More stories

  • in

    Governance modes

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Important marine areas for endangered African penguins before and after the crucial stage of moulting

    Game, E. T. et al. Pelagic protected areas: The missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).PubMed 
    Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641–1255647 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Croxall, J. P. et al. Seabird conservation status and threats: A global assessment of priorities. Bird Conserv. Int. 22, 1–34 (2012).Article 

    Google Scholar 
    Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article 

    Google Scholar 
    Trathan, P. N. et al. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv. Biol. 29, 31–41 (2014).PubMed 
    Article 

    Google Scholar 
    Boersma, D. et al. Applying science to pressing conservation needs for penguins. Conserv. Biol. 34, 103–112 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? The future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).Article 

    Google Scholar 
    Maestro, M., Pérez-Cayeiro, M. L., Chica-Ruiz, J. A. & Reyes, H. Marine protected areas in the 21st century: Current situation and trends. Ocean Coast. Manag. 171, 28–36 (2019).Article 

    Google Scholar 
    Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016).PubMed 
    Article 

    Google Scholar 
    Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).Article 

    Google Scholar 
    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kürten, N. et al. High individual repeatability of the migratory behaviour of a long-distance migratory seabird. Mov. Ecol. 10, 5 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weimerskirch, H. et al. Lifetime foraging patterns of the wandering albatross: Life on the move!. J. Exp. Mar. Biol. Ecol. 450, 68–78 (2014).Article 

    Google Scholar 
    Trebilco, R., Gales, R., Baker, G. B., Terauds, A. & Sumner, M. D. At sea movement of Macquarie Island giant petrels: Relationships with marine protected areas and Regional Fisheries Management Organisations. Biol. Conserv. 141, 2942–2958 (2008).Article 

    Google Scholar 
    Clay, T. A. et al. A comprehensive large-scale assessment of fisheries bycatch risk to threatened seabird populations. J. Appl. Ecol. 56, 1882–1893 (2019).Article 

    Google Scholar 
    Meier, R. E. et al. Tracking, feather moult and stable isotopes reveal foraging behaviour of a critically endangered seabird during the non-breeding season. Divers. Distrib. 23, 130–145 (2017).Article 

    Google Scholar 
    Frankish, C. K., Phillips, R. A., Clay, T. A., Somveille, M. & Manica, A. Environmental drivers of movement in a threatened seabird: Insights from a mechanistic model and implications for conservation. Divers. Distrib. 26, 1315–1329 (2020).Article 

    Google Scholar 
    Ratcliffe, N. et al. Changes in prey fields increase the potential for spatial overlap between gentoo penguins and a krill fishery within a marine protected area. Divers. Distrib. 27, 552–563 (2021).Article 

    Google Scholar 
    Grémillet, D. et al. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 28, 4009–4013 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bogdanova, M. I. et al. Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter. Mar. Ecol. Prog. Ser. 578, 167–181 (2017).Article 
    ADS 

    Google Scholar 
    van Bemmelen, R. et al. Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua. Mar. Ecol. Prog. Ser. 578, 197–211 (2017).Article 
    ADS 

    Google Scholar 
    Robinson, W. M. L., Butterworth, D. S. & Plagányi, É. E. Quantifying the projected impact of the South African sardine fishery on the Robben Island penguin colony. ICES J. Mar. Sci. 72, 1882–1883 (2015).Article 

    Google Scholar 
    Sherley, R. B. et al. Bottom-up effects of a no-take zone on endangered penguin demographics. Biol. Lett. 11, 20150237 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Studholme, K. R., Hipfner, J. M., Domalik, A. D., Ivrson, S. J. & Crossin, G. T. Year-round tracking reveals multiple migratory tactics in a sentinel North Pacific seabird, Cassin’s auklet. Mar. Ecol. Prog. Ser. 619, 169–185 (2019).Article 
    ADS 

    Google Scholar 
    Salton, M., Saraux, C., Dann, P. & Chiaradia, A. Carry-over body mass effect from winter to breeding in a resident seabird, the little penguin. R. Soc. Open Sci. 2, 140390 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Barbraud, C. et al. Density dependence, prey accessibility and prey depletion by fisheries drive Peruvian seabird population dynamics. Ecography 41, 1092–1102 (2018).Article 

    Google Scholar 
    Grémillet, D. et al. Starving seabirds: Unprofitable foraging and its fitness consequences in Cape gannets competing with fisheries in the Benguela upwelling ecosystem. Mar. Biol. 163, 1–11 (2016).Article 

    Google Scholar 
    Cook, A. S. C. P., Dadam, D., Mitchell, I., Ross-Smith, V. H. & Robinson, R. A. Indicators of seabird reproductive performance demonstrate the impact of commercial fisheries on seabird populations in the North Sea. Ecol. Indic. 38, 1–11 (2014).Article 

    Google Scholar 
    Thiebot, J.-B. et al. Adjustment of pre-moult foraging strategies in Macaroni Penguins Eudyptes chrysolophus according to locality, sex and breeding status. Ibis 156, 511–522 (2014).Article 

    Google Scholar 
    Brasso, R. L. et al. Unique pattern of molt leads to low intraindividual variation in feather mercury concentrations in penguins. Environ. Toxicol. Chem. 32, 2331–2334 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooper, J. Moult of the black-footed penguin. Int. Zoo Yearb. 18, 22–27 (1978).Article 

    Google Scholar 
    Cherel, Y., Charrassin, J. & Challet, E. Energy and protein requirements for molt in the king penguin Aptenodytes patagonicus. Am. J. Physiol. 266, R1182–R1188 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. R. Energetic cost of moult in macaroni penguins (Eudyptes chrysolophus) and rockhopper penguins (E. chrysocome). J. Comp. Physiol. B 155, 515–520 (1985).Article 

    Google Scholar 
    Dehnhard, N. et al. Survival of rockhopper penguins in times of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 777–789 (2013).
    Google Scholar 
    Rebstock, G. & Boersma, D. Oceanographic conditions in wintering grounds affect arrival date and body condition in breeding female Magellanic penguins. Mar. Ecol. Prog. Ser. 601, 253–267 (2018).Article 
    ADS 

    Google Scholar 
    Green, J. A., Boyd, I. L., Woakes, A. J., Warren, N. L. & Butler, P. J. Evaluating the prudence of parents: Daily energy expenditure throughout the annual cycle of a free-ranging bird, the macaroni penguin Eudyptes chrysolophus. J. Avian Biol. 40, 529–538 (2009).Article 

    Google Scholar 
    Crawford, R. J. M., Makhado, A. B., Upfold, L. & Dyer, B. M. Mass on arrival of rockhopper penguins at Marion Island correlated with breeding success. Afr. J. Mar. Sci. 30, 185–188 (2008).Article 

    Google Scholar 
    Crawford, R. J. M. et al. Food habits of an endangered seabird indicate recent poor forage fish availability off western South Africa. ICES J. Mar. Sci. 76, 1344–1352 (2019).
    Google Scholar 
    Okes, N. C. et al. Competition for shifting resources in the southern Benguela upwelling: Seabirds versus purse-seine fisheries. Biol. Conserv. 142, 2361–2368 (2009).Article 

    Google Scholar 
    Campbell, K. J. et al. Local forage fish abundance influences foraging effort and offspring condition in an endangered marine predator. J. Appl. Ecol. 56, 1751–1760 (2019).Article 

    Google Scholar 
    Grémillet, D. et al. Spatial match-mismatch in the Benguela upwelling zone: Should we expect chlorophyll and sea-surface temperature to predict marine predator distributions?. J. Appl. Ecol. 45, 610–621 (2008).Article 
    CAS 

    Google Scholar 
    Sherley, R. B. et al. Metapopulation tracking juvenile penguins reveals an ecosystem-wide ecological trap. Curr. Biol. 27, 1–6 (2017).Article 
    CAS 

    Google Scholar 
    Sherley, R. B. et al. Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Mar. Ecol. Prog. Ser. 473, 291–301 (2013).Article 
    ADS 

    Google Scholar 
    Cury, P. M. et al. Global seabird response to forage fish depletion—One-third for the birds. Science 334, 1703–1706 (2011).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Crawford, R. J. M. et al. Collapse of South Africa’s penguins in the early 21st century. Afr. J. Mar. Sci. 33, 139–156 (2011).Article 

    Google Scholar 
    Sherley, R. B. et al. The conservation status and population decline of the African penguin deconstructed in space and time. Ecol. Evol. 10, 8506–8516 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weller, F. et al. A system dynamics approach to modelling multiple drivers of the African penguin population on Robben Island, South Africa. Ecol. Model. 277, 38–56 (2014).Article 

    Google Scholar 
    Pichegru, L. Increasing breeding success of an Endangered penguin: Artificial nests or culling predatory gulls?. Bird Conserv. Int. 23, 296–308 (2013).Article 

    Google Scholar 
    Weller, F. et al. System dynamics modelling of the Endangered African penguin populations on Robben and Dyer islands, South Africa. Ecol. Model. 327, 44–56 (2016).Article 

    Google Scholar 
    Pichegru, L. et al. Overlap between vulnerable top predators and fisheries in the Benguela upwelling system: Implications for marine protected areas. Mar. Ecol. Prog. Ser. 391, 199–208 (2009).Article 
    ADS 

    Google Scholar 
    Sherley, R. B. et al. Bayesian inference reveals positive but subtle effects of experimental fishery closures on marine predator demographics. Proc. R. Soc. B 285, 20172443 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pichegru, L., Grémillet, D., Crawford, R. J. M. & Ryan, P. G. Marine no-take zone rapidly benefits endangered penguin. Biol. Lett. 6, 498–501 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weller, F. et al. Penguins’ perilous conservation status calls for complementary approach based on sound ecological principles: Reply to Butterworth et al. (2015). Ecol. Model. 337, 1–3 (2016).Article 

