More stories

  • in

    Long-term observation of the egg and chick size in the nests of Larus ichthyaetus in Lake Chany, Russia

    We surveyed three islands of Lake Chany: Uzkoredkii (54° 58′ 15′′ N, 77°27′04′′ E), Reden’kii (54° 56′ 05′′ N, 77° 22′ 27′′ 52 E), Korablik (54° 59′ 31′′ N, 77° 40′ 38′′ E). The studied intertidal habitats are rarely reached by humans.Gull nests were counted in colonies by regular surveys over eight years (1993, 1994, 1996–1998, 2001–2003) on the islands of Lake Chany. Colonies were visited daily or sometimes every other day. To minimize the disturbance caused by the investigation, the time spent working, within view of the gulls was restricted to a maximum of forty minutes per study plots. We noted nest content at every visit for the presence of eggs or chicks. In total, there were 1 164 nests under observation. Nests contained 1 (n = 140), 2 (n = 518), 3 (n = 504) or 4 (n = 2) eggs. Modal clutch size of the great black-headed gull is two or three eggs, varying seasonally. The length and width of the eggs were measured using Vernier calipers (division accuracy 0,1 mm) and numbered with a waterproof marker. Egg volumes were estimated using Hoyt’s equation: Volume = 0.51 * Length * Width * Width/100013. We determined the volume of 2117 great black-headed gull eggs.As the laying of eggs has already started by the first visit to the colony, the date of the beginning of egg laying was calculated by subtracting the average length of the incubation period of great black-headed gulls (27 days) from the hatching date of first chick in the nest (n = 559 nests). If the hatching date was not known, the clutch initiation date was determined by subtracting the number of days of incubation from the date that the nest was first discovered (n = 469 nests). The stage of incubation was estimated from the change in position of an incubated egg placed in water14,15. The technique’s accuracy varied throughout incubation and mean prediction error fall between 0–4 days. On average, egg flotation estimated an embryo’s developmental age to within 1.9 ± 1.6 days (mean ± 1 SD)16. Only 47 nests were found during egg laying. Great black-headed gulls usually laid eggs at intervals of two days. Incubation started as soon as the first egg was laid, so eggs hatched asynchronously, one or two days apart.Whenever possible, we determined the within-clutch laying sequence of eggs (1st, 2nd, 3rd, and 4th). A complete laying sequence was established by observation in 47 cases. In about 48% of clutches the position in laying sequence was established on the basis of the sequence of hatching. In other cases, if we could distinguish within-clutch distinct flotation levels of eggs, we numbered eggs according to the stage of incubation. Sometimes this technique for distinguishing egg laying order were used in other seabirds17,18.We recorded the pipping date (i.e. appearance of star-like bursts) and the actual hatching date of the individual eggs. Wet chicks were registered as hatchlings of that day; dry chicks were registered as 1 day old. Chicks older than two days left the nest and moved to a location nearby. Newly hatched gull chicks were captured by hand at nests, ringed, and measured. We determined wing, tarsus, and head length using a ruler with zero-stop and vernier calipers and body weight measured using Pesola spring balances for 747 chicks of great black-headed gulls, and 457 of them hatched from eggs that were measured. More

  • in

    Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy

    High diet overlap is assumed to cause competition between the three dominant pelagic planktivorous mesopredators in the Baltic Sea, sprat, herring, and stickleback11,24,25. Despite this assumption, stickleback populations have increased dramatically over the past decades, which raises the question of whether and how resources are partitioned26. While previous studies of fish diet overlap have mainly relied on microscopic identification of gut content, we implemented a DNA metabarcoding approach targeting two different gene regions, the 18S rRNA gene (18S) and the mitochondrial cytochrome c oxidase I gene (COI) to reveal the taxonomic diversity of prey, and a qPCR step to quantify rotifers that are at times abundant in the Baltic Sea. Our study highlights consistency between methods, with DNA metabarcoding resolving the plankton-fish link at the highest taxonomic resolution. Our results suggest a unique niche of stickleback that may enable high population growth in the open water, despite high competition between mesopredators, although this finding needs to be confirmed at larger scale. More than half of the DNA found in herring and sprat stomach contents was assigned to Pseudocalanus, supporting previous observations of high diet overlap between the two clupeids11,12. On the other hand, the diet of stickleback differed substantially from the two clupeids, with rotifers appearing as main prey DNA in spring. The high rotifer biomass in the environment and lack of competition from other predators indicate that this novel niche utilization may support the drastic increase of pelagic stickleback in the Baltic Sea.We find that copepods dominated the gut content of the two clupeids sprat and herring. Pseudocalanus and Temora occupied most of the sequence reads of the clupeid metabarcoding, two species that are often reported as preferred prey in previous studies11,12. Despite high contributions of these two copepods, Pseudocalanus was more than four times as abundant as Temora in clupeid gut contents. A strong preference for this copepod with marine origin can further confirm the increased competition between the clupeids, as Pseudocalanus has decreased due to decreased salinity12 and shares a similar vertical distribution as clupeid during daytime27. Our study using metabarcoding further reveals a large relative quantity (11%) of the ctenophore Mertensia in the gut samples of both clupeids. Similar, Clarke et al.28 reported an important contribution of gelatinous zooplankton to upper trophic levels in the Southern Ocean. Despite high abundances of ctenophores in the Baltic Sea and their assumed importance in marine food webs19, they are not reported as food for planktivorous fish. A possible explanation is the difficulty observing them microscopically, as their digestion rate is faster than crustaceans29, and no hard parts remain in the digestive system. Further, COI detected the presence of cladocerans, which was confirmed by the microscopic survey, but underrepresented with 18S that strongly amplify copepods20. Interestingly, more than twice annelid COI reads, including the benthic macroinvertebrates Bylgides and Marenzellaria, were associated to stickleback (15%) and herring (8%) than to sprat (4%), highlighting their ability to migrate vertically. These interactions suggest that together stickleback and herring contribute to benthic-pelagic coupling when oxygen is not restricting vertical migration in the southern Baltic Sea30.Sprat and herring share a similar feeding niche, which may explain previously observed declines in body mass and stomach fullness, and supports the theory of competition between the two species31. In contrast, stickleback revealed little diet overlap with the other mesopredators. The low relative abundances of Pseudocalanus (1–8%) in metabarcoding analyses indicates that the density-dependent competition may not limit the population growth of stickleback. The copepods that were shared in the diet of stickleback, sprat, and herring were Temora, Acartia, and Centropages have increased over the last decades, as opposed to Pseudocalanus32. Our results show that stickleback are able to feed on a broader spectrum of prey and highlight that stickleback utilizes the rotifer Synchaeta baltica as prey, which is an important component of the plankton community composition in the Baltic Sea18,20. Due to the difference of prey size, we can expect an overrepresentation of copepod to rotifer sequences compared with microscopic count data. High predation rate on S. baltica is supported by both the qPCR assay as well as microscopic counts, although only the eggshells were visible but not the soft-bodied rotifer. Despite the considerably lower carbon content per S. baltica (ca. 6 µg C ind−1) compared to copepods (ca. 20 µg C ind−1)33, the high number of rotifers likely act as a major food source for stickleback. These results propose that stickleback, due to their opportunistic feeding behaviour34 and smaller size35, have a distinct feeding niche from sprat and herring in the open water, as they feed on a smaller size class of zooplankton compared to the clupeids. Thus, we cannot assume the same process of competition between clupeids and stickleback.Rotifers can at times be very abundant in the Baltic Sea, reaching densities up to 25,000 ind m−3, but their natural predators are poorly studied. An increasing trend in biomass of the two main rotifer genera (Synchaeta and Keratella) was observed since the 1990s36. In a recent study, we showed that rotifers might occupy a unique feeding niche, as direct grazers of dinoflagellate spring bloom, as well as in the recycling of organic matter in summer20. The low level of predation on rotifers by clupeid adults ( More

  • in

    Effect of Rudbeckia laciniata invasion on soil seed banks of different types of meadow communities

    Mack, R. M. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 (2000).Article 

    Google Scholar 
    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communitiesand ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x (2012).ADS 
    Article 

    Google Scholar 
    Wittenberg, R. & Cock, M. J. W. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices (CAB International, 2001).Book 

    Google Scholar 
    DAISIE. Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/speciesFactsheet.do?speciesId=23539# (2018).Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x (2009).Article 

