawater from each depth were collected into acid-washed polyethylene carboys, kept cold in the dark, and homogenized before sub-sampling for the individual measurements.Dissolved nutrientsFor the measurements of nitrite (NO2−), nitrate and nitrite (NO3− + NO2−), phosphate (PO43−) and Si(OH)4, seawater samples from each light depth were syringe-filtered through a combusted 0.7 µm (nominal porosity) glass fibre filter into acid-washed 30-mL polypropylene bottles and immediately frozen. All nutrient samples were stored at −20 °C until analysis. Concentrations of NO2−, NO3− + NO2−, PO43−, and Si(OH)4 were determined using an Astoria Nutrient Autoanalyzer (Astoria-Pacific, OR, USA) following the methodology of Barwell-Clarke and Whitney22. During 2014 and 2015, samples for the measurement of Si(OH)4 were collected separately from those for the other nutrients, filtered with a 0.6 µm polycarbonate membrane filter and stored at 4 °C. During this period, Si(OH)4 concentrations were determined manually using the molybdate blue colorimetric methodology23. Replicate (2 or 3) nutrient samples were taken at each depth; average data are presented in the published dataset and the figures (Fig. 2).Fig. 2Dissolved macronutrient concentrations in the euphotic zone of Saanich Inlet from March 11, 2010 to November 15, 2017. Left panels show depth-integrated concentrations (black bars on top) and time-series profiles (filled contour/scatter plots on bottom) for (A) nitrate plus nitrite (NO3− + NO2−), (B) phosphate (PO43−) and (C) silicic acid (Si(OH)4). In the time-series profiles, 2012–2013 data are not interpolated due to single-depth sampling. Grey shaded regions in top panels indicate the phytoplankton growing seasons considered for this study (March 1st – October 30th). Right panels show monthly-averaged depth profiles for the entire 8-year period, illustrating euphotic zone seasonality for each nutrient. The color scale bars on the far right apply to both the time-series vertical profiles and the 8-year seasonal plots. Sampling depths are indicated by round symbols. The year labels are positioned under the tick marks corresponding to January.Full size imageSuspended particulate matterTotal chlorophyll-aChlorophyll-a (Chl-a) was used as a proxy for phytoplankton biomass (Fig. 3A). For total Chl-a analysis, seawater samples (0.25–1 L) were gently vacuum filtered onto 0.7 µm (nominal porosity) glass fiber filters, which were then stored at −20 °C until analysis. Chl-a concentrations were determined using the acetone extraction and acidification method24,25. Acidification of samples decreased the likelihood of overestimation of Chl-a concentrations due to the presence of chlorophyll degradation products26. Filters were submerged in 10 mL of 90% acetone, sonicated for 10 minutes in an ice bath, and left to extract at −20 °C for 22 h. Following the extraction period, samples were allowed to equilibrate to room temperature (~2 h). Fluorescence of the acetone solution containing the extracted Chl-a was measured before and after acidification with 1.2 N hydrochloric acid using a Turner 10-AU fluorometer. The final concentrations of total Chl-a were calculated from measurements made before (Fo) and after (Fa) acidification using Eq. (1)25. The coefficient (τ) of Eq. (1), adapted from Strickland and Parsons25, was derived from a calibration of the Turner 10-AU fluorometer with known pure chlorophyll standards (Table 2).$${rm{C}}{rm{h}}{rm{l}} mbox{-} {rm{a}}(mu g,{L}^{-1})=frac{tau }{tau -1}ast ({rm{F}}{rm{o}}-{rm{F}}{rm{a}})ast 0.814ast left(frac{{rm{V}}{rm{o}}{rm{l}}.{rm{A}}{rm{c}}{rm{e}}{rm{t}}{rm{o}}{rm{n}}{rm{e}},{rm{e}}{rm{x}}{rm{t}}{rm{r}}{rm{a}}{rm{c}}{rm{t}}{rm{e}}{rm{d}}}{{rm{V}}{rm{o}}{rm{l}}.{rm{S}}{rm{e}}{rm{a}}{rm{w}}{rm{a}}{rm{t}}{rm{e}}{rm{r}},{rm{f}}{rm{i}}{rm{l}}{rm{t}}{rm{e}}{rm{r}}{rm{e}}{rm{d}}}right)$$
    (1)
    Fig. 3Biological particulate concentrations in the euphotic zone of Saanich Inlet from March 11, 2010 – November 15, 2017. Left panels show time-series profiles (filled contour/scatter plots) of (A) total chlorophyll-a (Total Chl-a), (B) particulate carbon (PC), (C) particulate nitrogen (PN), and (D) particulate biogenic silica (bSiO2). The 2012–2013 data are not interpolated due to single-depth sampling. In A, the bar plot in the top panel shows percent contribution of different size fractions to total Chl-a. In (B–D), black bars in top panels show depth-integrated concentrations. Grey shaded regions in bar plots indicate phytoplankton growing seasons considered for this study (March 1st – October 30th). Right panels show monthly-averaged depth profiles for the entire 8-year period, illustrating euphotic zone seasonality for each particulate. The color scale bars on the far right apply to both the time-series vertical profiles and the 8-year seasonal plots. Sampling depths are indicated by round symbols. The year labels are positioned under the tick marks corresponding to January.Full size imageSize fractionated chlorophyll-aTo determine the percent contributions of “pico” (0.7–2 µm), “small nano” (2–5 µm), “large nano” (5–20 µm) and “micro” ( >20 µm) phytoplankton to total Chl-a, seawater samples (0.25–1 L) separate from those used for total Chl-a) were consecutively filtered through 20, 5 and 2 µm polycarbonate membrane filters and 0.7 µm (nominal porosity) glass fiber filters. Between 2013 and 2017, the “pico” and “small nano” size classes were collected as one fraction (0.7–5 µm). Analysis of Chl-a concentrations for each size fraction followed the same procedure outlined for total Chl-a.Particulate carbon and nitrogenParticulate C and N measurements were obtained from seawater samples incubated for carbon (ρC) and nitrate uptake (ρNO3) rates (see section on “Uptake rates of carbon and nitrate” for methodology) (Fig. 3B,C). PC and PN measurements presented in this dataset were taken at the end of ρC and ρNO3 incubations; however, original (‘ambient’) values can be back calculated by subtracting the amount of C and N taken up during the incubation period from the final PC and PN values. The differences between after-incubation PC and PN data and back-calculated ambient values were not significantly different than the measurement error.Particulate biogenic silicaParticulate biogenic silica was used as a proxy for siliceous phytoplankton biomass (Fig. 3D). Seawater samples (0.5–1 L) from each depth were gently vacuum filtered through 0.6 µm polycarbonate membrane filters. Filters were folded and placed in polypropylene centrifuge tubes, dried for 48 h at 60 °C, and then stored in a desiccator at room temperature until analysis. Filters were digested with 4 mL of 0.2 M NaOH for 30–45 min in a water bath at 95 °C27. After digestion, samples were neutralized with 0.1 N HCl and cooled rapidly in an ice bath. Samples were centrifuged to separate out the undissolved lithogenic silica, and colorimetric analysis was performed on the supernatant. The transmittance of the samples, standards, and reverse-order reagent blanks were read at 820 nm using a Beckman DU 530 ultraviolet-visible (UV/Vis) spectrophotometer27,28.Uptake rates of carbon and nitrateSeawater samples (~0.5–1 L) were gently collected into clear polycarbonate bottles. One additional sample was collected from the 100% light depth, into a dark polycarbonate bottle, which did not allow light penetration. After the addition of the isotopic tracers (see below), bottles were placed into an acrylic incubator with constant seawater flow to maintain surface seawater temperature. Three acrylic tubes wrapped in colored and neutral density photo-film (to obtain 50, 15, and 1% of surface PAR) were used to incubate sample bottles under the same in-situ light conditions from which samples were collected. Samples from the 100% light level were placed inside the same acrylic incubator, but outside of the film-covered tubes. A LI-COR® LI-190 Quantum sensor was installed next to the incubator and continuously recorded incoming PAR for the entire incubation period. During sampling in 2010 and 2011, all experiments were performed using a shipboard incubator. For sampling from 2012 onwards, all experiments were done using an incubator on land (University of Victoria Aquatic Facility), which was connected to a seawater system maintained at local surface seawater temperature (approximately 9–12 °C depending on the time of year).Rates of C (ρC) and NO3 (ρNO3) uptake were determined using a stable isotope tracer-technique29,30 (Fig. 4). A single seawater sample from each light depth received a dual spike, with NaH13CO3 (99% 13C purity, Cambridge Isotope Laboratories) for the determination of ρC and Na15NO3 (98 + % 15N purity, Cambridge Isotopes Laboratories) for the determination of ρNO3. Isotope additions were made at approximately 10% of ambient dissolved inorganic carbon (DIC) and NO3− concentrations.Fig. 4Carbon and nitrate uptake rates in the euphotic zone of Saanich Inlet from March 11, 2010 – November 15, 2017. Left panels show depth-integrated rates (black-bars on top) and time-series profiles (filled contour/scatter plots below) of (A) carbon (ρC) and (B) nitrate (ρNO3) uptake rates. In the time-series profiles, 2012–2013 data are not interpolated due to single-depth sampling. Grey shaded regions in depth-integrated plots indicate phytoplankton growing seasons for this study (March 1st – October 30th). Right panels show monthly-averaged depth profiles for the entire 8-year period, illustrating euphotic zone seasonality for carbon and nitrate uptake. The color scale bars on the far right apply to both the total time-series vertical profiles and the 8-year seasonal plots. Sampling depths are indicated by round symbols. The year labels are positioned under the tick marks corresponding to January.Full size imageSpiked seawater samples were incubated for 24 h, except from 2010 to 2013 when the incubation period was 4 to 6 hr. After incubation, the entire sample was gently vacuum filtered onto a combusted 0.7 µm (nominal porosity) glass fibre filter. Filters were dried for 48 h at 60 °C and kept in a desiccator at room temperature until analysis. Filters were packed into pellets and sent to the Stable Isotope Facility at the University of California (UC) Davis for analysis of 13C and 15N enrichment, and total C and N content by continuous flow isotope ratio mass spectrometry and elemental analysis, respectively. For these measurements, UC Davis uses either an Elementar Vario EL Cube or Micro Cube elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany) interfaced to either a PDZ Europa 20–20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK) or an Isoprime VisION IRMS (Elementar UK Ltd, Cheadle, UK).Carbon and NO3− uptake rates were calculated using Eq. 3 of Hama et al.29, and Eq. 3 and 6 of Dugdale and Wilkerson30, respectively.For samples incubated for less than 24 h, the daily C or NO3− uptake rates (ρX) were calculated using a PAR extrapolation method shown in Eq. (2):$$rho X(mu mol,{L}^{-1}da{y}^{-1})=left(rho X(mu mol,{L}^{-1}h{r}^{-1})divleft(frac{PAR,during,incubation}{Total,Daily,PAR}right)right)ast 24$$
    (2)
    Additionally, to account for NO3− uptake occurring under no light, ρNO3− was measured in dark bottles and this rate was added to the ρNO3− of each sample incubated for less than 24 h. The ρNO3− DARK was calculated following Eq. (3):$$rho N{O}_{3}DARK(mu mol,{L}^{-1}da{y}^{-1})=left(rho N{O}_{3}DARK(mu mol,{L}^{-1}h{r}^{-1})divleft(frac{Total,Daily,PAR-PAR,during,incubation}{Total,Daily,PAR}right)right)ast 24$$
    (3)
    PAR data used in Eqs. (2) and (3) came from the LI-COR® LI-190 Quantum sensor that was mounted beside the incubator. The seawater DIC value for each sample was calculated using a regression equation relating water density to DIC for Saanich Inlet31. Ambient NO3− concentrations were measured as described above. More