    Google Scholar 
    Butterworth, D. S., Plagányi, E. E., Robinson, W. M. L., Moosa, N. & de Moor, C. L. Penguin modelling approach queried. Ecol. Model. 316, 78–80 (2015).Article 

    Google Scholar 
    Pichegru, L. et al. Sex-specific foraging behaviour and a field sexing technique for Endangered African penguins. Endanger. Species Res. 19, 255–264 (2013).Article 

    Google Scholar 
    Roberts, J. African Penguin (Spheniscus demersus) Distribution During the Non-breeding Season: Preparation for, and Recovery from, a Moulting Fast (University of Cape Town, 2016).
    Google Scholar 
    Dias, M. P. et al. Identification of marine Important Bird and Biodiversity Areas for penguins around the South Shetland Islands and South Orkney Islands. Ecol. Evol. 8, 10520–10529 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lascelles, B. G. et al. Applying global criteria to tracking data to define important areas for marine conservation. Divers. Distrib. 22, 422–431 (2016).Article 

    Google Scholar 
    Department of Forestry, Fisheries and Environment, T. National data and information report for marine spatial planning: Knowledge baseline for marine spatial planning in South Africa. (2021).Kirkman, S. P. et al. Evaluating the evidence for ecological effectiveness of South Africa’s marine protected areas. Afr. J. Mar. Sci. 43, 389–412 (2021).Article 

    Google Scholar 
    Harris, L. R. et al. Practical marine spatial management of ecologically or biologically significant marine areas: Emerging lessons from evidence-based planning and implementation in a developing-world context. Front. Mar. Sci. 9, 831678 (2022).Article 

    Google Scholar 
    Whitehead, T. O., Kato, A., Ropert-Coudert, Y. & Ryan, P. G. Habitat use and diving behaviour of macaroni Eudyptes chrysolophus and eastern rockhopper E. chrysocome filholi penguins during the critical pre-moult period. Mar. Biol. 163, 19 (2016).Article 

    Google Scholar 
    Warwick-Evans, V., Downie, R., Santos, M. & Trathan, P. N. Habitat preferences of Adélie Pygoscelis adeliae and Chinstrap Penguins Pygoscelis antarctica during pre-moult in the Weddell Sea (Southern Ocean). Polar Biol. 42, 703–714 (2019).Article 

    Google Scholar 
    Green, C.-P. et al. The role of allochrony in influencing interspecific differences in foraging distribution during the non-breeding season between two congeneric crested penguin species. PLoS ONE 17, e0262901 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pütz, K., Ingham, R. J. & Smith, J. G. Satellite tracking of the winter migration of Magellanic Penguins Spheniscus magellanicus breeding in the Falkland Islands. Ibis 142, 614–622 (2000).Article 

    Google Scholar 
    Pütz, K. et al. Post-moult movements of sympatrically breeding Humboldt and Magellanic Penguins in south-central Chile. Glob. Ecol. Conserv. 7, 49–58 (2016).Article 

    Google Scholar 
    Pütz, K., Ingham, R. J., Smith, J. G. & Lüthi, B. H. Winter dispersal of rockhopper penguins Eudyptes chrysocome from the Falkland Islands and its implications for conservation. Mar. Ecol. Prog. Ser. 240, 273–284 (2002).Article 
    ADS 

    Google Scholar 
    Thiebot, J.-B., Cherel, Y., Trathan, P. N. & Bost, C. A. Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology 93, 122–130 (2012).PubMed 
    Article 

    Google Scholar 
    Thiebot, J.-B., Bost, C.-A., Poupart, T. A., Filippi, D. & Waugh, S. M. Extensive use of the high seas by Vulnerable Fiordland Penguins across non-breeding stages. J. Ornithol. 161, 1033–1043 (2020).Article 

    Google Scholar 
    Mattern, T. et al. Marathon penguins—Reasons and consequences of long-range dispersal in Fiordland penguins/Tawaki during the pre-moult period. PLoS ONE 13, e0198688 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bost, C.-A., Thiebot, J.-B., Pinaud, D., Cherel, Y. & Trathan, P. N. Where do penguins go during the inter-breeding period? Using geolocation to track the winter dispersion of the macaroni penguin. Biol. Lett. 5, 473–476 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baylis, A. M. M., Tierney, M., Orben, R. A., González de la Peña, D. & Brickle, P. Non-breeding movements of gentoo penguins at the Falkland Islands. Ibis 163, 507–518 (2021).Article 

    Google Scholar 
    Orgeret, F. et al. Exploration during early life: Distribution, habitat and orientation preferences in juvenile king penguins. Mov. Ecol. 7, 29 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thiebot, J. B., Lescroël, A., Barbraud, C. & Bost, C. A. Three-dimensional use of marine habitats by juvenile emperor penguins Aptenodytes forsteri during post-natal dispersal. Antarct. Sci. 25, 536–544 (2013).Article 
    ADS 

    Google Scholar 
    Pütz, K. et al. Post-fledging dispersal of king penguins (Aptenodytes patagonicus) from two breeding sites in the South Atlantic. PLoS ONE 9, e97164 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: Direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).Article 
    ADS 

    Google Scholar 
    Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).Article 
    ADS 

    Google Scholar 
    Carpenter-Kling, T. et al. Foraging in a dynamic environment: Response of four sympatric sub-Antarctic albatross species to interannual environmental variability. Ecol. Evol. 10, 11277–11295 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kowalczyk, N. D., Reina, R. D., Preston, T. J. & Chiaradia, A. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178, 967–979 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Machovsky-Capuska, G. E. et al. The nutritional nexus: Linking niche, habitat variability and prey composition in a generalist marine predator. J. Anim. Ecol. 87, 1286–1298 (2018).PubMed 
    Article 

    Google Scholar 
    Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).PubMed 
    Article 

    Google Scholar 
    Kappes, M. A. et al. Hawaiian albatrosses track interannual variability of marine habitats in the North Pacific. Prog. Oceanogr. 86, 246–260 (2010).Article 
    ADS 

    Google Scholar 
    Bost, C. A. et al. Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun. 6, 8220 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Brown, C. J. et al. Effects of climate-driven primary production change on marine food webs: Implications for fisheries and conservation. Glob. Chang. Biol. 16, 1194–1212 (2010).Article 
    ADS 

    Google Scholar 
    Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).Article 

    Google Scholar 
    McInnes, A. M., Ryan, P. G., Lacerda, M. & Pichegru, L. Targeted prey fields determine foraging effort thresholds of a marine diver: Important cues for the sustainable management of fisheries. J. Appl. Ecol. 56, 2206–2215 (2019).Article 

    Google Scholar 
    van Eeden, R., Reid, T., Ryan, P. G. & Pichegru, L. Fine-scale foraging cues for African penguins in a highly variable marine environment. Mar. Ecol. Prog. Ser. 543, 257–271 (2016).Article 
    ADS 

    Google Scholar 
    Coetzee, J. C., van der Lingen, C. D., Hutchings, L. & Fairweather, T. P. Has the fishery contributed to a major shift in the distribution of South African sardine?. ICES J. Mar. Sci. 65, 1676–1688 (2008).Article 

    Google Scholar 
    Blamey, L. K. et al. Ecosystem change in the southern Benguela and the underlying processes. J. Mar. Syst. 144, 9–29 (2015).Article 

    Google Scholar 
    Roy, C., Van Der Lingen, C. D., Coetzee, J. C. & Lutjeharms, J. R. E. Abrupt environmental shift associated with changes in the distribution of Cape anchovy Engraulis encrasicolus spawners in the southern Benguela. Afr. J. Mar. Sci. 29, 309–319 (2007).Article 

    Google Scholar 
    McInnes, A. M. et al. Small pelagic fish responses to fine-scale oceanographic conditions: Implications for the endangered African penguin. Mar. Ecol. Prog. Ser. 569, 187–203 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    Barange, M., Hampton, I. & Roel, B. A. Trends in the abundance and distribution of anchovy and sardine on the South African continental shelf in the 1990s, deduced from acoustic surveys. S. Afr. J. Mar. Sci. 21, 367–391 (1999).Article 

    Google Scholar 
    Hutchings, L. et al. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline. Mar. Freshw. Res. 53, 307–318 (2002).Article 

    Google Scholar 
    Verheye, H. M., Hutchings, L., Huggett, J. A. & Painting, S. J. Mesozooplankton dynamics in the Benguela ecosystem, with emphasis on the herbivorous copepods. S. Afr. J. Mar. Sci. 12, 561–584 (1992).Article 

    Google Scholar 
    Hutchings, L., Jarre, A., Lamont, T., van den Berg, M. & Kirkman, S. P. St Helena Bay (southern Benguela) then and now: Muted climate signals, large human impact. Afr. J. Mar. Sci. 34, 559–583 (2012).Article 

    Google Scholar 
    Goschen, W. S. & Schumann, E. H. Upwelling and the occurrence of cold water around Cape Recife, Algoa Bay, South Africa. S. Afr. J. Mar. Sci. 16, 57–67 (1995).Article 

    Google Scholar 
    Hutchings, L. et al. The Benguela Current: An ecosystem of four components. Prog. Oceanogr. 83, 15–32 (2009).Article 
    ADS 

    Google Scholar 
    Goschen, W. S., Schumann, E. H., Bernard, K. S., Bailey, S. E. & Deyzel, S. H. P. Upwelling and ocean structures off Algoa Bay and the south-east coast of South Africa. Afr. J. Mar. Sci. 34, 525–536 (2012).Article 

