More stories

  • in

    Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.)

    Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6(1), 58. https://doi.org/10.1186/s40168-018-0445-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapp, M., Ploch, S., Fiore-Donno, A. M., Bonkowski, M. & Rose, L. E. Protists are an integral part of the Arabidopsis thaliana microbiome. Environ Microbiol 20(1), 30–43. https://doi.org/10.1111/1462-2920.13941 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera Paredes, S. & Lebeis, S. L. Giving back to the community: Microbial mechanisms of plant–soil interactions. Funct. Ecol. 30(7), 1043–1052. https://doi.org/10.1111/1365-2435.12684 (2016).Article 

    Google Scholar 
    Nath, A. & Sundaram, S. Microbiome community interactions with social forestry and agroforestry. In Microbial services in restoration ecology (eds Singh, J. S. & Vimal, S. R.) 71–82 (Elsevier, 2020).Chapter 

    Google Scholar 
    Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12(6), 804–821. https://doi.org/10.1016/j.molp.2019.05.006 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guttman, D. S., McHardy, A. C. & Schulze-Lefert, P. Microbial genome-enabled insights into plant–microorganism interactions. Nat. Rev. Genet. 15(12), 797–813. https://doi.org/10.1038/nrg3748 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewin, S., Francioli, D., Ulrich, A. & Kolb, S. Crop host signatures reflected by co-association patterns of keystone bacteria in the rhizosphere microbiota. Environ. Microb. 16(1), 18. https://doi.org/10.1186/s40793-021-00387-w (2021).CAS 
    Article 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bardelli, T. et al. Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Sci. Total Environ. 575, 1041–1055. https://doi.org/10.1016/j.scitotenv.2016.09.176 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Francioli, D., van Ruijven, J., Bakker, L. & Mommer, L. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 48, 100987. https://doi.org/10.1016/j.funeco.2020.100987 (2020).Article 

    Google Scholar 
    Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20(1), 124–140. https://doi.org/10.1111/1462-2920.14031 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Trivedi, P., Batista, B. D., Bazany, K. E. & Singh, B. K. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 234(6), 1951–1959. https://doi.org/10.1111/nph.18016 (2022).Article 
    PubMed 

    Google Scholar 
    Hawkes, C. V. et al. Extension of plant phenotypes by the foliar microbiome. Annu. Rev. Plant Biol. 72(1), 823–846. https://doi.org/10.1146/annurev-arplant-080620-114342 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hunter, P. The revival of the extended phenotype: After more than 30 years, Dawkins’ extended phenotype hypothesis is enriching evolutionary biology and inspiring potential applications. EMBO Rep. 19(7), e46477. https://doi.org/10.15252/embr.201846477 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68(5), 229–245. https://doi.org/10.1007/s13213-018-1331-5 (2018).CAS 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant-climate interface. Annu. Rev. Ecol. Evol. Syst. 47(1), 1–24. https://doi.org/10.1146/annurev-ecolsys-121415-032238 (2016).Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant Microbe Interact. 28(3), 274–285. https://doi.org/10.1094/mpmi-10-14-0331-fi (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pérez-Bueno, M. L., Pineda, M., Díaz-Casado, E. & Barón, M. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiol. Plant. 153(1), 161–174. https://doi.org/10.1111/ppl.12237 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A Synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10(4), e1004283. https://doi.org/10.1371/journal.pgen.1004283 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giauque, H. & Hawkes, C. V. Climate affects symbiotic fungal endophyte diversity and performance. Am. J. Bot. 100(7), 1435–1444. https://doi.org/10.3732/ajb.1200568 (2013).Article 
    PubMed 

    Google Scholar 
    Rodriguez, R. J. et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2(4), 404–416. https://doi.org/10.1038/ismej.2007.106 (2008).Article 
    PubMed 

    Google Scholar 
    Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 230(6), 2129–2147. https://doi.org/10.1111/nph.17319 (2021).Article 
    PubMed 

    Google Scholar 
    Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. 106(38), 16428–16433. https://doi.org/10.1073/pnas.0905240106%JProceedingsoftheNationalAcademyofSciences (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10(12), 828–840. https://doi.org/10.1038/nrmicro2910 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. 111(38), 13715–13720. https://doi.org/10.1073/pnas.1216057111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whipps, J. M., Hand, P., Pink, D. & Bending, G. D. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105(6), 1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582), 364–369. https://doi.org/10.1038/nature16192 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4(1), 27. https://doi.org/10.1186/s40168-016-0174-1 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 207(4), 1134–1144. https://doi.org/10.1111/nph.13418 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J. & Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 10(1), 4135. https://doi.org/10.1038/s41467-019-11974-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latz, M. A. C. et al. Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Sci. Total Environ. 759, 143804. https://doi.org/10.1016/j.scitotenv.2020.143804 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6(10), 1812–1822. https://doi.org/10.1038/ismej.2012.32 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bao, L. et al. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol. Ecol. 96, 3. https://doi.org/10.1093/femsec/fiaa017 (2020).CAS 
    Article 

    Google Scholar 
    Ding, T. & Melcher, U. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 11(3), e0150895. https://doi.org/10.1371/journal.pone.0150895 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perreault, R. & Laforest-Lapointe, I. Plant-microbe interactions in the phyllosphere: Facing challenges of the anthropocene. ISME J. https://doi.org/10.1038/s41396-021-01109-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redford, A. J. & Fierer, N. Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microb. Ecol. 58(1), 189–198. https://doi.org/10.1007/s00248-009-9495-y (2009).Article 
    PubMed 

    Google Scholar 
    Campisano, A. et al. Temperature drives the assembly of endophytic communities’ seasonal succession. Environ. Microbiol. 19(8), 3353–3364. https://doi.org/10.1111/1462-2920.13843 (2017).Article 
    PubMed 

    Google Scholar 
    Ren, G. et al. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392(1), 27–44. https://doi.org/10.1007/s11104-015-2503-8 (2015).CAS 
    Article 

    Google Scholar 
    Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11(1), 3044. https://doi.org/10.1038/s41467-020-16757-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17(3), 610–621. https://doi.org/10.1111/1462-2920.12452 (2015).Article 
    PubMed 

    Google Scholar 
    Francioli, D., Schulz, E., Buscot, F. & Reitz, T. Dynamics of soil bacterial communities over a vegetation season relate to both soil nutrient status and plant growth phenology. Microb. Ecol. 75(1), 216–227. https://doi.org/10.1007/s00248-017-1012-0 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Breitkreuz, C., Buscot, F., Tarkka, M. & Reitz, T. Shifts between and among populations of wheat rhizosphere Pseudomonas, Streptomyces and Phyllobacterium suggest consistent phosphate mobilization at different wheat growth stages under abiotic stress. Front. Microbiol. 10, 3109–3109. https://doi.org/10.3389/fmicb.2019.03109 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Na, X. et al. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Front. Microbiol. 10, 828. https://doi.org/10.3389/fmicb.2019.00828 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ad-hoc-AG-Boden. Bodenkundliche Kartieranleitung 438 (Schweizerbart, 2005).
    Google Scholar 
    Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res. 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).Article 

    Google Scholar 
    Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W. & Prew, R. D. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J. Sci. Food Agric. 31(2), 117–132. https://doi.org/10.1002/jsfa.2740310203 (1980).Article 

    Google Scholar 
    Drew, M. C. Soil aeration and plant root metabolism. Soil Sci. 154(4), 259–268 (1992).ADS 
    Article 

    Google Scholar 
    Meyer, W. et al. Effect of irrigation on soil oxygen status and root and shoot growth of wheat in a clay soil. Aust. J. Agric. Res. https://doi.org/10.1071/AR9850171 (1985).Article 

    Google Scholar 
    Riehm, H. Bestimmung der laktatlöslichen Phosphorsäure in karbonathaltigen Böden. Phosphorsäure 1, 167–178. https://doi.org/10.1002/jpln.19420260107 (1943).Article 

    Google Scholar 
    Murphy, J., & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5 (1962).CAS 
    Article 

    Google Scholar 
    Francioli, D., Lentendu, G., Lewin, S. & Kolb, S. DNA metabarcoding for the characterization of terrestrial microbiota—pitfalls and solutions. Microorganisms 9(2), 361 (2021).CAS 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41(3), 252–263. https://doi.org/10.1007/s002480000087 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12(11), 2885–2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 1. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581. https://doi.org/10.1038/Nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francioli, D. et al. Flooding causes dramatic compositional shifts and depletion of putative beneficial bacteria on the spring wheat microbiota. Front. Microbiol. 12, 3371. https://doi.org/10.3389/fmicb.2021.773116 (2021).Article 

    Google Scholar 
    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online 1–15 (Wiley, 2017).
    Google Scholar 
    Dray, S., Legendre, P. & Blanchet, G. Packfor: Forward Selection with Permutation. R package version 0.0‐8/r100 ed. (2011).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. ed. (2018).Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lahti, L. & Sudarshan, S. Tools for Microbiome Analysis in R. Version 2.1.28. ed. (2020).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Chen, S. et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7(1), 136. https://doi.org/10.1186/s40168-019-0750-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J. et al. Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity. Front. Microbiol. 7, 1207. https://doi.org/10.3389/fmicb.2016.01207 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comby, M., Lacoste, S., Baillieul, F., Profizi, C. & Dupont, J. Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Front. Microbiol. 7, 403. https://doi.org/10.3389/fmicb.2016.00403 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405(1), 381–396. https://doi.org/10.1007/s11104-015-2495-4 (2016).CAS 
    Article 

    Google Scholar 
    Sapkota, R., Jørgensen, L. N. & Nicolaisen, M. Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01357 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhry, V. et al. Shaping the leaf microbiota: Plant–microbe–microbe interactions. J. Exp. Bot. 72(1), 36–56. https://doi.org/10.1093/jxb/eraa417 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Liu, Z., Cheng, R., Xiao, W., Guo, Q. & Wang, N. Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9(9), e107636. https://doi.org/10.1371/journal.pone.0107636 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosa, M. et al. Soluble sugars. Plant Signal. Behav. 4(5), 388–393. https://doi.org/10.4161/psb.4.5.8294 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H., Qualls, R. G. & Blank, R. R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat. Bot. 82(4), 250–268. https://doi.org/10.1016/j.aquabot.2005.02.013 (2005).CAS 
    Article 

    Google Scholar 
    Bacanamwo, M. & Purcell, L. C. Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J. Exp. Bot. 50(334), 689–696. https://doi.org/10.1093/jxb/50.334.689 (1999).CAS 
    Article 

    Google Scholar 
    Boem, F. H. G., Lavado, R. S. & Porcelli, C. A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop. Res. 47(2), 175–179. https://doi.org/10.1016/0378-4290(96)00025-1 (1996).Article 

    Google Scholar 
    Kozlowski, T. T. Plant responses to flooding of soil. Bioscience 34(3), 162–167. https://doi.org/10.2307/1309751 (1984).Article 

