More stories

  • in

    FutureStreams, a global dataset of future streamflow and water temperature

    Variable names, units and timestampsStreamflow is runoff routed along a drainage network, in m3/s, also known as discharge, which is the variable name used in the files. Water temperature is given in units of Kelvin. Filenames include the variable name, GCM, scenario (hist for historical, or one of the RCPs) and the time period (years). The timestamps in the files reflect the last date of the period over which the output was averaged, so the first timestamp of the weekly averages is January 7th 1976.Ecologically-relevant variablesThe ecologically-relevant streamflow and water temperature variables derived from the weekly values are established based on a combination of classification frameworks, i.e., indicators of hydrologic alteration19, terrestrial bioclimatic variables in the worldclim dataset20 as well as the CMCC-BioClimInd dataset21, aggregated accordingly: 1976–2005 (1979–2005 for E2O); 2021–2040; 2041–2060; 2061–2080; 2081–2099. The scripts used to compute these derived variables can be found under Code Availability.For files containing information on timing (see Tables 2–3), note that the counting is 0-indexed. So week numbers run from 0 through 51, months from 0 to 11. For timing of quarters, 0 is DJF, 1 is MAM, 2 is JJA, 3 is SON. The week number (for WT-wmin, WT-wmax, Q-wmin, Q-wmax) is determined as the mode, i.e. the most frequent week number within a period. For each period (20, 25 or 30 years) we looked for the week number in which the minimum or maximum water temperature or discharge occurs. If that happens most often in week X, that week number is stored. It can however occur that a certain minimum/maximum temperature or discharge occurs equally often in multiple weeks – then we assign a missing value.The variables Q-bfi and Q-vi are calculated according to Pastor et al.30. The baseflow index is an indicator of the importance of stored sources; a high index indicates that flow is mostly sustained by stored sources such as groundwater.Scripts used to create the derived variables are available through the FutureStreams GitHub repository (see Code Availability below).Multi-model set-upWe provide future scenarios for four RCPs (representative concentration pathways; 2.6, 4.5, 6.0 and 8.5 W/m2 in 2100) for the five ISI-MIP GCMs. Projections differ across RCPs due to differences in greenhouse gas forcing, and across GCMs due to differences in e.g model parameterization and resolution. Generally the spread across GCMs is larger than that across RCPs7,31. When interested in the general effect of climate change, users are advised to use the mean or median across the GCMs, rather than selecting a specific GCM. When interested in the spread across GCMs, users can explore or represent that in various ways, such as color intensity indicating agreement amongst models5, bar or violin plots7 etc.Warming levelsTo facilitate assessments and comparisons of streamflow and water temperature at a certain air temperature rise rather than specific years5,7, we provide a table with the years in which each GCM/RCP reaches the global mean temperature rises 1.5°, 2.0°, 3.2°, 4.5° compared to pre-industrial temperatures (as used by Barbarossa et al.7) with our scripts (see Code Availability). These years represent the central value of a 30-year running mean, so users should evaluate the 30-year mean (or other statistic) of discharge or water temperature centered around the year that a certain warming level is reached, which is specific to each RCP and GCM combination. For instance, if 1.5° warming is reached in 2040, the 30-year period 2025–2054 should be considered.GCMs, bias-correction and reanalysis dataThe majority of our simulations are forced with meteorological time series from GCMs. Those are bias-corrected27 before being applied to impact models such as PCR-GLOBWB, which corrects for systematic deviations of the simulated historical data from observations. For instance, for temperature the offset in average temperature in the historical GCM simulation with respect to observations is subtracted from temperatures in all scenarios of that GCM. The bias-corrected GCM forcing should thus well represent climatology, but not necessarily timing of actual events such as floods and droughts. Reanalysis data is created by assimilating observations into weather models, to obtain consistent and globally complete time series. The output of the simulation forced with meteorological time series from the (E2O) reanalysis data should therefore reflect not only the average streamflow and water temperatures, but also timing of actual events such as droughts.If users want to check for themselves how the GCM-forced historical simulations discussed here deviate from reanalysis-forced simulations, they can use the output from the E2O-forced simulation provided here, the monthly output linked to Wanders et al.13 (see also Code Availability) or the daily output of those simulations which are available from Niko Wanders upon request. The latter are forced with ERA-40/ERA-Interim reanalysis data.Notes of cautionBeware of temperature in grid cells where streamflow is low, which can cause temperatures to become unrealistically high due to strong fluctuations in the water level. The computational timesteps currently implemented in DynWat are not sufficiently small to provide stable solutions for these conditions. For some lakes and reservoirs we observe a similar problem when lakes expand or shrink as a result of water levels changes. These locations can be masked and we can assume that water temperature follows the air temperature for these very shallow water layers. A file with locations of lakes and reservoirs is provided in the data repository (under indicators/mask) so users can mask these if desired.Furthermore, we provide masks for each GCM-RCP-period which users can apply to the derived variables if desired. These masks are based on Q-mean and WT-mean and thresholds of 10 m3/s and 350 K, respectively. They can be found in the data repository (i.e. indicators/waterTemperature/WT-mask). The scripts used to create these masks are provided through the FutureStreams GitHub repository (see Code Availability below), which can be used to create masks with different thresholds. These scripts are called mask_unrealistic_values.py and maskFunctions.py.We also provide scripts to mask out unrealistic values directly in the weekly Q and WT files, these scripts are mask_unrealistic_values_weekly.py and maskFunctions_weekly.py. In all these scripts the threshold for discharge is set to 10 m3/s and for water temperature to 350 K, but users can change those to their preferred values. The threshold value will be included in the resulting output file name.Furthermore, we encountered spin-up issues in some pixels for the future RCP simulations. Instead of following the temperatures from the end of the historical simulation, temperatures drop at the beginning of the future simulation, so the first few weeks of 2006 temperatures can be unrealistically low. In Fig. 2, output of the year 2007 is used for the year 2006 .Fig. 2Water temperature [°C] anomaly. The maps show the difference between the mean water temperature over the period 2070–2099 (RCP8p5) and the historical period 1975–2005. The map shows values only for rivers with streamflow greater than 50 m3/s and the width of the rivers is scaled based on the streamflow values for clarity of representation. Insets below the map show the original gridded resolution at 5 arcminute for cells with streamflow values greater than 10 m3/s. The bottom insets show water temperature time series sampled at specific grid-cell locations (white crosses in the insets) for the Amazon (−57.2083° longitude, −2.625° latitude), Danube (20.125° lon, 45.2083° lat) and Ganges (88.375° lon, 24.375° lat). Time series are represented for each GCM and RCP available within FutureStreams; thin lines represent weekly values, thick lines represent 10 year rolling means.Full size imageFig. 3Streamflow [m3/s] anomaly. The maps show the difference between the log10 transformed mean streamflow over the period 2070–2099 (RCP8p5) and the log10 transformed mean streamflow over historical period 1975–2005. The map shows values only for rivers with streamflow values greater than 50 m3/s and the width of the rivers is scaled based on the streamflow values for clarity of representation. Insets below the map show the original gridded resolution at 5 arcminute for cells with streamflow values greater than 10 m3/s. The bottom insets show water temperature time series sampled at specific grid-cell locations (white crosses in the insets) for the Amazon (−57.2083° longitude, −2.625° latitude), Danube (20.125° lon, 45.2083° lat) and Ganges (88.375° lon, 24.375° lat). Time series are represented for each GCM and RCP available within FutureStreams; thin lines represent weekly values and thick lines represent 10 year rolling means.Full size imageFig. 4Anomalies for selected ecologically relevant derived variables (bioclimatic indicators) for the same areas in the Amazone (left), Danube (middle) and Ganges (right) basins as used in Figs. 2 and 3. Differences are shown between RCP8.5 2080–2099 and 1976–2005. WT-cq is the water temperature of the coldest quarter, WT-range is temperature range, Q-max is maximum streamflow, Q-dm is streamflow of the driest month (see also Tables 2 and 3 below). For streamflow we show the difference between log10-transformed flow.Full size image More

  • in

    Monthly spatial dynamics of the Bay of Biscay hake-sole-Norway lobster fishery: an ISIS-Fish database

    We took as a starting point the hake – sole – Norway lobster Bay of Biscay ISIS-Fish database used for COSELMAR project16,20 (see http://isis-fish.org/download.html section “Bay of Biscay scenario dataset”, Database V0 in Fig. 1). This database was built using 2010 data, and was not calibrated, as it was designed for a geo-foresight study. Since our aim was to describe the system over a decade and simulate realistic dynamics close to available observations to assess management measures, we needed to update the parametrisation and calibrate the database. We took 2010–2012 as the calibration period, and 2013–2020 as the simulation period (grey arrow Fig. 1). The database has a monthly temporal resolution (constrained by the ISIS-Fish framework) and the spatial scale was set to match ICES statistical rectangles (0.5° latitude by 1° longitude rectangles, defined by the International Council for the Exploration of the Sea (ICES) https://www.ices.dk/data/maps/Pages/ICES-statistical-rectangles.aspx), consistent with available knowledge and data.In this section, we firstly describe all the data sources used to update and calibrate the database. Then, for each main component of an ISIS-Fish database – i.e. populations, exploitation and management – we describe this paper’s database parameters and assumptions. We finally describe the calibration procedure (inspired by previous work21,22), of which some results are shown in the Technical Validation section. We summarized this workflow in Fig. 1.Data sourcesData sources, estimates, and literature (including grey literature) were needed to update and calibrate the model. They are marked in Fig. 1 with salmon (data sources and estimates) and mustard (literature) blocks:

    SACROIS23: French landings and effort logbook declarations for 2010 were made available at the log-event*commercial category*ICES statistical rectangle*population scale. It was used to design exploitation features of the database, as well as populations spatial structure.

    LANGOLF survey: 2006–2010 LANGOLF surveys observations for 2006–2010 were made available for Norway lobster. They were used to work on Norway lobster abundance per length class and sex.

    Intercatch: catch observations for 2010–2020 in the Bay of Biscay for hake, at the quarter-métier group scale, and catch observations per class for sole on 2010–2012, and 2010 Norway lobster catch observations per sex and length class24, used to describe the inter-annual effort dynamics, to calibrate and validate the model.

    Estimates of hake abundance per size class in 2010, and hake quarterly estimates of recruitment on 2010–2012 from a northern hake spatial stock assessment model21, used to inform hake biology assumptions (named Other 1 in Fig. 1).

    ICES WGBIE24 2010 estimates of abundance per class (sole and Norway lobster), to inform their abundance at the initial time step; 2010–2012 yearly fishing mortality estimates per age class (sole) to calibrate the database (named Other 2 in Fig. 1).

    Other population, exploitation and management assumptions were informed with scientific literature25 and grey literature26,27 (Literature block in Fig. 1).

    Management assumptions were informed with legal texts2,4,28,29,30,31,32,33,34 and reported quota values in working group reports24.