    Google Scholar 
    van der Lingen, C. D. Diet of sardine Sardinops sagax in the southern Benguela upwelling ecosystem. S. Afr. J. Mar. Sci. 24, 301–316 (2002).Article 

    Google Scholar 
    van der Lingen, C. D., Hutchings, L. & Field, J. G. Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: Are species alternations between small pelagic fish trophodynamically mediated?. Afr. J. Mar. Sci. 28, 465–477 (2006).Article 

    Google Scholar 
    Wright, K. L. B., Pichegru, L. & Ryan, P. G. Penguins are attracted to dimethyl sulphide at sea. J. Exp. Biol. 214, 2509–2511 (2011).PubMed 
    Article 

    Google Scholar 
    Hagen, C. et al. Evaluating the state of knowledge on fishing exclusions around major African Penguin colonies. (2014).Fort, J. et al. Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover. Divers. Distrib. 19, 1322–1332 (2013).Article 

    Google Scholar 
    Reiertsen, T. K. et al. Prey density in non-breeding areas affects adult survival of black-legged kittiwakes Rissa tridactyla. Mar. Ecol. Prog. Ser. 509, 289–302 (2014).Article 
    ADS 

    Google Scholar 
    Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871–3878 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. & Weimerskirch, H. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird. Funct. Ecol. 32, 2040–2053 (2018).Article 

    Google Scholar 
    Randall, R. M. & Randall, B. The annual cycle of the Jackass Penguin Spheniscus demersus at St Croix Island, South Africa. In Proc. Symp. Birds Sea Shore 427–450 (1981).Wolfaardt, A. C., Underhill, L. G. & Visagie, J. Breeding and moult phenology of African penguins Spheniscus demersus at Dassen Island. Afr. J. Mar. Sci. 31, 119–132 (2009).Article 

    Google Scholar 
    Crawford, R. J. M. et al. Molt of the African penguin, Spheniscus demersus, in relation to its breeding season and food availability. Acta Zool. Sin. 52, 444–447 (2006).
    Google Scholar 
    Randall, R. M. Biology of the Jackass Penguin Spheniscus demersus (L.) at St Croix, South Africa (Univeristy of Port Elizabeth, 1983).
    Google Scholar 
    Harding, C. T. Tracking African Penguins (Spheniscus demersus) Outside of the Breeding Season: Regional Effects and Fishing Pressure During the Pre-moult Period (University of Cape Town, 2013).
    Google Scholar 
    Wilson, R. P. The Jackass Penguin (Spheniscus demersus) as a pelagic predator. Mar. Ecol. Prog. Ser. 25, 219–227 (1985).Article 
    ADS 

    Google Scholar 
    Freitas, C. argosfilter: Argos locations filter. (2012).Worton, B. J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Vander Wal, E. & Rodgers, A. R. An individual-based quantitative approach for delineating core areas of animal space use. Ecol. Model. 224, 48–53 (2012).Article 

    Google Scholar 
    Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums (2017).Bhattacharyya, A. On a measure of divergence between two multinomial populations. Indian J. Stat. 7, 401–406 (1946).MathSciNet 
    MATH 

    Google Scholar 
    Beal, M. et al. track2KBA: An R package for identifying important sites for biodiversity from tracking data. Methods Ecol. https://doi.org/10.1111/2041-210X.13713 (2021).Article 

    Google Scholar 
    Donald, P. F. et al. Important Bird and Biodiversity Areas (IBAs): The development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. 29, 177–198 (2019).Article 

    Google Scholar 
    Handley, J. M. et al. Evaluating the effectiveness of a large multi-use MPA in protecting Key Biodiversity Areas for marine predators. Divers. Distrib. 26, 715–729 (2020).Article 

    Google Scholar 
    Strimas-Mackey, M. smoothr: Smooth and tidy spatial features. R package version 0.2.2. https://CRAN.R-project.org/package=smoothr (2018).Department of Forestry Fisheries and the Environment, T. South Africa Marine Protected Area Zonations (SAMPAZ_OR_2021_Q3). https://egis.environment.gov.za/data_egis/data_dow (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021). More

  • in

    Spotted lanternfly predicted to establish in California by 2033 without preventative management

    Model structureWe used the PoPS (Pest or Pathogen Spread) Forecasting System11 version 2.0.0 to simulate the spread of SLF and calibrated the model (Fig. 6) using Approximate Bayesian Computation (ABC) with sequential Markov chain and a multivariate normal perturbation kernel18,19. We simulated the reproduction and dispersal of SLF groups (at the grid cell level) rather than individuals, as exact measures of SLF populations are not the goal of surveys conducted by USDA and state departments of agriculture. Reproduction was simulated as a Poisson process with mean β that is modified by local conditions. For example, if we have 5 SLF groups in a cell, a β value of 2.2, and a temperature coefficient of 0.7, our modified β value becomes 1.54 and we draw five numbers from a Poisson distribution with a λ value of 1.54. β and dispersal parameters were calibrated to fit the observed patterns of spread. For this application of PoPS, we replaced the long-distance kernel (α2) with a network dispersal kernel based on railroads, along which SLF and tree of heaven are commonly observed7. For each SLF group dispersing, if a railroad is in the grid cell with SLF, we used a Bernoulli distribution with mean of γ (probability of natural dispersal) to determine if an SLF group dispersed via the natural Cauchy kernel with scale (α) or along the rail network. This network dispersal kernel accounts for dispersal along railways if SLF is present in a cell containing a rail line. The network dispersal kernel added three new parameters to the PoPS model: a network file that contained the nodes and edges, minimum distance that each railcar travels, and the maximum distance that each railcar travels. Unlike typical network models, which simulate transport simply between nodes, our approach allows for SLF to disembark a railcar at any point along an edge, more closely mimicking their actual behavior. This network therefore captures the main pathway of SLF long-distance dispersal, i.e., along railways.Fig. 6: Model structure for spotted lanternfly (SLF, Lycorma delicatula).Unused modules in the PoPS model are gray in the equation. a The number of pests that disperse from a single host under optimal environmental conditions (β) is modified by the number of currently infested hosts (I) and environmental conditions in a location (i) at a particular time (t); environmental conditions include seasonality (X) and temperature (T) (see supplementary Fig. 3 for details on temperature). Dispersal is a function of gamma (γ), which is the probability of short-distance dispersal (alpha-1, α1) or long-distance via the rail network (N (dmin, dmax)). For the natural-distance Cauchy kernel, the direction is selected using 0-359 with 0 representing North. For the network kernel, the direction along the rail is selected randomly, and then travel continues in that direction until the drawn distance is reached. Once SLF has landed in a new location, its establishment depends on environmental conditions (X, T) and the availability of suitable hosts (number of susceptible hosts [S] divided by total number of potential hosts [N]). b We used a custom host map for tree of heaven (Ailanthus altissima) to determine the locations of susceptible hosts. The number of newly infested hosts (ψ) is predicted for each cell across the contiguous US.Full size imageSpotted lanternfly model calibrationWe used 2015–2019 data (over 300,000 total observations including both positive and negative surveys) provided by the USDA APHIS and the state Departments of Agriculture of Pennsylvania, New Jersey, Delaware, Maryland, Virginia, and West Virginia to calibrate model parameters (β, α1, γ, dmin, dmax). The calibration process starts by drawing a set of parameters from a uniform distribution. Simulated results for each model run are then compared to observed data within the year they were collected, and accuracy, precision, recall, and specificity are calculated for the simulation period. If each of these statistics is above 65% the parameter set is kept. This process repeats until 10,000 parameter sets are kept; then, the next generation of the ABC process begins: the mean of each accuracy statistic becomes the new accuracy threshold, and parameters are drawn from a multivariate normal distribution based on the means and covariance matrix of the first 10,000 kept parameters. This process repeats for a total of seven generations. Compared to the 2020 and 2021 observation data (over 100,000 total observations including both positive and negative surveys), the model performed well, with an accuracy of 84.4%, precision of 79.7%, recall of 91.55%, and specificity of 77.6%. In contrast, a model run using PoPS’ previous long-distance kernel (α2) instead of the network dispersal kernel had an accuracy of 76.5%, precision of 68.1%, recall of 92.68%, and specificity of 57.2%.We applied the calibrated parameters and their uncertainties (Fig. 7) to forecast the future spread of SLF, using the status of the infestation as of January 1, 2020 as a starting point and data for temperature and the distribution of SLF’s presumed primary host (tree of heaven, Ailanthus altissima) for the contiguous US at a spatial resolution of 5 km.Fig. 7: Parameter distributions.a Reproductive rate (β), b natural dispersal distance (α1), c percent natural dispersal (γ), d minimum distance (dmin), e maximum distance (dmax).Full size imageWeather dataOverwinter survival of SLF egg masses, and therefore spread, is sensitive to temperature (see ref. 2). To run a spread model in PoPS, all raw temperature values are first converted to indices ranging 0–1 to describe their impact on a species’ ability to survive and reproduce. We converted daily Daymet20 temperature into a monthly coefficient ranging 0–1 (Supplementary Fig. 1) and then rescaled from 1 to 5 km by averaging 1-km pixel values. We used weather data 1980–2019 and randomly drew from those historical data to simulate future weather conditions in our simulations, to account for uncertainty in future weather conditions.Tree of heaven distribution mappingSLF is known to feed on >70 species of mainly woody plants7, but tree of heaven is commonly viewed as necessary, or at least highly important, for SLF spread. Young nymphs are host generalists, but older nymphs and adults strongly prefer tree of heaven (in Korea21; in Pennsylvania, US22), and experiments in captivity23 and in situ9 have shown that adult survivorship is higher on the tree of heaven and grapevine than other host plants, likely due to the presence and proportion of sugar compounds important for SLF survival23. Secondary compounds found in tree of heaven also make adult SLF more unpalatable to avian predators24, and researchers have hypothesized that these protective compounds may be passed on to eggs21. For these reasons, tree of heaven is widely considered the primary host for SLF and linked to SLF spread1,25.We, therefore, used tree of heaven as the host in our spread forecast. We estimated the geographic range of tree of heaven using the Maximum Entropy (MaxEnt) model26,27. We chose to use niche modeling because tree of heaven has been in the US for over 200 years and is well past the early stage of invasion at which niche models perform poorly; instead, tree of heaven is well into the intermediate to equilibrium stage of invasion, when niche models perform well28. We obtained 19,282 presences for tree of heaven in the US from BIEN29,30 and EDDmaps31 and selected the most important variables from an initial MaxEnt model of all 19 WorldClim bioclimatic variables32. Our final climate variables were mean annual temperature, precipitation of the coldest quarter, and precipitation of the driest quarter. Given that tree of heaven is non-native and invasive in the US, prefers open and disturbed habitat, and is commonly found along roadsides and in urban landscapes33, we also included distance to major roads and railroads as an additional variable in our model, to account for the presence of disturbed habitat as well as approximate urbanization and anthropogenic degradation. For each 1-km cell in the extent, we calculated distance to the nearest road and nearest railroad using the US Census Bureau’s TIGER data set of primary roads and railroads34. We used our final MaxEnt model to generate the probability of the presence of tree of heaven for each 1-km cell, then reset all cells with a probability ≤0.2 to a value of 0 to minimize overprediction of the tree of heaven locations (because cells ≤0.2 contained less than 1% of the presences used to build the model). We rescaled the remaining probability values 0–1. We used 10% of the tree of heaven presence data to validate the model, which performed well: 95% of the validation data set locations had a probability of presence greater than 65%. We then rescaled the 1-km MaxEnt output to 5 km using the mean value of our 1-km cells, in order to reduce computational time.Forecasting spotted lanternflyWe used the Daymet temperature data and distribution of tree of heaven to simulate SLF spread with PoPS, assuming no further efforts to contain or eradicate either tree of heaven or SLF. We ran the spread simulation 10,000 times from 2020 to 2050 for the contiguous US. After running all 10,000 iterations, we created a probability of occurrence for each cell for each year by dividing the number of simulations in which a cell was simulated as being infested in that year by 10,000 (the total number of simulations). This gave us a probability of occurrence per year. We downscaled our probability of occurrence per year from 5 km to 1 km and set the probability to 0 in 1-km pixels with no tree of heaven occurrence.Data for mapping and comparisonWe compared our probability of occurrence map in 2050 to the SLF suitability map created by Wakie et al.1 using niche modeling to see how well the two modeling approaches would agree if SLF were allowed to spread unmanaged (Fig. 5). Wakie et al.1 categorized pixels below 8.359% as unsuitable, between 8.359% and 26.89% as low risk, between 26.89% and 51.99% as medium risk, and above 51.99% as high risk. To facilitate comparison, we used this same schema to categorize pixels as low, medium, or high probability of spread.We converted the yearly raster probability maps to county-level probabilities in order to examine the yearly risk to crops in counties. We performed this conversion using two methods: (1) the highest probability of occurrence in the county (Supplementary Movie 2) and (2) the mean probability of occurrence in the county (Fig. 1 and Supplementary Movie 1). The first method provides a simple, non-statistical estimate of the probability of SLF presence by assigning the county the value of the highest cell-level probability; the second accounts for all of the probabilities of the cells in the county and typically results in a higher county-level probability. We used USDA county-level production data10 for grapes, almonds, apples, walnuts, cherries, hops, peaches, plums, and apricots to determine the amount of production at risk each year (Fig. 2).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Carbon impacts