    Google Scholar 
    Topa, M. A. & Cheeseman, J. M. 32P uptake and transport to shoots in Pinuus serotina seedlings under aerobic and hypoxic growth conditions. Physiol. Plant. 87(2), 125–133. https://doi.org/10.1111/j.1399-3054.1993.tb00134.x (1993).CAS 
    Article 

    Google Scholar 
    Colmer, T. D. & Flowers, T. J. Flooding tolerance in halophytes. New Phytol. 179(4), 964–974. https://doi.org/10.1111/j.1469-8137.2008.02483.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gibbs, J. & Greenway, H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30(1), 1–47. https://doi.org/10.1071/PP98095 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Board, J. E. Waterlogging effects on plant nutrient concentrations in soybean. J. Plant Nutr. 31(5), 828–838. https://doi.org/10.1080/01904160802043122 (2008).CAS 
    Article 

    Google Scholar 
    Smethurst, C. F., Garnett, T. & Shabala, S. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1), 31–45. https://doi.org/10.1007/s11104-004-1082-x (2005).CAS 
    Article 

    Google Scholar 
    Thomson, C. J., Atwell, B. J. & Greenway, H. Response of wheat seedlings to low O2 concentrations in nutrient solution: II. K+/Na+ selectivity of root tissues. J. Exp. Bot. 40(9), 993–999. https://doi.org/10.1093/jxb/40.9.993 (1989).Article 

    Google Scholar 
    Barrett-Lennard, E. G. The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant Soil 253(1), 35–54. https://doi.org/10.1023/A:1024574622669 (2003).CAS 
    Article 

    Google Scholar 
    Granzow, S. et al. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front. Microbiol. 8, 902. https://doi.org/10.3389/fmicb.2017.00902 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gdanetz, K. & Trail, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 1(3), 158–168. https://doi.org/10.1094/PBIOMES-05-17-0023-R (2017).Article 

    Google Scholar 
    Shade, A., McManus, P. S., Handelsman, J. & Zhou, J. Unexpected diversity during community succession in the apple flower microbiome. MBio 4(2), e00602-00612. https://doi.org/10.1128/mBio.00602-12 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, J. et al. Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes. New. Phytol. 230(5), 2047–2060. https://doi.org/10.1111/nph.17297 (2021).Article 
    PubMed 

    Google Scholar 
    Allwood, J. W. et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115, 99–111. https://doi.org/10.1016/j.phytochem.2015.01.007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. et al. Plant phenotypic traits eventually shape its microbiota: A common garden test. Front. Microbiol. 9, 2479. https://doi.org/10.3389/fmicb.2018.02479 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, C. et al. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9(1), 171. https://doi.org/10.1186/s40168-021-01118-6 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65. https://doi.org/10.1016/j.jare.2019.03.003 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathur, P., Mehtani, P. & Sharma, C. (2021). Leaf Endophytes and Their Bioactive Compounds. In Symbiotic Soil Microorganisms: Biology and Applications, (eds Shrivastava, N. et al.) 147–159 (Cham, Springer International Publishing, 2021).Aquino, J., Junior, F. L. A., Figueiredo, M., De Alcântara Neto, F. & Araujo, A. Plant growth-promoting endophytic bacteria on maize and sorghum1. Pesq. Agrop. Trop. https://doi.org/10.1590/1983-40632019v4956241 (2019).Article 

    Google Scholar 
    Gamalero, E. et al. Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance. Appl. Sci. 10(17), 5767 (2020).CAS 
    Article 

    Google Scholar 
    Borah, A. & Thakur, D. Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front. Microbiol. 11, 318. https://doi.org/10.3389/fmicb.2020.00318 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haidar, B. et al. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol. Res. 208, 43–53. https://doi.org/10.1016/j.micres.2018.01.008 (2018).Article 
    PubMed 

    Google Scholar 
    Bind, M. & Nema, S. Isolation and molecular characterization of endophytic bacteria from pigeon pea along with antimicrobial evaluation against Fusarium udum. J. Appl. Microbiol. Open Access 5, 163 (2019).
    Google Scholar 
    de Almeida Lopes, K. B. et al. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J. Appl. Microbiol. 125(5), 1466–1481. https://doi.org/10.1111/jam.14041 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Müller, T. & Behrendt, U. Exploiting the biocontrol potential of plant-associated pseudomonads: A step towards pesticide-free agriculture?. Biol. Control 155, 104538. https://doi.org/10.1016/j.biocontrol.2021.104538 (2021).CAS 
    Article 

    Google Scholar 
    Safin, R. I. et al. Features of seeds microbiome for spring wheat varieties from different regions of Eurasia. In: International Scientific and Practical Conference “AgroSMART: Smart Solutions for Agriculture”, 766–770 (Atlantis Press).Adler, P. B. & Drake, J. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172(5), E186–E195. https://doi.org/10.1086/591678 (2008).Article 

    Google Scholar 
    Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. R. Soc. B 284(1855), 20170507. https://doi.org/10.1098/rspb.2017.0507 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. 115(6), E1157–E1165. https://doi.org/10.1073/pnas.1717617115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 232(3), 1123–1158. https://doi.org/10.1111/nph.17072 (2021).Article 
    PubMed 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92(4), 303–311. https://doi.org/10.1139/cjb-2013-0194 (2014).Article 

    Google Scholar 
    Leff, J. W. et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12(7), 1794–1805. https://doi.org/10.1038/s41396-018-0089-x (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ulbrich, T. C., Friesen, M. L., Roley, S. S., Tiemann, L. K. & Evans, S. E. Intraspecific variability in root traits and edaphic conditions influence soil microbiomes across 12 switchgrass cultivars. Phytobiom. J. 5(1), 108–120. https://doi.org/10.1094/pbiomes-12-19-0069-fi (2021).Article 

    Google Scholar 
    Arduini, I., Orlandi, C., Pampana, S. & Masoni, A. Waterlogging at tillering affects spike and spikelet formation in wheat. Crop Pasture Sci. 67(7), 703–711. https://doi.org/10.1071/CP15417 (2016).CAS 
    Article 

    Google Scholar 
    Ding, J. et al. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Res. 246, 107695. https://doi.org/10.1016/j.fcr.2019.107695 (2020).Article 

    Google Scholar 
    Malik, I., Colmer, T., Lambers, H. & Schortemeyer, M. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Austral. J. Plant Physiol. 28, 1121–1131. https://doi.org/10.1071/PP01089 (2001).Article 

    Google Scholar 
    Pampana, S., Masoni, A. & Arduini, I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res. Commun. 44(4), 706–716. https://doi.org/10.1556/0806.44.2016.026 (2016).Article 

    Google Scholar 
    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115(18), E4284–E4293. https://doi.org/10.1073/pnas.1717308115%JProceedingsoftheNationalAcademyofSciences (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Angel, R. et al. The root-associated microbial community of the world’s highest growing vascular plants. Microb. Ecol. 72(2), 394–406. https://doi.org/10.1007/s00248-016-0779-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16(2), e2003862. https://doi.org/10.1371/journal.pbio.2003862 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kuźniar, A. et al. Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Syst. Appl. Microbiol. 43(1), 126025. https://doi.org/10.1016/j.syapm.2019.126025 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Soldan, R. et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol. Res. 223–225, 33–43. https://doi.org/10.1016/j.micres.2019.03.008 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7(1), 40–50. https://doi.org/10.1111/1758-2229.12181 (2015).Article 

    Google Scholar 
    Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, 6. https://doi.org/10.1093/femsec/fiw083 (2016).CAS 
    Article 

    Google Scholar 
    Eid, A. M. et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants 10(5), 935 (2021).CAS 
    Article 

    Google Scholar 
    Mareque, C. et al. The endophytic bacterial microbiota associated with sweet sorghum (Sorghum bicolor) is modulated by the application of chemical N fertilizer to the field. Int. J. Genom. 2018, 7403670. https://doi.org/10.1155/2018/7403670 (2018).CAS 
    Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446. https://doi.org/10.3389/fmicb.2016.01446 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrey, S. D. & Tarkka, M. T. Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94(1), 11–19. https://doi.org/10.1007/s10482-008-9241-3 (2008).Article 
    PubMed 

    Google Scholar 
    Patel, J. K., Madaan, S. & Archana, G. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215, 36–45. https://doi.org/10.1016/j.micres.2018.06.003 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yi, Y.-S. et al. Antifungal activity of Streptomyces sp. against Puccinia recondita causing wheat leaf rust. J. Microbiol. Biotechnol. 14(2), 422–425 (2004).CAS 

    Google Scholar 
    Sperdouli, I. & Moustakas, M. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit. J. Plant. Res. 127(4), 481–489. https://doi.org/10.1007/s10265-014-0635-1 (2014).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes

    Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbial community function at the single-cell level. Nat Rev Microbiol. 2020;18:241–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, et al. The 2018 correlative microscopy techniques roadmap. J Phys D: Appl Phys. 2018;51:443001.Article 
    CAS 

    Google Scholar 
    Endesfelder U. Advances in correlative single-molecule localization microscopy and electron microscopy. NanoBioImaging. 2015;1:29–37.Article 

    Google Scholar 
    Osborn M, Webster RE, Weber K. Individual microtubules viewed by immunofluorescence and electron microscopy in the same PtK2 cell. J Cell Biol. 1978;77:27–38.Article 

    Google Scholar 
    Webster RE, Osborn M, Weber K. Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy. Exp Cell Res. 1978;117:47–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Perkovic M, Kunz M, Endesfelder U, Bunse S, Wigge C, Yu Z, et al. Correlative Light- and Electron Microscopy with chemical tags. J Struct Biol. 2014;186:205–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lange F, Agui-Gonzalez P, Riedel D, Phan NTN, Jakobs S, Rizzoli SO. Correlative fluorescence microscopy, transmission electron microscopy and secondary ion mass spectrometry (CLEM-SIMS) for cellular imaging. Plos One. 2021;16:e0240768.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pirozzi NM, Hoogenboom JP, Giepmans BNG. ColorEM: analytical electron microscopy for element-guided identification and imaging of the building blocks of life. Histochem Cell Biol. 2018;150:509–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loussert-Fonta C, Toullec G, Paraecattil AA, Jeangros Q, Krueger T, Escrig S, et al. Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section. Commun Biol. 2020;3:362.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joosten B, Willemse M, Fransen J, Cambi A, van den Dries K. Super-resolution correlative light and electron microscopy (SR-CLEM) reveals novel ultrastructural insights into dendritic cell podosomes. Front Immunol. 2018;9:1–14.Article 
    CAS 

    Google Scholar 
    Woehl TJ, Kashyap S, Firlar E, Perez-Gonzalez T, Faivre D, Trubitsyn D, et al. Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci Rep. 2014;4:6854.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li J, Zhang H, Menguy N, Benzerara K, Wang F, Lin X, et al. Single-cell resolution of uncultured magnetotactic bacteria via fluorescence-coupled electron microscopy. Appl Environ Microbiol. 2017;83:e00409–17.PubMed 
    PubMed Central 