    Google Scholar 
    Chmura, D. et al. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland). Acta Soc. Bot. Pol. 84(1), 23–33. https://doi.org/10.5586/asbp.2015.008 (2015).Article 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Sci. Total Environ. 574, 938–946. https://doi.org/10.1016/j.scitotenv.2016.09.120 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stefanowicz, A. M., Stanek, M., Nobis, M. & Zubek, S. Species-specific effects of plant invasions on activity, biomass and composition of soil microbial communities. Biol. Fertil. Soils 52, 841–852. https://doi.org/10.1007/s00374-016-1122-8 (2016).CAS 
    Article 

    Google Scholar 
    Zubek, S. et al. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol. Fertil. Soils 52, 879–893. https://doi.org/10.1007/s00374-016-1127-3 (2016).Article 

    Google Scholar 
    Krinke, L. et al. Seed bank of an invasive alien, Heracleum mantegazzianum, and its seasonal dynamics. Seed Sci. Res. 15, 239–248. https://doi.org/10.1079/SSR2005214 (2005).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683. https://doi.org/10.1007/s10530-009-9580-7 (2010).Article 

    Google Scholar 
    Kundel, D., van Kleunen, M. & Dawson, W. Invasion by Solidago species has limited impacts on soil seed bank communities. Basic Appl. Ecol. 15, 573–580. https://doi.org/10.1016/j.baae.2014.08.009 (2014).Article 

    Google Scholar 
    Dong, H., Liu, T., Liu, Z. & Song, Z. Fate of the soil seed bank of giant ragweed and its significance in preventing and controlling its invasion in grasslands. Ecol. Evol. https://doi.org/10.1002/ece3.6238 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harper, J. L. Population Biology of Plants (Academic Press, 1977).
    Google Scholar 
    Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66(1), 40–53. https://doi.org/10.1093/biosci/biv165 (2015).Article 

    Google Scholar 
    Gioria, M. & Osborne, B. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 501. https://doi.org/10.3389/fpls.2014.00501 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holmes, P. M. & Cowling, R. M. Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant Ecol. 133, 107–122. https://doi.org/10.1023/A:1009734026612 (1997).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    Tokarska-Guzik, B. et al. Rośliny Obcego Pochodzenia w Polsce ze Szczególnym Uwzględnieniem Gatunków Inwazyjnych (Generalna Dyrekcja Ochrony Środowiska, 2012).
    Google Scholar 
    Thompson, K., Bakker, J. P. & Bekker, R. M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity (Cambridge University Press, 1997).
    Google Scholar 
    Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96(3), 762–774. https://doi.org/10.1890/14-1005.1 (2015).Article 
    PubMed 

    Google Scholar 
    Hager, H. A., Rupert, R., Quinn, L. D. & Newman, J. A. Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and the soil seed bank. Biol. Invasions 17, 1833–1847. https://doi.org/10.1007/s10530-014-0839-2 (2015).Article 

    Google Scholar 
    Robertson, S. G. & Hickman, K. Aboveground plant community and seed bank composition along an invasion gradient. Plant Ecol. 213(9), 1461–1475. https://doi.org/10.1007/s11258-012-0104-7 (2012).Article 

    Google Scholar 
    Fumanal, B., Gaudot, I. & Bretagnolle, F. Seed-bank dynamics in the invasive plant, Ambrosia artemisiifolia L.. Seed Sci. Res. 18(2), 101–114 (2008).Article 

    Google Scholar 
    Funk, J. L. et al. Keys to enhancing the value of invasion ecology research for management. Biol. Invasions 22, 2431–2445. https://doi.org/10.1007/s10530-020-02267-9 (2020).Article 

    Google Scholar 
    Jalas, J. Problems concerning Rudbeckia laciniata (Asteraceae) in Europe Fragmenta Floristica et Geobotanica. Supplementum 2(1), 289–297 (1993).
    Google Scholar 
    Tokarska-Guzik, B. The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland (Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 2005).
    Google Scholar 
    EPPO. Rudbeckia laciniata (Asteraceae). EPPO Reporting Service—Invsive Plants. European and Mediterranean Plant Protection Organization. https://www.eppo.int/INVASIVE_PLANTS/ias_lists.htm (2009).Zelnik, I. The presence of invasive alien plant species in different habitats: Case study from Slovenia. Acta Biol. Sloven. 55(2), 25–38 (2012).
    Google Scholar 
    Vojniković, S. Tall cone flower (Rudbeckia laciniata L.)—new invasive species in the flora of Bosnia and Herzegovina. Herbologia 15(1), 39–47. https://doi.org/10.5644/Herb.15.1.05 (2015).Article 

    Google Scholar 
    Auld, B., Morita, H., Nishida, T., Ito, M. & Michael, P. Shared exotica: Plant invasions of Japan and south eastern Australia. Cunninghamia 8, 147–152 (2003).
    Google Scholar 
    Akasaka, M., Osawa, T. & Ikegami, M. The role of roads and urban area in occurrence of an ornamental invasive weed: A case of Rudbeckia laciniata L.. Urban Ecosyst. 18, 1021–1030 (2015).Article 

    Google Scholar 
    GBIF. Global Biodiversity Information Facility. Checklist dataset. https://www.gbif.org/species/3114229 (2021).Francírková, T. Contribution of the invasive ecology of Rudbeckia laciniata in the Czech Republic. In Plant Invasions: Species Ecology and Ecosystem Management (eds Brundu, G. et al.) 89–98 (Backhuys Publishers, 2001).
    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390. https://doi.org/10.1371/journal.pone.0123634 (2010).CAS 
    Article 

    Google Scholar 
    Kościńska-Pająk, M., Musiał, K. & Janiszewska, K. Embryological processes in ovules of Rudbeckia laciniata L. (Asteraceae) from Poland. Mod. Phytomorphol. 5, 19–23 (2014).
    Google Scholar 
    Urbatsch, L. E. & Cox, P. B. Rudbeckia laciniata in Flora of North America Editorial Committee. http://floranorthamerica.org/Rudbeckia_laciniata (2021).Jankowska-Błaszczuk, M. Zróżnicowanie banków nasion w naturalnych i antropogenicznie przekształconych zbiorowiskach leśnych. Monograph. Bot. 88, 25 (2000).
    Google Scholar 
    Osawa, T. & Akasaka, M. Management of the invasive perennial herb Rudbeckia laciniata L. (Compositae) using rhizome removal. Jpn. J. Conserv. Ecol. 14(1), 37–43. https://doi.org/10.18960/hozen.14.1_37 (2009).Article 

    Google Scholar 
    Gleason, H. A. & Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada (The New York Botanical Garden, 1991).Book 

    Google Scholar 
    Gioria, M. & Osborne, B. The impact of Gunnera tinctoria (Molina) Mirbel invasions on soil seed bank communities. J. Plant Ecol. 2(3), 153–167. https://doi.org/10.1093/jpe/rtp013 (2009).Article 

    Google Scholar 
    Kleyer, et al. The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol. 96, 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x (2008).Article 

    Google Scholar 
    Ruprecht, E., Fenesi, A. & Nijs, I. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species. Biol. Invasions 16, 1359–1372. https://doi.org/10.1007/s10530-013-0574-0 (2014).Article 

    Google Scholar 
    Wróbel, M. Origin and spatial distribution of roadside vegetation within the forest and agricultural areas in Szczecin Lowland (West Poland). Pol. J. Ecol. 54(1), 137–143 (2001).
    Google Scholar 
    Dajdok, Z. & Pawlaczyk, P. Inwazyjne Gatunki Roślin Mokradłowych Polski (Wydawnictwo Klubu Przyrodnikow, 2009).
    Google Scholar 
    de Waal, L. C., Child, L. E., Wade, M. & Brock, J. H. Ecology and Management of Invasive Riverside Plants (Wiley, 1994).
    Google Scholar 
    Pyśek, P. & Prach, K. Plant invasions and the role of riparian habitats: A comparison of four species alien to central Europe. J. Biogeogr. 20, 413–420 (1993).Article 

    Google Scholar 
    Kucharczyk, M. & Krawczyk, R. Kenophytes as river corridor plants in the vistula and the san river valleys. Teka Komisji Ochrony Kształtowania Środowiska Przyrodniczego 1, 110–115 (2004).
    Google Scholar 
    Walck, J. L. et al. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15(3), 189–196. https://doi.org/10.1079/SSR2005209 (2005).ADS 
    Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080. https://doi.org/10.1007/s10530-016-1349-1 (2017).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11(1), 4–16. https://doi.org/10.1093/jpe/rtw105 (2018).Article 