  • in

    Decadal trends in 137Cs concentrations in the bark and wood of trees contaminated by the Fukushima nuclear accident

    Monitoring sites and speciesThe monitoring survey was conducted at five sites in Fukushima Prefecture (sites 1–4 and A1) and at one site in Ibaraki Prefecture (site 5), Japan (Fig. 1). Sites 1, 2, and A1 are located in Kawauchi Village, site 3 in Otama Village, site 4 in Tadami Town, and site 5 in Ishioka City. Monitoring at sites 1–5 was started in 2011 or 2012, and site A1 was additionally monitored since 2017. The tree species, age, mean diameter at breast height, initial deposition density of 137Cs, and sampling year of each sample at each site are listed in Table 1. The dominant tree species in the contaminated area, namely, Japanese cedar (Cryptomeria japonica [L.f.] D.Don), Japanese cypress (Chamaecyparis obtusa [Siebold et Zucc.] Endl.), konara oak (Quercus serrata Murray), and Japanese red pine (Pinus densiflora Siebold et Zucc.) were selected for monitoring. Japanese chestnut (Castanea crenata Siebold et Zucc.) was supplementally added in 2017. The cedar, cypress, and pine are evergreen coniferous species, and the oak and chestnut are deciduous broad-leaved species. Sites 1 and 3 each have three plots, and each plot contains a different monitoring species. Site A1 has one plot containing two different monitoring species, and the remaining sites each have one plot with one monitoring species, giving ten plots in total.Figure 1Locations of the monitoring sites and initial deposition densities of 137Cs (decay-corrected to July 2, 2011) following the Fukushima nuclear accident in Fukushima and Ibaraki Prefectures. Open circles indicate the monitoring sites and the cross mark indicates the Fukushima Dai-ichi Nuclear Power Plant. Data on the deposition density were provided by MEXT19,20 and refined by Kato et al.21. The map was created using R (version 4.1.0)22 with ggplot2 (version 3.3.5)23 and sf (version 1.0–0)24 packages.Full size imageTable 1 Description of the sampled trees and monitoring sites.Full size tableSample collection and preparationBulk sampling of bark and wood disks was conducted by felling three trees per year at all sites during 2011–20168,25 and at sites 3–5 and A1 during 2017–2020. Partial sampling from six trees per year was conducted at sites 1 and 2 during 2017–2020 (from seven trees at site 2 in 2017) to sustain the monitoring trees. All the samples were obtained from the stems around breast height. During the partial sampling, bark pieces sized approximately 3 cm × 3 cm (axial length × tangential length) were collected from four directions of the tree stem using a chisel, and 12-mm-diameter wood cores were collected from two directions of the tree stem using an automatic increment borer (Smartborer, Seiwa Works, Tsukuba, Japan) equipped with a borer bit (10–101-1046, Haglöf Sweden, Långsele, Sweden). Such partial sampling increases the observational errors in the bark and wood 137Cs concentrations in individual trees26. To mitigate this error and maintain an accurate mean value of the 137Cs concentration, we increased the number of sampled trees from three to six. The sampling was conducted mainly in July–September of each year; the exceptions were site-5 samples in 2011 and 2012, which were collected irregularly during January–February of the following year. The collected bark pieces were separated into outer and inner barks, and the wood disks and cores were split into sapwood and heartwood. The outer and inner bark samples during 2012–2016 were obtained by partial sampling of barks sized approximately 10 cm × 10 cm from 2–3 directions on 2–3 trees per year.The bulk samples of bark, sapwood, and heartwood were air-dried and then chipped into flakes using a cutting mill with a 6-mm mesh sieve (UPC-140, HORAI, Higashiosaka, Japan). The pieces of the outer and inner bark were chipped into approximately 5 mm × 5 mm pieces using pruning shears, and the cores of the sapwood and heartwood were chipped into semicircles of thickness 1–2 mm. Each sample was packed into a container for radioactivity measurements and its mass was measured after oven-drying at 75 °C for at least 48 h. Multiplying this mass by the conversion factor (0.98 for bark and 0.99 for wood)8 yielded the dry mass at 105 °C.Radioactivity measurementsThe radioactivity of 137Cs in the samples was determined by γ-ray spectrometry with a high-purity Ge semiconductor detector (GEM20, GEM40, or GWL-120, ORTEC, Oak Ridge, TN). For measurements, the bulk and partial samples were placed into Marinelli containers (2.0 L or 0.7 L) and cylindrical containers (100 mL or 5 mL), respectively. The peak efficiencies of the Marinelli containers, the 100-mL container, and the 5-mL container were calibrated using standard sources of MX033MR, MX033U8PP (Japan Radioisotope Association, Tokyo, Japan), and EG-ML (Eckert & Ziegler Isotope Products, Valencia, CA), respectively. For the measurement of the 5-mL container, a well-type Ge detector (GWL-120) was used under the empirical assumption that the difference in γ-ray self-absorption between the standard source and the samples is negligible27. The measurement was continued until the counting error became less than 5% (higher counting errors were allowed for small or weakly radioactive samples). The activity concentration of 137Cs in the bark (whole) collected by partial sampling was calculated as the mass-weighted mean of the concentrations in the outer and inner barks; meanwhile, the concentration in the wood (whole) was calculated as the cross-sectional-area-weighted mean of sapwood and heartwood concentrations. The activity concentrations were decay-corrected to September 1, 2020, to exclude the decrease due to the radioactive decay.Trend analysesThe yearly representative values (true states) of 137Cs activity concentration in each stem part in each plot were estimated using a DLM, a state-space model in which the noise follows a normal distribution and the relationship between variables is linear. One basic DLM is the local linear trend model defined by the following equations:$$Y_{t} = mu _{t} + varepsilon _{t} ,quad quad quad varepsilon _{t} sim Normal left( {0,sigma _{varepsilon }^{2} } right)$$
    (1)
    $$mu_{t} = mu_{t – 1} + beta_{t – 1} + eta_{t} ,quad quad quad eta_{t} sim Normal left( {0,sigma_{eta }^{2} } right)$$
    (2)
    $$beta_{t} = beta_{t – 1} + zeta_{t} ,quad quad quad zeta_{t} sim Normal left( {0,sigma_{zeta }^{2} } right)$$
    (3)
    where Yt, μt, and βt are the observation values, level (true state), and slope, respectively, and εt, ηt, and ζt denote their corresponding noises. The subscript t is the time index. The noises εt, ηt, and ζt follow normal distributions with a mean of 0 and variances of ({sigma }_{varepsilon }^{2}), ({sigma }_{eta }^{2}), and ({sigma }_{zeta }^{2}), respectively. To detect relatively long-term trends, we employed the smooth local linear trend model28 (also called the smooth trend model, integrated random walk model, or second-order trend model), which is obtained by considering that μt and βt are driven by the same noise. The trend changes are assumed to be smoother in this model than in the local linear trend model28,29. Combining Eqs. (2) and (3), μt in the smooth local linear trend model is finally obtained as$$mu_{t} = 2mu_{t – 1} – mu_{t – 2} + eta_{t} ,quad quad quad eta_{t} sim Normal left( {0,sigma_{eta }^{2} } right)$$
    (4)
    The parameters μt, ({sigma }_{eta }^{2}), and ({sigma }_{varepsilon }^{2}) of each stem part in each plot were determined by Bayesian estimation with a Markov chain Monte Carlo (MCMC) method. The Bayesian estimation was performed in R (version 4.1.0)22 with the rstan package (version 2.21.2)30. Uninformative prior distributions were used for μ1, μ2, ({sigma }_{eta }^{2}), and ({sigma }_{varepsilon }^{2}). The log-transformed values of the 137Cs activity concentration (decay-corrected to September 1, 2020) were given as Yt (the observed values of multiple individuals in each year were passed via the segment function of Stan). MCMC sampling was conducted for four chains of 50,000 iterations (the first 25,000 were discarded as warmup), obtaining 100,000 MCMC samples for each parameter. The MCMC was judged to have converged when the maximum value of Rhat was less than 1.05 and the divergent transitions after warmup were fewer than 1,000 (i.e., less than 1% of the MCMC sample size). On the datasets of the outer and inner barks from site-3 oaks and all stem parts from site-A1 pines and chestnuts, the MCMC converged poorly owing to the small number of monitoring years. Thus, the temporal trends in these datasets were not analyzed (the observational data at site A1 are shown in Supplementary Fig. S1 and Table S1).To detect decadal trends rather than yearly variations, we determined the temporal trends in the true state (μ) by setting 2–4 delimiting years and examining whether μ varied significantly from one delimiting year to the next. As the delimiting years, we selected the initial and final years of monitoring and the years in which the median µ was highest (µ-max year) and lowest (µ-min year). When the µ-max year and/or the µ-min year coincided with the initial year and/or final year of monitoring, the number of delimiting years reduced from four to two or three. The trend in µ between two delimiting years was determined to be increasing and decreasing when the 95% credible interval of µ2nd delimiting year − µ1st delimiting year (obtained from the MCMC samples) was higher and lower than zero, respectively. A flat trend (no significant variation) was detected when the 95% credible interval included zero. If the 3rd and 4th delimiting years existed, the trends between the 2nd and 3rd delimiting years and between the 3rd and 4th delimiting years were determined in the same manner.The 137Cs CRs of outer bark/inner bark, heartwood/sapwood, and inner bark/sapwood were also subjected to the above trend analyses. On datasets with less than five years of monitoring, the MCMC did not converge so the trend analysis was not attempted. More

  • in

    Object based classification of a riparian environment using ultra-high resolution imagery, hierarchical landcover structures, and image texture

