Splitting tensile strength and microstructure of xanthan gum-treated loess
Mu, Q. Y., Zhou, C. & Ng, C. W. W. Compression and wetting induced volumetric behavior of loess: Macro- and micro-investigations. Transp. Geotech. 23, 100345 (2020).Article
Google Scholar
Pan, L., Zhu, J. G. & Zhang, Y. F. Evaluation of structural strength and parameters of collapsible loess. Int. J. Geomech. 21, 04021066 (2021).Article
Google Scholar
He, S. X., Bai, H. B. & Xu, Z. W. Evaluation on tensile behavior characteristics of undisturbed loess. Energies 11, 1974 (2018).Article
CAS
Google Scholar
He, S. X. & Bai, H. B. Elastic-plastic behavior of compacted loess under direct and cyclic tension. Adv. Mater. Sci. Eng. 2019, 1–12 (2019).
Google Scholar
Wu, X. Y., Niu, F. J., Liang, Q. G. & Li, G. Y. Study on tensile strength and tensile-shear coupling mechanism of loess around Lanzhou and Yanan city in china by unconfined penetration test. KSCE J. Civ. Eng. 23, 1–12 (2019).Article
Google Scholar
You, Z. L., Zhang, M. Y., Liu, F. & Ma, Y. M. Numerical investigation of the tensile strength of loess using discrete element method. Eng. Fract. Mech. 247, 107610 (2021).Article
Google Scholar
Zhang, F. Y., Pei, X. J. & Yan, X. D. Physicochemical and mechanical properties of lime-treated loess. Geotech. Geol. Eng. 36, 685–696 (2018).Article
Google Scholar
Gu, K. & Chen, B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. Constr. Build. Mater. 231, 117195–117195 (2020).CAS
Article
Google Scholar
Xue, Z. F., Cheng, W. C., Wang, L. & Song, G. Y. Improvement of the shearing behaviour of loess using recycled straw fiber reinforcement. KSCE J. Civ. Eng. 25, 3319–3335 (2021).Article
Google Scholar
Chu, F., Luo, J. B. & Deng, G. H. Experimental study of dynamic deformation and strength properties and seismic subsidence characteristics of fiber yarn reinforced loess. J. Rock. Mech. Geotech. 39, 2306–2320 (2020).
Google Scholar
Liu, W., Wang, Q., Lin, G. C. & Tian, X. X. Variations of suction and suction stress of unsaturated loess due to changes in lignin content and sample preparation method. J. Mt. Sci. Engl. 18, 16 (2021).
Google Scholar
Wang, X. G., Liu, K. & Lian, B. Q. Experimental study on ring shear properties of fiber-reinforced loess. Bull. Eng. Geol. Environ. 80, 5021–5029 (2021).Article
Google Scholar
Lian, B. Q., Peng, J. B., Zhan, H. B. & Wang, X. G. Mechanical response of root-reinforced loess with various water contents. Soil. Tillage Res. 193, 85–94 (2019).Article
Google Scholar
Xu, J. et al. Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology. KSCE J. Civ. Eng. 1, 1–13 (2021).
Google Scholar
Li, J. D. et al. Study on strength characteristics and mechanism of loess stabilized by F1 ionic soil stabilizer. Arab. J. Geosci. 14, 1162 (2021).Article
Google Scholar
Lv, Q. F., Chang, C. R., Zhao, B. H. & Ma, B. Loess soil stabilization by means of SiO2 nanoparticles. Soil Mech. Found. Eng. 54, 409–413 (2018).Article
Google Scholar
Ma, W. J., Wang, B. L., Wang, X., Jiang, D. J. & Li, Z. Y. Experimental study on mechanical properties of modified loess. Water. Resour. Hydropower Eng. 49, 150–156 (2018).
Google Scholar
Hou, Y. F., Li, P. & Wang, J. D. Review of chemical stabilizing agents for improving the physical and mechanical properties of loess. Bull. Eng. Geol. Environ. 80, 9201–9215 (2021).Article
Google Scholar
Liu, X. J., Fan, J. Y., Yu, J. & Gao, X. Solidification of loess using microbial induced carbonate precipitation. J. Mt. Sci. Engl. 18, 265–274 (2021).Article
Google Scholar
Chang, I., Im, J. & Cho, G. C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8, 251 (2016).Article
Google Scholar
Jang, J. A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils. Adv. Mater. Sci. Eng. 2020, 1465709 (2020).Article
CAS
Google Scholar
Chang, I., Lee, M., Tran, T., Lee, S. & Cho, G. C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 24, 100385 (2020).Article
Google Scholar
Mendonça, A., Morais, P. V., Pires, A. C., Chung, A. P. & Oliveira, P. V. A review on the importance of microbial biopolymers such as xanthan gum to improve soil properties. Appl. Sci. 11, 170 (2020).Article
CAS
Google Scholar
Rosalam, S. & England, R. Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Microb. Technol. 39, 197–207 (2006).CAS
Article
Google Scholar
Moghal, A. A. B. & Vydehi, K. V. State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innov. Infrastruct. Solut. 6, 1–14 (2021).Article
Google Scholar
Shimizu, Y. et al. Viscosity measurement of Xanthan–Poly(vinyl alcohol) mixture and its effect on the mechanical properties of the hydrogel for 3D modeling. Sci. Rep. 8, 16538 (2018).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
Kumar, S. A. & Sujatha, E. R. An Appraisal of the Hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil. Carbohyd. Polym. 265, 118083 (2021).Article
CAS
Google Scholar
Chang, I., Prasidhi, A. K., Im, J., Shi, H. D. & Cho, G. C. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253–254, 39–47 (2015).Article
ADS
CAS
Google Scholar
Fatehi, H., Ong, D. E. L., Yu, J. & Chang, I. Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences (Switzerland). 11, 291 (2021).CAS
ADS
Google Scholar
Lee, S., Chang, I., Chung, M. K., Kim, Y. & Kee, J. Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomech. Eng. 12, 831–847 (2017).Article
Google Scholar
Lee, S., Im, J., Cho, G. C. & Chang, I. Laboratory triaxial test behavior of xanthan gum biopolymer treated sands. Geomech. Eng. 17, 445–452 (2019).