    Google Scholar 
    Perglová, I. et al. Differences in germination and seedling establishment of alien and native Impatiens species. Preslia 81, 357–375 (2009).
    Google Scholar 
    Haines, D. F., Larson, D. L. & Larson, J. L. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains. Invas. Plant Sci. Manage. 6, 416–432. https://doi.org/10.1614/IPSM-D-12-00076.1 (2013).Article 

    Google Scholar 
    Gioria, M., Jarosík, V. & Pyšek, P. Impact of invasions by alien plants on soil seed bank communities: Emerging patterns. Perspect. Plant Ecol. Evol. Syst. 16, 132–142. https://doi.org/10.1016/j.ppees.2014.03.003 (2014).Article 

    Google Scholar 
    Gioria, M. & Osbourne, B. Assessing the impact of plant invasions on soli seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556. https://doi.org/10.1111/j.1654-1103.2009.01054.x (2009).Article 

    Google Scholar 
    Tokarska-Guzik, B., Bzdega, K., Knapik, D. & Jenczała, G. Changes in plant species richeness in some riparian plant communities as a result of their colonisation by taxa of Reynoutria (Fallopia). Biodivers. Res. Conserv. 1–2, 122–130 (2006).
    Google Scholar 
    Dölle, M. & Wolfgang, S. The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plots. Appl. Veg. Sci. 12, 415–428 (2009).Article 

    Google Scholar 
    Thompson, K. & Grime, J. P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921. https://doi.org/10.2307/2259220 (1979).Article 

    Google Scholar 
    Czarnecka, J. Microspatial structure of the seed bank of xerothermic grassland—intracommunity differentiation. Acta Soc. Bot. Pol. 73(2), 155–164. https://doi.org/10.5586/asbp.2004.022 (2004).Article 

    Google Scholar 
    Kalamees, R., Püssa, K., Zobel, K. & Zobel, M. Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Appl. Veg. Sci. 15, 208–218 (2012).Article 

    Google Scholar 
    Skowronek, S. et al. Regeneration potential of floodplain forests under the influence of nonnative tree species: Soil seed bank analysis in Northern Italy. Restor. Ecol. 22(1), 22–30. https://doi.org/10.1111/rec.12027 (2014).Article 

    Google Scholar  More

  • in

    Magnesium stable isotope composition, but not concentration, responds to obesity and early insulin-resistant conditions in minipig

    Misra, V. K. & Draper, D. E. On the role of magnesium ions in RNA stability. Biopolymers 48, 113–135 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apell, H.-J., Hitzler, T. & Schreiber, G. Modulation of the Na, K-ATPase by magnesium ions. Biochemistry 56, 1005–1016 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Iseri, L. T. & French, J. H. Magnesium: Nature’s physiologic calcium blocker. Am. Heart J. 108, 188–193 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, H. Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc. Natl. Acad. Sci. USA 72, 3551–3555 (1975).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Baaij, J. H. F., Hoenderop, J. G. J. & Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev. 95, 1–46 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Association, A. D. Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014).Article 

    Google Scholar 
    Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239–2251 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gommers, L. M. M., Hoenderop, J. G. J., Bindels, R. J. M. & de Baaij, J. H. F. Hypomagnesemia in type 2 diabetes: A vicious circle?. Diabetes 65, 3–13 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pham, P.-C.T., Pham, P.-M.T., Pham, S. V., Miller, J. M. & Pham, P.-T.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2, 366–373 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mather, H. M. et al. Hypomagnesaemia in diabetes. Clin. Chim. Acta 95, 235–242 (1979).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hubbard, S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kurstjens, S. et al. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 176, 11–19 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Viering, D. H. H. M., de Baaij, J. H. F., Walsh, S. B., Kleta, R. & Bockenhauer, D. Genetic causes of hypomagnesemia, a clinical overview. Pediatr. Nephrol. 32, 1123–1135 (2017).PubMed 
    Article 

    Google Scholar 
    Peacock, J. M. et al. Serum magnesium and risk of sudden cardiac death in the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 160, 464–470 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veronese, N. et al. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 70, 1354–1359 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodríguez-Morán, M., Simental-Mendía, L. E., Gamboa-Gómez, C. I. & Guerrero-Romero, F. Oral magnesium supplementation and metabolic syndrome: A randomized double-blind placebo-controlled clinical trial. Adv. Chronic Kidney Dis. 25, 261–266 (2018).PubMed 
    Article 

    Google Scholar 
    Grigoryan, R. et al. Multi-collector ICP-mass spectrometry reveals changes in the serum Mg isotopic composition in diabetes type I patients. J. Anal. At. Spectrom. 34, 1514–1521 (2019).CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Bigeleisen, J. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 17, 675–678 (1949).ADS 
    CAS 
    Article 

    Google Scholar 
    McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jouzel, J. et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403–408 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Albarède, F., Télouk, P. & Balter, V. Medical applications of isotope metallomics. Rev. Mineral. Geochem. 82, 851–885 (2017).Article 
    CAS 

    Google Scholar 
    Balter, V. et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. PNAS 112, 982–985 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Télouk, P. et al. Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7, 299–308 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lobo, L. et al. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry. Talanta 165, 92–97 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costas-Rodríguez, M. et al. Body distribution of stable copper isotopes during the progression of cholestatic liver disease induced by common bile duct ligation in mice. Metallomics 11, 1093–1103 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lamboux, A. et al. The blood copper isotopic composition is a prognostic indicator of the hepatic injury in Wilson disease. Metallomics 12, 1781–1790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moynier, F., Creech, J., Dallas, J. & Le Borgne, M. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease. Sci. Rep. 9, 11894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sauzéat, L. et al. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis. iScience 6, 264–271 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krayenbuehl, P.-A., Walczyk, T., Schoenberg, R., von Blanckenburg, F. & Schulthess, G. Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood 105, 3812–3816 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anoshkina, Y. et al. Iron isotopic composition of blood serum in anemia of chronic kidney disease. Metallomics 9, 517–524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgan, J. L. L. et al. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109, 9989–9994 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, A. et al. Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis. Bone Rep. 10, 100200 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Isaji, Y. et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments. ACS Earth Space Chem. 3, 1073–1079 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Pokharel, R. et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants. Environ. Sci. Technol. 52, 12216–12224 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolou-Bi, E. B., Poszwa, A., Leyval, C. & Vigier, N. Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim. Cosmochim. Acta 74, 2523–2537 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, Y. et al. Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: A greenhouse study with wheat. Plant Soil 455, 93–105 (2020).CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim. Cosmochim. Acta 130, 12–20 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, J. E., Vance, D. & Balter, V. Magnesium stable isotope ecology using mammal tooth enamel. PNAS 112, 430–435 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol.-Endocrinol. Metab. 237, E214 (1979).CAS 
    Article 

    Google Scholar 
    Kim, J. K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. In Type 2 Diabetes: Methods and Protocols, Methods in Molecular Biology (ed. Stocker, C.) 221–238 (Humana Press, 2009).Chapter 

    Google Scholar 
    DeFronzo, R. A., Hendler, R. & Simonson, D. Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 31, 795–801 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Balter, V. et al. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470–1482 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, B., Podolskiy, D. I., Mariotti, M., Seravalli, J. & Gladyshev, V. N. Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 19, e13119 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morel, J.-D. et al. The mouse metallomic landscape of aging and metabolism. Nat. Commun. 13, 607 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoryan, R., Costas-Rodríguez, M., Vandenbroucke, R. E. & Vanhaecke, F. High-precision isotopic analysis of Mg and Ca in biological samples using multi-collector ICP-mass spectrometry after their sequential chromatographic isolation—Application to the characterization of the body distribution of Mg and Ca isotopes in mice. Anal. Chim. Acta 1130, 137–145 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goff, S. L., Albalat, E., Dosseto, A., Godin, J.-P. & Balter, V. Determination of magnesium isotopic ratios of biological reference materials via multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 35, e9074 (2021).PubMed 

    Google Scholar 
    DeRocher, K. A. et al. Chemical gradients in human enamel crystallites. Nature 583, 66–71 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johansen, T., Hansen, H. S., Richelsen, B. & Malmlöf, K. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp. Med. 51, 150–155 (2001).CAS 
    PubMed 

    Google Scholar 
    Coelho, P. G. et al. Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: A pilot study. J. Oral Maxillofac. Surg. 76, 1677–1687 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Elin, R. J. Assessment of magnesium status. Clin. Chem. 33, 1965–1970 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., van der Meulen, J., Dekker, R., Corbijn, H. & Mroz, Z. Diurnal variation in insulin-stimulated systemic glucose and amino acid utilization in pigs fed with identical meals at 12-hour intervals. Horm. Metab. Res. 38, 607–613 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koopmans, S. J., Maassen, J. A., Radder, J. K. & Frölich, M. In vivo insulin responsiveness for glucose uptake and production at eu- and hyperglycemic levels in normal and diabetic rats. Biochimica et Biophysica Acta (BBA) General Subjects 1115, 230–238 (1992).CAS 
    Article 