    Gabor transformThe Gabor transform has rarely been used as a feature in a landscape classification OBIA approach but has been used in other OBIA processes such as fingerprint enhancement and human iris detection and for data dimensionality reduction24,29,30,31,32,33,34,35. Gabor filters are a bandpass filter applied to an image to identify texture. The different Gabor bandpass filters mathematically model the visual cortical cells of mammalian brains and thus is expected to improve segmentation and classification accuracy when compared to a human delineated and classified image26,27.Samiappan et al.36 compared Gabor filters to other texture features (grey-level co-occurrence matrix, segmentation-based fractal texture analysis, and wavelet texture analysis) within the GEOBIA process, of a wetland, using sub-meter resolution multispectral imagery. These Gabor filters performed comparably, in overall classification accuracy and Kappa coefficients, with other texture features. However, they were still outperformed by all other texture features. This study did not use any other data for analysis for determining the performance of Gabor filters when paired with data sources such as spectral, NDVI, or LiDAR36,37. Wang et al.38 paired a Gabor transformation with a fast Fourier transformation for edge detection on an urban landscape image that contained uniform textures with promising results. Su30 used the textural attributes derived from Gabor filters for classification but had similar results to Samiappan et al.36 where they found that Gabor features were one of the least useful/influential that contributed to the classification of a mostly agricultural landscape.Gabor filters are a Fourier influenced wavelet transformation, or bandpass filter, that identifies texture as intervals in a 2-D Gaussian modulated sinusoidal wave. This modulation differentiates the Gabor transform from the Fourier transform23,26. These Gabor transformed wavelets are parameterized by the angle at which they alter the image and the frequency of the wavelet. Rather than smoothing an image at the cost of losing detail through Fourier transforms or median filters, Gabor transformed images identify the repeated pattern of localized pixels and gives them similar values if they are a part of the same repeated sequence. Gabor features can closely emulate the visual cortex of mammalian brains that utilize texture to identify objects26,27. This is based on the evaluation of neurons associated with the cortical vertex that respond to different images or light profiles39. Marcelja27 identified that cortical cells responded to signals that are localized frequencies of light like what is represented by the Gabor transformations. Within the frequency domain, the Gabor transform can be defined by Eq. (1):$$Gleft(u, v;f, theta right)= {e}^{-frac{{pi }^{2}}{{f}^{2}} ({gamma }^{2}({u}^{{prime}}-f{)}^{2}+{n}^{2}{v}^{{{prime}}2})}$$
    (1)

    where (f) is the user-determined frequency (or wavelength); (theta) is the user-determined orientation at which the wavelet is applied to the image; (gamma) and (n) are the standard deviations of the Gaussian function in either direction23,38. These parameters define the shape of the band pass filter and determines its effect on one-dimensional signals. Daugman26, created a 2-D application of this filter in Eq. (2);$$gleft(u,vright)= {e}^{-{pi }^{2}/{f}^{2}[{gamma }^{2}{left({u}^{{prime}}-fright)}^{2}+{n}^{2}{{v}^{{prime}}}^{2}]}$$
    (2)

    where u’ = ucos − vsin θ θ and v’ = usin − vcos θ.In order to implement Gabor filters on multi-band spectral images, we used Matlab’s Gabor feature on the University of Iowa’s Neon high performance computer (HPC)40 which has up to 512 GB of RAM, which was necessary for processing these images. The first implementation of Gabor filters was performed on a 1610 × 687 single band pixel array (a small subset of the study area), a filter bank of 4 orientations and 8 wavelengths, on a 32 GB RAM computer, and took approximately 8 h to complete. Filter banks are a set of Gabor filters with different parameters that is applied to the spectral image and are required to identify different textures with different orientations and frequencies. By lowering the number of wavelengths from 8 to 4 on an 8128 × 8128 single band pixel array on the same machine 32 GB RAM, the processing was reduced to an hour. Using the HPC, this was further reduced to approximately 90 s using the same filter bank. Before implementing on the HPC, the original spectral image was divided into manageable subsets with overlap in order to prevent ‘edge-effect.’ These images were converted to greyscale by averaging values across all three bands33. When wavelengths become too long, they no longer attribute the textural information desired from the image and therefore add unnecessary computing time. The wavelengths that were used for the filter bank were selected as increasing powers of two starting from 2.82842712475 ((24/sqrt{2})) up to the pixel length of the hypotenuse of the input image. From this, we used only 2.82842712475, 7.0710678, 17.6776695, and 44.19417382. The directional orientation was selected as 45° intervals, from 0 to 180: 0, 45, 90, 135. These parameters were based on the reasoning outlined within Jain and Farrokhina25. More directional orientations could have been included but four were used for computational efficiency. The radial frequencies were selected so that they could capture the different texture in the landscape represented by consistent changes in pixels values within each landcover class. When frequencies are too wide or fine of a width they no longer represent the textures of the different landcover classes and thus are not included. This selection of filter bank parameters are similar or the same as other studies that look into the use of Gabor features for OBIA25,30,31.From the different combinations of parameters (four directions and four frequencies) in the Gabor Transform filter bank, sixteen magnitude response images were created from the converted greyscale three band average image. To limit high local variance within the output Gabor texture images, a Gaussian filter was applied. The magnitude response values were normalized across the 16 different bands so that a Principal Component Analysis (PCA) could be applied. The first principal component of the PCA, from these Gabor transformed images, was used for this study since it limits the computation time to process 16 separate Gabor features, in addition to the other data sources, while still retaining the most amount of information from the different Gabor response features. The Gabor band that was used for this study can be viewed in Fig. 2.Figure 2Gabor transformation. Gabor transformed image of study area derived from original image using the first principal component of all gabor outputs using the filter bank parameters. Software: ArcMap (10.x).Full size imageSegmentationFor this study, we used the watershed algorithm for the segmentation of GEOBIA, implemented by ENVI version 5.0 Feature Extraction tool, due to its ubiquitous use within GEOBIA, its ability to create a hierarchy of segmented objects, and support within the literature as a reliable algorithm37,41,39,43. The watershed algorithm can either use a gradient image or intensity image for segmentation. Based on the observed results, this study used the intensity method. The intensity method averages the value of pixels across bands. Scale, a user-defined parameter, is selected to identify the threshold that decides if a given intensity value within the gradient image can be a boundary. This allows the user to decide the size of the objects created. A secondary, user-defined, parameter defines how similar, adjacent, objects need to be before they are combined or merged. The user arbitrarily selects the parameter value based on how it reduces both under and over segmentation. The parameters selected for this study were visually chosen based on a compromise between over and under segmentation relative to the hand demarcated objects.The merging of two separate objects was based on the full lambda schedule where the user selects a merging threshold ({t}_{i, j}) which is defined by Eq. (3):$${t}_{i, j}= frac{frac{left|{O}_{i}right|cdot left|{O}_{j}right|}{left|{O}_{i}right|+ left|{O}_{j}right|}cdot {Vert {u}_{i}-{u}_{j}Vert }^{2}}{mathrm{length}(mathrm{vartheta }left({O}_{i},{O}_{j}right))}$$
    (3)