    Google Scholar 
    Qian XX, Santini CL, Kosta A, Menguy N, Le Guenno H, Zhang W, et al. Juxtaposed membranes underpin cellular adhesion and display unilateral cell division of multicellular magnetotactic prokaryotes. Environ Microbiol. 2020;22:1481–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    McGlynn SE, Chadwick GL, O’Neill A, Mackey M, Thor A, Deerinck TJ, et al. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners revealed by integrated multimodal analytical microscopy. Appl Environ Microbiol. 2018;84:e00399–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao L, McIlroy SJ, Kirkegaard RH, Karst SM, Fernando WEY, Aslan H, et al. Novel prosthecate bacteria from the candidate phylum Acetothermia. ISME J. 2018;126:2225–37.Article 
    CAS 

    Google Scholar 
    Hapca S, Baveye PC, Wilson C, Lark RM, Otten W. Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-Ray CT images. PLoS One. 2015;10:e0137205.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schluter S, Eickhorst T, Mueller CW. Correlative imaging reveals holistic view of soil microenvironments. Environ Sci Technol. 2019;53:829–37.PubMed 
    Article 
    CAS 

    Google Scholar 
    Marlow J, Spietz R, Kim KY, Ellisman M, Girguis P, Hatzenpichler R. Spatially resolved correlative microscopy and microbial identification reveal dynamic depth- and mineral-dependent anabolic activity in salt marsh sediment. Environ Microbiol. 2021;23:4756–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA. 2015;112:E194–203.CAS 
    PubMed 

    Google Scholar 
    Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol. 2007;9:1878–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016.CAS 
    PubMed 
    Article 

    Google Scholar 
    Keim CN, Martins JL, de Barros HL, Lins U, MF Structure, behavior, ecology and diversity of multicellular magnetotactic prokaryotes. Magnetoreception and magnetosomes in bacteria. (Springer, Berlin, Heidelberg, 2006):103–32.Abreu F, Silva KT, Martins JL, Lins U. Cell viability in magnetotactic multicellular prokaryotes. Int Microbiol. 2006;9:267–72.CAS 
    PubMed 

    Google Scholar 
    Abreu F, Martins JL, Silveira TS, Keim CN, de Barros HG, Filho FJ, et al. ‘Candidatus Magnetoglobus multicellularis’, a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Microbiol. 2007;57:1318–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Abreu F, Silva KT, Leao P, Guedes IA, Keim CN, Farina M, et al. Cell adhesion, multicellular morphology, and magnetosome distribution in the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Microsc Microanal. 2013;19:535–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Faivre D, Schuler D. Magnetotactic bacteria and magnetosomes. Chem Rev. 2008;108:4875–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol. 2020;18:677–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    Uebe R, Schuler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shapiro OH, Hatzenpichler R, Buckley DH, Zinder SH, Orphan VJ. Multicellular photo-magnetotactic bacteria. Env Microbiol Rep. 2011;3:233–8.Article 

    Google Scholar 
    Simmons SL, Edwards KJ. Unexpected diversity in populations of the many-celled magnetotactic prokaryote. Environ Microbiol. 2007;9:206–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilbanks EG, Jaekel U, Salman V, Humphrey PT, Eisen JA, Facciotti MT, et al. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ Microbiol. 2014;16:3398–415.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilbanks EG, Salman-Carvalho V, Jaekel U, Humphrey PT, Eisen JA, Buckley DH, et al. The Green Berry Consortia of the Sippewissett Salt Marsh: millimeter-sized aggregates of diazotrophic unicellular cyanobacteria. Front Microbiol. 2017;8:1–12.Article 

    Google Scholar 
    Larsen S, Nielsen LP, Schramm A. Cable bacteria associated with long-distance electron transport in New England salt marsh sediment. Env Microbiol Rep. 2015;7:175–9.CAS 
    Article 

    Google Scholar 
    Salman V, Yang TT, Berben T, Klein F, Angert E, Teske A. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. ISME J. 2015;9:2503–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mackey KRM, Hunter-Cevera K, Britten GL, Murphy LG, Sogin ML, Huber JA. Seasonal succession and spatial patterns of synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front Microbiol. 2017;8.Bowen JL, Morrison HG, Hobbie JE, Sogin ML. Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. ISME J. 2012;6:2014–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lewis AT, Gaifulina R, Isabelle M, Dorney J, Woods ML, Lloyd GR, et al. Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells. J Raman Spectrosc. 2017;48:119–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eder SH, Gigler AM, Hanzlik M, Winklhofer M. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One. 2014;9:e107356.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stoecker K, Dorninger C, Daims H, Wagner M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol. 2010;76:922–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Daims H, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. Taylor & Francis, 2004; Mol Microbial Ecol:208–28.Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stahl DA, Amann RI. Development and application of nucleic acid probes. Stackebrandt E and Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. John Wiley & Sons; 1991. p. 205–48.Behrens S, Ruhland C, Inacio J, Huber H, Fonseca A, Spencer-Martins I, et al. In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probes. Appl Environ Microbiol. 2003;69:1748–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wallner G, Amann R, Beisker W. Optimizing fluorescent insitu hybridization with ribosomal-Rna-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14:136–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zimmermann M, Escrig S, Hubschmann T, Kirf MK, Brand A, Inglis RF, et al. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol. 2015;6:243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grieb A, Bowers RM, Oggerin M, Goudeau D, Lee J, Malmstrom RR, et al. A pipeline for targeted metagenomics of environmental bacteria. Microbiome. 2020;8:21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2021;23:81–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Musat N, Stryhanyuk H, Bombach P, Adrian L, Audinot JN, Richnow HH. The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst Appl Microbiol. 2014;37:267–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol. 2008;6:339–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee KS, Landry Z, Pereira FC, Wagner M, Berry D, Huang WE, et al. Raman microspectroscopy for microbiology. Nat Rev Methods Primers. 2021;1:1–25.Article 
    CAS 

    Google Scholar 
    Wang Y, Huang WE, Cui L, Wagner M. Single-cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol. 2016;41:34–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol. 2015;91:1–16.Article 
    CAS 

    Google Scholar 
    Li J, Liu P, Tamaxia A, Zhang H, Liu Y, Wang J, et al. Diverse intracellular inclusion types within magnetotactic bacteria: implications for biogeochemical cycling in aquatic environments. J Geophys Res Biogeosci. 2021;126:e2021JG006310.CAS 

    Google Scholar 
    Matanfack GA, Taubert M, Guo S, Houhou R, Bocklitz T, Kusel K, et al. Influence of carbon sources on quantification of deuterium incorporation in heterotrophic bacteria: a Raman-stable isotope labeling approach. Anal Chem. 2020;92:11429–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amor M, Tharaud M, Gelabert A, Komeili A. Single-cell determination of iron content in magnetotactic bacteria: implications for the iron biogeochemical cycle. Environ Microbiol. 2020;22:823–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farina M, Esquivel DMS, Debarros HGPL. Magnetic iron-sulfur crystals from a magnetotactic microorganism. Nature. 1990;343:256–8.CAS 
    Article 

    Google Scholar 
    Wenter R, Wanner G, Schuler D, Overmann J. Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol. 2009;11:1493–505.PubMed 
    Article 

    Google Scholar 
    Zhang R, Chen YR, Du HJ, Zhang WY, Pan HM, Xiao T, et al. Characterization and phylogenetic identification of a species of spherical multicellular magnetotactic prokaryotes that produces both magnetite and greigite crystals. Res Microbiol. 2014;165:481–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Teng Z, Zhang Y, Zhang W, Pan H, Xu J, Huang H, et al. Diversity and characterization of multicellular magnetotactic prokaryotes from coral reef habitats of the Paracel Islands, South China Sea. Front Microbiol. 2018;9:2135.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourdoiseau J-A, Jeannin M, Rémazeilles C, Sabot R, Refait P. The transformation of mackinawite into greigite studied by Raman spectroscopy. J Raman Spectrosc. 2011;42:496–504.CAS 
    Article 

    Google Scholar 
    Mann S, Sparks NH, Board RG. Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. Adv Microb Physiol. 1990;31:125–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Posfai M, Buseck PR, Bazylinski DA, Frankel RB. Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. Am Mineral. 1998;83:1469–81.CAS 
    Article 

    Google Scholar 
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smriga S, Samo TJ, Malfatti F, Villareal J, Azam F. Individual cell DNA synthesis within natural marine bacterial assemblages as detected by ‘click’ chemistry. Aquat Microb Ecol. 2014;72:269–80.Article 

    Google Scholar 
    Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR. (D)-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol. 2013;8:500–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Keim CN, Abreu F, Lins U, Lins de Barros H, Farina M. Cell organization and ultrastructure of a magnetotactic multicellular organism. J Struct Biol. 2004;145:254–62.PubMed 
    Article 

    Google Scholar  More

  • in

    An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea

    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djokic, T., Kranendonk, M. J. V., Campbell, K. A., Walter, M. R. & Ward, C. R. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    Damer, B. & Deamer, D. The Hot Spring Hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Kranendonk, M. J. et al. Elements for the origin of life on land: a deep-time perspective from the Pilbara Craton of Western Australia. Astrobiology 21, 39–59 (2021).ADS 
    PubMed 

    Google Scholar 
    Colman, D. R. et al. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth. ISME J. 14, 1316–1331 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lloyd, K. G. et al. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. mSystems 3, 431 (2018).
    Google Scholar 
    Hedlund, B. P. et al. Uncultivated thermophiles: current status and spotlight on ‘Aigarchaeota’. Curr. Opin. Microbiol. 25, 136–145 (2015).CAS 
    PubMed 

    Google Scholar 
    Nunoura, T. et al. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ. Microbiol. 7, 1967–1984 (2005).CAS 
    PubMed 

    Google Scholar 
    Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).CAS 
    PubMed 

    Google Scholar 
    Hua, Z.-S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 1–11 (2018).ADS 

    Google Scholar 
    Takami, H., Arai, W., Takemoto, K., Uchiyama, I. & Taniguchi, T. Functional classification of uncultured ‘Candidatus Caldiarchaeum subterraneum’ using the Maple system. PLoS ONE 10, e0132994 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community. ISME J. 10, 210–224 (2016).CAS 
    PubMed 

    Google Scholar 
    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cole, J. K. et al. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 7, 718–729 (2013).CAS 
    PubMed 

    Google Scholar 
    Peacock, J. P. et al. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment. PLoS ONE 8, e59927 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kletzin, A. & Adams, M. W. W. Tungsten in biological systems. FEMS Microbiol. Rev. 18, 5–63 (1996).CAS 
    PubMed 

    Google Scholar 
    Hagedoorn, P. L. et al. Purification and characterization of the tungsten enzyme aldehyde:ferredoxin oxidoreductase from the hyperthermophilic denitrifier Pyrobaculum aerophilum. J. Biol. Inorg. Chem. 10, 259–269 (2005).CAS 
    PubMed 

    Google Scholar 
    de Vries, S. et al. Adaptation to a high-tungsten environment: Pyrobaculum aerophilum contains an active tungsten nitrate reductase. Biochemistry 49, 9911–9921 (2010).PubMed 