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Identification of nosZ-expressing microorganisms consuming trace N2O in microaerobic chemostat consortia dominated by an uncultured Burkholderiales

    Montzka SA, Dlugokencky EJ, Butler JH. Non-CO2 greenhouse gases and climate change. Nature 2011;476:43–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. (eds). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2021. (in press).Wuebbles DJ. Nitrous oxide: no laughing matter. Science. 2009;326:56–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kool DM, Dolfing J, Wrage N, van Groenigen JW. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem. 2011;43:174–8.CAS 
    Article 

    Google Scholar 
    Yoon S, Song B, Phillips RL, Chang J, Song MJ. Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems. FEMS Microbiol Ecol. 2019;95:fiz066.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci USA. 2012;109:19709–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 2018;26:43–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Graf DR, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One. 2014;9:e114118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roco CA, Bergaust LL, Bakken LR, Yavitt JB, Shapleigh JP. Modularity of nitrogen‐oxide reducing soil bacteria: linking phenotype to genotype. Environ Microbiol. 2017;19:2507–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones CM, Graf DR, Bru D, Philippot L, Hallin S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 2013;7:417–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Frostegård Å, Vick SH, Lim NY, Bakken LR, Shapleigh JP. Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N2O emissions and nitrite accumulation in soil. ISME J. 2022;16:26–37.PubMed 
    Article 
    CAS 

    Google Scholar 
    Simon J, Einsle O, Kroneck PMH, Zumft WG. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett. 2004;569:7–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Foley J, De Haas D, Yuan Z, Lant P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res. 2010;44:831–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng J, Doskey PV. Simulated rainfall on agricultural soil reveals enzymatic regulation of short-term nitrous oxide profiles in soil gas and emissions from the surface. Biogeochemistry. 2016;128:327–38.CAS 
    Article 

    Google Scholar 
    Kern M, Simon J. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes. Environ Microbiol. 2016;18:2899–912.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suenaga T, Riya S, Hosomi M, Terada A. Biokinetic characterization and activities of N2O-reducing bacteria in response to various oxygen levels. Front Microbiol. 2018;9:697.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim DD, Park D, Yoon H, Yun T, Song MJ, Yoon S. Quantification of nosZ genes and transcripts in activated sludge microbiomes with novel group-specific qPCR methods validated with metagenomic analyses. Water Res. 2020;185:116261.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon S, Nissen S, Park D, Sanford RA, Löffler FE. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl Environ Microbiol. 2016;82:3793–800.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon H, Song MJ, Kim DD, Sabba F, Yoon S. A serial biofiltration system for effective removal of low-concentration nitrous oxide in oxic gas streams: mathematical modeling of reactor performance and experimental validation. Environ Sci Technol. 2019;53:2063–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suenaga T, Hori T, Riya S, Hosomi M, Smets BF, Terada A. Enrichment, isolation, and characterization of high-affinity N2O-reducing bacteria in a gas-permeable membrane reactor. Environ Sci Technol. 2019;53:12101–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Conthe M, Wittorf L, Kuenen JG, Kleerebezem R, van Loosdrecht MC, Hallin S. Life on N2O: Deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. ISME J. 2018;12:1142–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry S, Bru D, Stres B, Hallet S, Philippot L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol. 2006;72:5181–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qi C, Zhou Y, Suenaga T, Oba K, Lu J, Wang G, et al. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights. Water Res. 2022;209:117910.CAS 
    Article 

    Google Scholar 
    Gao Y, Mania D, Mousavi SA, Lycus P, Arntzen MØ, Woliy K, et al. Competition for electrons favours N2O reduction in denitrifying Bradyrhizobium isolates. Environ Microbiol. 2021;23:2244–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Song MJ, Choi S, Bae WB, Lee J, Han H, Kim DD, et al. Identification of primary effecters of N2O emissions from full-scale biological nitrogen removal systems using random forest approach. Water Res. 2020;184:116144.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. N2O emissions from activated sludge processes, 2008−2009: results of a national monitoring survey in the United States. Environ Sci Technol. 2010;44:4505–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bollmann A, Conrad R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Glob Chang Biol 1998;4:387–96.Article 

    Google Scholar 
    Morris RL, Schmidt TM. Shallow breathing: Bacterial life at low O2. Nat Rev Microbiol. 2013;11:205–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799–812.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Camejo PY, Oyserman BO, McMahon KD, Noguera DR. Integrated omic analyses provide evidence that a “Candidatus Accumulibacter phosphatis” strain performs denitrification under microaerobic conditions. mSystems. 2019;4:e00193–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon S, Sanford RA, Löffler FE. Shewanella spp. use acetate as an electron donor for denitrification but not ferric iron or fumarate reduction. Appl Environ Microbiol. 2013;79:2818–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van den Berg EM, Boleij M, Kuenen JG, Kleerebezem R, van Loosdrecht M. DNRA and denitrification coexist over a broad range of acetate/N-NO3− ratios, in a chemostat enrichment culture. Front Microbiol. 2016;7:1842.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys. 2015;15:4399–981.CAS 
    Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Binder BJ, Liu YC. Growth rate regulation of rRNA content of a marine Synechococcus (cyanobacterium) strain. Appl Environ Microbiol. 1998;64:3346–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shrestha PM, Rotaru AE, Aklujkar M, Liu F, Shrestha M, Summers ZM, et al. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep. 2013;5:904–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol. 2006;72:2765–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:1–11.Article 
    CAS 