    where ({O}_{i}) is the object of the image, (left|{O}_{i}right|) is the area of (i), ({u}_{i}) is the average of object (i), ({u}_{j}) is the average of object (j), (Vert {u}_{i}-{u}_{j}Vert) is the Euclidean distance between the average values of the pixel values in regions (i) and (j), and (mathrm{length}left(mathrm{vartheta }left({O}_{i},{O}_{j}right)right)) is the length of the shared boundary of ({O}_{i}) and ({O}_{j}).To compare the segmentation of a riparian landscape, with and without Gabor features, we conducted segmentation on two separate sets of data. One dataset was a normalized stacked layer of NDVI and CHM (see Fig. 3) with the original multispectral image used as ancillary data; the other dataset differed only by the inclusion of the Gabor feature. For both instances, the bands were converted to an intensity image by averaging across bands rather than being converted into a gradient image for segmentation. The dataset that included the Gabor features had a scale parameter set at 30 with merge settings at 95 and 95.7 for the sub and super-objects, respectively. The dataset that did not include the Gabor features had a scale parameter of 10 with merge settings at 95.6 and 98.5 for the sub and super-objects, respectively. This resulted in the creation of 87,198 and 62,905 segments for the sub and super objects, respectively, that were created when the Gabor feature was included. 191,050 and 51,664 segments were created for the sub and super objects when the Gabor features, respectively, were not included within the segmentation process. As you will see in the next section, these segments also represent the number of training data that will be included within the supervised classification.Figure 3CHM and NDVI. LiDAR derived canopy height model (top) and normalized difference vegetation index derived from original spectral image. Software: ArcMap (10.x).Full size imageTo create a hierarchy of land cover classes, two sets of segmentation parameters needed to be selected for each dataset. One set of parameters would be used for the sub-objects within the hierarchy and the other set would be used to create super-objects. All parameters used the intensity and full lambda schedule algorithms for the watershed method. The only setting that changed between the sub and super-objects, for either dataset, was the merge parameter which helped maintain similar boundaries as much as possible. Despite this, boundaries could moderately change due to the Euclidean distance, between the pixel values of (i) and (j), changing from the merging of objects; causing ({t}_{i, j}) to cross the threshold which results in a new boundary being drawn. A representation of these results can be viewed and visually compared to the hand demarcated objects in Fig. 4.Figure 4Automated and manual segmented comparison. Juxtaposition of hand delineated, sub-objects, and super-objects for segments generated using the Gabor features. Software: ArcMap (10.x).Full size imageTraining dataThe training data, used for this study, is the transfer of class attributes from hand demarcated and classified segments to automatically segmented objects based on the majority overlap of the hand demarcated segments. Experts identified them using two different classification schemes referenced from the General Wetland Vegetation Classification System44. The 7-class scheme within this system identified objects of either being forest, marsh, agriculture, developed, open water, grass/forbs, or sand/mud. The 13-class scheme identified objects of either being agriculture, developed, grass/forbs, open water, road/levee, sand/mud, scrub-shrub, shallow marsh, submerged aquatic vegetation, upland forest, wet forest, wet meadow, and wet shrub. Not every class from the 7-class scheme will have a sub-class (i.e. developed, open water) but some do for example wet and upland forest are sub-objects of the forest class and wet meadow and shallow marsh are sub-objects of marsh. Figure 5 visually illustrates both classification schemes across the study area.Figure 5Hand delineated objects of both scales. Software: ArcMap (10.x).Full size imageENVI’s feature extraction tool calculates several landscape, spectral, and textural metrics. These attributes were used for each random forest classifier. The Gabor and Hierarchical features will be included selectively to be able to compare their contributions to the (out-of-bag) OOB classification errors. When Gabor features are included within the classification, they are computed the same way as the other image bands.Random forestThe random forest classifier was implemented in R using the random forest module45. The number of trees, that were randomly generated, was large enough (n = 250) to where the Strong law of large numbers would take effect as indicated by the decrease in the change of accuracy. The default number of variables randomly sampled as candidates at each split variable (mtry parameter) was the total number of variables divided by 3 for each dataset. R also generates two separate variable indices: mean decrease in accuracy and mean decrease Gini. Mean decrease in accuracy refers to the accuracy change in the random forest when a single variable is left out. This is a practical metric to determine the usefulness of a variable. The Gini index measures the purity change within a dataset when it is split based upon a given variable within a decision tree.The random forest classification accuracy will be based on the OOB error. The random forest algorithm trains numerous decision trees on random subsets of the training set leaving out a number of training samples when training each decision tree. The samples that are left out of each decision tree are then classified by the decision tree that they were not included within during the training step. The OOB error is the average error of each predicted bootstrapped sample across the ensemble of decision trees within the random forest algorithm.Figure 6 illustrates how the Gabor and hierarchal features were included within the classification of the super and sub-objects.Figure 6Classification procedure. Schematic flow chart illustrating how the Gabor and hierarchal features were included within the classification of the super and sub-objects. OOB classification error included in parenthesis.Full size imageHierarchical schemeTo attribute the hierarchical structure to the sub-objects, we first classified the larger segments that were created with and without the Gabor features using the broader 7-class scheme. These classified super objects were then converted to raster to calculate the majority overlap with the smaller sub-objects. This gave the sub-objects an attribute, the broader 7-class scheme, that could be used to contribute to the classification of the sub-objects with the finer 13-class scheme. This builds the hierarchical relationship between the two class schemes into the supervised classification of the sub-objects. Figure 6 illustrates how the hierarchal structure was included within two of the four sub-object’s list of features used within classification. This methodological approach aligns with O’Neill et al.21 landscape ecology principle that a super-object’s class could be a useful property in defining or predicting a sub-object. This is also different than the more common rule-based approach of iteratively classifying the landscape into smaller and smaller sub-classes22.Segmentation assessmentMost studies rely upon the accuracy assessment of their classifiers to provide support for their analysis results. However, this does not provide evidence whether a new data fusion technique improves the ability to delineate objects of interest within an image. To assess the performance of our segmented polygons, this study evaluated the segments created with and without the Gabor feature using a method highlighted in Xiao et al.37.Our segmentation results were evaluated using an empirical discrepancy measure, used frequently in image segmentation evaluation37,46,47. Discrepancy measures utilize ground truth images that represent the “correct” delineated/classified image to compare the semi-automated image results. In our study, the objects that were delineated and classified by experts from the U.S. Fish and Wildlife Service, were used as training data for our random forest classifier and as ground truth for the discrepancy measure. The discrepancy measure used the percentage of right segmented pixels (PR) in the whole image. To calculate PR, we converted the classified segmented and ground truth polygons to raster and measured the ratio of incorrect pixels to total amount of pixels which was converted to a percentage.Additionally, landscape metrics were calculated using FRAGSTATS48, an open source program commonly used for calculating landscape metrics. FRAGSTATS computed these metrics from thematic raster maps that represent the land cover types of interest. These thematic classes, used for analysis, were the classified objects at both the super and sub-object level. Since we are not attempting to compare the segmentation results for any specific class or area, we calculated metrics on a landscape level. Landscape metrics will represent the segmentation patterns for the entire study area.FRAGSTATS can calculate various metrics representing different aspects of the landscape. The metrics for analysis attempts to understand object geometry. The metrics calculated, for these analyses, were the average and standard deviation for the area (AREA), the fractal dimension index (FRAC), and the perimeter area ratio (PARA). The number of patches (NP) was also included in each result. To take a more landscape centric approach, the area weighted mean was chosen over a simple average. More