    Google Scholar 
    Bräsen, C., Esser, D., Rauch, B. & Siebers, B. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol. Mol. Biol. Rev. 78, 89–175 (2014).Kato, S. et al. Long-term cultivation and metagenomics reveal ecophysiology of previously uncultivated thermophiles involved in biogeochemical nitrogen cycle. Microbes Environ. 33, 107–110 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Costa, K. C. et al. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13, 447–459 (2009).CAS 
    PubMed 

    Google Scholar 
    Mukund, S. & Adams, M. W. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266, 14208–14216 (1991).CAS 
    PubMed 

    Google Scholar 
    Mukund, S. & Adams, M. W. W. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270, 8389–8392 (1995).CAS 
    PubMed 

    Google Scholar 
    Roy, R. et al. Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family. J. Bacteriol. 181, 1171–1180 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roy, R. & Adams, M. W. W. Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 184, 6952–6956 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bevers, L. E., Bol, E., Hagedoorn, P.-L. & Hagen, W. R. WOR5, a novel tungsten-containing aldehyde oxidoreductase from Pyrococcus furiosus with a broad substrate specificity. J. Bacteriol. 187, 7056–7061 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Habib, U. & Hoffman, M. Effect of molybdenum and tungsten on the reduction of nitrate in nitrate reductase, a DFT study. Chem. Cent. J. 11, 1–12 (2017).
    Google Scholar 
    Liao, R.-Z. Why is the molybdenum-substituted tungsten-dependent formaldehyde ferredoxin oxidoreductase not active? A quantum chemical study. J. Biol. Inorg. Chem. 18, 175–181 (2013).CAS 
    PubMed 

    Google Scholar 
    Qian, H.-X. & Liao, R.-Z. QM/MM study of tungsten-dependent benzoyl-coenzyme A reductase: rationalization of regioselectivity and predication of W vs Mo selectivity. Inorg. Chem. 57, 10667–10678 (2018).CAS 
    PubMed 

    Google Scholar 
    Liu, Y.-F., Liao, R.-Z., Ding, W.-J., Yu, J.-G. & Liu, R.-Z. Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex. JBIC 16, 745–752 (2011).CAS 
    PubMed 

    Google Scholar 
    Kerr, P. F. Tungsten-bearing manganese deposit at Golconda, Nevada. Geol. Soc. Am. Bull. 51, 1359–1390 (1940).ADS 
    CAS 

    Google Scholar 
    Mukund, S. & Adams, M. W. W. Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178, 163–167 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Debnar-Daumler, C., Seubert, A., Schmitt, G. & Heider, J. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism. J. Bacteriol. 196, 483–492 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Scott, I. M. et al. A new class of tungsten-containing oxidoreductase in Caldicellulosiruptor, a genus of plant biomass-degrading thermophilic bacteria. Appl. Environ. Microbiol. 81, 7339–7347 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, I. M. et al. The thermophilic biomass-degrading bacterium Caldicellulosiruptor bescii utilizes two enzymes to oxidize glyceraldehyde 3-phosphate during glycolysis. J. Biol. Chem. 294, 9995–10005 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, J. L., Rajagopalan, K. V., Mukund, S. & Adams, M. W. Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea. J. Biol. Chem. 268, 4848–4852 (1993).CAS 
    PubMed 

    Google Scholar 
    Chan, M. K., Mukund, S., Kletzin, A., Adams, M. W. & Rees, D. C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267, 1463–1469 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Glass, J. B. et al. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane‐oxidizing microbial consortia in sulphidic marine sediments. Environ. Microbiol. 16, 1592–1611 (2014).CAS 
    PubMed 

    Google Scholar 
    Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrens, S. et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74, 3143–3150. https://doi.org/10.1128/AEM.00191-08 (2008).Knapik, K., Becerra, M. & González-Siso, M.-I. Microbial diversity analysis and screening for novel xylanase enzymes from the sediment of the Lobios Hot Spring in Spain. Sci. Rep. 9, 11195 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roy, R., Dhawan, I. K., Johnson, M. K., Rees, D. C. & Adams, M. W. Aldehyde Ferredoxin Oxidoreductase. 266 (American Cancer Society, 2011).Sevcenco, A.-M. et al. The tungsten metallome of Pyrococcus furiosus. Metallomics 1, 395–402 (2009).CAS 
    PubMed 

    Google Scholar 
    Sakuraba, H. & Ohshima, T. Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway. J. Biosci. Bioeng. 93, 441–448 (2002).CAS 
    PubMed 

    Google Scholar 
    Ma, K., Hutchins, A., Sung, S.-J. S. & Adams, M. W. W. Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc. Natl Acad. Sci. USA 94, 9608–9613 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mai, X. & Adams, M. W. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J. Bacteriol. 178, 5890–5896 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, M. W. W. & Kletzin, A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic archaea. Adv. Prot. Chem. 48, 101–180 (1996).CAS 

    Google Scholar 
    Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Evolutionary primacy of sodium bioenergetics. Biol. Direct 3, 1–19 (2008).
    Google Scholar 
    Heider, J., Ma, K. & Adams, M. W. W. Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1. J. Bacteriol. 177, 4757–4764 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schut, G. J. et al. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol. Rev. 37, 182–203 (2013).CAS 
    PubMed 

    Google Scholar 
    Kuhns, M., Trifunović, D., Huber, H. & Müller, V. The Rnf complex is a Na+ coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima. Commun. Biol. 3, 1–10 (2020).
    Google Scholar 
    Sapra, R., Verhagen, M. F. J. M. & Adams, M. W. W. Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 182, 3423–3428 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapra, R., Bagramyan, K. & Adams, M. W. W. A simple energy-conserving system: Proton reduction coupled to proton translocation. Proc. Natl Acad. Sci. USA 100, 7545–7550 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schut, G. J. et al. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. Biochim. Biophys. Acta Bioenerg. 1857, 958–970 (2016).CAS 

    Google Scholar 
    Juszczak, A., Aono, S. & Adams, M. W. The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J. Biol. Chem. 266, 13834–13841 (1991).CAS 
    PubMed 

    Google Scholar 
    Selig, M., Xavier, K. B., Santos, H. & Schönheit, P. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch. Microbiol. 167, 217–232 (1997).CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. & Gladyshev, V. N. Molybdoproteomes and evolution of molybdenum utilization. J. Mol. Biol. 379, 881–899 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).Neubert, N., Nägler, T. F. & Böttcher, M. E. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36, 775–778 (2008).ADS 
    CAS 

    Google Scholar 
    Helz, G. R. et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–3642 (1996).ADS 
    CAS 

    Google Scholar 
    Shen, Y., Buick, R. & Canfield, D. E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dodsworth, J. A. et al. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. Int. J. Sys. Evol. Microbiol. 64, 2119–2127 (2014).CAS 

    Google Scholar 
    Hanada, S., Hiraishi, A., Shimada, K. & Matsuura, K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int. J. Sys. Evol. Microbiol. 45, 676–681 (1995).CAS 

    Google Scholar 
    Murugapiran, S. K. et al. Thermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling. Stand. Genom. Sci. 7, 449–468 (2013).CAS 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baker, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).Friel, A. D. et al. Microbiome shifts associated with the introduction of wild atlantic horseshoe crabs (Limulus polyphemus) into a touch-tank exhibit. Front. Microbiol. 11, 1398 (2020).Hamilton, T. L., Peters, J. W., Skidmore, M. L. & Boyd, E. S. Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J. 7, 1402–1412 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Courtois, S. et al. Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ. Microbiol. 3, 431–439 (2001).CAS 
    PubMed 

    Google Scholar 
    Pernthaler, A. & Pernthaler, J. In Protocols for Nucleic Acid Analysis by Nonradioactive Probes 353, 153–164 (Humana Press, 2007).Pett-Ridge, J. & Weber, P. K. In Microbial Systems Biology 91–136 (Humana, New York, NY, 2022). https://doi.org/10.1007/978-1-0716-1585-0_6Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).CAS 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 1–11 (2010).
    Google Scholar 
    Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).Aziz, R. K. et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9, 1–15 (2008).
    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).CAS 
    PubMed 

    Google Scholar 
    Kück, P. & Longo, G. C. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 1–8 (2014).
    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jacox, E., Chauve, C., Szöllősi, G. J., Ponty, Y. & Scornavacca, C. ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics 32, 2056–2058 (2016).CAS 
    PubMed 

    Google Scholar 
    Chevenet, F. et al. SylvX: a viewer for phylogenetic tree reconciliations. Bioinformatics 32, 608–610 (2016).CAS 
    PubMed 

    Google Scholar 
    Csűös, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).
    Google Scholar 
    Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, S., Skolnick, J. & Zhang, Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 5, 17 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Holm, L. & Rosenstrïm, P. I. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holm, L. Benchmarking fold detection by DaliLite v.5. Bioinformatics 35, 5326–5327 (2019).CAS 
    PubMed 

    Google Scholar 
    MacQueen, J. In Some Methods for Classification and Analysis of Multivariate Observations 1, 281–297 (1967).Ma, K. & Adams, M. W. W. Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J. Bacteriol. 176, 6509–6517 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Scientists warn deal to save biodiversity is in jeopardy

    A strawberry poison-dart frog (Oophaga pumilio) in Guatemala. Biodiversity is at risk as talks on a deal to protect it founder.Credit: Yuri Cortez/AFP via Getty