Google Scholar
Chang, I., Im, J., Prasidhi, A. K. & Cho, G. C. Effects of xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 74, 65–72 (2015).Article
Google Scholar
Liu, J. E. et al. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope. Soil. Tillage Res. 139, 23–27 (2014).Article
Google Scholar
Pu, S. et al. Stabilization behavior and performance of loess using a novel biomass-based polymeric soil stabilizer. Environ. Eng. Geosci. 25, 103–114 (2019).Article
Google Scholar
Zhang, X. C., Zhong, Y. J., Pei, X. J. & Duan, Y. Y. A cross-linked polymer soil stabilizer for hillslope conservation on the loess plateau. Front. Earth Sci. 9, 771316 (2021).Article
Google Scholar
Ni, J., Li, S. S., Ma, L. & Geng, X. Y. Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests. Constr. Build. Mater. 263, 120039 (2020).CAS
Article
Google Scholar
Kameda, J. & Yohei, H. Influence of biopolymers on the rheological properties of seafloor sediments and the runout behavior of submarine debris flows. Sci. Rep. 11, 1493 (2021).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
Ramani, S., Atchaya, S., Sivasaran, A. & Keerdthe, R. S. Enhancing the geotechnical properties of soil using xanthan gum—An eco-friendly alternative to traditional stabilizers. Bull. Eng. Geol. Environ. 80, 1157–1167 (2020).
Google Scholar
Cabalar, A. F., Awraheem, M. H. & Khalaf, M. M. Geotechnical properties of a low-plasticity clay with biopolymer. J. Mater. Civ. Eng. 30, 04018170 (2018).Article
Google Scholar
Reddy, J. J. & Varaprasad, B. J. S. Long-term and durability properties of xanthan gum treated dispersive soils—An eco-friendly material. Mater. Today. 44, 309–314 (2021).CAS
Google Scholar
Joga, J. R. & Varaprasad, B. J. S. Effect of xanthan gum biopolymer on dispersive properties of soils. J. Eng. Technol. 17, 563–571 (2020).CAS
Google Scholar
Muguda, S. et al. Mechanical properties of biopolymer-stabilised soil-based construction materials. Géotech. Lett. 7, 309–314 (2017).Article
Google Scholar
Muguda, S., et al. Cross-linking of biopolymers for stabilizing earthen construction materials. Build. Res. Inf. 1–13 (2021).Soldo, A., Miletić, M. & Auad, M. L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 10, 267 (2020).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
Jiang, T., et al. Diametric splitting tests on loess based on PIV technique. Rock Soil Mech. 42, 2120–2126+2140 (2021).Zhang, J. R., Wang, L. J., Jiang, T., Ren, M. & Wei, M. Diametric splitting tests on unsaturated expansive soil with different dry densities based on the particle image velocimetry technique. Acta Geotech. Slov. 18, 15–27 (2021).Article
Google Scholar
Qureshi, M. U., Chang, I. & Al-Sadarani, K. Strength and durability characteristics of biopolymer-treated desert sand. Geomech. Eng. 12, 785–801 (2017).Article
Google Scholar
Ng, C. W. W. et al. Influence of biopolymer on gas permeability in compacted clay at different densities and water contents. Eng. Geol. 272, 105631 (2020).Article
Google Scholar
Kwon, Y. M., Ham, S. M., Kwon, T. H., Cho, G. C. & Chang, I. Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Géotech. Lett. 10, 106–112 (2020).Article
Google Scholar
Ramachandran, A. L., Dubey, A. A., Dhami, N. K. & Mukherjee, A. Multiscale study of soil stabilisation using bacterial biopolymers. J. Geotech. Geoenviron. Eng. 147, 04021074 (2021).CAS
Article
Google Scholar
Nugent, R. A., Zhang, G. & Gambrell, R. P. Effect of exopolymers on the liquid limit of clays and its engineering implications. Transp. Res. Rec. 2101, 34–43 (2009).Article
Google Scholar
Wang, Y., Li, T. L., Zhao, C. X., Hou, X. K. & Zhang, Y. G. A study on the effect of pore and particle distributions on the soil water characteristic curve of compacted loess. Environ. Earth. Sci. 80, 764 (2021).Article
Google Scholar
Gao, Y., Sun, D. A., Zhu, Z. C. & Xu, Y. F. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range. Acta. Geotech. 14, 417–428 (2018).Article
Google Scholar
Li, B. & Chen, Y. L. Influence of dry density on soil-water retention curve of unsaturated soils and its mechanism based on mercury intrusion porosimetry. Trans. Tianjin Univ. 22, 268–272 (2016).CAS
Article
Google Scholar
Xu, W. S., Li, K. S., Chen, L. X., Kong, W. H. & Liu, C. X. The impacts of freeze-thaw cycles on saturated hydraulic conductivity and microstructure of saline-alkali soils. Sci. Rep. 11, 18655 (2021).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
Li, Z. Q., Qi, Z. Y., Qi, S. W., Zhang, L. X. & Hou, X. H. Microstructural changes and micro-macro-relationships of an intact, compacted and remolded loess for land-creation project from the Loess Plateau. Environ. Earth. Sci. 80, 593 (2021).Article
Google Scholar More