    Google Scholar 
    Koopmans, S. J. et al. Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: Effects of metformin at isoenergetic feeding in a type 2–like diabetic pig model. Metabolism 55, 960–971 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Reply to: “Steller’s sea cow uncertain history illustrates importance of ecological context when interpreting demographic histories from genomes”

    Sharko, F. S. et al. Steller’s sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans. Nat. Commun. 12, 2215 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Crerar, L. D., Crerar, A. P., Domning, D. P. & Parsons, E. C. Rewriting the history of an extinction-was a population of Steller’s sea cows (Hydrodamalis gigas) at St Lawrence Island also driven to extinction? Biol. Lett. 10, 20140878 (2014).Article 

    Google Scholar 
    Domning, D. P., Thomason, J. & Corbett, D. G. Steller’s sea cow in the Aleutian Islands. Mar. Mamm. Sci. 23, 976–983 (2007).Article 

    Google Scholar 
    Savinetsky, A. B., Kiseleva, N. K. & Khassanov, B. F. Dynamics of sea mammal and bird populations of the Bering Sea region over the last several millennia. Palaeogeogra. Palaeoclimatol. Palaeoecol. 20, 335–352 (2004).ADS 
    Article 

    Google Scholar 
    Whitmore, F. C. & Gard, L. M. J. Steller’s sea cow (Hydrodamalis gigas) of late Pleistocene age from Amchitka, Aleutian Islands, Alaska. US Geol. Surv. Prof. Pap. 1036, 1–19 (1977).
    Google Scholar 
    Sheppard, J. K. et al. Movement heterogeneity of dugongs, Dugong dugon (Muller), over large spatial scales. J. Exp. Mar. Biol. Ecol. 334, 64–83 (2006).Article 

    Google Scholar 
    Deutsch C. J., et al. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic Coast of the United States. Wildlife Monogr., 151, 1–77 (2003).Reed, R. K. Transport of the Alaskan Stream. Nature 220, 681–682 (1968).ADS 
    Article 

    Google Scholar 
    Detlef, H. et al. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea. Nat. Commun. 9, 941 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ragen, T. J., Antonelis, G. A. & Kiyota, M. Early migration of northern fur-seal pups from St-Paul Island, Alaska. J. Mammal. 76, 1137–1148 (1995).Article 

    Google Scholar 
    Estes, J. A., Burdin, A. & Doak, D. F. Sea otters, kelp forests, and the extinction of Steller’s sea cow. Proc. Natl Acad. Sci. USA 113, 880–885 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Larson, S., Jameson, R., Etnier, M., Jones, T. & Hall, R. Genetic diversity and population parameters of sea otters, Enhydra lutris, before fur trade extirpation from 1741–1911. PLoS ONE 7, e32205 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Bullen, C. D., Campos, A. A., Gregr, E. J., McKechnie, I. & Chan, K. M. A. The ghost of a giant – Six hypotheses for how an extinct megaherbivore structured kelp forests across the North Pacific Rim. Glob. Ecol. Biogeogr. 30, 2101–2118 (2021).Article 

    Google Scholar 
    Plon, S., Thakur, V., Parr, L. & Lavery, S. D. Phylogeography of the dugong (Dugong dugon) based on historical samples identifies vulnerable Indian Ocean populations. PLoS ONE 14, e0219350 (2019).CAS 
    Article 

    Google Scholar 
    Seddon, J. M. et al. Fine scale population structure of dugongs (Dugong dugon) implies low gene flow along the southern Queensland coastline. Conserv. Genet. 15, 1381–1392 (2014).Article 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Morphological variation and reproductive isolation in the Hetaerina americana species complex

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).
    Google Scholar 
    Gröning, J. & Hochkirch, A. Reproductive interference between animal species. Q. Rev. Biol. 83, 257–282 (2008).PubMed 

    Google Scholar 
    Grether, G. F., Peiman, K. S., Tobias, J. A. & Robinson, B. W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32, 760–772 (2017).PubMed 

    Google Scholar 
    Hettyey, A. & Pearman, P. B. Social environment and reproductive interference affect reproductive success in the frog Rana latastei. Behav. Ecol. 14, 294–300 (2003).
    Google Scholar 
    Kyogoku, D. & Sota, T. A generalized population dynamics model for reproductive interference with absolute density dependence. Sci. Rep. 7, 257–258 (2017).
    Google Scholar 
    Anderson, C. N. & Grether, G. F. Multiple routes to reduced interspecific territorial fighting in Hetaerina damselflies. Behav. Ecol. 22, 527–534 (2011).
    Google Scholar 
    Hochkirch, A., Gröning, J. & Bücker, A. Sympatry with the devil: Reproductive interference could hamper species coexistence. J. Anim. Ecol. 76, 633–642 (2007).PubMed 

    Google Scholar 
    Pfennig, K. S. & Pfennig, D. W. Character displacement: Ecological and reproductive responses to a common evolutionary problem. Q. Rev. Biol. 84, 253–276 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Garrison, R. A synopsis of the genus Hetaerina with description of four new species (Odonata: Calopterygidae). Trans. Am. Entomol. Soc. 116, 175–259 (1990).
    Google Scholar 
    Grether, G. F., Drury, J. P., Berlin, E. & Anderson, C. N. The role of wing coloration in sex recognition and competitor recognition in rubyspot damselflies (Hetaerina spp.). Ethology 121, 674–685 (2015).
    Google Scholar 
    Drury, J. P. et al. A general explanation for the persistence of reproductive interference. Am. Nat. 194, 268–275 (2019).PubMed 

    Google Scholar 
    Cabezas Castillo, M. B. & Grether, G. F. Why are female color polymorphisms rare in territorial damselflies?. Ethology 124, 667–673 (2018).
    Google Scholar 
    Drury, J. P. & Grether, G. F. Interspecific aggression, not interspecific mating, drives character displacement in the wing coloration of male rubyspot damselflies (Hetaerina). Proc. R. Soc. B Biol. Sci. 281, 20141737 (2014).CAS 

    Google Scholar 
    Grether, G. F. Intersexual competition alone favors a sexually dimorphic ornament in the rubyspot damselfly Hetaerina americana. Evolution (N. Y.) 50, 1949 (1996).
    Google Scholar 
    McEachin, S., Drury, J. P., Anderson, C. N. & Grether, G. F. Mechanisms of reduced interspecific interference between territorial species. Behav. Ecol. 33, 126–136 (2022).
    Google Scholar 
    Vega-Sánchez, Y. M., Mendoza-Cuenca, L. F. & González-Rodríguez, A. Complex evolutionary history of the American Rubyspot damselfly, Hetaerina americana (Odonata): Evidence of cryptic speciation. Mol. Phylogenet. Evol. 139, 106536 (2019).PubMed 

    Google Scholar 
    Vega-Sánchez, Y. M., Mendoza-Cuenca, L. F. & González-Rodríguez, A. Hetaerina calverti (Odonata: Zygoptera: Calopterygidae) sp. Nov., a new cryptic species of the American Rubyspot complex. Zootaxa 4766, 485–497 (2020).
    Google Scholar 
    Paulson, D. R. Reproductive isolation in damselflies. Syst. Zool. 23, 40–49 (1974).
    Google Scholar 
    Sánchez-Guillén, R. A., Córdoba-Aguilar, A., Cordero-Rivera, A. & Wellenreuther, M. Rapid evolution of prezygotic barriers in non-territorial damselflies. Biol. J. Linn. Soc. 113, 485–496 (2014).
    Google Scholar 
    Svensson, E. I. & Waller, J. T. Ecology and sexual selection: Evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation. Am. Nat. 182, E174–E195 (2013).PubMed 

    Google Scholar 
    Sánchez-Herrera, M., Beatty, C. D., Nunes, R., Salazar, C. & Ware, J. L. An exploration of the complex biogeographical history of the neotropical banner-wing damselflies (Odonata: Polythoridae). BMC Evol. Biol. 20, 74 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Battin, T. J. The odonate mating system, communication, and sexual selection: A review. Boll. Zool. 60, 353–360 (1993).
    Google Scholar 
    Drury, J. P., Okamoto, K. W., Anderson, C. N. & Grether, G. F. Reproductive interference explains persistence of aggression between species. Proc. R. Soc. B Biol. Sci. 282, 20142256 (2015).
    Google Scholar 
    Svensson, E. I., Karlsson, K., Friberg, M. & Eroukhmanoff, F. Gender differences in species recognition and the evolution of asymmetric sexual isolation. Curr. Biol. 17, 1943–1947 (2007).CAS 
    PubMed 