    Some conservation scientists are warning that a global deal to protect the environment is under threat after negotiations stalled during international talks in Nairobi last week. They are calling on global leaders to rescue the talks — and biodiversity — from the brink. Others are more hopeful that, although progress has been slow, a deal will be struck by the end of the year.Negotiators from around 200 countries that have signed up to the United Nations Convention on Biological Diversity (CBD) met in Nairobi from 21 to 26 June to thrash out key details of the deal, known as the post-2020 global biodiversity framework. But the talks made such little progress that many scientists are worried that nations will be unable to finalize the deal at the UN biodiversity summit in Montreal, Canada, in December. A key sticking point is how much funding rich nations will provide to low-income nations. Failure to agree on the framework at this summit — the 15th meeting of the Conference of the Parties (COP15) — will be devastating for the natural world, they say.“This is a huge missed opportunity and puts the framework in jeopardy,” says Brian O’Donnell, director of the Campaign for Nature in Washington DC, a partnership of private charities and conservation organizations advocating a deal to safeguard biodiversity.The framework consists of 4 broad goals, including reining in species extinction, and 21 targets — most of them quantitative — such as protecting at least 30% of the world’s land and seas. Without a deal, estimates say, one million plant and animal species could go extinct in the next few decades because of climate change, disease and human actions, among other triggers.Researchers were relieved when the CBD announced earlier this month that COP15 would take place in Montreal instead of Kunming, China, where lockdowns to quash SARS-CoV-2 infections could have prevented the meeting. The COVID-19 pandemic has already delayed in-person CBD meetings for two years, and threatened to derail the summit.Stalling tacticsSome conservation groups said that a few nations bore most of the responsibility for impeding progress. Marco Lambertini, head of conservation organization WWF International, based in Gland, Switzerland, referred in a statement to “a small number of countries, Brazil first and foremost, that are actively working to undermine the talks”.Others who were at the conference spoke on the condition of anonymity because parts of the negotiations are confidential. They say that Brazil asked for changes to the text simply to slow down the process, and argued against essential elements.Nature contacted representatives of Brazil for a response but did not receive a reply by the time of publication.Francis Ogwal, co-chair of the framework negotiations working group, acknowledged that the talks had not advanced as much as had been hoped. But he is buoyed by some headway gained on targets to improve access to nature in urban areas and to increase scientific and technological capacity in lower-income nations. Ogwal is hopeful that countries will iron out further differences at an extra meeting scheduled for just days before COP15.“There are still some big disagreements. We are not yet at the level we expected. But come December, we shall have a framework in good shape,” Ogwal told reporters at a press briefing on 26 June.Lack of leadershipBut scientists and conservation groups say political leadership is urgently needed to save the deal. In an open letter to UN secretary-general António Guterres and heads of state of CBD member nations, a group of eight organizations that support conservation and Indigenous people’s rights said that a lack of management is stalling the negotiations.“There is a notable absence of the high level political engagement, will and leadership to drive through compromise and to guide and inspire the commitments that are required,” the letter says.Some countries have restated that they back the biodiversity talks. On 26 June, UK Prime Minister Boris Johnson assured Canadian Prime Minister Justin Trudeau of his support for the December summit in Montreal. The two were speaking before the meeting of the G7 group of industrialized nations in Krün, Germany.In addition, some “hero” countries including Costa Rica and Columbia worked particularly hard in Nairobi to drive agreement, says O’Donnell.Speaking on condition of anonymity so as not to offend the CBD, others criticized the structure and organization of the Nairobi meeting, which they say didn’t help negations to move forwards. “The session facilitators were not able to shepherd negotiations towards consensus,” they say. Nature contacted the CBD for a response but did not hear back in time for publication.But despite the setbacks, some scientists are still hopeful that countries can strike a deal. “The negotiations are typically well-spirited. There is even a sense of collaboration arising,” says Juha Siikamäki, chief economist at the International Union for Conservation of Nature in Gland, who attended the Nairobi meeting.Elizabeth Mrema, executive secretary of the CBD, says countries will have to compromise. “Biodiversity is too important to fail,” she says. More

  • in

    Microbial community structure is stratified at the millimeter-scale across the soil–water interface

    McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems. 2003;6:301–12.CAS 
    Article 

    Google Scholar 
    Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol. 2010;44:15–23.CAS 
    Article 

    Google Scholar 
    Stegen JC, Lin XJ, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.CAS 
    Article 

    Google Scholar 
    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–32.CAS 
    Article 

    Google Scholar 
    Behrendt L, Larkum AWD, Trampe E, Norman A, Sorensen SJ, Kuhl M. Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J. 2012;6:1222–37.CAS 
    Article 

    Google Scholar 
    Becker KW, Elling FJ, Schroder JM, Lipp JS, Goldhammer T, Zabel M, et al. Isoprenoid quinones resolve the stratification of redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea. Appl Environ Microbiol. 2018;84:e02736–17.CAS 
    Article 

    Google Scholar 
    Locey KJ, Muscarella ME, Larsen ML, Bray SR, Jones SE, Lennon JT. Dormancy dampens the microbial distance-decay relationship. Phil Trans R Soc B. 2020;375:20190243.CAS 
    Article 

    Google Scholar 
    Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192–211.CAS 
    Article 

    Google Scholar 
    Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.Article 

    Google Scholar 
    Xue R, Zhao KK, Yu XL, Stirling E, Liu S, Ye SD, et al. Deciphering sample size effect on microbial biogeographic patterns and community assembly processes at centimeter scale. Soil Biol Biochem. 2021;156:108218.CAS 
    Article 

    Google Scholar 
    Morriss A, Meyer K, Bohannan B. Linking microbial communities to ecosystem functions: what we can learn from genotype-phenotype mapping in organisms. Phil Trans R Soc B. 2020;375:20190244.Article 

    Google Scholar 
    Armitage DW, Jones SE. How sample heterogeneity can obscure the signal of microbial interactions. ISME J. 2019;13:2639–46.Article 

    Google Scholar 
    Dini-Andreote F, Kowalchuk GA, Prosser JI, Raaijmakers JM. Towards meaningful scales in ecosystem microbiome research. Environ Microbiol. 2021;23:1–4.Article 

    Google Scholar 
    Meyerhof MS, Wilson JM, Dawson MN, Beman JM. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau. Environ Microbiol. 2016;18:4907–19.CAS 
    Article 

    Google Scholar 
    Zhou ZC, Meng H, Liu Y, Gu JD, Li M. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Front Microbiol. 2017;8:02148.Article 

    Google Scholar 
    Gutierrez-Preciado A, Saghai A, Moreira D, Zivanovic Y, Deschamps P, Lopez-Garcia P. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat Ecol Evol. 2018;2:1700–8.Article 

    Google Scholar 
    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    Article 

    Google Scholar 
    Murase J, Frenzel P. A methane-driven microbial food web in a wetland rice soil. Environ Microbiol. 2007;9:3025–34.CAS 
    Article 

    Google Scholar 
    Reim A, Lüke C, Krause S, Pratscher J, Frenzel P. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J. 2012;6:2128–39.CAS 
    Article 

    Google Scholar 
    Peiffer S, Kappler A, Haderlein SB, Schmidt C, Byrne JM, Kleindienst S, et al. A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nat Geosci. 2021;14:264–72.CAS 
    Article 

    Google Scholar  More

  • in

    American dog ticks along their expanding range edge in Ontario, Canada

    Sonenshine, D. E. Insects of Virginia No. 13. Ticks of Virginia (Acari: Metastigmata). Res. Div. Bull. 139, 1–44 (1979).
    Google Scholar 
    Lindquist, E. E. et al. A Handbook to the Ticks of Canada (Ixodida: Ixodidae, Argasidae) (Biological Survey of Canada, 2016).
    Google Scholar 
    Campbell, A. & MacKay, P. R. Distribution of the American dog tick, Dermacentor variabilis (Say), and its small-mammal hosts in relation to vegetation types in a study area in Nova Scotia. Can. J. Zool. 57, 1950–1959 (1979).CAS 
    PubMed 

    Google Scholar 
    Barker, I. K. et al. Distribution of the Lyme disease vector, Ixodes dammini (Acari: Ixodidae) and isolation of Borrelia burgdorferi in Ontario, Canada. J. Med. Entomol. 29, 1011–1022 (1992).CAS 
    PubMed 

    Google Scholar 
    Morshed, M. G., Scott, J. D., Fernando, K., Mann, R. B. & Durden, L. A. Lyme disease spirochete, Borrelia burgdorferi endemic at epicenter in Rondeau Provincial Park, Ontario. J. Med. Entomol. 40, 91–94 (2003).PubMed 

    Google Scholar 
    Nelder, M. P. et al. Population-based passive tick surveillance and detection of expanding foci of blacklegged ticks Ixodes scapularis and the Lyme disease agent Borrelia burgdorferi in Ontario, Canada. PLoS ONE 9, e105358 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clow, K. M. et al. Distribution of ticks and the risk of Lyme disease and other tick-borne pathogens of public health significance in Ontario, Canada. Vector Borne Zoonotic Dis. 16, 215–222 (2016).PubMed 

    Google Scholar 
    Smith, K. A. et al. Tick infestations of wildlife and companion animals in Ontario, Canada, with detection of human pathogens in Ixodes scapularis ticks. Ticks Tick Borne Dis. 10, 72–76 (2019).PubMed 

    Google Scholar 
    Scott, J. D. et al. Extensive distribution of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, in multiple tick species parasitizing avian and mammalian hosts across Canada. Healthcare 6, 131 (2018).PubMed Central 

    Google Scholar 
    James, A. M., Burdett, C., McCool, M. J., Fox, A. & Riggs, P. The geographic distribution and ecological preferences of the American dog tick, Dermacentor variabilis (Say), in the USA. Med. Vet. Entomol. 29, 178–188 (2015).CAS 
    PubMed 

    Google Scholar 
    Blouin, E. F., Kocan, A. A., Glenn, B. L., Kocan, K. M. & Hair, J. A. Transmission of Cytauxzoon felis Kier, 1979 from bobcats, Felis rufus (Schreber), to domestic cats by Dermacentor variabilis (Say). J. Wildl. Dis. 20, 241–242 (1984).CAS 
    PubMed 

    Google Scholar 
    Yunik, M. E., Galloway, T. D. & Lindsay, L. R. Active surveillance of Anaplasma marginale in populations of arthropod vectors (Acari: Ixodidae; Diptera: Tabanidae) during and after an outbreak of bovine anaplasmosis in southern Manitoba, Canada. Can. J. Vet. Res. 80, 171–174 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Trumpp, K. M., Parsley, A. L., Lewis, M. J., Camp, J. W. Jr. & Taylor, S. D. Presumptive tick paralysis in 2 American miniature horses in the United States. J. Vet. Intern. Med. 33, 1784–1788 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Léger, E., Vourc’h, G., Vial, L., Chevillon, C. & McCoy, K. D. Changing distributions of ticks: Causes and consequences. Exp. Appl. Acarol. 59, 219–244 (2013).PubMed 

    Google Scholar 
    Ogden, N. H., Mechai, S. & Margos, G. Changing geographic ranges of ticks and tick-borne pathogens: Drivers, mechanisms and consequences for pathogen diversity. Front. Cell. Infect. Microbiol. 3, 46 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Bouchard, C. et al. Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep. 45, 83–89 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Artsob, H. et al. Isolation of Francisella tularensis and Powassan virus from ticks (Acari: Ixodidae) in Ontario, Canada. J. Med. Entomol. 21, 165–168 (1984).CAS 
    PubMed 

    Google Scholar 
    Gregson, J. D. The Ixodoidea of Canada. Canadian Department of Agriculture Publication 930 (Canadian Department of Agriculture, 1956).
    Google Scholar 
    Scholten, T. Human tick infestations in Ontario: Findings at the Toronto Public Health Laboratory, 1967–1977. Can. J. Public Health 68, 494–496 (1977).CAS 
    PubMed 

    Google Scholar 
    Jarvis, D. The Acarina, with a host index to the species found in Ontario. 48th Ann. Rept. Ent. Soc. Ontario 1909 36, 82–109 (1910).Dergousoff, S. J., Galloway, T. D., Lindsay, L. R., Curry, P. S. & Chilton, N. B. Range expansion of Dermacentor variabilis and Dermacentor andersoni (Acari: Ixodidae) near their northern distributional limits. J. Med. Entomol. 50, 510–520 (2013).PubMed 