    Google Scholar 
    Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang Y, Gilna P, Li W. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 2009;25:1338–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 2011;12:R44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint arXiv:13033997. 2013.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell 2016;166:1103–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:1–16.Article 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2:1533–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018;46:W282–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling AE, Jospin G, Lowe E, Matsen FA IV, Bik HM, Eisen JA. PhyloSift: Phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 2019;179:1068–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun. 2019;10:1014.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods. 2013;10:1196–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yap CX, Henders AK, Alvares GA, Wood DL, Krause L, Tyson GW, et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 2021;184:5916–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shan J, Sanford RA, Chee‐Sanford J, Ooi SK, Löffler FE, Konstantinidis KT, et al. Beyond denitrification: the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob Chang Biol. 2021;27:2669–83.PubMed 
    Article 

    Google Scholar 
    Jones CM, Spor A, Brennan FP, Breuil M-C, Bru D, Lemanceau P, et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Chang. 2014;4:801–5.Kim J, Kim DD, Yoon S. Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Appl Microbiol Biotechnol. 2018;102:5707–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Betlach MR, Tiedje JM. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981;42:1074–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: Redox control. Antioxid Redox Signal. 2012;16:819–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rauhamäki V, Bloch DA, Wikström M. Mechanistic stoichiometry of proton translocation by cytochrome cbb3. Proc Natl Acad Sci USA. 2012;109:7286–91.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta – Bioenerg. 2011;1807:1398–413.CAS 
    Article 

    Google Scholar 
    Lee A, Winther M, Priemé A, Blunier T, Christensen S. Hot spots of N2O emission move with the seasonally mobile oxic-anoxic interface in drained organic soils. Soil Biol Biochem. 2017;115:178–86.CAS 
    Article 

    Google Scholar 
    Orellana L, Rodriguez-R L, Higgins S, Chee-Sanford J, Sanford R, Ritalahti K, et al. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. MBio 2014;5:e01193–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ormeño-Orrillo E, Martínez-Romero E. A genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol. 2019;10:1334.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tong W, Li X, Wang E, Cao Y, Chen W, Tao S, et al. Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genom. 2020;21:186.CAS 
    Article 

    Google Scholar 
    Conthe M, Lycus P, Arntzen MØ, da Silva AR, Frostegård Å, Bakken LR, et al. Denitrification as an N2O sink. Water Res. 2019;151:381–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldblatt C, Lenton TM, Watson AJ. Bistability of atmospheric oxygen and the Great Oxidation. Nature. 2006;443:683–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brewer PG, Hofmann AF, Peltzer ET, Ussler W III. Evaluating microbial chemical choices: The ocean chemistry basis for the competition between use of O2 or NO3− as an electron acceptor. Deep Sea Res Part I Oceanogr Res Pap. 2014;87:35–42.CAS 
    Article 

    Google Scholar 
    Bianchi D, Dunne JP, Sarmiento JL, Galbraith ED. Data‐based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Global Biogeochem Cycles 2012;26:GB2009.Stolper DA, Revsbech NP, Canfield DE. Aerobic growth at nanomolar oxygen concentrations. Proc Natl Acad Sci USA. 2010;107:18755–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zakem E, Follows M. A theoretical basis for a nanomolar critical oxygen concentration. Limnol Oceanogr. 2017;62:795–805.Article 

    Google Scholar 
    Liengaard L, Nielsen LP, Revsbech NP, Priemé A, Elberling B, Enrich-Prast A, et al. Extreme emission of N2O from tropical wetland soil (Pantanal, South America). Front Microbiol. 2013;3:433.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shcherbak I, Robertson GP. Nitrous oxide (N2O) emissions from subsurface soils of agricultural ecosystems. Ecosystems. 2019;22:1650–63.CAS 
    Article 

    Google Scholar 
    Qu Z, Bakken LR, Molstad L, Frostegård Å, Bergaust LL. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ Microbiol. 2016;18:2951–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Desloover J, Roobroeck D, Heylen K, Puig S, Boeckx P, Verstraete W, et al. Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Environ Microbiol. 2014;16:3143–52.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Indigenous knowledge reveals history of fire-prone California forest

    Controlled fires can be used to reduce the risk of wildfires.Credit: David Hoffmann/Alamy

    Indigenous oral accounts have helped scientists to reconstruct a 3,000-year history of a large fire-prone forest in California. The results suggest that parts of the forest are denser than ever before, and are at risk of severe wildfires1. The research is part of a growing effort to combine Indigenous knowledge with other scientific data to improve understanding of ecosystem histories.Wildfires are a substantial threat to Californian forests. Clarke Knight, a palaeo-ecosystem scientist at the US Geological Survey in Menlo Park, California, and her colleagues wanted to understand how Indigenous communities helped shape the forest by managing this risk in the state’s lush western Klamath Mountains. Specifically, they studied Indigenous peoples’ use of cultural burning — small, controlled fires that keep biomass low and reduce the risk of more widespread burning. The results are published in the Proceedings of the National Academy of Science.“When I was a little kid, my grandmother used to burn around the house,” says Rod Mendes, fire chief for the Yurok Tribe fire department, whose family is part of the Karuk Tribe of northern California. The Karuk and Yurok tribes have called the Klamath Mountains home for thousands of years. “She was just keeping the place clean. Native people probably did some of the first prescribed fire operations in history,” says Mendes.Understanding how Indigenous tribes used fire is essential for managing forests to reduce wildfire risk, says Knight. “We need to listen to Native people and learn and understand why they managed the landscape the way they did,” adds Mendes.Collaboration for corroborationTo map the region’s forest history, the team drew on historical accounts and oral histories from Karuk, Yurok and Hoopa Valley Tribe members collected by study co-author Frank Lake, a US Forest Service research ecologist in Arcata, California, and a Karuk descendant, as part of his PhD thesis in 2007. These accounts described the tribes’ fire and land use. For instance, members lit small fires to keep trails clear; this also reduced the amount of vegetation, preventing expansion of wildfires from lightning strikes. Larger fires, called broadcast burning, were used to improve visibility, hunting and nut-harvesting conditions in the forest. The effects of fire on the vegetation lasted for decades.Knight says that it was important to collaborate with the tribes given their knowledge of the region. The Karuk Resources Advisory Board approved a proposal for the study before it began. “In a way, it’s decolonizing the existing academic model that hasn’t been very inclusive of Indigenous histories,” says Lake.The researchers also analysed sediment cores collected near two low-elevation lakes in the Klamath Mountains that are culturally important to the tribes. Layers of pollen in the cores were used to infer the approximate tree density in the area at various times, and modelling helped date the cores so they could estimate how that density changed.The team also measured charcoal in the cores’ layers, which helped to map fluctuations in the amount of fire in the region. Burn scars on tree stumps pointed to specific instances of fire in between 1700-1900. Because the stumps’ rings serve as an ecological calendar, the researchers were able to compare periods of fire with corresponding tree-density data. They then pieced together how this density fluctuated with fire incidence. Although these empirical methods could not specifically confirm that the fires were lit by the tribes, patterns suggested when this was more probable, says Knight. For instance, increased burning in cool, wet periods, when fires caused by lightning were probably less common, suggested a human influence.Combining multiple lines of evidence, Knight and her team show that the tree density in this region of Klamath Mountains started to increase as the area was colonized, partly because the European settlers prevented Indigenous peoples from practising cultural burning. In the twentieth century, total fire suppression became a standard management practice, and fires of any kind were extinguished or prevented — although controlled burns are currently used in forest management. The team reports that in some areas, the tree density is higher than it has been for thousands of years, owing in part to fire suppression.Healthy forestA dense forest isn’t necessarily a healthy one, says Knight. The Douglas-fir, which dominate the low-land Klamath forests, are less fire resilient and more prone to calamitous wildfires. “This idea that we simply should let nature take its course is just not supported by this work,” she says. She adds that one of the study’s strengths is the multiple lines of evidence showing that past Indigenous burning helped to manage tree density.Fire ecologist Jeffrey Kane at the California State Polytechnic University Humboldt in Arcata says that the study’s findings of increased tree density are not surprising. He has made similar observations in the Klamath region. “There’s a lot more trees than were there just 120 years ago,” he says.Dominick DellaSala, chief scientist at forest-protection organization Wild Heritage in Talent, Oregon, points out that the results suggesting record tree densities cannot be applied to the entire Klamath region, owing to the limited range of the study’s lakeside data.Knight, however, says that the results can be extrapolated to other similar low-elevation lake sites that have similar vegetation types.More Indigenous voicesPalaeoecology studies are increasingly incorporating Indigenous knowledge — but there’s still a long way to go, says physical geographer Michela Mariani at the University of Nottingham, UK. In Australia, Mariani has also found that tree density began to increase after British colonization hampered cultural burning. “It’s very important that we now include Indigenous people in the discussion in fire management moving on,” Mariani says. “They have a deeper knowledge of the landscape we simply don’t have.”Including Indigenous voices in research is also crucial for decolonizing conventional scientific methods, Lake emphasizes. It “becomes a form of justice for those Indigenous people who have long been excluded, marginalized and not acknowledged”, he says. More

  • in

    Hydrology, biogeochemistry and metabolism in a semi-arid mediterranean coastal wetland ecosystem

    Gibbs, J. P. Wetland loss and biodiversity conservation. Conserv. Biol. 14, 314–317 (2000).Article 

    Google Scholar 
    Turner, R. K. et al. Ecological-economic analysis of wetlands: Scientific integration for management and policy. Ecol. Econ. 35, 7–23 (2000).Article 

    Google Scholar 
    Zedler, J. B. & Kercher, S. Wetland resources: Status trends ecosystem services and restorability. Annu. Rev. Environ. Resour. 15, 39–74 (2005).Article 