    About populationsThis section describes for each species the assumptions and parameters values, except for accessibility, which has been calibrated, as described in section Calibration procedure. For all assumptions and values, more details are provided in Supplementary Information’s section 2.2.HakeThe stock size structure was defined with 1 cm size bins for [1;40[cm individuals, 2 cm for [40;100[cm individuals, and 10 cm for [100;130+] cm individuals35. Areas of presence were defined based on 2010 SACROIS French landings data per commercial category and statistical rectangle23, leading to the definition of a presence, a recruitment, an interim recruitment and a spawning area25 (see Supplementary Information’s section 2.2 and Figure S1). These areas allow for the description of intra-Bay of Biscay migrations related to spawning and recruitment processes: mature individuals aggregate at the beginning of the year on the shelf break to spawn, and then disperse on the shelf36,37,38,39,40 (at the beginning of April and July in the model). Also, from age 1 (around 20 cm), individuals in recruitment zone spread in interim recruitment zone, to model a diffusion towards areas neighbouring the nursery area, at the beginning of each time step (see Supplementary Information’s section 2.2 and Table S11). Maturity-at-size and weight-at-length relationships were the same functions as used by ICES working group35,41. Natural mortality was fixed at 0.5, basing on preliminar runs, instead of the commonly used 0.442. Recruitment values were defined prior to the simulation for 2010–2020 using available estimates on the 2010–2015 time series21,27. Deterministic estimates from these sources were allocated to the recruitment area in the Bay of Biscay and the beginning of each month in January-September on the whole time series, of which values are provided in the Supplementary Information’s section 2.2 and Table S3. Growth is modelled through monthly growth increments5,25. However, given the different widths of size bins in the implemented size structure, a correction was provided to values in the transition matrix to eliminate artifacts when growing to a size bin wider than the size bin of origin, as detailed in Supplementary Information’s section 2.2. Abundance at the initial step in each zone was estimated from Bay of Biscay abundance estimates for 201021. Mature individuals over 20 cm were allocated to the spawning area, all individuals strictly shorter than 20 cm were allocated to the recruitment area (as they were assumed to be less than 1 year old), and remaining individuals were allocated to the interim recruitment area. None were allocated to the presence area, in which individuals will go later in the time series, after disaggregating from the spawning area25 (Table S13).SoleThe stock is age structured, with 7 classes going from ages 2 to 7+43 (Table S2). No seasonal variations were implemented. Only a single presence zone was defined (see Supplementary Information’s section 2.2 and Figure S1), as in preliminary runs defining more presence areas for sole did not yield more knowledge in this study. We implemented ICES working group values for natural mortality, weight-at-age (Table S1) and maturity-at-age43. Recruitment occurs at the beginning of each year, individuals being recruited at age 2 (ages 0–1 were not modelled; Table S4). We implemented ICES working group estimates27 for abundance at initial time step (Table S14).Norway lobsterThe stock has a sex-size structure, with 1 mixed recruitment class at 0 cm; 33 length classes for males at 2 carapace length mm intervals, from [10;12[to [72;74[carapace length mm; 23 length classes for females at 2 carapace length mm intervals, from [10;12[to [52;54[carapace length mm. A single presence area was defined: the Great Mudbank21 (see Supplementary Information’s section 2.2 and Figure S1). Several seasonal processes occur for this stock, impacting recruitment, accessibility and growth: 1/ January, begins with the annual recruitment. Females are inside their burrows, less accessible; 2/ February-March females are inside their burrows, less accessible; 3/ April: Spring moulting, females are more accessible; 4–5/ May-August females are more accessible; 6/ September, females are inside their burrows, less accessible; 7/ October: Autumn moulting only for immature females and all males, females are inside their burrows, less accessible; 8/ November-December, females are inside their burrows, less accessible44. We implemented ICES working group values for natural mortality, weight-at-class and maturity-at-class45,46,47. Growth occurs twice a year, when moulting in April and October, and is modelled with growth increments. Recruitment occurs at the beginning of each year, modelled with a Beverton-Holt relationship26, and was assumed to have the same spatial distribution as spawning stock biomass. Abundance at initial step was derived from LANGOLF survey observations and ICES WGBIE estimates25,26 (Table S16).About exploitationThe fishing exploitation structure (fleets, strategies, métiers and gears) were derived following a classification method on SACROIS 2010 landings and effort data13,23 from French fleets, and taken from a TECTAC project (https://cordis.europa.eu/project/id/Q5RS-2002-01291) database for Spanish trawlers. More details on their definition are provided in Supplementary Information’s section 2.3, Tables S5–S9 and S20–S21 and Figure S3. Spanish longliners and gillnetters fleets exploitation was described based on catch (observations from Intercatch48) rather than effort.Hake selectivity and discarding functions (one for each gear) were taken from estimates of a spatial hake stock assessment model21. Parameters values and formulæ are provided in Supplementary Information’s section 2.3 and Tables S6-S7. On top of this, inter-annual fleet dynamics factors were included in equation (21) of ISIS-Fish documentation8 in order to account for observed catch temporal variations. These factors are therefore multiplicative parameters of the target factor of each species for each métier. They are computed using observed catch27 and differ according to the period and targeted species:

    over 2010–2016, it is a ratio of observed catch in weight per year over catch observations for 2010: for hake, one per métier *season*year (left(frac{ObservedCatc{h}_{metier,season,year}}{ObservedCatc{h}_{metier,season,2010}}right)), for sole, one per métier *year (left(frac{ObservedCatc{h}_{metier,year}}{ObservedCatc{h}_{metier,2010}}right)), and for Norway lobster, one per year (identical for each métier catching Norway lobster) (left(frac{ObservedCatc{h}_{year}}{ObservedCatc{h}_{2010}}right));

    over 2017–2020: at the time of writing these assumptions, more recent data was not available, and ratios were deduced from trends on 2014–2016. A linear model was fitted on ratios deduced earlier on 2014–2016. If a significant trend was identified (hake: whitefish trawlers quarters 2 and 4, longliners and gillnetters seasons 2–3; sole and Norway lobster: all métiers), the slope was used to deduce 2017–2020 ratios (the slope was halved for hake whitefish trawlers and sole and Norway lobster values to avoid unrealistic high values of effort). Otherwise, 2016 ratios were used.

    All values are provided in Supplementary Information’s section A.2 Tables S22–S24, and the final values of target factors are derived from the Calibration procedure.About managementWe implemented a set of management rules close to what is currently implemented in the Bay of Biscay.All stocks are managed by TALs (Total Allowable Landings) until 2015 and then by TACs (Total Allowable Catch), except for Norway lobster, managed by TALs on the whole time series, not being under the landings obligation. To favour a better parametrisation, allowing for more reliable dynamics on the following years of the time series, no TALs were implemented during the calibration period (2010–2012; Fig. 1). These regulations were implemented from 2013 using historically TALs and TACs values24.Landings of the three stocks are also constrained by a Minimum Conservation Reference Size regulation that was implemented for all stocks using values currently enforced in the studied fishery28. Likewise, from 2016, the Landings Obligation was implemented, with de minimis exemptions for hake and sole, depending on the year and the gear used to fish them2,31,32,33,34. See Supplementary Information’s sections 2.4 and A.3, Figure S2 and Table S10 for further details on these restrictions.In response to the above management rules, a fishers’ behaviour algorithm has been developed to describe fishermen adaptation. Some métiers may be forbidden, depending on some conditions – the catch quota has been reached, the landings obligation is enforced – but also some values – the proportion of discarded catch, and also catch on previous years. Therefore fishermen change métiers within their strategy métiers set through a re-allocation of fishing effort to the latter set. This re-allocation aims to avoid quota overshooting. Further details about this algorithm are provided in the Supplementary Information’s sections 2.4 and A.3 and Figure S2.Calibration procedureThe model has been calibrated using two parameters (population accessibility and fishing target factor) involved in the catchability process (equation (21) in ISIS-Fish documentation8). The objective of the calibration is to reproduce the dynamics of catch over 2010–2012 at the species*métiers group scale, for each year or quarter depending on available data’s granularity. Calibration is sequentially performed: accessibility parameters for each population were estimated first followed by the target factors. The estimation of each parameter set (parameter type * population) combination was separated, and values were estimated jointly within each parameter set. To account for the specificity of each population model dynamics (global age-based for sole, spatial and size-based for hake, spatial, sex and size-based for Norway lobster), an objective function is defined for each population to calibrate their accessibility. More details on objective functions and procedures are provided in Supplementary Information’s section 2.5, as well as estimated values in Tables S17–S19.Hake accessibilityThe calibration for hake accessibility is based on a procedure developed for a former version of the database25. One parameter was estimated per quarter, all values being equal across length classes. The model outputs were fitted to hake catch observations in weight in the Bay of Biscay in 2010–2012 per length class.Sole accessibilityOne parameter was estimated per age class. The model outputs were fitted to WGBIE fishing mortality per age class for sole27 in 2010–2012.Norway lobster accessibilityOne parameter was calibrated per sex and length class. The model outputs were fitted to catch in numbers per length class and sex in 2010 per quarter provided by WGBIE.About target factorsTarget factors drive how the effort is distributed between populations, métiers and season*year combinations. They were split in 3 components: a fixed component derived from the SACROIS effort dataset analysis (Tables S25–S27), another fixed component driving inter-annual variations of fishing effort (Tables S22–S24), derived from catch observations, and finally an estimated component (Tables S28–S30), allowing to tune the model’s dynamics to observed catch. This section focuses on the estimation of the latter.Hake target factors20 parameters were defined, for each combination of the 5 groups of métiers (longliners, gillnetters, whitefish trawler (coastal), whitefish trawler (not coastal), Norway lobster trawler, see definition Table S8) and 4 quarters. We fitted the model’s outputs to the same data and with the same objective function as for hake’s accessibilities estimation.Sole target factors1 estimated component per group of métiers (gillnetters, Norway lobster trawlers and whitefish trawlers) and quarter. We fitted the model’s outputs to sole catch in weight on 2010–2012 for each métier and quarter.Norway lobster target factors1 estimated component per group of métiers (Norway lobster trawlers and whitefish trawlers). We fitted the model’s outputs to monthly Norway lobster landings data per length and sex class for 2010.Base simulationThe base simulation ran from January 2010 to December 2020 inclusive, with a monthly time step, using the database and parameters values described in this document. Several outputs of interest may be explored after a run: catch (discards and landings), as done in several figures in this paper, but also biomass (total biomass or mature biomass), fishing mortality values, or effort, all at a fine spatio-temporal scale. More

  • in

    Genetic structure of American bullfrog populations in Brazil

    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20(3), 5451. https://doi.org/10.1016/j.tree.2005.01.003 (2005).Article 