    Google Scholar 
    Ministry of Natural Resources and Forestry. Forest resources of Ontario 2016 (Ministry of Natural Resources and Forestry, 2018).Crins, W. J., Gray, P. A., Uhlig, P. W. C. & Wester, M. C. The ecosystems of Ontario, Part 1: Ecozones and ecoregions. (Ministry of Natural Resources and Forestry, 2009).Nelder, M. P. et al. Human pathogens associated with the blacklegged tick Ixodes scapularis: A systematic review. Parasit. Vectors 9, 265 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    University of Toronto. FSA land area file. https://mdl.library.utoronto.ca/collections/numeric-data/census-canada/2016/geo (2018).Lehane, A. et al. Reported county-level distribution of the American dog tick (Acari: Ixodidae) in the contiguous United States. J. Med. Entomol. 57, 131–155 (2020).PubMed 

    Google Scholar 
    Dennis, D. T., Nekomoto, T. S., Victor, J. C., Paul, W. S. & Piesman, J. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J. Med. Entomol. 35, 629–638 (1998).CAS 
    PubMed 

    Google Scholar 
    Springer, Y. P., Eisen, L., Beati, L., James, A. M. & Eisen, R. J. Spatial distribution of counties in the continental United States with records of occurrence of Amblyomma americanum (Ixodida: Ixodidae). J. Med. Entomol. 51, 342–351 (2014).PubMed 

    Google Scholar 
    Eisen, R. J., Eisen, L. & Beard, C. B. County-scale distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the continental United States. J. Med. Entomol. 53, 349–386 (2016).PubMed 

    Google Scholar 
    Clow, K. M. et al. Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada. PLoS ONE 12, e0189393 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rand, P. W. et al. Passive surveillance in Maine, an area emergent for tick-borne diseases. J. Med. Entomol. 44, 1118–1129 (2007).PubMed 

    Google Scholar 
    Baldwin, D., Desloges, J. & Band, L. Physical geography of Ontario in Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes in Ontario (eds. Perera, A. H., Euler, D. L. & Thompson, I. D.) 12–29 (UBC Press, 2000).Minigan, J. N., Hager, H. A., Peregrine, A. S. & Newman, J. A. Current and potential future distribution of the American dog tick (Dermacentor variabilis, Say) in North America. Ticks Tick Borne Dis. 9, 354–362 (2018).PubMed 

    Google Scholar 
    Wilkinson, P. R. The distribution of Dermacentor ticks in Canada in relation to bioclimatic zones. Can. J. Zool. 45, 517–537 (1967).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bishopp, F. C. & Trembley, T. H. Distribution and hosts of certain North American ticks. J. Parasitol. 31, 1–54 (1945).
    Google Scholar 
    Walker, E. D. et al. Geographic distribution of ticks (Acari: Ixodidae) in Michigan, with emphasis on Ixodes scapularis and Borrelia burgdorferi. J. Med. Entomol. 35, 872–882 (1998).CAS 
    PubMed 

    Google Scholar 
    Harlan, H. J. Observations of host seeking behaviour in American dog ticks, Dermacentor variabilis (Say) (Acari: Ixodidae) in Ohio. Med. Entomol. 4, 23–33 (2003).
    Google Scholar 
    Dodds, D. G., Martell, A. M. & Yescott, R. E. Ecology of the American dog tick, Dermacentor variabilis (Say) Nova Scotia. Can. J. Zool. 47, 171–181 (1969).
    Google Scholar 
    Judd, W. W. Recent records of ticks, Ixodes cookei Packard and Dermacentor variabilis (Say) (Acarina: Ixodoidea) in southwestern Ontario. Entomol. News 86, 157–159 (1975).CAS 
    PubMed 

    Google Scholar 
    Snetsinger, R., Jacobs, S. B., Kim, K. C. & Tavris, D. Extension of the range of Dermacentor variabilis (Acari: Ixodidae) in Pennsylvania. J. Med. Entomol. 30, 795–798 (1993).CAS 
    PubMed 

    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Sagurova, I. et al. Predicted northward expansion of the geographic range of the tick vector Amblyomma americanum in North America under future climate conditions. Environ. Health Perspect. 127, 107014 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mierzejewska, E. J., Estrada-Peña, A., Alsarraf, M., Kowalec, M. & Bajer, A. Mapping of Dermacentor reticulatus expansion in Poland in 2012–2014. Ticks Tick Borne Dis. 7, 94–106 (2016).PubMed 

    Google Scholar 
    Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gasmi, S. et al. Evidence for increasing densities and geographic ranges of tick species of public health significance other than Ixodes scapularis in Quebec, Canada. PLoS ONE 13, e0201924 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pak, D., Jacobs, S. B. & Sakamoto, J. M. A 117-year retrospective analysis of Pennsylvania tick community dynamics. Parasit. Vectors 12, 189 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Garvie, M. B., McKiel, J. A., Sonenshine, D. E. & Campbell, A. Seasonal dynamics of American dog tick, Dermacentor variabilis (Say), populations in southwestern Nova Scotia. Can. J. Zool. 56, 28–39 (1978).CAS 
    PubMed 

    Google Scholar 
    Burg, J. G. Seasonal activity and spatial distribution of host-seeking adults of the tick Dermacentor variabilis. Med. Vet. Entomol. 15, 413–421 (2001).CAS 
    PubMed 

    Google Scholar 
    Newhouse, V. F. Variations in population density, movement, and rickettsial infection rates in a local population of Dermacentor variabilis (Acarina: Ixodidae) ticks in the Piedmont of Georgia. Environ. Entomol. 12, 1737–1746 (1983).
    Google Scholar 
    Mackenzie, A. M. R., Rossier, E., Polley, J. R. & Corber, S. J. Rocky Mountain spotted fever—Ontario. Can. Dis. Wkly. Rep. 5, 130–132 (1979).
    Google Scholar 
    Gary, A. T., Webb, J. A., Hegarty, B. C. & Breitschwerdt, E. B. The low seroprevalence of tick-transmitted agents of disease in dogs from southern Ontario and Quebec. Can. Vet. J. 47, 1194–1200 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Walker, W. J. & Moore, C. A. Tularemia: Experience in the Hamilton area. Can. Med. Assoc. J. 105, 390–396 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ontario Agency for Health Protection and Promotion (Public Health Ontario). 2019 tularemia data at a glance. https://www.publichealthontario.ca/en/diseases-and-conditions/infectious-diseases/vector-borne-zoonotic-diseases/tularemia (2020).Wood, H. & Artsob, H. Spotted fever group rickettsiae: a brief review and a Canadian perspective. Zoonoses Public Health 59(Suppl 2), 65–79 (2012).PubMed 

    Google Scholar 
    Wood, H., Dillon, L., Patel, S. N. & Ralevski, F. Prevalence of Rickettsia species in Dermacentor variabilis ticks from Ontario, Canada. Ticks Tick Borne Dis. 7, 1044–1046 (2016).PubMed 

    Google Scholar 
    Kaufman, E. L. et al. Range-wide genetic analysis of Dermacentor variabilis and its Francisella-like endosymbionts demonstrates phylogeographic concordance between both taxa. Parasit. Vectors 11, 306 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Statistics Canada. Census profile. 2016 Census. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E (2017).Statistics Canada. Land use, census of agriculture historical data. Table: 32–10–0153–01. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E (2022). More

  • in

    Milk microbiomes of three great ape species vary among host species and over time

    Kim, S. Y. & Yi, D. Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 63(8), 301 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Power, M. L. & Schulkin, J. Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Appl. Transl. Genomics. 2, 55–63 (2013).CAS 
    Article 

    Google Scholar 
    Pannaraj, P. S. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171(7), 647–654 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lyons, K. E., Ryan, C. A., Dempsey, E. M., Ross, R. P. & Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 12(4), 1039 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Fehr, K. et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: The CHILD cohort study. Cell Host Microbe. 28(2), 285–297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moossavi, S. & Azad, M. B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes. 12(1), 1667722. https://doi.org/10.1080/19490976.2019.1667722 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Groer, M. W., Morgan, K. H., Louis-Jacques, A. & Miller, E. M. A scoping review of research on the human milk microbiome. J. Hum. Lact. 36(4), 628–643 (2020).PubMed 
    Article 

    Google Scholar 
    Gopalakrishna, K. P. & Hand, T. W. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients 12(3), 823 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Ayoub Moubareck, C., Lootah, M., Tahlak, M. & Venema, K. Profiles of human milk oligosaccharides and their relations to the milk microbiota of breastfeeding mothers in Dubai. Nutrients 12(6), 1727 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, W. A. & Iyengar, R. S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res. 77(1), 220–228 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petrullo, L. et al. The early life microbiota mediates maternal effects on offspring growth in a nonhuman primate. Iscience. 25(3), 103948 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen, W. D., Boness, D. J. & Oftedal, O. T. Mass transfer from mother to pup and subsequent mass loss by the weaned pup in the hooded seal, Cystophora cristata. Can. J. Zool. 65(1), 1–8 (1987).Article 

    Google Scholar 
    Smith, T. M., Austin, C., Hinde, K., Vogel, E. R. & Arora, M. Cyclical nursing patterns in wild orangutans. Sci. Adv. 3(5), e1601517 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Park, Y. W. & Haenlein, G. F. W. Handbook of Milk of Non-Bovine Mammals (Wiley, 2008).
    Google Scholar 
    Oftedal, O. T. Use of maternal reserves as a lactation strategy in large mammals. Proc. Nutr. Soc. 59(1), 99–106 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinde, K. & Milligan, L. A. Primate milk: Proximate mechanisms and ultimate perspectives. Evol. Anthropol. Issues News Rev. 20(1), 9–23 (2011).Article 

    Google Scholar 
    Osthoff, G., Hugo, A., De Wit, M., Nguyen, T. P. M. & Seier, J. Milk composition of captive vervet monkey (Chlorocebus pygerythrus) and rhesus macaque (Macaca mulatta) with observations on gorilla (Gorilla gorilla gorilla) and white handed gibbon (Hylobates lar). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 152(4), 332–338 (2009).CAS 
    Article 

    Google Scholar 
    Power, M. L., Oftedal, O. T. & Tardif, S. D. Does the milk of callitrichid monkeys differ from that of larger anthropoids?. Am. J. Primatol. Off. J. Am. Soc. Primatol. 56(2), 117–127 (2002).
    Google Scholar 
    Power, M. L. et al. Patterns of milk macronutrients and bioactive molecules across lactation in a western lowland gorilla (Gorilla gorilla) and a Sumatran orangutan (Pongo abelii). Am. J. Primatol. 79(3), e22609 (2017).Article 
    CAS 

    Google Scholar 
    Garcia, M., Power, M. L. & Moyes, K. M. Immunoglobulin A and nutrients in milk from great apes throughout lactation. Am. J. Primatol. 79(3), e22614 (2017).Article 
    CAS 