    Google Scholar 
    McPeek, M. A., Symes, L. B., Zong, D. M. & McPeek, C. L. Species recognition and patterns of population variation in the reproductive structures of a damselfly genus. Evolution (N. Y.) 65, 419–428 (2011).
    Google Scholar 
    Nagel, L. & Schluter, D. Body size, natural selection, and speciation in sticklebacks. Evolution (N. Y.) 52, 209–218 (1998).
    Google Scholar 
    Baube, C. L. Body size and the maintenance of reproductive isolation in stickleback, genus Gasterosteus. Ethology 114, 1122–1134 (2008).
    Google Scholar 
    Head, M. L., Kozak, G. M. & Boughman, J. W. Female mate preferences for male body size and shape promote sexual isolation in threespine sticklebacks. Ecol. Evol. 3, 2183–2196 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Serrano-Meneses, M. A., López-García, K. & Carrillo-Muñoz, A. I. Assortative mating by size in the American rubyspot damselfly (Hetaerina americana). J. Insect Behav. 31, 585–598 (2018).
    Google Scholar 
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: Connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).PubMed 

    Google Scholar 
    Class, B. & Dingemanse, N. J. A variance partitioning perspective of assortative mating: Proximate mechanisms and evolutionary implications. J. Evol. Biol. 35, 483–490 (2022).PubMed 

    Google Scholar 
    Corbet, P. S. A Biology of Dragonflies 247 (Witherby, 1962).
    Google Scholar 
    Grether, G. F. Sexual selection and survival selection on wing coloration and body size in the Rubyspot damselfly Hetaerina americana. Evolution (N. Y.) 50, 1939 (1996).
    Google Scholar 
    Raihani, G., Serrano-Meneses, M. A. & Córdoba-Aguilar, A. Male mating tactics in the American rubyspot damselfly: Territoriality, nonterritoriality and switching behaviour. Anim. Behav. 75, 1851–1860 (2008).
    Google Scholar 
    Serrano-Meneses, M. A., Córdoba-Aguilar, A., Méndez, V., Layen, S. J. & Székely, T. Sexual size dimorphism in the American rubyspot: Male body size predicts male competition and mating success. Anim. Behav. 73, 987–997 (2007).
    Google Scholar 
    Contreras-Garduño, J., Buzatto, B. A., Abundis, L., Nájera-Cordero, K. & Córdoba-Aguilar, A. Wing colour properties do not reflect male condition in the American rubyspot (Hetaerina americana). Ethology 113, 944–952 (2007).
    Google Scholar 
    Serrano-Meneses, M. A., Córdoba-Aguilar, A., Azpilicueta-Amorín, M., González-Soriano, E. & Székely, T. Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. J. Evol. Biol. 21, 1259–1273 (2008).CAS 
    PubMed 

    Google Scholar 
    Betts, C. R. & Wootton, R. J. Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A preliminary analysis. J. Exp. Biol. 138, 271–288 (1988).
    Google Scholar 
    Outomuro, D. & Johansson, F. The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biol. J. Linn. Soc. 102, 263–274 (2011).
    Google Scholar 
    Outomuro, D., Adams, D. C. & Johansson, F. The evolution of wing shape in ornamented-winged damselflies (Calopterygidae, Odonata). Evol. Biol. 40, 300–309 (2013).
    Google Scholar 
    Córdoba-Aguilar, Raihani, Serrano-Meneses, & Contreras-Garduño,. The lek mating system of Hetaerina damselflies (Insecta: Calopterygidae). Behaviour 146, 189–207 (2009).
    Google Scholar 
    Córdoba-Aguilar, A. Adult survival and movement in males of the damselfly Hetaerina cruentata (Odonata: Calopterygidae). Florida Entomol. 77, 256 (1994).
    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—A free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Google Scholar 
    Viscosi, V. & Cardini, A. Correction: Leaf morphology, taxonomy and geometric morphometrics: A simplified protocol for beginners. PLoS ONE https://doi.org/10.1371/annotation/bc347abe-8d03-4553-8754-83f41a9d51ae (2012).Article 
    PubMed Central 

    Google Scholar 
    Maia, R., Gruson, H., Endler, J. A. & White, T. E. PAVO 2: New tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evol. 10, 1097–1107 (2019).
    Google Scholar 
    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 351–358 (1998).CAS 

    Google Scholar 
    Outomuro, D., Söderquist, L., Johansson, F., Ödeen, A. & Nordström, K. The price of looking sexy: Visual ecology of a three-level predator–prey system. Funct. Ecol. 31, 707–718 (2017).
    Google Scholar 
    Laughlin, S. B. The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. Comp. Physiol. A 111, 221–247 (1976).
    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).
    Google Scholar 
    Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B. & Menzel, R. Colour thresholds and receptor noise: Behaviour and physiology compared. Vision Res. 41, 639–653 (2001).CAS 
    PubMed 

    Google Scholar 
    Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).PubMed 

    Google Scholar 
    Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer Vol. 95, 443 (Elsevier Academic Press, 2004).MATH 

    Google Scholar 
    Rohlf, F. J. TpsDig, Digitize Landmarks and Outlines v. 2.0 (Department of Ecology and Evolution, State University of New York at Stony Brook, 2004).
    Google Scholar  More

  • in

    Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners

    Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.CAS 
    PubMed 

    Google Scholar 
    Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev. 2007;107:486–513.CAS 
    PubMed 

    Google Scholar 
    Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM. Reverse methanogenesis and respiration in methanotrophic Archaea. Archaea. 2017;2017:1–22.
    Google Scholar 
    Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science. 2004;305:1457–62.CAS 
    PubMed 

    Google Scholar 
    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.CAS 
    PubMed 

    Google Scholar 
    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.CAS 
    PubMed 

    Google Scholar 
    McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM, Jay ZJ, et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol. 2019;4:614–22.CAS 
    PubMed 

    Google Scholar 
    Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol. 2019;4:595–602.CAS 
    PubMed 

    Google Scholar 
    Wang Y, Wegener G, Ruff SE, Wang F. Methyl/alkyl‐coenzyme M reductase‐based anaerobic alkane oxidation in archaea. Environ Microbiol. 2021;23:530–41.CAS 
    PubMed 

    Google Scholar 
    Bertram S, Blumenberg M, Michaelis W, Siegert M, Krüger M, Seifert R. Methanogenic capabilities of ANME‐archaea deduced from 13C‐labelling approaches. Environ Microbiol. 2013;15:2384–93.CAS 
    PubMed 

    Google Scholar 
    Sousa DZ, Smidt H, Alves MM, Stams AJM. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Micr. 2007;57:609–15.CAS 

    Google Scholar 
    Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Micr. 2006;56:1331–40.CAS 

    Google Scholar 
    Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microb. 2005;71:7493–503.CAS 

    Google Scholar 
    Manzoor S, Schnürer A, Bongcam-Rudloff E, Müller B. Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Stand Genomic Sci. 2016;11:80.PubMed 
    PubMed Central 

    Google Scholar 
    Engelhardt T, Sahlberg M, Cypionka H, Engelen B. Biogeography of Rhizobium radiobacter and distribution of associated temperate phages in deep subseafloor sediments. ISME J. 2013;7:199–209.CAS 
    PubMed 

    Google Scholar 
    Nölling J, Groffen A, de Vos WM. φ F1 and φF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus. Methanobacterium Microbiol. 1993;139:2511–6.
    Google Scholar 
    Meile L, Jenal U, Studer D, Jordan M, Leisinger T. Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg. Arch Microbiol. 1989;152:105–10.CAS 

    Google Scholar 
    Weidenbach K, Nickel L, Neve H, Alkhnbashi OS, Künzel S, Kupczok A, et al. Methanosarcina spherical virus, a novel archaeal lytic virus targeting Methanosarcina strains. J Virol. 2017;91:e00955–17.PubMed 
    PubMed Central 

    Google Scholar 
    Molnár J, Magyar B, Schneider G, Laczi K, Valappil SK, Kovács ÁL, et al. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLOS ONE. 2020;15:e0231864.PubMed 
    PubMed Central 

    Google Scholar 
    Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat Commun. 2015;6:6585.CAS 
    PubMed 