    Google Scholar 
    Euliss, N. H., Smith, L. M., Wilcox, D. A. & Browne, B. A. Lining ecosystem processes with wetland management goals: Chartering a course for a sustainable future. Wetlands 28, 553–562 (2008).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change. 26, 152–158 (2014).Article 

    Google Scholar 
    Macreadie, P. J. et al. The future of blue carbon. Nat. Commun. 10, 3998 (2019).ADS 
    Article 

    Google Scholar 
    RAMSAR. Wise use of wetlands, Ramsar Handbooks, 4th edition (2010).Kingsford, R. T., Basset, A. & Jackson, L. Wetlands: Conservation’s poor cousins. Aquat. Conserv. 26, 892–916 (2016).Article 

    Google Scholar 
    Beck, M. W., Heck, K. L. & Able, K. W. The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51, 633–641 (2001).Article 

    Google Scholar 
    Canu, D. M. et al. Adressing sustainability of clam farming in the Venice Lagoon. Ecol. Soc. 16, 26 (2010).
    Google Scholar 
    Canu, D. M., Solidoro, C., Cossarini, G. & Giorgi, F. Effect of global change on bivalve rearing activity and the need for adaptive management. Clim. Res. 42, 13–26 (2011).Article 

    Google Scholar 
    Newton, A. et al. Anthropogenic pressures on Coastal Wetlands. Front. Ecol. Evol. 8, 144 (2020).Article 

    Google Scholar 
    Ayache, F. et al. Environmental characteristics landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco) Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia 622, 15–43 (2009).CAS 
    Article 

    Google Scholar 
    Solidoro, C. et al. Response of Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50 years. In Coastal Lagoons—Critical Habitats of Environmental Change (eds. Kennish, M. J. & Paerl, H. W.) 483–511 (2010).Newton, A. et al. Assessing quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 44, 50–65 (2018).Article 

    Google Scholar 
    Newton, A. et al. An overview of ecological status vulnerability and future perspectives of European large shallow semi-enclosed coastal systems lagoons and transitional waters. Estuar. Coast. Shelf Sci. 140, 95–122 (2014).ADS 
    Article 

    Google Scholar 
    Béjaoui, B. et al. Random Forest model and TRIX used in combination to assess and diagnose the trophic status of Bizerte Lagoon, southern Mediterranean. Ecol. Indic. 71, 293–301 (2016).Article 

    Google Scholar 
    Ramdani, M. et al. North African wetland lakes: Characterization of nine sites included in the CASSARINA Project. Aquat. Ecol. 35, 281–302 (2001).Article 

    Google Scholar 
    Junk, W. J. et al. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 75, 151–167 (2013).CAS 
    Article 

    Google Scholar 
    Ouni, H. et al. Numerical modeling of hydrodynamic circulation in Ichkeul Lake-Tunisia. Energy Rep. 6, 208–213 (2020).Article 

    Google Scholar 
    Hollis, G. E. et al. Modeling and management of the internationally important wetland at Garaet Ichkeul Tunisia. Numéro 4 de IWRB special publication, International Waterfowl Research Bureau, ISSN 0962–6271 Volume 4 de International Waterfowl Research Bureau Slimbridge: IWRB special publication (ed. International Waterfowl Research Bureau) 1–121 (1986).Casagranda, C. & Boudouresque, C. F. A first quantification of the overall biomass, from phytoplankton to birds, of a Mediterranean brackish lagoon: Revisiting the ecosystem of Lake Ichkeul (Tunisia). Hydrobiologia 637, 73–85 (2010).Article 

    Google Scholar 
    Hamdi, N., Touihri, M. & Charfi, F. Diagnostic Écologique du Parc National Ichkeul (Tunisie) après la construction des barrages: Cas des oiseaux d’eau. Rev. Ecol-Terre Vie. 67, 41–62 (2012).
    Google Scholar 
    UNESCO. Biosphere Reserve Information Tunisia Ichkeul, UNESCO-MAB. Biosphere Reserves Directory. (2009a).UNESCO. Ichkeul National Park http://whc.unesco.org/en/list/8/ (2009b).RAMSAR. Convention and Wetlands International. Information Sheet on Ramsar Wetlands Tunisia Ichkeul, Ramsar Sites Information Service. (2009).Tamisier, A., et al. Modelling aquatic ecosystems: Benefits, costs and risks, for a field biologist. Ichkeul Lake, Tunisia, a case study. In Limnology and Aquatic birds, Monitoring, modeling and management (eds. Comin, F. A., Herrera, J. A. & Ramirez, J.) 185–203 (2001).Giordani, G. et al. Nutrient fluxes in transitional zones of the Italian coast. LOICZ Reports & Studies No. 28, ii+157 pages, LOICZ, Texel, the Netherlands. (2005).Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Phil. Trans. R. Soc. B367, 1157–1168 (2012).Article 

    Google Scholar 
    Chen, N., Wu, J., Chen, Z., Lu, T. & Wang, L. Spatial-temporal variation of dissolved N2 and denitrification in an agricultural river network, southeast China. Agric. Ecosyst. Environ. 189, 1–10 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Loeks, B. M. & Cotner, J. B. Upper Midwest lakes are supersaturated with N2. Proc. Natl. Acad. Sci. USA 117, 17063–17067 (2020).Article 

    Google Scholar 
    Thomann, R. V., DiToro, D. M., Winfield, R. P. & O’Connor, D. J. Mathematical modelling of phytoplankton in Lake Ontario. Part 1. Model development and verification. U.S. Environmental Protection Agency, EPA-660/3-75-005, Corvallis, Oreg. 77 (1975).DiToro, D. M. & Connolly, J. P. Mathematical models of water quality in large lakes. Part 2: Lake Erie. U.S. Environmental Protection Agency, Duluth, Minnesota. EPA-600/3-80-065. 231. (1980)Jacobsen, O. S. & Jorgensen, S. E. A submodel for nitrogen release from sediments. Ecol. Model. 1, 147–151 (1975).CAS 
    Article 

    Google Scholar 
    Jorgensen, S. E., Kamp-Neilsen, L. & Jacobsen, O. S. A submodel for anaerobic mud-water exchange of phosphate. Ecol. Model. 1, 133–146 (1975).Article 

    Google Scholar 
    Jorgensen, S. E. An Eutrophication model for a lake. Ecol. Model. 2, 147–165 (1976).Article 

    Google Scholar 
    Jorgensen, S. E., Mejer, H. & Friis, M. Examination of a Lake model. Ecol. Model. 4, 253–278 (1978).Article 

    Google Scholar 
    Chapelle, A., Mesnage, V., Mazouni, N., Deslous-Paoli, J. M. & Picot, B. Modélisation des cycles de l’azote et du phosphore dans les sédiments d’une lagune soumise à une exploitation conchylicole. Oceanol. Acta. 17, 609–620 (1994).CAS 

    Google Scholar 
    Raillard, O. & Ménesguen, A. An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar. Ecol. Prog. Ser. 115, 117–130 (1994).ADS 
    Article 

    Google Scholar 
    Kremer, H. H. et al. Land–ocean interactions in the coastal zone: Science plan and implementation strategy, IGBP Report 51, IHDP Report 18. International Geosphere-Biosphere Programme. (2005).Strobl, R., Zaldivar, C. J., Somma, F., Stips, A. & Garcia, G. E. Application of the LOICZ Methodology to the Mediterranean Sea EUR 23936 EN. Luxembourg (Luxembourg): OPOCE. JRC52454. (2009).Swaney, D. P. & Giordani, G (Eds.). Proceedings of the LOICZ Workshop on Biogeochemical Budget Methodology and Applications, Providence RI, November 9–10, 2007. LOICZ Reports and Studies no. 37. GKSS Research Centre, Geesthacht. http://www.loicz.org/imperia/md/content/loicz/print/rsreports/biogeochemical_budget_methodology_and_applications.pdf (2011).Swaney, D. P., Smith, S. V. & Wulff, F. The LOICZ Biogeochemical Modeling Protocol and its Application to Estuarine Ecosystems. In Teratise on Estuarine and Coastal Ecosystem Science, Academic Press, Elsevier (eds. Bauer, J. E. & Bianchi, T. S.) 136–159 (2011).Glaeser, B., Kannen, A. & Kremer, H. Introduction: The future of coastal areas. Challenges for planning practice and research. Gaia-Ecol. Perspect. Sci. Soc. 18, 145–149 (2009).
    Google Scholar 
    Glaeser, B., Bruckmeier, K., Glaser, M. & Krause, G. Social-ecological systems analysis in coastal and marine areas: A path toward integration of interdisciplinary knowledge. In Current Trends in Human Ecology. Cambridge Scholars Publishing (eds. Lopes, P. & Begossi, A.) 183–203 (2009b).Glaser, M. & Glaeser, B. The social dimension in the management of social ecological change. In Treatise on Estuarine and Coastal Science, Vol. 11: Integrated Management of Estuaries and Coasts. München: Elsevier (eds. Kremer, H. & Pinckney, J.) 59 (2011).Glaser, M. & Glaeser, B. Towards a framework for cross-scale and multi-level analysis of coastal and marine social-ecological systems dynamics. Reg. Environ. Change. 14, 2039–2052 (2014).Article 

    Google Scholar 
    Vybernaite-Lubiene, I. et al. Biogeochemical budgets of nutrients and metabolism in the curonian lagoon (Southeast Baltic Sea): Spatial and temporal variations. Water 14, 164 (2022).CAS 
    Article 