  • in

    3D model of the geometric nest structure, the “mystery circle,” constructed by pufferfish

    Wild animals construct various types of structures that are adaptive to their life and reproduction. For example, termites that inhabit the African savanna use soil to construct a huge mound that reaches 10 m in height; they produce hollows and holes in these mounds to allow air ventilation, thereby keeping the internal temperature constant1. In addition, prairie dogs inhabiting the North American prairie dig vertically and horizontally extending burrows in the ground that they use for shelter and rearing offspring; these burrows have multiple entrances, some of which are chimney-shaped to improve ventilation efficiency2. In the field of biomimetics, researchers apply the principles of animal-created structures in applications useful to humans3.The white-spotted pufferfish Torquigener albomaculosus (Pisces: Tetraodontidae) is a relatively small species that grows to ~10 cm in total total length (Fig. 1). Male T. albomaculosus individuals construct an intricate geometric circular structure, known as the “mystery circle,” with a diameter of 2 m in the sand of the seabed;4 the discovery of these structures has fascinated researchers and the general public worldwide. The male pufferfish digs the sand on the seabed with its fins and body while swimming straight ahead toward the centre from different directions, and a circular structure composed of radially aligned peaks and valleys was constructed. Finally, the male creates a maze-like pattern by flapping its anal fin on the bottom of the central zone4. Thus, the male completes the circular structure by himself. Furthermore, we discovered that the earliest stage of the mystery circle is composed of dozens of irregular depressions, which might function as landmarks for the formation of the radial patterns5. By accumulating observations of pufferfish behaviour, we were able to conduct a computer simulation including the swimming trajectory of the pufferfish extracted from video images wherein they constructed the circular structure. This simulation revealed that an elaborate circular geometric pattern is inevitably formed if the pufferfish repeats the digging behavior on the seabed using simple rules6. We also observed the reproductive behaviour of the pufferfish and found that they consistently breed in a semilunar cycle from spring to summer. Each male constructs a mystery circle and spawns with multiple females on the nest, and the male cares for the eggs alone until they hatch. Some of the elements of the circular structure, i.e., its size, symmetry, ornaments, and maze-like pattern, might be important factors in terms of female mate choice4,7.Fig. 1The white-spotted pufferfish Torquigener albomaculosus. Lateral view of a male (a), and male digging behaviour on the seabed while rolling up fine sand particles (b).Full size imageAlthough data on the reproductive ecology and circle-construction behaviour of these pufferfish have been collected, many questions remain. Our interdisciplinary research currently has two themes: (i) theoretical studies on the logic of 3D-structure formation of the circular structure and (ii) ethological studies on the relationship between female mate choice and the features of the structure. To advance these studies, it is essential to collect quantitative data on the circular structure. Thus, we reconstructed 3D models of six completed mystery circles using a “structure from motion” (SfM) algorithm (Fig. 2).Fig. 2“Mystery circle” constructed by a white-spotted pufferfish (Torquigener albomaculosus). 3D model displayed on a computer (a), one of the video frames used to reconstruct the 3D model (b), and a Styrofoam model output in full size created using a 3D printer and the 3D data (c) for a specific mystery circle 20160615_K13.Full size imageOn the other hand, the mystery circle constructed by the pufferfish may have potential applications in biomimetics similar to the structures constructed by termites and prairie dogs. To support the importance of its structural characteristics, it has been observed that the water passing through the valley upstream always gathers in the center of the structure, regardless of the direction of water flow4. Furthermore, particle size analysis of the sand forming the mystery circle has revealed that it has the function of extracting fine-grained sand particles from the valleys arranged radially to the outside and directing them to the center (Kawase, in prep.). The field of computational fluid dynamics, which makes full use of fluid dynamics technology, engineering knowledge, and computers, will logically clarify the characteristics of the 3D structure of the mystery circle we have reconstructed here. Shameem et al. reconstructed a 3D model of a mystery circle to explore the flow features with 2D computational fluid dynamic simulations8. Since our model has already been quantified as 3D data, computational fluid analysis can be immediately performed using this data, and the structural features of the mystery circle are expected to be applied in a wide range of fields, such as architecture and engineering, via biomimetics. More

  • in

    Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects

    Chileshe, M. N. et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. J. For. Res. https://doi.org/10.1007/s11676-019-00921-0 (2019).Article 

    Google Scholar 
    Sracek, O. Formation of secondary hematite and its role in attenuation of contaminants at mine tailings: Review and comparison of sites in Zambia and Namibia. Front. Environ. Sci. 2, 1–11 (2015).ADS 
    Article 

    Google Scholar 
    Kayika, P., Siachoono, S., Kalinda, C. & Kwenye, J. An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Arch. Sci. 1, 2–5 (2017).
    Google Scholar 
    Nazir, R. et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 7, 89–97 (2015).CAS 

    Google Scholar 
    Surbakti, E. P., Iswantari, A., Effendi, H. & Sulistiono. Distribution of dissolved heavy metals Hg, Pb, Cd, and As in Bojonegara Coastal Waters, Banten Bay. IOP Conf. Ser. Earth Environ. Sci. 744, 012085 (2021).Article 

    Google Scholar 
    Van Nguyen, T. et al. Arsenic and heavy metal contamination in soils under different land use in an estuary in northern Vietnam. Int. J. Environ. Res. Public Health 13, 1091 (2016).Article 
    CAS 

    Google Scholar 
    Yabe, J. et al. Uptake of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe, Zambia. Environ. Toxicol. Chem. 30, 1892–1897 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salem, M. A., Bedade, D. K., Al-ethawi, L. & Al-waleed, S. M. Heliyon Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 6, e05224 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuakuila, J. et al. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC). Int. Arch. Occup. Environ. Health 85, 927–939 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Setia, R. et al. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263, 128321 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burga, D. & Saunders, K. Understanding and Mitigating Lead Exposure in Kabwe: A One Health Approach (S. Afr. Inst. Policy Res, 2019).
    Google Scholar 
    Ikenaka, Y., Nakayama, S. M. M., Muzandu, K. & Choongo, K. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. https://doi.org/10.4314/ajest.v4i11.71339 (2010).Article 

    Google Scholar 
    Taylor, A. A. et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 65, 131–159 (2020).Article 

    Google Scholar 
    Gummow, B., Botha, C. J., Basson, A. T. & Bastianello, S. S. Copper toxicity in ruminants: Air pollution as a possible cause. Onderstepoort J. Vet. Res. 58, 33–39 (1991).CAS 
    PubMed 

    Google Scholar 
    Cheng, S. Effects of heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 10, 256–264 (2003).CAS 
    Article 

    Google Scholar 
    Olobatoke, R. & Mathuthu, M. Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Can. J. Soil Sci. 96, 299–304 (2008).Article 
    CAS 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.08.004 (2020).Article 