    Google Scholar 
    Pourcel C, Touchon M, Villeriot N, Vernadet J-P, Couvin D, Toffano-Nioche C, et al. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res. 2019;48:D535–D544.PubMed Central 

    Google Scholar 
    Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife. 2015;4:e08490.PubMed Central 

    Google Scholar 
    Lever MA, Teske AP. Diversity of methane-cycling Archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl Environ Microb. 2015;81:1426–41.
    Google Scholar 
    Jian H, Yi Y, Wang J, Hao Y, Zhang M, Wang S, et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 2021;15:3094–110.Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nature Protoc. 2017;12:1673–82.CAS 

    Google Scholar 
    Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.PubMed 
    PubMed Central 

    Google Scholar 
    Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roux S, Páez-Espino D, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 2020;49:D764–D775.PubMed Central 

    Google Scholar 
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.CAS 
    PubMed 

    Google Scholar 
    Sandaa R, Gómez‐Consarnau L, Pinhassi J, Riemann L, Malits A, Weinbauer MG, et al. Viral control of bacterial biodiversity – evidence from a nutrient‐enriched marine mesocosm experiment. Environ Microbiol. 2009;11:2585–97.CAS 
    PubMed 

    Google Scholar 
    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 

    Google Scholar 
    Li Z, Pan D, Wei G, Pi W, Zhang C, Wang J-H, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 2021;15:2366–78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krupovič M, Forterre P, Bamford DH. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol. 2010;397:144–60.PubMed 

    Google Scholar 
    Thiroux S, Dupont S, Nesbø CL, Bienvenu N, Krupovic M, L’Haridon S, et al. The first head‐tailed virus, MFTV1, infecting hyperthermophilic methanogenic deep‐sea archaea. Environ Microbiol. 2021;23:3614–26.CAS 
    PubMed 

    Google Scholar 
    Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.
    Google Scholar 
    Hao L, Bize A, Conteau D, Chapleur O, Courtois S, Kroff P, et al. New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions. Water Res. 2016;102:158–69.CAS 
    PubMed 

    Google Scholar 
    Bedoya K, Hoyos O, Zurek E, Cabarcas F, Alzate JF. Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in Colombia. Sci Total Environ. 2020;726:138479.CAS 
    PubMed 

    Google Scholar 
    Murphy KC, Fenton AC, Poteete AR. Sequence of the bacteriophage P22 Anti-RecBCD (abc) genes and properties of P22 abc region deletion mutants. Virology. 1987;160:456–64.CAS 
    PubMed 

    Google Scholar 
    Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A, et al. Bacterial retrons function in anti-phage defense. Cell. 2020;183:1551–61.CAS 
    PubMed 

    Google Scholar 
    Pawluk A, Davidson AR, Maxwell KL. Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol. 2018;16:12–7.CAS 
    PubMed 

    Google Scholar 
    Jonge PA, de, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2018;27:51–63.PubMed 

    Google Scholar 
    Daly RA, Roux S, Borton MA, Morgan DM, Johnston MD, Booker AE, et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat Microbiol. 2019;4:352–61.CAS 
    PubMed 

    Google Scholar 
    Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13:777–86.CAS 
    PubMed 

    Google Scholar 
    Rastogi S, Liberles DA. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol. 2005;5:28.PubMed 
    PubMed Central 

    Google Scholar 
    Petitjean C, Makarova KS, Wolf YI, Koonin EV. Extreme deviations from expected evolutionary rates in archaeal protein families. Genome Biol Evol. 2017;9:2791–811.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome. 2017;5:155.PubMed 
    PubMed Central 

    Google Scholar 
    Gao S-M, Schippers A, Chen N, Yuan Y, Zhang M-M, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89.PubMed 
    PubMed Central 

    Google Scholar 
    Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfennig N, Widdel F, Trüper HG. The prokaryotes, A handbook on habitats, isolation, and identification of bacteria. Springer-Verlag, Berlin, Germany. 1981.Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean. Nat Rev Microbiol. 2019;17:665–78.CAS 
    PubMed 

    Google Scholar 
    Kumar S, Cheng X, Klimasauskas S, Sha M, Posfai J, Roberts RJ, et al. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22:1–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ashcroft AE, Lago H, Macedo JMB, Horn WT, Stonehouse NJ, Stockley PG. Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotechno. 2005;5:2034–41.CAS 

    Google Scholar 
    Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, et al. Structure of the receptor-binding protein of bacteriophage Det7: a podoviral tail spike in a Myovirus. J Virol. 2008;82:2265–73.CAS 
    PubMed 

    Google Scholar 
    Shai Y. Mode of action of membrane active antimicrobial peptides. Peptide Sci. 2002;66:236–48.CAS 

    Google Scholar 
    Thevissen K, Ferket KKA, François IEJA, Cammue BPA. Interactions of antifungal plant defensins with fungal membrane components. Peptides. 2003;24:1705–12.CAS 
    PubMed 

    Google Scholar 
    Broderick JB, Duffus BR, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev. 2014;114:4229–317.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wildschutte H, Preheim SP, Hernandez Y, Polz MF. O‐antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates. Environ Microbiol. 2010;12:2977–87.CAS 
    PubMed 

    Google Scholar 
    Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohyd Res. 2003;338:2503–19.CAS 

    Google Scholar 
    Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013;29:170–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Markine-Goriaynoff N, Gillet L, Etten JLV, Korres H, Verma N, Vanderplasschen A. Glycosyltransferases encoded by viruses. J Gen Virol. 2004;85:2741–54.CAS 
    PubMed 

    Google Scholar 
    Clifford JC, Rapicavoli JN, Roper MC. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. Mol Plant-microbe Interac. 2013;26:676–85.CAS 

    Google Scholar 
    Trueba G, Zapata S, Madrid K, Cullen P, Haake D. Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol Official J Span Soc Microbiol. 2004;7:35–40.
    Google Scholar 
    Trunk T, Khalil HS, Leo JC. Norway BCSG Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslb,. Bacterial autoaggregation. Aims Microbiol. 2018;4:140–164.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guan S, Bastin DA, Verma NK. Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology. 1999;145:1263–73.CAS 
    PubMed 

    Google Scholar 
    Rakhuba DV, Kolomiets EI, Dey ES, Novik GI. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol. 2010;59:145–55.CAS 
    PubMed 

    Google Scholar 
    Silva JB, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363:fnw002.
    Google Scholar 
    Tsuzuki K, Kimura K, Fujii N, Yokosawa N, Oguma K. The complete nucleotide sequence of the gene coding for the nontoxic-nonhemagglutinin component of Clostridium botulinum type C progenitor toxin. Biochem Bioph Res Co. 1992;183:1273–9.CAS 

    Google Scholar 
    Enav H, Mandel-Gutfreund Y, Béjà O. Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome. 2014;2:9.PubMed 
    PubMed Central 

    Google Scholar 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome. 2019;7:58.PubMed 
    PubMed Central 

    Google Scholar 
    Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun. 2017;8:1114.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 

    Google Scholar 
    Lu J, Salzberg SL. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome. 2020;8:124.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. Peerj Comput Sci. 2017;3:e104.
    Google Scholar 
    Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021;10:e65088.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. Peerj. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;3:1043–55.
    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;6:1925–7.
    Google Scholar 
    Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:37.PubMed 
    PubMed Central 

    Google Scholar 
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.CAS 
    PubMed 

    Google Scholar 
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–W251.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–52.PubMed Central 

    Google Scholar 
    Mistry J, Bateman A, Finn RD. Predicting active site residue annotations in the Pfam database. BMC Bioinform. 2007;8:298.
    Google Scholar 
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pratama AA, Bolduc B, Zayed AA, Zhong Z-P, Guo J, Vik DR, et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. Peerj. 2021;9:e11447.PubMed 
    PubMed Central 

    Google Scholar 
    Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–43.CAS 
    PubMed 

    Google Scholar 
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinform Oxf Engl. 2011;27:1009–10.CAS 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haeseler Avon, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:gkab301-.
    Google Scholar 
    Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 2009;10:R85–R85.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The genomic basis of the plant island syndrome in Darwin’s giant daisies

    Darwin, C. On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life. (1859).Wallace, A. R. The Malay Archipelago: The Land of the Orang-utan and the Bird of Paradise; a Narrative of Travel, with Studies of Man and Nature (Courier Corporation, 1962).Mayr, E. Systematics and the Origin of Species from the Viewpoint of a Zoologist (Columbia Uni. Press, 1942).Emerson, B. C. Speciation on islands: what are we learning? Biol. J. Linn. Soc. Lond. 95, 47–52 (2008).
    Google Scholar 
    Lomolino, M. V., Riddle, B. R., Whittaker, R. J., Brown, J. H. & Lomolino, M. V. Biogeography (Sunderland, Mass: Sinauer Associates, 2017).Baeckens, S. & Van Damme, R. The island syndrome. Curr. Biol. 30, R338–R339 (2020).CAS 