    Google Scholar 
    Muletz-Wolz, C. R. et al. Diversity and temporal dynamics of primate milk microbiomes. Am. J. Primatol. 81(10–11), e22994 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, J. M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation?. Adv. Nutr. 5(6), 779–784 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    LaTuga MS, Stuebe A, Seed PC. A review of the source and function of microbiota in breast milk. In Seminars in Reproductive Medicine, Vol 32, 68–73 (Thieme Medical Publishers, 2014).Chen, W. et al. Lactation stage-dependency of the sow milk microbiota. Front. Microbiol. 9, 945 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McInnis, E. A., Kalanetra, K. M., Mills, D. A. & Maga, E. A. Analysis of raw goat milk microbiota: Impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol. 46, 121–131 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gonzalez, E. et al. Distinct changes occur in the human breast milk microbiome between early and established lactation in breastfeeding Guatemalan mothers. Front. Microbiol. 12, 194 (2021).Article 

    Google Scholar 
    Ge, Y. et al. The maternal milk microbiome in mammals of different types and its potential role in the neonatal gut microbiota composition. Animals 11(12), 3349 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kordy, K. et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE 15(1), e0219633 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 73(7), 426–437 (2015).PubMed 
    Article 

    Google Scholar 
    Fernández, L. et al. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 69(1), 1–10 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cabrera-Rubio, R. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96(3), 544–551 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez-Gallego, C., Garcia-Mantrana, I., Salminen, S. & Collado, M. C. The human milk microbiome and factors influencing its composition and activity. In Seminars in Fetal and Neonatal Medicine. Vol 21, 400–405 (Elsevier, 2016).Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. & Martínez-Costa, C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34(8), 599–605 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wan, Y. et al. Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes. 11(5), 1438–1449 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6(6), e21313 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petrullo, L., Jorgensen, M. J., Snyder-Mackler, N. & Lu, A. Composition and stability of the vervet monkey milk microbiome. Am. J. Primatol. 81(10–11), e22982 (2019).PubMed 

    Google Scholar 
    Mittermeier, R. A. et al. Primates in peril: The world’s 25 most endangered primates 2008–2010. Primate Conserv. 24(1), 1–57 (2009).Article 

    Google Scholar 
    Williams, J. E. et al. Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J. Nutr. 147(9), 1739–1748 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, H. et al. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front. Microbiol. 7, 1619 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Keady, M. et al. Clinical health issues, reproductive hormones, and metabolic hormones associated with gut microbiome structure in African and Asian elephants. Anim. Microbiome. 3, 1–19 (2021).Article 
    CAS 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com/ (2020).Bolyen, E. et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science. PeerJ Preprints (2018).Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13(7), 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(D1), D633–D642 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 6(1), 1–14 (2018).Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beule, L. & Karlovsky, P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): Application to microbial communities. PeerJ 8, e9593 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. https://cran.r-project.org/package=vegan (2020).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Kumbhare, S. V., Patangia, D. V., Patil, R. H., Shouche, Y. S. & Patil, N. P. Factors influencing the gut microbiome in children: From infancy to childhood. J. Biosci. 44(2), 1–19 (2019).Article 

    Google Scholar 
    Amato, K. R. et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 180(3), 717–733 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mulligan, M. E. et al. Methicillin-resistant Staphylococcus aureus: A consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am. J. Med. 94(3), 313–328 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruegg, P. L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 100(12), 10381–10397 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarridge, J. E. III. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17(4), 840–862 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martín, V., Mediano, P., Del Campo, R., Rodríguez, J. M. & Marín, M. Streptococcal diversity of human milk and comparison of different methods for the taxonomic identification of streptococci. J. Hum. Lact. 32(4), NP84–NP94 (2016).PubMed 
    Article 

    Google Scholar 
    Ghebremedhin, B., Layer, F., Konig, W. & Konig, B. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J. Clin. Microbiol. 46(3), 1019–1025 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Q. et al. Quantification of human oral and fecal Streptococcus parasanguinis by use of quantitative real-time PCR targeting the groEL gene. Front. Microbiol. 10, 2910 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Plows, J. F. et al. Longitudinal changes in human milk oligosaccharides (HMOs) over the course of 24 months of lactation. J. Nutr. 151(4), 876–882 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boehm, G. & Stahl, B. Oligosaccharides from milk. J. Nutr. 137(3), 847S-849S (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Leeuwen, S. S. et al. Goat milk oligosaccharides: Their diversity, quantity, and functional properties in comparison to human milk oligosaccharides. J. Agric. Food Chem. 68(47), 13469–13485 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tao, N. et al. Evolutionary glycomics: Characterization of milk oligosaccharides in primates. J. Proteome Res. 10(4), 1548–1557 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Z.-T., Chen, C. & Newburg, D. S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23(11), 1281–1292 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolotin, A. et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22(12), 1554–1558 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwab, C. & Gänzle, M. Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. FEMS Microbiol. Lett. 315(2), 141–148 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Marcobal, A. et al. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58(9), 5334–5340 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uriot, O. et al. Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate?. J. Funct. Foods. 37, 74–89 (2017).CAS 
    Article 

    Google Scholar 
    Duar, R. M., Henrick, B. M., Casaburi, G. & Frese, S. A. Integrating the ecosystem services framework to define dysbiosis of the breastfed infant gut: The role of B. infantis and human milk oligosaccharides. Front. Nutr. 7, 33 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Singh, R. P., Niharika, J., Kondepudi, K. K., Bishnoi, M. & Tingirikari, J. M. R. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system. Food Res. Int. 151, 110884. https://doi.org/10.1016/j.foodres.2021.110884 (2022).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ximenez, C. & Torres, J. Development of microbiota in infants and its role in maturation of gut mucosa and immune system. Arch. Med. Res. 48(8), 666–680. https://doi.org/10.1016/j.arcmed.2017.11.007 (2017).Article 
    PubMed 

    Google Scholar 
    Meehan, C. L. et al. Social networks, cooperative breeding, and the human milk microbiome. Am. J. Hum. Biol. 30(4), e23131 (2018).PubMed 
    Article 

    Google Scholar 
    Bornbusch, S. L. et al. Stable and transient structural variation in lemur vaginal, labial and axillary microbiomes: Patterns by species, body site, ovarian hormones and forest access. FEMS Microbiol. Ecol. 96(6), fiaa090 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bornbusch, S. L. & Drea, C. M. Antibiotic resistance genes in lemur gut and soil microbiota along a gradient of anthropogenic disturbance. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.704070 (2021).Article 

    Google Scholar 
    Grieneisen, L. E. et al. Genes, geology and germs: Gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B. 2019(286), 20190431 (1901).
    Google Scholar 
    Ellison, S. et al. The influence of habitat and phylogeny on the skin microbiome of amphibians in Guatemala and Mexico. Microb. Ecol. 78(1), 257–267 (2019).PubMed 
    Article 

    Google Scholar 
    Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21(11), 2617–2627 (2012).PubMed 
    Article 

    Google Scholar  More

  • in

    Elevated temperature and carbon dioxide levels alter growth rates and shell composition in the fluted giant clam, Tridacna squamosa

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Hill, R. W. et al. Acid secretion by the boring organ of the burrowing giant clam, Tridacna crocea. Biol. Lett. 14, 20180047 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 132–142 (2009).Article 

    Google Scholar 
    Killam, D., Thomas, R., Al-Najjar, T. & Clapham, M. Interspecific and intrashell stable isotope variation among the Red Sea giant clams. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2019GC008669 (2020).Article 

    Google Scholar 
    Duprey, N., Galipaud, J.-C., Cabioch, G. & Lazareth, C. E. Isotopic records from archeological giant clams reveal a variable climate during the southwestern Pacific colonization ca. 3.0ka BP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 404, 97–108 (2014).Article 

    Google Scholar 
    Batenburg, S. J. et al. Interannual climate variability in the Miocene: High resolution trace element and stable isotope ratios in giant clams. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306, 75–81 (2011).Article 

    Google Scholar 
    Ayling, B. F., Chappell, J., Gagan, M. K. & McCulloch, M. T. ENSO variability during MIS 11 (424–374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea. Earth Planet. Sci. Lett. 431, 236–246 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Yan, H., Shao, D., Wang, Y. & Sun, L. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy. Geochim. Cosmochim. Acta 112, 52–65 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Warter, V. & Müller, W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis—A novel methodological approach towards improved sclerochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 362–375 (2017).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, W. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Wei, G., Sun, M., Li, X. & Nie, B. Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162, 59–74 (2000).Article 

    Google Scholar 
    Brahmi, C. et al. Effects of elevated temperature and pCO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima. Conserv. Physiol. 9, 041 (2021).Article 
    CAS 

    Google Scholar 
    Watson, S.-A. & Neo, M. L. Conserving threatened species during rapid environmental change: Using biological responses to inform management strategies of giant clams. Conserv. Physiol. 9, 082 (2021).
    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Leggat, W., Buck, B. H., Grice, A. & Yellowlees, D. The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant Cell Environ. 26, 1951–1961 (2003).CAS 
    Article 

    Google Scholar 
    Zhou, Z., Liu, Z., Wang, L., Luo, J. & Li, H. Oxidative stress, apoptosis activation and symbiosis disruption in giant clam Tridacna crocea under high temperature. Fish Shellfish Immunol. 84, 451–457 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubousquet, V. et al. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biol. Open 5, 1400–1407 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blidberg, E., Elfwing, T., Plantman, P. & Tedengren, M. Water temperature influences on physiological behaviour in three species of giant clams (Tridacnidae). In Proc. 9th International Coral Reef Symposium 561–565 (2000).Junchompoo, C., Sinrapasan, N., Penpain, C. & Patsorn, P. Changing seawater temperature effects on giant clams bleaching, Mannai Island, Rayong Province, Thailand. In Proc. Design Symposium on Conservation of Ecosystem. https://doi.org/10.13140/2.1.1906.5600 (2012).Watson, S.-A., Southgate, P. C., Miller, G. M., Moorhead, J. A. & Knauer, J. Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa. Molluscan Res. 32, 177–180 (2012).
    Google Scholar 
    Watson, S.-A. Giant clams and rising CO2: Light may ameliorate effects of ocean acidification on a solar-powered animal. PLoS ONE 10, 1–18 (2015).CAS 

    Google Scholar 
    Kurihara, H. & Shikota, T. Impact of increased seawater pCO2 on the host and symbiotic algae of juvenile giant clam Tridacna crocea. Galaxea J. Coral Reef Stud. 20, 19–28 (2018).Article 

    Google Scholar 
    Alves Monteiro, H. J. et al. Molecular mechanisms of acclimation to long-term elevated temperature exposure in marine symbioses. Glob. Change Biol. 26, 1271–1284 (2020).ADS 
    Article 

    Google Scholar 
    Collins, M. et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013—The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge University Press, 2013).
    Google Scholar 
    Poloczanska, E. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407 (2007).
    Google Scholar 
    Ganachaud, A. S. et al. Observed and expected changes to the tropical Pacific Ocean. In Vulnerability Trop. Pac. Fish. Aquac. Clim. Change Secr. Pac. Community Noumea New Caledonia 101–187 (2011).Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).ADS 
    Article 

    Google Scholar 
    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pierrot, D., Lewis, E. & Wallace, D. MS Excel program developed for CO2 system calculations. In ORNLCDIAC-105a Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab. US Dep. Energy Oak Ridge Tenn. Vol. 10 (2006).Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).ADS 
    CAS 
    Article 