    Google Scholar 
    Duenas, M. A., Hemming, D. J., Roberts, A. & Diaz-Soltero, H. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Glob. Ecol. Conserv. p. e01476 (2021).Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7(1), 1–12 (2020).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592(7855), 571–576 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregory, R. & Long, G. Using structured decision making to help implement a precautionary approach to endangered species management. Risk Anal. 29(4), 518–532. https://doi.org/10.1111/j.1539-6924.2008.01182.x (2009).Article 
    PubMed 

    Google Scholar 
    Berroneau, M., Detaint, M. & Coi, C. Bilan du programme de mise en place d’une stratégie d’éradication de la grenouille taureau Lithobates catesbeianus (Shaw 1802) en Aquitaine (2003–2007) et perspectives. Bull. Soc. Herpétol. France 127, 35–45 (2008).
    Google Scholar 
    Orchard, S. A. Removal of the American bullfrog, Rana (Lithobates) catesbeiana, from a pond and a lake on Vancouver Island, British Columbia, Canada. Island invasives: eradication and management. IUCN (Gland, Switzerland), 1–542 (2011).Robertson, B. C. & Gemmell, N. J. Defining eradication units to control invasive pests. J. Appl. Ecol. 41(6), 1042–1048 (2004).Article 

    Google Scholar 
    Shaw, G. General Zoology or Systematic Natural History Vol. 3, 106–108 (Society for the study of Amphibians and Reptiles, 1802).
    Google Scholar 
    Howard, R. D. Sexual dimorphism in bullfrogs. Ecology 62(2), 303–310 (1981).Article 

    Google Scholar 
    Kaefer, Í. L., Boelter, R. A. & Cechin, S. Z. Reproductive biology of the invasive bullfrog Lithobates catesbeianus in southern Brazil. In Annales Zoologici Fennici 435–444 (2007).Bissattini, A. M. & Vignoli, L. Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish. Biol. Invasions 19(9), 2633–2646 (2017).Article 

    Google Scholar 
    Boelter, R. A. & Cechin, S. Z. Impacto da dieta de rã-touro (Lithobates catesbeianus – Anura, Ranidae) sobre a fauna nativa: estudo de caso na região de Agudo – RS – Brasil 1. Nat. Conserv. 5(2), 45–53 (2007).
    Google Scholar 
    Govindarajulu, P., Price, W. S. & Anholt, B. R. Introduced bullfrogs (Rana catesbeiana) in western Canada: has their ecology diverged?. J. Herpetol. 40(2), 249–261 (2006).Article 

    Google Scholar 
    McCoy, C. J. Diet of bullfrogs (Rana catesbeiana) in Central Oklahoma farm ponds. In Proceedings of the Oklahoma Academy of Sciences 44–45 (1967).Teixeira, E., Silva, D., Pinto, O., Filho, R. & Feio, R. N. Predation of native anurans by invasive bullfrogs in Southeastern Brazil: spatial variation and effect of microhabitat use by prey. S. Am. J. Herpetol. 6(1), 1–11. https://doi.org/10.2994/057.006.0101 (2011).Article 

    Google Scholar 
    Wu, Z., Li, Y., Wang, Y. & Adams, M. J. Diet of introduced Bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island China. J. Herpetol. 39(4), 668–675 (2005).Article 

    Google Scholar 
    Howard, R. D. The influence of male-defended oviposition sites on early embryo mortality in bullfrogs. Ecol. Soc. Am. 59(4), 789–798 (1978).
    Google Scholar 
    Van Wilgen, N. J., Gillespie, M. S., Richardson, D. M. & Measey, J. A taxonomically and geographically constrained information base limits non-native reptile and amphibian risk assessment: a systematic review. PeerJ 6, 5850 (2018).Article 

    Google Scholar 
    Sales, L., Rebouças, R. & Toledo, L. F. Native range climate is insufficient to predict anuran invasive potential. Biol. Invasions 23, 2635–2647 (2021).Article 

    Google Scholar 
    Kumschick, S. et al. How repeatable is the Environmental Impact Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments of amphibians. Ecol. Evol. 7(8), 2661–2670 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kupferberg, S. J. Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78(6), 1736–1751 (1997).Article 

    Google Scholar 
    Toledo, L. F., Ribeiro, R. S. & Haddad, C. F. Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J. Zool. 271(2), 170–177 (2007).Article 

    Google Scholar 
    Daszak, P. et al. Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14, 201–208 (2004).
    Google Scholar 
    Gervasi, S. S. et al. Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 10(2), 166–171 (2013).PubMed 
    Article 

    Google Scholar 
    Urbina, J., Bredeweg, E. M., Garcia, T. S. & Blaustein, A. R. Host–pathogen dynamics among the invasive American bullfrog (Lithobates catesbeianus) and chytrid fungus (Batrachochytrium dendrobatidis). Hydrobiologia 817(1), 267–277 (2018).CAS 
    Article 

    Google Scholar 
    Schloegel, L. M. et al. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim. Conserv. 13, 53–61. https://doi.org/10.1111/j.1469-1795.2009.00307.x (2010).Article 

    Google Scholar 
    Ohanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360(6389), 621–627 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Adams, A. J. et al. Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere 8(3), 01740 (2017).Article 

    Google Scholar 
    Santos, R. C. et al. High prevalence and low intensity of infection by Batrachochytrium dendrobatidis in rainforest bullfrog populations in southern Brazil. Herpetol. Conserv. Biol. 15(1), 118–130 (2020).
    Google Scholar 
    Ribeiro, L. P. et al. Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Sci. Rep. 9, 13422 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Both, C. & Grant, T. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Let. 8(5), 1–3. https://doi.org/10.1098/rsbl.2012.0412 (2012).Article 

    Google Scholar 
    Medeiros, C. I., Both, C., Grant, T. & Hartz, S. M. Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol. Invasions 19(2), 675–690 (2017).Article 

    Google Scholar 
    Ferrante, L., Kaefer, I. L. & Baccaro, F. B. Aliens in the backyard: Did the American bullfrog conquer the habitat of native frogs in the semi-deciduous Atlantic Forest?. Herpetol. J. 30, 93–98 (2020).Article 

    Google Scholar 
    da Silva Silveira, S. & Guimarães, M. The enemy within: consequences of the invasive bullfrog on native anuran populations. Biol. Invasions 23(2), 373–378 (2021).Article 

    Google Scholar 
    Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).Article 

    Google Scholar 
    Ribeiro, L. P. & Toledo, L. F. An overview of the Brazilian frog farming. Aquaculture 548, 737623 (2022).Article 

    Google Scholar 
    Cunha, E. R. & Delariva, R. L. Introdução da rã-touro, Lithobates catesbeianus (SHAW, 1802): uma revisão. Saúde e Biologia 4(2), 34–46 (2009).
    Google Scholar 
    Ferreira, C. M., Pimenta, A. G. C. & Neto, J. S. P. Introdução à ranicultura. Boletim Técnico Do Instituto de Pesca 33, 15 (2002).
    Google Scholar 
    Fontanello, D. & Ferreira, C. M. Histórico da ranicultura nacional. Instituto de Pesca de São Paulo (2007).Both, C. et al. Widespread occurrence of the American bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil. S. Am. J. Herpetol. 6(2), 127–135 (2011).Article 

    Google Scholar 
    Bai, C., Ke, Z., Consuegra, S., Liu, X. & Yiming, L. The role of founder effects on the genetic structure of the invasive bullfrog (Lithobates catesbeianaus) in China. Biol. Invasions 14, 1785–1796. https://doi.org/10.1007/s10530-012-0189-x (2012).Article 

    Google Scholar 
    Liu, X. & Li, Y. Aquaculture enclosures relate to the establishment of feral populations of introduced species. PLoS ONE https://doi.org/10.1371/journal.pone.0006199 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos-pereira, M. & Rocha, C. F. D. Invasive bullfrog Lithobates catesbeianus (Anura: Ranidae) in the Paraná state, Southern Brazil : a summary of the species spread. Revista Brasileira De Zoociências 16, 141–147 (2015).
    Google Scholar 
    Moreira, C. R., Henriques, M. B. & Ferreira, C. M. Frog farms as proposed in agribusiness aquaculture: economic viability based in feed conversion. Pesca Inst. Bull. 39(4), 389–399 (2018).
    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Miaud, C. Prediction and validation of the potential global distribution of a problematic alien invasive species – The American bullfrog. Divers. Distrib. 13(4), 476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x (2007).Article 

    Google Scholar 
    Funk, W. C., Garcia, T. S., Cortina, G. A. & Hill, R. H. Population genetics of introduced bullfrogs, Rana (Lithobates) catesbeianus, in the Willamette Valley, Oregon, USA. Biol. Invasions 13, 651–658. https://doi.org/10.1007/s10530-010-9855-z (2011).Article 

    Google Scholar 
    Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R. & Sherwin, W. B. Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol. Ecol. 18, 1560–1573. https://doi.org/10.1111/j.1365-294X.2009.04132.x (2009).Article 
    PubMed 

    Google Scholar 
    Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22(1), 25–33. https://doi.org/10.1016/j.tree.2006.08.009 (2007).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Bonin, A. & Miaud, C. Population genetics reveals origin and number of founders in a biological invasion. Mol. Ecol. 17, 773–782. https://doi.org/10.1111/j.1365-294X.2007.03622.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamath, P. L., Sepulveda, A. J. & Layhee, M. Genetic reconstruction of a bullfrog invasion to elucidate vectors of introduction and secondary spread. Ecol. Evol. 6(15), 5221–5233. https://doi.org/10.1002/ece3.2278 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411 (2020).Article 
    CAS 

    Google Scholar 
    Austin, J. D. Genetic evidence for female-biased dispersal in the bullfrog, Rana catesbeiana (Ranidae). Mol. Ecol. 12(11), 3165–3172. https://doi.org/10.1046/j.1365-294X.2003.01948.x (2003).Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17(18), 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x (2008).Article 
    PubMed 

    Google Scholar 
    Winter, D. J. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12(6), 1158–1160. https://doi.org/10.1111/j.1755-0998.2012.03174.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gerlach, G. Calculations of population differentiation based on GST and D: forget GST but not all of statistics!. Mol. Ecol. 19(18), 3845–3852 (2010).PubMed 
    Article 

    Google Scholar 
    Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple statistical significance testing. Stat. Med. 9, 811–818 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hauser, S., Wakeland, K. & Leberg, P. Inconsistent use of multiple comparison corrections in studies of population genetic structure: Are some type I errors more tolerable than others?. Mol. Ecol. Resour. 19(1), 144–148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Team R Core. R: A language and environment for statistical computing. R Foundation for Statistical Computing URL. Vienna, Austria. Retrieved from https://www.r-project.org/. (2017).Dyer, R. J. gstudio: Analyses and functions related to the spatial analysis of genetic marker data. R Package Version (2014).Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8(1), 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A., vonHoldt, B. & M.,. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Moritz, C., Schneider, C. J. & Wake, D. B. Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst. Biol. 41(3), 273–291 (1992).Article 