    Google Scholar 
    Burns, K. C. Evolution in Isolation: The Search for an Island Syndrome in Plants (Cambridge University Press, 2019).Blaschke, J. D. & Sanders, R. W. Preliminary insights into the phylogeny and speciation of scalesia (asteraceae), galápagos islands. J. Bot. Res. Inst. Tex. 3, 177–191 (2009).
    Google Scholar 
    Fernández-Mazuecos, M. et al. The radiation of Darwin’s giant daisies in the Galápagos Islands. Curr. Biol. 30, 4989–4998.e7 (2020).
    Google Scholar 
    Crawford, D. J. et al. Genetic diversity in Asteraceae endemic to oceanic islands: Baker’s Law and polyploidy. Syst. Evol. Biogeogr. Compos 139, 151 (2009).
    Google Scholar 
    Eliasson, U. Studies in Galápagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1–117 (1974).
    Google Scholar 
    Itow, S. Phytogeography and ecology of Scalesia (compositae) endemic to the Galapagos islands! Pac. Sci. 49, 17–30 (1995).
    Google Scholar 
    Stöcklin, J. Darwin and the plants of the Galápagos-Islands. Bauhinia 21, 33–48 (2009).
    Google Scholar 
    Ono, M. Chromosome number of Scalesia (Compositae), an endemic genus of the Galapagos Islands. J. Jpn. Bot. 42, 353–360 (1967).
    Google Scholar 
    Eliasson, U. Studies in Galapagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1–117 (1974).
    Google Scholar 
    Meudt, H. M. et al. Polyploidy on islands: its emergence and importance for diversification. Front. Plant Sci. 12, 637214 (2021).PubMed Central 

    Google Scholar 
    Spring, O., Heil, N. & Vogler, B. Sesquiterpene lactones and flavanones in Scalesia species. Phytochemistry 46, 1369–1373 (1997).CAS 

    Google Scholar 
    Schilling, E. E., Panero, J. L. & Eliasson, U. H. Evidence from chloroplast DNA restriction site analysis on the relationships of Scalesia (Asteraceae: Heliantheae). Am. J. Bot. 81, 248–254 (1994).
    Google Scholar 
    Peona, V., Weissensteiner, M. H. & Suh, A. How complete are ‘complete’ genome assemblies?-An avian perspective. Mol. Ecol. Resour. 18, 1188–1195 (2018).CAS 

    Google Scholar 
    Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).ADS 
    CAS 

    Google Scholar 
    Reyes-Chin-Wo, S. et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8, 14953 (2017).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Bellinger, M. R., Datlof, E., Selph, K. E., Gallaher, T. J. & Knope, M. L. A genome for Bidens hawaiensis: a member of a hexaploid Hawaiian plant adaptive radiation. J. Hered. https://doi.org/10.1093/jhered/esab077 (2022).Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 76–80 (2018).CAS 

    Google Scholar 
    Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Mitros, T. et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat. Commun. 11, 5442 (2020).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Funk, V. A. Systematics, Evolution, and Biogeography of Compositae (International Association for Plant Taxonomy, 2009).Julca, I. et al. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol 18, 148 (2020).PubMed Central 

    Google Scholar 
    te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 109, 19–45 (2012).
    Google Scholar 
    Mandel, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Whittaker, R. J., School of Geography Robert J Whittaker & Fernandez-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (OUP Oxford, 2007).Diop, S. I. et al. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. Plant J. 101, 1378–1396 (2020).CAS 

    Google Scholar 
    Li, F.-W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Lang, D. et al. ThePhyscomitrella patenschromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515–533 (2018).CAS 

    Google Scholar 
    Bird, K. A., VanBuren, R., Puzey, J. R. & Edger, P. P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. N. Phytol. 220, 87–93 (2018).
    Google Scholar 
    Freeling, M., Scanlon, M. J. & Fowler, J. E. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35, 110–118 (2015).CAS 

    Google Scholar 
    Wolfe, K. H. Yesterday’s polyploids and the mystery of diploidization. Nat. Rev. Genet. 2, 333–341 (2001).CAS 

    Google Scholar 
    Bird, K. A. et al. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. N. Phytol. 230, 354–371 (2021).CAS 

    Google Scholar 
    Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113 (2020).CAS 

    Google Scholar 
    Renny-Byfield, S., Gong, L., Gallagher, J. P. & Wendel, J. F. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol. Biol. Evol. 32, 1063–1071 (2015).CAS 

    Google Scholar 
    Douglas, G. M. et al. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc. Natl Acad. Sci. USA 112, 2806–2811 (2015).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Barrier, M., Baldwin, B. G., Robichaux, R. H. & Purugganan, M. D. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Mol. Biol. Evol. 16, 1105–1113 (1999).CAS 

    Google Scholar 
    Catchen, J. M., Conery, J. S. & Postlethwait, J. H. Automated identification of conserved synteny after whole-genome duplication. Genome Res. 19, 1497–1505 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Őszi, E. et al. E2FB interacts with RETINOBLASTOMA RELATED and regulates cell proliferation during leaf development. Plant Physiol. 182, 518–533 (2020).
    Google Scholar 
    Berckmans, B. et al. Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. Plant Physiol. 157, 1440–1451 (2011).CAS 
    PubMed Central 

    Google Scholar 
    Kojima, S. et al. Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiol. 52, 1259–1273 (2011).CAS 

    Google Scholar 
    Husbands, A. Y., Benkovics, A. H., Nogueira, F. T. S., Lodha, M. & Timmermans, M. C. P. The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. Plant Cell 27, 3321–3335 (2016).
    Google Scholar 
    Crane, R. A. et al. Negative regulation of age-related developmental leaf senescence by the IAOx pathway, PEN1, and PEN3. Front. Plant Sci. 10, 1202 (2019).PubMed Central 

    Google Scholar 
    Fu, M. et al. AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence in Arabidopsis. Plant Sci. 285, 44–54 (2019).CAS 

    Google Scholar 
    Zhang, B., Jia, J., Yang, M., Yan, C. & Han, Y. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis. Mol. Cells 34, 367–374 (2012).PubMed Central 

    Google Scholar 
    Ma, Z., Wu, W., Huang, W. & Huang, J. Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression. Photosynth. Res. 126, 301–310 (2015).CAS 

    Google Scholar 
    Wang, Z. et al. Two chloroplast proteins suppress drought resistance by affecting ROS production in guard cells. Plant Physiol. 172, 2491–2503 (2016).CAS 
    PubMed Central 

    Google Scholar 
    Meurer, J. et al. PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. Plant J. 92, 400–413 (2017).CAS 

    Google Scholar 
    Holding, D. The chloroplast and leaf developmental mutant, pale cress, exhibits light-conditional severity and symptoms characteristic of its ABA deficiency. Ann. Bot. 86, 953–962 (2000).CAS 

    Google Scholar 
    Meurer, J., Grevelding, C., Westhoff, P. & Reiss, B. The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana. Mol. Gen. Genet. MGG 258, 342–351 (1998).CAS 

    Google Scholar 
    Lawesson, J. E. Stand-level dieback and regeneration of forests in the Galápagos Islands. Temporal and Spatial Patterns of Vegetation Dynamics 87–93. https://doi.org/10.1007/978-94-009-2275-4_10 (1988).Endo, M., Kudo, D., Koto, T., Shimizu, H. & Araki, T. Light-dependent destabilization of PHL in Arabidopsis. Plant Signal. Behav. 9, e28118 (2014).PubMed Central 

    Google Scholar 
    Endo, M., Tanigawa, Y., Murakami, T., Araki, T. & Nagatani, A. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc. Natl Acad. Sci. USA 110, 18017–18022 (2013).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat. Cell Biol. 13, 616–622 (2011).CAS 

    Google Scholar 
    Basset, G. J. C. et al. Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J. 40, 453–461 (2004).CAS 

    Google Scholar 
    Smeekens, S. Faculty Opinions recommendation of Large-scale analysis of mRNA translation states during sucrose starvation in arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1032260.373846 (2006).Oravecz, A. et al. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18, 1975–1990 (2006).CAS 
    PubMed Central 

    Google Scholar 
    Dal Bosco, C. et al. Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J. Biol. Chem. 279, 1060–1069 (2004).CAS 