    Google Scholar 
    Yazidi, A., Saidi, S., Ben, M. N. & Darragi, F. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia). J. Afr. Earth. Sci. 134, 166–173 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Goudling, M. et al. Ecosystem-based management of Amazon fisheries and wetlands. Fish Fish. 20, 138–158 (2018).
    Google Scholar 
    Mitsch, W. J. & Gosselink, J. G. Wetlands 5th edn. (Wiley, 2015).
    Google Scholar 
    World Bank 2022.Affouri, H. & Sahraoui, O. The sedimentary organic matter from a Lake Ichkeul core (far northern Tunisia): Rock-Eval and biomarker approach. J. Afr. Earth. Sci. 129, 248–259 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Vanderkelen, I., van Lipzig, N. P. M. & Thiery, A. Modelling the water balance of Lake Victoria (East Africa)–Part 1: Observational analysis. Hydrol. Earth Syst. Sci. 22, 1–17 (2018).Article 

    Google Scholar 
    Coe, M. T. & Foley, J. A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. Atmos. 106, 3349–3356 (2001).ADS 
    Article 

    Google Scholar 
    Gao, H., Bohn, T. J., Podest, E., McDonald, K. C. & Lettenmaier, D. P. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 6, 34021 (2011).Article 

    Google Scholar 
    Prange, M., Wilke, T. & Wesselingh, F. P. The other side of sea level change. Commun. Earth Environ. 1, 69 (2020).ADS 
    Article 

    Google Scholar 
    Glausiusz, J. Environmental Science: New life for the DeaSea?. Nature 464, 1118–1120 (2010).CAS 
    Article 

    Google Scholar 
    Gronewold, A. D. & Stow, C. A. Water Loss from the Great Lakes. Science 343, 1084–1085 (2014).ADS 
    Article 

    Google Scholar 
    Mei, X., Dai, Z., Du, J. & Chen, J. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake. Sci. Rep. 5, 18197 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Micklin, P. The aral sea disaster. Ann. Rev. Earth Planet. Sci. 35, 47–72 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Feng, L., Han, X., Hu, C. & Chen, X. Four decades of wetland changes of the largest freshwater lake in China: Possible linkage to the Three Gorges Dam?. Remote Sens. Environ. 176, 43–55 (2016).ADS 
    Article 

    Google Scholar 
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS 
    Article 

    Google Scholar 
    Awange, J. L. et al. The falling lake victoria water level: GRACE, TRIMM and CHAMP satellite analysis of the lake basin. Water Resour. Manag. 22, 775–796 (2008).Article 

    Google Scholar 
    Carroll, M. L., Townshend, R. H. G., DiMiceli, C. M., Loboda, T. & Sohlberg, R. A. Shrinkage lakes of the Artic: Spatial relationships and trajectory of change. Geophys. Res. Lett. 38, 20406 (2011).ADS 
    Article 

    Google Scholar 
    Lefebvre, G. et al. Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Sci. Total Environ. 692, 546–555 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Touaylia, S., Ghannem, S., Toumi, H., Béjaoui, M. & Garrido, J. Assessment of heavy metals status in northern Tunisia using contamination indices: Case of the Ichkeul steams system. Int. J. Environ. Res. Public Health. 3, 209–217 (2016).
    Google Scholar 
    Aouissi, J., Benabdallah, S., Lili, C. Z. & Cudennec, C. Modelling water quality to improve agricultural practices and land management in a Tunisian catchment using soil and water assessment tool. J. Environ. Qual. 43, 18–25 (2014).Article 

    Google Scholar 
    Aouissi, J., Lili, C. Z., Benabdallah, S. & Cudennec, C. Assessing the hydrological impacts of agricultural changes upstream of the Tunisian World Heritage sea-connected Ichkeul Lake. Proc. Int. Assoc. Hydrol. Sci. 365, 61–65 (2015).
    Google Scholar 
    Fathalli, A. et al. Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters. Syst. Appl. Microbiol. 34, 303–310 (2011).CAS 
    Article 

    Google Scholar 
    Ouchir, N., Morin, S., Ben, A. L., Boughdiri, M. & Aydi, A. Periphytic diatom communities in tributaries around Lake Ichkeul, northern Tunisia: A preliminary assessment. Afr. J. Aquat. Sci. 42, 65–73 (2017).Article 

    Google Scholar 
    Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).
    Google Scholar 
    Paerl, H. W. & Huisman, J. Climate change: A catalyste for global expansion of harmful cyanobacteria blooms. Environ. Microb. Rep. 1, 27–37 (2009).CAS 
    Article 

    Google Scholar 
    Paerl, H. W., Nathan, S. H. & Calandrino, E. S. Controlling harmful cyanobacteria blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Neil, J. M., Davis, T. M., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).Article 

    Google Scholar 
    Ben, S. F. et al. Pesticides in Ichkeul Lake-Bizerte Lagoon Watershed in Tunisia: Use, occurrence, and effects on bacteria and free-living marine nematodes. Environ. Sci. Pollut. Res. 23, 36–48 (2016).Article 

    Google Scholar 
    Bourhane, Z. et al. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. J. Hazard. Mater. 421, 126789 (2022).CAS 
    Article 

    Google Scholar 
    Kolzau, S. et al. Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from Ambient nutrient concentrations. PLoS ONE 9, e96065 (2014).ADS 
    Article 

    Google Scholar 
    Abidi, M., Ben, A. R. & Gueddari, M. Assessment of the trophic status of the South Lagoon of Tunis (Tunisia, Mediterranean Sea); a Geochemical and Statistical Approaches. J. Chem. (2018).Saunders, D. L. & Kaffl, J. Denitrification rates in the sediments of Lake Memphremagog, Canda–USA. Water Res. 35, 1897–1904 (2001).CAS 
    Article 

    Google Scholar 
    Davidson, E. A. & Seitzinger, S. The enigma of progress in denitrification research. Ecol. Appl. 16, 2057–2063 (2006).Article 

    Google Scholar 
    Medina-Galvan, J. et al. Comparing the biogeochemical functioning of two arid subtropical coastal lagoons: The effect of wastewater discharges. Ecosyst. Health Sustain. 7, 1 (2021).Article 

    Google Scholar 
    Piehler, M. F. & Smyth, A. R. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere. 2, 1–17 (2011).ADS 
    Article 

    Google Scholar 
    Loeks-Johson, B. M. & Cotner, J. B. Upper Midwest lakes are supersaturated with N2. Proc. Natl. Acad. Sci. U S A. 117, 17063–17067 (2020).Reddy, K. R., Patrick, W. H. & Lindau, C. W. Nitrification-denitrification at the plant root sediment interface in Wetlands. Limnol. Oceanogr. 34, 1004–1013 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Adrian, A. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).ADS 
    Article 

    Google Scholar 
    Seo, C. D. & DeLaune, R. D. Fungal and bacterial mediated denitrification in wetlands: Influence of sediment redox condition. Water Res. 44, 2441–2450 (2010).CAS 
    Article 

    Google Scholar 
    Montzka, S. A., Dlugokencky, I. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).CAS 
    Article 

    Google Scholar 
    Sferratore, A., Billen, G. & Garnier, J. The S Modeling nutrient (N, P, Si ) budget in the Seine watershed: Application of the River Strahler model using data from local to global scale resolution Modeling nutrient (N, P, Si) budget in the Seine watershed: Application of the River Strahler model using data from local to global scale resolution. Glob. Biogeochem. Cycles. 19, 20 (2005).Article 

    Google Scholar 
    Béjaoui, B. et al. 3D modeling of phytoplankton seasonal variation and nutrient budget in a Southern Mediterranean Lagoon. Mar. Pollut. Bull. 114, 962–976 (2017).Article 

    Google Scholar 
    Shaiek, M., Fassatoui, C. & Romdhane, M. S. Past and present fish species recorded in the estuarine Lake Ichkeul, northern Tunisia. Afr. J. Aquat. Sci. 41, 171–180 (2016).Article 

    Google Scholar 
    INM. Données climatiques de la région de Bizerte. Institut National de Météorologie, Tunis, Tunisie. (2017).Rodier, J. et al. L’analyse de l’eau, Eaux naturelles, eaux résiduaires, eau de mer, Dunod Paris. (1996).Lorenzen, C. J. Determination of chlorophyll and pheopigments by spectrophotometric equations. Limnol. Oceanogr. 12, 343–346 (1967).ADS 
    CAS 
    Article 

    Google Scholar 
    Parsons, T. R., Maita, Y. & Lalli, C. M. A manual of chemical and biological methods for seawater analysis. Geol. Mag. 122, 570–570 (1980).
    Google Scholar 
    Redfield, A. C. The biological control of chemical factors in the environment. Sci. Prog. 11, 150–170 (1960).CAS 

    Google Scholar 
    Gordon, D. C. et al. LOICZ biogeochemical modelling guidelines. LOICZ Rep and Stud. 5, 1–96 (1996).
    Google Scholar 
    Seitzinger, S. P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724 (1988).ADS 
    CAS 

    Google Scholar 
    Atkinson, M. J. & Smith, S. V. C:N: P ratios of benthic marine plants. Limnol. Oceanogr. 28, 568–574 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    APHA (American Public Health Association) Standard Methods for the Examination of Water and Wastewater. 18th Edition, American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF), Washington DC (1992). More

  • in

    Original karst tiankeng with underground virgin forest as an inaccessible refugia originated from a degraded surface flora in Yunnan, China