    Google Scholar 
    Goebel, A. M., Donnelly, J. M. & Atz, M. E. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochromebin bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol. Phylogenet. Evol. 11(1), 163–199 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labonne, J. et al. From the bare minimum: genetics and selection in populations founded by only a few parents. Evol. Ecol. Res. 17(1), 21–34 (2016).
    Google Scholar 
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99(6), 616–623 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Consuegra, S., Phillips, N., Gajardo, G. & Leaniz, C. G. Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native rainbow trout. Evol. Appl. 4, 660–671. https://doi.org/10.1111/j.1752-4571.2011.00189.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peacock, M. M., Beard, K. H., O’Neill, E. M., Kirchoff, V. S. & Peters, M. B. Strong founder effects and low genetic diversity in introduced populations of Coqui frogs. Mol. Ecol. 18(17), 3603–3615. https://doi.org/10.1111/j.1365-294X.2009.04308.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Austin, J. D., Lougheed, S. C. & Boag, P. T. Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae). Mol. Phylogenet. Evol. 32, 799–816. https://doi.org/10.1016/j.ympev.2004.03.006 (2004).Article 
    PubMed 

    Google Scholar 
    Selechnik, D. et al. Increased adaptive variation despite reduced overall genetic diversity in a rapidly adapting invader. Front. Genet. 10, 1221 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Utilisation of Oxford Nanopore sequencing to generate six complete gastropod mitochondrial genomes as part of a biodiversity curriculum

    Rasmussen, R. S. & Morrissey, M. T. Application of DNA-based methods to identify fish and seafood substitution on the commercial market. Compr. Rev. Food Sci. Food Saf. 8, 118–154 (2009).CAS 
    Article 

    Google Scholar 
    Chiu, M.-C., Huang, C.-G., Wu, W.-J. & Shiao, S.-F. A new horsehair worm, Chordodes formosanus sp. N. (Nematomorpha, Gordiida) from Hierodula mantids of Taiwan and Japan with redescription of a closely related species, Chordodes japonensis. ZooKeys 160, 1–22 (2011).Article 

    Google Scholar 
    Robins, J. H. et al. Phylogenetic species identification in Rattus highlights rapid radiation and morphological similarity of new Guinean species. PLoS One 9, e98002. https://doi.org/10.1371/journal.pone.0098002 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sutherland, W. J., Roy, D. B. & Amano, T. An agenda for the future of biological recording for ecological monitoring and citizen science. Biol. J. Linn. Soc. 115, 779–784 (2015).Article 

    Google Scholar 
    Ho, J. K. I., Puniamoorthy, J., Srivathsan, A. & Meier, R. MinION sequencing of seafood in Singapore reveals creatively labelled flatfishes, confused roe, pig DNA in squid balls, and phantom crustaceans. Food Control 112, 107144. https://doi.org/10.1016/j.foodcont.2020.107144 (2020).CAS 
    Article 

    Google Scholar 
    Elson, J. & Lightowlers, R. Mitochondrial DNA clonality in the dock: Can surveillance swing the case?. Trends Genet. 22, 603–607 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bernt, M., Braband, A., Schierwater, B. & Stadler, P. F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogenet. Evol. 69, 328–338 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blaxter, M. L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 669–679 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waugh, J. DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29, 188–197 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grandjean, F. et al. Rapid recovery of nuclear and mitochondrial genes by genome skimming from Northern Hemisphere freshwater crayfish. Zool. Scr. 46, 718–728 (2017).Article 

    Google Scholar 
    Trevisan, B., Alcantara, D. M. C., Machado, D. J., Marques, F. P. L. & Lahr, D. J. G. Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ 7, e7543. https://doi.org/10.7717/peerj.7543 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franco-Sierra, N. D. & Díaz-Nieto, J. F. Rapid mitochondrial genome sequencing based on Oxford Nanopore Sequencing and a proxy for vertebrate species identification. Ecol. Evol. 10, 3544–3560 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baeza, J. A. Yes, we can use it: a formal test on the accuracy of low-pass nanopore long-read sequencing for mitophylogenomics and barcoding research using the Caribbean spiny lobster Panulirus argus. BMC Genomics 21, 882. https://doi.org/10.1186/s12864-020-07292-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, A. R., Robertson, A. L., Batzli, J., Harris, M. & Miller, S. Aligning goals, assessments, and activities: An approach to teaching PCR and gel electrophoresis. CBE Life Sci. Educ. 7, 96–106 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhorne-Pollet, S., Barrey, E. & Pollet, N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 21, 785. https://doi.org/10.1186/s12864-020-07183-9 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239. https://doi.org/10.1186/s13059-016-1103-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006. https://doi.org/10.1093/gigascience/giz006 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srivathsan, A. et al. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 217. https://doi.org/10.1186/s12915-021-01141-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prost, S. et al. Education in the genomics era: Generating high-quality genome assemblies in university courses. GigaScience 9, giaa058. https://doi.org/10.1093/gigascience/giaa058 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salazar, A. N. et al. An educational guide for nanopore sequencing in the classroom. PLoS Comput. Biol. 16, e1007314. https://doi.org/10.1371/journal.pcbi.1007314 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watsa, M., Erkenswick, G. A., Pomerantz, A. & Prost, S. Portable sequencing as a teaching tool in conservation and biodiversity research. PLoS Biol. 18, e3000667. https://doi.org/10.1371/journal.pbio.3000667 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egeter, B. et al. Speeding up the detection of invasive bivalve species using environmental DNA: A Nanopore and Illumina sequencing comparison. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13610 (2022).Article 
    PubMed 

    Google Scholar 
    Oxford Nanopore. Flongle. https://nanoporetech.com/products/flongle. Last accessed 05 May 2022 (2022).Oxford Nanopore. MinION. https://nanoporetech.com/products/minion. Last accessed 05 May 2022 (2022).Baeza, J. A. & García-De León, F. J. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis. BMC Genomics 23, 320. https://doi.org/10.1186/s12864-022-08482-z (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghiselli, F. et al. Molluscan mitochondrial genomes break the rules. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200159. https://doi.org/10.1098/rstb.2020.0159 (2021).Article 

    Google Scholar 
    Zhang, Z.-Q. Animal biodiversity: An introduction to higher-level classification and taxonomic richness. Zootaxa 3148, 7–12 (2011).Article 

    Google Scholar 
    Bouchet, P., Bary, S., Héros, V. & Marani, G. How many species of molluscs are there in the world’s oceans, and who is going to describe them? In Tropical Deep-Sea Benthos 29 (eds Héros, V. et al.) 9–24 (Muséum national d’histoire naturelle, 2016).
    Google Scholar 
    Reese, D. S. Palaikastro shells and bronze age purple-dye production in the Mediterranean Basin. Annu. Br. Sch. Athens 82, 201–206 (1987).Article 

    Google Scholar 
    Lardans, V. & Dissous, C. Snail control strategies for reduction of schistosomiasis transmission. Parasitol. Today 14, 413–417 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker, G. M. (ed.) Molluscs as Crop Pests. (CABI, 2002). https://doi.org/10.1079/9780851993201.0000Mannino, M. A. & Thomas, K. D. Depletion of a resource? The impact of prehistoric human foraging on intertidal mollusc communities and its significance for human settlement, mobility and dispersal. World Archaeol. 33, 452–474 (2002).Article 

    Google Scholar 
    Carter, R. The history and prehistory of pearling in the Persian Gulf. J. Econ. Soc. Hist. Orient 48, 139–209 (2005).Article 

    Google Scholar 
    Vilariño, M. L. et al. Assessment of human enteric viruses in cultured and wild bivalve molluscs. Int. Microbiol. Off. J. Span. Soc. Microbiol. 12, 145–151 (2009).
    Google Scholar 
    Tedde, T. et al. Toxoplasma gondii and other zoonotic protozoans in Mediterranean mussel (Mytilus galloprovincialis) and blue mussel (Mytilus edulis): A food safety concern?. J. Food Prot. 82, 535–542 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grande, C., Templado, J. & Zardoya, R. Evolution of gastropod mitochondrial genome arrangements. BMC Evol. Biol. 8, 61. https://doi.org/10.1186/1471-2148-8-61 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Formenti, G. et al. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol. 22, 120. https://doi.org/10.1186/s13059-021-02336-9 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meng, G., Li, Y., Yang, C. & Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63. https://doi.org/10.1093/nar/gkz173 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).PubMed 
    Article 

    Google Scholar 
    Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16, 627–640 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander, J. & Valdés, A. The ring doesn’t mean a thing: Molecular data suggest a new taxonomy for two pacific species of sea hares (Mollusca: Opisthobranchia, Aplysiidae). Pac. Sci. 67, 283–294 (2013).Article 

    Google Scholar 
    WoRMS Editorial Board. World Register of Marine Species. https://www.marinespecies.org at VLIZ. Accessed 10 Jan 2022 (2022).Barco, A. et al. A molecular phylogenetic framework for the Muricidae, a diverse family of carnivorous gastropods. Mol. Phylogenet. Evol. 56, 1025–1039 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Houart, R. Description of eight new species and one new genus of Muricidae (Gastropoda) from the Indo-West Pacific. Novapex 18, 81–103 (2017).
    Google Scholar 
    Shao, K.-T. & Chung, K.-F. The National Checklist of Taiwan (Catalogue of Life in Taiwan, TaiCoL). GBIF. https://www.gbif.org/dataset/1ec61203-14fa-4fbd-8ee5-a4a80257b45a (2021).Gaitán-Espitia, J. D., González-Wevar, C. A., Poulin, E. & Cardenas, L. Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda. Mol. Phylogenet. Evol. 131, 1–7 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Feng, J. et al. Comparative analysis of the complete mitochondrial genomes in two limpets from Lottiidae (Gastropoda: Patellogastropoda): rare irregular gene rearrangement within Gastropoda. Sci. Rep. 10, 19277. https://doi.org/10.1038/s41598-020-76410-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, T., Qi, L., Kong, L. & Li, Q. Mitogenomics reveals phylogenetic relationships of Patellogastropoda (Mollusca, Gastropoda) and dynamic gene rearrangements. Zool. Scr. 51, 147–160 (2022).Article 

    Google Scholar 
    Ranjard, L. et al. Complete mitochondrial genome of the green-lipped mussel, Perna canaliculus (Mollusca: Mytiloidea), from long nanopore sequencing reads. Mitoch. DNA Part B 3, 175–176 (2018).Article 

    Google Scholar 
    Sun, J. et al. The Scaly-foot Snail genome and implications for the origins of biomineralised armour. Nat. Commun. 11, 1657. https://doi.org/10.1038/s41467-020-15522-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dixit, B., Vanhoozer, S., Anti, N. A., O’Connor, M. S. & Boominathan, A. Rapid enrichment of mitochondria from mammalian cell cultures using digitonin. MethodsX 8, 101197. https://doi.org/10.1016/j.mex.2020.101197 (2021).Article 
    PubMed 