    Google Scholar 
    Trevor, M. et al. Statistical and spatial analysis of heavy metals in soils of residential areas surrounding the Nkana Copper Mine Site in Kitwe District, Zambia. Am. J. Environ. Sustain. Dev. 4, 26–37 (2019).
    Google Scholar 
    Nalishuwa, L. Investigation on Copper Levels in and Around Fish Farms in Kitwe, Copperbelt Province, Zambia (Sokoine University of Agriculture, 2015).
    Google Scholar 
    Ikenaka, Y. et al. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 4, 109–128 (2014).
    Google Scholar 
    Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V. & Veselovský, F. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. J. Afr. Earth Sci. 57, 14–30 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Manchisi, J. et al. Potential for bioleaching copper sulphide rougher concentrates of Nchanga Mine, Chingola, Zambia. J. S. Afr. Inst. Min. Metall. 112, 1051–1058 (2012).
    Google Scholar 
    Fernández-Caliani, J. C., Barba-Brioso, C., González, I. & Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 200, 211–226 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Prasad, R. & Chakraborty, D. Phosphorus Basics: Understanding Phosphorus Forms and Their Cycling in the Soil 1–4 (Alabama Coop. Ext. Syst, 2019).
    Google Scholar 
    Verma, F. et al. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon 7, e08122 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F. & Taylor, M. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, 1–13 (2017).Article 

    Google Scholar 
    Ndeddy Aka, R. J. & Babalola, O. O. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J. 21, 1–19 (2017).Article 
    CAS 

    Google Scholar 
    Hassan, A., Pariatamby, A., Ahmed, A., Auta, H. S. & Hamid, F. S. Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: A demonstration of bioaugmentation potential. Water Air Soil Pollut. 230, 1–20 (2019).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Restoration of rare earth mine areas: organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 22, 17151–17160 (2015).CAS 
    Article 

    Google Scholar 
    Kapungwe, E. M. Heavy metal contaminated water, soils and crops in peri urban wastewater irrigation farming in Mufulira and Kafue towns in Zambia. J. Geogr. Geol. 5, 55–72 (2013).
    Google Scholar 
    Sandell, E. Post-Mining Restoration in Zambia (Swedish University of Agricultural Sciences, 2020).
    Google Scholar 
    Kumar, V., Pandita, S. & Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 103, 487–501 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, V., Sihag, P., Keshavarzi, A., Pandita, S. & Rodríguez-Seijo, A. Soft computing techniques for appraisal of potentially toxic elements from Jalandhar (Punjab), India. Appl. Sci. 11, 8362 (2021).CAS 
    Article 

    Google Scholar 
    Setia, R. et al. Assessment of metal contamination in sediments of a perennial river in India using pollution indices and multivariate statistics. Arab. J. Geosci. 14, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Kumar, V. et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 216, 449–462 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Environmental Council of Zambia. Environment Outlook Report in Zambia (2008).Kasali, G. Clacc Capacity Strengthening in the Least Developed Countries. CLACC Working Paper (2008).Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V. & Šebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164, 73–84 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Cook, J. M. et al. The comparability of sample digestion techniques for the determination of metals in sediments. Mar. Pollut. Bull. 34, 637–644 (1997).CAS 
    Article 

    Google Scholar 
    Güven, D. E. & Akinci, G. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi Univ. J. Sci. 24, 29–34 (2011).
    Google Scholar 
    Jha, P. et al. Predicting total organic carbon content of soils from Walkley and Black analysis. Commun. Soil Sci. Plant Anal. 45, 713–725 (2014).CAS 
    Article 

    Google Scholar 
    Walkley, A. & Black, I. A. A critical examination of rapid method for determining organic carbon in soil. Soil Sci. 63, 251–254 (1974).ADS 
    Article 

    Google Scholar 
    Ure, A. M. Methods of analysis for heavy metals in soils. In Heavy Metals Soils (ed. Alloway, B. J.) 58–102 (Springer, 1995).Chapter 

    Google Scholar 
    Staniland, S. et al. Cobalt uptake and resistance to trace metals in comamonas testosteroni isolated from a heavy-metal contaminated site in the Zambian Copperbelt. Geomicrobiol. J. 27, 656–668 (2010).CAS 
    Article 

    Google Scholar 
    Ajmone-Marsan, F. & Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 213, 121–143 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Adriano, D. C. Trace elements in terrestrial environments. J. Environ. Qual. 32, 374 (2003).
    Google Scholar 
    Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals (Springer, 2001).Book 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA, (2009).Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, 975–1001 (1980).Article 

    Google Scholar 
    Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 2, 108–118. (1969).
    Google Scholar 
    Usero, J., A. Garcia and J. Fraidias, 2000. Andalicia Board, Environmental Counseling. 1st Edn., Seville, Editorial, pp: 164.Sikamo, J., Mwanza, A. & Mweemba, C. Copper mining in Zambia—history and future. J. S. Afr. Inst. Min. Metall. 116, 6–8 (2016).Article 
    CAS 

    Google Scholar 
    DR Congo: copper production 2010–2020|Statista. https://www.statista.com/statistics/1276790/copper-production-in-democratic-republic-of-the-congo/.Lydall, M. I. & Auchterlonie, A. The Southern African Institute of Mining and Metallurgy 6th Southern Africa base metals conference 2011. The Democratic Republic of Congo and Zambia: A growing global ‘Hotspot’ for copper-cobalt mineral investment and explo. In The Southern African Institute of Mining and Metallurgy 25–38 (2011).Worlanyo, A. S. & Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 279, 111623 (2021).CAS 
    Article 

    Google Scholar 
    Shengo, M. L., Kime, M. B., Mambwe, M. P. & Nyembo, T. K. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 18, 226–246 (2019).Article 

    Google Scholar 
    Tembo, B. D., Sichilongo, K. & Cernak, J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63, 497–501 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tveitnes, S. Soil productivity research programme in the high rainfall areas in Zambia. Agricultural University of Norway (1981).Esshaimi, M., El Gharmali, A., Berkhis, F., Valiente, M. & Mandi, L. Speciation of heavy metals in the soil and the mining residues, in the Zinclead Sidi Bou Othmane Abandoned mine in Marrakech area. Linnaeus Eco-Tech https://doi.org/10.15626/eco-tech.2010.102 (2017).Article 

    Google Scholar 
    Vítková, M. et al. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 74, 581–600 (2010).Article 
    CAS 

    Google Scholar 
    Van Brusselen, D. et al. Metal mining and birth defects: A case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 4, e158–e167 (2020).PubMed 
    Article 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. 8, 100793 (2021).
    Google Scholar 
    Muleya, F. et al. Investigating the suitability and cost-benefit of copper tailings as partial replacement of sand in concrete in Zambia: An exploratory study. J. Eng. Des. Technol. 19, 828–849 (2020).
    Google Scholar 
    Namweemba, M. G. Mining Induced Heavy Metal Soil and Crop Contamination in Chililabombwe on the Copperbelt of Zambia (University of Zambia, 2017).
    Google Scholar 
    Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548 (2014).CAS 
    Article 

    Google Scholar 
    Barsova, N., Yakimenko, O., Tolpeshta, I. & Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 249, 200–207 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    WHO/FAO. Food additives and contaminants. Joint FAO. WHO Food Stand. Program. ALINORM 1, 1–289 (2001).
    Google Scholar 
    Sracek, O. et al. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 112, 174–188 (2012).CAS 
    Article 