    Google Scholar 
    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Dickson, A. G. Standard potential of the reaction: AgCl (s) + 12H2 (g) = Ag (s) + HCl (aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).CAS 
    Article 

    Google Scholar 
    Wolf, R. E. & Adams, M. Multi-elemental Analysis of Aqueous Geochemical Samples by Quadrupole Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 38. http://pubs.er.usgs.gov/publication/ofr20151010, https://doi.org/10.3133/ofr20151010 (2015).Schrag, D. P. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14, 97–102 (1999).ADS 
    Article 

    Google Scholar 
    Howell, D. C. Permutation Tests for Factorial ANOVA Designs (2009).Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (2020).Navarro, D. Learning Statistics with R: A Tutorial for Psychology Students and other beginners (Version 0.5) (University of Adelaide, 2015).
    Google Scholar 
    Zhao, L., Schöne, B. R. & Mertz-Kraus, R. Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 386–394 (2017).Article 

    Google Scholar 
    Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 89, 248–277 (1913).ADS 
    CAS 

    Google Scholar 
    Bragg, W. L. The structure of aragonite. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 105, 16–39 (1924).ADS 
    CAS 

    Google Scholar 
    Killam, D., Al-Najjar, T. & Clapham, M. Giant clam growth in the Gulf of Aqaba is accelerated compared to fossil populations. Proc. R. Soc. B Biol. Sci. 288, 20210991 (2021).CAS 
    Article 

    Google Scholar 
    Waters, C. G. Biological Responses of Juvenile Tridacna maxima (Mollusca: Bivalvia) to Increased pCO2 and Ocean Acidification (The Evergreen State College, 2008).
    Google Scholar 
    Toonen, R. J., Nakayama, T., Ogawa, T., Rossiter, A. & Delbeek, J. C. Growth of cultured giant clams (Tridacna spp.) in low pH, high-nutrient seawater: Species-specific effects of substrate and supplemental feeding under acidification. J. Mar. Biol. Assoc. U. K. 92, 731–740 (2012).CAS 
    Article 

    Google Scholar 
    Hart, A. M., Bell, J. D. & Foyle, T. P. Growth and survival of the giant clams, Tridacna derasa, T. maxima and T. crocea, at village farms in the Solomon Islands. Aquaculture 165, 203–220 (1998).Article 

    Google Scholar 
    Van Wynsberge, S. et al. Growth, survival and reproduction of the giant clam Tridacna maxima (Röding 1798, Bivalvia) in two contrasting lagoons in French Polynesia. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    Lucas, J. S., Nash, W. J., Crawford, C. M. & Braley, R. D. Environmental influences on growth and survival during the ocean-nursery rearing of giant clams, Tridacna gigas (L.). Aquaculture 80, 45–61 (1989).Article 

    Google Scholar 
    Schwartzmann, C. et al. In situ giant clam growth rate behavior in relation to temperature: A one-year coupled study of high-frequency noninvasive valvometry and sclerochronology. Limnol. Oceanogr. 56, 1940–1951 (2011).ADS 
    Article 

    Google Scholar 
    Syazili, A., Syafiuddin, N. A. & Jompa, J. Effect of ocean acidification and temperature on growth, survival, and shell performance of fluted giant clams (Tridacna squamosa). IOP Conf. Ser. Earth Environ. Sci. 473, 012141 (2020).Article 

    Google Scholar 
    Li, J. et al. Assessment of the juvenile vulnerability of symbiont-bearing giant clams to ocean acidification. Sci. Total Environ. 812, 152265 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, S. et al. Cloning and expression of a pivotal calcium metabolism regulator: Calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 138, 235–243 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Li, C., Lv, Z., Zhang, Z. & Qiu, L. A calcification-related calmodulin-like protein in the oyster Crassostrea gigas mediates the enhanced calcium deposition induced by CO2 exposure. Sci. Total Environ. 833, 155114 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rees, T., Fitt, W. & Yellowlees, D. The haemolymph and its temporal relationship with zooxanthellae metabolism in the giant clam symbiosis [Conference paper]. In ACIAR Proc.-Aust. Cent. Int. Agric. Res. Aust. (1993).Leggat, W., Rees, T. A. V. & Yellowlees, D. Meeting the photosynthetic demand for inorganic carbon in an alga-invertebrate association: Preferential use of CO2 by symbionts in the giant clam Tridacna gigas. Proc. Biol. Sci. 267, 523–529 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ip, Y. K. et al. Molecular characterization, light-dependent expression, and cellular localization of a host vacuolar-type H+-ATPase (VHA) subunit A in the giant clam, Tridacna squamosa, indicate the involvement of the host VHA in the uptake of inorganic carbon and. Gene 659, 137–148 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armstrong, E. J., Roa, J. N., Stillman, J. H. & Tresguerres, M. Symbiont photosynthesis in giant clams is promoted by V-type H+-ATPase from host cells. J. Exp. Biol. https://doi.org/10.1242/jeb.177220 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Adams, A. L., Needham, E. W. & Knauer, J. The effect of shade on water quality parameters and survival and growth of juvenile fluted giant clams, Tridacna squamosa, cultured in a land-based growth trial. Aquac. Int. 21, 1311–1324 (2013).CAS 
    Article 

    Google Scholar 
    Rossbach, S., Saderne, V., Anton, A. & Duarte, C. M. Light-dependent calcification in Red Sea giant clam Tridacna maxima. Biogeosciences 16, 2635–2650 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Ip, Y. K. et al. The whitish inner mantle of the giant clam, Tridacna squamosa, expresses an apical plasma membrane Ca2+-ATPase (PMCA) which displays light-dependent gene and protein expressions. Front. Physiol. 8, 781 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berner, R. A. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 39, 489–504 (1975).ADS 
    CAS 
    Article 

    Google Scholar 
    Alibert, C. et al. Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim. Cosmochim. Acta 67, 231–246 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    McCulloch, M. et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421, 727–730 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinclair, D. & Mcculloch, M. Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: Evidence for limited Ba supply to rivers? Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 155–174 (2004).Article 

    Google Scholar 
    Fleitmann, D. et al. East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophys. Res. Lett. 34, L04401 (2007).ADS 
    Article 

    Google Scholar 
    Prouty, N. G., Field, M. E., Stock, J. D., Jupiter, S. D. & McCulloch, M. Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka’i, Hawai’i over the last several decades. Mar. Pollut. Bull. 60, 1822–1835 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fallon, S. J., McCulloch, M. T., van Woesik, R. & Sinclair, D. J. Corals at their latitudinal limits: Laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet. Sci. Lett. 172, 221–238 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Reuer, M. K., Boyle, E. A. & Cole, J. E. A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth Planet. Sci. Lett. 210, 437–452 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Montaggioni, L. F., Le Cornec, F., Corrège, T. & Cabioch, G. Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 237, 436–455 (2006).Article 

    Google Scholar 
    Ourbak, T. et al. A high-resolution investigation of temperature, salinity, and upwelling activity proxies in corals: Activity proxies in corals. Geochem. Geophys. Geosyst. 7, 1. https://doi.org/10.1029/2005GC001064 (2006).CAS 
    Article 

    Google Scholar 
    Alibert, C. & Kinsley, L. A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? J. Geophys. Res. 113, C04008 (2008).ADS 

    Google Scholar 
    Alibert, C. & Kinsley, L. A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 2. A window into variability of the new ireland coastal undercurrent. J. Geophys. Res. 113, C06006 (2008).ADS 

    Google Scholar 
    Agbaje, O. B. A. et al. Architecture of crossed-lamellar bivalve shells: The southern giant clam (Tridacna derasa, Röding, 1798). R. Soc. Open Sci. 4, 170622 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, M. S. et al. Deciphering mollusc shell production: The roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biol. Rev. https://doi.org/10.1111/brv.12640 (2020).Article 
    PubMed 

    Google Scholar 
    Wilkerson, F. P. & Trench, R. K. Uptake of dissolved inorganic nitrogen by the symbiotic clam Tridacna gigas and the coral Acropora sp.. Mar. Biol. 93, 237–246 (1986).CAS 
    Article 

    Google Scholar 
    Summons, R. E., Boag, T. S. & Osmond, C. B. The effect of ammonium on photosynthesis and the pathway of ammonium assimilation in Gymnodinium microadriaticum in vitro and in symbiosis with tridacnid clams and corals. Proc. R. Soc. Lond. B Biol. Sci. 227, 147–159 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Onate, J. & Naguit, M. A preliminary study on the effect of increased nitrate concentration on the growth of giant clams Hippopus hippopus. In Cult. Giant Clams Bivalvia Tridacnidae Aust. Cent. Int. Agric. Res. Canberra 57–61 (1989).Hastie, L. C., Watson, T. C., Isamu, T. & Heslinga, G. A. Effect of nutrient enrichment on Tridacna derasa seed: Dissolved inorganic nitrogen increases growth rate. Aquaculture 106, 41–49 (1992).CAS 
    Article 

    Google Scholar 
    Belda, C. A., Lucas, J. S. & Yellowlees, D. Nutrient limitation in the giant clam-zooxanthellae symbiosis: Effects of nutrient supplements on growth of the symbiotic partners. Mar. Biol. 117, 655–664 (1993).Article 

    Google Scholar 
    Belda-Baillie, C., Leggat, W. & Yellowlees, D. Growth and metabolic responses of the giant clam-zooxanthellae symbiosis in a reef-fertilisation experiment. Mar. Ecol. Prog. Ser. 170, 131–141 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Calosi, P. et al. Multiple physiological responses to multiple environmental challenges: An individual approach. Integr. Comp. Biol. 53, 660–670 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tanner, R. L. & Dowd, W. W. Inter-individual physiological variation in responses to environmental variation and environmental change: Integrating across traits and time. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 238, 110577 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guscelli, E., Spicer, J. I. & Calosi, P. The importance of inter-individual variation in predicting species’ responses to global change drivers. Ecol. Evol. 9, 4327–4339 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Telesca, L. et al. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Glob. Change Biol. 25, 4179–4193 (2019).ADS 
    Article 

    Google Scholar 
    Yan, H., Shao, D., Wang, Y. & Sun, L. Sr/Ca differences within and among three Tridacnidae species from the South China Sea: Implication for paleoclimate reconstruction. Chem. Geol. 390, 22–31 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Warter, V., Mueller, W., Wesselingh, F. P., Todd, J. A. & Renema, W. Late Miocene seasonal to subdecadal climate variability in the Indo-West Pacific (East Kalimantan, Indonesia) preserved in giant clams. Palaios 30, 66–82 (2015).ADS 
    Article 

    Google Scholar 
    Gannon, M. E., Pérez-Huerta, A., Aharon, P. & Street, S. C. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas. Coral Reefs 36, 503–517 (2017).ADS 
    Article 

    Google Scholar 
    Zhao, L. et al. A review of transgenerational effects of ocean acidification on marine bivalves and their implications for sclerochronology. Estuar. Coast. Shelf Sci. 235, 106620 (2020).CAS 
    Article 

    Google Scholar  More