    Google Scholar 
    Wanner, N., Larsen, P. A., McLain, A. & Faulk, C. The mitochondrial genome and Epigenome of the Golden lion Tamarin from fecal DNA using Nanopore adaptive sequencing. BMC Genomics 22, 726. https://doi.org/10.1186/s12864-021-08046-7 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malukiewicz, J. et al. Genomic skimming and nanopore sequencing uncover cryptic hybridization in one of world’s most threatened primates. Sci. Rep. 11, 17279. https://doi.org/10.1038/s41598-021-96404-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kipp, E. J. et al. Nanopore adaptive sampling for mitogenome sequencing and bloodmeal identification in hematophagous insects. bioRxiv. https://doi.org/10.1101/2021.11.11.468279 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables near-perfect bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. bioRxiv. https://doi.org/10.1101/2021.10.27.466057 (2021).Article 

    Google Scholar 
    Oxford Nanopore. Nanopore Community. https://nanoporetech.com/community. Last accessed 05 May 2022 (2022).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oxford Nanopore. medaka. https://github.com/nanoporetech/medaka. Last accessed 05 May 2022 (2022).Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963. https://doi.org/10.1371/journal.pone.0112963 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust, G. G. & Hall, I. M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsai, I. J. Genome skimming exercise (last updated 2022.04.14). https://introtogenomics.readthedocs.io/en/latest/emcgs.html (2022).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).PubMed 
    Article 

    Google Scholar 
    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377 (2021).Article 

    Google Scholar 
    Rabiee, M., Sayyari, E. & Mirarab, S. Multi-allele species reconstruction using ASTRAL. Mol. Phylogenet. Evol. 130, 286–296 (2019).PubMed 
    Article 

    Google Scholar 
    Rambaut, A. FigTree, version 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ (2018).Hackl, T. & Ankenbrand, M. J. gggenomes: A Grammar of Graphics for Comparative Genomics. https://github.com/thackl/gggenomes (2022).Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Plant tissue characteristics of Miscanthus x giganteus

    Geospatial dataSampling locations were established, flagged, and recorded in June 2016, using a Trimble Geo7X global navigation satellite system (GNSS) receiver using the Trimble® VRS Now real-time kinematic (RTK) correction. Location accuracies were verified to within ±2 cm. Points were imported into a geodatabase using Esri ArcMap (Advanced license, Version 10.5) and projected using the Universal Transverse Mercator (UTM), Zone 17 North projection, with the 1983 North American datum (NAD83). Field investigators navigated to the flagged locations by visually locating them in the field or by using recreational grade GNSS receivers with the locations stored as waypoints.Plant tissue sampling and preparationMiscanthus x giganteus grows in clumps of bamboo-like canes. A single cane was cut at soil level from each of the five sample collection points in each circular plot, individually labelled, and brought to the lab for processing (Fig. 2). Each stem was measured from the cut at the base to the last leaf node, and the length was recorded. Green, fully expanded leaves were cut from each stem and leaves and stems from each plant were placed in separate paper bags and dried at 60 °C. The dry leaf and stem tissues were ground to pass a 1 mm screen (Wiley Mill Model 4, Thomas Scientific, Swedesboro, New Jersey, USA). Subsamples of the ground material were analyzed for total carbon (C) and nitrogen (N), acid-digested for the analysis of total macro- and micronutrients, and water-extracted for spectroscopic analysis and the characterization of the water extractable organic matter (WEOM) (Fig. 2).Fig. 2Images of field samples, and diagram of plant tissue processing. Center panel – flow chart outlining the procedures for plant tissue processing, the kinds of analyses performed, and the type of data generated. Upper left inset panel – ground level picture of Miscanthus x giganteus circular plots. Upper right inset panel – some plant samples on the day of collection.Full size imageTotal carbon and nitrogenDried and ground leaf and stem material (~4–6 mg) was analyzed for total C and N content by combustion (Vario EL III, Elementar Americas Inc., Mt. Laurel, New Jersey, USA). The instrument was calibrated using an aspartic acid standard (36.08% C ± 0.52% and 10.53% N ± 0.18%). Validation by inclusion of two aspartic acid samples as checks in each autosampler carousel (80 wells) resulted in a net positive bias of 1.44 and 1.68% for C and N, respectively. The mean C and N concentrations and standard deviations for the sample set are presented in Table 1.Table 1 Giant miscanthus composition including leaf (L) and stem (S) dry weight, length, and carbon (C) and nitrogen (N) concentrations (n = 165). Values are reported as means ± standard deviations.Full size tableMacro- and micronutrientsPlant tissue samples were analyzed for a suite of macro- and micronutrients including aluminum (Al), arsenic (As), boron (B), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), sulfur (S), selenium (Se), silicon (Si), titanium (Ti), vanadium (V), and zinc (Zn) using Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). Samples (0.5 g) were digested using 10 mL of trace metal grade nitric acid (HNO3) in a microwave digestion system (Mars 6, CEM, Matthews, North Carolina, USA). During the digestion procedure (CEM Mars 6 Plant Material Method), the oven temperature was increased from room temperature to 200 °C in 15 minutes and held at 200 °C for 10 minutes. The pressure limit of the digestion vessels was set to 800 psi although it was not monitored during individual runs. Sample digestates were transferred quantitatively to centrifuge tubes, diluted to 50 mL with 2% HNO3 (prepared with lab grade deionized water), and centrifuged at 2500 rpm for 10 min (Sorvall ST8 centrifuge, Thermo Fisher Scientific, San Jose, California, USA). The digestates were decanted into clean centrifuge tubes and analyzed using an iCAP 7400 ICP-OES Duo equipped with a Charge Injection Device detector (Thermo Fisher Scientific, San Jose, California, USA). An aliquot of digested sample was aspirated from the centrifuge tube using a CETAC ASX-520 autosampler (Teledyne CETAC Technologies, Omaha, Nebraska, USA) and passed through a concentric tube nebulizer. The resulting aerosol was then swept through the plasma using argon as the carrier gas with a flow rate of 0.5 L/min and a nebulizer gas flow rate of 0.7 L/min. Macro- and micronutrients were quantified by monitoring the emission wavelengths (Em λ) reported in Table 2.Table 2 Macro- and micronutrients measured, and emission wavelengths (Em λ) used to quantify them in the miscanthus leaves (L) and stems (S), the total number and percentage detected (n = 150 for leaves and 162 for stems), the mean detected concentration ± standard deviation, and the mean method detection limit (MDL) ± standard deviation.Full size tableCharacterization of the water extractable organic matter (WEOM)The WEOM of the giant miscanthus leaves and stems was isolated by extracting the plant material with deionized water at room temperature6. The water extractions were performed by mixing ~0.2 g of dry, ground leaves and stems with 100 mL of deionized water in 125 mL pre-washed brown Nalgene bottles. All brown Nalgene bottles used for these extractions were pre-washed by soaking them for 24 hours in a 10% hydrochloric acid solution followed by 24 hours in a 10% sodium hydroxide solution, and a thorough rinse with deionized water. The bottles containing the extraction solution were shaken on an orbital shaker at 180 rpm for 24 hours. The extract was vacuum filtered using 0.45 µm glass fibre filters (GF/F, Whatman) into pre-washed 60 mL brown Nalgene bottles. The filtered water extracts containing the WEOM were stored in the dark in a refrigerator (4 °C) until analysis by UV-Visible and fluorescence spectroscopy. Samples were visually inspected just prior to analysis to ensure no colloids or precipitates had formed during storage. Samples that had become visually cloudy were re-filtered.On the day of analysis, the water extracts were removed from the refrigerator and allowed to warm up to room temperature. Chemical characteristics of the WEOM were assessed through the analysis of optical properties on an Aqualog spectrofluorometer (Horiba Scientific, New Jersey, USA) equipped with a 150 W continuous output Xenon arc lamp. Excitation-emission matrix (EEM) scans were acquired in a 1 cm quartz cuvette with excitation wavelengths (Ex λ) scanned using a double-grating monochrometer from 240 to 621 nm at 3 nm intervals. Emission wavelengths (Em λ) were scanned from 246 to 693 nm at 2 nm intervals and emission spectra were collected using a Charge Coupled Device (CCD) detector. All fluorescence spectra were acquired in sample over reference ratio mode to account for potential fluctuations and wavelength dependency of the excitation lamp output. Samples were corrected for the inner filter effect7 and each sample EEM underwent spectral subtraction with a deionized water blank to remove the effects due to Raman scattering. Rayleigh masking was applied to remove the signal intensities for both the first and second order Rayleigh lines. Instrument bias related to wavelength-dependent efficiencies of the specific instrument’s optical components (gratings, mirrors, etc.) was automatically corrected by the Aqualog software after each spectral acquisition. The fluorescence intensities were normalized to the area under the water Raman peak collected on each day of analysis and are expressed in Raman-normalized intensity units (RU). All sample EEM processing was performed with the Aqualog software (version 4.0.0.86).The optical data obtained from the EEM scans were used to calculate several indices representative of WEOM chemical composition (Table 3) including the absorbance at 254 nm (Abs254), the ratio of the absorbance at 254 to 365 nm (Abs254:365), the ratio of the absorbance at 280 to 465 nm (Abs280:465), the spectral slope ratio (SR), the fluorescence index (FI), the humification index (HIX), the biological index (BIX), and the freshness index (β:α). The SR was calculated as the ratio of two spectral slope regions of the absorbance spectra (275–295 and 350–400 nm)8. The FI was calculated as the ratio of the emission intensities at Em λ 470 and 520 nm, at an Ex λ of 370 nm9. The HIX was calculated by dividing the emission intensity in the 435–480 nm region by the sum of emission intensities in the 300–345 and 435–480 nm regions, at an Ex λ of 255 nm10. The BIX was calculated as the ratio of emission intensities at 380 and 430 nm, at an Ex λ of 310 nm11. The freshness index β:α was calculated as the emission intensity at 380 nm divided by the maximum emission intensity between 420 and 432 nm, at an Ex λ of 310 nm12. To further characterize the giant miscanthus WEOM, the fluorescence intensity at specific excitation-emission pairs was also identified. The fluorescence peaks identified here have previously been reported for surface water samples and water extracts13 and include peak A (Ex λ 260, Em λ 450), peak C (Ex λ 340, Em λ 440), peak M (Ex λ 300, Em λ 390), peak B (Ex λ 275, Em λ 310), and peak T (Ex λ 275, Em λ 340). A brief description of these optical indices is provided in Table 3.Table 3 Description of the optical indices calculated from the excitation-emission matrix (EEM) fluorescence scans and used to analyze the WEOM composition of giant miscanthus leaves and stems.Full size table More

  • in

    Predicting ecological impacts of the invasive brush-clawed shore crab under environmental change