    Google Scholar 
    Hasimuna, O. J., Chibesa, M., Ellender, B. R. & Maulu, S. Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, Northwestern province, Zambia. Sci. Afr. 12, e00822 (2021).
    Google Scholar 
    Kříbek, B. Mining and the environment in Africa. Conserv. Lett. 7, 302–311 (2011).
    Google Scholar 
    Crommentuijn, T., M.D.Polder & Plassche, E. J. van de. Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account. National Institute of Public Health and the Environment Bilthoven, The Netherlands (1997).Maboeta, M. S., Oladipo, O. G. & Botha, S. M. Ecotoxicity of mine tailings: Unrehabilitated versus rehabilitated. Bull. Environ. Contam. Toxicol. 100, 702–707 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S. & Odén, P. C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 30, 381–396 (2019).Article 

    Google Scholar 
    Volk, J. & Yerokun, O. Effect of application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture 6, 64 (2016).Article 
    CAS 

    Google Scholar 
    Pietrini, F. et al. Effect of different copper levels on growth and morpho-physiological parameters in giant reed (Arundo donax L.) in semi-hydroponic mesocosm experiment. Water (Switzerland) 11, 1837 (2019).CAS 

    Google Scholar 
    EPA. Ecological Soil Screening Level for Iron Interim Final 211 (US Environ. Prot. Agency – Off. Solid Waste Emerg., 2005).
    Google Scholar  More

  • in

    Increasing calcium scarcity along Afrotropical forest succession

    Losos, E. & Leigh, E. G. Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network (Univ. Chicago Press, 2004).Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–854 (2013).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L. Beyond deforestation: restoring degraded lands. Science 1458, 1458–1460 (2008).
    Google Scholar 
    Global Forest Resources Assessment 2010 (FAO, 2010).Rozendaal, D. M. A. & Chazdon, R. L. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol. Appl. 25, 506–516 (2015).PubMed 

    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F. & Al, E. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck, M. et al. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 14, 89–96 (2012).
    Google Scholar 
    Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 

    Google Scholar 
    Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B. & White, J. W. Multi-element regulation of the tropical forest carbon cycle. Front. Ecol. Environ. 9, 9–17 (2011).
    Google Scholar 
    Medvigy, D. et al. Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytol. 223, 1820–1833 (2019).Powers, J. S., Mar, E. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles during secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).
    Google Scholar 
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).CAS 
    PubMed 

    Google Scholar 
    Davidson, E. A. & Martinelli, L. A. in Amazonia and Global Change (eds Keller, M. et al.) 299–309 (American Geophysical Union, 2013).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).
    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).CAS 
    PubMed 

    Google Scholar 
    Bauters, M., Mapenzi, N., Kearsley, E., Vanlauwe, B. & Boeckx, P. Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica 48, 281–284 (2016).
    Google Scholar 
    Van Langenhove, L. et al. Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield. Plant Soil 450, 93–110 (2020).PubMed 

    Google Scholar 
    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 

    Google Scholar 
    Kaspari, M. et al. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol. Lett. 11, 35–43 (2008).PubMed 

    Google Scholar 
    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol. Lett. 14, 939–947 (2011).PubMed 

    Google Scholar 
    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).CAS 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).
    Google Scholar 
    Sanchez, P. A., Villachica, J. H. & Bandy, D. E. Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Am. J. 47, 1171 (1983).CAS 

    Google Scholar 
    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).
    Google Scholar 
    Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–513 (2004).CAS 
    PubMed 

    Google Scholar 
    Wassen, M. J., Venterink, H. O., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).CAS 
    PubMed 

    Google Scholar 
    Waring, B. G., Becknell, J. M. & Powers, J. S. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest. Oecologia 178, 887–897 (2015).PubMed 

    Google Scholar 
    De longe, M., D’odorico, P. & Lawrence, D. Feedbacks between phosphorus deposition and canopy cover: the emergence of multiple stable states in tropical dry forests. Glob. Change Biol. 14, 154–160 (2008).
    Google Scholar 
    Bauters, M. et al. Fire-derived phosphorus fertilization of African Tropical Forests. Nat. Commun. 12, 5129 (2021).Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25, 376–381 (1975).CAS 

    Google Scholar 
    Gallarotti, N. et al. In-depth analysis of N 2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J. 15, 3357–3374 (2021).Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).CAS 

    Google Scholar 
    Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol. Appl. 14, 177–199 (2004).
    Google Scholar 
    Lawrence, D. et al. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc. Natl Acad. Sci. USA 104, 20696–20701 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).
    Google Scholar 
    Sanchez, P. A. Properties and Management of Soils in the Tropics (John Wiley and Sons, 1976).Turner, B. L. & Engelbrecht, B. M. J. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103, 297–315 (2011).Sullivan, B. W. et al. Biogeochemical recuperation of lowland tropical forest during succession. Ecology 100, e02641 (2019).Sardans, J. et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat. Ecol. Evol. 13, 184–194 (2021).White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 

    Google Scholar 
    Huggett, B. A., Schaberg, P. G., Hawley, G. J. & Eagar, C. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Can. J. For. Res. 37, 1692–1700 (2007).CAS 

    Google Scholar 
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Elsevier/Academic Press 2002).Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Bauters, M. et al. Soil nutrient depletion and tree functional composition shift following repeated clearing in secondary forests of the Congo Basin. Ecosystems 24, 1422–1435 (2021).Turner, B. L., Brenes-arguedas, T. & Condit, R. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2021).Vitousek, P. M. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).
    Google Scholar 
    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).PubMed 

    Google Scholar 
    Nykvist, N. in Soils of Tropical Forest Ecosystems (eds Schulte, A. & Ruhiyat, D.) 87–91 (Springer, 1998).Bunyavejchewin, S., Sinbumroong, A., Turner, B. L. & Davies, S. J. Natural disturbance and soils drive diversity and dynamics of seasonal dipterocarp forest in Southern Thailand. J. Trop. Ecol. 35, 95–107 (2019).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 

    Google Scholar 
    Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).Makelele, I. A. et al. Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J. Veg. Sci. 32, e13071 (2021).Van Langenhove, L. et al. Atmospheric deposition of elements and its relevance for nutrient budgets of tropical forests. Biogeochemistry 149, 175–193 (2020).
    Google Scholar 
    Staelens, J. et al. Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut. 191, 149–169 (2008).CAS 

    Google Scholar 
    Hofhansl, F. et al. Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, southwest Costa Rica. Biogeochemistry 106, 371–396 (2011).
    Google Scholar 
    Schrijver, A. De, Nachtergale, L. & Staelens, J. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut. 131, 93–105 (2004).Eriksson, E. & Khunakasem, V. Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J. Hydrol. 7, 178–197 (1969).
    Google Scholar 
    Malhi, Y. et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439 (2002).
    Google Scholar 
    Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8, 1163–1167 (2017).
    Google Scholar 
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
    Google Scholar 
    Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).D’Angelo, E., Crutchfield, J. & Vandiviere, M. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30, 2206–2209 (2001).Rowland, A. P. & Haygarth, P. M. Determination of total dissolved phosphorus in soil solutions. J. Environ. Qual. 26, 410–415 (1997).CAS 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 

    Google Scholar 
    Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14, 319–329 (1982).CAS 

    Google Scholar 
    Kaiser, C. et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187, 843–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021). More