    Google Scholar 
    Tan, Y.-F., O’Toole, N., Taylor, N. L. & Millar, A. H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 152, 747–761 (2010).CAS 
    PubMed Central 

    Google Scholar 
    Kim, J. Y. et al. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J. 50, 439–451 (2007).CAS 

    Google Scholar 
    ten Hove, C. A. et al. Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. Plant Mol. Biol. 76, 69–83 (2011).PubMed Central 

    Google Scholar 
    Jakoby, M. J. et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol. 148, 1583–1602 (2008).CAS 
    PubMed Central 

    Google Scholar 
    Fox, A. R. et al. Plasma membrane aquaporins interact with the endoplasmic reticulum resident VAP27 proteins at ER-PM contact sites and endocytic structures. N. Phytol. 228, 973–988 (2020).CAS 

    Google Scholar 
    Wang, P. et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun. 10, 5132 (2019).ADS 
    PubMed Central 

    Google Scholar 
    Bittner, A., Hause, B. & Baier, M. Cold-priming causes oxylipin dampening during the early cold and light response of Arabidopsis thaliana. J. Exp. Bot. https://doi.org/10.1093/jxb/erab314 (2021).Kuki, Y., Ohno, R., Yoshida, K. & Takumi, S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 150, 71–79 (2020).CAS 

    Google Scholar 
    Czarnocka, W. et al. FMO1 is involved in excess light stress-induced signal transduction and cell death signaling. Cells 9, 2163 (2020).Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L. & Strand, A. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol. 144, 1391–1406 (2007).CAS 
    PubMed Central 

    Google Scholar 
    Castells, E. et al. The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress. EMBO J. 30, 1162–1172 (2011).CAS 
    PubMed Central 

    Google Scholar 
    Lahari, T., Lazaro, J., Marcus, J. M. & Schroeder, D. F. RAD7 homologues contribute to Arabidopsis UV tolerance. Plant Sci. 277, 267–277 (2018).CAS 

    Google Scholar 
    Kim, A. et al. Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell Rep. 39, 473–487 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Chen, D., Molitor, A., Liu, C. & Shen, W.-H. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 20, 1332–1344 (2010).CAS 

    Google Scholar 
    Shen, L. et al. The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis. Development 141, 1303–1312 (2014).CAS 

    Google Scholar 
    Li, J., Wang, Z., Hu, Y., Cao, Y. & Ma, L. Polycomb group proteins RING1A and RING1B regulate the vegetative phase transition in Arabidopsis. Front. Plant Sci. 8, 867 (2017).PubMed Central 

    Google Scholar 
    An, Z. et al. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. Plant J. 103, 1010–1024 (2020).CAS 

    Google Scholar 
    Gómez-Zambrano, Á. et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes. Mol. Plant 11, 815–832 (2018).
    Google Scholar 
    Glass, M., Barkwill, S., Unda, F. & Mansfield, S. D. Endo-β−1,4-glucanases impact plant cell wall development by influencing cellulose crystallization. J. Integr. Plant Biol. 57, 396–410 (2015).CAS 

    Google Scholar 
    Markakis, M. N. et al. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biol. 12, 1–11 (2012).Noutoshi, Y. et al. Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol. Biol. 62, 29–42 (2006).CAS 

    Google Scholar 
    Fukunaga, S. et al. Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. Plant J. 89, 381–393 (2017).CAS 

    Google Scholar 
    Singh, S., Kailasam, S., Lo, J. & Yeh, K. Histone H3 lysine4 trimethylation‐regulated GRF11 expression is essential for the iron‐deficiency response in Arabidopsis thaliana. N. Phytologist 230, 244–258 (2021).CAS 

    Google Scholar 
    Fal, K. et al. Phyllotactic regularity requires the Paf1 complex in Arabidopsis. Development https://doi.org/10.1242/dev.154369 (2017).He, Y. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev. 18, 2774–2784 (2004).CAS 
    PubMed Central 

    Google Scholar 
    Hoson, T. et al. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol. 16, 91–96 (2014).
    Google Scholar 
    Xiong, X., Xu, D., Yang, Z., Huang, H. & Cui, X. A single amino-acid substitution at lysine 40 of an Arabidopsis thaliana α-tubulin causes extensive cell proliferation and expansion defects. J. Integr. Plant Biol. 55, 209–220 (2013).CAS 

    Google Scholar 
    Whitewoods, C. D. et al. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr. Biol. 30, 2645–2648 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Galbraith, D. W. et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).ADS 
    CAS 

    Google Scholar 
    Dolezel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plant. 85, 625–631 (1992).CAS 

    Google Scholar 
    Loureiro, J., Rodriguez, E., Dolezel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100, 875–888 (2007).CAS 
    PubMed Central 

    Google Scholar 
    Suda, J. et al. Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann. Bot. 100, 1323–1335 (2007).PubMed Central 

    Google Scholar 
    Greilhuber, J., Dolezel, J., Lysák, M. A. & Bennett, M. D. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 95, 255–260 (2005).CAS 
    PubMed Central 

    Google Scholar 
    Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytom. Part A: J. Int. Soc. Anal. Cytol. 51, 127–128 (2003).CAS 

    Google Scholar 
    Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).CAS 
    PubMed Central 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 

    Google Scholar 
    Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. F1000Res. 6, 1287 (2017).
    Google Scholar 
    Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Bradnam, K. R. et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2, 10 (2013).PubMed Central 

    Google Scholar 
    Smit, A., Hubley, R. & Green, P. RepeatMasker 4.0 (Institute for Systems Biology, 2013).Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Tardaguila, M. et al. Corrigendum: SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 1096 (2018).CAS 
    PubMed Central 

    Google Scholar 
    Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinforma. 12, 491 (2011).
    Google Scholar 
    Moore, B., Holt, C., Alvarado, A. S. & Yandell, M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome 18, 188–196 (2008).Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 

    Google Scholar 
    Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
    Google Scholar 
    Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757–763 (2011).CAS 

    Google Scholar 
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).CAS 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).CAS 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Mandel, J. R. et al. A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. Appl. Plant Sci. 2, 1300085 (2014).Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788 (2016).CAS 

    Google Scholar 
    Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).
    Google Scholar 
    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed Central 

    Google Scholar 
    Delcher, A. L. et al. Alignment of whole genomes. Nucleic Acids Res. 27, 2369–2376 (1999).CAS 
    PubMed Central 

    Google Scholar 
    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).PubMed Central 

    Google Scholar 
    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019).PubMed Central 

    Google Scholar 
    Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 6, e251 (2020).PubMed Central 

    Google Scholar 
    Laforest, M. et al. A chromosome-scale draft sequence of the Canada fleabane genome. Pest Manag. Sci. 76, 2158–2169 (2020).CAS 

    Google Scholar 
    Liu, B. et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat. Commun. 11, 340 (2020).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).PubMed Central 

    Google Scholar 
    Cerca, J. et al. The Tetragnatha kauaiensis genome sheds light on the origins of genomic novelty in spiders. Genome Biol. Evol. 13, evab262 (2021).Laetsch, D. R. & Blaxter, M. L. KinFin: software for taxon-aware analysis of clustered protein sequences. G3 7, 3349–3357 (2017).CAS 
    PubMed Central 

    Google Scholar 
    Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).CAS 
    PubMed Central 

    Google Scholar 
    Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).CAS 

    Google Scholar 
    Lovell, J. T. et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444 (2021).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinforma. 9, 18 (2008).
    Google Scholar 
    Steinbiss, S., Willhoeft, U., Gremme, G. & Kurtz, S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 37, 7002–7013 (2009).CAS 
    PubMed Central 

    Google Scholar 
    Eddy, S. HMMER user’s guide. Dep. Genet., Wash. Univ. Sch. Med. 2, 13 (1992).
    Google Scholar 
    Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).CAS 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 

    Google Scholar 
    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).CAS 

    Google Scholar 
    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).
    Google Scholar 
    Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa1022 (2020).Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS 
    PubMed Central 

    Google Scholar 
    Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R. Package Version 2, 2010 (2010).
    Google Scholar 
    Alexa, A. & Rahnenführer, J. Gene set enrichment analysis with topGO. Bioconductor Improv 27, 1–26 (2009).
    Google Scholar 
    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Löytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).
    Google Scholar 
    Wu, M., Chatterji, S. & Eisen, J. A. Accounting for alignment uncertainty in phylogenomics. PLoS ONE 7, e30288 (2012).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).CAS 
    PubMed Central 

    Google Scholar 
    Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).CAS 

    Google Scholar 
    Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).CAS 

    Google Scholar  More