    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95(6), 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailey, S. A. et al. Trends in the detection of aquatic non–indigenous species across global marine, estuarine and freshwater ecosystems: A 50–year perspective. Divers. Distrib. 26, 1780–1797 (2020).MathSciNet 
    Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).PubMed 
    Article 

    Google Scholar 
    Meyerson, M. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bonnamour, A., Gippet, J. M. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24(11), 2418–2426 (2021).PubMed 
    Article 

    Google Scholar 
    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers. Distrib. 14, 329–342 (2008).Article 

    Google Scholar 
    Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).PubMed 
    Article 

    Google Scholar 
    Kenworthy, J. M., Davoult, D. & Lejeusne, C. Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: When the invader performs better. Mar. Biol. 165(10), 1–11 (2018).Article 

    Google Scholar 
    Gollasch, S., Galil, B. S., & Cohen, A. N. Bridging divides: Maritime canals as invasion corridors. In Bridging Divides: Maritime Canals as Invasion Corridors (Vol. 83). https://doi.org/10.1007/978-1-4020-5047-3 (2006).Galil, B. S. et al. ‘Double trouble’: The expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol. Invasions 17, 973–976 (2015).Article 

    Google Scholar 
    Jeschke, J. et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1–20 (2012).Article 

    Google Scholar 
    Lowry, E. et al. Biological invasions: A field synopsis, systematic review, and database of the literature. Ecol. Evol. 3, 182–196 (2012).PubMed 
    Article 

    Google Scholar 
    Brockerhoff, A., & McLay, C. Human-Mediated Spread of Alien Crabs. In In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 27–106). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_2 (2011).Hammock, B. G. et al. Low food availability narrows the tolerance of the copepod eurytemora affinis to salinity, but not to temperature. Estuar. Coasts 39, 189–200 (2016).CAS 
    Article 

    Google Scholar 
    Rato, L. D., Crespo, D. & Lemos, M. F. L. Mechanisms of bioinvasions by coastal crabs using integrative approaches – A conceptual review. Ecol. Ind. 125, 107578 (2021).Article 

    Google Scholar 
    Weis, J. S. The role of behavior in the success of invasive crustaceans. Mar. Freshw. Behav. Physiol. 43, 83–98 (2010).Article 

    Google Scholar 
    Hänfling, B., Edwards, F. & Gherardi, F. Invasive alien Crustacea: Dispersal, establishment, impact and control. Biocontrol 56, 573–595 (2011).Article 

    Google Scholar 
    Kouba, A. et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Sci. Total Environ. 813, 152325 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Geburzi, J. C., & McCarthy, M. L. How Do They Do It? – Understanding the Success of Marine Invasive Species. In YOUMARES 8 – Oceans Across Boundaries: Learning from each other (pp. 109–124). Springer International Publishing. https://doi.org/10.1007/978-3-319-93284-2_8 (2018).Casties, I. & Briski, E. Life history traits of aquatic non-indigenous species: Freshwater vs. marine habitats. Aquat. Invasions 14, 566–581 (2019).Article 

    Google Scholar 
    Grosholz, E. D. & Ruiz, G. M. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biol. Cons. 78, 59–66 (1996).Article 

    Google Scholar 
    Geburzi, J., Graumann, G., Köhnk, S. & Brandis, D. First record of the Asian crab Hemigrapsus takanoi Asakura & Watanabe, 2005 (Decapoda, Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107 (2015).Article 

    Google Scholar 
    Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biol. Invasions 14, 1843–1850 (2012).Article 

    Google Scholar 
    Wasserstraßen-und Schifffahrtsverwaltung des Bundes. Halbjahresbilanz Nord-Ostsee-Kanal 2021. www.wsv.de (2021).Nour, O. M., Stumpp, M., Morón Lugo, S. C., Barboza, F. R. & Pansch, C. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquat. Invasions 15, 297–317 (2020).Article 

    Google Scholar 
    Andersson, A. et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Suppl 3), 345–356 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    BACC Author Team. Assessment of Climate Change for the Baltic Sea Basin. (2008).BACC Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (2015).Meier, H. E. M. et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 39, 2421–2441 (2012).Article 

    Google Scholar 
    Meier, H. E. M. et al. Climate change in the baltic sea region: A summary. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2021-67 (2021).Article 

    Google Scholar 
    Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).Article 

    Google Scholar 
    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).Article 

    Google Scholar 
    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).Article 

    Google Scholar 
    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).Article 

    Google Scholar 
    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).Article 

    Google Scholar 
    Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).PubMed 
    Article 

    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Invader relative impact potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).Article 

    Google Scholar 
    Cornelius, A., Wagner, K. & Buschbaum, C. Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in northwestern Europe. Mar. Biodivers. 51(5), 1–17 (2021).Article 

    Google Scholar 
    Elner, R. W. The influence of temperature, sex and chela size in the foraging strategy of the shore crab, Carcinus maenas (L.). Mar. Behav. Physiol. 7, 15–24 (1980).Article 

    Google Scholar 
    Brose, U. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24, 28–34 (2010).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol. Evol. 10, 5946–5962 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, A. & Kraemer, G. P. Morphometry and claw strength of the non-native asian shore crab, Hemigrapsus sanguineus. Northeast. Nat. 20, 478–492 (2013).Article 

    Google Scholar 
    Sedova, L. G. The effect of temperature on the rate of oxygen consumption in the sea urchin Strongylocentrotus intermedius. Russ. J. Mar. Biol. 26, 51–53 (2000).Article 

    Google Scholar 
    Saucedo, P. E., Ocampo, L., Monteforte, M. & Bervera, H. Effect of temperature on oxygen consumption and ammonia excretion in the Calafa mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229, 377–387 (2004).Article 

    Google Scholar 
    Nie, H. et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, Ruditapes philippinarum. Aquac. Res. 48, 2778–2786 (2017).CAS 
    Article 

    Google Scholar 
    Nguyen, K. D. T. et al. Upper Temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6, e29340 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. In Comprehensive Physiology 2151–2202 (Wiley, Hoboken, 2012).Chapter 

    Google Scholar 
    Barrios-O’Neill, D., Dick, J. T., Emmerson, M. C., Ricciardi, A. & MacIsaac, H. J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 29(3), 377–384 (2015).Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures Vol. 2 (Wiley, Hoboken, 2012).
    Google Scholar 
    Bollache, L., Dick, J., Farnsworth, K. & Montgomery, I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 4, 166–169 (2008).PubMed 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).Article 

    Google Scholar 
    Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The functional response ratio (FRR): Advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).Article 

    Google Scholar 
    Englund, G., Ohlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol Lett 14, 914–921 (2011).PubMed 
    Article 

    Google Scholar 
    Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72(1), 95–112 (2002).Article 

    Google Scholar 
    Dell, A. I., Pawar, S. & van Savage, M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    South, J., Welsh, D., Anton, A., Sigwart, J. D. & Dick, J. T. A. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey. J. Fish Biol. 92, 150–164 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Dickey, J. W. E. et al. Breathing space: Deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages. Biol. Invasions 23, 2831–2847 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watanabe, S., Wilder, M. N., Strüssmann, C. A. & Shinji, J. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: Osmoregulation, oxygen consumption, and ammonia excretion. J. Crustac. Biol. 29, 269–272 (2009).Article 

    Google Scholar 
    Wasserman, R. J. et al. Using functional responses to quantify interaction effects among predators. Funct. Ecol. 30, 1988–1998 (2016).Article 

    Google Scholar 
    Murdoch, W. W. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).Article 

    Google Scholar 
    Gonzalez, A., Lambert, A. & Ricciardi, A. When does ecosystem engineering cause invasion and species replacement?. Oikos 117, 1247–1257 (2008).Article 

    Google Scholar 
    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. U.S.A 105, 20339–20343 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asakura, A. & Watanabe, S. Hemigrapsus takanoi, new species, a sibling species of the common Japanese Intertidal Crab H. penicillatus (Decapoda: Brachyura: Grapsoidea). J. Crustac. Biol. 25, 279–292 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.3, https://CRAN.R-project.org/package=DHARMa (2021).Crawley, M. J. The R Book (Wiley, Hoboken, 2007).MATH 
    Book 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
    Google Scholar 
    Lenth, R. v. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1, https://CRAN.R-project.org/package=emmeans (2021).Pritchard, D. frair: Tools for Functional Response Analysis. R package version 0.5.100, https://CRAN.R-project.org/package=frair (2017).Juliano, S.A., Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Cheiner, S.M. and Gurven, J., Eds., Design and Analysis of Ecological Experiments, 2nd Edition, Chapman and Hall, London, 178–196. (2001)Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369 (1972).Article 

    Google Scholar  More

  • in

    Demographic characteristics shape patterns of dawn swarming during roost switching in tree-dwelling Daubenton’s bat

    Green, P. A., Brandley, N. C. & Nowicki, S. Categorical perception in animal communication and decision-making. Behav. Ecol. 31, 859–867 (2020).
    Google Scholar 
    Petak, I. Ritualization. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–4 (Springer International Publishing, Cham, 2019).
    Google Scholar 
    Fernandez, A. A., Fasel, N., Knörnschild, M. & Richner, H. When bats are boxing: Aggressive behaviour and communication in male Seba’s short-tailed fruit bat. Anim. Behav. 98, 149–156 (2014).
    Google Scholar 
    van Schaik, J. et al. Bats swarm where they hibernate: Compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS ONE 10, e0130850 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Vaughan, T. & O’Shea, T. Roosting ecology of the Pallid bat, Antrozous pallidus. J. Mammal. 57, 19–42 (1976).
    Google Scholar 
    Kunz, T. H. Roosting ecology. In Ecology of Bats (ed. Kunz, T. H.) (Plennum Press, 1982).
    Google Scholar 
    Kaňuch, P. Evening and morning activity schedules of the noctule bat (Nyctalus noctula) in Western Carpathians. Mammalia 71, 126–130 (2007).
    Google Scholar 
    Naďo, L. & Kaňuch, P. Swarming behaviour associated with group cohesion in tree-dwelling bats. Behav. Processes. 120, 80–86 (2015).PubMed 

    Google Scholar 
    Zelenka, Z., Kasanický, T., Budinská, I. & Kaňuch, P. An agent-based algorithm resembles behaviour of tree-dwelling bats under fission–fusion dynamics. Sci. Rep. 10, 16793 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aureli, F. et al. Fission-fusion dynamics: New research frameworks. Curr. Anthropol. 49, 627–654 (2008).
    Google Scholar 
    Willis, C. K. R. & Brigham, R. M. Roost switching, roost sharing and social cohesion: Forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Anim. Behav. 68, 495–505 (2004).
    Google Scholar 
    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Publishing, 2016).
    Google Scholar 
    Kerth, G., Weissmann, G. & König, B. Day roost selection in female Bechstein’s bats. Oecologia 126, 1–9 (2001).ADS 
    PubMed 