    Zhu, X. China’s karst tiankeng and its value for science and tourism. Sci. Technol. Rev. 19, 60–63 (2001).
    Google Scholar 
    Zhu, X. et al. A brift study on karst tiankeng. Carsol. Sin. 22, 51–65 (2003).
    Google Scholar 
    Zhu, X. & Waltham, T. Tiankeng: Definition and description. Cave Karst Sci. 32, 75–79 (2005).
    Google Scholar 
    Zhu, X. & Chen, W. Tiankengs in the karst of China. Cave Karst Sci. 32, 55–56 (2005).
    Google Scholar 
    Shui, W., Chen, Y., Wang, Y., Su, Z. & Zhang, S. Origination, study progress and prospect of karst tiankeng research in China. Acta Geogr. Sin. 70, 431–446 (2015).
    Google Scholar 
    Alexander, K. Cave un-roofing as a large-scale geomorphic process. Carsol. Sin. 4, 1–11 (2006).
    Google Scholar 
    Palmer, A. & Palmer, M. Hydraulic processes in the origin of tiankengs. Speleogenesis Evol. Karst Aquifers 4, 8 (2006).
    Google Scholar 
    Waltham, T. Collapse processes at the tiankengs of Xingwen. Cave Karst Sci. 32, 107–110 (2005).
    Google Scholar 
    White, W. & White, E. Size scales for closed depression landforms: The place of tiankengs. Cave Karst Sci. 32, 111–118 (2005).
    Google Scholar 
    Chen, W., Zhu, X., Zhu, D. & Ma, Z. Karst geological relics and development of Xiaozhai Tiankeng and Tianjinxia Fissure Gorge, Fengjie, Chongqing. J. Mountain Sci. 22, 22–29 (2004).CAS 

    Google Scholar 
    Yue, Y., Wang, K., Zhang, W., Chen, H. & Wang, M. Relationships between soil and environment in Peak-Cluster Depression areas of karst region based on canonical correspondence analysis. Environ. Sci. 29, 1400–1405 (2008).
    Google Scholar 
    Huang, B., Cai, W., Xue, Y. & Zhu, X. Research on tourism resource characteristics of tiankeng group in Dashiwei, Guangxi. Geogr. Geo-Inf. Sci. 20, 109–112 (2004).CAS 

    Google Scholar 
    Zhu, X. Discovery of erosional tiankeng in Houping, Wulong and its value of science and tourism. Carsol. Sin. 2, 93–98 (2006).
    Google Scholar 
    Yuan, D. The development of modern karstology in China. Geol. Rev. 52, 733–736 (2006).CAS 

    Google Scholar 
    Gunn, J. Turloughs and tiankengs: Distinctive doline forms. Cave Karst Sci. 32, 83–84 (2005).
    Google Scholar 
    Klimchou, A. Cave un-roofing as a large-scale geomorphic process. Cave Karst Sci. 32, 93–98 (2005).
    Google Scholar 
    Zhu, X., Chen, W. & Erin, L. Wulong karst systems and as an indicator of local tectonic uplift. Carsol. Sin. 26, 119–125 (2007).
    Google Scholar 
    Shui, W. & Wang, X. Geological expedition and analysis on formation and evolvement of erosive Karst Tiankeng: A case study of Xingwen World Geopark. Adv. Mater. Res. 250–253, 2002–2006 (2011).Article 

    Google Scholar 
    Su, S., Huang, K. & Ma, B. Diversity study on pteridophyte flora in the area of Dashiwei Tiankeng group of Leye County. Hubei Agric. Sci. 51, 948–950 (2012).
    Google Scholar 
    Huang, K. & Su, S. Resource investigation and application research of pteridophyte flora resource in the area of Dashiwei Tiankeng Group. Anhui Agric. Sci. Bull. 21, 74–80 (2015).CAS 

    Google Scholar 
    Su, Y., Xue, Y., Fan, B., Mo, F. & Feng, H. Plant community structure and species diversity in Liuxing tiankeng of Guangxi. Acta Botan. Boreali-Occiden. Sin. 36, 2300–2306 (2016).
    Google Scholar 
    Li, W., Xiang, Y., Du, Y. & Wu, X. Underground forest communities in Zhanyi, Yunnan Province. For. Sci. Technol. 20–25 (2001).Jian, X. et al. Interspecific relationships of grassland plant community’s dominant species in moderate-degraded tiankeng of Yunnan, China. Chin. J. Appl. Ecol. 29, 1–14. https://doi.org/10.13287/j.1001 (2018).Article 

    Google Scholar 
    Chen, W., Zhu, D. & Zhu, X. Characteristics and evaluation of karst landscape in tiankeng-difeng scenery site, Fengjie, Chongqing. Geogr. Geo-Inf. Sci. 20, 80–83 (2004).CAS 

    Google Scholar 
    Wang, J. & Guo, C. Comparison between the positive and negative topographic ecosystem in karst mountainous areas and its bearing capability. Guizhou Agric. Sci. 35, 85–87 (2007).MathSciNet 

    Google Scholar 
    Tony, W. Tiankengs of the world, outside China. Speleogenesis Evol. Karst Aquifers 4, 1–12 (2006).
    Google Scholar 
    Su, Y., Tang, Q., Mo, F. & Xue, Y. Karst tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Sci. Rep. 7, 1–10 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Bátori, Z. et al. A comparison of the vegetation of forested and non-forested solution dolines in Hungary: A preliminary study. Biologia 69, 1339–1348 (2014).Article 
    CAS 

    Google Scholar 
    Bátori, Z. et al. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: Refugia and climate change. Int. J. Speleol. 43, 15–26 (2014).Article 

    Google Scholar 
    Bátori, Z. et al. Importance of karst sinkholes in preserving relict, mountain, and wet-woodland plant species under sub-Mediterranean climate: A case study from southern Hungary. J. Cave Karst Stud. Natl. Speleol. Soc. Bull. 74, 127–134 (2012).Article 

    Google Scholar 
    Bátori, Z. et al. Large-and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Ann. Bot. 119, 301–309 (2017).PubMed 
    Article 

    Google Scholar 
    Vilisics, F. et al. Small scale gradient effects on isopods (Crustacea: Oniscidea) in karstic sinkholes. Biologia 66, 499–505 (2011).Article 

    Google Scholar 
    Dolinar, B. & Vreš, B. Pregled flore Mišje doline in zgornjega porečja Rašice (Dolenjska, Slovenija). Hladnikia 30, 3–37 (2012).
    Google Scholar 
    Raschmanová, N., Miklisová, D., Ľubomír, K. & Šustr, V. Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion. Biologia 70, 802–811 (2016).Article 

    Google Scholar 
    Macarthur, R. & Wilson, E. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U. S. A. 104, 5925 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, F. & Yu, S. Study on the plant diversity of island-like habitats in Karst Mountain Areas. Guizhou For. Sci. Technol. 40, 18–22 (2012).CAS 

    Google Scholar 
    Hu, F., Lou, Q. & Sun, Y. Community composition and species diversity of different island habitat on Karst Mountainous in Central Guizhou. Guizhou Sci. 29, 23–28 (2011).
    Google Scholar 
    Culver, D. Karst environment. Z. Geomorphol. Suppl. 60, 103–117 (2016).Article 

    Google Scholar 
    Daily, G. Restoring value to the world’s degraded lands. Science 269, 350–354 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bartgis, R. The endangered sedge Scirpus ancistrochaetus and the flora of sinkhole ponds in Maryland and West Virginia. Castanea 57, 46–51 (1992).
    Google Scholar 
    Yu, X., Li, Y. & Ma, Z. A preliminary study on flora diversity of karst microhabitat in Shilin Park, Yunnan, China. J. Mountain Sci. 25, 438–447 (2007).
    Google Scholar 
    Dang, G., Feng, H., Tang, Q., Mo, F. & Xue, Y. New recorded species in Guangxi, China. J. Guangxi Normal Univ. (Nat. Sci. Edit.) 34, 147–150 (2016).
    Google Scholar 
    Eigenbrod, F., Gonzalez, P., Dash, J. & Steyl, I. Vulnerability of ecosystems to climate change moderated by habitat intactness. Glob. Change Biol. 21, 275–286 (2015).ADS 
    Article 

    Google Scholar 
    Cornell, H. & Lawton, J. Species interactions, local and regional processes, and limits to the richness of ecological communities: A theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).Article 

    Google Scholar 
    Helmus, M., Mahler, D. & Losos, J. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, T., Zhang, H., Ou, Z. & Tan, Y. Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in Southwest Guangxi, China. Chin. J. Appl. Ecol. 25, 2803–2810 (2014).
    Google Scholar 
    Wen, L. et al. The succession characteristics and its driving mechanisms of plant community in karst region, Southwest China. Acta Ecol. Sin. 35, 5822–5833 (2015).Article 

    Google Scholar 
    Zhang, Z., Hu, G. & Ni, J. Erratum to: Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical Karst forests, Southwestern China. J. Mt. Sci. 10, 337–338 (2013).Article 

    Google Scholar 
    Du, H. et al. Plant community characteristics and its coupling relationships with soil in depressions between karst hills, North Guangxi, China. Chin. J. Plant Ecol. 37, 197–208 (2013).Article 

    Google Scholar 
    Liu, S., Zhang, B., Yang, Q., Hu, C. & Su, C. Species composition and diversity of plant communities in Xiaoyanwan Garden of Xingwen Karst National Geopark, Sichuan Province. Subtrop. Plant Sci. 38, 37–40 (2009).
    Google Scholar 
    Tan, C. The preliminary discussion about Haifeng’s wetland ecosystem. For. Sci. Technol. 1–8 (2002).Ma, K. & Liu, Y. Measurement of biodiversity: The measurement of α diversity. Chin. Biodivers. 2, 231–239 (1995).
    Google Scholar 
    Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    Simpson, E. Measurement of diversity. Nature 163, 688 (1949).ADS 
    MATH 
    Article 

    Google Scholar  More