    Google Scholar 
    Reckardth, K. & Kerth, G. Roost selection and roost switching of female Bechstein’s bats. Oecologia 154, 581–588 (2007).ADS 

    Google Scholar 
    Mikula, P., Hromada, M. & Tryjanowski, P. Bats and swifts as food of the European kestrel (Falco tinnunculus) in small town in Slovakia. Ornis Fennica 90, 178–185 (2013).
    Google Scholar 
    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission-fusion societies in an aerial-hawking carnivorous bat. Anim. Behav. 75, 471–482 (2008).
    Google Scholar 
    Patriquin, K. J., Palstra, F., Leonard, M. L. & Broders, H. G. Female northern myotis (Myotis septentrionalis) that roost together are related. Behav. Ecol. 24, 949–954 (2013).
    Google Scholar 
    Sherman, P. W. Nepotism and the evolution of alarm calls. Science 197, 1246–1253 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kerth, G., Almasi, B., Ribi, N., Thiel, D. & Lüpold, S. Social interactions among wild female Bechstein’s bats (Myotis bechsteinii) living in a maternity colony. Acta Ethol. 5, 107–114 (2003).
    Google Scholar 
    Dietz, M. & Kalko, E. K. V. Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentonii. Can. J. Zool. 85, 653–664 (2007).
    Google Scholar 
    Nelson, R. J. & Kriegsfeld, L. J. An Introduction to Behavioral Endocrinology (Sinauer Associates, 2017).
    Google Scholar 
    Choleris, E. & Kavaliers, M. Social learning in animals: Sex differences and neurobiological analysis. Pharmacol. Biochem. Behav. 64, 767–776 (1999).CAS 
    PubMed 

    Google Scholar 
    McCracken, G. F. & Wilkinson, G. S. Bat mating systems. In Reproductive Biology of Bats (eds Crichton, E. G. & Krutzsch, P. H.) 321–362 (Academic Press, 2000).
    Google Scholar 
    Safi, K. Social bats: The males’ perspective. J. Mammal. 89, 1342–1350 (2008).
    Google Scholar 
    Linton, D. M. & Macdonald, D. W. Roost composition and sexual segregation in a lowland population of Daubenton’s bats (Myotis daubentonii). Acta Chiropterol. 21, 129–137 (2019).
    Google Scholar 
    Ružinská, R. & Kaňuch, P. Adult males in maternity colonies of Daubenton’s bat, Myotis daubentonii: What are they?. Mammalia 85, 551–556 (2021).
    Google Scholar 
    Barale, C. L., Rubenstein, D. I. & Beehner, J. C. Juvenile social relationships reflect adult patterns of behavior in wild geladas. Am. J. Primatol. 77, 1086–1096 (2015).PubMed 

    Google Scholar 
    McFarland, D. A Dictionary of Animal Behaviour (Oxford University Press, 2006).
    Google Scholar 
    Ratcliffe, J. & Hofstede, H. Roosts as information centres: Social learning of food preferences in bats. Biol. Lett. 1, 72–74 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez, A. A., Burchardt, L. S., Nagy, M. & Knörnschild, M. Babbling in a vocal learning bat resembles human infant babbling. Science 373, 923–926 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wilkinson, G. S. Information transfer at evening bat colonies. Anim. Behav. 44, 501–518 (1992).
    Google Scholar 
    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).CAS 
    PubMed 

    Google Scholar 
    Todd, V. L. G. & Waters, D. A. Small scale habitat preferences of Myotis daubentonii, Pipistrellus pipistrellus, and potential aerial prey in an upland river valley. Acta Chiropterol. 19, 255–272 (2017).
    Google Scholar 
    Kaňuch, P. Roosting and population ecology of three syntopic tree-dwelling bat species (Myotis nattereri, M. daubentonii and Nyctalus noctula). Biologia 60, 579–587 (2005).
    Google Scholar 
    Lučan, R. K. & Hanák, V. Population ecology of Myotis daubentonii (Mammalia: Chiroptera) in South Bohemia: Summary of two long-term studies: 1968–1984 and 1999–2009. Acta Soc. Zool. Bohem. 75, 67–85 (2011).
    Google Scholar 
    Patriquin, K. J. & Ratcliffe, J. M. Should I stay or should I go? Fission-fusion dynamics in bats. In Sociality in Bats (ed. Ortega, J.) 65–104 (Springer, 2016).
    Google Scholar 
    Bogdanowicz, W. Myotis daubentonii. Mamm. Species 475, 1–9 (1994).
    Google Scholar 
    Rigby, E. L., Aegerter, J., Brash, M. & Altringham, J. D. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet. Rec. 170, 101 (2012).CAS 
    PubMed 

    Google Scholar 
    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating Little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).
    Google Scholar 
    Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats. In Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    Richardson, P. W. A new method of distinguishing Daubenton’s bats (Myotis daubentonii) up to one year old from adults. J. Zool. 233, 307–344 (1994).
    Google Scholar 
    Haarsma, A. & van Alphen, J. Chin-spot as an indicator of age in pond bats. Lutra 52, 97–107 (2009).
    Google Scholar 
    Burland, T. M., Barratt, E. M. & Racey, P. A. Isolation and characterization of microsatellite loci in the brown long-eared bat, Plecotus auritus, and cross-species amplification within the family Vespertilionidae. Mol. Ecol. 7, 136–138 (1998).CAS 

    Google Scholar 
    Castella, V. & Ruedi, M. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol. Ecol. 9, 1000–1002 (2000).CAS 
    PubMed 

    Google Scholar 
    Kerth, G., Safi, K. & König, B. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52, 203–210 (2002).
    Google Scholar 
    Jan, C., Dawson, D. A., Altringham, J. D., Burke, T. & Butlin, R. K. Development of conserved microsatellite markers of high cross-species utility in bat species (Vespertilionidae, Chiroptera, Mammalia). Mol. Ecol. Resour. 12, 532–548 (2012).CAS 
    PubMed 

    Google Scholar 
    Gruber, B. & Adamack, A. PopGenReport: A simple framework to analyse population and landscape genetic data. R package version 3.04. https://cran.r-project.org/package=popgenreport (2019).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Dowd, C. twosamples: Fast permutation based two sample tests. R package version 1.1.1. https://cran.r-project.org/package=twosamples (2020).Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Soft. Code Snippets 28, 1–9 (2008).
    Google Scholar 
    Kampstra, P. beanplot: Visualization via beanplots (like boxplot/stripchart/violin plot). R package version 1.2. https://cran.r-project.org/package=beanplot (2014).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries stock analysis. R package version 0.8.30. https://github.com/droglenc/FSA (2020).Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 

    Google Scholar 
    Kassambara, A. (2020) ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. https://cran.r-project.org/package=ggpubr (2020).Animal Behaviour. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 159, I–X (2020).Russo, D. L., Cistrone, L., Jones, G. & Mazzoleni, S. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: Consequences for conservation. Biol. Conserv. 117, 73–81 (2004).
    Google Scholar 
    Arnold, B. D. & Wilkinson, G. S. Female natal philopatry and gene flow between divergent clades of pallid bats (Antrozous pallidus). J. Mammal. 96, 531–540 (2015).
    Google Scholar 
    Barclay, R. M. R. & Harder, L. D. Life histories of bats: Life in the slow lane. In Bat Ecology (eds Kunz, T. H. & Fenton, M. B.) 209–253 (University of Chicago Press, 2003).
    Google Scholar 
    Sun, D. et al. Behavioural patterns and postnatal development in pups of the Asian parti-coloured bat, Vespertilio sinensis. Animals 10, 1325 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Mavrodiev, P., Fleischmann, D., Kerth, G. & Schweitzer, F. Quantifying individual influence in leading-following behavior of Bechstein’s bats. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    Bekoff, M. The development of social interaction, play, and metacommunication in mammals: An ethological perspective. Q. Rev. Biol. 47, 412–434 (1972).
    Google Scholar 
    Dunbar, R. I. M. & Shultz, S. Bondedness and sociality. Behaviour 147, 775–803 (2010).
    Google Scholar 
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278, 2761–2767 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruczyński, I. & Bartoń, K. A. Seasonal changes and the influence of tree species and ambient temperature on the fission-fusion dynamics of tree-roosting bats. Behav. Ecol. Sociobiol. 74, 63 (2020).
    Google Scholar 
    Červený, J. & Bürger, P. Density and structure of the bat community occupying an old park at Žihobce (Czechoslovakia). In European Bat Research 1987 (eds Hanák, V. et al.) (Charles University Press, 1989).
    Google Scholar 
    Ripperger, S. et al. Proximity sensors on common noctule bats reveal evidence that mothers guide juveniles to roosts but not food. Biol. Lett. 15, 20180884 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Coronilla juncea, a native candidate for phytostabilization of potentially toxic elements and restoration of Mediterranean soils

    Pourret, O. & Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. IJERPH 16, 4446 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 1–20 (2011).
    Google Scholar 
    Mahar, A. et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 126, 111–121 (2016).CAS 
    PubMed 

    Google Scholar 
    Vangronsveld, J. et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794 (2009).CAS 

    Google Scholar 
    Desjardins, D., Nissim, W. G., Pitre, F. E., Naud, A. & Labrecque, M. Distribution patterns of spontaneous vegetation and pollution at a former decantation basin in southern Québec, Canada. Ecol. Eng. 64, 385–390 (2014).
    Google Scholar 
    Marchiol, L. et al. Gentle remediation at the former “Pertusola Sud” zinc smelter: Evaluation of native species for phytoremediation purposes. Ecol. Eng. 53, 343–353 (2013).
    Google Scholar 
    van Oort, F. et al. Les pollutions métalliques d’un site industriel et des sols environnants : distributions hétérogènes des métaux et relations avec l’usage des sols. In: Contaminations métalliques des agrosystèmes et écosystèmes péri-urbains 15–44 (Editions Quae, 2009).Hodge, A. Plastic plants and patchy soils. J. Exp. Bot. 57, 401–411 (2006).CAS 
    PubMed 

    Google Scholar 
    Huber-Sannwald, E. & Jackson, R. B. Heterogeneous soil-resource distribution and plant responses—from individual-plant growth to ecosystem functioning. In Progress in Botany Vol. 62 (eds Esser, K. et al.) 451–476 (Springer, 2001).
    Google Scholar 
    Loecke, T. D. & Philip Robertson, G. Soil resource heterogeneity in the form of aggregated litter alters maize productivity. Plant Soil 325, 231–241 (2009).CAS 

    Google Scholar 
    Reynolds, H. L., Hungate, B. A., Iii, F. S. C. & D’Antonio, C. M. Soil Heterogeneity and Plant Competition in an Annual Grassland. 16 (2021).Maestre, F. T., Cortina, J., Bautista, S., Bellot, J. & Vallejo, R. Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6, 630–643 (2003).
    Google Scholar 
    Shutcha, M. N. et al. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol. Eng. 82, 81–90 (2015).
    Google Scholar 
    Testiati, E. et al. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard. Mater. 248–249, 131–141 (2013).PubMed 

    Google Scholar 
    Cabrera, F., Clemente, L., Díaz Barrientos, E., López, R. & Murillo, J. M. Heavy metal pollution of soils affected by the Guadiamar toxic fiood. Sci. Total Environ. 242, 117–129 (1999).CAS 
    PubMed 

    Google Scholar 
    Imperato, M. et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 124, 247–256 (2003).CAS 
    PubMed 

    Google Scholar 
    Gallagher, F. J., Pechmann, I., Bogden, J. D., Grabosky, J. & Weis, P. Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environ. Pollut. 153, 351–361 (2008).CAS 
    PubMed 

    Google Scholar 
    Gallagher, F. J., Pechmann, I., Holzapfel, C. & Grabosky, J. Altered vegetative assemblage trajectories within an urban brownfield. Environ. Pollut. 159, 1159–1166 (2011).CAS 
    PubMed 

    Google Scholar 
    Heckenroth, A. et al. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach. J. Environ. Manag. 183, 850–863 (2016).CAS 

    Google Scholar 
    Dickinson, N. M., Turner, A. P. & Lepp, N. W. How do trees and other long-lived plants survive in polluted environments?. Funct. Ecol. 5, 5 (1991).
    Google Scholar 
    Partida-Martínez, L. P. & Heil, M. The microbe-free plant: Fact or artifact?. Front. Plant Sci. 2, 100 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Giller, K. E., Witter, E. & Mcgrath, S. P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30, 1389–1414 (1998).CAS 

    Google Scholar 
    Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants (CRC Press, 2001).
    Google Scholar 
    Tyler, G. Heavy metal pollution and mineralisation of nitrogen in forest soils. Nature 255, 701–702 (1975).CAS 

    Google Scholar 
    Seshadri, B., Bolan, N. S. & Naidu, R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J. Soil Sci. Plant Nutr. https://doi.org/10.4067/S0718-95162015005000043 (2015).Article 

    Google Scholar 
    Kidd, P. et al. Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67, 243–259 (2009).CAS 

    Google Scholar 
    Rivera-Becerril, F. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp. Bot. 53, 1177–1185 (2002).CAS 
    PubMed 

    Google Scholar 
    Krupa, P. & Kozdrój, J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut. 182, 83–90 (2007).CAS 

    Google Scholar 
    Janoušková, M., Pavlíková, D. & Vosátka, M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65, 1959–1965 (2006).PubMed 

    Google Scholar 
    Leyval, C., Turnau, K. & Haselwandter, K. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7, 139–153 (1997).CAS 

    Google Scholar 
    Zhang, Y., Zhang, Y., Liu, M., Shi, X. & Zhao, Z. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J. Microbiol. 46, 624–632 (2008).PubMed 

    Google Scholar 
    Krumins, J. A., Goodey, N. M. & Gallagher, F. Plant–soil interactions in metal contaminated soils. Soil Biol. Biochem. 80, 224–231 (2015).CAS 

    Google Scholar 
    Glick, B. R. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383–393 (2003).CAS 
    PubMed 

    Google Scholar 
    Heckenroth, A. et al. What are the potential environmental solutions for diffuse pollution ? In Pollution of Marseille’s Industrial Calanques—The Impact of the Past on the Present 291–328 (REF2C, 2016).Li, M. S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 357, 38–53 (2006).CAS 
    PubMed 

    Google Scholar 
    Mendez, M. O. & Maier, R. M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Biotechnol. 7, 47–59 (2008).CAS 

    Google Scholar 
    Yaalon, D. H. Soils in the Mediterranean region: What makes them different?. CATENA 28, 157–169 (1997).CAS 

    Google Scholar 
    Li, S. et al. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 400, 123255 (2020).CAS 
    PubMed 

    Google Scholar 
    Pérez-de-Mora, A. et al. Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biol. Biochem. 38, 327–341 (2006).
    Google Scholar 
    Keller, C. et al. Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant Soil. 249, 67–81 (2003).CAS 

    Google Scholar 
    Lambrechts, T. et al. Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: Implications for phytostabilization. Plant Soil 376, 229–244 (2014).CAS 

    Google Scholar 
    Pauwels, M., Frérot, H., Bonnin, I. & Saumitou-Laprade, P. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). J. Evol. Biol. 19, 1838–1850 (2006).CAS 
    PubMed 

    Google Scholar 
    Padilla, F. M. & Pugnaire, F. I. The role of nurse plants in the restoration of degraded environments. Front. Ecol. Environ. 4, 196–202 (2006).
    Google Scholar 
    Robles, A. B., Allegretti, L. I. & Passera, C. B. Coronilla juncea is both a nutritive fodder shrub and useful in the rehabilitation of abandoned Mediterranean marginal farmland. J. Arid Environ. 50, 381–392 (2002).
    Google Scholar 
    Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, 1979).
    Google Scholar 
    Laffont-Schwob, I. et al. Diffuse and widespread present-day pollution. In Pollution of Marseille’s industrial Calanques—The Impact of the Past on the Future 204–249 (REF2C, 2016).Gelly, R. et al. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 665, 502–512 (2019).CAS 
    PubMed 

    Google Scholar 
    Tóth, G. et al. Soils of the European Union. JRC Scientific and Technical Reports 85 (2008).IUSS Working Group WRB. Base de référence mondiale pour les ressources en sols 2014, Mise à jour 2015. Système international de classification des sols pour nommer les sols et élaborer des légendes de cartes pédologiques. Rapport sur les ressources en sols du monde. Vol. 106 (2015).Dias, T. et al. Ammonium as a driving force of plant diversity and ecosystem functioning: Observations based on 5 years’ manipulation of n dose and form in a Mediterranean ecosystem. PLoS ONE 9, e92517 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Remon, E. et al. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environ. Pollut. 137, 316–323 (2005).CAS 
    PubMed 

    Google Scholar 
    Baumberger, T. et al. Plant community changes as ecological indicator of seabird colonies’ impacts on Mediterranean Islands. Ecol. Ind. 15, 76–84 (2012).
    Google Scholar 
    Navas, M.-L., Roumet, C., Bellmann, A., Laurent, G. & Garnier, E. Suites of plant traits in species from different stages of a Mediterranean secondary succession: Plant traits and succession. Plant Biol. 12, 183–196 (2010).CAS 
    PubMed 

    Google Scholar 
    Guillamot, F., Calvert, V., Millot, M.-V. & Criquet, S. Does antimony affect microbial respiration in Mediterranean soils? A microcosm experiment. Pedobiologia 57, 119–121 (2014).
    Google Scholar 
    Wang, A., He, M., Ouyang, W., Lin, C. & Liu, X. Effects of antimony (III/V) on microbial activities and bacterial community structure in soil. Sci. Total Environ. 789, 148073 (2021).CAS 
    PubMed 

    Google Scholar 
    Oleńska, E. et al. Trifolium repens-associated bacteria as a potential tool to facilitate phytostabilization of zinc and lead polluted waste heaps. Plants 9, 1002 (2020).PubMed Central 

    Google Scholar 
    Stambulska, U. Y., Bayliak, M. M. & Lushchak, V. I. Chromium(VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Res. Int. 2018, 1–13 (2018).
    Google Scholar 
    Karthika, K. S., Rashmi, I. & Parvathi, M. S. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance 1–49 (Springer Singapore, 2018). https://doi.org/10.1007/978-981-10-9044-8_1.Dary, M., Chamber-Pérez, M. A., Palomares, A. J. & Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 177, 323–330 (2010).CAS 
    PubMed 

    Google Scholar 
    Reichman, S. M. The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol. Biochem. 39, 2587–2593 (2007).CAS 

    Google Scholar 
    Parraga-Aguado, I., Querejeta, J.-I., González-Alcaraz, M.-N., Jiménez-Cárceles, F. J. & Conesa, H. M. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. J. Environ. Manag. 133, 51–58 (2014).CAS 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
    Google Scholar 
    Carrasco, L., Azcón, R., Kohler, J., Roldán, A. & Caravaca, F. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci. Total Environ. 409, 1205–1209 (2011).CAS 
    PubMed 

    Google Scholar 
    Padilla, F. M., Ortega, R., Sánchez, J. & Pugnaire, F. I. Rethinking species selection for restoration of arid shrublands. Basic Appl. Ecol. 10, 640–647 (2009).
    Google Scholar 
    Ilunga wa Ilunga, E. et al. Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: A case study in copper vegetation of Katanga, DRC. Ecol. Eng. 82, 214–221 (2015).
    Google Scholar 
    Salducci, M.-D. et al. How can a rare protected plant cope with the metal and metalloid soil pollution resulting from past industrial activities? Phytometabolites, antioxidant activities and root symbiosis involved in the metal tolerance of Astragalus tragacantha. Chemosphere 217, 887–896 (2019).CAS 
    PubMed 

    Google Scholar 
    Kachout, S. S. et al. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J. Sci. Food Agric. 92, 336–342 (2012).CAS 
    PubMed 

    Google Scholar 
    Schaeffer, A. et al. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Sci. Total Environ. 568, 1076–1085 (2016).CAS 
    PubMed 

    Google Scholar 
    Tosini, L. et al. Gain in biodiversity but not in phytostabilization after 3 years of ecological restoration of contaminated Mediterranean soils. Ecol. Eng. 157, 105998 (2020).
    Google Scholar 
    Michelaki, C. et al. An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. Sci. Total Environ. 672, 583–592 (2019).CAS 
    PubMed 

    Google Scholar 
    Affholder, M.-C. et al. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: Human exposure risk. Sci. Total Environ. 454–455, 219–229 (2013).PubMed 

    Google Scholar 
    Affholder, M.-C. et al. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: Do native symbionts matter?. Plant Soil 382, 219–236 (2014).CAS 

    Google Scholar 
    Ellili, A. et al. Decision-making criteria for plant-species selection for phytostabilization: Issues of biodiversity and functionality. J. Environ. Manag. 201, 215–226 (2017).CAS 

    Google Scholar 
    Laffont-Schwob, I. et al. Insights on metal-tolerance and symbionts of the rare species Astragalus tragacantha aiming at phytostabilization of polluted soils and plant conservation. ecmed 37, 57–62 (2011).
    Google Scholar 
    Rabier, J. et al. Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water Air Soil Pollut. 225, 1993 (2014).
    Google Scholar 
    Quevauviller, Ph. et al. Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Sci. Total Environ. 178, 127–132 (1996).CAS 

    Google Scholar 
    Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).CAS 

    Google Scholar 
    R Development Core Team.pdf.Dray, S., Dufour, A. B. & Chessel, D. The ade4 package—II: Two-table and K-table methods. R News 7, 6 (2007).
    Google Scholar  More